
ADDENDUM NO.1 TO THE MASTER DRAINAGE REPORT FOR SILVERSTONE

Revised February 2014 March 2007

WP# 042309

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM James S. Campbell, P.E. Thomas R Gettings, R.L.S. Michael T. Young, P.E. Jeffrey R. Minch, P.E. Robert D. Gofonía, P.E., R.L.S. Patrick W. Marum, P.E. Kenneth L. Knickerbocker, P.E. R.L.S. Dann L. Moore, P.E. John M. Bulka, P.E. Daniel J. Cronin, PMP, LEED AP, CDT James G. Taillon, CFM Daniel W. Matthews, P.E. Christopher A. Salas, P.E. R. Stuart Barney, P.E. Kathy M. Svechovsky, R.L.S. Joseph C. Daconta, P.E. Shane D. McClara, P.E. Ken S. Snow, P.E. Ethan A. Boyle, P.E. Michael R. Havill, P.E., R.L.S. Cesar Castillo, P.E. Edward M. Rajnovich, P.E. James L. Kary, P.E. Mark A. Everett, P.E., CFM Ronald F. Martinez, P.E. Stefanie M. Thrush, P.E.

February 13, 2014

ADDENDUM No.1

COS # 425-SA-2006 #15-ZN-2006, 124-NP-2006, PC# 3476-06-2

- Addendum No.1 to the Master Drainage Report Silverstone - March 2007, WP# 042309
- City of Scottsdale, Stormwater Management Division, Approved 3/18/07
- Justification #1: In January 2010, City of Scottsdale updated "Design Standards and Policies Manual, Chapter 4. Grading & Drainage, NOAA Atlas 14, Volume 1, Version 5, Point Precipitation Frequency Estimate. The updated rainfall volumes are lower in this area of north Scottsdale. (P=2.41 inches 100-year, 2-hour event)
- Justification #2: During recent correspondence with the City of Scottsdale Stormwater Management Division (COS), Wood, Patel & Associates, Inc. (Wood/Patel) was informed of a recent revision to the COS stormwater storage policy. The policy revision is valid for previously developed sites, such as Silverstone Parcel C (previously a portion of the Rawhide development). Per the revised policy, areas of the proposed development that were previously developed are required to provide a storage volume equal to the increase in runoff volume generated by the proposed development during the design storm event (100-year, 2-hour storm). Areas of the proposed development that were previously undeveloped are required to provide a storage volume equal to the entire runoff volume generated by the proposed development during the design storm event.
- Revisions to the Master Drainage Report (MDR) are as follows:
 - o Table 4.1 Parcel Detention Requirements is revised as shown below:

Table 4.1 – Parcel Detention Requirements

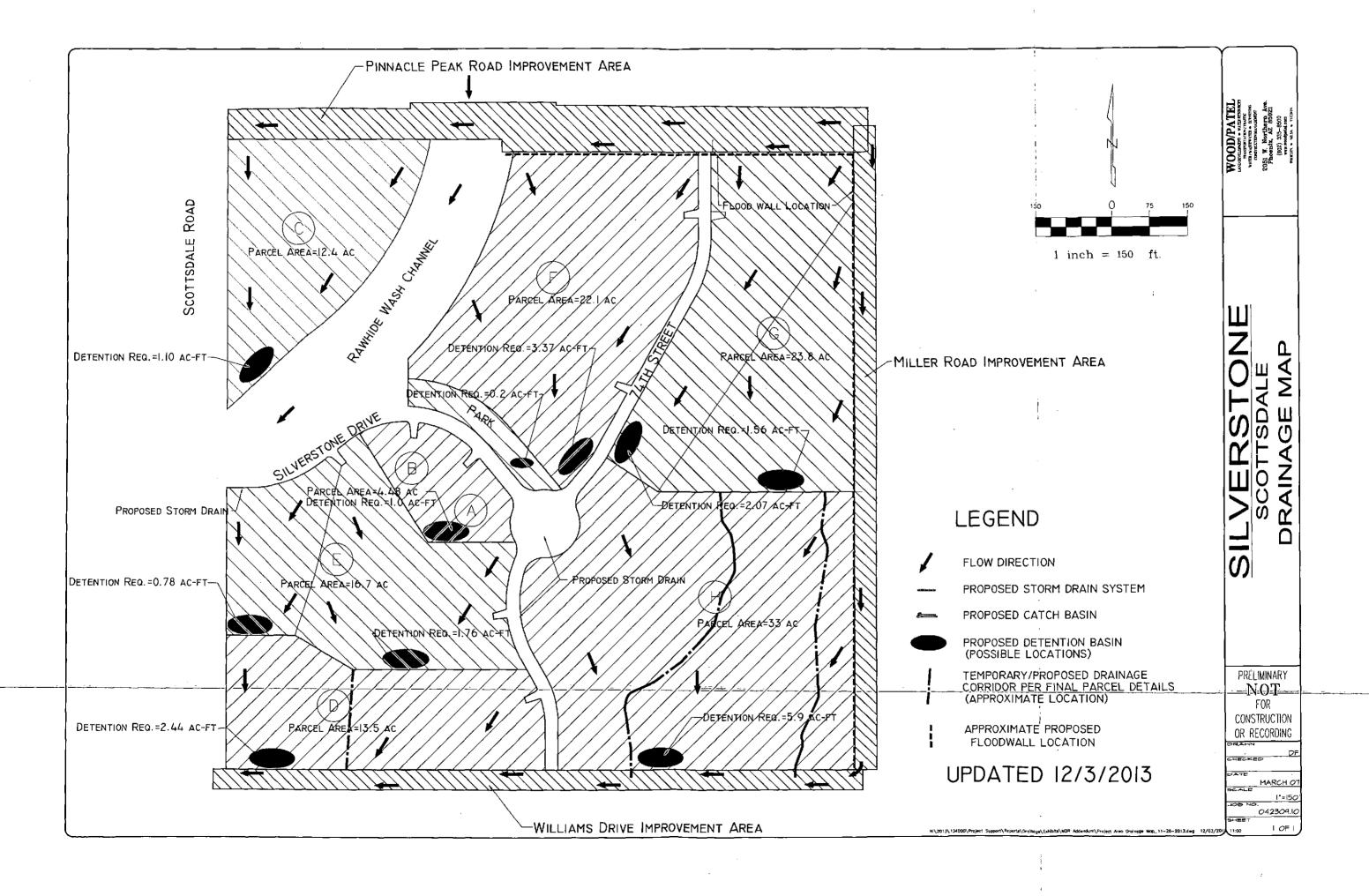
Parcel 1 Basin	Tributary Area	Weighted runoff coefficient	Required Volume	Required Volume
	ac		cf	ac-ft
A&B*	4.5	0.9	41274	0.95
С	12.35	See Appendix B	47766	1.10
D**	13.5	0.9	106291	2.44
E**	16.7		-111033-	2:54
F**	22.1	0.76	146936	3.37
G**	23.8	0.76	158239	3.63
H*	32.8	0.76	254867	5.85
Park*	1.9	0.33	6998	0.16

^{*} These parcels are built out. Volumes are not updated.

ADDENDUM No.1

COS # 425-SA-2006 #15-ZN-2006, 124-NP-2006, PC# 3476-06-2

- ** Required detention volumes for these parcels are updated based upon updated rainfall depth data. Recent changes in C.O.S. stormwater storage policy for previously developed sites may allow for a reduction in required storage volume, but this reduction was not explored for these parcels in this addendum.
 - Plate 3 Silverstone Drainage Map, which displays possible locations of proposed detention basins, is revised. The revised plate is attached and dated December 3, 2013.
- Additions to MDR are as follows:
 - o Appendix B is added to the MDR and includes the following:
 - Table B1 Parcel C Required Stormwater Detention Volume
 - Table B2 Parcel C Pre-Existing Condition Weighted Runoff Coefficients
 - Table B3 Parcel C Post-Developed Condition Weighted Runoff Coefficients
 - Exhibit 1 Pre-Existing Condition Map
 - Exhibit 2 Post-Developed Condition Map



Darrel E. Wood, P.E., R.L.S. Principal

Y:\WP\Reports\Commercial\134000 - Silverstone Parcel C - Addendum No. 1 Master Drainage Report 2-13-14.doc

PLATE 3

Silverstone Drainage Map

APPENDIX B

Table B1 – Parcel C Required Stormwater Detention Volume
Table B2 – Parcel C Pre-Existing Condition Weighted Runoff Coefficients
Table B3 – Parcel C Post-Developed Condition Weighted Runoff Coefficients
Exhibit 1 – Pre-Existing Condition Map
Exhibit 2 – Post-Developed Condition Map

Table B1 - Parcel C Required Stormwater Detention Volume, VREO'D

Project:

Addendum to Master Drainage Report for Silverstone

Location:

Scottsdale: Arizona

Description:

Calculation of required stormwater detention volume

References:

Design Standards and Policies Manual, Chapter 4 - Grading & Drainage, City of Scottsdale, January 2010

NOAA Atlas 14, Volume 1, Version 5, Point Precipitation Frequency Estimates

Known Values: Design storm: 100-year, 2-hour

Rainfall, P

2.41 inches

Calc. Values¹:

$$V_{REQ'D} = \frac{P}{12} \times A \times C$$

Where:

 $V_{REQ'D}$ = Required stormwater detention volume

P = Rainfall depth for design storm event

A = Area of watershed contributing

C = Runoff coefficient (see below for calculation)

For Pre-Existing Developed Areas²: $C = C_{POST} - C_{PRE}$

$$C = C_{POST} - C_{PRE}$$

For Pre-Existing Undeveloped Areas³: $C = C_{POST}$

Where:

C_{PRF} = Weighted runoff coefficient for pre-existing condition

C_{POST} = Weighted runoff coefficient for post-developed condition

Notes:

- 1. Based upon current C.O.S. stormwater storage requirements, areas of the proposed development that were previously developed are required to provide a storage volume equal to the increase in runoff volume generated by the proposed development during the design storm event (100-year, 2-hr storm). Areas of the proposed development that were previously undeveloped are required to provide storage volume equal to the entire runoff volume generated by the proposed development during the design storm event.
- 2. For previously developed areas, the required storage volume is calculated using a runoff coefficient equal to the inrease in the runoff coefficient from the pre-existing to the post-developed condition (C=C_{POST}-C_{PRF})
- 3. For previously undeveloped areas, the required storage volume is calculated using a runoff coefficient equal to the postdeveloped runoff coefficient (C=C_{POST})

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Table B1 - Parcel C Required Stormwater Detention Volume, VREQ'D

Project:

Addendum to Master Drainage Report for Silverstone

Location:

Scottsdale, Arizona

Description:

Calculation of required stormwater detention volume

References:

Design Standards and Policies Manual, Chapter 4 - Grading & Drainage, City of Scottsdale, January 2010

NOAA Atlas 14, Volume 1, Version 5, Point Precipitation Frequency Estimates

Drainage Area ID ⁴	Area, A (sq ft)	Area, A (ac)	_	Post-Developed Weighted Runoff Coefficient, C _{POST}	C _{POST} - C _{PRE} or C _{POST}	V _{REQ'D} (cu ft)	V _{REQ'D} (ac ft)
1	383,950	8.81	0.47	0.76	0.29	22,362	0.51
2	19,470	0.45	0.46	0.84	0.38	1,486	0.03
3	118,440	2.72		0.90	0.90	21,408	0.49
4	11,280	0.26		0.86	0.86	1,948	0.04
5	4,740	0.11		0.59	0.59	562	0.01

537,880 Total

12.35

47,766

1.10

Notes:

4. Refer to Exhibit 1 - Pre-Existing Condition Map and Exhibit 2 - Post-Developed Condition Map for area delineation.

Table B2 - Parcel C Pre-Existing Condition Weighted Runoff Coefficients, C_{PRE} - 100 Year Storm Event

Project:

Addendum to Master Drainage Report for Silverstone

Location:

Scottsdale, Arizona

Description:

Calculation of pre-existing runoff coefficients, C_{PRF}, for the 100-year storm event

References: Design Standards and Policies Manual, Chapter 4 - Grading & Drainage, City of Scottsdale, January 2010

Figure 4.1-4 Runoff Coefficients for use with Rational Method

AREA ID ¹	DESCRIPTION	SURFACE TYPE ²	100-YR C VALUE ^{2,3,4}	AREA (SF)	AREA (AC)	WEIGHTED C _{PRE} VALUE ⁴
	PRE-EXISTING COMPACTED GRAVEL PARKING LOT, DIRT PATHWAYS AND VARIOUS STRUCTURES	ROOF	0.95	14040	0.32	0.47
		COMPACTED GRAVEL AND DIRT	0.45	369910	8.49	
2	PRE-EXISTING DIRT PATHWAYS AND	ROOF	0.95	430	0.01	0.46
-	VARIOUS STRUCTURES	DIRT	0.45	19040	0.44 _	0.40
3	PRE-EXISTING UNDEVELOPED AREA	UNDEVELOPED		118440	2.72	
4 -	PRE-EXISTING UNDEVELOPED AREA	UNDEVELOPED		11280	0.26	
5	PRE-EXISTING UNDEVELOPED AREA	UNDEVELOPED		4740	0.11	

537880 12.35

Notes:

- 1. Refer to Exhibit 1 Pre-Existing Condition Map for area delineation.
- 2. Surface type and associated C value per Figure 4.1-4 Runoff Coefficients for use with Rational Method of the C.O.S. Design Standards and Policies Manual.
- 3. For pre-existing compacted gravel parking areas and dirt/gravel pathway areas a C value equivalent to the C.O.S. C value for desert landscaping is utilized.
- 4. C values are not reported for pre-existing undeveloped areas.

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Table B3 - Parcel C Post-Developed Condition Weighted Runoff Coefficients, CPOST - 100 Year Storm Event

Project:

Addendum to Master Drainage Report for Silverstone

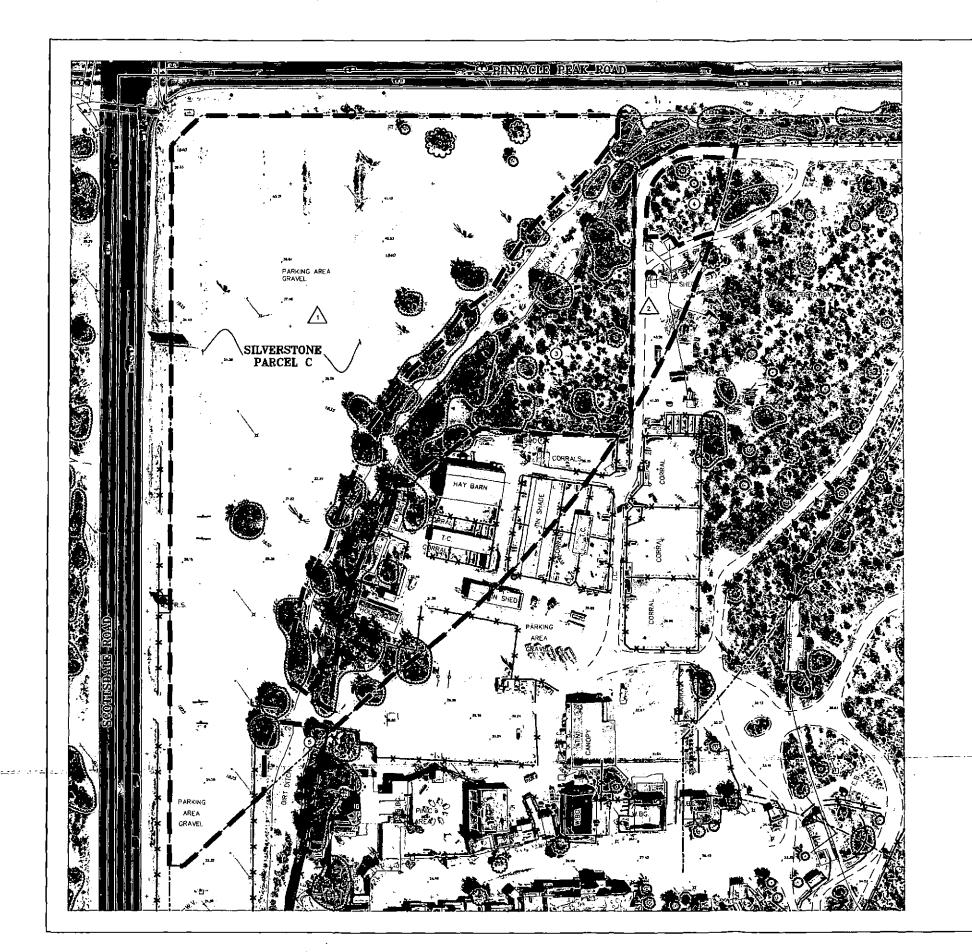
Location:

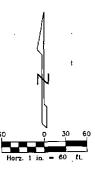
Scottsdale, Arizona

Description:

Calculation of post-developed runoff coefficients, CPOST, for the 100-year storm event

References: Design Standards and Policies Manual, Chapter 4 - Grading & Drainage, City of Scottsdale, January 2010


Figure 4.1-4 Runoff Coefficients for use with Rational Method


AREA ID1	DESCRIPTION	SURFACE TYPE ²	100-YR C VALUE ²	AREA (SF)	AREA (AC)	WEIGHTED C _{POST} VALUE
1	COMMERCIAL DEVELOPMENT & SCENIC COORIDOR	PAVEMENT, CONCRETE & ROOF	0.95	235070	5.40	0.76
		DESERT LANDSCAPE	0.45	148880	3.42	
2	COMMERCIAL DEVELOPMENT	PAVEMENT, CONCRETE & ROOF	0.95	15080	0.35	0.84
		DESERT LANDSCAPE	0.45	4390	0.10	
3	COMMERCIAL DEVELOPMENT	PAVEMENT, CONCRETE & ROOF	0.95	107180	2.46	0.90
		DESERT LANDSCAPE	0.45	11260	0.26	
4	COMMERCIAL DEVELOPMENT	PAVEMENT, CONCRETE & ROOF	0.95	9250	0.21	0.86
1		DESERT LANDSCAPE	0.45	2030	0.05	
5	COMMERCIAL DEVELOPMENT	PAVEMENT, CONCRETE & ROOF	0.95	1330	0.03	0.59
		DESERT LANDSCAPE	0.45	3410	0.08	
				537880	12.35	

Notes:

^{1.} Refer to Exhibit 2 - Post-Developed Condition Map for area delineation.

^{2.} Surface type and associated C value per Figure 4.1-4 - Runoff Coefficients for use with Rational Method of the C.O.S. Design Standards and Policies Manual.

LEGEND

 \triangle

PRE-EXISTING DEVELOPED AREA ID

PRE-EXISTING DEVELOPED AREA BOUNDARY

PRE-EXISTING UNDEVELOPED AREA ID

PROPERTY LINE

PRELIMINARY
NOT
FOR
CONSTRUCTION
OR RECORDING

SILVERSTONE
PARCEL C
1 - PRE-EXISTING CONDITION

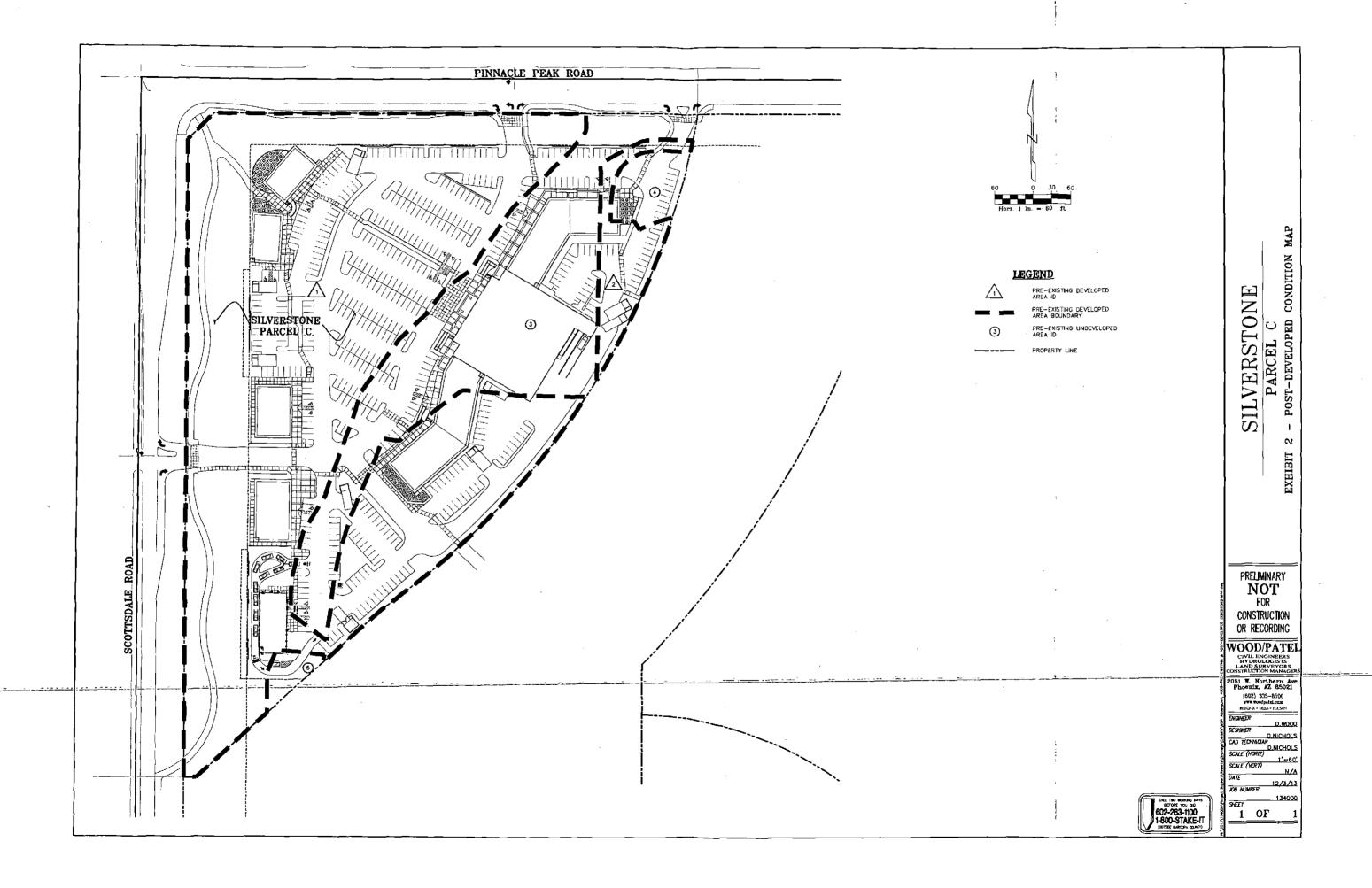
WOOD/PATEL

CIVIL ENGINEERS
HYDROLOGISTS
LAND SURVEYORS
CONSTRUCTION MANAGERS

CONSTRUCTION MANAGER
2051 W. Northern Are
Phoenix, AZ 85021
(802) 335-8500
www.modpatel.com
PRECIX-NFSA-RESON

WWW. WOODPATEL COM
PROCESSES STEEL TO THE SON
ENGINEER
DESIGNER

DESCRIER
D.NICHOLS
CAD TECHNICAN
D.NICHOLS
SCALE (NORZ)


| 1°=60' | 1°=60' | N/A | | 100 MINISER | 12/3/13

134000 1 OF 1

NOTES:

1. AERIAL IMAGE FROM ALTA/ACSM LAND TITLE SURVEY FOR SILVERSTONE PREPARED BY WOOD, PATEL & ASSOCIATES, INC. DATED DECEMBER 5, 2005. AERIAL IMAGE PROVIDED BY KENNEY AERIAL MAPPING INC. DATED OCTOBER 5, 2005.

CALL IND MERCHE DATS
8270FE YOU BE
802-263-1100
1-800-STAKE-IT
[DITTRE MARKENA COMPY]

