268

PRELIMINARY DRAINAGE REPORT

MONUMENT CLUB CONDOMINIUMS AT TROON NORTH

For

Monument Club Condominiums, Troon North LCC

A Portion of the

SE 1/4, SEC. 29, T5N, R5E Of the Gila & Salt River Base and Meridian, City of Scottsdale Maricopa County, Arizona

Assessor's Parcel Number 216-72-585 B

Graham Engineering & Surveying Job Number 07-169

Prepared for:

RD Architecture 7440 E Karen Drive Scottsdale, AZ 85260 Contact Rick Daugherty (480) 607-3337

Prepared by:

GRAHAM ENGINEERING & SURVEYING, INC.

Post Office Box 1243 Carefree, Arizona 85377 Office (480) 488-4393 Facsimile (480) 488-2488

September 28, 2007

TABLE OF CONTENTS

1.0	INTF	RODUCTION	
	1.1	Scope	
	1.2	Description	1
2.0	EXIS	STING CONDITIONS	
	2.1	Off-site	2
	2.2	On-site	2
3.0	HYD	PROLOGIC ANALYSIS	
	2.1	Pre-development Hydrology	3
	2.2	On-site Hydrology	
4.0	HYD	RAULIC ANALYSIS & DESIGN	
	3.1	Channels	4
	3.2	Flood Berm	4
	3.3	Culverts	4
5.0	SUM	MARY TABLES	
	4.1	Storm Water Runoff Quantity Tables	4
	4.2	Channel Design Table.	
	4.3	Culvert Design Table	4
6.0	REG	ULATORY COMPLIANCE	
	5.1	Federal Emergency Management Agency, Flood Zone, Insurance	5
	5.2	United States Army Corps of Engineers 404 Permitting	
	5.3	Environmental Protection Agency 401 Compliance, Notice of Intent	
	5.4	Storm Water Pollution Prevention Plan	<i>:</i> 7
	5.5	Storm Water Management Plan 28373 R. D. NSENBAIM ARIONA U.S.	8

FIGURES

Figure 1 Vicinity Map

Figure 2 Flood Insurance Rate Map

Figure 4 Soil Survey Map Figure 5 Off-site drainage Map

APPENDICES

Appendix A Hydrology Backup Appendix B Hydraulics Backup Appendix C Design Plans

PLATES

Figure 3 2007 Arial Photo

Figure 6 HEC-1 Exhibit Off-site Drainage Map
Figure 7 Pre Development On-site Runoff Map
Figure 8 Post Development On-site Runoff Map

Figure 9 HEC-RAS River Station Map C-1 to C5 Grading & Drainage Plan Sheets

1.0 Introduction

1.1 SCOPE

Provided herein are offsite and onsite hydrologic, hydraulic and detention analyses/designs. No offsite improvements are included in the design and specific surface drainage analyses but rather the pre-developed off-site, Scottsdale 2-foot interval topographic information is the basis for the HEC-1 offsite hydrology that is used for channel water surface profile elevation estimates.

This preliminary report does not include ground water hydrology or hydrogeology. Any issues that arise must be addressed by an engineering firm or an engineer whose specialty covers ground water issues. Graham Engineering & Surveying, Inc. will be held harmless for any damages as a result of ground water issues.

1.2 SITE DESCRIPTION

Monument Club Condominiums at Troon North is located to the northwest of 103^{rd} St. and Dynamite Boulevard. The cadastral description is "That Portion of the Southeast one-quarter of Section 29, Township 5 North, Range 5 East of the Gila & Salt River Base and Meridian, City of Scottsdale, Maricopa County, Arizona. For the full legal description that is a meets and bounds description see the plate labeled figure The Assessor's Parcel Number is 216-72-585 B. The Graham Engineering & Surveying, Inc.TM Job Number is 07-169. This project gross area is 2.5574 acres.

Access to the site is provided to this lot off White Feather Lane being a paved local street with an asphalt surface and 4-inch concrete rolled curbs on either edge.

The site geography is typical of upper Sonoran Desert alluvial fan terrain. The slope is about 1.5% to the south and southwest with decomposed granite with various outcroppings of granite boulders and some granite latholith intrusion caps.

The predominant surface soil 'Gran', 'Wickenburg' and 'Rock Outcrop' and classified as hydrologic soil group 'D' according to the <u>Aguila-Carefree Soil Study</u> (United States Department of Agriculture, Soil Conservation Service, current publication).

2.0 Existing Conditions

2.1 OFF-SITE

This project is located adjacent to the Monument Golf Course at Troon which was not a mass graded development. The surface is covered with small braided washes that traverse down-slope to the south and southwest. A large wash runs along the northwest portion of this site. The tributary area is 330 acres of sparsely developed up slope residential homes.

2.2 ON-SITE

The proposed development consists of undeveloped sonoran desert. One poorly defined wash exists on the east half of the property and drains from the northeast to the southwest. Another poorly defined wash exists in the southwest section of the property and generally drains to the west into a large defined wash. The large off-site wash runs along the northwest portion of this site, between the roadway and the undeveloped desert area.

3.0 Hydrology

2.1 OFF-SITE

The off-site hydrology was estimated using HEC-1 for the entire off-site watershed. Individual basins were not delineated for this preliminary drainage report (see Appendix A). The 100-year, 24-hour S rainfall graph, (Phoenix Mountain, foothills area runoff basin) is used to model the off-site watershed. The results of which is a peak flow of 779 cfs.

2.2 ON-SITE

The off-site hydrology that affects the retention was estimated using HEC-1 for the entire off-site watershed for the water surface profile in HEC-RAS. Individual basins were not delineated for this preliminary drainage report (see Appendix A). The 100-year, 2-hour MCFCD rainfall graph (Phoenix Mountain, foothills area runoff basin) is used to model the off-site watershed. The results of which is a peak flow of 486 cfs.

An on-site hydrology estimate for the minor flow on this site is the area to the east of the property designated as wash W2 (See Figure 7) is estimated using the City of Scottsdale Rational Method with an added frequency factor. The City of Scottsdale Rational Method Form 2.2-18 is found in Appendix A. The resultant flow quantity estimated using the rational worksheet for the 100-year storm event is 34 cfs.

Pre and post on-site runoff was estimated to determine the size of the detention system and discharge rate. Flow-rates were estimated using the City of Scottsdale Rational Method Form 2.2-18. Two drainage basins, DA-1 and DA-2, were delineated for the pre-development surface runoff (see Figure 7). Both basins are comprised of nearly impervious soils (see Figure 4 and above description). A Runoff Coefficient of 0.78 was used for this soil. DA-1 pre-development condition (pre) has an area

of 1.2 acres and the resultant flow quantity estimated using the COS rational worksheet for the 100-year storm event is 11 cfs. This flow is discharged to the south to White Feather Ln. at concentration point CP1 (see Figure 7). DA-2 pre has an area of 0.45 acres and the resultant flow quantity estimated using the COS rational worksheet for the 100-year storm event is 4 cfs. This flow is discharged to west into a large wash at concentration point CP2 (see Figure 7).

Two drainage basins, DA-1 and DA-2 post development condition (post), were delineated (see Figure 8). A Runoff Coefficient of 0.95 is used for these basins for the moderately high content of impervious surfaces. DA-1 post has a total area of 0.68 acres and the resultant flow quantity estimated using the COS rational worksheet for the 100-year storm event is 7 cfs (see Figure 8). This flow consists entirely of roof runoff. Roof runoff will be conveyed from roof downspouts directly to an underground detention system. The reduction of flow from this area due to detention is 1 cfs from the peak flow. The peak flow occurs at a different time then the off-site peak and hence the metering will not increase the peak flow of the main channel that flows through the site on the northwest portion of this project.

DA-2 post has a total area of 0.94 acres and the resultant flow quantity estimated using the COS rational worksheet for the 100-year storm event is 10 cfs (see Figure 8). This flow consists of general ground runoff. Roof runoff will be conveyed from roof downspouts directly to an underground detention system. The reduction of flow from this area due to detention is 1 cfs from the peak flow. The peak flow occurs at a different time then the off-site peak and hence the metering will not increase the peak flow of the main channel that flows through the site on the northwest portion of this project.

4.0 Hydraulics

Hydraulic analysis supports the grading plan of which the intention is to direct storm water runoff around or away from all proposed building structures. Storm water runoff across the property is graded to maintain historic drainage patterns entering and exiting the site in a similar manner to the pre-improvement drainage patterns. Field investigations verified storm water runoff patterns and topographic mapping accuracy.

The water surface profile analysis using HEC-RAS version 3.1.1 uses mapping from two sources:

- 1. "Wash W-1" City of Scottsdale 2-foot contour interval
- 2. Local topographic information collected by Graham Engineering and Surveying, Inc, survey crews.

The vertical datum for source 1 and source 2 is based on the NAVD 88.

5.0 Erosion Set-Back

A level one procedure for estimation of channel degradation depth was used. This level of analysis provides an initial estimate of the potential scour depth to consider for design structures to be placed near the banks of a channel. Level I analysis requires the peak discharge associated with the 100-

year flood. The total scour depth is the combination of general degradation and long term degradation. Level I erosion set back SQRT (779) = 28 feet.

5.0 Flood Zone Information

See FIRM map (Figure 2) for flood zone information. The finish floor elevation is set one foot above the HEC-RAS water surface elevation being 2548.25.

FIGURES

SOILS SURVEY OF AGUILA-CASEFREE AREA

GRAHAM ENGINEERING & SURVEYING INC. Civil Engineers & Land Surveyors
P.O. BOX 1243, Carefree, Arizona 85377
(480) 488-4393

DATE: 09/27/07 JOB # 07-169

SOILS SURVEY OF AGUILA-CAREFREE AREA NTS

GRAHAM ENGINEERING & SURVEYING INC. Civil Engineers & Land Surveyors P.O. BOX 1243, Carefree, Arizona 85377 (480) 488-4393

> DATE: 09/27/07 JOB # 07-169

Appendix A Hydrology Backup

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATIO	ON DATA			EXHIBIT B	Ì
PROJECT:	GRADING/DRAINA	GE CON	CENTRATION POINT:	EXIT FLOW	
LOCATION:	10200 E. Dynamite	Blvd.			
PROJECT NO	.: 07-169	STAT	TION:		
NAME OF STE	REAMWATERSHED:	Pre-Development C	Insite Flows		
	D. 171				
DESIGN	DATA				
DESIGN FREC	QUENCY:		2 5 10		YEARS
DRAINAGE AF	REA:	DA1	· ·		ACRES
		DA2		0.45	_
					_
		TOTAL	(A) Individual areas cons		_
DRAINAGE LE	ENGTH:			199	-FEET
ELEVATION:					
TOP OF DRAI				T T T T T T T T T T T T T T T T T T T	_FEET
AT STRUCTU					FEET
DRAINAGE AF					_PERCENT
HYDROLOGIC	SOIL GROUP:		 — — — —	D	_Gran _Wickenburg
DESIGN	COMPUTATION	ONS			vvickenburg
			1100 1100 1100	1.10 1.20 1.25	1
FREQUENCY	• ,	•		1.10 1.20 1.25	
TIME OF CON	CENTRATION:		T _C		MINUTES TINCHES/HOUR
RAINFALL INT	ENSITY (I):			9.25	(Figure 2.2-13)
RUNOFF COE	FFICIENT [C]:			0.78	_
				<u>,, , , , , , , , , , , , , , , , , , ,</u>	_
		- 10)			_
	UNOFF COEFFICIEN		Cw Individual areas cons	 	٦,
PEAK DISCHA	$ARGE Q_{\rho} = C_{w} A(F):$	CP1 (EXIT FLOW)	 	11	cfs
		CP2 (EXIT FLOW)	' 	4	cfs
				<u> </u>	J
•					
		COMPUTED BY:	NATHAN WYLLIE, EI	T DATE	9/25/2007
		CHECKED BY:	RALPH NISENBAUM, F		
		OHLONED DI.		DATE	••

FIGURE 2.2-18

Hydrologic Design Data Record

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

PROJECT:	IN DATA GRADING/DRAINA	AGE C	ONCENT	RATIC	N PO	INT:		HJBI IT FLO		L
LOCATION:	10200 E. Dynamite	Blvd.								
PROJECT NO.:			TATION:							
NAME OF STRI	EAM/WATERSHED:	Post-Developme	ent Onsite	Flows			-			
DESIGN I	DATA									
DESIGN FREQU	UENCY:			2	5	10	25	50	100	YEARS
DRAINAGE AR	EA:	DA1	` -							ACRES
		DA2	-							ACRES
		то	_ TAL (A) <u>1</u>	ndividu	ıal are	as cons	idered	separa	tely	-
DRAINAGE LEI	NGTH:		_		·				199	FEET
ELEVATION:										
TOP OF DRAIN	IAGE AREA:		_						2554	FEET
AT STRUCTUR	E		_						2540	FEET
DRAINAGE ARI	EA SLOPE:		_	_						PERCENT
HYDROLOGIC	SOIL GROUP:		_						D	_Gran _Wickenburg
DESIGN (COMPUTATION	ONS								vvickeribulg
FREQUENCY F	ACTOR (F):		1	1.00	1.00	1.00	1.10	1.20	1.25	
TIME OF CONC	ENTRATION:		T _C						5	MINUTES
RAINFALL INTE	ENSITY (I)·			Ī					9.25	INCHES/HOUF (Figure 2.2-13)
RUNOFF COEF	-	of and Asphalt	L				i	L	0.95](ge. 5 = / 5/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_							- -
WEIGHTED RU	INOFF COEFFICIEN	T (C _w):	C _w I	ndividı	ual are	as cons	sidered	 separa		-
	RGE Q _P = C _W IA(F):	DA1 (EXIT FLO		Т		_	<u> </u>		7	cfs
	p	DA2 (EXIT FLO		<u>}</u>		 			10	cfs
		•								
			_							_
		COMPUTED BY	/: N	ATHA	N WYL	LIE, EI	т		DATE	9/25/2007
		CHECKED BY:		PH N	SENB	AUM, P	·.E.		- DATF	9/26/2007

FIGURE 2.2-18

Hydrologic Design Data Record

EXHIBIT "A" DRAINAGE AREA DELINEATION MONUMENT CLUB

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT				EXHIBIT B2				
PROJECT: GRADING	G/DRAINAGE	CONCE	NTRATION POINT:	EXIT FLOW				
LOCATION:								
PROJECT NO.: <u>07-169</u>		STATIC						
NAME OF STREAM/WATE	RSHED: DA-2 IN	GRADING/D	RAINAGE PLAN	·				
DESIGN DATA			·					
DESIGN FREQUENCY:			2 5 10	25 50 100	YEARS			
DRAINAGE AREA:	Г)A2			_ACRES			
<i>5</i> , <i>1</i> , (<i>5</i> - <i>7</i>) - <i>1</i> ,								
-3.04.65.150.50		TOTAĽ (/	A) Individual areas co		_			
DRAINAGE LENGTH: ELEVATION:				553	_FEET			
ELEVATION: TOP OF DRAINAGE AREA	.			2588	3 FEET			
AT STRUCTURE	1•				FEET			
DRAINAGE AREA SLOPE			<u>-</u>		PERCENT			
HYDROLOGIC SOIL GRO	JP:			D	 Gran			
					Wickenbu			
DESIGN COMPL	JTATIONS							
FREQUENCY FACTOR (F):	:	1.00 1.00 1.00	0 1.10 1.20 1.25	<u>:</u>]			
TIME OF CONCENTRATION	ON:	Tc		5	MINUTES			
RAINFALL INTENSITY (I):				9.25	INCHES/HO Figure 2.2-1			
RUNOFF COEFFICIENT (]: (FOR R4-R)	T DIT S		0.78				
	SEE NEX.	FALL			_			
WEIGHTED RUNOFF COE	EFFICIENT (Cw):	Cw	Individual areas co	nsidered separately	_			
PEAK DISCHARGE Q _P = 0		A2		34	cfs			
	、 /			 	7			
				 	1			
			<u> </u>	<u> </u>				
	COMPUT	ED BY:	Nathan Wyllie, El [*]	r date	=· 9/25/200			
	CHECKE		Ralph Nissembaum,					

FIGURE 2.2-18

Hydrologic Design Data Record

		"C" Value	
Land Use	Hydr	ologic Soil (Group
	В	C	D
Composite Area-wide Values			
Commercial and industrial areas:	0.9		•
Residential areas-single family (avergae lot size):	•		
R1-1-190:	0.33	0.50	0.58
R1-130:	0.35	0.51	0.59
R1-70:	0.37	0.52	0.60
R1-43:	0.38	0.55	0.61
R1-35 (35,000 sq. ft./lot):	0.40	0.56	0.62
R1-18 (18,000 sq. ft./lot):	0.43	0.58	0.64
R1-10 (10,000 sq. ft./lot):	0.47	0.62	0.67
R1-7 (7,000 sq. ft./lot):	0.51	0.64	0.70
Townhouses (R-2, R-4):	0.63	0.74	0.78
Apartments and condominiums (R-3, R-5):	0.76	0.83	0.87
Specific Surface Type Values			٠
Paved streets or parking lot (concrete or asphalt), roofs, driveways, etc.	0.95		
Lawns, golf courses, and parks (grassed areas):	0.33	0.56	0.66
Undisturbed natural desert or desert landscaping (no impervious weed barrier):	0.31	0.48	0.56
Desert landscaping (with impervious weed barrier)	0.83	0.83	0.83
Mountain terrain - slopes greater than 10%:	0.70	0.70	0.70
Agricultural areas (Flood Irrigated Fields):	0.20	0.20	0.20

FIGURE 2.2-17

Runoff Coefficients "C" for use with the Rational Formula

Graham Engineering & Surveying, Inc.

POB 1243

7406 E. Nonchalant, Carefree, AZ 85377

Job Number: 07-169

28-Sep-07 Ralph Nisenbaum, PE HEC-1 Input Parameters

INPUT PARAMETERS FOR BOTH S GRAPH AND MCFCD DISTRIBUTION

INPUT PARAMETER VALUE & UNITS

AREA 0.517 SQ-MI

EVENT 100-YEAR, 24-HR

STORM SIZE 0.517 SQ-MI

STREAM LENGTH 2.029 MILES

LENGTH TO CA 0.918 MILES

SLOPE 152 FT./MI.

Kn ROUGHNESS 0.033

IA 0.25

DTHETA 0.1

PSIF 10

XKSAT 0.02

RTIMP 25

100 Yr. Precipitations

24-Hr. = 4.60

2-Hr. = 2.75

S DISTRIBUTION LAG TIME USED IS 28 MINUTES MCFCD DISTRIBUTION LAG TIME USED IS 23.17 MINUTES

Note: see the HEC-1 output files for more detailed information.

> XXXXXXX XXXXX Х Х Х Х XX Х Х XXXXXXX XXXX XXXXX Х Х Х Х Х X Х X XXXXXXX XXX XXXXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81.

THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY.

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1

1 ID FULL WATERSHED, RALPH NISENBAUM, 27SEP07

2 ID

	-	3	IΤ	15			300				
		4	IO	3							
		r	V V								
		5	KK								
		6	KM	BASIN MO	NUMENT	•					
		7	KM	THE FOL	LOWING	PARAMETER	RS WERE	PROVIDED	FOR THI	S BASIN	
		8	KM	L=	2.0	Lca=	.9	S≈ 152.0) Kn= .0)33 LAG=	28.0
		9	KM	PHOENIX	MOUNT	AIN S-GRAF	PH WAS	USED FOR	THIS BAS	SIN	
		10	ВА	.52							
		11	IN	15						.~	
		12	KM	RAINFALL	DEPTH	of 4.60 v	VAS SPA	CIALLY RE	DUCED AS	SHOWN B	Y THE PB
RECORD		13	KM	AN AREAL	REDUC	TION COEFF	FICIENT	OF 1.000) WAS USE	D	
		14	PB	4.600							
		15	KM	THE FOLL	OWING	PC RECORD	USED A	24-HOUR	SCS TYPE	II RAIN	IFALL
222	00.0	16	PC	.000	.002	.005	.008	.011	.014	.017	.020
.023	.026	17	PC	.029	.032	.035	.038	.041	.044	.048	.052
.056	.060	18	PC	.064	.068	.072	.076	.080	. 085	. 090	.095
.100	.105	19	PC	.110	.115	.120	.126	.135	.142	.150	.158
. 166	. 175	20	PC	.184	.195	.208	.224	.243	.266	.318	.479
.678	.716	21	PC	.743	.764	.781	.795	.808	.818	.828	.837
.844	.851	22	PC	.858	.865	.871	.877	.883	.889	.895	. 900
.905	.910	23	PC	.915	.919	.923	. 927	.931	.935	.939	.943
.947	.951	24	PC	.954	.957	.960	.963	.966	.969	.972	. 975
.978	.981	25	PC	. 984	. 987	.990	. 993	. 996	.999	1.000	
		26	LG	.25	.10	10.00	.02	20.00			
		27	UI	188.	533.	300.	157.	78.	39.	19.	12.
0.	0.	28	UI	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	29	ZZ								

Page 2

FULL WATERSHED, RALPH NISENBAUM, 27SEP07

```
4 IO
             OUTPUT CONTROL VARIABLES
                    IPRNT
                                    3 PRINT CONTROL
                    IPLOT
                                    0 PLOT CONTROL
                    QSCAL

    HYDROGRAPH PLOT SCALE

 IT
             HYDROGRAPH TIME DATA
                                   15 MINUTES IN COMPUTATION INTERVAL
                     NMIN
                    IDATE
                                    O STARTING DATE
                    ITIME
                                 0000 STARTING TIME
                                  300 NUMBER OF HYDROGRAPH ORDINATES
                       NQ
                                       ENDING DATE
                   NDDATE
                   NDTIME
                                 0245 ENDING TIME
                   ICENT
                                   19 CENTURY MARK
                COMPUTATION INTERVAL
                                         .25 HOURS
                     TOTAL TIME BASE
                                       74.75 HOURS
      ENGLISH UNITS
            DRAINAGE AREA
                                  SQUARE MILES
            PRECIPITATION DEPTH
                                  INCHES
            LENGTH, ELEVATION
                                  FEET
                                  CUBIC FEET PER SECOND
            FLOW
            STORAGE VOLUME
                                  ACRE-FEET
            SURFACE AREA
                                  ACRES
           TEMPERATURE
                                  DEGREES FAHRENHEIT
```

	*****	****
	*	×
5 KK	*	#
	*	*
	* * * * * * * * * *	****

RECORD

BASIN MONUMENT

THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BA	THE	FOLLOWING	PARAMETERS	WERE	PROVIDED	FOR	THIS	BASI
--	-----	-----------	------------	------	----------	-----	------	------

L= 2.0 Lca= .9 S= 152.0 Kn= .033 LAG= 28.0

PHOENIX MOUNTAIN S-GRAPH WAS USED FOR THIS BASIN

RAINFALL DEPTH OF 4.60 WAS SPACIALLY REDUCED AS SHOWN BY THE PB

AN AREAL REDUCTION COEFFICIENT OF 1.000 WAS USED

THE FOLLOWING PC RECORD USED A 24-HOUR SCS TYPE II RAINFALL

11 IN TIME DATA FOR INPUT TIME SERIES

JXMIN 15 TIME INTERVAL IN MINUTES

JXDATE 1 0 STARTING DATE JXTIME 0 STARTING TIME

SUBBASIN RUNOFF DATA

10 BA SUBBASIN CHARACTERISTICS

TAREA .52 SUBBASIN AREA

PRECIPITATION DATA

15 PB STORM 4.60 BASIN TOTAL PRECIPITATION

15 F	PI	INCREMENTAL	L PRECIPITA	ATION PATTE				
		.00	. 00	.00	.00	.00	.00	.00
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	.01	.01	.00
.01	.00	.01						
	0.1	.01	00	.01	.01	.01	.01	.01
.01	.01	.01 .01	.01	.02	. 02	.02	.05	.16
.20	.04	.03	.01	.02	.02	.02	.05	.10
		.02	.02	.01	.01	.01	.01	.01
.01	.01	.01	01	01	01	01	01	00
.00	.01	.01	.01	.01	.01	.01	.01	.00
.00	.01	.00	,00	.00	.00	.00	.00	.00
.00	.00	.00						
0.0	bo	.00	.00	.00	.00	.00	. 00	.00
.00	.00	.00	.00	.00 Page 4	.00	.00	.00	

			0110	. 00			
26 LG	GREEN	AND AMPT LOS STRTL DTH PSIF XKSAT RTIMP	.25 ST .10 MO 10.00 WE .02 HY	ARTING LOSS ISTURE DEFIC TTING FRONT DRAULIC COND RCENT IMPERV	SUCTION UCTIVITY		
26 UI		UNITGRAPH,	8 ORDINA				
12.0	1	188.0 533	.0 300	.0 157.0	78.0	39.0	19.0

***		* * *	***	**	*	***	
		HYDROGRAPI	H AT STATI	ON		,	
TOTAL F	RAINFALL =	4.60, TOTA	L LOSS =	1.08, TOTA	L EXCESS =	3.52	
PEAK FLOW	TIME		6-HR	MAXIMUM AVE 24-HR	RAGE FLOW 72-HR	74.75-HR	
+ (CFS)	(HR)	(655)	O-TIK	24-11K	, Z=11K	74177 1110	
+ 779.	12.25	(CFS) (INCHES) (AC-FT)	165. 2.946 82.	49. 3.478 96.	16. 3.481 97.	16. 3.481 97.	
		CUMULATIVE	AREA =	.52 SQ MI			-
1						MMARY T PER SECOND IN SQUARE M	
			PEAK	TIME OF	AVERAGE FL	OW FOR MAXIM	UM PERIOD
0	PERATION	TIME OF STATION	FLOW	PEAK			
AREA S	TAGE MAX	K STAGE			6-HOUR	24-HOUR	72-HOUR
н + .52	YDROGRAPH A	Г	779.	12.25	165.	49.	16.

*** NORMAL END OF HEC-1 ***

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION

NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,

DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION

KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 PAGE 1

LINE

ID......2.....3.....4.....5.....6.....7....8.....9....10

1 ID MONUMENT5MINOUTFALL,RDN

2 ID Page 1

					MON	2.0					
		3	IT	5			300				
		4	IO	3							
		5	KK								
		6	KM	BASIN MS	5						
		7	KM	THE FOL	LOWING	PARAMETE	RS WERE	PROVIDED	FOR TH	IS BASIN	
		8	KM	L= '	2.0 1	_ca=	.9 9	5= 152.0	Kn= .(033. LAG=	28.0
		9	. KM	PHOENIX	K MOUNTA	IN S-GRA	PH WAS L	JSED FOR	THIS BAS	SIN	
		10	ВА	.52							•
		11	IN	15							•
DECODD		12	KM	RAINFALL	DEPTH	OF 4.60	WAS SPAC	CIALLY RE	DUCED AS	S SHOWN B	Y THE PB
RECORD		13	KM	AN AREAL	REDUCT	rion coef	FICIENT	OF 1.000	WAS US	ED	
		14	РВ	2.750							
		15	KM	THE FOLL	_OWING (C RECORD	USED A	24-HOUR	SCS TYPE	E II RAIN	FALL
022	026	16	PC	.000	.002	.005	.008	.011	.014	.017	.020
.023	.026	17	PC	.029	.032	.035	.038	.041	.044	.048	.052
.056		18	PC	.064	.068	.072	.076	.080	.085	.090	.095
.100	.105	19	PC	.110	.115	.120	. 126	.135	.142	.150	.158
.166	. 175	20	PC	.184	.195	.208	. 224	.243	.266	.318	.479
.678	.716 .851	21	PC	.743	.764	.781	. 795	.808	.818	.828	.837
.844	.910	22	PC	.858	.865	.871	.877	.883	.889	.895	.900
.905 .947	.951	23	PC	.915	.919	.923	.927	.931	.935	.939	. 943
		24	PC	.954	.957	.960	.963	.966	.969	.972	. 975
. 978	.981	25	PC	.984	987	.990	.993	.996	.999	1.000	
		26	LG	.25	.10	10.00	.02	25.00			
246.	189.	27	UI	62.	161.	341.	466.	669.	466.	355.	299.
		28	UI	151.	130.	94.	76.	65.	48.	39.	30.
30.	15.	29	UI	12.	12.	12.	12.	12.	0.	0.	0.
0.	0.	30	UI	0.	0.	0. Page 2	0.	0.	0.	0.	0.

Page 2

0. 31 zz

MONUMENT5MINOUTFALL, RDN

4 IO	OUTPUT CONTROL VARI IPRNT IPLOT QSCAL	3 0	PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE
ÎΤ	NQ NDDATE 2	5 0 0000 300 0 0055 19	NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK
		INCH! FEET CUBIC ACRE: ACRE:	ES C FEET PER SECOND -FEET

RECORD

BASIN M5

THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BASIN

L= 2.0 Lca= .9 S= 152.0 Kn= .033 LAG= 28.0

PHOENIX MOUNTAIN S-GRAPH WAS USED FOR THIS BASIN

RAINFALL DEPTH OF 4.60 WAS SPACIALLY REDUCED AS SHOWN BY THE PB

AN AREAL REDUCTION COEFFICIENT OF 1,000 WAS USED

THE FOLLOWING PC RECORD USED A 24-HOUR SCS TYPE II RAINFALL

11 IN TIME DATA FOR INPUT TIME SERIES

JXMIN 15 TIME INTERVAL IN MINUTES

JXDATE 1 0 STARTING DATE JXTIME 0 STARTING TIME

SUBBASIN RUNOFF DATA

10 BA SUBBASIN CHARACTERISTICS

TAREA .52 SUBBASIN AREA

PRECIPITATION DATA

15 PB STORM 2.75 BASIN TOTAL PRECIPITATION

15 PI INCREMENTAL PRECIPITATION PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 - 00 .00

Page 4

				70NU 2	. OU				
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
. •00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.01	
.01	.01	.01 .01	.01	.01	.01	.01	. 02	.02	
. 02	.05	. 05 . 05	.07	.07	.07	.01	.01	.01	
.01	.01	.01 .01	.01	.01	.01	.01	.01	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	. 00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00	.00	.00	.00	.00	.00	.00	.00	.00	
.00						-			
26 L	G	GREEN AND AM STRTL DTH PSIF XKSAT RTIMP	.2	5 STARTIN 0 MOISTUR 0 WETTING 2 HYDRAUL	G LOSS E DEFICIT FRONT SUC IC CONDUCT IMPERVIOU	IVITY			
26 U	I	INPUT UNITGR	АРН, 25 О 161.0	RDINATES, 341.0	VOLUME = 466.0	.99 669.0	466.0	355.0	
299.0	246.0	189.0 151.0	130.0	94.0	76.0	65.0	48.0	39.0	
30.0	30.0	15.0 12.0	12.0	12.0	12.0	12.0	30.U	J3.V	
		12.0	12.0	Page		22.0		_	

Page 5

*** *** *** *** ***

HYDROGRAPH AT STATION

TOTAL RAINFALL = 2.75, TOTAL LOSS = .90, TOTAL EXCESS = 1.85

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
6-HR 24-HR 72-HR 24.92-HR
+ (CFS)
(CFS)

463. 12.17 90. 25. 25. 26. 1.613 1.830 (INCHES) 1.829 1.830 `(AC~FT) 45. 51. 51. 51.

CUMULATIVE AREA = .52 SQ MI

1

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF STATION PEAK **OPERATION** FLOW MAX STAGE AREA STAGE 72-HOUR 6-HOUR 24-HOUR HYDROGRAPH AT + .52 463. 12.17 90. 26. 25.

*** NORMAL END OF HEC-1 ***

Appendix B Hydrologic Backup

HEC-RA version 3.1.3 May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

X	Х	XXXXXX	XXXX			XXXX		XX		XXXX	
Х	Х	X	Х	X		Х	Х	Х	Х	Χ	
X	Х	X	Х			Х	Х	Х	X	X	
XXX	XXXX	XXXX	Х		XXX	XX	XX	XXX	XXX	XXXX	
×	Х	X	Х			Х	Х	Х	Х	X	
X	Х	X	Х	Х		Х	Х	Х	Х	Х	
X	X	XXXXXX	XXXX			X	X	X	X	XXXXX	

PROJECT DATA

Project Title: Wash w-1
Project File: 07169100YR24HRprj.prj
un Date and Time: 9/28/2007 9:53:50 AM

Project in English units

roject Description:

FLOW = 790 CFS 100-YR 24-HOUR STORM

PLAN DATA

lan Title: Plan 02

lan File : z:\Projects\2007\07-169\HEC-RAS\07169100YR24HRprj.p02

Geometry Title: Geom 01

Geometry File: z:\Projects\2007\07-169\HEC-RAS\07169100YR24HRprj.g01

: Flow 06 Flow Title

flow File : z:\Projects\2007\07-169\HEC-RAS\07169100YR24HRprj.f06

lan Summary Information:

Cross Sections = 11 Multiple Openings = 0 Number of:

Inline Structures = 0 Culverts 1 =

Lateral Structures = Bridges 0 0

Computational Information
Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance 0.3 Flow tolerance factor 0.001

omputation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Average Conveyance Subcritical Flow Computational Flow Regime:

FLOW DATA

low Title: Flow 06

low File : z:\Projects\2007\07-169\HEC-RAS\07169100YR24HRprj.f06

Flow Data (cfs)

River W-1

Reach Wash W-1 11

779

Boundary Conditions

River Downstream Reach

Profile

Upstream

W-1 0.0305

Wash W-1

PF 1

Normal S = 0.0267

Normal S =

EOMETRY DATA

Geometry Title: Geom 01

eometry File : z:\Projects\2007\07-169\HEC-RAS\07169100YR24HRprj.g01

CROSS SECTION

IVER: W-1

REACH: Wash W-1

RS: 11

NPUT escription:

Station Elevation Data

num= Elev Elev Sta Sta

Sta Elev Sta Elev Sta Elev 15.15 39.22 2549 2548 0 3.47 2547 2546 54.63 2545 70.51 57.94 2546 61.3 2547 2548 78.78 2548.91

Manning's n Values

num= Sta n val n Val n Val Sta Sta .04 39.22 .03 57.94

Bank Sta: Left Lengths: Left Channel Right Coeff Contr. Right Expan. 58.47 49.8 50.03 . 3 . 1

.04

39.22 57.94

ROSS SECTION

IVER: W-1

EACH: Wash W-1

RS: 10

NPUT

escription:

tation Elevation Data num= 13

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 11.53 34.74 0 2548 3.99 2547 7.76 2546 2545 15.26 2544 20.81 2543.8 26.64 2546 2547 2544 2545 38.92 30.64 2548 51.21 52.21 2548.1 53.02 2548

Wanning's n Values

num= n Val Sta Sta n Val Sta n val .04 15.26 26.64 .03 .04

Right Bank Sta: Left Lengths: Left Channel Coeff Contr. Right Expan. 50.17 50.51 15.26 26.64 50.85 . 3 . 1

CROSS SECTION

IVER: W-1

REACH: Wash W-1

RS: 9

NPUT

Doscription:	_·	T03T001K24L	וין ולאר	Εþ		
Description: Station Elevation Data Sta Elev Sta 0 2547 2.64 32.08 2542.91 34.76 59.66 2546.58	num= 11 Elev Sta 2546 5.28 2543 38.35	3 2545	Sta 7.93 42.34	Elev 2544 2545	Sta 23.95 46.42	Elev 2543 2546
Manning's n Values Sta n Val Sta 0 .04 23.95	num= 3 n Val Sta .03 34.76					
Bank Sta: Left Right 23.95 34.76	Lengths: Left 50.02		Right 50.29	Coeff	Contr.	Expan. .3
RIVER: W-1	200					
EACH: Wash W-1	RS: 8					
Description: Station Elevation Data Sta Elev Sta 0 2545 5.8 28.57 2542 42.09	num= 9 Elev Sta 2544 11.27 2543 55.93	2543	Sta 19.76 64.39	Elev 2542 2544.86	Sta 24.44	Elev 2541.81
Manning's n Values Sta n Val Sta 0 .04 19.76	num= 3 n Val Sta .03 28.57					
Bank Sta: Left Right 19.76 28.57	Lengths: Left 56.96		Right 50.31	Coeff	Contr.	Expan.
ROSS SECTION						
RIVER: W-1 EACH: Wash W-1	RS: 7					
INPUT Pescription: Station Elevation Data Sta Elev Sta 0 2544 15.95 58.55 2539.83 61.64 96.93 2543.67	num= 11 Elev Sta 2543 21.54 2540 67.62	2542	Sta 28.75 73.91	Elev 2541 2542	Sta 54.08 85.61	Elev 2540 2543
Manning's n Values Sta n Val Sta 0 .04 54.08	num= 3 n Val Sta .03 61.64					
· 👼						
Bank Sta: Left Right 54.08 61.64	Lengths: Left 52.54		Right 49.99	Coeff	Contr.	Expan. .3
				Coeff	_	• -
54.08 61.64				Coeff	_	• -
TALLER SECTION RIVER: W-1 EACH: Wash W-1 INPUT Vescription: Station Elevation Data Sta Elev Sta	52.54	49.75 Elev 2541		Elev 2540 2541	_	• -

```
31.85
                             . 03
   . 0
             .04
                                  46.25
                         Lengths: Left Channel
 ank Sta: Left
                Right
                                                           Coeff Contr.
                                                 Right
                                                                          Expan.
                                 45.76 42.18
        31.85
                46.25
                                                 40.42
                                                                   .1
                                                                           . 3
ROSS SECTION
RIVER: W-1
EACH: Wash W-1
                         RS: 5
INPUT
Description:
tation Elevation Data
                         num=
                                   13
                  Sta
                                                           Elev Sta 2540 14.13
                                           Elev
    Sta
           Elev
                          Elev
                                    Sta
                                                   Sta
                                                                           Elev
                   0 2541.2
29.6 2537.69
                                   6.77
                                                  10.64
      0
           2549
                                           2541
                                                                           2539
                                  34.83
   24.62
           2538
                                           2538
                                                  40.12
                                                           2539 43.61
                                                                           2540
  45.88
           2541
                  55.05
                          2542
                                  61.44 2542.75
Manning's n Values
                        num=
                         n Val
   Sta n Val
                    Sta
                                    Sta
                                          n Val
            .04
                  24.62
                                  34.83
                          . 03
                                            .04
Bank Sta: Left
                         Lengths: Left Channel
                                                        Coeff Contr.
                Right
                                                 Right
                                                                          Expan.
        24.62
                34.83
                                 30.54 20.58
                                                 21.29
                                                                   .1
                                                                            . 3
ROSS SECTION
IVER: W-1
EACH: Wash W-1
                        RS: 4
INPUT
escription:
tation Elevation Data
                        num≃
                                   Sta
    Sta Elev Sta Elev
                                           Elev
                                                   Sta
                                                           Elev
                                                                   Sta
                                                                           Elev
  0 2546.5
23.27 2537.68
                  0 2540.14
30.68 2538
                                    .91
                                           2540
                                                   7.42
                                                           2539
                                                                  13.94
                                                                           2538
                                           2539
                                                           2540
                                                                  36.25
                                  32.53
                                                  34.38
                                                                           2541
   36.94 2541.3 36.94
                           2542
Manning's n Values
                         num=
                   Sta
  Sta n Val
                         n Val
                                    Sta
                                          n Val
            .04
                                  30.68
                  13.94
                                            .04
                          . 03
                Right Lengths: Left Channel
                                                 Right
                                                           Coeff Contr.
Bank Sta: Left
      13.94
                30.68
                                                                   .1
                                                                            . 3
                                  42.2 23.89
                                                 9.92
TROSS SECTION
KIVER: W-1
kEACH: Wash W-1
                        RS: 3
ENPUT
bescription:
 tation Elevation Data
                                   17
                        num=
                                  Sta
                                           Elev
                                                           Elev
    Sta
         Elev
                 Sta
                          Elev
                                                    Sta
                                                                    Sta
                                                                           Elev
                                                                   2.23
                         2543.2
                                   .34
5.28
                                           2543
2538
                                                  1.28
17.26
                                                           2542
           2544
     0
                    0
                                                                           2541
           2540
                                                           2537
   3.21
                   4.19
                         2539
                                                                  25.38
                                                                        2536.9
  25.92
                                                           2540
           2537
                  35.52
                           2538
                                  37.24
                                           2539
                                                  40.06
                                                                   42.5
                                                                           2541
           2542
  44.17
                     45 2542.2
Hanning's n Values
                                   3
                         num=
                   Sta
                         n Val
                                   Sta
    Sta n Val
                                          n Val
            .04
      0
                   5.28
                                  35.52
                          . 03
                                            .04
                Right Lengths: Left Channel Right Coeff Contr. 35.52 108.63 71.04 74.11 .1
ank Sta: Left
                                                                          Expan.
                   . 3
         5.28
                               2
Ineffective Flow
  Sta L Sta R
                   Elev Permanent
```

0

5.2

2543

F

```
2543
    39.7
               45
 ULVERT
 IVER: W-1
EACH: Wash W-1
                           RS: 2.0902
INPUT
escription:
                                 10.2
istance from Upstream XS =
                                   24
Deck/Roadway Width . =
<u>Weir</u> Coefficient
                                  2.6
pstream Deck/Roadway Coordinates
    num=
     Sta Hi Cord Lo Cord
                               Sta Hi Cord Lo Cord
                                53 2543.95
       0 2543.95
                     2536
 pstream Bridge Cross Section Data
Station Elevation Data
                                               Elev
                                                                 Elev
                                                                                  Elev
     Sta
            Elev
                              Elev
                                        Sta
                                                         Sta
                                                                          Sta
                                       .34
                            2543.2
                                                                         2.23
                        0
                                               2543
                                                        1.28
                                                                 2542
                                                                                  2541
      0
            2544
                     4.19
    3.21
            2540
                              2539
                                       5.28
                                               2538
                                                       17.26
                                                                 2537
                                                                        25.38
                                                                                2536.9
   25.92
                    35.52
                              2538
                                     37.24
                                               2539
                                                       40.06
                                                                 2540
                                                                         42.5
                                                                                  2541
             2537
                       45
                            2542.2
   44.17
             2542
 anning's n Values
                            num≔
                                        3
                      Sta
                            n Val
                                              n Val
     Sta
          n Val
                                        Sta
                     5.28
       0
              .04
                               .03
                                     35.52
                                                . 04
                  Right
 ank Sta: Left
                            Coeff Contr.
                                            Expan.
                  35.52
          5.28
Ineffective Flow
                      num=
                           Permanent
   Sta L
           Sta R
                     Elev
                     2543
       n
                                 F
              5.2
    39.7
              45
                     2543
 ownstream Deck/Roadway Coordinates
     Sta Hi Cord Lo Cord
                               Sta Hi Cord Lo Cord
       0 2543.95
                     2535
                               121 2543.95
ownstream Bridge Cross Section Data
 tation Elevation Data num
     5ta
                              Elev
                                               Elev
                                                                 Elev
                                                                                  Elev
            Elev
                      Sta
                                        Sta
                                                         Sta
       0
             2540
                    65.92
                              2538
                                     87.93
                                               2536
                                                       91.28
                                                                 2536 107.72
                                                                                  2538
            2540
  121.36
Manning's n Values
                           num≕
     Sta
          n Val
                      Sta
                            n Val
                                        Sta
                                              n Val
                    87.93
                                     91.28
              .04
                               .03
                                                .04
                  Right
                            Coeff Contr.
Bank Sta: Left
                                            Expan.
                                     .1
         87.93
                  91.28
                                               . 3
                                                        2 horiz. to 1.0 vertical
ostream Embankment side slope
                                               =
                                                        2 horiz. to 1.0 vertical
Downstream Embankment side slope
                                               =
Maximum allowable submergence for weir flow = levation at which weir flow begins =
                                                      .95
Inergy head used in spillway design
Spillway height used in design
                                               = Broad Crested
Weir crest shape
lumber of Culverts = 1
                              Rise
                  Shape
                                       Span
                              4.5
                                          6
```

Culvert Name tulvert #1 Ellipse HWA Chart # 29- Horizontal Ellipse; Concrete

FHWA Scale # 1 - Square edge with headwall <u>S</u>olution Criteria = Highest U.S. EG

Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss ulvert Upstrm Dist Length

1

E	Reach	River Sta.	n1	n2	n3
™ wash	W-1	11	.04	.03	.04
Wash	W-1	10	.04	.03	.04
Wash	W-1	9	. 04	.03	. 04
₩ash	W-1	8	. 04	.03	.04
Wash		7	.04	.03	. 04
Wash		6	. 04	.03	. 04
Wash		5	.04	.03	.04
Wash		4	.04	.03	. 04
™wash	W-1	3	04	.03	. 04
wash	W-1	2.0902	Culvert		
wash	W-1	2	.04	.03	.04

.04

UMMARY OF REACH LENGTHS

Kiver: W-1

	Reach	River Sta.	Left	Channel	Right
Wash	W-1	11	58.47	49.8	50.03
Wash		10	50.17	50.85	50.51
₩wash	W-1	9	50.02	50.51	50.29
Wash		9 8	56.96	50.5	50.31
Wash	_	7	52.54	49.75	49.99
wash		6	45.76	42.18	40.42
Wash		6 5	30.54	20.58	21.29
Wash		4	42.2	23.89	9.92
Wash		3	108.63	71.04	74.11
wash		2.0902	Culvert		
■Wash		2	107.85	101.61	93.35
Wash		1			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: W-1

	Reach	River Sta.	. Contr.	Expan.
Wash Wash Wash Wash Wash Wash Wash Wash	W-1 W-1 W-1 W-1 W-1 W-1 W-1 W-1	11 10 9 8 7 6 5 4 3 2.0902	.1 .1 .1 .1 .1 .1 .1 .1	333333333333
Wash	_	ĩ	.ī	.3

HEC-RA ersion 3.1.3 May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Χ	XXXXXX	XX	XX		XX	XX	X	X	XXXX
Х	Х	X	Х	Х		Χ	Х	Х	Х	Х
Х	Х	X	Х			X	Х	Х	Х	X
XXX	XXXX	XXXX	Х		XXX	XX	XX	XXX	XXX	XXXX
Х	Х	X	Х			Х	X	Х	X	X
X	Х	Х	Х	Х		Х	X	Х	Х	X
Х	Х	XXXXXX	XX	XX		Х	Х	Х	Х	XXXXX

PROJECT DATA

Project Title: Wash W-1

Project File : 07169.prj un Date and Time: 9/28/2007 9:13:13 AM

Project in English units

roject Description:

FLOW = 496 CFS 100-YR 2-HOUR STORM

PLAN DATA

Plan Title: Plan 02

`rlan File : z:\projects\2007\07-169\HEC-RAS\07169.p02

Geometry Title: Geom 01

Geometry File: z:\Projects\2007\07-169\HEC-RAS\07169.g01

: Flow 06 Flow Title

Flow File : z:\Projects\2007\07-169\HEC-RAS\07169.f06

-}lan Summary Information:

Number of: 11 Multiple Openings = 0 Cross Sections = Culverts 1 Inline Structures = 0 Lateral Structures = Bridges 0

Computational Information
Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01Maximum number of iterations = 20 Maximum difference tolerance Flow tolerance factor 0.001

lomputation_Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance

Subcritical Flow Computational Flow Regime:

FLOW DATA

low Title: Flow 06

Flow File : z:\projects\2007\07-169\HEC-RAS\07169.f06

Flow Data (cfs)

0 .04 3:	1.85 .03	07169 46.25 .04	.rep		
ank Sta: Left Righ 31.85 46.2		Left Channel 45.76 42.18	Right 40.42	Coeff Contr.	Expan.
ROSS SECTION					
RIVER: W-1 REACH: Wash W-1	RS: 5				
	ta num= Sta Elev 0 2541.2 19.6 2537.69 1.05 2542	13 Sta Elev 6.77 2541 34.83 2538 61.44 2542.75	Sta 10.64 40.12	Elev Sta 2540 14.13 2539 43.61	Elev 2539 2540
Manning's n Values Sta n Val 0 ,04 24	num= Sta n Val 1.62 .03	3 Sta n Val 34.83 .04			
Bank Sta: Left Righ 24.62 34.8		Left Channel 30.54 20.58	Right 21.29	Coeff Contr.	Expan.
ROSS SECTION					
IVER: W-1 EACH: Wash W-1	RS: 4				
	num= Sta Elev 0 2540.14 0.68 2538 5.94 2542	12 Sta Elev .91 2540 32.53 2539	Sta 7.42 34.38	Elev Sta 2539 13.94 2540 36.25	Elev 2538 2541
Manning's n Values Sta n Val 0 .04 13	num= Sta n Val .94 .03	3 Sta n Val 30.68 .04			
Bank Sta: Left Righ 13.94 30.6		Left Channel 42.2 23.89	Right 9.92	Coeff Contr. .1	Expan.
EROSS SECTION					
EIVER: W-1 REACH: Wash W-1	RS: 3				
	num= Sta Elev 0 2543.2 1.19 2539 1.52 2538 45 2542.2	17 Sta Elev .34 2543 5.28 2538 37.24 2539	Sta 1.28 17.26 40.06	Elev Sta 2542 2.23 2537 25.38 2540 42.5	Elev 2541 2536.9 2541
tanning's n Values Sta n Val 0 .04 5	num= Sta n Val 5.28 .03	3 Sta n Val 35.52 .04			
		Left Channel .08.63 71.04	Right 74.11	Coeff Contr. .1	Expan.
-		Page	4		

```
07169.rep
    39.7
               45
                     2543
 ULVERT
 RIVER: W-1
 EACH: Wash W-1
                            RS: 2.0902
INPUT
Description:
pistance from Upstream XS = Deck/Roadway Width =
                                 10.2
                                   24
Weir Coefficient
                                   2.6
pstream Deck/Roadway Coordinates
    num=
     Sta Hi Cord Lo Cord
                               Sta Hi Cord Lo Cord
       0 2543.95
                     2536
                                53 2543.95
pstream Bridge Cross Section Data
 tation Elevation Data
                                       17
                            กนฑ=
             Elev
                              Elev
                                        Sta
                                                Elev
                                                                 Elev
     Sta
                                                         Sta
                                                                           Sta
                                                                                  Elev
                                                       1.28
17.26
             2544
                                                2543
2538
                                                                 2542
                                                                          2.23
                        0
                            2543.2
                                       .34
5.28
                                                                                  2541
                              2539
2538
             2540
                                                                 2537
    3.21
                     4.19
                                                                        25.38
                                                                                2536.9
   25.92
             2537
                    35.52
                                      37.24
                                                2539
                                                       40.06
                                                                 2540
                                                                         42.5
                                                                                  2541
   44.17
             2542
                        45
                            2542.2
lanning's n Values
                                        3
                            num≔
     Sta
           n Val
                      Sta
                             n Val
                                        Sta
                                              n Val
              .04
                     5.28
                               .03
                                      35.52
                                                 .04
 ank Sta: Left
                  Right
                            Coeff Contr.
                                            Expan.
          5.28
                                      . 1
                  35.52
Ineffective Flow
                      num=
   Sta L
           Sta R
                     Elev
                            Permanent
       0
              5.2
                     2543
                                 F
    39.7
                                 F
               45
                     2543
Pownstream Deck/Roadway Coordinates
    num=
     Sta Hi Cord Lo Cord
                               Sta Hi Cord Lo Cord
       0 2543.95
                     2535
                               121 2543.95
ownstream Bridge Cross Section Data
 station Elevation Data
                            num=
                                        6
     Sta
            Elev
                      Sta
                              Elev
                                       Sta
                                               Elev
                                                         Sta
                                                                 Elev
                                                                           Sta
                                                                                  Elev
             2540
                    65.92
                                     87.93
                                                                 2536 107.72
       0
                              2538
                                               2536
                                                       91.28
                                                                                  2538
  121.36
            2540
Manning's n Values
                            num=
                            n Val
     Sta
          n Val
                     Sta
                                        Sta
                                              n Val
                    87.93
              . 04
                                      91.28
                               .03
                                                 .04
Bank Sta: Left
                  Right
                            Coeff Contr.
                                            Expan.
         87.93
                  91.28
                                               . 3
pstream Embankment side slope
                                                        2 horiz. to 1.0 vertical
Downstream Embankment side slope
                                                        2 horiz. to 1.0 vertical
                                               =
Maximum allowable submergence for weir flow =
                                                      .95
levation at which weir flow begins
nergy head used in spillway design
Spillway height used in design
                                               = Broad Crested
Weir crest shape
```

umber of Culverts = 1

Culvert Name Shape Rise Span
Lulvert #1 Ellipse 4.5 6
FHWA Chart # 29- Horizontal Ellipse; Concrete
FHWA Scale # 1 - Square edge with headwall
Solution Criteria = Highest U.S. EG
Lulvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss

- 6					07169	.rep			
Coef		32 58.9 = 4	36	24	.024	0	(.5
	Elevat:	ion = 25	36.95 Sta.						
8.86 Downstream	16.77 Elevat	27.88 ion = 25	35.98						
	Station Sta. 93.08	Sta.	Sta. 112.29						
CROSS SECT	ION								
RIVER: W-1 REACH: Was			RS: 2						
NPUT Description	n:								
Station Eld Sta 0		Data Sta 65.92	num= Elev 2538				Elev 2536		Elev
121.36	2540		2336	67.53	2330	91.28	2330	107.72	2538
anning's I Sta 0	n Values n Val .04	s Sta 87.93	num= n Val .03	3 5ta 91.28		·			
ank Sta: 8		Right 91.28	Length:	s: Left 107.85		Right 93.35	Coeff	Contr.	Expan.
CROSS SECT	ION								
RIVER: W-1 REACH: Was	h W-1		RS: 1				٠.		
NPUT Description						-			
Station Eld Sta 0 87.33	Elev	Data Sta 60.32 114.67	num= Elev 2536 2538	7 Sta 63.52	Elev 2534	Sta 69.48	Elev 2533.56	Sta 75.95	Elev 2534
	n Val	Sta	num= n Val	3 Sta					
■ 0 Bank Sta: 1		63.52 Right	.03 Coeff (75.95 Contr.					
		75.95		.1	.3				
UMMARY OF	MANNING	5'S N VAL	.UES						
River:W-1									
Reach	1		Sta.	n1		12	n3		
Wash W-1 _ Wash W-1		11 10			. 04 . 04	.03 .03	. 04 . 04		

1

1	Reach	River Sta.	n1	n2	n3
Wash		11	.04	.03	.04
Wash	W-1	10	. 04	.03	. 04
Wash		9 8	.04	.03	- 04
Wash	W-1	8	.04	.03	.04
Wash		7	.04	.03	.04
wash		6	. 04	. 03	.04
Wash		5	. 04	.03	.04
Wash		4	.04	.03	.04
Wash	W-1	3	.04	.03	.04
Wash		2.0902	culvert		
Wash	W-1	2	.04	.03	. 04

Page 6

.04

SUMMARY OF REACH LENGTHS

River: W-1

	Reach	River Sta.	Left	Channe1	Right
■ Wash	W-1	11	58.47	49.8	50.03
Wash		10	50.17	50.85	50.51
■ Wash	₩-1	9	50.02	50.51	50.29
Wash	-	8	56.96	50.5	50.31
Wash		7	52.54	49.75	49.99
Wash	••	6	45.76	42.18	40.42
■Wash		5	30.54	20.58	21.29
Wash		4	42.2	23.89	9.92
Wash		3	108.63	71.04	74.11
Wash		2.0902	Culvert		
■Wash		2	107.85	101.61	93.35
Wash		ī			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: W-1

	Reach	River Sta.	Contr.	Expan.
Wash Wash Wash Wash Wash Wash Wash Wash	W-1 W-1 W-1 W-1 W-1 W-1 W-1 W-1	11 10 9 8 7 6 5 4 3 2.0902 2	.1 .1 .1 .1 .1 .1 .1 .1 .1	.3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .
	r• —	_		

07-169~1

Type II 24-hr 2.00 hrs Rainfall=2.80"

Prepared by {enter your company name here}

Page 1

HydroCAD® 6.00 s/n 001833 © 1986-2001 Applied Microcomputer Systems

9/28/2007

Pond 2P: DETENTION STORAGE

Inflow = 7.16 cfs @ 1.05 hrs, Volume= 0.092 af

Outflow = 2.97 cfs @ 1.12 hrs, Volume= 0.089 af, Atten= 59%, Lag= 4.0 min

Primary = 2.97 cfs @ 1.12 hrs, Volume= 0.089 af

Routing by Sim-Route method, Time Span= 0.00-2.00 hrs, dt= 0.01 hrs

Peak Elev= 2,544.72' Storage= 1,381 cf Flood Elev= 2,544.77' Storage= 1,400 cf

Plug-Flow detention time= 6.4 min calculated for 0.089 af (97% of inflow)

Elevation (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
2,541.27	0	0
2,541.77	200	200
2,542.77	400	600
2,543.77	400	1,000
2.544.77	400	1,400

Primary OutFlow (Dynamic Tailwater)

1—1=Culvert

Routing Invert Outlet Devices

1 Primary 2,541.27' 8.0" x 15.0' long Culvert CMP, square edge headwall, Ke= 0.500
Outlet Invert= 2,540.50' S= 0.0513 '/' n= 0.015 Cc= 0.900

Prepared by {enter your company name here}

HydroCAD® 6.00 s/n 001833 © 1986-2001 Applied Microcomputer Systems

Page 1 9/28/2007

Pond 2P: DETENTION STORAGE

Pond 2P: DETENTION STORAGE

Pond 2P: DETENTION STORAGE

Pond 2P: DETENTION STORAGE

