Drainage Reports

Abbreveated Water & Sewer Need Reports

Water Study

Wastewater Study

Stormwater Waiver Application

McDowell Mountain Marketplace - Lot 2 SWC Bell Rd & Thompson Peak Pkwy December 19, 2017

BASIS OF DESIGN REPORT FOR WATER

McDowell Mountain Marketplace - Lot 2

OWNER:

MULLIN360BUILD

16679 North 90th Street, Suite 102

Scottsdale, Arizona 85260

John L. McCauley Phone (602) 430-4603

CONTACT: RICK ENGINEERING COMPANY

6150 North 16th Street Phoenix, Arizona 85016

Joseph M. Cirone, P.E.

Phone: (602) 957-3350 By:

Accepted For: City of Scottsdale

Water Resources Department 9379 E. San Salvador Scottsdale, Arizona

Expires: 6-30-2019

PROJECT DESCRIPTION:

The proposed development is located at the southwest corner (SWC) of Bell Road and Thompson Peak Parkway within the McDowell Mountain Marketplace, City of Scottsdale, AZ. The development will consist of a gray shell, 5-tenant building, with appurtenant facilities. Pursuant to City of Scottsdale requirements, the building will be equipped with potable water in sufficient volume and pressure for domestic use and fire protection. The proposed water distribution network will include a 2-inch domestic service⁸, a 3/4-inch landscape meter, and a 4-inch fire line.

The 2-inch domestic service will connect to an existing 8-inch DIP located within the adjacent drive aisle. The proposed 4-inch fire line will connect to an existing 4-inch DIP stub located near the northeast corner of the pad. The existing McDowell Mountain Marketplace water distribution system ties into existing facilities in 100th street to the west of the shopping center, 8-inch DIP, and in Thompson Peak Parkway to the east of the site, 16-inch pipe of unknown material.

The ensuing water demand and production criteria are indicative of tenant mixes for similar shell buildings within the McDowell Mountain Marketplace and are subject to change.

WATER DEMAND AND PRODUCTION CRITERIA	
Tenant 1:	Retail (1,580-gsf)
Tenant 2:	Retail (5,500-gsf)
Tenant 3:	Retail (3,000-gsf)
Tenant 4:	Retail (1,800-gsf)
Tenant 5:	Retail (2,400-gsf)
Property Area:	Lot 2 (65,296-sf) Gray Shell (14,280-gsf)
Shell Building:	14,280-gsf
Average Day Demand:	0.8-gpd per sf Commercial/Retail ¹
Maximum Day Demand:	2 x Average Day Demand Commercial/Retail ²
Normal Daily Operating Conditions Demand:	31.3 gallons/minute ^{3,4}
Minimum Maximum Day plus Fire Flow Demand:	1,500 - Commercial/Retail 5
Fire Flow Demand:	3,250 gallons/minute ^{6,7}
Building Construction Type:	V-B

43-DR-2017 12/20/17

6150 North 16th Street

Phoenix, Arizona 85016-1705

(602) 957-3350

FAX: (602) 285-__

renerigireering.com

WATER DESIGN FLOWS

Average Day Demand (Commercial/Retail) = $0.8 \frac{\text{gpd}}{\text{sf}} (14,280\text{sf}) = 11,424 \text{ gpd} = 7.9 \text{ gpm}$

Maximum Day Demand (Commercial/Retail) = 2(11,424 gpd) = 22,848 gpd = 15.9 gpm

Normal Daily Operating Conditions Demand = 39.1 gpm

Fire Flow = (3,250 gpm)(1-0.75) = 812.5 gpm

Minimum Fire Flow = 1,500 gpm

Maximum Day + FF Demand = (15.9 gpm) + (1,500 gpm) = 1,515.9 gpm

FIRE FLOW TEST

A fire flow test, dated 10/17/2017 was performed by AZ Flow Testing LLC on two existing hydrants located within the McDowell Mountain Marketplace Plaza. A 10% factor of safety was applied to the flow test data which includes a static pressure of 61.2-psi, a residual pressure of 55.2-psi and an available flow of 4.122-gpm at 20-psi. See Attachment 1 for fire hydrant flow test results.

SUMMARY

The water distribution system is designed to (1) maintain 50-120 pounds per square inch of pressure under normal daily operating conditions, (2) maintain a pressure greater than 30 pounds per square inch while supplying the maximum day plus fire flow condition, and (3) not exceed a maximum allowable pipe headloss of 10-ft/1000-ft for distribution lines. The Normal Daily Operating Conditions Demand of 39.1-gpm does not exceed the City of Scottsdale recommended maximum capacity of 80-gpm⁸ for a 2-inch domestic service meter.

ATTACHMENTS

Attachment 1 - Fire Flow Test

Attachment 2 -IPC 2015 Appendix E, Table 103.3(3)

-Water Supply Fixture Calculations

Attachment 3 — Preliminary Grading and Drainage Plan (with water and sewer)

¹ Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1, Figure 6.1-2.

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.404.

^{2a} Source: California Department of Water Resources. Urban Water Management Plan. Chapter 5; Section 5.1.3.

³ Water supply fixture calculations Attachment 2.

⁴ Fixture calculations per IPC 2015, Appendix E.

⁵ Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.501

Source: International Fire Code 2015; Appendix B, Table B105.1 (Building Construction Type V-B).

A reduction in required fire-flow of 75 percent, as approved, is allowed when the building is equipped with an approved automatic sprinkler systems.

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.416, Figure 6.1-4.

ATTACHMENT 1

Fire Flow Test

Arizona Flow Testing LLC

HYDRANT FLOW TEST REPORT

Project Name:

McDowell Mountain Marketplace, Lot 2

Project Address:

Bell Rd. & Thompson Peak Pkwy., (SWC), Scottsdale, Arizona 85255

Client Project No.:

4893-0

Arizona Flow Testing Project No.:

17224

Flow Test Permit No.:

C54037

Date and time flow test conducted:

October 17, 2017 at 8:30 AM

Data is current and reliable until:

April 17, 2018

Conducted by: Witnessed by:

Floyd Vaughan – Arizona Flow Testing, LLC (480-250-8154) Larry Frandle –City of Scottsdale-Inspector (602-828-0847)

Static Pressure:

Residual Pressure:

Data with 10 % Safety Factor

(Measured in pounds per square inch)

(Measured in pounds per square inch)

Distance between hydrants: Approx. 450 Feet

Raw Test Data

Static Pressure:

68.0 PSI

(Measured in pounds per square inch)

Residual Pressure:

62.0 PSI

(Measured in pounds per square inch)

Pitot Pressure:

15.0 PSI

(Measured in pounds per square inch)

Diffuser Orifice Diameter: One (4 inch)

(Measured in inches)

Coefficient of Diffuser: .7875 Hose Monster

Flowing GPM:

1,456 GPM

(Measured in gallons per minute)

Flowing GPM:

Main size: Not Provided

1,456 GPM

61.2 PSI

55.2 PSI

GPM @ 20 PSI:

4,476 GPM

GPM @ 20 PSI:

4,122 GPM

Flow Test Location

North

Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

ATTACHMENT 2

IPC 2015 Appendix E, Table 103.3(3) Water Supply Fixtures Calculations

TABLE E103.3(3)
TABLE FOR ESTIMATING DEMAND

Load Dammet Couloi Calloine par minute) Couloi feet par minute) Calloine par mi		SUPPLY SYSTEMS PREDOMINANTLY FOR FLUSH TANKS			SUPPLY SYSTEMS PREDOMINANTLY FOR FLUSH VALVES			
1 3.0 0.04104		Load	Den	nand	Load	Der	nand	
2 5.0 0.0684 — — — — — — — — — — — — — — — — — — —		(Water supply fixture units)	(Gallons per minute)	(Cubic feet per minute)	(Water supply fixture units)	(Gallons per minute)	(Cubic feet per minute)	
3 6.5 0.86892 — — — — — — — — — — — — — — — — — — —		i	3.0	0.04104	_	_	_	
4 8.0 1.06944		2	5.0	0.0684				
5 9.4 1.256592 5 15.0 2.0052 6 10.7 1.430376 6 17.4 2.326032 7 11.8 1.577424 7 19.8 2.646364 8 12.8 1.711104 8 22.2 2.967696 9 13.7 1.831416 9 24.6 3.288528 10 14.6 1.951728 10 27.0 3.69396 11 15.4 2.058672 11 27.8 3.716304 12 16.0 2.13888 12 2.86 3.83248 13 16.5 2.20572 13 29.4 3.930192 14.4 17.0 2.27256 14 30.2 4.037136 15 17.5 2.3394 15 31.0 4.14408 16 18.0 2.296234 16 31.8 4.241024 17 18.4 2.459712 17 32.6 4.357968 18 18.8 <td></td> <td>3</td> <td>6.5</td> <td>0.86892</td> <td></td> <td>_</td> <td></td>		3	6.5	0.86892		_		
6 10.7 1.430376 6 17.4 2.326032 7 111.8 1.577424 7 19.8 2.646364 8 12.8 1.711104 8 22.2 2.967696 9 13.7 1.831416 9 24.6 3.28852 10 14.6 1.951728 10 27.0 3.60936 111 15.4 2.058672 11 27.8 3.716304 112 16.0 2.13888 12 28.6 3.823248 13 16.5 2.20572 13 29.4 3.930192 14 17.0 2.27256 14 30.2 4.037136 15 17.5 2.3394 15 31.0 4.14408 16 18.0 2.90624 16 31.8 4.241024 17 18.4 2.459712 17 32.6 4.357968 18 18.8 2.513184 18 33.4 4.46912 19 19.2 2.566656 19 34.2 4.571856 20 19.6 2.630128 20 35.0 4.6788 25 21.5 2.87412 25 38.0 5.07984 36 25.3 3.14744 30 42.0 5.61356 36 22.3 3.14744 30 42.0 5.61356 36 3.2 3.3 3.14744 30 42.0 5.61356 36 32.0 4.2777 3.70936 45 48.0 6.41664 50 32.0 4.27776 60 54.0 7.21872 70 35.0 4.6788 70 58.0 7.75344 80 33.0 5.07984 80 61.2 8.181216 90 41.0 5.88192 90 41.0 5.48088 90 64.3 8.59624 140 52.5 7.0182 140 77.0 10.20336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312		4	8.0	1.06944			_	
7 11.8 1.577424 7 19.8 2.646364 8 12.8 1.711104 8 22.2 2.9067696 9 13.7 1.831416 9 24.6 3.288528 10 14.6 1.591728 10 27.0 3.60936 11 15.4 2.058672 11 27.8 3.716304 12 16.0 2.13888 12 28.6 3.823248 13 16.5 2.20572 13 29.4 3.990192 14 17.0 2.27226 14 30.2 4.037136 15 17.5 2.3394 15 31.0 4.14408 16 18.0 2.90624 16 31.8 4.241024 17 18.4 2.459712 17 32.6 4.357968 18 18.8 2.513184 18 33.4 4.466912 19 19.2 2.56656 19 34-2 4.571856 20 19.6 2.620128 20 35.0 4.6788 25 21.5 2.87412 25 38.0 5.07984 35 24.9 3.328632 35 44.0 5.81892 WSFU=47.5 45 22.7 3.702936 45 48.0 6.41664 50 29.1 3.590088 50 50.0 6.684 50 29.1 3.590088 50 50.0 6.684 60 32.0 4.27776 60 54.0 7.73344 80 38.0 3.507984 80 61.2 8.81216 90 41.0 5.48088 90 64.3 8.595624 120 48.0 6.41664 120 73.0 9.73864 140 52.5 7.0182 140 77.0 10.29336 150 61.0 8.15484 180 85.5 11.42964 160 57.0 7.61976 140 81.0 10.29208 180 61.0 8.15484 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312		5	9.4	1.256592	5	15.0	2.0052	
8 12.8 1.711104 8 22.2 2.967696 9 13.7 1.831416 9 24.6 3.288528 10 14.6 1.951728 10 27.0 3.60936 111 15.4 2.058672 11 27.8 3.716304 12 16.0 2.13888 12 28.6 3.833248 13 16.5 2.20572 13 29.4 3.930192 14 17.0 2.27256 14 30.2 4.037136 15 17.5 2.3394 15 31.0 4.14408 16 18.0 2.90624 16 31.8 4.241024 17 18.4 2.459712 17 32.6 4.357968 18 18.8 2.513184 18 33.4 4.464912 19 19.2 2.566656 19 34.2 4.571856 20 19.6 2.620128 20 35.0 4.6788 25 21.5 2.87412 25 38.0 5.07984 36 23.3 3.114744 30 42.0 5.61356 35 24.9 3.328632 35 44.0 5.88192 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 26.3 3.515784 40 46.0 6.14028 40 32.0 42.7776 60 54.0 7.21872 70 33.0 4.6788 70 58.0 7.75344 80 33.0 5.07984 80 61.2 8.181216 90 41.0 5.48088 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.73864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.2808 180 61.0 81.5448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312		6	10.7	1.430376	6	17.4	2.326032	
9 13.7 1.831416 9 24.6 3.288528 10 10 14.6 1.951728 10 27.0 3.60936 11 1 15.4 2.058672 11 27.8 3.716304 12 12 16.0 2.13888 12 28.6 3.823248 13 16.5 2.20572 13 29.4 3.930192 14 17.0 2.27256 14 30.2 4.037136 15 17.5 2.3394 15 31.0 4.14408 15.0 4.14408 16 18.0 2.90624 16 31.8 4.241024 17 18.4 2.459712 17 32.6 4.357968 18 18.8 2.513184 18 33.4 4.464912 19 19.2 2.566556 19 34.2 4.571856 20 19.6 2.620128 20 35.0 4.6788 30 23.3 3.114744 30 42.0 5.61356 33 24.9 3.328632 35 44.0 5.88192 40 26.3 3.515784 40 46.0 6.14028 45 45 27.7 3.702936 45 48.0 6.41664 60 32.0 4.27776 60 54.0 7.21872 70 35.0 4.6788 70 58.0 7.73344 80 5.0 5.0 99.4 100 43.5 5.8192 100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 43.5 5.8198 100 67.5 9.0234 1100 18.200 65.0 8.6892 200 90.0 12.20312 12.76644 180 61.0 10.8280 180 61.0 8.8548 180 61.0 10.8280 180 61.0 8.8548 180 61.0 10.8280 180 61		7	11.8	1.577424	7	19.8	2,646364	
10		8	12.8	1.711104	8	22.2	2.967696	
11		9	13.7	1.831416	9	24.6	3.288528	
12		10	14.6	1.951728	10	27.0	3.60936	
13		11	15.4	2.058672	11:	27.8	3.716304	
14		12	16.0	2.13888	12	28.6	3.823248	
15		13	16.5	2.20572	13	29.4	3.930192	
16		14	17.0	2.27256	14	30.2	4.037136	
## Page 18		15	17.5	2.3394	15 -	31.0	4.14408	
18		16	18.0	2.90624	16	31.8	4.241024	
WSFU=47.5 45 27.7 3.702936 45 48.0 6.41664 50 32.0 4.27776 60 54.0 7.21872 70 35.0 4.6788 70 58.0 7.75344 80 33.0 5.07984 80 61.2 8.181216 90 41.0 5.8808 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644		17	18.4	2.459712	17	32.6	4.357968	
WSFU=47.5 20		18	18,8	2.513184	18	33.4	4.464912	
WSFU=47.5		19	19.2	2.566656	19	34.2	4.571856	
WSFU=47.5		20	19.6	2.620128	20	35.0	4.6788	
WSFU=47.5		25	21.5	2.87412	25	38.0	5.07984	
WSFU=47.5		30	23.3	3.114744	30	42.0	5.61356	
WSFU=47.5		35	24.9	3.328632	35	44.0	5.88192	
So		40	26.3	3.515784	40	46.0	6.14928	
60 32,0 4.27776 60 54.0 7.21872 70 35.0 4.6788 70 58.0 7.75344 80 38.0 5.07984 80 61.2 8.181216 90 41.0 5.48088 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644	WSFU=4	7.5	27.7	3.702936	45	48.0	6.41664	
70 35.0 4.6788 70 58.0 7.75344 80 38.0 5.07984 80 61.2 8.181216 90 41.0 5.48088 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644		50	29.1	3.890088	50	50.0	6.684	
80 38.0 5.07984 80 61.2 8.181216 90 41.0 5.48088 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644	Ī	60	32.0	4.27776	60	54.0	7.21872	
90 41.0 5.48088 90 64.3 8.595624 100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644		70	35.0	4.6788	70	58.0	7.75344	
100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644		80	38.0	5.07984	80	61.2	8.181216	
100 43.5 5.81508 100 67.5 9.0234 120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644		90	41.0	5.48088	90	64.3	8.595624	
120 48.0 6.41664 120 73.0 9.75864 140 52.5 7.0182 140 77.0 10.29336 160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644			43.5	5.81508	100	67.5	9.0234	
160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644			48.0	6.41664	: 120	73.0	9.75864	
160 57.0 7.61976 160 81.0 10.82808 180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644				7.0182	140	77.0	10.29336	
180 61.0 8.15448 180 85.5 11.42964 200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644							10.82808	
200 65.0 8.6892 200 90.0 12.0312 225 70.0 9.3576 225 95.5 12.76644							11.42964	
225 70.0 9.3576 225 95.5 12.76644					200	90.0	12.0312	
		250		10.026	250		13.50168	

(continued)

WATER SUPPLY FIXTURE UNITS TABULAT	TION	\$7.34 \$ E.S.				
		Tenant 1				
Water Closet	1	Х	5.0	=	5.0	
Lavatory	1	Х	2.0	=	2.0	
Sink	1	Х	2.0	=	2.0	
Drinking Fountain	2	Х	0.25	=	0.5	9.5
		Tenant 2	7			
Water Closet	1	Х	5.0	=	5.0	
Lavatory	1	Х	2.0	=	2.0	
Sink	1	Х	2.0	=	2.0	
Drinking Fountain	2	Х	0.25	=	0.5	9.5
		Tenant 3		1		
Water Closet	1	Х	5.0	=	5.0	
Lavatory	1	Х	2.0	=	2.0	
Sink	1	Х	2.0	=	2.0	
Drinking Fountain	2	Х	0.25	=	0.5	9.5
		Tenant 4				
Water Closet	1	Х	5.0	=	5.0	
Lavatory	1	Х	2.0	=	2.0	
Sink	1	Х	2.0	=	2.0	
Drinking Fountain	2	Х	0.25	=	0.5	9.5
		Tenant 5				
Water Closet	1	Х	5.0	=	5.0	
Lavatory	1	X	2.0	=	2.0	
Sink	1	Х	2.0	=	2.0	
Drinking Fountain	2	х	0.25	=	0.5	9.5
Water Supply Fixture Units (wsfu)						47.5
Water Supply Fixture Demand (gpm)						29.1
Additional GPM Demand						
Hose Bibb	2	Х	5.0	=	10.0	10.0
Total Design Demand (gpm)						39.1

Note: This is a gray shell building; fixture counts as shown are estimates based upon proposed tenant uses. These calculations have been prepared in support of the Water Basis of Design (BOD) Memorandum.

ATTACHMENT 3

Preliminary Grading and Drainage Plan (with Water & Sewer)

McDowell Mountain Marketplace - Lot 2 SWC Bell Rd & Thompson Peak Pkwy December 19, 2017

BASIS OF DESIGN REPORT FOR WATER

McDowell Mountain Marketplace - Lot 2

OWNER:

MULLIN360BUILD

16679 North 90th Street, Suite 102

Scottsdale, Arizona 85260

John L. McCauley Phone (602) 430-4603

CONTACT: RICK ENGINEERING COMPANY

6150 North 16th Street Phoenix, Arizona 85016

Joseph M. Cirone, P.E.

Phone: (602) 957-3350 By:

Accepted For:

City of Scottsdale Water Resources Department 9379 E. San Salvador Scottsdale, Arizona

Expires: 6-30-2019

PROJECT DESCRIPTION:

The proposed development is located at the southwest corner (SWC) of Bell Road and Thompson Peak Parkway within the McDowell Mountain Marketplace, City of Scottsdale, AZ. The development will consist of a gray shell, 5-tenant building, with appurtenant facilities. Pursuant to City of Scottsdale requirements, the building will be equipped with potable water in sufficient volume and pressure for domestic use and fire protection. The proposed water distribution network will include a 2-inch domestic service⁸, a 3/4-inch landscape meter, and a 4-inch fire line.

The 2-inch domestic service will connect to an existing 8-inch DIP located within the adjacent drive aisle. The proposed 4-inch fire line will connect to an existing 4-inch DIP stub located near the northeast corner of the pad. The existing McDowell Mountain Marketplace water distribution system ties into existing facilities in 100th street to the west of the shopping center, 8-inch DIP, and in Thompson Peak Parkway to the east of the site, 16-inch pipe of unknown material.

The ensuing water demand and production criteria are indicative of tenant mixes for similar shell buildings within the McDowell Mountain Marketplace and are subject to change.

WATER DEMAND AND PRODUCTION CRITERIA	
Tenant 1:	Retail (1,580-gsf)
Tenant 2:	Retail (5,500-gsf)
Tenant 3:	Retail (3,000-gsf)
Tenant 4:	Retail (1,800-gsf)
Tenant 5:	Retail (2,400-gsf)
Property Area:	Lot 2 (65,296-sf) Gray Shell (14,280-gsf)
Shell Building:	14,280-gsf
Average Day Demand:	0.8-gpd per sf Commercial/Retail ¹
Maximum Day Demand:	2 x Average Day Demand Commercial/Retail ²
Normal Daily Operating Conditions Demand:	31.3 gallons/minute ^{3,4}
Minimum Maximum Day plus Fire Flow Demand:	1,500 - Commercial/Retail 5
Fire Flow Demand:	3,250 gallons/minute ^{6,7}
Building Construction Type:	V-B

43-DR-2017 12/20/17

6150 North 16th Street

Phoenix, Arizona 85016-1705

(602) 957-3350

FAX: (602) 285-_

acing incerning com

WATER DESIGN FLOWS

Average Day Demand (Commercial/Retail) = $0.8 \frac{gpd}{sf}$ (14, 280sf) = 11, 424 gpd = 7.9 gpm

Maximum Day Demand (Commercial/Retail) = 2(11,424 gpd) = 22,848 gpd = 15.9 gpm

Normal Daily Operating Conditions Demand = 39.1 gpm

Fire Flow = (3,250 gpm)(1-0.75) = 812.5 gpm

Minimum Fire Flow = 1,500 gpm

Maximum Day + FF Demand = (15.9 gpm) + (1,500 gpm) = 1,515.9 gpm

FIRE FLOW TEST

A fire flow test, dated 10/17/2017 was performed by AZ Flow Testing LLC on two existing hydrants located within the McDowell Mountain Marketplace Plaza. A 10% factor of safety was applied to the flow test data which includes a static pressure of 61.2-psi, a residual pressure of 55.2-psi and an available flow of 4.122-gpm at 20-psi. See Attachment 1 for fire hydrant flow test results.

SUMMARY

The water distribution system is designed to (1) maintain 50-120 pounds per square inch of pressure under normal daily operating conditions, (2) maintain a pressure greater than 30 pounds per square inch while supplying the maximum day plus fire flow condition, and (3) not exceed a maximum allowable pipe headloss of 10-ft/1000-ft for distribution lines. The Normal Daily Operating Conditions Demand of 39.1-gpm does not exceed the City of Scottsdale recommended maximum capacity of 80-gpm⁸ for a 2-inch domestic service meter.

ATTACHMENTS

Attachment 1 - Fire Flow Test

Attachment 2 -IPC 2015 Appendix E, Table 103.3(3)

-Water Supply Fixture Calculations

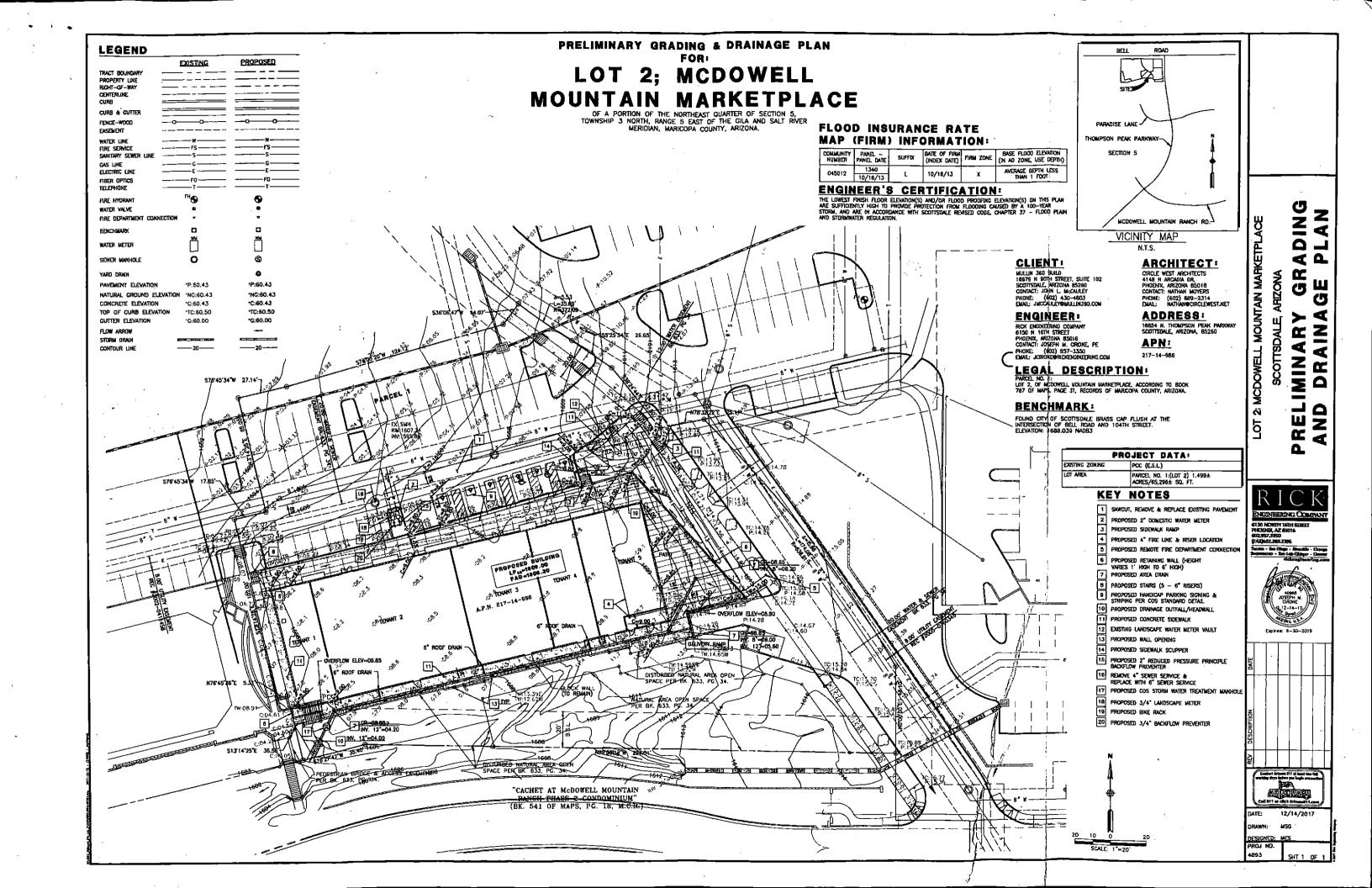
Attachment 3 - Preliminary Grading and Drainage Plan (with water and sewer)

¹ Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1, Figure 6.1-2.

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.404.

^{2a} Source: California Department of Water Resources. Urban Water Management Plan. Chapter 5; Section 5.1.3.

Water supply fixture calculations Attachment 2.


Fixture calculations per IPC 2015, Appendix E.

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.501

Source: International Fire Code 2015; Appendix B, Table B105.1 (Building Construction Type V-B).

A reduction in required fire-flow of 75 percent, as approved, is allowed when the building is equipped with an approved automatic sprinkler systems.

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 6 - Water; Section 6-1.416, Figure 6.1-4.

McDowell Mountain Marketplace - Lot 2 SWC Bell Rd & Thompson Peak Pkwy December 19, 2017

BASIS OF DESIGN REPORT FOR WASTEWATER

McDowell Mountain Marketplace - Lot 2

OWNER:

MULLIN360BUILD

16679 North 90th Street, Suite 102

Scottsdale, Arizona 85260

John L. McCauley Phone (602) 430-4603

CONTACT: RICK ENGINEERING COMPANY

6150 North 16th Street Phoenix, Arizona 85016 Joseph M. Cirone, P.E.

Phone: (602) 957-3350

Accepted For:

City of Scottsdale Water Resources Department 9379 E. San Salvador Scottsdale, Arizona

Expires: 6-30-2019

The proposed development is located at the southwest corner (SWC) of Bell Road and Thompson Peak Parkway within the McDowell Mountain Marketplace, City of Scottsdale, AZ. The development will consist of a gray shell, 5-tenant building, with appurtenant facilities. An existing 4-inch sewer service is stubbed to the site. The 4-inch sewer service connection will be removed and replaced with a new 6inch sewer service connection².

The ensuing wastewater demand and production criteria are indicative of tenant mixes for similar shell buildings within the McDowell Mountain Marketplace and are subject to change.

WASTEWATER DEMAND AND PRODUCTION CRITERIA

Tenant 1:	Retail (1,580-gsf)			
Tenant 2:	Retail (5,500-gsf)			
Tenant 3:	Retail (3,000-gsf)			
Tenant 4:	Retail (1,800-gsf)			
Tenant 5:	Retail (2,400-gsf)			
Property Area:	Lot 2 (65,296-sf) Gray Shell (14,280-gsf)			
Shell Building:	14,280-gsf			
Average Daily Flow (ADF):	0.5-gpd per sf Commercial/Retail ¹			
Peaking Factor (PF): 3 Commercial/Retail ¹				
Peak Flow:	PF x ADF			

¹ Source: City of Scottsdale Design Standards and Policies Manual. Chapter 7-Wastewater; Section 7-1, Figure 7.1-2

WATER DESIGN FLOWS

ADF (Commercial/Retail) = $(14, 280 \text{ sf}) \left(0.5 \frac{\text{gallons}}{\text{day} \cdot \text{sf}}\right) = 7,140 \text{ gpd} = 5.0 \text{ gpm}$

Peak Flow (Commercial/Retail) = 3(7, 140 gpd) = 21,420 gpd = 15.0 gpm

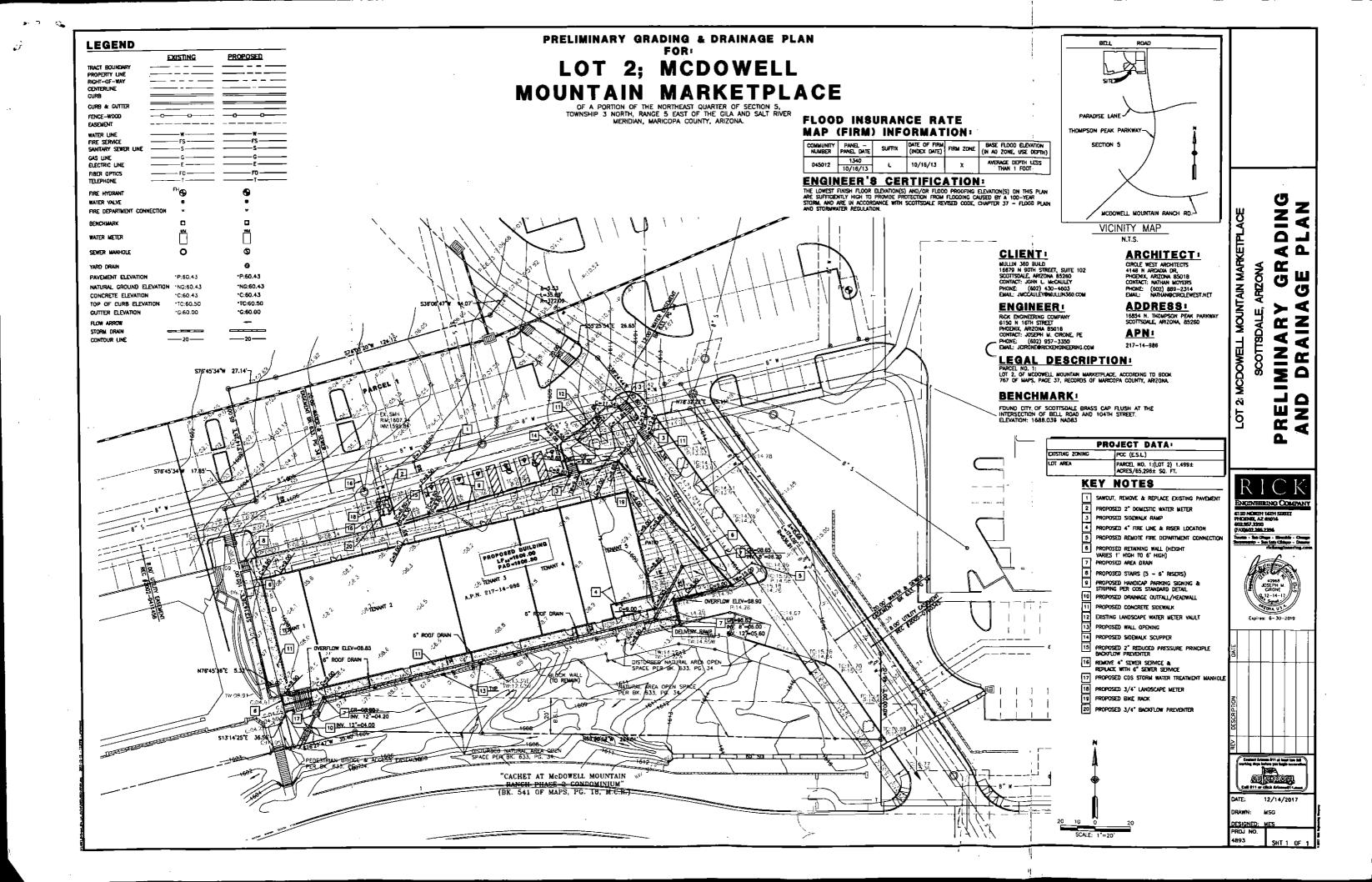
ATTACHMENTS

Attachment 1 – Preliminary Grading and Drainage Plan (with Water & Sewer)

43-DR-2017 12/20/17

6150 North 16th Street • Phoenix, Arizona 85016-1705 • (602) 957-3350 • FAX: (602) 285-2396 rickengineering.com

Source: City of Scottsdale Design Standards and Policies Manual. Chapter 7-Wastewater; Section 7-1.409



ATTACHMENT 1

Preliminary Grading and Drainage Plan (with Water & Sewer).

PHOENIX

MCDOWELL MOUNTAIN MARKETPLACE-LOT 2

SWC Bell Rd & Thompson Peak Parkway Scottsdale, AZ 85260

PR-RICK ENGINEERING

PRELIMINARY DRAINAGE REPORT

RICK ENGINEERING COMPANY JOB NO. 4893-0
DECEMBER 2017

COS PRE-APP #: 556-PA-2017

Plan #

Case # 43 - DR - 2017

Q-S #

Accepted
Corrections

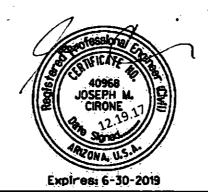
N. Carones 1 - 5 - 18

Reviewed By

Date

RICK ENGINEERING COMPANY

MCDOWELL MOUNTAIN MARKETPLACE-LOT 2


SWC Bell Rd & Thompson Peak Parkway Scottsdale, AZ 85260

PRELIMINARY DRAINAGE REPORT

Prepared For:

MULLIN360BUILD

Scottsdale, Arizona 85260 Phone (602) 430-4603

Joseph M. Cirone, P.E.

December 2017

Prepared By:

RICK ENGINEERING COMPANY

6150 North 16th Street Phoenix, Arizona 85016-1705 (602) 957-3350

JOB NUMBER 4893-0

1.0 TABLE OF CONTENTS

1.0 INTRODUCTION	
1.1 SITE LOCATION	1
1.2 SITE DESCRIPTION	
1.3 PURPOSE AND OBJECTIVES	
1.1. PREVIOUS STUDIES	2
2.0 DESCRIPTION OF EXISTING DRAINAGE CONDITIONS	
2.1. EXISTING ONSITE CONDITIONS	
2.2. OFFSITE CONDITIONS	
2.3. FEMA FLOOD HAZARD ZONE	
3.0 PROPOSED DRAINAGE PLAN	
3.1. GENERAL DESCRIPTION	5
3.2. STORMWATER STORAGE REQUIREMENTS	
3.3. PRE- AND POST-DEVELOPMENT RUNOFF CHARACTERISTICS	
3.4. PROPOSED DRAINAGE STRUCTURES	
3.4.1. CATCH BASINS	
3.4.2. STORM DRAIN	
3.4.3. STORMWATER TREATMENT	7
3.5. PROJECT PHASING	
4.0 SPECIAL CONDITIONS	
5.0 DATA ANALYSIS METHODS	
5.1. HYDROLOGIC PROCEDURES	
5.2. HYDRAULIC PROCEDURES	_
5.3. STORMWATER STORAGE CALCULATIONS	
6.0 CONCLUSIONS	
	_
Appendix A: Figures & Exhibits	
Appendix C: Hydraulic Calculation	
Appendix D: Reference Material	
Appendix E: Preliminary G&D Plan	F-1
Appendix G: Digital Data (CD)	

McDowell Mountain Marketplace-Lot 2 Preliminary Drainage Report

FIGURES & EXHIBITS

Figure 1: Vicinity Map	 1
Figure 2: Aerial Exhibit	 ·-2
Figure 3: FEMA FIRMette	
Figure 4: Offsite Watershed Exhibit	
Figure 5: Drainage Exhibit	 ۱-5
<u>TABLES</u>	
Table 1: Offsite Watershed Peak Flows	 3
Table 2: Flood Insurance Rate Map Information	 4
Table 3: Proposed Design Flows	 6
Table 4: Inlet Sizing	 7
Table 5: Storm Drain Summary	 7
Table 6: CDS Unit Design Summary	 8

1.0 INTRODUCTION

1.1 SITE LOCATION

The project site for McDowell Mountain Marketplace-Lot 2 is located within the northeast quarter of Section 5, Township 3 North, Range 5 East of the Gila and Salt River Meridian, Maricopa County, Arizona within the City of Scottsdale. More specifically, the project site is at the southwest corner of East Bell Road and North Thompson Peak Parkway. The site is bounded on the north by East Bell Road, on the east by North Thompson Peak Parkway, on the south by Cachet at McDowell Mountain Ranch Condominiums Phase 2, and to the west by North 100th Street. Refer to **Figure 1** – Vicinity Map, below, for the site location.

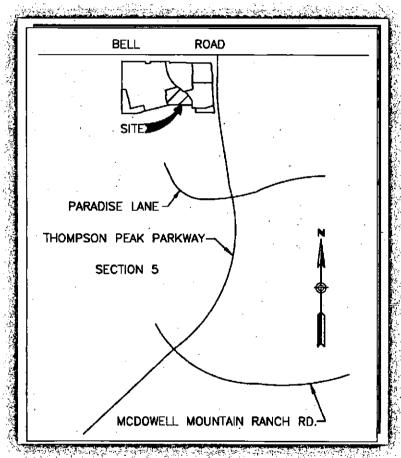


Figure 1: Vicinity Map

1.2 SITE DESCRIPTION

The project site has an area of approximately 1.499-acres and as depicted on the aerial photo (Figure 2 within Appendix A), is developed with three access entrances along Bell Road to the north, one access entrance on Thompson Peak Parkway to the east, and two access entrances along 100th street to the west. The existing zoning is (PCC ESL) Planned Community Center-Environmentally Sensitive Land and no zoning change is proposed. The project scope includes the construction of a 5-tenant gray shell building for retail use.

1.3 PURPOSE AND OBJECTIVES

The purpose and objectives of this Preliminary Drainage Report are to:

- 1. Present the existing drainage conditions for the project site and proposed conceptual drainage plan for the project site.
- 2. Provide supporting information required for the proposed grading and drainage concept, in accordance with the City of Scottsdale drainage requirements.
- 3. Determine onsite peak discharges.
- 4. Determine the required onsite drainage improvements to convey runoff through the project site.

1.1. PREVIOUS STUDIES

A Master Drainage Report for McDowell Mountain Ranch Parcels "A"-"R" was prepared by Clouse Engineering in November 1993 [here forth referred to as "The Master Drainage Report"].

A Final Drainage Report for the McDowell Mountain Marketplace commercial development, prepared by David Evans & Associates was approved in February 2001 [here forth referred to as "The 2001 Master Drainage Report"]. Excerpts from this report are provided within Appendix D.

A Final Drainage Report for Cachet at McDowell Mountain Ranch, Phase 2 was prepared by Rick Engineering Company in March 2000 [here forth referred to as "The Cachet Drainage Report"].

A Basis of Design Report entitled *Bell Road Improvements-District Number 13704* was prepared by Hubert Engineering in December 1993 [here forth referred to as "Bell Road Improvements BODR"].

Drainage analyses and findings from all above documents are utilized in this study as a foundation for the proposed drainage concepts.

2.0 DESCRIPTION OF EXISTING DRAINAGE CONDITIONS

2.1. EXISTING ONSITE CONDITIONS

The project parcel is located within an existing shopping center, McDowell Mountain Marketplace, which includes a grocery store, retail businesses, restaurants, and associated parking lot and landscape improvements. The site is comprised of approximately 14% desert landscaping and 86% hardscape and pavement. Under existing conditions, the runoff generated by the entire center is captured onsite via a series of inlet structures and conveyed to an existing wash located west of 100th Street ("Wash G") via a combination of storm drain, gutter, and overland surface flow.

2.2. OFFSITE CONDITIONS

Natural topography in the vicinity of the site generally slopes from northeast to southwest. Runoff generated along Bell Road drains toward the west and Thompson Peak Parkway drains to toward the south away from the project site.

Pursuant to the Master Drainage Report, runoff from the offsite watersheds to the north and east of Thompson Peak Parkway (OS-1, OS-2, & OS-3) is either routed around the project site or routed through the project site via five existing 30-inch culverts under Bell Road. The Master Drainage Report quantifies said runoff (OS-3) to be approximately 121-cubic feet per second (cfs); it is collected onsite by the existing storm drain system and conveyed to Wash G. Pursuant to the Cachet Drainage Report, 14.6-cfs of runoff generated by the condominium development to the south (OS-4) is conveyed to Wash G via an existing wash corridor along the project's south property line. A portion of the development located directly east and southeast of the project site (OS-6) also contributes runoff to the existing wash corridor located south of the project (OS-5) via an existing 30-inch storm drain. The discharge associated with off-site areas OS-5 and OS-6 is 18.8-cfs and is conveyed within the existing wash corridor located immediately south and adjacent to the pad development. The discharge value of 18.8-cfs was utilized to determine the high water elevation within the existing wash corridor and establish the tailwater condition for the onsite storm drain piping.

Refer to Figure 4 – Offsite Watershed Exhibit for a depiction of offsite watersheds and concentration points. A summary of offsite flows is provided in Table 1, below.

Table 1: Offsite Watershed Peak Flows

Watershed	100-Year Peak Discharge	Description	Source
CP	Q ₁₀₀		
(ID)	(cfs)		
OS-1	24.5	Bell Road	Bell Road Improvements BDR, 1993
OS-2	109	Thompson Peak Parkway	Master Drainage Report, 1993
OS-3	121	Watershed north of Bell Road	Final Drainage Report, 2001
OS-4	14.6	Watershed south of Project Site	Cachet Drainage Report, 2000
OS-5	1.9	Existing Wash Corridor south of Project Site	Rational Method – DDMSW – conducted by RICK 12/12/2017
OS-6	16.9	Commercial Developments east and southeast of project site	Final Drainage Report, 2001

2.3. FEMA FLOOD HAZARD ZONE

The proposed site lies within Flood Hazard Zone "X" shaded as indicated on map number 04013C1340L, dated October 16, 2013, of the FEMA Flood Insurance Rate Map (Fig. 3, Appendix A).

Table 2: Flood Insurance Rate Map Information

COMMUNITY	PANEL#	SUFFIX	DATE OF	FIRM	BASE FLOOD ELEVATION
NUMBER			FIRM	ZONE	(IN AO ZONE USE DEPTH)
4.045012	1340		10/16/13	ZONE X	AVERAGE DEPTHS LESS
V43012	1540	L	10/16/13	(SHADED)	THAN 1 FOOT

Zone "X" (shaded) areas are defined by Federal Emergency Management Agency (FEMA) as areas of 0.2% annual chance of flood; areas of 1% annual chance of flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

3.0 PROPOSED DRAINAGE PLAN

3.1. GENERAL DESCRIPTION

The project consists of the construction of a 5-tenant gray shell building for retail use with associated parking and landscape areas. The drainage design includes area drains to collect runoff from the landscape area and patio area located east of the proposed building and storm drain to ultimately convey said runoff to Wash G. The design also includes roof leader lines to collect runoff from the building rooftop; the rooftop and walkway stormwater at the rear of the building will drain to the existing drainage corridor located at the southern property line, ultimately discharging to Wash G. The frontage of the building is graded to drain towards the shopping center, consistent with the approved 2001 Master Drainage Report, and is to be collected by existing catch basin inlets and conveyed via the existing storm drain system to Wash G. Refer to Appendix E for the Preliminary Grading & Drainage Plan.

The majority of the shopping center and the adjacent roadways and parcels on all sides are fully developed. Development of Lot 2 was anticipated and incorporated in the overall drainage design for the shopping center per the 2001 Master Drainage Report, thus the existing drainage system has the capacity for the development of Lot 2.

3.2. STORMWATER STORAGE REQUIREMENTS

Pursuant to the 2001 Master Drainage Report, a retention waiver was approved for the McDowell Mountain Marketplace shopping center on the basis that post-development runoff rates from the site did not exceed pre-development runoff rates historically entering Wash G, located west of 100th Street. Pre-development and post-development 100-year peak discharges were quantified within the 2001 Master Drainage Report, provided as reference within Appendix D. In summary, the 2001 post-development improvements including parking lot catch basins and a storm drain system decreased the 100-year discharge to Wash G by approximately 19-cfs via routing 109-cfs of offsite flow to Thompson Peak Parkway and ultimately south away from the project site.

3.3. PRE- AND POST-DEVELOPMENT RUNOFF CHARACTERISTICS

In the pre-development condition, all flows generated by the property were conveyed to existing onsite catch basins located north of the site via surface sheet flow over the parking lot.

In the post-development condition, the parking area at the frontage and northeast of the proposed building will continue to drain north to existing onsite catch basins and ultimately conveyed to Wash G via an the existing storm drain network. Runoff generated from the building rooftop, the walkway at the rear of the building, and the patio to the east of the building will be conveyed via storm drain and roof leader lines to the existing wash corridor located south of the project site.

Onsite peak discharges are calculated to support the preliminary design of proposed onsite drainage structures. Refer to **Appendix B** for hydrologic analysis for the peak discharges. The following table summarizes the proposed design flows used for the preliminary design of onsite drainage structures.

Table 4: Inlet Sizing

CONCENTRATION	INLET TYPE	PEAK	FLOW	FLOW
POINT		DISCHARGE	DEPTH	TYPE
		(Q ₁₀₀)	(d)	
(CP)		(cfs)	(ft)	
AD-1	Nyloplast 12" Standard Grate Inlet	0.3	0.16	WEIR
AD-2	Nyloplast 12" Standard Grate Inlet	0.9	0.33	WEIR
AD-3	Nyloplast 12" Standard Grate Inlet	0.3	0.16	WEIR

The calculated ponding depth does not exceed the maximum 1-ft established by City of Scottsdale DPSM, 2010.

3.4.2. STORM DRAIN

The installation of 8-inch storm drain and 12-inch storm drain is proposed to convey the 100-year storm event from the proposed building rooftop, rear walkway area, and patio area to the existing wash corridor located south of the project site. The tailwater elevation input in the model was 1604.51-ft, as calculated by an open channel analysis of the existing wash corridor (Appendix C). This analysis accounts for the peak discharges contributed by the development to the east and southeast of the project. Figure 5 depicts the locations of all storm drain.

Table 5: Storm Drain Summary

PIPE	DIAMETER	SLOPE	100- YEAR FLOW	FLOW CAPACITY	UPSTREAM RIM/GROUND ELEVATION	HYDRAULIC GRADE LINE	RIM _{ELEV} - HGL _{ELEV}
(ID)	(D)	(S)	(Q ₁₀₀)	(Q _{cap})	(RIM _{ELEV})	(HGL)	ΔELEV
	(in)	(ft/ft)	(cfs)	(cfs)	(ft)	(ft)	(ft)
CO-1	8.0	0.006	0.30	1.02	8.65	7.44	1.21
CO-2	12.0	0.007	1.20	3.33	8.80	7.40	1.40
CO-3%	12.0	0.007	2.00	3.30	8.60	-7.35	1.25
CO-4	12.0	0.007	2.60	3.31	8.30	7.18	1.12
ੈCO-5∄	12.0	0.007	3.80	3.31	8.40	6.89	1.51
CO-6	12.0	0.011	4.10	4.04	8.80	6.27	2.53
; CO-7	12.0	0.010	4.10	3.89	6.97	4.97	2.00

The hydraulic grade line (HGL) falls, at minimum, 1-ft below all catch basins and manholes.

3.4.3. STORMWATER TREATMENT

One (1) CDS unit is proposed at the outfall of the proposed storm drain for the treatment of stormwater before it is discharged to the existing wash corridor south of the site. The design assumes 80% removal efficiency down to a 125 micron particle size and 100% trash and debris capture for particle sizes greater than 2,400 microns. The CDS unit design has utilized Maricopa County's requirement of the 0.5-inch first flush depth with a minimum time of concentration of 15-minutes to calculate the treatment flow for sizing CDS-1. The 100-year flow will be bypassed internally in the system as well.

Preliminary Drainage Report

Hydraulic design calculations for the unit (CDS-1) were conducted by Rick Engineering Company (Appendix C). Refer to Figure 5 within Appendix A for the Drainage Exhibit which shows the CDS unit location and the contributing treatment areas (1P-1 through 1P-6). Table 6 provides a summary of the stormwater treatment hydraulic design.

Table 6: CDS Unit Design Summary

TREATMENT AREA ID	BMP TYPE	TREATMENT AREA	TREATMENT FLOW	100-YR PEAK FLOW
DA		A _t	Qr (cfs)	Q ₁₀₀
1P1 1P-2 1P-3 1P-4 1P-5	CDS-1 (CDS2020);	23,182	1.1	4.1

3.5. PROJECT PHASING

The project is proposed to be constructed as one phase. All proposed drainage infrastructure will be constructed as one phase.

4.0 SPECIAL CONDITIONS

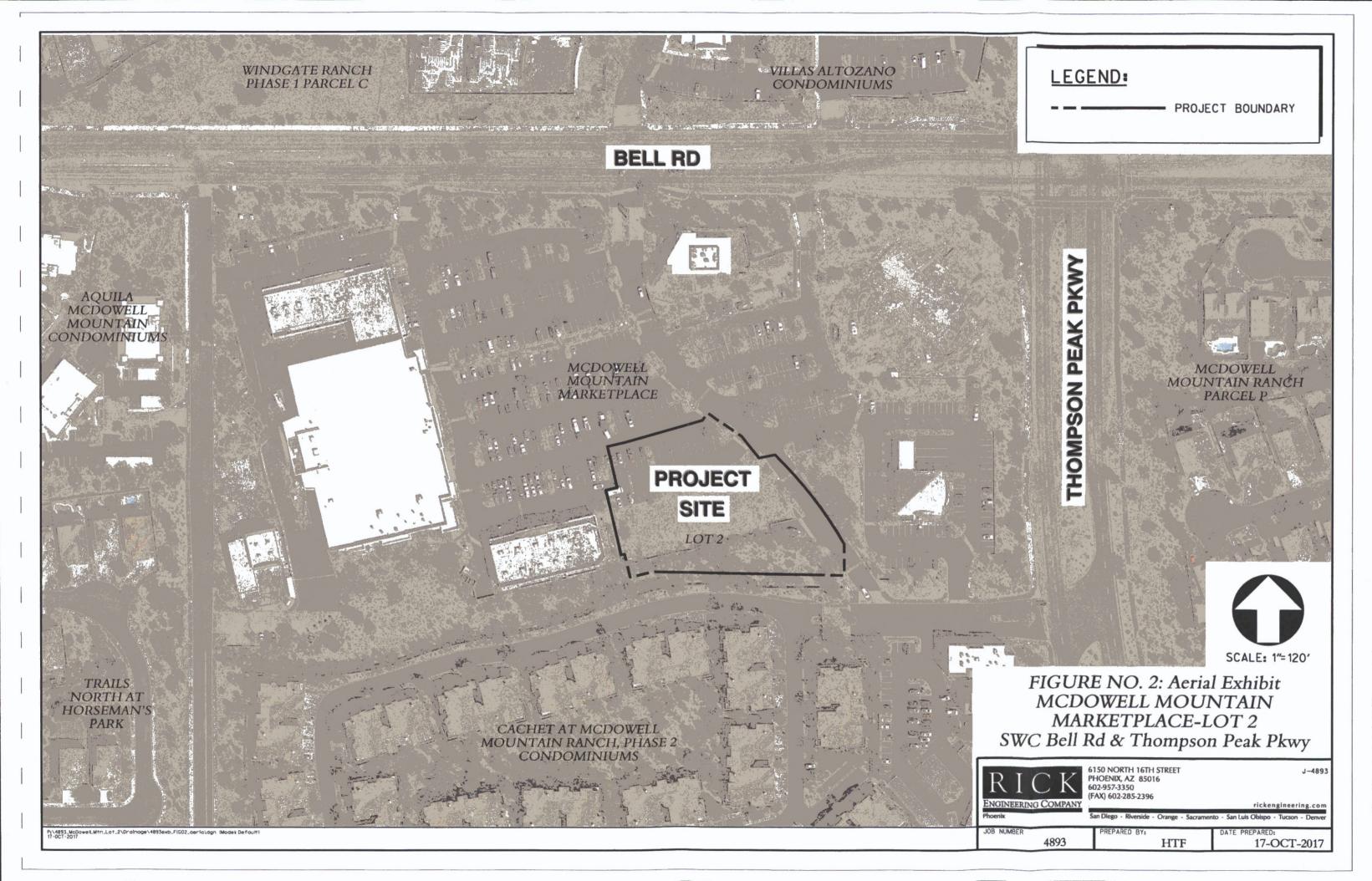
There are no special conditions anticipated for this project.

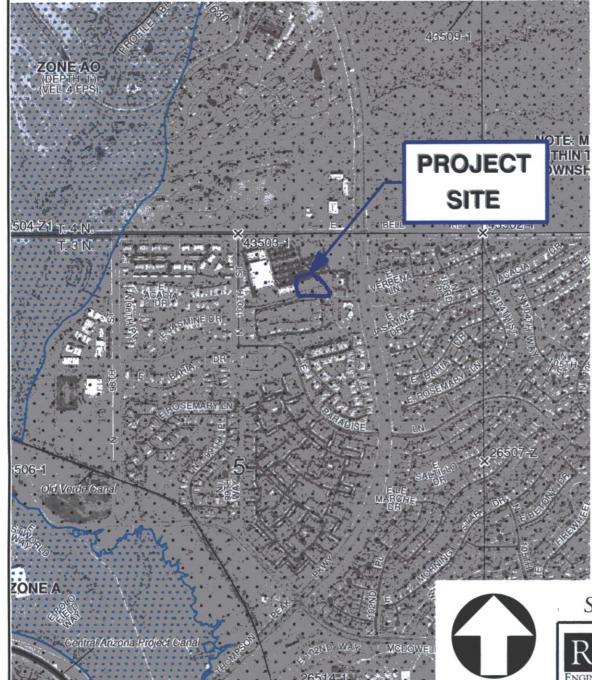
5.0 DATA ANALYSIS METHODS

5.1. HYDROLOGIC PROCEDURES

The drainage scheme for this project was determined in accordance with the existing topographic and drainage features. The hydrologic analyses were done using the following methodologies and procedures:

- 1. Proposed drainage improvements were designed consistent with *The City of Scottsdale Design Standards and Policies Manual* (January 2010) and the *Drainage Design Manual for Maricopa County*, Volumes I and II (DDM Vol. I and Vol. II).
- 2. Offsite and onsite 100-year peak discharges were adopted from the 2001 Master Drainage Report. (Appendix F) or determined using the Rational Method through the Drainage Design Management System (DDMSW) software, version 5.3.0, available from the Flood Control District of Maricopa County. In accordance with *The City of Scottsdale Design Standards and Policies Manual* (COS DSPM, January 2010) the Rational Method was utilized because all watersheds are less than 160 acres. Default runoff coefficients from the COS DSPM were utilized based on land use and cover type.


TATION OF PURPLE


- ా ప్రధాని ప్రాయాలు ప్రభాణికి పోస్తున్నారి. ఈ స్పులుకులు ప్రాయకులు ప్రధానికి సినిమాలు చేసేక ఇంటే కుండు స్వాతించ ముక్కులు కార్యాల్లో ప్రభాణ కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కార్యాలు కా
- Bosti, Control Particle of Bear and a control section (Marina) of Account Edward (Account) പ്രവാധ ഒരു Value of Art at Marchas Agreemy 75, 3%).
- Forms Enchaptions of the Charles Bushings Patient and Sum 20th the Markinger of 100g.
 - COUNTY FOR THE CONTRACT OF A CONTRACT OF STANDARD TO STANDARD AND A STANDARD TO STANDARD T
- ത്രിന്റ് **പ്രത്യാൻ നിൽക്ക് അതുക്ക്**. ജ്യാനുക്ക് ഈ പ്രത്യാന് വരുന്ന വരുന്ന വരുന്ന വരുന്ന വരുന്ന വരുന്ന വരുന്ന വരു വരുന്നത്തില് പ്രത്യോഗം
- ് വിവാന **യൂർത്ത് നേടത്തുന്നുന്നു മടാക് 856 ടൻ സ**്വേഹ വ്യാവം 30 വര്ടെ ഉണ്ടാന്ത്യർ ത്ര ന്ന്നാന് വെയിലാത്ത്യ വിവ സ്വാനം വാധി
 - while the mandale plant per place at the larger most file in the place and there are filed at the same and th
- के साथ के लिए हैं है जिस्सी हैं है जिस्सी के कर सम्बद्ध कर कि विद्यानिक के मिल्लामा कि के मिल्लामा के कि समाज क

.

Appendix A: Figures & Exhibits

- 1) FIGURE 2 Aerial Exhibit
- 2) FIGURE 3 FEMA Firmette
- 3) FIGURE 4 Offsite Watershed Map
- 4) FIGURE 5 Drainage Exhibit

MEID

PANEL 1340L

FIRM

FLOOD INSURANCE RATE MAP MARICOPA COUNTY, ARIZONA

AND INCORPORATED AREAS

PANEL 1340 OF 4425

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

SCOTTSDALE, CITY OF

Notice to User: The **Map Number** shown below should be used when placing map orders; the **Community Number** shown above should be used on insurance applications for the subject

MAP NUMBER 04013C1340L

MAP REVISED **OCTOBER 16, 2013**

Federal Emergency Management Agency

FIGURE NO. 3: FEMA Firmette MCDOWELL MOUNTAIN MARKETPLACE-LOT 2 SWC Bell Rd & Thompson Peak Pkwy

6150 NORTH 16TH STREET PHOENIX, AZ 85016 602-957-3350

J-4893

rickengineering.com

JOB NUMBER

SCALE: 1"= 1000"

PREPARED BY:

17-OCT-2017

Pi\4893_McDowelLMtn_Lot_2\Droinage\4893exb_FIG03_fema.dgn (Modet Default) 17-0CT-2017

4893

HTF

Appendix B: Hydrologic Calculation

1) Rational Method Calculations using DDMSW Software, 12/13/2017

Project

Reference

4893

Title Location

Agency

McDowell Mountain Marketplace-Lot 2 City of Scottsdale, AZ Flood Control District of Maricopa County

Project Defaults

Model

Land Use Agency Rainfall

Roads Agency Inlets Agency

Rational FCDMC NOAA14 MCDOT MCDOT

Comments

Flood Control District of Maricopa County Drainage Design Management System RAINFALL DATA

Proje	ct Ref	erence	: 4893

Page 1	Page 1										
ID	Method	Duration	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr			
DEFAULT	NOAA14	5 MIN	0.268	0.362	0.433	0.528	0.600	0.674			
	NOAA14	10 MIN	0.408	0.551	0.659	0.803	0.914	1.027			
	NOAA14	15 MIN	0.506	0.683	0.817	0.996	1.133	1.273			
	NOAA14	30 MIN	0.681	0.920	1.100	1.341	1.526	1.714			
	NOAA14	1 HOUR	0.843	1.138	1.362	1.660	1.888	2.121			
	NOAA14	2 HOUR	0.977	1.297	1.542	1.876	2.126	2.386			
	NOAA14	3 HOUR	1.056	1.378	1.633	1.990	2.273	2.565			
	NOAA14	6 HOUR	1.249	1.592	1.865	2.238	2.528	2.829			
	NOAA14	12 HOUR	1.435	1.811	2.106	2.504	2.810	3.126			
	NOAA14	24 HOUR	1.711	2.217	2.621	3.185	3.634	4.105			

MAP INDEX NO: 64 CELL NO: 863-854

Flood Control District of Maricopa County Drainage Design Management System LAND USE Project Reference: 4893

Page 1

12/18/2017

Sub Land Use Code Basin		Area (acres)	Area (%)	Kb			Runoff Co	efficient C			Description
Duom		(40.00)	(70)		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	
Major E	Basin ID: 01										
1P-1	200	0.04	100.0	0.049	0.76*	0.76*	0.76*	0.84*	0.91*	0.95*	
		0.040	100.0								
1P-2	200	0.12	100.0	0.046	0.72*	0.72*	0.72*	0.79*	0.87*	0.90*	
		0.120	100.0								
1P-3	200	0.10	100.0	0.046	0.76*	0.76*	0.76*	0.84*	0.91*	0.95*	
			400.0								
1P-4	200	0.100 0.07	100.0 100.0	0.047	0.76*	0.76*	0.76*	0.84*	0.91*	0.95*	
1P-5	200	0.070	100.0	0.045	0.76*	0.76*	0.76*	0.94*	0.04*	0.05*	
11-5	200	0.16	100.0	0.045	0.76*	0.76*	0.76*	0.84*	0.91*	0.95*	
		0.160	100.0								
1P-6	200	0.04	100.0	0.049	0.76*	0.76*	0.76*	0.84*	0.91*	0.95*	
		0.040	100.0								
OS-5	730	0.45	100.0	0.042	0.40*	0.40*	0.40*	0.44*	0.48*	0.50*	
		0.450	100.0								

Flood Control District of Maricopa County Drainage Design Management System SUB BASINS Project Reference: 4893

Page 1

12/18/2017

ID			Si	ub Basin Data					Sub Basin Hydrology Summary						
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year		
Major E	Basin ID: 0	1													
1P-1		54	9.00	8.70	29.3	0.049	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.1 0.76 0.03 0.0009 5 3.22	0.1 0.76 0.03 0.0009 5 4.34	0.2 0.76 0.03 0.0018 5 5.20	0.2 0.84 0.03 0.0018 5 6.34	0.3 0.91 0.04 0.0028 5 7.20	0.3 0.95 0.04 0.0028 5 8.09		
1P-2	0.1	174	15.70	8.90	206.3	0.046	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.3 0.72 0.09 0.0028 5 3.22	0.4 0.72 0.09 0.0037 5 4.34	0.5 0.72 0.09 0.0046 5 5.20	0.6 0.79 0.09 0.0055 5 6.34	0.7 0.87 0.10 0.0064 5 7.20	0.9 0.90 0.11 0.0083 5 8.09		
1P-3	0.1	67	21.90	21.00	70.9	0.046	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.3 0.76 0.08 0.0028 5 3.22	0.3 0.76 0.08 0.0028 5 4.34	0.4 0.76 0.08 0.0037 5 5.20	0.5 0.84 0.08 0.0046 5 6.34	0.6 0.91 0.09 0.0055 5 7.20	0.8 0.95 0.10 0.0074 5 8.09		
1P-4	0.1	67	21.90	21.00	70.9	0.047	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.2 0.76 0.05 0.0018 5 3.22	0.2 0.76 0.05 0.0018 5 4.34	0.3 0.76 0.05 0.0028 5 5.20	0.4 0.84 0.06 0.0037 5 6.34	0.4 0.91 0.06 0.0037 5 7.20	0.6 0.95 0.07 0.0055 5 8.09		
1P-5	0.2	67	21.90	21.00	70.9	0.045	Q (cfs) C	0.4 0.76	0.5 0.76	0.6 0.76	0.8 0.84	1.1 0.91	1.2 0.95		

Flood Control District of Maricopa County Drainage Design Management System SUB BASINS Project Reference: 4893

Page 2

12/18/2017

ID			S	ub Basin Data					S	ary	ary		
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major B	asin ID: 0)1											
							CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.12 0.0037 5 3.22	0.12 0.0046 5 4.34	0.12 0.0055 5 5.20	0.13 0.0074 5 6.34	0.15 0.0101 5 7.20	0.15 0.0110 5 8.09
1P-6	-	99	9.00	8.90	5.3	0.049	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.1 0.76 0.03 0.0014 8 2.76	0.1 0.76 0.03 0.0013 7 3.94	0.1 0.76 0.03 0.0012 6 4.84	0.2 0.84 0.03 0.0021 6 6.10	0.3 0.91 0.04 0.0030 5 7.04	0.3 0.95 0.04 0.0029 5 8.00
OS-5	0.5	307	16.20	3.50	218.4	0.042	Q (cfs) C CA (ac) Volume (ac-ft) Tc (min) i (in/hr)	0.6 0.40 0.18 0.0055 5 3.22	0.8 0.40 0.18 0.0074 5 4.34	0.9 0.40 0.18 0.0083 5 5.20	1.3 0.44 0.20 0.0120 5 6.34	1.6 0.48 0.22 0.0147 5 7.20	1.9 0.50 0.23 0.0175 5 8.09

Appendix C: Hydraulic Calculation

- 1) FlowMaster Open Channel Cross Section Calculations, 12/13/2017
- 2) Grate Inlet Calculations, 12/13/2017
- 3) StormCAD Pipe Calculations, 12/13/2017
- 4) Contech CDS Unit Brochure
- 5) CDS Unit Hydraulic Design Calculations, 12/13/2017

Works	heet for Cross So	ection	A-Existing	Wash
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	•	0.04000	ft/ft	
Discharge		18.80	ft³/s	•
Section Definitions				÷
Station (ft)	Elevat	ion (ft)		
	0+00		1607:50	
	0+07 /		1607.00	
	0+12		1606.00	
	0+15		1605.00	•
-	0+18		1604.00	
	0+22		1603.50	
	0+27		1604.00	•
	0+31		1605.00	
	0+49		1605.50	
Roughness Segment Definitions	•			
Start Statton	Ending	Station		Roughness Coefficient
(0+00, 1	607.50)	(0+49,	1605.50)	0.035
Options				
Current Roughness Weighted Method	Pavlovskii's Method	3 - St. 1 - 1 - 1 - 2 - 1		
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth		0.69	ft	
Elevation Range	1603.50 to 1607.50 ft			
Flow Area		4.12	ft²	•
Wetted Perimeter		10.48	ft	

Worksheet for Cross Section A-Existing Wash Results: Hydraulic Radius 0.39 Top Width 10.37 ft Normal Depth 0.69 Critical Depth Critical Slope 0.02363 ft/ft Velocity 4.56 ft/s Velocity Head 0.32 ft Specific Energy 1.01 Froude Number 1.27 Flow Type Supercritical GVF Input Data 0.00 Downstream Depth Length 0.00 ft **Number Of Steps** 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 Downstream Velocity Infinity **Upstream Velocity** Infinity ft/s **Normal Depth** 0.69 Critical Depth 0.77 Channel Slope 0.04000 Critical Slope 0.02363 ft/ft

Cross Section for Cross Section A

Project Description

Friction Method

Manning Formula

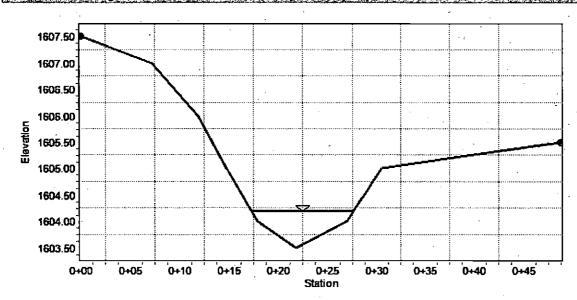
Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft


Normal Depth

0.69 ft

Discharge

18.80 ft³/s

Cross Section Image

Worksheet for Cross Section B-Existing Wash

Project Description

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft

Discharge

18.80 ft³/s

Section Definitions

levation (ft)		Station (ft)
10.50	0+00	
10.00	0+04	
9.00	0+07	
8.00	0+09	
7.00	0+10	
6.80 7.00	0+12 0+13	
8.00	0+18	•
9.00	0+22	
9.30	0+27	•.

Roughness Segment Definitions

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ending Station Roughness Co	CHI COLD SELL TO SEL
Confictions and American Children Children	-28-12-1
The state of the s	JeinGeut-

(0+00, 10.50)

(0+27, 9.30)

0:035

Options 🐇

Current Roughness Weighted

Pavlovskii's Method

Method

Open Channel Weighting Method

Pavlovskii's Method

Closed Channel Weighting Method

Pavlovskii's Method

Results

Normal Depth

0.86 ft

Elevation Range

6.80 to 10.50 ft

Flow Area

3.59 ft²

Worksheet for Cross Section B-Existing Wash Wetted Perimeter 7.42 Hydraulic Radius 0.48 ft Top Width Normal Depth 0.86 Critical Depth 0:97 Critical Slope 0.02309 ft/ft Velocity 5.23 ft/s Velocity Head 0.43 Specific Energy 1.28 Froude Number 1.29 Flow Type Supercritical GVF Input Data Downstream Depth 0.00 0.00 Length: 0 **Number Of Steps** GVF Output Data 0.00 Upstream Depth Profile Description Profile Headloss 0.00Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.86 Critical Depth 0.97 Channel Slope 0.04000 Critical Slope 0.02309 ft/ft

Cross Section for Cross Section B

Project Description

Friction Method

Manning Formula

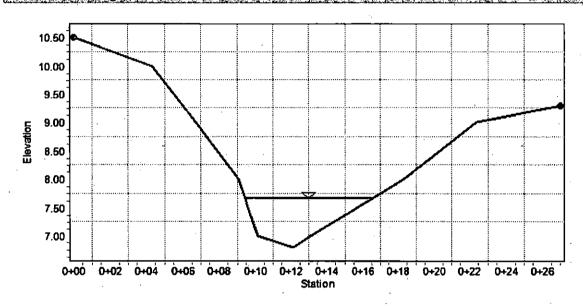
Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft


Normal Depth

0.86 ft

Discharge

18.80 ft³/s

Cross Section Image

Worksheet for Cross Section C-Existing Wash

Project Description

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Channel Stope

0.04000 ft/ft

Discharge

16.90 ft³/s

Section Definitions

Station (ft)	Elevation (ft)
0+00	12.50
0+04	12.00
0+06	11.00
0+07	10.00
. 0+09	9.00
0+09	8.90
0+10	9.00
0+11	10.00
0+14	11.00
0+16	12.00
0+24	12.50

Roughness Segment Definitions

	The second secon	TATE OF THE SEA
/Start Station Ending Station	THE RELEASE OF THE PARTY OF THE	
Forting Station	Raughness C	nefficient
	The state of the s	

(0+00, 12.50)

(0+24, 12.50)

0.035

Options ***

Current Koughness Weighted Method

Pavlovskii's Method

Open Channel Weighting Method

Pavlovskii's Method

Closed Channel Weighting Method

Pavlovskii's Method

Results 📜

Normal Depth

1.17 ft

Elevation Range

8.90 to 12.50 ft

Worksheet for Cross Section C-Existing Wash Flow Area 2.87 Wetted Perimeter ft 4.97 Hydraulic Radius Top Width Normal Depth 1.17 Critical Depth 1.31 Critical Slope 0.02397 ft/ft Velocity 5.89 Velocity Head 0.54 ft Specific Energy 1.71 Froude Number 1.27 Flow Type Supercritical GVF Input Data 0.00 Downstream Depth 0.00 Length Number Of Steps **GVF Output Data** Upstream Depth 0.00 Profile Description Profile Headloss 0.00 Downstream Velocity Infinity Upstream Velocity ft/s Infinity Normal Depth 1.17 Critical Depth 1.31 Channel Slope 0.04000 ft/ft Critical Slope 0.02397 ft/ft

Cross Section for Cross Section C

Project Description

Friction Method

Manning Formula

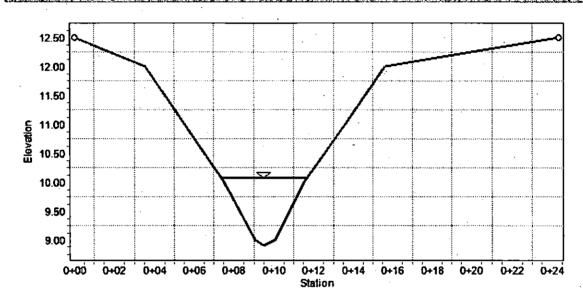
Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft


Normal Depth

1.17 ft

Discharge

16.90 ft³/s

Cross Section Image

Worksheet for Cross Section A_Prop_No Project_TW Condition

Project Description ::

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft

Discharge

18.80 ft³/s

Section Definitions

Sı	ation (ft) Ele	vation (ft)
·	0+00	7.50
	0+07	7.00
	0+11	6.00
	0+14	5.00
-	0+18	. 4.00
	0+20	3.90
2	0+22	4.00
	0+25	5.00
	0+30	5.70
	0+34	5.00
	0+36	4.00
	0+39	4.00
	0+43	5.00
	0+54	5.30

Roughness Segment Definitions

·		
ESTABLE TO SELECT STATE OF THE PROPERTY OF THE		A CONTRACTOR OF THE PROPERTY O
· · · · · · · · · · · · · · · · · · ·	在1994年中的一种1994年中,1994年	是一个,这位"全国",在几天大学生的主体,在这个大学的主义,从是自己的一个,在一个大学的主义,并不管理
一种的是一种的现在分词是一种的一种的。		是我们是这个大学,我们是不是我们的是一个不是一个一个人的,我们就是我们的一个一个一个
The first of the second of the	Ending Station	
。	THE STATE OF STREET, WINDOWS THE PROPERTY OF THE STATE OF THE PROPERTY OF THE	
The second secon	Ending Station	Case and Davidson Case and the Case of the
ு சாது அரசு இருக்கு இரு பெரு Station அத்த இரு இ	The Mark the second chair chair Station of the second seco	Roughness Coefficient
32 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37		

(0+00, 7.50)

(0+54, 5.30)

0.035

Options >

Current Koughness Weighted Method

Pavlovskii's Method

Open Channel Weighting Method

Pavlovskii's Method

Closed Channel Weighting Method

Pavlovskii's Method

Worksheet for Cross Section A_Prop_No Project_TW Condition Results Normal Depth 0.51 ft Elevation Range 3.90 to 7.50 ft Flow Area 4.53 Wetted Perimeter 13.22 'ft Hydraulic Radius 0.34 ft Top Width 12.94 ft Normal Depth 0.51 Critical Depth 0.57 Critical Slope 0.02521 ft/ft Velocity 4.15 ft/s Velocity Head 0.27 Specific Energy 0.78 ft Froude Number 1.24 Flow Type Supercritical GVF Input Data 0.00, ft Downstream Depth 0.00 ft Length 0 **Number Of Steps** GVF, Output Data 0.00 Upstream Depth Profile Description Profile Headloss 0.00 Downstream Velocity Infinity Upstream Velocity Infinity ft/s Normal Depth 0.51 ft Critical Depth 0.57

0.04000

0.02521

ft/ft

Channel Slope

Critical Slope

Cross Section for XS A_Prop_No Project_TW Condition

Project Description

Friction Method

Manning Formula

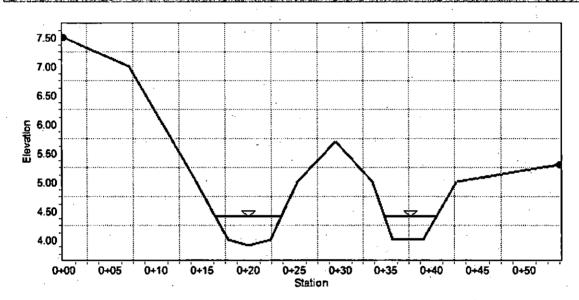
Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft


Normal Depth

0.51 ft

Discharge

18.80 ft³/s

Cross Section Image

Worksheet for Cross Section A_Prop_With Project

Project Description

Friction Method

Manning Formula

Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft

Discharge

22.90 ft³/s

Section Definitions

Sta	ation (ft)	vation (ft)
	0+00	7.50
	0+07	7.00
	0+11	6.00
	0+14	5.00
	0+18.	4.00
	0+20	3.90
	0+22	. 4.00
	0+25	. 5.00
	0+30	5.70
	· 0+34	5.00
	0+36	4.00
	0+39	4.00
	0+43	5.00
	0+54	- 5.30

Roughness Segment Definitions

(0+00, 7.50)

(0+54, 5:30)

0.035

Options 🕾

Current Roughness Weighted Method

Pavlovskii's Method

Open Channel Weighting Method

Pavlovskii's Method

Closed Channel Weighting Method

Pavlovskii's Method

Works	sheet for Cross S	ection A_	Prop_\	Vith Proje	ct	• .
Results						
Normal Depth		0.56	ft			
Elevation Range	3.90 to 7.50 ft			•		
Flow Area	•	5.19	ft²			
Wetted Perimeter		13.87	ft			•
Hydraulic Radius	. '	0.37	ft ,			
Top Width		13.56	ft			
Normal Depth		0.56	ft		•	
Critical Depth		0.63	ft			
Critical Slope		0.02446	ft/ft	•		
Velocity		4.41	ft/s			
Velocity Head		0.30	ft			
Specific Energy	• • • •	0.86	ft			
Froude Number	•	1.26				
Flow Type	Supercritical					
GVF-Input Data						
Downstream Depth	-	0.00	ft	*	-	
Length		0.00	, ft			
Number Of Steps	:	0				;
GVF Output Data				A S		
Upstream Depth		0.00	ft			•
Profile Description						•
Profile Headloss	•	0.00	ft			
Downstream Velocity	•	Infinity	ft/s			
Upstream Velocity		Infinity	fl/s			
Normal Depth		0.56	ft			
Critical Depth	•	0.63	ft			
Channel Slope		0.04000	ft/ft			
Critical Slope		0.02446	ft/ft			

Cross Section for Cross Section A_Prop_With Project

Project Description

Friction Method

Manning Formula

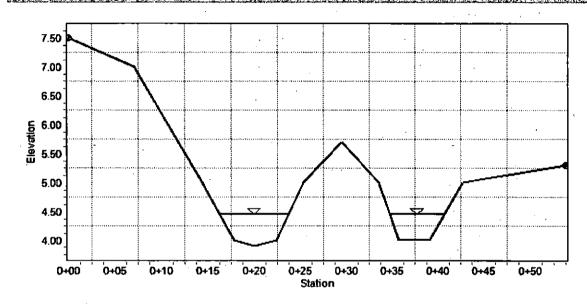
Solve For

Normal Depth

Input Data

Channel Slope

0.04000 ft/ft


Normal Depth

0.56 ft

Discharge

22.90 ft³/s

Cross Section Image

GRATE INLET SIZING CALCULATIONS

City of Scottsdale, Drainage Policies and Standards Manual, 2010. "The maximum depth of ponded water within any parking lot location shall be 1 foot." Section 6.10.7, Page 6-44. All calculations assume weir flow.

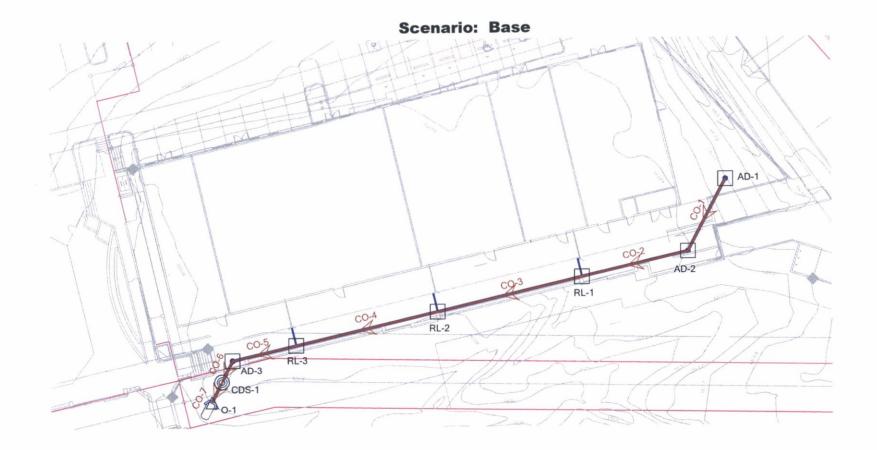
Inlet operating as weir:

$$Q_i = C_W \left(\frac{P}{2}\right) d^{1.5}$$

Where:

Q_i = Flow capacity of the inlet (cfs)

C_w = Weir Coefficient (3.0)


P = Perimeter of the grate disregarding side against

d = Depth of water of grate (ft)

 $C_r = Clogging Factor (2)$

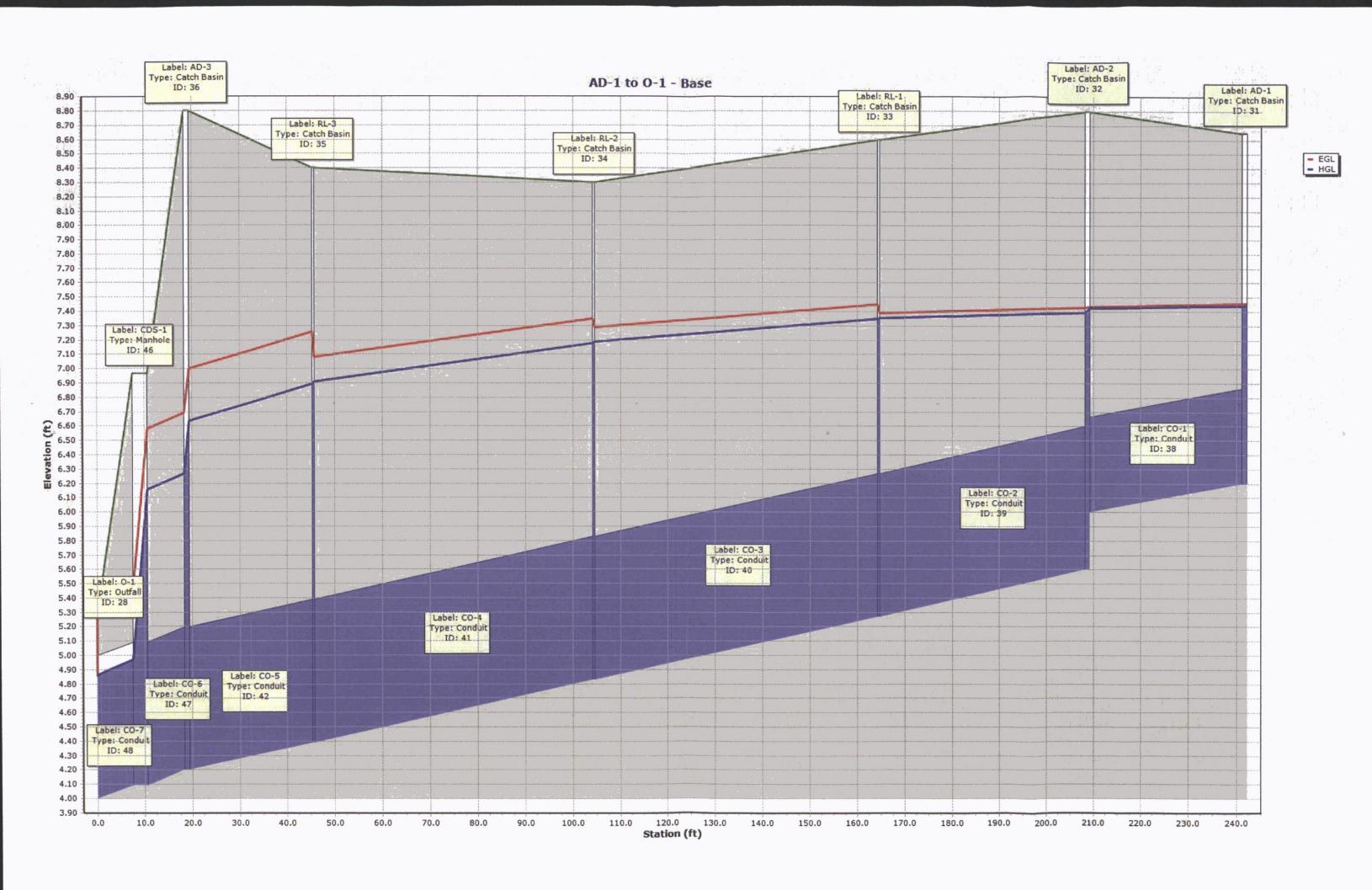
Inlet ID	Description	Proposed Inlet	Design Discharge	Clogging Factor	Weir Coefficient	Perimeter of Proposed inlet	Depth_
			Qi ,	Cf	Cw	. P	d
(ID)	-	(Type)	(cfs)			(ft)	(ft)
AD-1	1P-1 Area Drain	Nyloplast 12" Standard Grate Inlet	0.3	2	3.0	3.14	0.16
AD-2	1P-2 Area Drain	Nyloplast 12" Standard Grate Inlet	0.9	2	3.0	3.14	0.33
AD-3	1P-6 Area Drain	Nyloplast 12" Standard Grate Inlet	0.3	2	3.0	3.14	0.16
				,			

None of the calculated ponding depths exceed the maximum 1-ft established by City of Scottsdale DPSM, 2010.

FlexTable: Catch Basin Table

Label	Elevation (Ground) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Elevation (Invert) (ft)	Inlet Type	Capture Efficiency (Calculated) (%)	Inlet Location	Headloss Method	HEC-22 Benching Method	Flow (Local In) (cfs)	Flow (Total Out) (cfs)
AD-1	8.65	7.44	7.44	6.20	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	0.30	0.30
AD-2	8.80	7.43	7.40	5.60	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	0.90	1.20
RL-1	8.60	7.35	7.35	5.27	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	0.80	2.00
RL-2	8.30	7.19	7.18	4.83	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	0.60	2.60
RL-3	8.40	6.91	6.89	4.40	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	1.20	3.80
AD-3	8.80	6.64	6.27	4.20	Full Capture	100.0	In Sag	HEC-22 Energy (Second Edition)	Depressed	0.30	4.10

FlexTable: Manhole Table

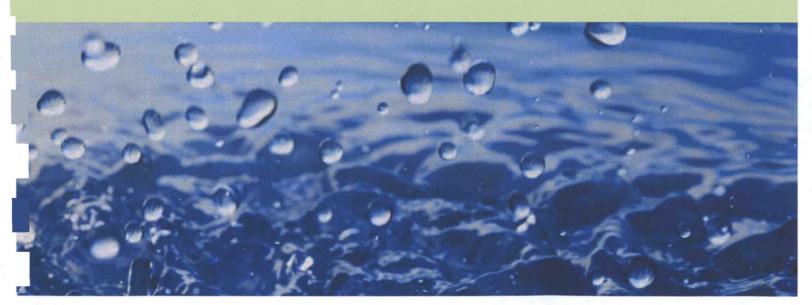

ID Label	Elevation (Rim)	Elevation (Invert in 1) (ft)	Flow (Total: Out) (cfs)	Depth (Out) (ft)	Headloss Method	E Headloss (ft)	Hydraulic Grade ុ Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
46 CDS-1	6.97	4.09	4.10	0.88	Absolute	1.19	6.16	4.97

FlexTable: Conduit Table

Labe	Start	Stop	Elevation	Elevation	Invert	Invert	Cover	Cover	Hydrautic	Hydraulic	Slope	Flow	Capacity (Full	Diameter	Manning's n	Length	Velocity	Flow Depth	Depth	Area (Flow)
	Node	Node	Ground	Ground	(Start)	(Stop)	(Start)	(Stop)	Grade Line	Grade Line	(Calculated)	(cfs)	Flow)	(in)		(Scaled)	(ft/s)	(Out)	(Critical)	(ft²)
;			(Start)	(Stop)	(ft)	(ft)	(ft)	(ft)	(In)	(Out)	(ft/ft)		(cfs)			(ft)		(ft)	(ft)	
i	250		(ft)	(ft)		i kananan			(ft)	(ft)		14 · A. 1 ·		40.00						
CO-1	AD-1	AD-2	8.65	8.80	6.20	6.00	1.78	2.13	7.44	7.43	0.006	0.30	1.02	8.0	0.012	33.0	0.86	1.43	0.25	0.12
CO-2	AD-2	RL-1	8.80	8.60	5.60	5.27	2.20	2.33	7.40	7.35	0.007	1.20	3.33	12.0	0.012	44.2	1.53	2.08	0.46	0.31
CO-3	RL-1	RL-2	8.60	8.30	5.27	4.83	2.33	2.47	7.35	7.19	0.007	2.00	3.30	12.0	0.012	60.1	2.55	2.36	0.60	0.45
CO-4	RL-2	RL-3	8.30	8.40	4.83	4.40	2.47	3.01	7.18	6.91	0.007	2.60	3.31	12.0	0.012	5 9 .0	3.31	2.52	0.69	0.56
CO-5	RL-3	AD-3	8.40	8.80	4.40	4.20	3.01	3.60	6.89	6.64	0.007	3.80	3.31	12.0	- 0.012	26.5	4.84	2.44	0.83	0.79
CO-6	AD-3	CDS-1	8.80	6.97	4.20	4.09	3.60	1.87	6.27	6.16	0.011	4.10	4.04	12.0	0.012	9.8	5.22	2.07	0.86	0.70
CO-7	CDS-1	0-1	6.97	5.30	4.09	4.00	1.87	0.30	4.97	4.86	0.010	4.10	3.89	12.0	0.012	9.1	5.60	0.86	0.86	0.73

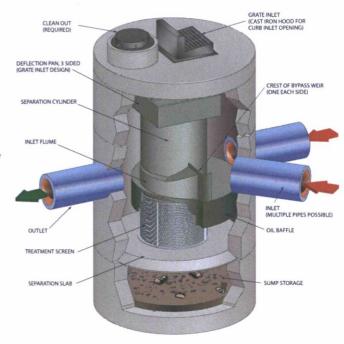
FlexTable: Outfall Table

ID	Label	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
28	0-1	5.30	True	4.00	User Defined Tailwater	4.51	4.86	4.10



CDS®

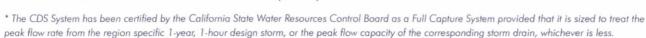
Solutions Guide


Continuous Deflective Separation - CDS®

Superior Stormwater Trash and Sediment Removal

The CDS is a swirl concentrator hybrid technology that uses continuous deflective separation – a combination of swirl concentration and indirect screening to screen, separate and trap debris, sediment, and hydrocarbons from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material debris 2.4 mm or larger, without binding. CDS retains all captured pollutants, even at high flow rates, and provides easy access for maintenance.

CDS is used to meet trash Total Maximum Daily Load (TMDL) requirements, for stormwater quality control, inlet and outlet pollution control, and as pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and a variety of green infrastructure practices.



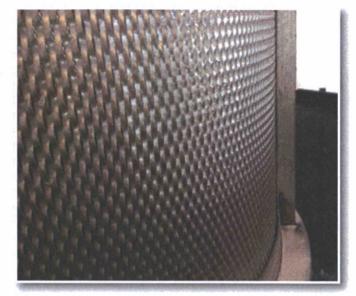
Learn more about the CDS system at www.ContechES.com/CDS * * *

CDS® Approvals

CDS has been verified by some of the most stringent stormwater technology evaluation organizations in North America, including:

- Washington State Department of Ecology
- New Jersey Department of Environmental Protection
- Canadian Environmental Technology Verification (ETV)
- California Statewide Trash Amendments Full Capture System Certified*

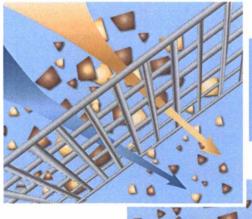
CDS® Features & Benefits					
Feature	Benefit				
Captures and retains 100% of floatables and neutrally buoyant debris 2.4 mm or larger	1. Superior pollutant removal				
2. Self-cleaning screen	2. Ease of maintenance				
3. Isolated storage sump eliminates scour potential	3. Excellent pollutant retention				
4. Internal bypass	4. Eliminates the need for additional structures				
5. Multiple pipe inlets and 90-180° angles	5. Design flexibility				
6. Numerous regulatory approvals	6. Proven performance				



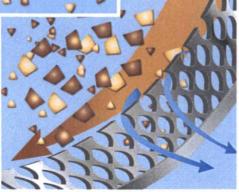
The CDS® Screen

Traditional approaches to trash control typically involve "direct screening" that can easily become clogged, as trash is pinned to the screen as water passes through. Clogged screens can lead to flooding as water backs up.

The design of the CDS screen is fundamentally different. Flow is introduced to the screen face which is louvered so that it is smooth in the downstream direction. The effect created is called "Continuous Deflective Separation." The power of the incoming flow is harnessed to continually shear debris off the screen and to direct trash and sediment toward the center of the separation cylinder.



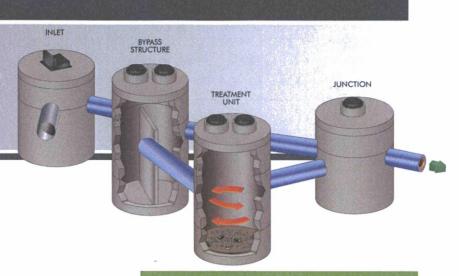
Key Features:


Self-Cleaning Screening Technology

- CDS Screen_captures neutrally buoyant materials missed by other separator systems.
- Screen is hydraulically designed to be self-cleaning.
- Runoff entering the separation cylinder must pass through the screen prior to discharge, eliminating potential for scouring previously captured trash at high flow rates.

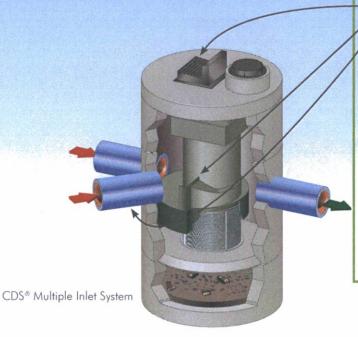
The CDS Screen — Self-Cleaning Screening Technology * * *

Direct Screening – particles that are larger than the aperture size of the screen can cause clogging, resulting in flooding if not maintained frequently.


Continuous Deflective Separation Indirect Screening — water velocities within the swirl chamber continually shear debris off the screen to keep it clean.

CDS® Configuration - One System that Can Do It All!

The CDS effectively treats stormwater runoff while reducing the number of structures on your site.


WHY GO THROUGH ALL THIS?

TRADITIONAL STORMWATER TREATMENT SITE DESIGN

ONE SYSTEM CAN DO IT ALL!

- Inline, offline, grate inlet, and drop inlet configurations available
- Internal and external peak bypass options available

Save Time, Space, and Money with CDS®

- Grate inlet option available
- Internal bypass weir
- Accepts multiple inlets at a variety of angles
- Advanced hydrodynamic separator
- Captures and retains 100% of floatables and neutrally buoyant debris 2.4 mm or larger
- Indirect screening capability keeps screen from clogging
- Retention of all captured pollutants, even at high flows
- Performance verified by NJCAT, WA Ecology, and ETV Canada

CDS® Applications

CDS is commonly used in the following stormwater applications:

- Stormwater quality control trash, debris, sediment, and hydrocarbon removal
- Urban retrofit and redevelopment
- Inlet and outlet protection
- Pretreatment for filtration, detention/infiltration, bioretention, rainwater harvesting systems, and Low Impact Development designs.

CDS provides trash control.



CDS pretreats a bioswale

CDS pretreats a rainwater harvesting cistern.

CDS standalone system removes trash and sediment.

CDS® Models and Capacities

CDS2015-4 CDS2015-5 CDS2020-5 CDS2025-5 CDS3020-6 CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	75 microns (cfs)/(L/s) 0.5 (14.2) 0.5 (14.2) 0.7 (19.8) 1.1 (31.2) 1.4 (39.6) 1.7 (48.1) 2.0 (56.6) 2.6 (73.6) 3.1 (87.7)	125 microns ² (cfs)/(L/s) 0.7 (19.8) 0.7(19.8) 1.1 (31.2) 1.6 (45.3) 2.0 (56.6) 2.5 (70.8) 3.0 (85.0) 3.8 (106.2)	Trash & Debris (cfs)/(L/s) 1.0 (28.3) 1.0 (28.3) 1.5 (42.5) 2.2 (62.3) 2.8 (79.3) 3.5 (99.2) 4.2 (118.9) 5.3 (150.0)	Maximum Peak Conveyance Flow³ (cfs)/(L/s) 10 (283) 10 (283) 14 (396) 14 (396) 20 (566) 20 (566) 20 (566)	Sump Storage Capacity ⁴ (yd³)/(m³) 0.9 (0.7) 1.5 (1.1) 1.5 (1.1) 2.1 (1.6) 2.1 (1.6) 2.1 (1.6)	Oil Storage Capacity ⁴ (gal)/(L) 61 (232) 83 (313) 99 (376) 116 (439) 184 (696) 210 (795) 236 (895)	
CDS2015-5 CDS2020-5 CDS2025-5 CDS3020-6 CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	0.5 (14.2) 0.7 (19.8) 1.1 (31.2) 1.4 (39.6) 1.7 (48.1) 2.0 (56.6) 2.6 (73.6)	0.7(19.8) 1.1 (31.2) 1.6 (45.3) 2.0 (56.6) 2.5 (70.8) 3.0 (85.0)	1.0 (28.3) 1.5 (42.5) 2.2 (62.3) 2.8 (79.3) 3.5 (99.2) 4.2 (118.9)	10 (283) 14 (396) 14 (396) 20 (566) 20 (566)	1.5 (1.1) 1.5 (1.1) 1.5 (1.1) 2.1 (1.6) 2.1 (1.6)	83 (313) 99 (376) 116 (439) 184 (696) 210 (795)	
CDS2020-5 CDS2025-5 CDS3020-6 CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	0.7 (19.8) 1.1 (31.2) 1.4 (39.6) 1.7 (48.1) 2.0 (56.6) 2.6 (73.6)	1.1 (31.2) 1.6 (45.3) 2.0 (56.6) 2.5 (70.8) 3.0 (85.0)	1.5 (42.5) 2.2 (62.3) 2.8 (79.3) 3.5 (99.2) 4.2 (118.9)	14 (396) 14 (396) 20 (566) 20 (566)	1.5 (1.1) 1.5 (1.1) 2.1 (1.6) 2.1 (1.6)	99 (376) 116 (439) 184 (696) 210 (795)	
CDS2025-5 CDS3020-6 CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	1.1 (31.2) 1.4 (39.6) 1.7 (48.1) 2.0 (56.6) 2.6 (73.6)	1.6 (45.3) 2.0 (56.6) 2.5 (70.8) 3.0 (85.0)	2.2 (62.3) 2.8 (79.3) 3.5 (99.2) 4.2 (118.9)	14 (396) 20 (566) 20 (566)	1.5 (1.1) 2.1 (1.6) 2.1 (1.6)	116 (439) 184 (696) 210 (795)	
CDS3020-6 CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	1.4 (39.6) 1.7 (48.1) 2.0 (56.6) 2.6 (73.6)	2.0 (56.6) 2.5 (70.8) 3.0 (85.0)	2.8 (79.3) 3.5 (99.2) 4.2 (118.9)	20 (566) 20 (566)	2.1 (1.6) 2.1 (1.6)	184 (696) 210 (795)	
CDS3025-6 CDS3030-6 CDS3035-6 CDS4030-8	1.7 (48.1) 2.0 (56.6) 2.6 (73.6)	2.5 (70.8) 3.0 (85.0)	3.5 (99.2) 4.2 (118.9)	20 (566)	2.1 (1.6)	210 (795)	
CD\$3030-6 CD\$3035-6 CD\$4030-8	2.0 (56.6) 2.6 (73.6)	3.0 (85.0)	4.2 (118.9)	, ,	, ,		
CDS3035-6 CDS4030-8	2.6 (73.6)	, ,	, ,	20 (566)	2.1 (1.6)	236 (895)	
CD\$4030-8	, ,	3.8 (106.2)	5.3 (150.0)			200 (0/3)	
	3.1 (87.7)			20 (566)	2.1 (1.6)	263 (994)	
	(/	4.5 (127.4)	6.3 (178.3)	30 (850)	5.6 (4.3)	426 (1612)	
CDS4040-8	4.1 (116.1)	6.0 (169.9)	8.4 (237.8)	30 (850)	5.6 (4.3)	520 (1970)	
CDS4045-8	5.1 (144.4)	7.5 (212.4)	10.5 (297.2)	30 (850)	5.6 (4.3)	568 (2149)	
CDS5640-10	6.1 (172.7)	9.0 (254.9)	12.6 (356.7)	50 (1416)	8.7 (6.7)	758 (2869)-	
CDS5653-10	9.5 (268.9)	14.0 (396.5)	19.6 (554.8)	50 (1416)	8.7 (6.7)	965 (3652)	
CD\$5668-10	12.9 (365.1)	19.0 (538.1)	26.6 (752.9)	50 (1416)	8.7 (6.7)	1172 (4435)	
CDS5678-10	17.0 (481.2)	25.0 (708.0)	35.0 (990.7)	50 (1416)	8.7 (6.7)	1309 (4956)	
CDS9280-12	27.2 (770.2)	40.0 (1132.7)	56.0 (1585.7)		16.8 (12.8)		
CDS9290-12	35.4 (1002.4)	52.0 (1472.5)	72 (2038.8)		16.8 (12.8)		
CDS92100-12	42.8 (1212.0)	63.0 (1783.9)	88 (2491.9)	O(II)	16.8 (12.8)	N1/A	
DS150134-22	100.7 (2851.5)	148.0 (4190.9)	270 (7645.6)	Offline	56.3 (43.0)	N/A	
DS200164-26	183.6 (5199.0)	270.0 (7645.6)	378.0 (10703.8)		78.7 (60.2)	**************************************	
DS240160-32	204 (5776.6)	300.0 (8495.1)	420.0 (8495.1)		119.1 (91.1)		
	CDS5640-10 CDS5653-10 CDS5668-10 CDS5678-10 CDS9280-12 CDS9290-12 DS92100-12 DS150134-22 DS200164-26	CDS5640-10 6.1 (172.7) CDS5653-10 9.5 (268.9) CDS5668-10 12.9 (365.1) CDS5678-10 17.0 (481.2) CDS9280-12 27.2 (770.2) CDS9290-12 35.4 (1002.4) CDS92100-12 42.8 (1212.0) CDS150134-22 100.7 (2851.5) CDS200164-26 183.6 (5199.0) CDS240160-32 204 (5776.6)	CDS5640-10 6.1 (172.7) 9.0 (254.9) CDS5653-10 9.5 (268.9) 14.0 (396.5) CDS5668-10 12.9 (365.1) 19.0 (538.1) CDS5678-10 17.0 (481.2) 25.0 (708.0) CDS9280-12 27.2 (770.2) 40.0 (1132.7) CDS9290-12 35.4 (1002.4) 52.0 (1472.5) CDS92100-12 42.8 (1212.0) 63.0 (1783.9) CDS150134-22 100.7 (2851.5) 148.0 (4190.9) CDS200164-26 183.6 (5199.0) 270.0 (7645.6) CDS240160-32 204 (5776.6) 300.0 (8495.1)	CDS5640-10 6.1 (172.7) 9.0 (254.9) 12.6 (356.7) CDS5653-10 9.5 (268.9) 14.0 (396.5) 19.6 (554.8) CDS5668-10 12.9 (365.1) 19.0 (538.1) 26.6 (752.9) CDS5678-10 17.0 (481.2) 25.0 (708.0) 35.0 (990.7) CDS9280-12 27.2 (770.2) 40.0 (1132.7) 56.0 (1585.7) CDS9290-12 35.4 (1002.4) 52.0 (1472.5) 72 (2038.8) CDS92100-12 42.8 (1212.0) 63.0 (1783.9) 88 (2491.9) CDS150134-22 100.7 (2851.5) 148.0 (4190.9) 270 (7645.6) CDS200164-26 183.6 (5199.0) 270.0 (7645.6) 378.0 (10703.8) CDS240160-32 204 (5776.6) 300.0 (8495.1) 420.0 (8495.1)	CDS5640-10 6.1 (172.7) 9.0 (254.9) 12.6 (356.7) 50 (1416) CDS5653-10 9.5 (268.9) 14.0 (396.5) 19.6 (554.8) 50 (1416) CDS5668-10 12.9 (365.1) 19.0 (538.1) 26.6 (752.9) 50 (1416) CDS5678-10 17.0 (481.2) 25.0 (708.0) 35.0 (990.7) 50 (1416) CDS9280-12 27.2 (770.2) 40.0 (1132.7) 56.0 (1585.7) CDS9290-12 35.4 (1002.4) 52.0 (1472.5) 72 (2038.8) CDS92100-12 42.8 (1212.0) 63.0 (1783.9) 88 (2491.9) CDS150134-22 100.7 (2851.5) 148.0 (4190.9) 270 (7645.6) CDS200164-26 183.6 (5199.0) 270.0 (7645.6) 378.0 (10703.8)	CDS5640-10 6.1 (172.7) 9.0 (254.9) 12.6 (356.7) 50 (1416) 8.7 (6.7) CDS5653-10 9.5 (268.9) 14.0 (396.5) 19.6 (554.8) 50 (1416) 8.7 (6.7) CDS5668-10 12.9 (365.1) 19.0 (538.1) 26.6 (752.9) 50 (1416) 8.7 (6.7) CDS5678-10 17.0 (481.2) 25.0 (708.0) 35.0 (990.7) 50 (1416) 8.7 (6.7) CDS9280-12 27.2 (770.2) 40.0 (1132.7) 56.0 (1585.7) CDS9290-12 35.4 (1002.4) 52.0 (1472.5) 72 (2038.8) DS92100-12 42.8 (1212.0) 63.0 (1783.9) 88 (2491.9) CDS150134-22 100.7 (2851.5) 148.0 (4190.9) 270 (7645.6) CDS200164-26 183.6 (5199.0) 270.0 (7645.6) 378.0 (10703.8) CDS240160-32 204 (5776.6) 300.0 (8495.1) 420.0 (8495.1)	

- 1. Alternative PSD/D₅₀ sizing is available upon request.
- 2. 125 micron flows are based on the CDS Washington State Department of Ecology approval for 80% removal of a particle size distribution (PSD) having a mean particle size (D_{50}) of 125 microns.
- 3. Estimated maximum peak conveyance flow is calculated using conservative values and may be exceeded on sites with lower inflow velocities and sufficient head over the weir.
- 4. Sump and oil capacities can be customized to meet site needs

CDS® Maintenance

Systems vary in their maintenance needs, and the selection of a cost-effective and easy-to-access treatment system can mean a huge difference in maintenance expenses for years to come.

A CDS unit is designed to minimize maintenance and make it as easy and inexpensive as possible to keep our systems working properly.

Inspection

Inspection is the key to effective maintenance. Pollutant deposition and transport may vary from year to year and site to site. Semi-annual inspections will help ensure that the system is cleaned out at the appropriate time. Inspections should be performed more frequently where site conditions may cause rapid accumulation of pollutants.

Most CDS units can easily be cleaned in 30 minutes

Recommendations for CDS Maintenance

The recommended cleanout of solids within the CDS unit's sump should occur at 75% of the sump capacity. Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection and cleanout of the separation chamber and sump, and another allows inspection and cleanout of sediment captured and retained behind the screen. A vacuum truck is recommended for cleanout of the CDS unit and can be easily accomplished in less than 30 minutes for most installations.

DYOHDS™ Tool

Design Your Own Hydrodynamic Separator

Features

- Choose from three HDS technologies CDS®, Vortechs® and VortSentry® HS
- Site specific questions ensure the selected unit will comply with site constraints
- Unit size based on selected mean particle size and targeted removal percentage
- · Localized rainfall data allows for region specific designs
- PDF report includes detailed performance calculations, specification and standard drawing for the unit that was sized

Design Your Own (DYO) Hydrodynamic Separator
 online at www.ContechES.com/

Learn more

See our CDS systems in action at www.ContechES.com/videos

Connect with Us

We're here to make your job easier – and that includes being able to get in touch with us when you need to. www.ContechES.com/localresources

Start a Project

If you are ready to begin a project, visit us at www.ContechES.com/startaproject

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, retaining walls, sanitary sewer, stormwater, erosion control and soil stabilization products.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending.

 ${\sf CDS} \ is \ a \ resgistered \ trademark \ or \ licensed \ trademark \ of \ Contech \ Engineered \ Solutions \ LLC$

COMPLETE SITE SOLUTIONS Stormwater Solutions Pipe Solutions Structures Solutions Meeting project needs for durability, hydraulics, corrosion resistance, and stiffness · Plate, Precast & Truss bridges • Stormwater Treatment · Corrugated Metal Pipe (CMP) Detention/Infiltration · Steel Reinforced Polyethylene (SRPE) · Hard Armor Rainwater Harvesting High Density Polyethylene (HDPE) · Retaining Walls · Biofiltration/Bioretention Polyvinyl Chloride (PVC) · Tunnel Liner Plate

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY, APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTES INOR WARRANTES OF SUITABILITY FOR ANY APPLICATION CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

Get Social With Us!

ENGINEERED SOLUTIONS
©2017 Contech Engineered Solutions LLC, a QUIKRETE Company
800-338-1122 | www.ContechES.com
All Rights Reserved. Printed in the USA.

We print our brochures entirely on Forest Stewardship Council certified paper. FSC certification ensures that the paper in our brochures contain fiber from well-managed and responsibly harvested forests that meet strict environmental and socioeconomic standards.

FSC

-		· · · · · · · · · · · · · · · · · · ·	•			
**						
						•
	•		•			
	•					•
•						
	•				•	•.
•						
	. •			,		
			*- 1		•	
			•			
						•
•				•		
	•		•	•	•	
			•			
		•				
					÷	
	•					
				•		
		· · · · · · · · · · · · · · · · · · ·				
•	<u>.</u> .					
	•					•
	•		•			
•				•	•	
	•					
•					, -	
			· · · · · · · · · · · · · · · · · · ·			
•			•	•		
		•		•		,
	-				•	
			ı		•	•
	•			ē.	•	
,						•
					•	
		•				
	: '	·	•	· •		÷
			•		,	
				••		
		-	•			
	•		•		-	

HYDRAULIC DESIGN SUMMARY FOR INLINE MODEL CDS2020

The following hydraulic summary supports the design of the CDS model proposed on the McDowell Mountain Marketpalce-Lot 2 project located in Scottsdale, AZ. The attached hydraulic calculations supporting the proposed CDS structure's design serve two purposes.

1. To ensure the proposed CDS model will achieve the design treatment capacity under the site-specific hydraulic conditions.

The proposed CDS model CDS2020 unit is designed to process a treatment flow of 1.1-cfs. Under the site-specific conditions, the proposed diversion weir will generate the operational energy necessary to achieve the 1.1-cfs design treatment flow rate.

$$Q_{FF} = C \frac{P_{FF}}{T_C} A$$
 FCDMC Std. 6.4.1

where:

Q_{FF}= minimum First Flush discharge (cfs)

C= runoff coefficient (set=1)
P_{FF}= first 0.5-in of direct runoff (in)

I_c= Time of Conc. of the upstream watershed (hr)

A= area of project site (ac)

$$Q_{FF} = (1)\frac{(0.5)}{(0.25)}(0.53) =$$
 _____cfs

2. To quantify the hydraulic losses introduced to the conveyance system under peak design conditions.

A flow of 4.1-cfs represents the peak discharge generated by the contributing drainage area for a design storm having a 100 year return interval. Under these peak design conditions, all of the 4.1-cfs flow is assumed to be conveyed over the diversion weir. This conservative assumption predicts the worst-case resulting hydraulic condition and preserves the integrity of this calculation even if the structure is not properly maintained.

Based on the information provided, the proposed CDS model CDS2020 is predicted to increase the upstream Hydraulic Gradeline (Δ HGL) by 0.X ft for the above cited peak design flow.

$$\Delta HGL = H_{CDS} = \underline{1.19} \quad \text{f}$$

The effective headloss coefficient across the proposed CDS model CDS2020 for the 100-year storm event may be estimated as a function of the velocity in the downstream pipe.

where, .

$$K_{CDS} = CDS Headloss Coefficient:$$

$$K_{CDS} = \frac{H_{CDS}}{\left[V_{d/s}^2/2g\right]} =$$

If a software program is being used to develop the Hydraulic Gradeline (HGL) for the upstream conveyance system, the values listed above for HCDS and/or KCDS can be used as either a headloss factor to be multipled by the downstream velocity head, or input the headloss amount for the proposed CDS model at the corresponding node.

INLINE HYDRUALIC CALCULATIONS

DESIGN PARAMETERS:

CDS Model No.= CDS2020 Design Treatment Flow (Q)= 1.1 cfs Peak Design Flow= 4.1 cfs Peak Design Return Interval= 100 year Rim Elevation @ US Structure= 1608.80 ft

PIPE CHARACTERISTICS:

Pipe Diameter=	12	in
Pipe Slope=	0.010	ft/ft
Manning's N=	0.012	

FLOW CHARACTERISTICS:

Depth of Flow (D_F) =	0.86	ft
Area of Flow $(A_F)=$	0.73	sf
Wetted Perimeter (P _w)=	2.4	ft
Hydraulic Radius (R)=	0.3	ft

DETAILED CALCULATIONS (TREATMENT FLOW)

Tailwater Condition at Outfall:

Exit Loss from DownStream Pipe, h1:

$$h_1 = k \left[\frac{V^2}{2g} \right], \quad V = \frac{Q}{A_F}$$

 $h_1 = 0.04$ ft

$$EGL_1 = EL_0 + h_1$$

Head Loss Through DS Pipe, h2:

$$h_2 = S_{EGL}L \quad , \quad S_{EGL} = \left(\frac{Qn}{1.49A_FR^{2/3}}\right)^2$$

$$L = \frac{7}{S_{EGL}} = \frac{7}{0.16} \text{ ft/ft}$$

$$EGL_2 = EGL_1 + h_2 \\$$

Check Entrance Condition for Critical Depth Control:

$$EL_{CDSInv.} = 1604.10$$
 ft $d_c = 0.86$ ft

$$EGL_C = EL_{CDSInv.} + d_c + \frac{{V_{dc}}^2}{2g}$$

Re-entry Loss into DS Pipe, h₃=

$$h_3 = k \left[\frac{V^2}{2g} \right]$$
 , $V = \frac{Q}{A}$ (area based on entry depth)

$$k = 0.20$$
 $A_{Fdc} = 0.77$ sf
 $V = 1.43$ fps

$$EGL_3 = EGL_2 + h_3$$

Oil Baffle Loss, h₄=

$$h_4 = k \left[\frac{V^2}{2g} \right]$$
 , $V = \frac{Q}{A_{Baffle}}$

$$\begin{array}{c} \text{k=} & 1.00 \\ \text{A}_{\text{Baffle}} = & 4.51 & \text{sf} \\ \text{V=} & 0.24 & \text{fps} \end{array}$$

$$EGL_4 = EGL_3 + h_4$$

Appendix D: Reference Material

- 6) Master Drainage Report prepared by David Evans & Associates (2001)
- 7) Master Drainage Report (2001)-Drainage Exhibit
- 8) Master Drainage Report (2001)-Conceptual Grading & Drainage Plan

McDOWELL MOUNTAIN
VILLAGE CENTER
SWC BELL ROAD AND
THOMPSON PEAK PARKWAY

FILE COPY

APRROVED IN CONCEPT
HOH CASE # SUBMIT A FINAL DRAINAGE
HOH ORT WITH FINAL PLANS
HEWEWED BY DAVE

69-DROS

JUNE 2000 DEA PROJECT NO. CNTR0001

PRELIMINARY DRAINAGE REPORT FOR

McDOWELL MOUNTAIN VILLAGE CENTER SWC BELL ROAD AND THOMPSON PEAK PARKWAY

PREPARED FOR

CENTREFUND 7702 E. DOUBLETREE RANCH ROAD SUITE 300 SCOTTSDALE, ARIZONA 85258

PREPARED BY

Jeff M. Hunter P.E.
DAVID EVANS AND ASSOCIATES, INC.
7878 N. 16TH STREET
PHOENIX, AZ 85020
(602) 678-5151

JUNE 2000 DEA PROJECT NO. CNTR0001

TABLE OF CONTENTS

SECTION	<u>TITLE</u>	•	<u>PAGE NO.</u>
1.0 INTRODUC	CTION	0217247947940000790000000000000000000000000	
2.0 EXISTING	DRAINAGE CONDITIONS		1
3.0 PROPOSEI	D DRAINAGE CONCEPT	400000774 00 007400740074	2
3.1 OFF-SITE I	Drainage Conveyance	**************************	2
4.0 CONCLUS	IONS		8
5.0 REFERENCE	CES	14414444444444444	8
<u>FIGURES</u>	TITLE	LOCATION	
1	Vicinity Map	Appendix A	
EXHIBITS	TITLE	LOCATION	
A B C	On-site Drainage Area Map Regional Drainage Map by Clouse Engineering, Inc Parcel "R" Drainage Map by Rick Engineering Co	. Back Pocket	
APPENDIX	TITLE		٠.
A B	FEMA Flood Insurance Rate Map Hydrologic Calculation and Data Sheets	٠ سام	Lail.

1.0 INTRODUCTION

This Preliminary Drainage Report has been prepared under a contract from Centrefund, Owner/Developer of the proposed commercial project at the southwest corner of Bell Road and Thompson Peak Parkway. This site will be part of the McDowell Mountain Ranch Master Community. The purpose of this report is to provide the hydrologic and hydraulic analyses, required by the City of Scottsdale, to support the commercial lot development. Preparation of this report has been done in accordance with the procedures detailed in the City of Scottsdale's Design Standards and Policies Manual, Chapter 2 (Reference 1).

The project site is located in the City of Scottsdale, in the northern portion of Section 5, Township 3 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. More specifically, the site is located in Parcel R of the McDowell Mountain Ranch Master Community and is bounded by Thompson Peak Parkway on the east, Bell Road of the north and a proposed commercial development on the south. With the development of this project and the commercial site on the south, 100th Street will be built along the western project boundary. Access to the site will be provided by 100th Street, Thompson Peak Parkway and Bell Road. Figure 1, located in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale's street system.

2.0 EXISTING DRAINAGE CONDITIONS

The proposed project site is 17 acre undeveloped parcel, with significant native vegetation. The site has a general slope to the southwest of about 4.0 percent. As part of the McDowell Mountain Ranch Master Community, storm water drainage is addressed in the Master Drainage Report (Reference 2). In its undeveloped condition, runoff generated upstream of the project site, west of Thompson Creek Parkway, is conveyed through the project site by the historic drainage corridors.

The flood hazard zones determined in the area were derived from the Scottsdale Area Drainage Master Study prepared by Boyle Engineering Corp. (Reference 3). The study determines the ponding elevations caused by the canals and other obstructions in the area. The current published FEMA Flood Insurance Rate Map (FIRM) for this area, map number 04013C1265 E (Effective date December 3, 1993), shows the project site is entirely within flood hazard Zone X. Zone X is defined as "Areas of 500-year flood; areas of 100-year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100-year flood". A copy of the FIRM is located in Appendix B.

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: off-site drainage conveyance, onsite drainage conveyance, and on-site storm water retention. See Exhibit A, located in the back pocket, for graphical illustration of the proposed drainage concept.

3.1 Off-site Drainage Conveyance

Runoff from Thompson Peak Boulevard is intercepted by an existing storm drain inlet approximately 750ft south of the Thompson Peak and Bell Road intersection and outfalls into an existing wash, south of the proposed development. Bell Road runoff is intercepted by an existing storm drain inlet located approximately 950ft west of the intersection. This drain connects to the storm drain crossing under Bell Road, which outfalls into wash "G" (See exhibit B). 100th Street drains to the southwest and is conveyed overland to the existing wash "G".

Runoff, approximately 123 cfs for the 100-year storm, currently flows from under Bell Road, southwest through wash "G" and continues to a regional B.O.R. detention facility south of the development. Additionally, 10% fs for the 100-year storm historically entered the site from the northwest and combined with Wash "G". When Thompson Peak Parkway was developed, the historic 109 cfs was re-directed south along the west side of Thompson Peak to the B.O.R. regional detention facility.

3.2 On-site Drainage Conveyance

The on-site drainage is divided into several sub-areas. Runoff from these areas will enter a piped conveyance system via catch basins or manholes. This conveyance system will combine the onsite and offsite flows in a series of pipes, direct the flows to the southwest corner of the site, and outfall directly into the Wash "G.

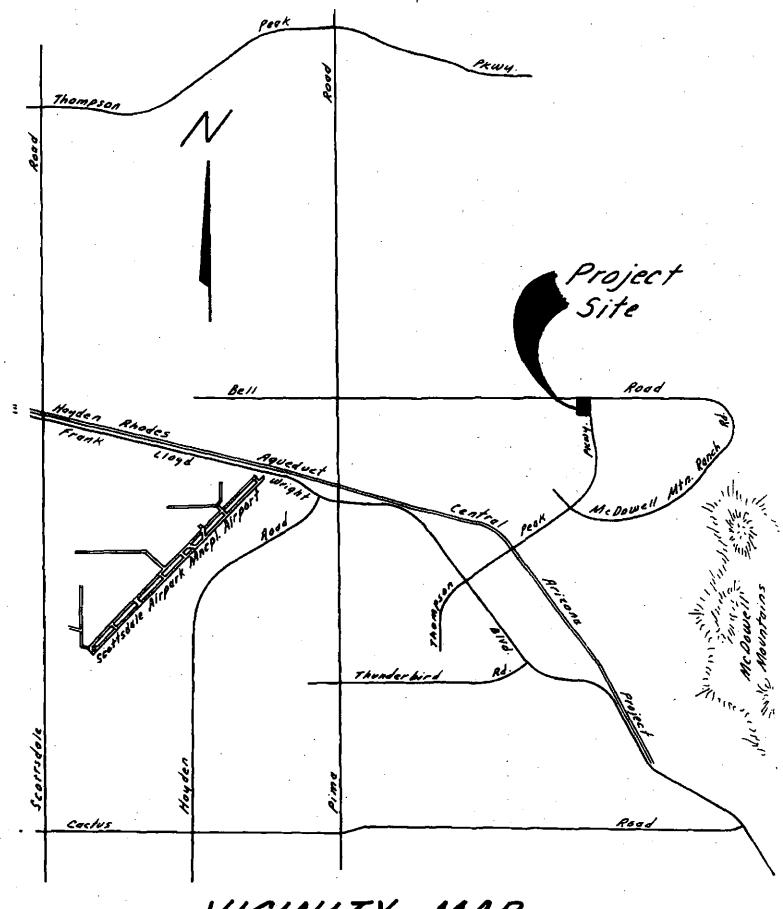
59 MOR 3.3 On-site Storm Water Retention

According to Sandra Lie, City of Scottsdale, the development within Parcel "R" (see exhibit B) drains to the B.O.R. detention area. Ms. Lie stated that if the developed site runoff does not exceed the pre-developed historical runoff rate, no on-site retention will be required. A preliminary analysis determined that the pre-developed 100-year storm discharge from our site to Wash "G" is 281.3 cfs. The developed 100-year discharge will be 226.2 cfs, therefore, this development will not significantly impact the existing downstream conditions. The developed peak flow at the outlet will not exceed pre-developed because 109cfs has been rerouted around the site via Thompson Peak Boulevard. The difference between the on-site pre-developed and nost developed flow is approximately 70 cfs wich is less than the amount diverted by Thompson Peak Boulevard.

Preliminary Drainage Report

David Evans and Associates, Inc

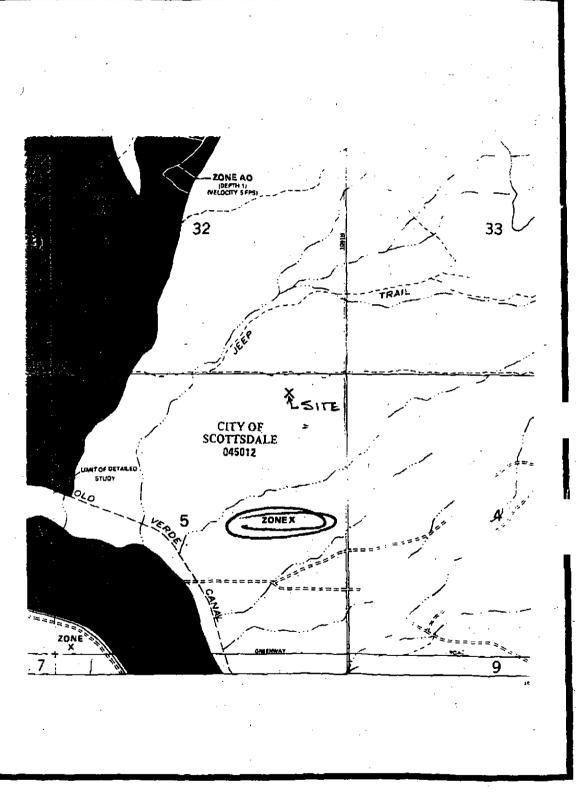
4.0 CONCLUSIONS


Based on the results of this study, it can be concluded that:

- The site is developed according to City of Scottsdale's Design Standards and Policies Manual, Chapter 2.
- Retention is not required.
- There will be no downstream flooding.
- The finish floor elevations are set a minimum 12 inches above the 100-year water surface elevation.

5.0 REFERENCES

- 1) City of Scottsdale's Design Standards and Policies Manual, Chapter 2, dated July, 1996
- 2) Scottsdale Area Drainage Master Study prepared by Boyle Engineering Corp., December, 1986
- 3) Master Drainage Report for McDowell Mountain Ranch Parcels "A"—"R" Prepared by Clouse Engineering, Inc. November 18, 1993
- 4) Cathet at McDowell Mountain Ranch Phase II Prepared by Rick Engineering Co. March 27,2000


APPENDIX A (Figures)

VICINITY MAP

Figure 1

APPENDIX B (FEMA Flood Insurance Rate Map)

PORTION OF PANEL SHOWING SITE

LEGEND

SPECIAL FLOOD HAZARD AREAS INUNDATED BY 100-YEAR FLOOD

ZONE A No base flood elevations determined.

ZONE AE Base flood elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); base flood elevations determined.

Find depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alliuvial fan flooding, velocities also determined.

ZONE A99 To be protected from 100-year flood by Federal flood protection system under construction; no base elevations determined.

ZONE V Coastal flood with velocity hazard (wave action); no base flood elevations determined

ZONE VE Coastal flood with velocity hazard (wave action); base flood elevations determined.

FLOODWAY AREAS IN ZONE AE

OTHER FLOOD AREAS

ZONE X Areas of 500-year flood; areas of 100-year flood with average depths

of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100-year flood.

OTHER AREAS

-513~

(EL 987)

07

ZONE X Areas determined to be outside 500-

year flood plain.

ZONE D Areas in which flood hazards are

undetermined.

Flood Boundary

Floodway Boundary

Zone D Boundary

Boundary Dividing Special Flood Hazard Zones, and Boundary Dividing Areas of Different Coastal Base Flood Elevations Within Special Flood Hazard

Zones,

Base Flood Elevation Line; Ele-

vation in Feet*

──**─O** Cross Section Line

Base Flood Elevation in Feet

Where Uniform Within Zone*

RM7_X Elevation Reference Mark

*Referenced to the National Geodetic Vertical Datum of 1929

NATIONAL FLOOD INSURANCE PROGRAM

FIRM

FLOOD INSURANCE RATE MAP

MARICOPA COUNTY, ARIZONA AND INCORPORATED AREAS

PANEL 1265 OF 4350

CONTAINS

COMMUNITY NO

NUMBER

PANEL SUFFIX

SCOTTSDALE CITY OF 045012 1265

MAP NUMBER 04013C1265 E

MAP REVISED: DECEMBER 3, 1993

Federal Emergency Management Agency

MAP LEGEND

FIRM PANEL

APPENDIX C (Hydrologic Calculation and Data Sheets)

LOCATION DATA		. •		•			
Project: McDowell Mountain Villa	age Center		Concentra	ation Point: _	CP-	1	•
Location:AREAS 1,3,4,5,6,7						· ·	ì
Project No.: CNTR0001	<u> </u>			_ Station: _			•
Name of Stream/Watershed:	_						•
DESIGN DATA	. 1						
Design Frequency:	2	5	10	25	50	100	Years
Drainage Area A1						13.38	Acres
A2							Acres
, АЗ		-		·			Acres
Total (A)						13.38	Acres
Drainage Length:				<u>-</u>		1300	Feet
Elevation							
Top of Drainage Area				· 		1631.6	-
At Structure						1584.8	
Drainage Area Slope							Percent
Hydrologic Soil Group:	 					В	-
DESIGN COMPUTATIONS							
Frequency Factor (F):	1.00	_1.00	1.00	1.10	1.20	1.25]
Time of Concentration:						5	Minutes
			<u>_</u> _	,			1
Rainfall Intensity (I):	2.4		3.9	<u> </u>	5	5.8	Inches/Hr
							(Figure 2.2-13
						0.90	_
C2							-
C3 Weighted. Runoff Coefficient (Cw):							-
							- _
Peak Discharge Qp = CwIA(F)	29		47		72	87.3	cfs
Computed	Ву:	Jeff H	unter	_Date:	6/27	/00	_
Checked E	By;			_Date:		· -	_

LOCATION DAT	ra .								
Project:	McDowell Mountain	Villag	e Center		Concentr	ation Point:	CP-	2	
Location:	AREA 8					·	·		
Project No.:	CNTR0001_		· 			_ Station: _			
Name of Str	eam/Watershed:	_						<u> </u>	ì
DESIGN DATA						. •			
Design Freq	uency:	Γ	2	5	10	25	50	100	Years
Drainage Ar		A1_					_	1.54	Acres
		A2_							Acres
_	•	A3_							Acres
	Total	(A)_						1.54	Acres
Drainage Le	ength:							250	Feet
Elevation					_	<u> </u>			
Top of	Drainage Area	_	·					1628.0	Feet
At Stru	cture	_						1613.0	Feet
Drainage Ar	ea Slope	_						4,69	Percent
Hydrologic S	Soil Group:	_			<u></u> .		<u> </u>	В	
DESIGN COMP	PUTATIONS								
Frequency F	actor (F):		1.00	1.00	1.00	1.10	1.20	1.25	
Time of Cor	centration:							5	Minutes
Rainfall Inte	nsity (I):	L	2.4		3.9		5	5.8	Inches/Hr
								•	(Figure 2.2-13)
Runoff Coel	fficient (C):	C1_		·	·			0.90	•
,			-				·		-
		C3_			<u> </u>			, ,	_
Weighted F	Runoff Coefficient (C	:w): _	<u> </u>				<u>-</u>		-
Peak Disch	arge Qp = CwlA(F)		3		5		8	10.0	cfs
	Comp	uted B	By:	Jeff	Hunter	_Date:	6/27	/00	_
	Check	ed By	:			Date:			- -

LOCATION DAT	•	-							٠,	
	McDowell Mountain V	'illag	e Center	·	_ Concer	itration I	Point: _	CP-	3	
Location:	AREA 2				`					1
-	CNTR0001				 	St	ation:_			•
Name of Str	eam/Watershed:	_				<u> </u>	- -			
DESIGN DATA										
Design Freq	uency:		2		5	10	25	50	100	Years
Drainage Ar	ea A	1_							2.44	Acres
	٩	·2_								Acres
	A	ر ا_3								Acres
-	Total (/	٦)							2.44	Acres
Drainage Le		_								Feet
Elevation				-	•					,
Top of	Drainage Area								1601.5	Feet
At Stru	cture								1584.5	Feet
Drainage Ar	ea Siope								4.47	Percent
Hydrologic S	Soil Group:	_							В	-
DESIGN COMF	PUTATIONS					-				
Frequency F	Factor (F):		1.00	1.00	1.00	1	.10	1.20	1.25	
Time of Cor	centration:								5	Minutes
•		_								
Rainfall Inte	nsity (I):	L	2.4	<u> </u>	3.9			5	5.8	Inches/Hr
					•		•			(Figure 2.2-13)
Runoff Coef	• •	^{;1} _	· .	· 			· —.		0.90	
	C)2 _						<u> </u>		-
	, (C3_	· .					· ·	<u> </u>	_
Weighted. F	Runoff Coefficient (Cw): _			-					-
Peak Disch	arge Qp = CwIA(F)		5	[9			13	15.9	cfs
	Compute	ed B	y:	Jeff	Hunter	Date	9 :	6/27	<u>/0</u> 0	_
	Checked	By:				Date	ə: <u> </u>			<u>-</u>

LOCATION DATA			,	•		÷		
Project: McDowell Mounta	in Villag	ge Center	· · · · · · · · · · · · · · · · · · ·	Concent	ration Point:	CP	-3	
Existing pre-developed condition								•
Project No.:CNTR0001					_ Station:	·	ī	•
Name of Stream/Watershed:	_						 	•
DESIGN DATA								,
Design Frequency:		2	5	1	0 25	50	100	Years
Drainage Area	A1_						17	Acres
·	A2 _			-			•	Acres
	A3						S	Acres
Tota	al (A) _						17	Acres
Drainage Length:		٠		٠			1300	Feet
Elevation				₹.		•		
Top of Drainage Area				ς.	·		1631.6	Feet
At Structure	_				·	•	1584.8	Feet
Drainage Area Slope							3.60	Percent
Hydrologic Soil Group:							В	<u>-</u>
	_							_
DESIGN COMPUTATIONS	_		• •			· ·		•
Frequency Factor (F):	L	1.00	1.00	1.00	1.10	1.20	1.25	
Time of Concentration:	_			·	· · ·		5	Minutes
	_					<u> </u>	,	_
Rainfall Intensity (I):	L	2.4		3.9	<u> </u>	5	5.8	Inches/Hr
			-					(Figure 2.2-13
Runoff Coefficient (C):							0.40	<u>)</u>
•	C2_		<u> </u>	· .		. •		<u>.</u>
	C3_	<u> </u>						-
Weighted. Runoff Coefficient (Cw): _		 					-
Peak Discharge Qp = CwIA(F)		16		27		41	49.3	cfs
Comi	Computed B			By: Jeff Hunter			7/00	
	ked By	•		MINO	Date: Date:			-
51100	y							-

FINAL DRAINAGE REPORT FOR MCDOWELL MOUNTAIN MARKETPLACE

PREPARED FOR

McDOWELL MOUNTAIN MARKETPLACE, LLLP 6900 EAST 2ND STREET SCOTTSDALE, ARIZONA 85251

PREPARED BY

GEOFFREY S. BROWNELL, E.I.T.
DAVID EVANS AND ASSOCIATES, INC.
7878 N. 16TH STREET
PHOENIX, AZ. 85020
(602) 678-5151

FEBRUARY 2001 DEA PROJECT NO. CNTR0002

TABLE OF CONTENTS

SECTION	TITLE	PAGE NO.
1.0 INTRODU	CTION	
2.0 EXISTING	DRAINAGE CONDITIONS	
3.0 PROPOSE	D DRAINAGE CONCEPT	
3.2 Off-site	Drainage Conveyance	
4.0 HYDROLO	OGIC ANALYSIS	
5.0 HYDRAUL	IC ANALYSIS	4
6.0 CONCLUS	IONS	
7.0 REFEREN	CES	
	-	
FIGURES	TITLE	LOCATION
1	Vicinity Map	Appendix A
TABLES	TITLE	LOCATION
4.1	Summary of Peak Flows	
5.1	Summary of Inlet Type & Size	Section 5.0
EXHIBITS	TITLE	LOCATION
A	On-site Drainage Area Map	Back Pocket
APPENDIX	TIFLE	
A	Figures	
В	FEMA Flood Insurance Rate Map	() CONTRACTOR OF CONTRACTOR O
C	Hydrologic Calculation and Data Sheets	
D	Hydraulic Calculation and Data Sheets	E 2 2 2 3 3 5 5 5
E	HEC-RAS Output Sheets	The still st

1.0 INTRODUCTION

7

ì

ì

This Final Drainage Report has been prepared under a contract from McDowell Mountain Marketplace, LLLP, Owner/Developer of the proposed commercial project at the southwest corner of Bell Road and Thompson Peak Parkway. This site will be part of the McDowell Mountain Ranch Master Planned Community. The purpose of this report is to provide the hydrologic and hydraulic analyses, required by the City of Scottsdale, to support the commercial lot development. Preparation of this report has been done in accordance with the procedures detailed in the City of Scottsdale's Design Standards and Policies Manual, Chapter 2 (Reference 1).

The project site is located in the City of Scottsdale, in the northern portion of Section 5, Township 3 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. More specifically, the site is located in Parcel R of the McDowell Mountain Ranch Master Planned Community and is bounded by Thompson Peak Parkway on the east, Bell Road on the north and a residential development on the south. With the development of this project and the site on the south, 100th Street will be built along the western project boundary. Access to the site will be provided along 100th Street, Thompson Peak Parkway and Bell Road. Figure 1, located in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale's street system.

2.0 EXISTING DRAINAGE CONDITIONS

The proposed project site is a 17 acre undeveloped parcel, currently vacant, with significant native vegetation. The site has a general slope to the southwest of about 4.0 percent. Several natural drainage corridors transport offsite runoff through the project site.

As part of the McDowell Mountain Ranch Master Planned Community, storm water drainage is addressed in the Master Drainage Report for McDowell Mountain Ranch Parcels "A" - "R" prepared by Clouse Engineering (Reference 2). In its undeveloped condition, runoff generated upstream of the project site is conveyed through the project site by the historic drainage corridors. This runoff is conveyed onto the project site via five 30" concrete pipes under Bell Road.

The flood hazard zones determined in the area were derived from the Scottsdale Area Drainage Master Study prepared by Boyle Engineering Corp. (Reference 3). The study determines the ponding elevations caused by the canals and other obstructions in the area. The current published FEMA Flood Insurance Rate Map (FIRM) for this area, map number 04013C1265 E (Effective date December 3, 1993), shows the project site is entirely within flood hazard Zone X. Zone X is defined as "Areas of 500-year flood; areas of 100-year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 100-year flood". A copy of the FIRM is located in Appendix B.

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: on-site drainage conveyance, off-site drainage conveyance, and on-site storm water retention. The hydrologic analysis is summarized in section 4.0 and the hydraulic analysis is summarized in section 5.0. See Exhibit A, located in the back pocket, for graphical illustration of the proposed drainage concept.

3.1 On-site Drainage Conveyance

The on-site drainage area is divided into 16 sub-basins. Runoff from these areas will enter the historic drainage corridors downstream via catch basins and storm drain. Curb openings will also be utilized to route flow from paved parking areas to the historic drainage corridors. Roof drains will be utilized to route flow to the paved parking areas and into the storm drain system.

3.2 Off-site Drainage Conveyance

Off-site drainage-conveyance is addressed in the McDowell Mountain Ranch Master Drainage Report. Runoff from the off-site watershed to the north and east is routed through and around the project site via culvert crossings under Bell Road. Runoff crossing Bell Road east of Thompson Peak Parkway is diverted south along the east side of Thompson Peak Parkway. Runoff crossing Bell Road along the project's northern boundary is routed on-site via five 30" concrete pipes under Bell Road. This runoff, approximately 121 cfs, will be routed through the site by the storm drain system, and returned to its historic drainage corridor, Wash "G".

Runoff generated along Thompson Peak Parkway flows to the south away from the project site. Runoff generated along Bell Road flows west and is intercepted by catch basins approximately 950 feet west of Thompson Peak. These catch basins are on-grade, and therefore only intercept approximately 6.6 cfs of the total 24.5 cfs at that point according to Basis of Design Report for Bell Road Improvement District #13704 prepared by Kaminski-Hubbard Engineering (Reference 4). The intercepted flow will be routed through the project site via storm drain system to Wash "G". Flowby continues west down Bell Road away from the project site. Runoff generated along the 100th Street half street adjacent to the project will be routed to Wash "G" by catch basin. The condominium project directly south of McDowell Mountain Marketplace is routing approximately 14.6 cfs to Wash "G" by way of an existing wash corridor along the southern property line. This flow is addressed in the Cachet at McDowell Mountain Ranch, Phase II report by Rick Engineering (Reference 5).

3.3 On-site Storm Water Retention

The City of Scottsdale has waived retention requirements if the post-developed runoff from the site does not exceed the pre-developed historic runoff rate entering Wash "G", and runoff has been included in a storage facility downstream. According to the McDowell Mountain Ranch Master Drainage Report, the pre-development 100-year runoff entering Wash "G" immediately downstream of the project site totals 282 cfs. This includes 230 cfs from the off-site watershed and 52 cfs generated within the project boundaries. In post-development condition, 109 cfs from off-site is diverted down Thompson Peak Parkway with 121 cfs routed through the project site. Post-development on-site runoff is approximately 142 cfs. This includes 14.6 cfs from the development directly south of McDowell Mountain Marketplace. Thus, runoff entering Wash "G" has been decreased by approximately 19 cfs. Furthermore, historic runoff from Wash "G" has been included in the Bureau of Reclamation retention area behind the Central Arizona Project dike downstream.

4.0 HYDROLOGIC ANALYSIS

The hydrologic analysis for this study has been prepared in accordance with the City of Scottsdale's Design Standards and Policies Manual, Chapter 2. Peak flows for the site were computed using the Rational Method. Time of concentration was calculated using the velocities from Figure 2.2-14. The intensities were then determined from the I-D-F curves, included in Appendix C. The following establishes the Rational Method equation and the basic input data required:

$$Tc = (L/V)/60$$

$$Q = C_{wt}IA$$

Where:

Q = Peak Flow (cfs)

C_{wt} = weighted runoff coefficient relating runoff to rainfall

I = average rainfall intensity in inches/hour, lasting for T_c

A =the contributing drainage area in acres (from Exhibit A)

 $T_c = time of concentration (min.)$

L = drainage length (ft.)

V = minimum velocity of stormwater in street flowing at curb height (fps)

A weighted C coefficient was used for each sub-basin. The weighted C value was determined by using a 100-year C coefficient of 0.95 for paved areas and 0.31 for NAOS areas.

A summary of peak flows for the 10-year (Q_{10}) , 50-year (Q_{50}) , and 100-year storm (Q_{100}) events is shown below in Table 4.1. Appendix C contains the detailed calculation sheets that establish the input data and estimated peak flow values for drainage areas.

SUMMARY OF PEAK FLOWS Table 4.1

Sub-basin Designation	Qio(cis)	Q ₅₀ (cfs):	' Q _{IOO} (cfs)	Sub-basin Designation	Q _{ip} (cfs)	Oxe (cfs)	C _{ióo} (cfs)
	3.3	5.2	6.2		0.4	0.6	0.7
2	2.7	4.3	5.1	10	9.6	15.3	18.1
	3.7	5.9	7.0	14	0.5	0.7	0.9
	6.1	9.7	11.4	12	6.1	9.7	11.5
5	8.6	13.7	16.2	19	6.0	9.6	11.3
6	5.1	8.2	9.7		2.0	3.2	3.8
	7.6	12.2	14.4	. 15 E	1.9	3.1	3.7
	4.8	7.6	9.0	116	1.0	1.6	1.8

5.0 HYDRAULIC ANALYSIS

The hydraulic analyses of the proposed storm water management facilities have been completed according to the City of Scottsdale's Design Standards and Policies Manual, Chapter 2 and the Drainage Design Manual for Maricopa County, Arizona, Volume II (Reference 6).

Haestad Method's FlowMaster computer program (Reference 7) was used to analyze the flow depth for runoff generated along 100th Street. FlowMaster uses Manning's equation to establish flow depths for a user defined channel section. Flow depth along 100th Street was determined to be approximately 0.28 feet for the 100-year storm event. Detailed calculation and data sheets are included in Appendix D.

The on-site catch basins were sized using the weir and orifice equations with a 50% clogging factor. Flow depth at the grate inlets was analyzed using both equations. The analysis resulting in the greater flow depth was used for the water surface elevation determination. Detailed calculation and data sheets are included in Appendix D.

The HEC-12 computer software program by SMF Engineering (Reference 8) was utilized to size the off-site catch basin on 100th Street. The opening was sized to intercept the 100-year peak discharge. The water depths calculated by the HEC-12 program include the 2 inch gutter depression for the sump condition. Table 5.1 summarizes inlet type and size along with water surface elevations at each inlet. Detailed calculation and data sheets are located in Appendix D.

Summary of Inlet Type & Size Table 5.1

(Cepte-mappe)	a grij bikin	entitati.	为为社员在中国人的现代 从			10,45%
			CONTRACTOR OF THE PARTY OF THE		SI	(4) [819
1	COP 1569-1/3' Wing	1587.73	0.27	0.41	1587.83	1587.97
2	MAG 535-'F'	1600.00	0.33	0.51	1600.33	1600.51
3	MAG 535-'F'	1596.85	0.41	0.63	1597.26	1597.48
5	MAG 535-'F'	1598.90	0.72	1.24	1599.62	1600.14
6	MAG 535-'F'	1599.87	0.51	0.78	1600.38	1600.65
7	MAG 535-'F'	1599.05	0.67	1.02	1599.72	1600.07
10	MAG 535-'F'	1605.20	0.78	1.54	1605.98	1606.74
15	MAG 535-'F'	1588.50	0.26	0.41	1588.76	1588.91
16	MAG 535-'F'	1596.75	0.17	0.25	1596.92	1597.00

^{*} All catch basins are in sump condition.

1

The storm drain system was sized using Haestad Method's StormCad computer program (Reference 9). The storm drain system was sized to convey the 10-year flow with the hydraulic grade line at least 0.5 feet below any rim or gutter elevation. The 100-year flow was also analyzed to ensure the hydraulic grade line remains below the ponding elevation at the inlets. The storm drain system conveying the off-site flow from north of Bell Road through the site was sized for the 100-year storm event. The condominium site to the south of McDowell Mountain Marketplace provided a stub to an existing storm drain system to drain the southeast corner of the

project site. This system was also analyzed to ensure adequate capacity. Detailed calculation and data sheets are included in Appendix D.

FlowMaster was used to establish the minimum criteria for the small channel connecting the culvert outlet under Bell Road and the culvert entrance for the storm drain that will convey this flow through the project site. It was determined that the channel must be at least 4.5 feet in depth with 3:1 side slopes. Furthermore, the channel must be approximately 25 feet wide with at least a 2% longitudinal slope. These parameters were established based on a natural channel.

Flow depth at the culvert entrance downstream of the channel was established by analyzing the weir depth into the drop structure. Haestad Method's CulvertMaster computer program (Reference 10) was used to perform this analysis. This program uses the broad crested weir equation to establish weir depths. The flow depth at the culvert entrance was found to be 3.61 feet above the weir into the drop structure for the 100-year storm event. The weir depth was used to establish minimum channel depth allowing at least 0.5 feet of freeboard for the 100-year storm event. Using StormCad, the water surface elevation at the culvert entrance within the drop structure was determined to be 1597.93 for the 100-year storm event. Detailed calcualtion and data sheets are included in Appendix D.

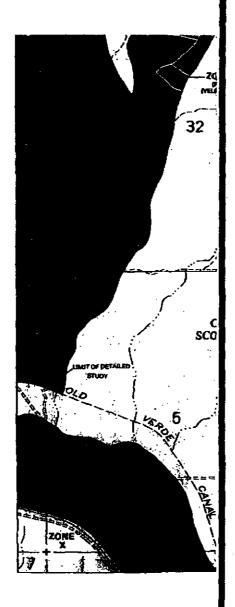
CulvertMaster was also used to analyze the culvert at the southwest corner of the project site. The existing CMP culverts will be extended with the 100th Street improvements. CulvertMaster was used to establish the head water depth at the inlet, and to ensure sufficient capacity to convey the required flow. Headloss at the bend/manhole was also taken into consideration while establishing the headwater depth. The head water depth was determined to be 1587.70. This head water depth was then used as the downstream condition for the analyses to determine if the upstream wash can convey the required flow. The Army Corps of Engineer's HEC-RAS (Reference 11) computer program was used for these analyses. Flow entering the channel includes 14.6 cfs from the condominium site to the south, and 16.6 cfs (Sub-basins 8, 9, 11 and 13) from McDowell Mountain Marketplace for the 100-year storm event. Predevelopment flow entering this wash from the project site totaled approximately 11.3 cfs for the 100-year storm event. Detailed calculation and data sheets are included in Appendix D and E. HEC-RAS cross section locations are shown on Exhibit A, located in the back pocket.

6.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:

- The site can be developed in accordance with City of Scottsdale's Design Standards and Policies Manual, Chapter 2.
- The site can be developed such that the prerequisites for waived retention can be met.
- The finish floor elevations are set a minimum 12 inches above the 100-year water surface elevation.

7.0 REFERENCES


- 1) City of Scottsdale's Design Standards and Policies Manual, Chapter 2, July, 1996
- 2) Master Drainage Report for McDowell Mountain Ranch Parcels "A" "R", Clouse Engineering, November 1993.
- 3) Scottsdale Area Drainage Master Study prepared by Boyle Engineering Corp., December, 1986
- 4) Basis of Design Report for Bell Road Improvement District #13704, Kaminski-Hubbard Engineering, December 1993.
- 5) Cachet at McDowell Mountain Ranch, Phase 2, Rick Engineering, March 2000.
- 6) Drainage Design Manual for Maricopa County, Arizona, Volume II, January 1996.
- 7) Haestad Methods FlowMaster PE, Version 6.0
- 8) SMF (Scott, Meyer, Ferguson) Pavement Drainage Program, HEC-12, Version 2.11
- 9) Haestad Method's StormCad, Version 4.1.1
- 10) Haestad Methods CulvertMaster version 1.0
- 11) U.S. Army Corps of Engineer's HEC-RAS, Version 2.2

APPENDIX A (Figures)

т Э,

... [v]

APPENDIX B
(FEMA Flood Insurance Rate Map)

NATIONAL FLOOD INSURANCE PROGRAM

FIRM

FLOOD INSURANCE RATE MAP

MARICOPA COUNTY, ARIZONA AND INCORPORATED AREAS

PANEL 1265 OF 4350

CONTAINS:

COMMUNITY

NUMBER

PANEL SUFFIX

econtenal é elly ne

MAP NUMBER 04013C1265 E

MAP REVISED: DECEMBER 3, 1993

Federal Emergency Management Agency

PORTION OF

FIRM PANEL

APPENDIX C
(Hydrologic Calculation and Data Sheets)

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DA							•		•
•	McDowell Mount	ain Ma	ketplace		_Concentr	ation Point:	1		-
Location:	CP1	· ·							•
•	CNTR0002			<u>.</u>		_ Station:			-
Name of St	ream/Watershed:	· <u> </u>		· ·		·	·		-
DESIGN DATA	*								
Design Fred	uency:		2	5	10	25	50	100	Years
Drainage Ai	rea	A1_					<u> </u>	0.96	Acres
									Acres
		73_							Acres
	Tot	al (A)	-					0.96	Acres
Drainage Le	ength:	_						580	Feet
Elevation									
Top of	Drainage Area	_							Feet
At Str.	icture	_							Feet
Drainage A	rea Slope	_						2.51	Percent
Hydrologic :	Soil Group:	_	<u>.</u>			-		B	- .
DESIGN COMP	PUTATIONS			·					Ÿ
Frequency	Factor (F):	[1.00	1.00	1.00	1.10	1.20	1.25]
Time of Co	ncentration:	_					V	5	Minutes
Rainfall Inte	ensity (I):	Г		1 -	6.1	 	8.1	9.2	Inches/i-
, (a		_							(Figure 2.2-1
Runoff Coe	fficient (C):		0.56	0.56	0.56	0.62	0.70	0.70]
	•	C2_							_
		C3_		· · · · · · · · · · · · · · · · · · ·	·			· · · · · · · · · · · · · · · · · · ·	_
Weighted. I	Runoff Coefficient	(Cw):_			· · · · · · · · · · · · · · · · · · ·		<u> </u>		-
Peak Disch	arge Qp = CwlA(F	o [I	3.3		5.2	6.2	cfs
	Com	puted E	Зу:	_	SSB	_Date:	2/19	/01	_
	Che	cked By	r :	<u> </u>	56	_Date:	2/28	101	-

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT	ΓA								
Project:	McDowell Mountai	n Ma	rketplace		Concen	tration Poir	nt:2	<u> </u>	_ 、 .
Location:	CP2								_
Project No.:	CNTR0002					Statio	n:		7 .: -
Name of Str	ream/Watershed:	_		-					-
DESIGN DATA						•			
Design Freq	luency:	r	2	5		10	25 50	100	Years
Drainage Ar	· -	A1							Acres
•		A2							Acres
		A3 _						 ,	Acres
	Total	(A) ¯						0.85	Acres
Drainage Le		_						270	Feet :
Elevation									•
Top of	Drainage Area	_	•					106.0	Feet
At Stru	cture	_						100.0	Feet
Drainage Ar	ea Slope	_						2.22	Percent
Hydrologic \$	Soil Group.	_				·		. B	<u> </u>
DESIGN COMP	UTATIONS								
Frequency F	Factor (F):	ſ	1.00	1.00	1.00	1.10	1.20	1.25	7
Time of Con	centration:							5	Minutes
		_							-
Rainfall Inte	nsity (i):				6.1		8.1	9.2	Inches/H
			-	<u>- —</u>					 (Flgure 2.2-1:
Runoff Coef	ficient (C):	C1_	0.52	0.52	0.5	0.5	7 0.65	0.65	<u>i</u>
		C2_							-
		C3_							_
Weighted. R	tunoff Coefficient (C	>w):_	 		 -		 -		_
Peak Discha	irge Qp = CwlA(F)				2.7		4.3	5.1]cfs
	Compt	rted E	By:	_ G	SB	Date:	2/19	/01	ż
	Check		_	93	6	Date:	2/281	01	-
			_	7		_	7 - 7		_

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DATA			1	,	•		
Project: McDowell	Mountain Marketpla	ce	Concentra	tion Point: _	3		•
Location: Scot	ttsdale				· · · · · · · · · · · · · · · · · · ·		•
Project No.:CNT	R0002	·····		Station:			•
Name of Stream/Wate	rshed:						
DESIGN DATA	•		- -	•			
Design Frequency:		2 5	10	25	50	100	Years
Drainage Area	A1				 ^		Acres
							Acres
							Acres
		······································			-	0.8	Acres
Drainage Length:	• • • • • • • • • • • • • • • • • • • •	·		· · · · · · · · · · · · · · · · · · ·			Feet
Elevation							-
Top of Drainage A	Area		•		4	104.00	Feet
At Structure						98.85	Feet
Drainage Area Slope						2.17	Percent
Hydrologic Soil Group:						В	_
DESIGN COMPUTATION	NS	-			-	•	
Frequency Factor (F):	1.00	1.00	1.00	1.10	1.20	1,25	1
Time of Concentration:		1.00	1.00	1.10	1.20) Minutes
Time of Concentration.	•						MILLIPIES
Rainfall Intensity (I):			6.1		8.1	9.2	inches/H
		· · · · · · · · · · · · · · · · · · ·					- (Figure 2.2-1
Runoff Coefficient (C):	C10.	76 0.76	0.76	0.84	0.95	0.95	<u>.</u>
,	C2						_
	C3						_
Weighted. Runoff Coef	fficient (Cw):						-
Peak Discharge Qp = (WA(E)	1	3.7		5.9	7.0	cfs
i can Disolarge up = (·		- 1.0	loia
	Computed By:	G	SB	Date:	2/26	/01	_
	Checked By:		58	Date:	2/28	101	=

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCA1	TION DATA	4	-							
P	Project: <u>N</u>	AcDowell Mounta	in Ma	rketplace		Concenti	ration Point:	4	·	
_	ocation:	Scottsdale		·					_·	. .
P	Project No.: _	CNTR0002	·	· · · · · ·			Station:			
N	lame of Strea	am/Watershed:	-			·				-
DESIG	N DATA						. .			
D	esign Freque	ency:	` . F	2	5	10	0 25	50	100	Years
	rainage Area	- .	A1	-				· · · · · · · · · · · · · · · · · · ·	1.31	Acres
	,	•	A2							Acres
			A3							Acres
	-	Tota	I (A)				- ,		1.31	Acres
ם)rainage Len								240	Feet
E	levation									•
	Top of D	rainage Area	_		_				100.00	Feet
	At Struct	ure							95.20	Feet
D	rainage Area	s Slope							2.00	Percent
Н	lydrologic So	oil Group:	_						В	•
DESIG	N COMPU	ITATIONS								
	requency Fa		Γ	1,00	1.00	1.00	1.10	1.20	1.25	} .
	ime of Conc		L_			1				, Minutes
•		•	_			 -	 -			
F	Rainfall Inten:	sity (I):				6.1		8.1	9.2	Inches/H
	Runoff Coeffic	dent (C):	C1	0.76	0.76	. 07	6 0.84	0.95	0.95	(Figure 2.2-1:
ľ	ralion Coeun	Gen (C).	_							•
			C3				 			•
٧	Veighted. Ru	noff Coefficient (_							•
P	eak Dischan	ge Qp = CwlA(F)	.[6.1		9.7	11.4	cfs
,		Comp	uted E	∃y:	Ģ G	SB	Date:	2/26	/01	
		Check				58	Date:	2/28		-
			•	•				/		•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DATA			6	stice Polet.		,		
Project: McDowell Mountain Location: Scottsdale	магкетріас						-	
Project No.: CNTR0002		Station:						
Name of Stream/Watershed:	- ;						-	
DESIGN DATA								
Design Frequency:		2 5		25	50	100	Years	
Drainage Area A	.1				· · · · · · · · · · · · · · · · · · ·	1,96	Acres	
A	¹²						Acres	
A	\3						Acres	
Total (/	4)						Acres	
Drainage Length:						260	Feet	
Elevation	•			**				
Top of Drainage Area			 			106.00	-	
At Structure		· · · · · · · · · · · · · · · · · · ·				98,90		
Drainage Area Slope				 			Percent	
Hydrologic Soil Group:						В	<u>.</u>	
DESIGN COMPUTATIONS							_	
Frequency Factor (F):	1.00	1.00	1.00	1.10	1.20	1.25	}	
Time of Concentration:						5	Minutes	
Rainfall Intensity (I):			6.1		8.1	9.2]Inches/Hr	
Runoff Coefficient (C):	: . 31 0.72	2 0.72	2 0.72	2 0.79	0.90	0.00	(Figure 2.2-13	
• •						0.90	<u>_</u>	
				<u> </u>			- .	
Weighted. Runoff Coefficient (Cw	/):				· · · · · · · · · · · · · · · · · · ·		<u>.</u>	
Peak Discharge Qp = CwiA(F)	Γ	<u> </u>	8.6	1 - 1	13.7	16.2	1 _{cfs}	
· · · · · · · · · · · · · · · · · · ·	· .		<u> </u>	*			,	
Compute	G	SB	Date:	2/19	/01			
Checked	Checked By:				2/2	8/01		

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT	ΓA							•	
Project:	: McDowell Mountain Marketplace			·	Concentration Point:			6	
Location:	Scottsdale					<u> </u>			•
Project No.:	CNTR0002					Station: _		:	
Name of Str	earn/Watershed:	_						· · · · · · · · · · · · · · · · · · ·	•
DESIGN DATA									
Design Freq	uency:	Γ	2	5	10	25	50	100	Years
Drainage Area		A1						1.11	Acres
_		A2 _						•	Acres
		A3_							Acres
-	Total	(A)_							Acres
Drainage Le							· · · · ·	196	Feet
Elevation								-	
Top of	Drainage Area	٠						104.00	Feet
At Stru	cture	_						99.75	Feet
Drainage An	ea Slope	_			<u>,</u>		· · · · · · · · · · · · · · · · · · ·	2.17	Percent
Hydrologic S	Soil Group:	_	·		<u>-</u>	 		В	•
DESIGN COMP	UTATIONS								
Frequency F	Factor (F):	Γ	1.00	1.00	1.00	1.10	1.20	1.25	1
Time of Con	, ,	_						5	Minutes
•		_							•
Rainfall Inte	nsity (I):				6.1		8.1	9.2	Inches/H
	•					-			(Figure 2.2-1
Runoff Coef	ficient (C):	_	0.76		0.76	0.84	0.95	0.95	•
		C2_		· · · · · · · · · · · · · · · · · · ·					•
		C3_						:	•
Weighted, R	lunoff Coefficient (Cw):_							•
Peak Discha	arge Qp = CwIA(F)				5.1		8.2	9.7	cfs
	Comp	uted E	Ву:	GS	B [Date:	2/19	/01	
	Checked By:		95	956 Date:			2/28/01		
		•	. •			-	-//		•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION D Project:	McDowell Mountain	Marketr	olace		Concentra	ation Point: _	7	<u> </u>	
Location:									•
_	o.: <u>CNTR0002</u>					_ Station: _			
Name of	Stream/Watershed:								•
DESIGN DAT	·A						· · · · · · · · · · · · · · · · · · ·		
Design F	requency:		2	5	10	25	50		Years
Drainage	Area	A1						1.85	Acres
		A2							Acres
		A3							Acres
-	Total	(A)		···	<u> </u>				Acres
Drainage	Length:							325	Feet
Elevation	1	•							
Тор	of Drainage Area					 .		106.00	•
	Structure						<u> </u>	99.50	-
_	Area Slope								Percent
Hydrolog	ic Soil Group:			 				B	-
DESIGN COI	MPUTATIONS								1
Frequenc	cy Factor (F):	1.	00	1.00	1.00	1.10	1.20	1.25	ł
Time of (Concentration:							5	Minutes
Rainfall I	Intensity (I):	·			6.1		8.1	9.2	Inches/H
Runoff C	coefficient (C):	C1		0.76			0.95	0.95	(Figure 2.2-1)
		C2							- .
Weighte	d. Runoff Coefficient (- -
Peak Dis	scharge Qp = CwlA(F)			<u> </u>	7.6		12.2	14.4	cfs
	Comp	uted By:		G	SB	Date:	2/19	/01	
	•	ed By:	-		6	Date:		8101	•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DATA						•			
Project:	McDowell Mountain	Mar	ketplace	<u> </u>	Concentra	tion Point:	8		•
Location:	Scottsdale								-
Project No.:	CNTR0002				 -	Station:	<u></u>		
Name of Stre	eam/Watershed:	_							-
DESIGN DATA									
Design Frequ	lency:		2	5	. 10	25	50	100	Years
Drainage Are		A1						1.95	Acres
_		A2							Acres
		A3				7			Acres
	Total ((A) ·						1.95	Acres
Drainage Ler								330	Feet
Elevation						-			_
Top of (Orainage Area							113.50	Feet
At Struc	ture					· · · · · · · · · · · · · · · · · · ·		100.00	Feet
Drainage Are	ea Slope							4.09	Percent
Hydrologic S	oil Group:	_		`.				В	-
DESIGN COMPI	UTATIONS								
Frequency F	actor (F):	Γ	1.00	1.00	1.00	1.10	1.20	1.25	}
Time of Cone	- ·	_						5	Minutes
·									<u>-</u>
Rainfall Inter	nsity (I):				6.1		8.1	9.2	Inches/H
	deiest (C)	C4	0.40	0.40	0.40	0.44	0.50	0.50	(Figure 2.2-1
Runoff Coeff		C1_ C2		0.40	0.40		0.50	0.50	•
		C2_ C3	· -						•
Weighted. R	unoff Coefficient (C	_							•
	, •	_							- -
Peak Discha	rge Qp = CwlA(F)				4.8		7.6	9.0	cfs
•	Compu	ted B	y:	GS	В	Date:	2/19/	01	
	Checke	d By:	:	<u>9</u> 5	6	Date:	2/6	18/01	•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT	ΓΑ		•				•		
Project:	McDowell Mount	ain Ma	rketplace	<u></u>	Concent	ration Point:		<u> </u>	_
Location:	Scottsdale							· ·	- ·
Project No.:		<i></i>	 			_ Station:			-
Name of Str	eam/Watershed:	-							-
DESIGN DATA							_		_
Design Freq	uency:		2	5	1	0 25	50	100	Years
Drainage Ar	ea	A1_						0.08	Acres
		A2_					·	· ·	Acres
		, A3_							Acres
	Total	ai (A) _		<u> </u>				0.08	Acres
Drainage Le	ength:			<u></u>				48	Feet
Elevation									
	Drainage Area	_						101.00	_
At Stru		_						100.00	- ,
Drainage Ar	-								Percent
Hydrologic \$	Soil Group:	-	<i>a</i>					· B	<u> </u>
DESIGN COMP	UTATIONS	_							_
Frequency F	Factor (F):		1.00	1.00	1.00	1.10	1.20	1.25]
Time of Cor	ncentration:							5	Minutes
Rainfail Inte	nsity (I):				6.1	<u></u>	8.1	9.2]inches/Hr
									(Figure 2.2-13
Runoff Coef	fficient (C):	C1_		0.76				0.95	<u>í</u> .
		C2_				·	·		_
		C3_							_
Weighted. F	Runoff Coefficient	(Cw):_					<u> </u>		-
Peak Discha	arge Qp = CwIA(F) [0.4		0.6	0.7	cfs
	Com	puted E	Ву: _		SB	_Date:	2/19		-
	Chec	ked By	<i>r</i> :	9	6	Date:	2/2	8101	

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

Design Frequency: 2 5 10 25 50 100 Years	LOCATION DAT	ΓΑ								
Project No.:	Project:	McDowell Mounta	in Mai	rketplace	· 	Concentral	ion Point:_	10	·	ı
DESIGN DATA Design Frequency: 2 5 10 25 50 100 Years Drainage Area A1 2.32 Acres A						<u>. </u>				
DESIGN DATA Design Frequency: Drainage Area A1 A2 Acres A3 Acres Total (A) Drainage Length: Elevation Top of Drainage Area At Structure Drainage Area Slope Hydrologic Soil Group: DESIGN COMPUTATIONS Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (CW): Peak Discharge Qp = CwlA(F) Pigure 22-1: C3 C4 C5 C5 C5 C6 C6 C6 C6 C6 C6 C6						·	Station: _			
Design Frequency: 2 5 10 25 50 100 Years	Name of Str	ream/Watershed:					· · · · · · · · · · · · · · · · · · ·			
Drainage Area A1	DESIGN DATA			_						
Drainage Area A1	Design Freq	uency:		2	5	10	25	50	100	Years
A2 Acres A3 Acres Total (A) 2.32 Acres Drainage Length: 370 Feet Elevation Top of Drainage Area At Structure 5.50 Feet Drainage Area Slope Hydrologic Soil Group: B DESIGN COMPUTATIONS Frequency Factor (F): 1.00 1.00 1.00 1.10 1.20 1.25 Time of Concentration: 5 Minutes Rainfall Intensity (I): 6.1 8.1 9.2 Inches/Hi (Figure 22-1: Runoff Coefficient (C): C1 0.68 0.68 0.68 0.75 0.85 0.85 C2 C3 Weighted. Runoff Coefficient (CW): Peak Discharge Qp = CwIA(F) 9.6 15.3 18.1 cfs		•	A1						2.32	Acres
Acres Total (A) 2.32 Acres			A2_							Acres
Drainage Length: 370 Feet			A3_							Acres
Drainage Length: 370 Feet		Tota	il (A) _						2.32	Acres
Top of Drainage Area At Structure Drainage Area Slope Hydrologic Soil Group: DESIGN COMPUTATIONS Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (CW): Peak Discharge Qp = CwlA(F) C3 C4 C5 C5 C6 C7 C7 C8 C8 C9 C9 C9 C9 C9 C9 C9 C9	Drainage Le								370	Feet
At Structure	Elevation									
Drainage Area Slope	Top of	Drainage Area	_	·						•
Hydrologic Soil Group: B			_	<u>. </u>		<u></u>				•
DESIGN COMPUTATIONS Frequency Factor (F): 1.00 1.00 1.00 1.10 1.20 1.25 Time of Concentration: 5 Minutes Rainfall Intensity (I): 6.1 8.1 9.2 Inches/Hi Runoff Coefficient (C): C1 0.68 0.68 0.75 0.85 0.85 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.8 15.3 18.1 cfs Computed By: GSB Date: 2/19/01	_	•	_				 			•
Frequency Factor (F): 1.00 1.00 1.00 1.10 1.20 1.25 Time of Concentration: 5 Minutes Rainfall Intensity (I): 6.1 8.1 9.2 Inches/Hi Runoff Coefficient (C): C1 0.68 0.68 0.75 0.85 0.85 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01	Hydrologic !	Soil Group:	-				 	··· ·· <u> </u>	<u>B</u>	
Time of Concentration: 5 Minutes Rainfall Intensity (I): 6.1 8.1 9.2 Inches/Hi (Figure 2.2-1: Runoff Coefficient (C): C1 0.68 0.68 0.75 0.85 0.85 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01	DESIGN COMP	PUTATIONS						•		
Rainfall Intensity (I): C1	Frequency i	Factor (F):	Γ	1.00	1.00	1.00	1.10	1.20	1.25	
Runoff Coefficient (C):	• =	- ·	_						5	Minutes
Runoff Coefficient (C):				,						
Runoff Coefficient (C): C1	Rainfall Inte	ensity (I):				6.1	I	8.1	9.2	Inches/Hi
C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01	•	•						<u> </u>		(Figure 2.2-13
C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01	Runoff Coef	fficient (C):	C1_	0.68	0.68	0.68	0.75	0.85	0.85	
Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01			C2_							
Peak Discharge Qp = CwlA(F) 9.6 15.3 18.1 cfs Computed By: GSB Date: 2/19/01			_							•
Computed By: GSB Date: 2/19/01	Weighted. F	Runoff Coefficient ((Cw):_				<u> </u>			•
Computed By: GSB Date: 2/19/01	Rook Disch	omo Oo = OudAÆ				06		15.2	40 4	lara
· · · · · · · · · · · · · · · · · · ·	Peak Disch	arge Qp - CwiA(P)	' <u>L</u>		l	9.0		15.5	18,1	CIS
Checked By:		Comp	outed E	Эу:	GS	B	Date:	2/19/	' 01	
		Chec	ked By	<i>r</i> :	95	B	Date:	2/28	101	

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DA	TA								
Project:	McDowell Mount	ain Ma	rketplace	<u> </u>	Concentra	tion Point:	. 11		•
Location:	Scottsdale				-				
Project No.:	CNTR0002					Station:			•
Name of St	ream/Watershed:	_							-
DESIGN DATA									
Design Fred	quency:	ſ	2	5	10	25	50	100	Years
Drainage A	rea	A1	-					0.1	Acres
		A2							Acres
-	·	A3_							Acres
	- Tota	al (A) _						0.1	Acres
Drainage Le	ength:	_						120	Feet
Elevation							,		
Top of	Drainage Area	_		· · · · · · · · · · · · · · · · · · ·				8.00	Feet
At Str	ucture	·_						5,50	Feet
Drainage A	**	_			<u> </u>			2.08	Percent
Hydrologic	Soil Group:	_						В	_
DESIGN COMP	PUTATIONS	-			-			•	
Frequency	•	Г	1.00	1.00	1.00	1.10	1.20	1.25].
• •	ncentration:	L			1.00		*****		J Minutes
		-					···		
Rainfall Inte	ensity (I):				6.1		8.1	9.2]inches/H
					•				(Figure 2.2-1
Runoff Coe	fficient (C):	C1_	0.76	0.76	0.76	0.84	0.95	0.95	•
		C2_		.					-
Weighted. I	Runoff Coefficient	C3_ (Cw):			 ·	·		-	•
		•		-	\				•
Peak Disch	arge Qp = CwlA(F) [0.5		0.7	0.9	cfs
	Com	puted E	Ву:	G	SB_	Date:	2/19/	/01	•
	Ched	ked By	/:	73	6	Date:	2/20	3/01	•
	,	_				·			•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

Runoff Coefficient (C):	LOCATION DATA	\								
Project No.:	Project: <u>N</u>	IcDowell Mountain	Mar	ketplace		Concentr	ation Point:	12	<u> </u>	
DESIGN DATA Design Frequency: 2 5 10 25 50 100 Years Drainage Area A1	Location:	Scottsdale								•
DESIGN DATA Design Frequency: 2 5 10 25 50 100 Years Drainage Area A1	Project No.:	CNTR0002					Station:	<u> </u>		•
Design Frequency: 2 5 10 25 50 100 Years	Name of Strea	m/Waterşhed:	_				.,	<u> </u>		•
Design Frequency: 2 5 10 25 50 100 Years	DESIGN DATA									
Drainage Area A1		ency:		2	5	10	25	50	100	Years
A2		*	41 [_]						1.79	Acres
A3	_									Acres
Drainage Length: 355 Feet			43 _							Acres
Drainage Length: 355 Feet	-	Total (A) _						1.79	Acres
Top of Drainage Area At Structure Drainage Area Slope Hydrologic Soll Group: DESIGN COMPUTATIONS Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) C3 C4 C5B Date: 2.00 Percent 1.00 1.00 1.10 1.20 1.25 Minutes 5 Minutes (Figure 2.2-1) (Figure 2.2-1) C5 C6 C7 C8 C9 C9 C9 C9 C9 C9 C9 C9 C9			_						355	Feet
At Structure Drainage Area Slope Hydrologic Soil Group: DESIGN COMPUTATIONS Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwIA(F) C3 C4 C5B Date: 2.00 Percent 2.00 1.00 1.00 1.00 1.00 1.10 1.20 1.2		i Area							100.00	Seet
Drainage Area Slope	•	_								•
Hydrologic Soil Group: B		-·-	_	<u>. </u>						-
DESIGN COMPUTATIONS Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwtA(F) C3 C4 C5 C5 C6 C6 C6 C7 C7 C8 C9 C9 C9 C9 C9 C9 C9 C9 C9	- ,	•	_					· ·····		•
Frequency Factor (F): Time of Concentration: Rainfall Intensity (I): Runoff Coefficient (C): C1 C2 C3 Weighted. Runoff Coefficient (CW): Peak Discharge Qp = CwlA(F) C3 C4 C5 C5 C6 C6 C7 C7 C8 C8 C8 C9 C9 C9 C9 C9 C9 C9	Hydrologic Sol	ii Gioup.	_							-
Time of Concentration: 5 Minutes Rainfall Intensity (I): 6.1 8.1 9.2 Inches/H (Figure 2.2-1) Runoff Coefficient (C): C1 0.56 0.56 0.56 0.62 0.70 0.70 C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 6.1 9.7 11.5 cfs Computed By: GSB Date: 2/22/01	DESIGN COMPU	TATIONS	_							
Rainfall Intensity (I): C1	Frequency Fac	ctor (F):	L	1.00	1.00	1.00	1.10	1.20	1.25	j
Runoff Coefficient (C):	Time of Conce	entration:	_			 			5	Minutes
Runoff Coefficient (C): C1	Rainfall Intens	sity (1):				6.1		8.1	9.2	inches/H
C2 C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) 6.1 9.7 11.5 cfs Computed By: GSB Date: 2/22/01									•	(Figure 2.2-1
C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwtA(F) 6.1 9.7 11.5 cfs Computed By: GSB Date: 2/22/01	Runoff Coeffic	zient (C):	C1_	0.56	0.56	0.5	8 0.62	0.70	0.70	-
C3 Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwtA(F) 6.1 9.7 11.5 cfs Computed By: GSB Date: 2/22/01			C2_							_
Weighted. Runoff Coefficient (Cw): Peak Discharge Qp = CwlA(F) Computed By: GSB Date: 2/22/01		•	C3_							•
Computed By: GSB Date: 2/22/01	Weighted. Rui	noff Coefficient (C	w):_	 -					· ·	•
	Peak Discharg	je Qp = CwlA(F)			·	6.1		9.7	11.5	cfs
Checked Ry		Comput	ed B	ly:	G	SB	_Date:	2/22	/01	
Unecked by. Date. ABATOL		Checke	đ By	:	75	6	Date:	2/28	101	· -

FIGURE 2.2-18

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOC	ATION DAT	IA McDowell Moun	tain Ma	rketoláce	•	Concentra	tion Point:	13	,	
	Location:	Scottsdale								-
	Project No.:	CNTR0002	}				Station:			-
	Name of Str	eam/Watershed:	_							•
DES	SIGN DATA				·					
	Design Freq	uency:	[_ 2	5	10	25	50	100	Years
4.00	Drainage Ar	ea	A1_						1,45	Acres
			A2_				<u> </u>	·		Acres
			A3_		·					Acres
	-	То	tal (A) _				<u>, , , , , , , , , , , , , , , , , , , </u>	•	1.45	Acres
	Drainage Le	ngth:	_		· · · · · · · · · · · · · · · · · · ·			, 	323	Feet
	Elevation	•	•							
	-	Drainage Area	_				<u></u>		100.00	-
	At Stru		_		 -			<u> </u>	95,20	•
÷	Drainage Ar	•	_							Percent
÷	Hydrologic \$	Soil Group:	_	<u> </u>					B	-
DES	SIGN COMP	UTATIONS	_							
	Frequency F	Factor (F):		1.00	1.00	1.00	1.10	1.20	1.25	
	Time of Cor	centration:	•					·	5	Minutes
	Rainfall Inte	nsity (I):				6.1		8.1	9.2]Inches/H
										(Figure 2.2-
	Runoff Coef	fficient (C):	C1_	0.68	0.68		0.75	0.85	0.85	_
			C2_	· ·						
			C3 _		·	·		·		-
	Weighted. F	Runoff Coefficient	(Cw):_				·	-	- ,	•
	Peak Discha	arge Qp = CwlA(I	ə [6.0		9.8	11.3	cfs
		Con	iputed i	Ву:	G	SB	Date:	2/19/	/D1	_
		Che	ked By	/ :	95	6	Date:	2/20	8101	-

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT									
Project:	McDowell Mountain	n Mai	rketplace		Concentra	ition Point:	14	<u> </u>	
Location:	Scottsdale								-
Project No.:	CNTR0002					Station:	<u></u>		
Name of Str	eam/Watershed:							 	-
DESIGN DATA	•				-				
Design Freq	uency:	Γ	2	5	10	25	50	100	Years
Drainage An	-	-				•			Acres
		A2 _							Acres
		A3				· · · · · · · · · · · · · · · · · · ·			Acres
	Total	(A) _		-				0.5	Acres
Drainage Le		` -						155	Feet
Elevation			_	-					-
Top of	Drainage Area	_						100.00	Feet
At Stru	cture							95.00	Feet
Drainage Ar	ea Slope		<u>. </u>		·			3.23	Percent
Hydrologic S	Soil Group:	_					:	В	
DESIGN COMP	UTATIONS								
Frequency F	actor (F):	Γ	1.00	1.00	1.00	1.10	1.20	1.25] .
Time of Con		_						5	Minutes
	4	_							_
Rainfall Inte	nsity (f):				6.1		8.1	9.2	Inches/H
									(Figure 2.2-1
Runoff Coef		_	0.66				0.82	0.82	<u>.</u>
•		C2_							
		~ 3_							
Weighted. R	tunoff Coefficient (C	;w):_	<u> </u>				<u> </u>	<u> </u>	-
Peak Discha	irge Qp = CwlA(F)				2.0		3.2	3.8	cfs
	Compu	rted E	Ву:	_ 6	SB	Date:	2/22	/O1	
	Checke		•	75	6	Date:	2/28	3/0/	• • .

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT	ra -								
Project:	McDowell Mountain	Mari	ketplace		Concentra	ation Point:	15	<u> </u>	-
Location:	Scottsdale								_
Project No.:	CNTR0002					Station:			-
Name of Str	eam/Watershed:								-
DESIGN DATA			•						
Design Freq	uency:	F	2	- 5	10	25	50	100	Years
Drainage An	•	A1			-	<u> </u>		0.42	Acres
		A2							Acres
		A3							Acres
	Total ((A) _						0.42	Acres
Drainage Le Elevation	ngth:	_						200	Feet
Top of	Drainage Area							97.00) Feet
At Stru	cture							88.50	Feet
Drainage An	ea Siope							4.25	Percent
Hydrologic S	Soil Group:	_						E	<u>.</u>
DESIGN COMP	UTATIONS								_
Frequency F	actor (F):		1.00	1.00	1.00	1.10	1.20	1.25]
Time of Con	centration:	_		_			-		Minutes
Rainfall Inte	nsity (I):				6.1		8.1	9.2]Inches/H
Runoff Coef	, , ,	C1_		0.76			0,95	0.95	(Figure 2.2-1
	*	C2_		· -					
Weighted. R) Runoff Coefficient (Cr	^{C3} _							- -
Peak Discha	nge Qp = CwIA(F)			-	1.9		3.1	3.7	cfs
	Comput	ed B	y: _	G	SB	Date:	2/26	<u>′01</u>	_
	Checke	d By:		9	56	Date:	2/28	101	

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DAT	ΓΑ		•				1	-	
Project:	McDowell Mounta	in <u>Ma</u>	rketplace		Concentra	ation Point:	16	<u> </u>	
Location:	Scottsdale								-
Project No.:	CNTR0002			~~~~		Station:			•
Name of Str	eam/Watershed:	-							•
DESIGN DATA	-					•			
Design Freq	uency:	Γ	2	5	10	25	50	100	Years
Drainage Ar		A1							Acres
,		A2_					· .		Acres
		A3_							Acres
	Tota	I (A) _						0.21	Acres -
Drainage Le	ngth:		1		-			160	Feet
Elevation									
Top of	Drainage Area	_		<u> </u>				98.05	Feet
At Stru	- -	_						96.75	Feet
Drainage Ar	<u>-</u>	_			···			0.81	Percent
Hydrologic S	Soil Group:	_					·	В	
DESIGN COMP	UTATIONS								
Frequency F	actor (F):		1.00	1.00	1.00	1.10	1.20	1.25	1
Time of Con	centration:	_						5	Minutes
		_							•
Rainfall Inte	nsity (I):	L			6.1		8.1	9.2	inches/H
Dune# Conf	Feignt (C)	01	0.76	0.76	0.70	0.04	2.25	0.05	(Figure 2.2-1)
Runoff Coef	ilcient (C);	_	0.76		0.76		0.95	0.95	•
		C2_							•
Weighted, R	tunoff Coefficient (_							
Peak Discha	irge Qp = CwlA(F)				1.0		1.6	1.8	cfs
	Comp	uted E	 3y:	GS	: B	Date:	2/27/	0 1	
	Check	ed By	r:	93	6	Date:	2/20	8/0/	•

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DATA			•	•				
Project: McDowell Mountain	Marketpla	ce	C	oncentrati	on Point: _	N/A	1	
Location: pre-developed	· · · · · · · · · · · · · · · · · · ·	·					_ 	
Project No.: CNTR0002					Station: S	ite Outfall	@ SWC	•
Name of Stream/Watershed:							 	•
DESIGN DATA								
Design Frequency:		2	5	10	25	50	100	Years
	A1						17.12	
	A2							Acres
•								Acres
Total ((A) <u>- </u>					* .	17.12	Acres
Drainage Length:							1540	Feet
Elevation		_		. ,				•
Top of Drainage Area				<u> </u>			1635.0	Feet
At Structure		•	· -				1582.0	Feet
Drainage Area Slope	·						3.44	Percent
Hydrologic Soil Group:						<u> </u>	В	•
DESIGN COMPUTATIONS					_			
Frequency Factor (F):	1.00	1.0	00]	1.00	1.10	1.20	1.25	
Time of Concentration:							8	Minutes
Rainfall Intensity (I):	3.2	4.	<u>1</u>	5.1	5.8	6.7	7.8	Inches/H
Runoff Coefficient (C):	C1 0.	31	0.31	0.31	0.34	0.39	0.39	(Figure 2.2-13
	C2							•
	C2							
Weighted. Runoff Coefficient (C	w):							,
Peak Discharge Qp = CwlA(F)	17	22	2	27	34	43	52	cfs
Сотри	ted By:		GSB	C	ate:	1/29/	'01	
Checke	d By:		156	C	ete:	भ्रेयश्र	01	

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DA	TA								
Project:	McDowell Mount	ain Ma	rketplace		Concentr	ation Point:	Site Outfa	II @ SWC	_
Location:	Post Developm	ent					<u> </u>		-
Project No.						_ Station:	·		_
Name of St	ream/Watershed:	-							-
DESIGN DATA									
Design Fre	quency:		2	5	10	25	50	100	Years
Drainage A	rea	A1				·		17.46	Acres
		A2_							Acres
		A3							Acres
	Tota							17.48	Acres
Drainage L	ength:	_						1575	Feet
Elevation		-		-					
Top of	f Drainage Area	_						1621.00	Feet
At Stn	ucture	_			·			1582.00	Feet
Drainage A	rea Slope	_			 			2.48	Percent
Hydrologic	Soil Group:	_						В	_
DESIGN COM	PUTATIONS								
Frequency	Factor (F):		1.00	1.00	1.00	1.10	1.20	1.25]
Time of Co	ncentration:	-						6	Minutes
Rainfall Inte	ensity (!):	Γ			5.8	1	7.6	9]inches/Hir
•		_						<u> </u>	• (Figure 2.2-13
Runoff Coe	fficient (C):	C1_	0.65		0.6				•
		C2_			`				•
Weighted.	Runoff Coefficient	(Cw):_			~ ~~~			·	- •
Peak Disch	arge Qp = CwlA(F)				65.8		103.5	127.7	cfs
	Com	outed E	Зу:	G	SB	Date:	2/1	9/01	
	Chec	ked By	/: _	75	6	_ Date:	2/2	801	<u>-</u>

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION DA				-					
Project:	McDowell Mou		rketplace		Concentr	ation Point:	N	<u>/A</u>	-
Location:	pre-develo				· · ·	Ciotion	South Box	undone Ma	_
	: CNTR000					_ Station:	South Bot	indary vva	- -
110.110 07 00	, odina 4 úzron o 1. od	-				 .			-
DESIGN DATA		· _p					~~~~~~	N	••
Design Fred	quency:	Ĺ	2		10			100	Years
Drainage A	rea	A1_			 		 	5.27	Acres
		A2_			·				Acres
		A3_							_Acres
	· Т	otal (A) _					· ————		Acres
Drainage Le	ength:	_		·			<u>.</u>	1415	Feet
Elevation									
•	Drainage Area	_		<u>.</u>				1633.0	-
At Stn	***	-						1584.1	
Drainage A		_							Percent
Hydrologic	Soil Group:	-							3
DESIGN COMP	PUTATIONS				<u>.</u>				
Frequency	Factor (F):		1.00	1.00	1.00	1.10	1.20	1.25]
Time of Co	ncentration:	_						12	Minutes
								 	1
Rainfall Inte	ensity (I):	L		<u> </u>	4.5	<u> </u>	5.9	6.9	Inches/H
	** • • • •								(Figure 2.2-1
Runoff Coe	fficient (C);		0,25		0.25				-
		C2_							-
Welghted F	Runoff Coefficie	U3_							- .
, 10 g. 10 d. 1		(=, <u>,</u>			·				-
Peak Disch	arge Qp = CwlA	(F) [5.9		9,3	11.3]cfs
,	Co	mputed i	By:	G	SB	Date:	2/2	0/01	
•	Ch	ecked By	<i>r</i> :	7	58	- Date:	2/2	8101	-

HYDROLOGIC DESIGN DATA RECORD RATIONAL METHOD

LOCATION	DATA .								٠.
Project:	McDowell Mou	ıntain Ma	rketplace		Concent	ration Point:	N	/A	-
Location	n: post-develo	ped					·		_
Project l	No.: CNTR00	02				Station:	South Bou	indary Wa	sh
Name o	f Stream/Watershe	d: _						<u>.</u>	-
DESIGN DA	TA								
Design I	Frequency:		2	5	1	0 25	50	100	Years
Drainag	e Area	A1						3.58	Acres
		A2_							Acres
		A3_							Acres
- -	τ	otal (A)						3.58	Acres
Drainag	e Length:	_						1320	Feet
Elevatio	าก								
	p of Drainage Area	-						1595,2	Feet
	Structure	-						1582.0	Feet
-	e Area Siope	_				 _		1.00	Percent
Hydrolo	gic Soil Group:	_							<u> </u>
DESIGN CO	MPUTATIONS						•		
	ncy Factor (F):	Γ	1.00	1.00	1.00	1.10	1.20	1.25	1
•	Concentration:	_							Minutes
		_							•
Rainfall	Intensity (I):				4.6		6.0	7.0	Inches/H
									(Figure 2.2-1
Runoff (Coefficient (C):	C1_	0.53	0.53	0.5	3 0.58	0.66	0.66	<u>i_</u>
		C2_				, "-			_
		C3_							_
Weighte	ed. Runoff Coefficie	nt (Cw):_							•
Peak Di	scharge Qp ≔ CwlA	(F)			8.7	I	13.7	16.6	cfs
·	Co	mputed i	Ву:	_ G	SB	Date:	2/2(0/01	
	Ch	ecked By	/ :	956	3	– Date:	2/2	8/01	-

APPENDIX D
(Hydraulic Calculation and Data Sheets)

100th Street CP1-4" Roll Curb Worksheet for Irregular Channel

Project Descrip	<u>tton</u>		:			
Worksheet			100th Street CP1-4" Roll Curb			
Flow Element Method			irregular Channel			
			Manning's Formula			
Solve For			Channel Depth			
Innui Data						
Input Lata						
Input Data Slope	0.019200	ft/ft				

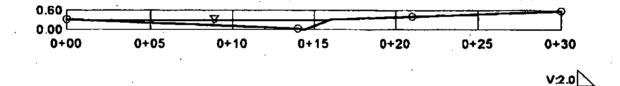
Options	
Current Roughness Method	Improved Lotter's Method
Open Channel Weighting Method	improved Lotter's Method
Closed Channel Weighting Method _	Horton's Method

Results		
Mannings Coefficient	0.014	
Water Surface Elevation	0.28	R
Elevation Range	0:00 to 0.59	
Flow Area	1.7	πż
Wotted Perimeter	13.76	ft
Top Width	13.73	ft
Actual Depth	0.28	ft
Critical Etevation	0.35	A
Critical Stope	0.005584	A/A
Velocity	3.58	fl/s
Velocity Head	0.20	ft
Specific Energy	0.48	ŧt,
Froude Number	1.78	
Flow Type	Supercritical	

Roughness Segments							
Start Station	End Station	Manninge Coefficient					
0+00	0+14	0.015					
0+14	0+21	0,013					
0+21	0+30	0.035					

	Natural Channel Points					
	Station (ft)	Elevation (ft)				
_	. 0+00	0,32				
	0+14	0.04				
	0+14	0.00				
	0+16	0.33				
	0+21	0.41				
	0+30	0.59				

100th Street CP1-4" Roll Curb Rating Table for Irregular Channel


Project Descri	ption				
Worksheet		100th Street CP1-4" Roll Curb			
Flow Element		Irregular Channel			
Method		Manning's Formula			
Solve For		Channel Depth			
Input Data					
Slope	0.019200 ft/ft				
Options ,					
Current Roug	hness Method	Improved Lotter's Method			
Open Channel Weighting Method		Improved Lotter's Method			
Closed Chang	rel Weighting Metho	Horton's Method			

Attribute	Minimum	Maximum	Increment
Discharge (cfs)	1.00	7.00	0.50

	Top Width (ft)	Wetted Perimeter (fi)	Flow Area (ft²)	Velocity (fl/s)	Water Surface Elevation (ft)	Discharge (cfs)
·	6.75	6.77	0.4	2.35	0.15	1.00
	7.93	7.95	0.6	2.57	0.18	1.50
	8.87	8.90	0.7	2.75	0.19	2.00
	9.68	9.70	0.9	2.89	0.21	2.50
	10.39	10.41	1.0	3.02	0.22	3.00
- O10: 3.3 cfs dio: 0.2	11.02	11.05	1.1	3.13	0.23	3.50
1.01.0.0.2	11.60	11.63	1.2	3.23	0.24	4.00
	12.14	12.17	1.4	3.32	0.25	4.50
	12.64	12.67	1.5	3.40	0.26	5.00
a in C 1	13.11	13.15	1.6	3.48	0.27	5.50
- One: 6.2 cfs, dias: 0.2	13.56	13.59	1.7	3.55	0.28	6.00
,	13.98	14.01	1.8	3.62	0.29	6.50
	14.38	14.42	1.9	3.69	0.29	7.00

100th Street CP1-4" Roll Curb **Cross Section for Irregular Channel**

Project Description	·			
Vorksheet	100th Street CP1-4" Roll Curb			
Flow Element	Irregular Channel			
Mathod	Manning's Formula			
Solve For	Channel Depth			
Mannings Coefficient	0.014			
Section Data				
Slope	0,019200 ft/R			
Water Surface Elevation	0.28 ft			
Elevation Range	0.00 to 0.59			
Dischame	6.20 cfs			

Grate Inlet Calculations

Inlet at Concentration Point 2, Rim Elevation 1600.00

Grate inlet operating as weir:

Q=	Cw	x	Px	d^1	.5
----	----	---	----	-----	----

MAG Detail 535 'F'

Q 10 =	2.7	cfs	Q 100 =	5.1	cfs
C~ =	3.00		Ç., =	3.00	
₽=	9.33	ft	P≈	9.33	· ft
d = .	- 0.33	ft	d =	0.51	ft

Grate inlet operating as an orifice:

$$Q = Co \times A \times (2gd)^0.5$$

MAG Detail 535 'F'

Q 10 =	2.7	crs	Q 100 =	5.1	cfs
Co =	0.67		Co =	0.67	-
A =	5.42	sf	A =	5.42	sf
g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =	0.03	ft .	d =	0.12	ft

Inlet at Concentration Point 3, Rim Elevation 1596.85

Grate inlet operating as weir:

		J	
Q = Cw x	P x d^1.5	MAG	Detail 535 '

Q 10 =	3.7	cfs	Q 100 =	7.0	cfs
C _w =	3.00		C _w =	3.00	0.0
['] ₽=	9.33	ft	P≖	9.33	ft
d =	0.41	ft	[.] d =	0.63	ft

Grate inlet operating as an orifice:

Q 10 =	3.7	cfs	Q 100 =	7.0	cfs
Co ≈	0.67		Co=	0.67	
A =	5.42	sf	A =	5.42	sf
g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =	0.06	ft	d =	0.23	ft

Inlet at Concentration Point 5, Rim Elevation 1598.9

Grate inlet operating as weir: Q = Cw x P x d^1.5 MAG

Q 10 =	8.6	cfs	Q 100 =	16.2	cfs
C* =	3.00		 C., =	3.00	
P = '	9.33	ft	P =	9.33	ft
d =	0.72	ft	d =	1.10	ft

MAG Detail 535 'F'

MAG Detail 535 'F'

Grate inlet operating as an orifice:

 $Q = Co \times A \times (2gd)^{0.5}$

Q to =	8.6	cfs	Q 100 =	16,2	cfs
Co =	0.67	•	Co =	0.67	•
A =	5.42	sf	A =	5.42	sf
g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =-	0.25			4 24	

Inlet at Concentration Point 6, Rim Elevation 1599.87

Grate inlet operating as weir:

 $Q = Cw \times P \times d^{1.5}$

Q 10 =	5.1	cfs	Q 100 =	9.7	cfs
C _w =	3.00	•	C _w =	3.00	:
₽=	9.33	ft	P =	9.33	ft
d =	0.51	ft	d =	0.78	ft

MAG Detail 535 'F'

MAG Detail 535 'F'

Grate inlet operating as an orifice:

 $Q = Co \times A \times (2gd)^0.5$

0.12

d =

Q 10 =	5.1	cfs	Q 100 =	9.7	cfs
Co =	0.67		Co =	0.67	
A =	5.42	sf	A =	5.42	sf
g =	32.2	ft/s^2	a =	32.2	ft/s^2

ft

Inlet at Concentration Point 7, Rim Elevation 1599.55

Grate inlet operating as weir:

		-	_			
Q = Cv	N X P	x d^1.	5	MAG	Detail	535.'F'

Q 10 =	7.6	cfs	Q 100 =	14.4	cfs
C~ =	3.00		C _w =	3.00	
P =	9.33	ft	P =	9.33	ft
d =	0.67	fi	d =	1.02	ft

Grate inlet operating as an orifice:

• -	. •	· ·
$Q = Co \times A$	x (2gd)^0.5	MAG Detail 535 'F'

Q 10 =	7.6	cfs	Q 100 =	14.4	cfs
Co =	0.67		Co=	0.67	
A =	5.42	sf	A =	5.42	sf
g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =	0.27	ft	d =	0.98	ft

Inlet at Concentration Point 10, Rim Elevation 1605.20

Grate inlet operating as weir:

Q = Cw x P x d^1.5 MAG Detail 535 'F'

Q 10 =	9.6	cfs	Q 100 =	18.1	cfs
C~ =	3.00.		Cw =	3,00	
P≠	9.33	ft	P≖	9.33	ft
ď≈	0.78	ft	d =	1.19	ft

Grate inlet operating as an orifice:

 $Q = Co \times A \times (2gd)^0.5$ MAG Detail 535 'F'

		· ·			
Q 10 =	9.6	cfs	Q 100 =	18.1	cfs
Co =	0.67		Co =	0.67	
A =	5.42	sf .	A =	5.42	sf
g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =	0.43	ft	. d =	1.54	. ft

Inlet at Concentration Point 15, Rim Elevation 1588.50

Grate inlet operating as weir:

 $Q = Cw \times P \times d^{1.5}$

Q 10 =	119	cfs	Q 100 ≈	3.7	cfs
Cw =	3.00		C _w =	3.00	
Ря	9.33	ft	P =	9.33	. ft
d≄	0.26	A	d =	0.41	· A

MAG Detail 535 'F'

MAG Detail 535 'F'

MAG Detail 535 'F'

Grate inlet operating as an orifice:

 $Q = Co \times A \times (2gd)^0.5$

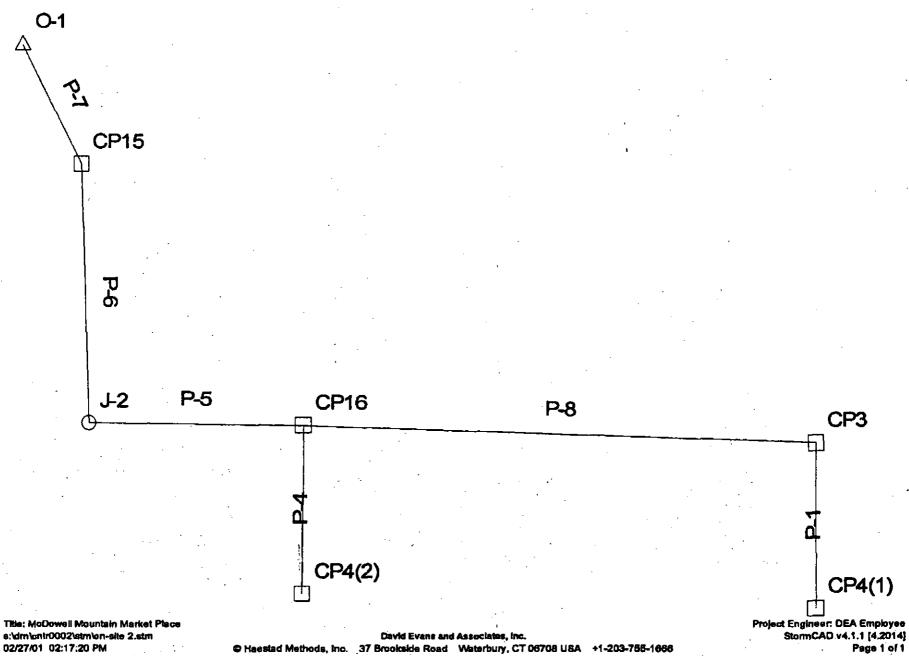
Q 10 =	1.0	cfs	Q 100 ≈	1.8	cfs
Co=	0.67		Co =	0.67	
A =	5.42	sf	A =	5.42	sf
g≡	32.2	ft/s^2	g ≈	32.2	ft/s^2
ď =	0.00	A	ď =	0.02	A

Inlet at Concentration Point 16, Rim Elevation 1596.75

Grate inlet operating as weir:

 $Q = Cw \times P \times d^1.5$

Q 10 =	1.0	cfs	Q 100 ≈	1.8	cfs
C _w =	3.00		C _w =	3.00	
P =	9.33	ft	P =	9.33	ft
d =	0.17	fi	d =	0.25	A

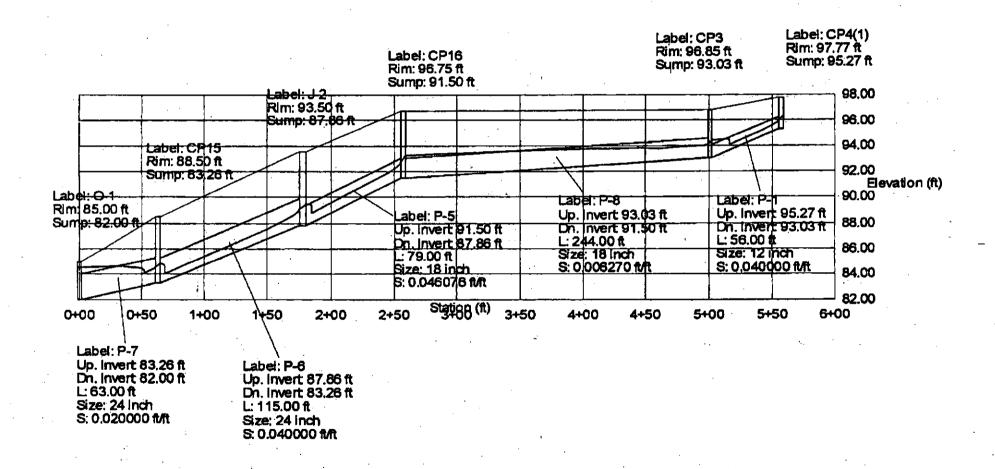

Grate inlet operating as an orifice: Q = Co x A x (2gd)^0.5 MAG Detail 535 'F'

Q 10 =	1.9	cfs	Q 100 =	3.7	cfs
Co=	0.67		Co =	0.67	
A =	5.42	sf	A =	5.42	sf
. g =	32.2	ft/s^2	g =	32.2	ft/s^2
d =	0.02	ft	ď≈	0.06	ft

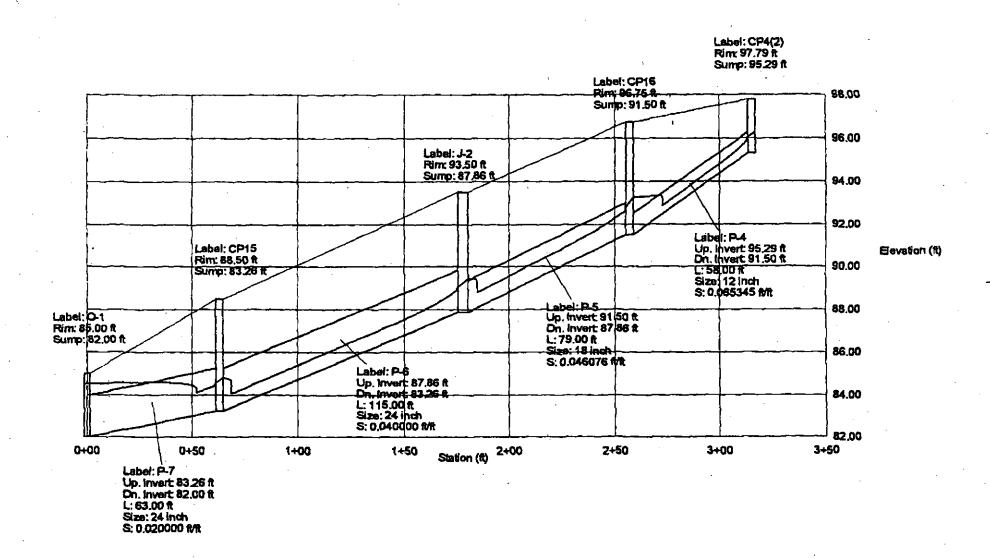
Actual perimeter and area of grate used in calculations considers 50% clog factor Calculations based on the *Drainage Design Manual for Maricopa County, Volume II*

PAVEMENT DRAINAGE PROGRAM - HEC-12 Licensed to: David Evans & Associates, Phoenix, AZ 85016 |Project : CNTROOD2 10-yr File: cp1-10 INPUT Sta Intens.= 0.00 C1=0.00 A1= 0.00 Gadd = 3.3 Slope1= 6.0000 Gutter= 1.50 Area = 0.00 (CB 10 = CP1 C2=0.00 A2= 0.00 Grunoff= 3.3 SlopeZ= 0.0590 a = 2.00 Perim = 0.00 |Curb Opening C3=0.00 A3= 0.00 Grade = 0.0000 Slope3= 0.0200 W = 1.50 Length=10.00| QUITPUT |Flowby= 0.0 Qtotal= 3.3 Qint= 3.3 Flowby dn= 0.0 Depth=0.27 Spread= 2.30 Veloc= 0.00| CRITERIA |Runoff computed by Rational Method | Manning's n Gutter=0.013 | Manning's n Payement=0.015 Clogging Factors in Sag Location: |----- Curb Opening= 1.25 Grate= 2.00 Stotted Drain= 1.25 Comb-Curb= 1.25 Comb-Grate= 2.00| Clogging Factors on Continuous Grade: |----- Curb Opening= 1.25 Grate= 2.00 Slotted Drain= 1.25 Comb-Curb= 1.25 Comb-Grate= 2.00 Prepared by: Date:02/28/10 Time:18:37:45 Checked by: Pavement Drainage Program (C), 1991 Copyright by SMF Engineering Corporation, Phoenix, AZ

PAVEMENT DRAINAGE PROGRAM - HEC-12 |Licensed to: David Evans & Associates, Phoenix, AZ 85016 |Project : CNTR0002 100-YR, File: CP1-100 INPUT Sta Intens.= 0.00 C1=0.00 A1= 0.00 Qadd = 6.2 Slope1= 6.0000 Gutter= 1.50 Area = 0.00 CB 10 = CP1 C2=0.00 A2= 0.00 @rumoff= 6.2 Stope2= 0.0590 a = 2.00 Perim = 0.00 |Curb Opening C3=0.00 A3= 0.00 Grade = 0.0000 Slope3= 0.0200 W = 1.50 Length=10.00 OUTPUT . |Flowby= 0.0 Qtotal= 6.2 Qint= 6.2 Flowby dn= 0.0 Depth=0.41 Spread= 9.39 Veloc= 0.00| CRITERIA Runoff computed by Rational Method Marning's n Gutter=0.013 Manning's n Pavement=0.015 Clogging Factors in Sag Location: ----- Curb Opening= 1.25 Grate= 2.00 Slotted Drain= 1.25 Comb-Curb= 1.25 Comb-Grate= 2.00 Clogging Factors on Continuous Grade: |----- Curb Opening= 1.25 Grate= 2.00 | Stotted Drain= 1.25 Comb-Curb= 1.25 Comb-Grate= 2.00 Prepared by: Date:02/28/10 Time:18:37:29 Checked by: Date: Pavement Drainage Program (C), 1991 Copyright by SMF Engineering Corporation, Phoenix, AZ


s:\dm\cntr0002\stm\on-site 2.stm

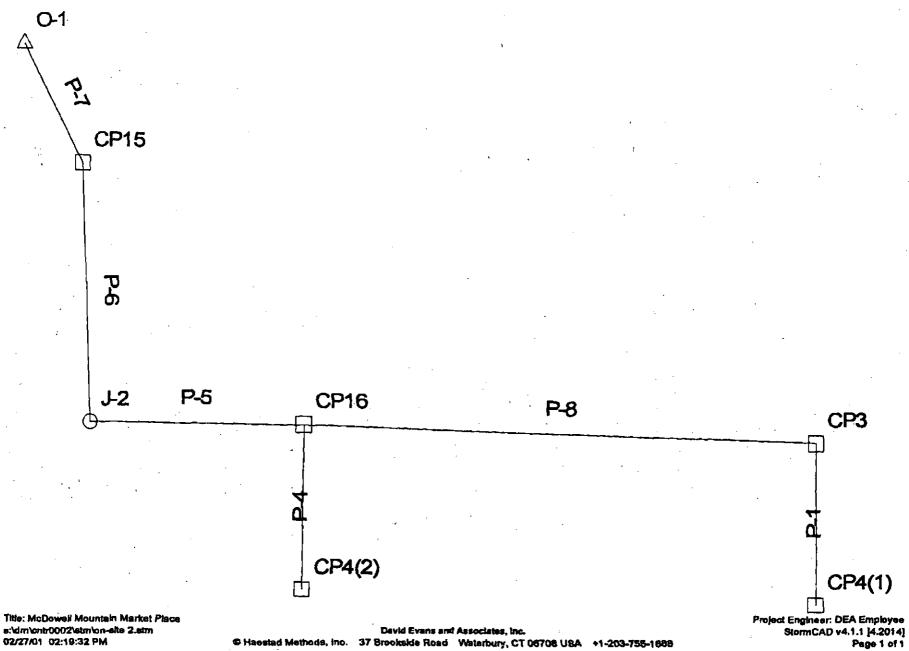
Scenario: 10-YR


DEA TABLE

Label	Dn. Node	Up. Node	Up: Invert (ft)	Up. Gr Elev. (ft)	HGL In (ft)	EGL In (ft)	Dn. Invert (ft)	Dn. Gr. Elev. (ft)	HGL Out (ft)	EGL Out (ft)	Size	L (ft)	S (ft/ft)	Total Flow Out (cfs)	Des. Cap. (cfs)	Avg. V (fl/s)	Up. Cover (ft)
CP4(1)					96.28	96.39			96.02	96.39				3.10			
P-1	CP3	CP4(1)	95.27	97,77	96.02	96.39	93.03	. 96.85	94.40	94,64	12 inch	56,00	0.040000	N/A	7.72	4,41	1.50
CP4(2)	1				96.28	96.39			96.03	96.39			•	3.00			
P-4	CP16	CP4(2)	95.29	97.79	96.03	96.39	91.50	96.75	93.27	93.49	12 Inch	58.00	0.065345	N/A	9.87	4.31	1.50
CP3	•				94.40	94.64			94.04	94.49				6.80			
P-8	CP16	CP3	93.03	96.85	94.04	94,49	91.50	96.75	93.27	93.50	18 Inch	244.00	0.008270	N/A	9.01	4.61	2.32
CP16	i				93.27	93.49			92.76	93.48		1		10.80			l
P-5	J-2	CP18	91.50	96.75	92.76	93.48	87.86	93.50	89.43	90.01	18 inch	79.00	0.046076	N/A	24.43	6.46	3.75
J-2	}				89.43	90,01			89.04	89.53		1		10.80		l	
P-6	CP15	J-2	87.88	93.50	89.04	89.53	83.26	88.50	84.82	85.08	24 Inch	115.00	0.040000	N/A	49,01	4.86	3.64
CP15					84.82	85.10		-	84,54	85.10				12.70			
P-7	O -1	CP15	83.26	88.50	84.54	85.10	82.00	85.00	84.50	84.75	24 inch	63.00	0.020000	NA	34.66	5.01	3.24
O-1		1			84.50	84.75		1	84.50	84,50		1 .		12.70	!		

Profile Scenario: 10-YR

Profile Scenario: 10-YR



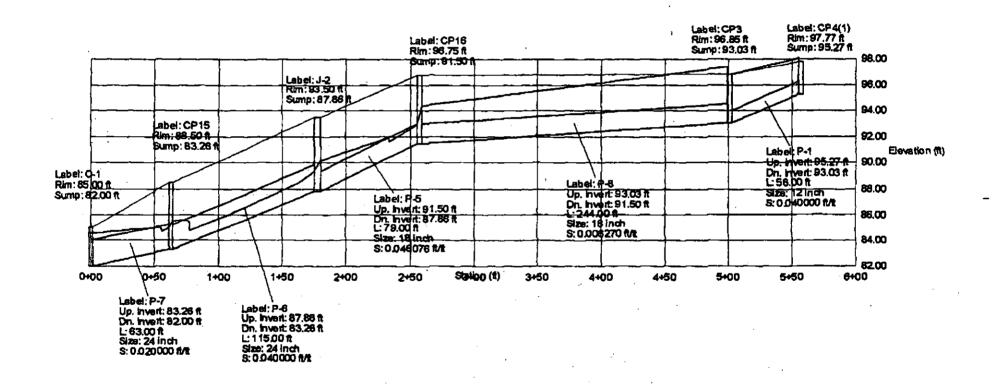
Title: McDowell Mountain Market Place s:\dm\cntr002\stm\on-eite 2.stm 02/27/01 02:19:08 PM

David Evans and Associates, Inc.

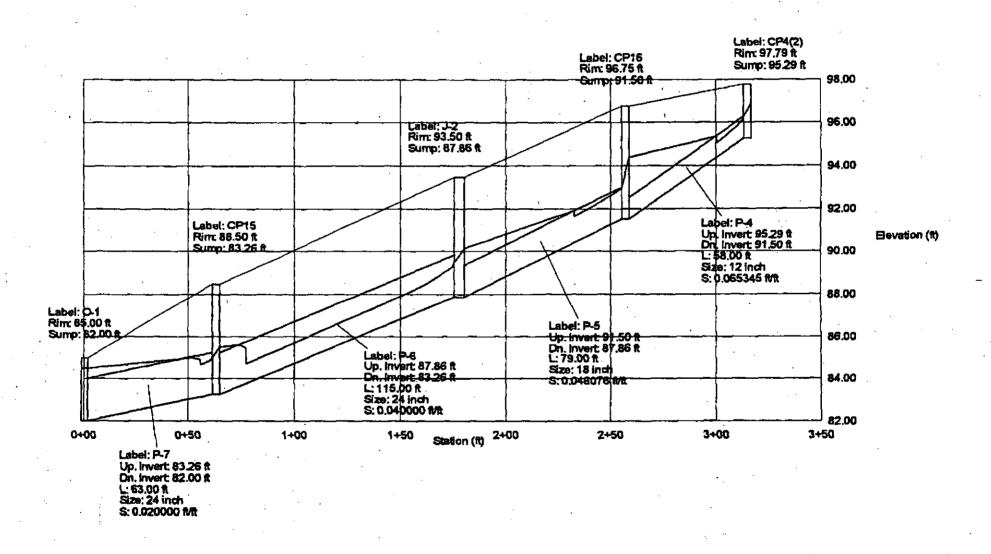
© Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666

Project Engineer: DEA Employee StormCAD v4.1.1 [4,2014] Page 1 of 1 Scenario: 100-YR

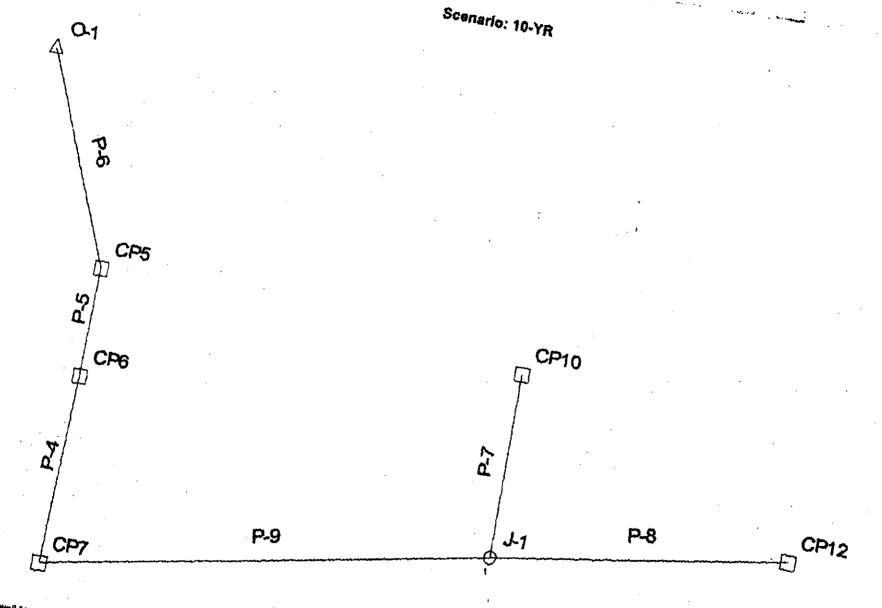
s:\dm\cntr0002\stm\on-alte 2.stm 02/27/01 02:19:32 PM


Scenario: 100-YR

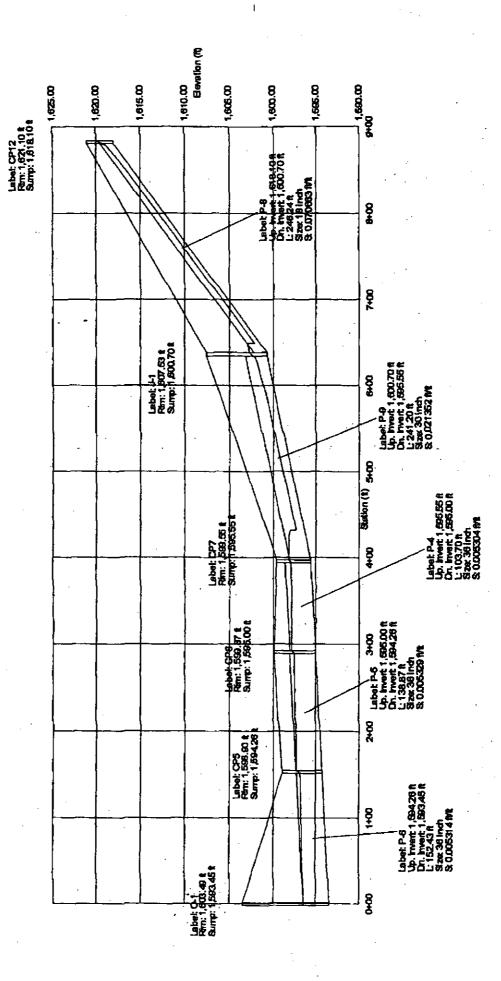
DEA TABLE


Label	Dn. Node	Up. Node	Up, Invert (ft)	Up. Gr Elev. (ft)	HGL In (ft)	EGL In (ft)	Dn. Invert (ft)	Dn. Gr. Elev. (ft)	HGL Out (ft)	EGL Out (ff)	Size	(¢)	S (fl/ft)	Total Flow Out (cfs)	Dee. Cap. (cfs)	Avg. V (ft/s)	Up. Cover (fl)
CP4(1)					97.77	98.59			97.77	98.59				5.70			
P-1	CP3	CP4(1)	95.27	97.77	98.07	98.89	93.03	96.85	96.85	97.67	12 inch	56.00	0.040000	NA	7.72	7.26	1.50
CP4(2)			} [96.83	97.09			96.24	97.09	j	1.		5.70			
P-4	CP16	CP4(2)	95.29	97.79	95.24	97.09	91.50	96.75	94,40	95.22	12 Inch	58.00	0.065345	NA	9.87	7.33	1.50
CP3	Ì		1		96.85	97.67			96,85	97.65	!	,		12.70	-		
P-8	CP16	CP3	93.03	96.85	97.44	98.25	91.50	96.75	. 94.40	95.21	18 Inch	244.00	0.008270	N/A	9.01	7.19	2.32
CP16		Í i]	i	94,40	95.21			92.97	95.02		İ		20.20			'
P-5	J-2	CP16	91.50	96.75	92.97	95.02	87.86	93.50	90.16	92.19	18 Inch	79.00	0.046078	NA	24.43	11.46	3.75
J-2	1	Ì]]		90.16	92.19		,	89.47	90.33		1		20.20			}
P-6	CP15	J-2	87.86	93.50	89.47	90.33	83.26	88.50	85.52	86.17	24 inch	115.00	0.040000	NA	49.01	6.93	3.64
CP15	}	1]		85,52	86.17			84.99	86.05		}		23.90		,]
P-7 ·	0-1	CP15	83.26	88.50	84.99	86.05	82.00	85.00	84,50	85.40	24 inch	63.00	0.020000	N/A	34.66	7.94	3.24
0-1			l' 1		84.50	85.40			84.50	84.50	Ì] -		23.90			

Profile

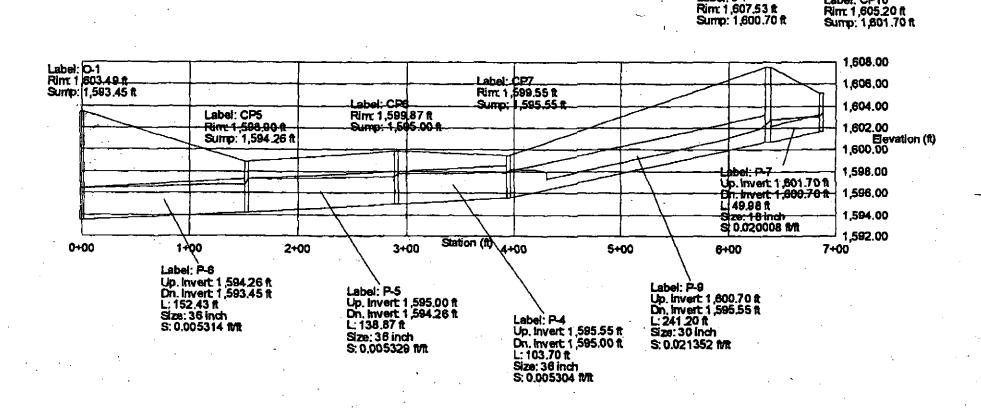

Scenario: 100-YR

Profile
Scenario: 100-YR

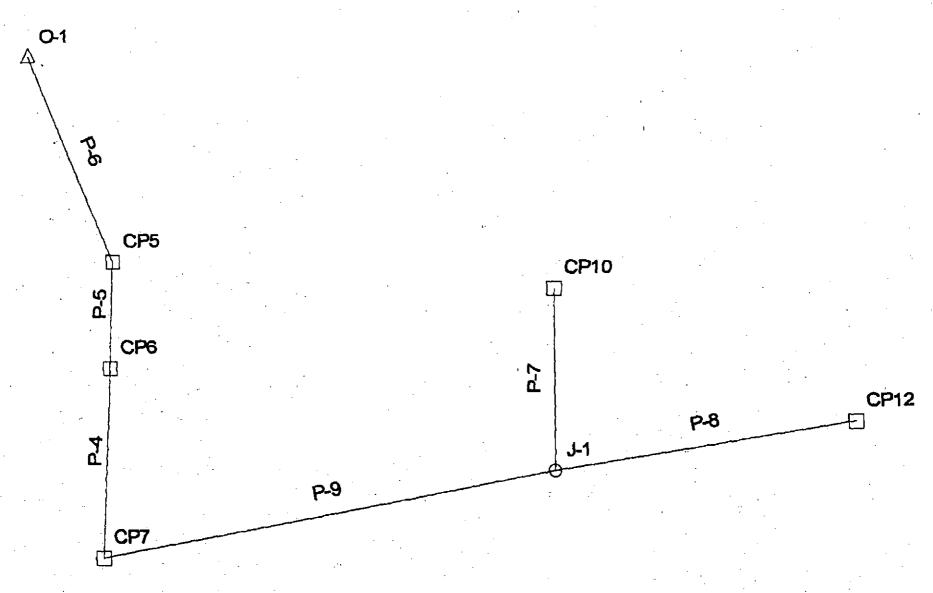


Tille: McCowell Mountain Merkelpleoe e: dm'entre002/etmonelle1.etm 02/27/01 02:00:27 PM

Scenario: 10-YR


DEA TABLE

Label	Dn. Node	Up. Node	Up. Invert (ft)	Up. Gr Elev. (ft)	HGL In (ft)	EGL In (ft)	Dn. Invert (ft)	Dn. Gr. Elev. (ft)	HGL Out (ft)	EGL Out (ft)	Size	(f)	S (fl/ft)	Total Flow Out (cfs)	Des. Cap. (cfs)	Avg. V (fl/s)	Up. Cover (ft)
CP12					1,620.07	1,620.23			1,619.41	1,620.23				11.90		_	· <u> </u>
P-8	J-1	CP12	1,618.10	1,621.10	1,619.41	1,620.23	1,600.70	1,607.53	1,602.75	1,603.45	18 inch	246.24	0.070683	N/A	30.25	7.00	1.50
CP10	l	1	1 1	1	1,603.40	1,603.56		!	1,603,05	1,603.56	ŀ	1.		9.60			
P-7	J-1	CP10	1,601.70	1,605.20	1,603.05	1,603.56	1,600.70	1,607.53	1,602.75	1,603.21	18 Inch	49.98	0.020008	N/A	16.10	5.59	2.00
J-1	1		ł		1,602.75	1,603.21		.	1,602.28	1,602.95	{	, ;		21.50			
P-9	CP7	J-1 .	1,600.70	1,607.53	1,602.28	1,602.95	1,595.55	1,599.55	1,598.18	1,598.47	30 Inch	241.20	0.021352	NA	64.93	5.49	.4.33
CP7	l		i 1		1,598.18	1,598.47			1,597.87	1,598.25		1		29.10			
P-4	CP6	CP7	1,595.55	1,599.55	1,597,87	1,598.25	1,595.00	1,599.87	1,597,81	1,598.09	36 inch	103.70	0.005304	N/A	52.62	4.59	1.00
CP6	1		1		1,597.81	1,598.09			1,597.49	1,597.95	1	l i	•	34.20		1	
P-5	CP5	CP6	1,595.00	1,599.87	1,597,49	1 597 95	1,594.26	1,598.90	1,597,30	1,597.66	36 inch	136.67	0.005329	N/A	52.74	5,15	1.87
CP5			1 1	i	1,597,30	1,597.66			1,596,82	1,597.51	<u> </u>			42.80			
P-6	0-1	CP5	1,594.26	1,598.60	1,596.82	1,597.51	1,593.45	1,603.49	1,596.45	1,597.02	36 Inch	152.43	0.005314	NA	52.67	6.36	1.64
0-1	=			j	1,596.45	1,597.02			1,596,45	1,598.45				42.80			

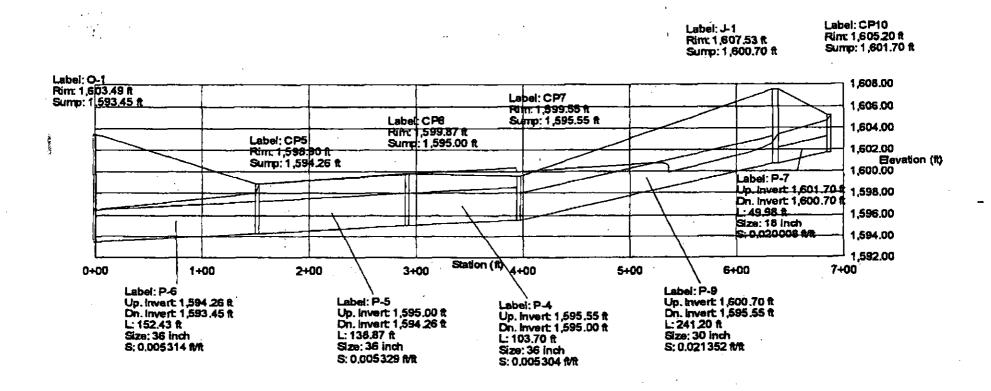

Profile

Scenario: 10-YR

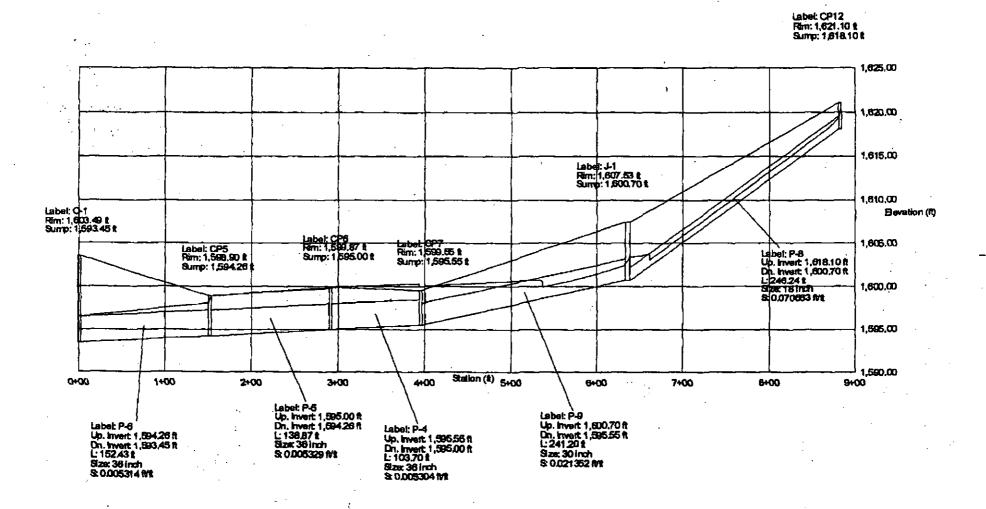
Label: CP10

Label: J-1

David Evans and Associates, Inc.


© Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 08708 USA +1-203-755-1868

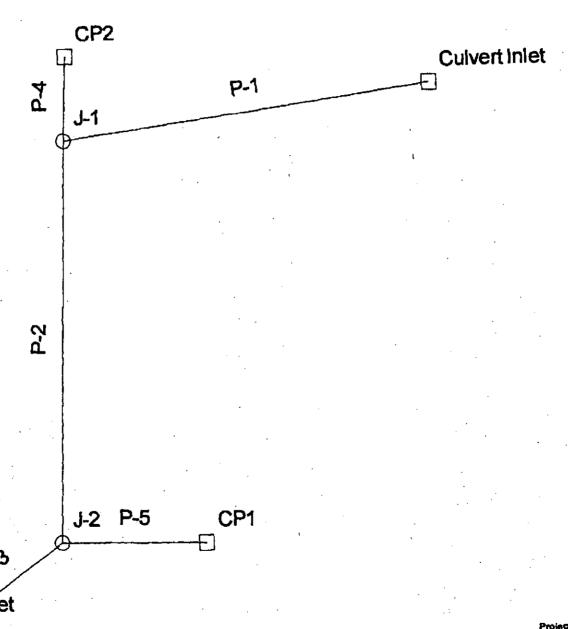
Project Engineer: Geoffrey Brownell StermCAD v4.1.1 [4.2014] Page 1 of 1


DEA TABLE

Label	On. Node	Up. Node	Up. Invert (ft)	Up. Gr Elev. (ft)	HGL In (ft)	EGL In (ft)	On. Invert (ft)	On. Gr. Elev. (ft)	HGL Out (ft)	EGL Out (R)	Size	(g)	S (R/R)	Total Flow Out (cfs)	Des. Cap, (cfs)	Avg. v (fl/s)	Up. Cover (fl)
CP12					1,620,49	1,620.73			1,519.51	1,620.73				15.30			
P-8	J-1	CP12	1,618,10	1,621.10	1,619,51	1,620.73	1,600.70	1,607.53	1,603.37	1,604.54	18 inch	248.24	0.070863	N/A	30.25	8.76	1.50
CP10 .	}				1,605.20	1,606.27			1,604,64	1,608.27	}],		18.10			1
P-7	J-1	CP10	1,601.70	1,605.20	1,604.64	1,606.27	1,600.70	1,607.53	1,603.37	1,605.00	18 Inch	49.98	0.020008	N/A	16.10	10.24	2.00
J-1	1) ·) <u> </u>	` }	1,603,37	1,604.54			1,602.67	1,603.68	լ	1		33.40			İ
P-9	CP7	J-1	1,600,70	1,607.53	1,602.67	1,603.68	1,595,55	1,599.55	1,600.05	1,600.77	30 Inch	241.20	0.021352	NVA	64.93	7.43	4.33
CP7	1		(ļ	1,600,05	1,600.77			1,600,05	1,600.76	ţ		•	47.80			•
P-4	CP6	CP7	1,595.55	1,599.55	1,600.32	1,601.03	1,595.00	1,599.87	1,599.87	1,600.58	36 Inch	103.70	0.005304	NA	52.62	6.76	1.00
CP6	1		1	1	1,599.87	1,600.81	Î		1,599.78	1,600.81	}		-	57.50			•
P-5	CP5	СРВ	1,595,00	1,599.87	1,599,78	1,600.81	1,594.26	1,598.90	1,598.90	1,599.93	36 inch	138.87	0.005329	N/A	52.74	8.13	1.87
CP5	1		j j		1,598.90	1,599.93	· •	:	1,598,04	1,529.73		1		73.70		ı	1
P-6	0-1	CP5	1,584,26	1,598.90	1,598.04	1,599.73	1,593.45	1,603.49	1,596.45	1,598.14	36 Inch	152.43	0.005314	NA	52.67	10.43	1.64
0-1	ļ		1		1,596.45	1,598.14			1,596,45	1,596.45	([.		73.70			1

Profile

Profile Scenario: 100-YR



Title: McDowell Mountain Marketplace s;\dm\cntr0002\sim\onsite1.stm 02/28/01.02:48:50 PM

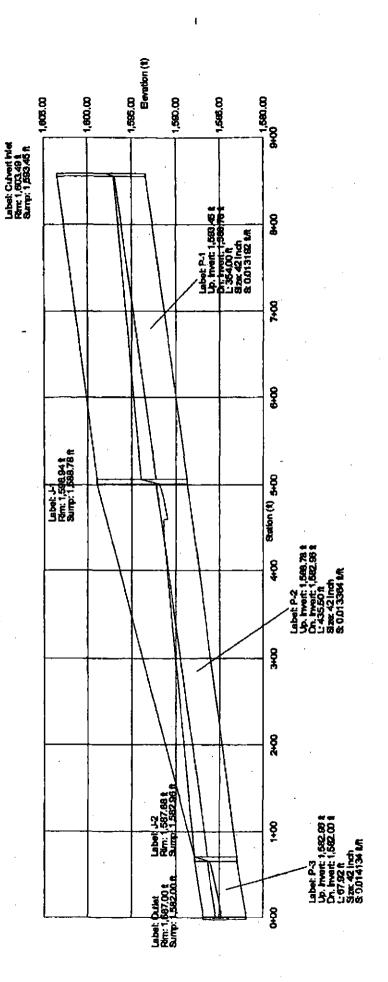
David Evans and Associates, inc.

© Haestad Methods, Inc. 37 Brookaide Road Waterbury, CT 06708 USA +1-203-755-1686

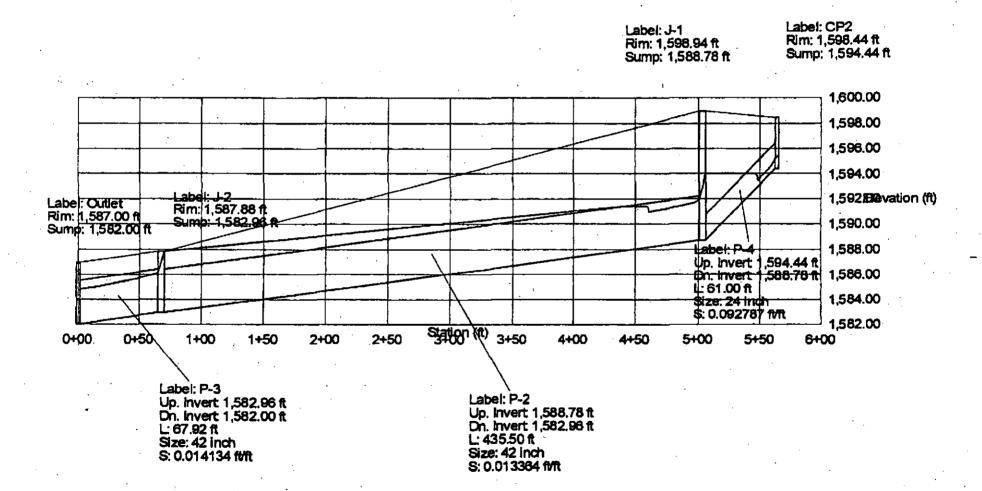
Project Engineer: Geoffrey Brownell StormCAD v4.1.1 [4.2014] Page 1 of 1

Title: McDowell Mountain Marketpiace s:ldm\cntr0002\stm\cfisite3.etm 02/27/01 01:47:46 PM David Evans and Associates, Inc.

© Haestad Methode, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1866

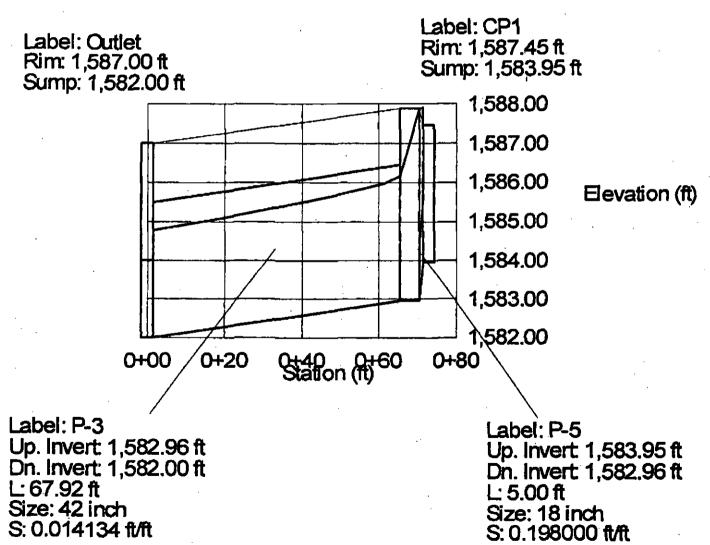

Project Engineer: Geoffrey Brownell StormCAD v4.1.1 [4.2014] Page 1 of 1

DEA TABLE


Label	Dn. Node	Up. Node	Up. Invert (市)	Up. Gr Elev. (ft)	HGL In (fi)	EGL In (ft)	Dn. Invert (fl)	Dn. Gr, Elev. (ft)	HGL Out (ft)	EGL Out (ft)	Size	(ft)	S (f/R)	Total Flow Out (cfs)	Des. Cap. (cfs)	Avg. V (fUs)	Up. Cover (ft)
Culvert In					1,597.93	1,598.79			1,597.07	1,598,79				101.00	,		
P-1	J-1	Culvert Ir	1,593.45	1,603.49	1,597.07	1,598.79	1,588.78	1,598,94	1,594.03	1,595.75	42 inch	354.00	0.013192	N/A	125,18	10.50	6.54
CP2	٠.				1,595.47	1,595.53		}	1,595.24	1,595,53		1.		5.10			:
P-4	J-1	CP2	1,594.44	1,598.44	1,595.24	1,595.53	1,588.78	1,598.94	1,594.03	1,594.07	24 Inch	61.00	0.092787	NA	74,65	3.00	2.00
CP1					1,587,45	1,587.79			1,587.45	1,587.79		, t		8.30			
P-5	J-2	CP1	1,583.95	1,587.45	1,587,91	1,588.25	1,582.96	1,587.88	1,587.88	1,588.22	18 inch	5.00	0.198000	N/A	50.63	4.70	2.00
J-1					1,594.03	1,594.07]	1,591.91	1,594.03		!		106,10			
P-2	J-2	J-1	1,588.78	1,598.94	1,591,91	1,594.03	1,582.96	1,587.88	1,587.88	1,589.77	42 inch	435.50	0.013364	N/A	125,99	11,35	6.66
J-2				ļ ,	1,587.88	1,588.55		. [1,586,17	1,588.55]		114.40			
P-3	Outlet	J-2	1,582.96	1,587.58	1,586.17	1,588.55	1,582.00	1,587.00	1,584.78	1,587.81	42 Inch	67.92	0.014134	N/A	129.57	13.18	1.42
Outlet] }			1,584.00	1,587.81]	1,584.00	1,584.00		}		114.40			

Project Engineer: Geoffrey Brownell

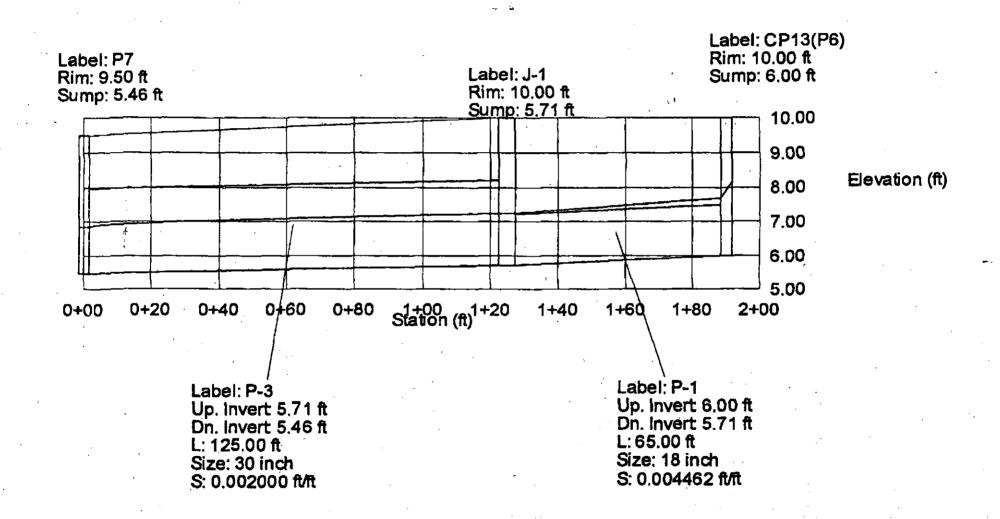
Title: McDowell Mountain Marketplace a:\dm\ontr0002\ebm\offite3.stm 02/28/01 06:46:38 PM

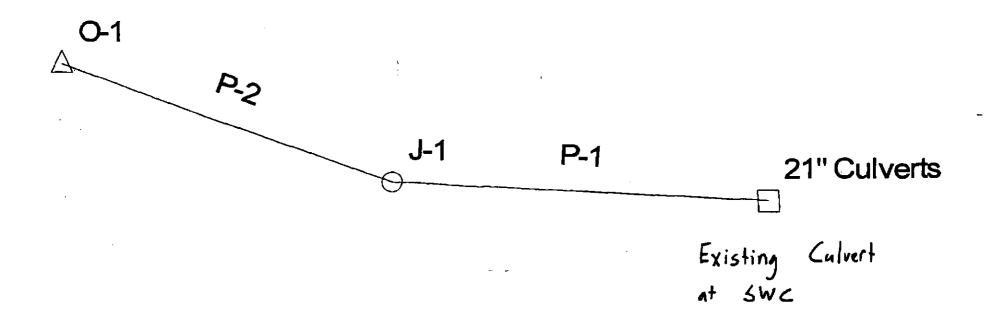

Profile

Profile Scenario: 100-YR

Label: J-2

Rim: 1,587.88 ft Sump: 1,582.96 ft





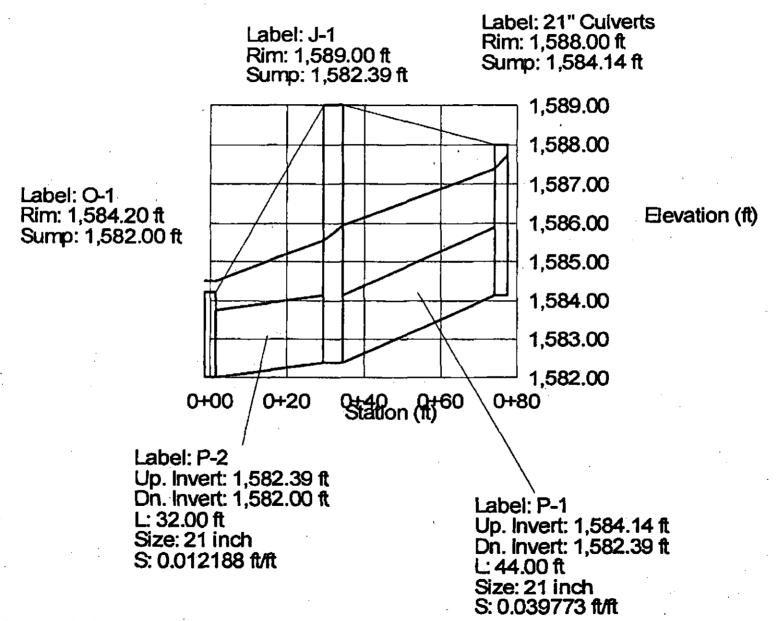
DEA TABLE

Label	Dn. Node	Up. Node	Up. invert (ft)	Up. Gr Elev. (ft)	HGL In (ft)	EGL In (ft)	Dn. Invert (ft)	On. Gr. Elev, (ft)	HĠL Out (ft)	EGL Out (ft)	Size	(fl)	S (11/ft)	Total Flow Out (cfs)	Des. Cap. (cfs)	Avg. V (ft/s)	Up. Cover (ft)
P5					7.51	7.56			7.39	7,58				5.60			
P-2	J-1	P5	6.00	10.00	7.39	7.56	5,71	10.00	7.25	7.41	18 inch	97.00	0.002990	N/A	7.47	3.22	2.50
CP13(P6		:	1		8.14	8.33			7.69	8.33	}) .		11.30			
P-1	J-1	CP13(P6	6.00	10.00	7.69	8.33	5.71	10,00	7.25	7.88	18 inch	65.00	0.004462	N/A	9.12	6,39	2.50
J-1					7.25	7.89			7.25	7.69	1],	}	16.90			ļ
P-3	P7	J-1	5.71	10.00	7.25	7.69	5.46	9.50	6.85	7.41	30 inch	125.00	0.002000	N/A	23.85	5,68	1.79
P7					6.85	7.41			6.85	6.85	\	1		16.90			١.

Profile Scenario: 100-YR

Title: MoDowell Mountain Marketplace s:ldm\cntr0002\stm\off-site1.stm 02/27/01 04:02:04 PM

David Evans and Associates, Inc.

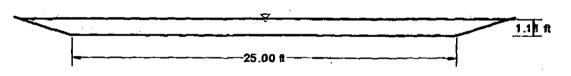

© Haested Methods, Inc. 37 Brookside Road Waterbury, CT 08708 USA +1-203-755-1666

Project Engineer: DEA Employee StormCAD v4.1.1 [4.2014] Page 1 of 1

and the second of the second o

. .

Profile Scenario: 100-YR



Bell Channel Worksheet for Trapezoidal Channel

Project Description	
Worksheet	Beil Channel-2
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coefficient	0.050
Slope	Q.Q20000 ft/ft
Left Side Slope	3.00 f/ft (H:V)
Right Side Slope	3.00 f/ft (H:V)
Bottom Width	25.00 ft
Discharge	130.00 cfs
Results	
Depth	1.11 ft
Flow Area	31.4 ਜੋ ²
Wetted Perimeter	32.00. ft
Top Width	31.64 ft
Critical Depth	0,91 ft
Critical Slope	0.039307 ft/ft
Velocity	4.15 ft/s
Velocity Head	0.27 ft
Specific Energy	1.37 ft
Froude Number	0.73
Flow Type	Subcritical

Bell Channel **Cross Section for Trapezoidal Channel**

Project Description	
Worksheet	Bell Channel-2
Flow Element	Trapezoldal Channel
Method	Manning's Formula
Solve For	Channel Depth
Section Data	
Mannings Coefficient	0.050
Siope	0.020000 ft/ft
Depth	1.11 ft
Left Side Slope	3.00 ft/ft (H;V)
Right Side Slope	3.00 ft/ft (H:V)
Bottom Width	25.00 ft
Discharge	130.00 cfs

Culvert Designer/Analyzer Report Bell Channel

Analysis Compor	ent _		_		
Storm Event		Check	Discharge		130.00 cfs
Peak Discharge I	Method: User-Specifie	od .	·		
Design Discharge	e .	0.00 cfs	Check Discharge		130.00 cfs
Tailwater propert	ies; Irregular Channel		 _		
Slope		0.030000 ft/ft	Mannings Coefficier	H	0.045
 	Roughness Segme	enta		•	• .
Start Station (fi)	End Station (ft)	Mannings Coefficient	-		
0,00	34.00	0.045	_		
Natural Chan	nel Points				
Station (ft)	Elevation (ft)				
0.00	4.00				
14.00	1.00				
28.00 -	1.00	•		-	
34,00	4.00				• .
Tailwaler condition	ons for Check Storm.				
Discharge		130.00 cfs	Depth		1.25 ft
Velocity	·	5.72 ft/s	·		
Name	Description	Discharge	HW Elev	Velocity	
Weir	Broad Crested	130.00 cfs	3.61 ft	N/A	4

Culvert Designer/Analyzer Report Bell Channel

Component:Weir

Hydraulic Component(s): Broad	t Crested		
Discharge	130.00 cfs	Allowable HW Elevation	3.61 ft
Weir Coefficient	3.30 US	Length	25.00 ft
Crest Elevation	0.00 ft	Headwater Elevation	3.61 ft

Culvert Designer/Analyzer Report CP3 - Culvert @ SWC

Analysis Component					
Storm Event		Check	Discharge		31.20 cfs
Peak Discharge Meti	nod: User-Specified	<u> </u>			
Design Discharge		0.00 cfs	Check Discharge	•	31.20 cfs
		····			
Tailwater Conditions:	Constant Tailwater				
Tailwater Elevation		2.50 ft			
Name	Description	Discharge	HW Elev	Velocity	- ·

Name	Description	Discharge	HW Elev	Velocity
Culvert-1 Weir	2-21 Inch Circular Not Considered	31.20 cfs N/A	1,587.45 ft N/A	7.97 ft/s N/A
		/		

Plus bend loss at H = K = V2 Kb = 0.25 (Figure 4.13, Modern Sewer Design, 1995) V= 7.97 f+/s H= 0.25 ft

HW Elev: 1587.45 + 0.25 : 1587.70

Culvert Designer/Analyzer Report CP2 - Culvert @ SWC

Component:Culvert-1

Culvert Summary					
Computed Headwater Elevation	1,587.45	ft	Discharge	31.20	cfs
Inlet Control HW Elev	1,587.45	π	Tallwater Elevation	2.50	t
Outlet Control HW Elev	1,587.00	ft	Control Type	Inlet Control	
Headwater Depth/ Height	1.89			 	
Grades					-
Upstream Invert	1,584.14	R	Downstream Invert	1,581.20	Ħ
Length	76.00	#	Constructed Slope	0,038684	n/R
Hydraulic Profile					
Profile	52		Depth, Downstream	1.33	n
Slope Type	Steep		Normal Depth	1.33	ft
Flow Regime	Supercritical		Critical Depth	1.46	Ħ
Velocity Downstream	7.97	ft/s	Critical Stope	0.032059	ft/ft
Section				· · · · · · · · · · · · · · · · · · ·	
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP	-	Span	1.75	ñ
Section Size	21 Inch		Rise	1.75	ft
Number Sections	2		·····		
Outlet Control Properties	_				
Outlet Control HW Elev	1,587.00	ft	Upstream Velocity Head	. 0.82	ft
Ke	0.70		Entrance Loss	0,58	ŧ
Inlet Control Properties	<u>. </u>				
Inlet Control HVV Elev	1,587.45	n	Flow Control	Submerged	
Inlet Type	Mitered to slope		Area Fuil	4.8	ft²
K ·	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
c	0.04630		Equation Form	1	
Y	0.75000				

APPENDIX E
(HEC-RAS Output Sheets)

HEC-RAS September 1998 Version 2.2 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616-4687 (916) 756-1104

X	X	XXXXXXX	30000			200)000X		ot	3000X
X	X	X	X	X		X	X.	X	х	X '
X	X	X	X			X	X	X	X	X
300000000		XXXXX	X		XXX	X0000('		10000000)000X
X	X	X	X			X	X	X	X	X
X	X	X	X	X		X	X	X	X	X
X	X	X00000X	200	DOC		X	X	X	X	XXXXXX

PROJECT DATA
Project Title: South Charmel
Project File: SOUTHCHAN.prj
Run Date and Time: 2/28/01 9:41:58 AM

Project in English units

PLAN DATA

Plan Title: South Channel Plan File: C:\VEC\RAS\SCUTHCHAN.p01

Geometry Title: South Channel
Geometry File: s:\DRN\cntr0002\hec-res\SOUTHCHAN.GOT

flow Title flow file : South Channel : s:\DRN\cntr0002\hec-res\SOUTHCHAH.F01

Plan Summary Information: Number of: Cross Sections =

5 0. 0 Mulitple Openings = Inline Weirs = Culverts = Bridges =

Computational Information

Hater surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Haximum number of interations = 20
Haximum difference tolerance = 0.3

Flow tolerance factor **= 0.001**

Computation Options

Critical depth computed only where necessary
Criveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: South Charmet Flow File: s:\DFB\\catro002\hec-ras\SOUTHCHAN.F01

Flow Data (cfs)

River Reach RS 619.51 619.51 Reach #1 Reach #1 South Charmel

Boundary Conditions

River **Profile** Reach Upstrees Downstream South Channel 1 PF 1 Known WS = 1587.9

GEOPETRY DATA

```
Geometry Title: South Channel
Geometry File: s:\DRN\cntr0002\hec-ras\SOUTHCHAN.GD1
                             RIVER: South Charmel
RS: 619.51
CROSS SECTION
REACH: 1
INPUT
Description:
 Station Elevation Date
                                N.ME
                         Sta
3.82
                                                       Elev
1603
1606
                                   Elev
              Elev
                                                                           Elev
1602
                                                                                               Elev
1602
                                                                   Sta
                                                                                    Sta
25.16
      Sta
                                    1604
1604
               1606
                                                                 19.98
               1603
                        32.31
    28.73
Marming's n Values
                                              3
                                 n Val
                        Sta
5.73
                                 n Val
                                              Sta
                                                      n Val
                 .06
                                     .05
                                           28.73
Bank Sta: Left Right
5.73 28.73
                                Lengths: Left Charnel
162_17 170_79
                                                                                             Dipen.
                                                               Right
173.3
                                                                            Coeff Contr.
                             RIVER: South Charmel
RS: 448.72
CROSS SECTION
REACH: 1
 INPUT
Description:
 Station Elevation Data
                                Elev
1601
1598
                        $ta
12.72
36.87
     Sta
                                   Elev
                                                                           Elev
1597
                                                                                       Sta
                                                                                               Elev
                                   1599
1599
                                                        1598
1601
                                                                                    31.28
        0
                                             16.52
                                                                30.11
Manning's n Values
                                (LIP
            n Val Sta
.06 16.52
      Sta
                                         31.28
                                     .05
                                                         .06
                                Lengths: Left Channel Right 204.14 208.49 200.72
Bank Sta: Left Right
16.52 31.28
                                                                           Coeff Cantr.
                                                                                             Expan.
CROSS SECTION
                             RIVER: South Channel
RS: 245,23
REACH: 1
INPUT
Descriptions
 Station Elevation Data
              Elev
1594
1592
                        Sto
4.33
28.37
                                   Elev
1593
                                                       Elev
1592
      Sta
                                                                Sta
17.51
                                                                           Elev
1591
                                                                                     $ta
19.3
                                                                                               Elev
1591
Manning's n Values
                                 n Val
      Stan Val
0 .06
                          Sta
                                              Sta
                                                      n Val
.06
                        8.66
                                     .05
Bank Sta: Left Right
8.66 24.2
                                Lengths: Left Channel Right
181.52 188.2 187.62
                                                                           Coeff Contr.
                                                                                             Expan.
                             RIVER: South Charmel
RS: 57.03
CROSS SECTION
REACH: 1
INPUT
Description:
Station Elevation Data
                                Sta
20.61
52.89
             Elev
1589
                                  Elev
1588
                                                       Elev
1587
      Sta
                                           Sta
31.24
                                                                           Elev
1586
                                                                                              Elev
1586
        ō
                                                                                   39.16
    48.78
                                              3
Manning's n Values
           n Val Sta
.06 31.24
                                 n Val
      Sta
                          Sto
                                              Sta
                                           48.78
                                    .05
Bank Sta: Left Right
31.24 48.78
                                Lengths: Left thermal
55.18 57.03
                                                                           Coeff Contr.
                                                              Right
59.66
                                                                                             Expen.
CROSS SECTION
                            RIVER: South Charmel RS: 0
REACH: 1
INPUT
Description:
Station Elevation Data
                                Sta
                                              Sta
      St#
              Elev
                                   Elev
                                                       Elev
1586
                                                                           Elev
                                                                  Sta
               1588
                                   1586
                                                                           1588
Manning's n Values
                                TLEFE:
                        Sta
36.9
```

٠. ١

1

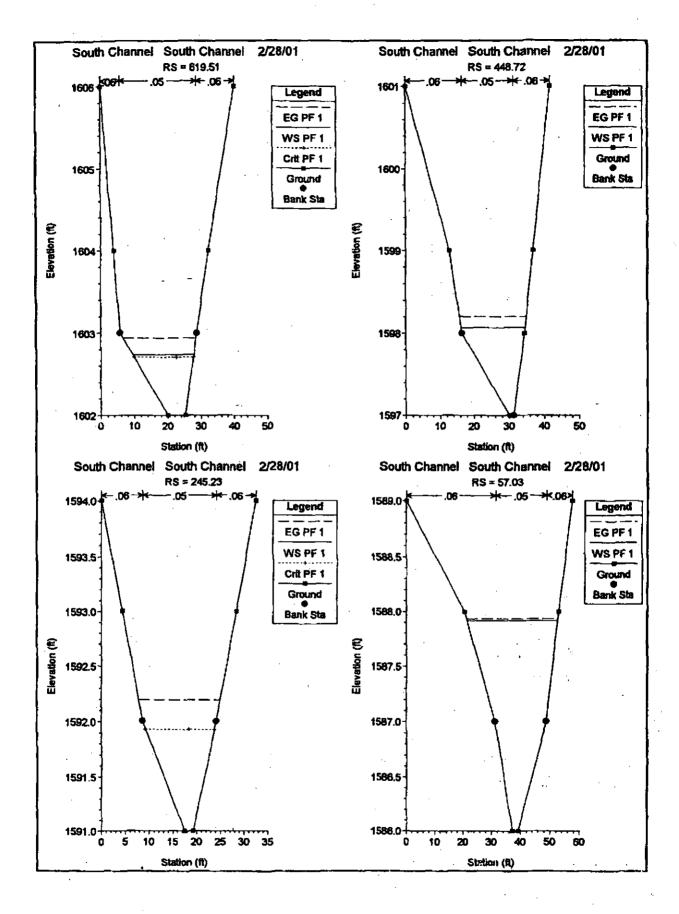
į

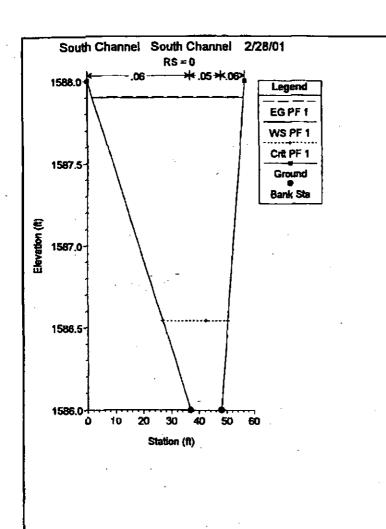
Stan Val 0.06

n Vəl

.05

n Val


Sta 47.96 Benk Sta; Left Right Lengths: Left Channel Right Coeff Contr. Expen. 36.9 47.96 64.36 66.3 75.54 .1 .3


Profile Output Table - Standard Table 1

Reach	River Sta op Vidth Frouds # Chl	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Omi	Flow
Area To	(ft)	(cfa)	(ft)	, (ft).	(ft)	(ft)	(ft/ft)	(ft/s)	(sq
1 8.62	619.51 18.28 0.93	31.20	1602.00	1602.73	1602.70	1602.94	0.040774	3.62	
10.79	448.72 18.35 0.68	31,20	1597.00	1598.07		1598.20	0,020136	3.02	
10.79 1 7.55	245.23 14.52 1.01	31.20	1591.00	1591.93	1591 .95	1592.19	0.046901	4.13	
1 31.97	57.03 31.03 0.16	31.20	1586.00	1587.92		1587.93	0.000840	1.11	
31.97 1 62.35	54.57 0.09	31.20	1586,00	1587.90	1586,54	1587,91	0.000258	0.73	

HEC-RAS Plan; South Channel River: South Channel Reach; 1

LICOLINGS & MILE GOODS CHAIR	HE WILE TOOLS	TICH MENTING IV OF	acti i							
	3.60									
	31.20	1602.00	1602.73	1602.70	1602.94	0.040774	3,82	8.62	18.28	0.93
	31.20	1597.00	1598.07		1598.20	0.020136	3.02	10.79	18.35	0.68
	31.20	1591.00	1591.93	1591.93	1592.18	0.046901	4.13	7.55	14.52	1.01
3	31.20	1586.00	1587.P2		1587.93	0.000840	1.11	31.97	31.03	0,16
	31.20	1586.00	1587.90	1588,54	1587.91	0.000258	0.73	62.35	54.57	0.09

Appendix E: Preliminary G&D Plan

1) Preliminary Grading & Drainage Plan prepared by RICK (2017)

Appendix F: Warning & Disclaimer of Liability

Warning and Disclaimer of Liability

The Drainage and Floodplain Regulations and Ordinances of the City of Scottsdale are intended to "minimize the occurrence of losses, hazards and conditions adversely affecting the public health, safety and general welfare which might result from flooding caused by the surface runoff of rainfall" (Scottsdale Revised Code §37-16).

As defined in S.R.C. §37-17, a flood plain or "Special flood hazard area means an area having flood and/or flood related erosion hazards as shown on a FHBM or FIRM as zone A, AO, A1-30, AE, A99, AH, or E, and those areas identified as such by the floodplain administrator, delineated in accordance with subsection 37-18(b) and adopted by the floodplain board." It is possible that a property could be inundated by greater frequency flood events or by a flood greater in magnitude than a 100-year flood. Additionally, much of the Scottsdale area is a dynamic flood area; that is, the floodplains may shift from one location to another, over time, due to natural processes.

WARNING AND DISCLAIMER OF LIABILITY PURSUANT TO S.R.C §37-22

"The degree of flood protection provided by the requirements in this article is considered reasonable for regulatory purposes and is based on scientific and engineering considerations. Floods larger than the base flood can and will occur on rare occasions. Floodwater heights may be increased by manmade or natural causes. This article (Chapter 37, Article II) shall not create liability on the part of the city, any officer or employee thereof, or the federal government for any flood damages that result from reliance on this article or any administrative decision lawfully made thereunder."

Compliance with Drainage and Floodplain Regulations and Ordinances does not insure complete protection from flooding. The Floodplain Regulations and Ordinances meet established local and federal standards for floodplain management, but neither this review nor the Regulations and Ordinances take into account such flood related problems as natural erosion, streambed meander or man-made obstructions and diversions, all of which may have an adverse affect in the event of a flood. You are advised to consult your own engineer or other expert regarding these considerations.

I have read and understand the above. If I am an agent for an owner I have made the owner aware of and explained this disclaimer.

556-PA-2017 Plan Check No. Joe Cirone, P.E. Jae

12/13/2017

Date

Appendix G: Digital Data (CD)