Exterior Building Color & Material Samples Color Drawdowns Archaeological Resources Airport Vicinity Development Checklist Parking Study Trip Generation Comparison Parking Master Plan

CERTIFICATE OF NO EFFECT ARCHAEOLOGICAL RESOURCES

	APPLICATION INFORMATION		
LOCATION:	E PINNACLE VISTA DR / N 132ND ST (NW Corner)	APPLICANT:	David Gulino
PARCEL:	216-77-024C	COMPANY:	Land Development Services LLC
Q.S.:	50-59	ADDRESS:	7525 E Camelback Rd Ste 104 Scottsdale, AZ 85251
		PHONE:	602-330-5252
	quest by the owner for the approval of a Densi sidential, Environmentally Sensitive Lands (R1-	,	

Residential, Environmentally Sensitive Lands (R1-70 ESL) zoned parcel, to increase the allowed number of lots, from eleven to thirteen, at a property located at the northwest corner of N. 132nd Street and E. Pinnacle Vista Drive (parcel number 216-77-024C).

Certificate of No Effect Criteria:

In accordance with Chapter 46, Article VI, of the Scottsdale Revised City Code, the City Archaeologist finds that:

• No archaeological resources are located on the property according to the archaeological survey and report and based upon the city's review of the report.

STIPULATIONS

 Any development on the property is subject to the requirements of Scottsdale Revised Code, Chapter 46, Article VI, Protection of Archaeological Resources, Section 46-134 - Discoveries of archaeological resources during construction.

SIGNATURE:

twe Ven

DATE: January 8, 2018

Steve Venker, City Archaeologist 480-312-2831

Planning and Development Services 7447 E Indian School Road Suite 105, Scottsdale, AZ 85251 Phone: 480-312-7000 Fax: 480-312-7088 City of Scottsdale's Website: www.scottsdaleaz.gov

Page 1 of 1

Revision Date: 12/16/2014

1. REPORT TITLE

1a. Report Title: A Cultural Resources Survey of 20 Acres of Private Land Located Near the Intersection of Rio Verde Drive and 132nd Street, Scottsdale, Maricopa County, Arizona

1b. Report Author(s): Pamela Rainey

1c. Date: October 27, 2017 1d. Report No.: 17-49

PROJECT REGISTRATION/PERMITS
 ASM Accession Number: NA
 AAA Permit Number: NA
 ASLD Lease Application Number(s): NA
 Other Permit Number(s).: NA

3. ORGANIZATION/CONSULTING FIRM

3a. Name: Northland Research, Inc.

3b. Internal Project Number: 17-48

3c. Internal Project Name: Braun 20

3d. Contact Name: Johna Hutira

3e. Contact Address: 1865 E. Third Street, Tempe, AZ 85281

3f. Contact Phone: 480-894-0020

3g. Contact Email: johna@northlandresearch.com

4. SPONSOR/LEAD AGENCY 4a. Sponsor: Land Development Services

4b. Lead Agency: City of Scottsdale

4c. Agency Project Number(s):

4d. Agency Project Name:

4e. Funding Source(s): Private

4f. Other Involved Agencies:

4g. Applicable Regulations: Scottsdale Revised Code, Chapter 46, Article VI

January 2016 (Rev. 1)

14-ZN-2017 12/19/17

5. DESCRIPTION OF PROJECT OR UNDERTAKING: Survey conducted prior to residential development of parcel.

6. PROJECT AREA/AREA OF POTENTIAL EFFECTS: A 20 acre parcel measuring approximately 0.125 mile (east-west) by 0.25 mile (north-south).

7. PROJECT LOCATION

7a. Address: northwest of the intersection of 132nd Street and Pinnacle Vista Road

7b. Route: 7c. Mileposts Limits:

7d. Nearest City/Town: Scottsdale 7e. County: Maricopa

7f. Project Locator UTM: 426206 Easting 3733182 Northing 7g. NAD 83 7h. Zone: 11

7i. Baseline & Meridian: Gila and Salt River 7j. USGS Quadrangle(s): McDowell Peak

7k. Legal Description(s): E ½ SE ¼ NW ¼ sec 36, T5N, R5E

8. SURVEY AREA

8a. Total Acres: 20

Bb. Survey Area.	· · ·	· · · · · · · · · · · · · · · · · · ·	
1. Land Jurisdiction	2. Total Acres Surveyed	3. Total Acres Not Surveyed	4. Justification for Areas Not Surveyed
Private	20	0	NA
	· · ·		

9. ENVIRONMENTAL CONTEXTS

9a. Landform: alluvial fan

9b. Elevation: 2500ft amsl

9c. Surrounding Topographic Features: Fraesfield Mountain to the north, McDowell Mountains to the south

9d. Nearest Drainage: unnamed wash in southern portion of project area

9e. Local Geology: Basin and Range Physiographic province

9f. Vegetation: This region falls within the Paloverde-Cacti-Mixed Scrub series of the Arizona Upland Subdivision of the Sonoran Desert Scrub Biotic Community (Turner and Brown 1994:200–202). Observed vegetation includes creosote, palo verde, mesquite, cholla, desert scrub and grasses.

9g. Soils/Deposition: alluvial terrace mixed with gravels

January 2016 (Rev. 1)

2

9h. Buried Deposits: possible

9i. Justification: alluvium and possible flooding events from wash

IO. BUILT ENVIRONMENT: NA

11. INVENTORY CLASS COMPLETED

11a. Class I Inventory: 🔲

11b. Researcher(s):

11c. Class II Survey:

11d Sampling Strategy:

11e. Class III Inventory: 🔀

12. BACKGROUND RESEARCH SOURCES

12a. AZSITE: 🔀

12b. ASM Archaeological Records Office:

12c. SHPO Inventories and/or SHPO Library:

12d. NRHP Database: 🗌

12e. ADOT Portal:

12f. GLO Maps:

12g. Land- Managing Agency Files:

12h. Tribal Cultural Resources Files:

12i. Local Government Websites:

12j. Other:

13. BACKGROUND RESEARCH RESULTS

1. Project	2. Project Name	3. Author(s)	4. Year
Reference			
Number			ц.
1987-243.ASM	North Scottsdale Reconnaissance	RECON	1987
1990-124.ASM	120 th St and Jomax	Stone	1990
1991-020.ASM	Community Builders/120 th St and	Irwin	1991
	Jõmax II		
1998-360.ASM	The Golf Club of Scottsdale	Schroeder	1998
2000-548.ASM	Scottsdale National Survey	Stubing	2000

13a. Previous Projects Within Study Area.

January 2016 (Rev. 1)

2001-439.ASM	132 nd Street and Dynamite Survey	Lundin	2001
2004-255.ASM	118 th Street and East Rio Drive	Hart and Freeman	2003
	Survey		
2012-317.ASM	10 Acres – Rio Verde and 128th	Breternitz	2004
	Street Survey		
unknown	Unknown	Bustoz	2011

13b. Previously Recorded Cultural Resources Within Study Area.

1. Site	2. Affiliation	3. Site Type	4. Eligibility	5. Associated
Number/Name			Status	Reference(s)
AZ U-S-ZZI(ASM)	Johokam, A.D. 200	Rectangular	Considered	Schroeden Feight
		arundungshick		
AL U.S.ZG9(ASM)	memistorit	Cluster of 12	Considered	Condine 2000
		nedrock metates		

13c. Historic Buildings/Districts/Neighborhoods.

1. Property Name or Address	2. Year	3. Eligibility Status

14. CULTURAL CONTEXTS

14a. Prehistoric Culture: Hohokam

- 14b. Protohistoric Culture: Yavapai
- 14c. Indigenous Historic Culture: Yavapai
- 14d. Euro-American Culture: 1800s to present

15. FIELD SURVEY PERSONNEL

15a. Principal Investigator: Douglas Craig

15b. Field Supervisor: Pamela Rainey

15c. Crew: Pamela Rainey

15d. Fieldwork Date(s): August 25, 2017

16. SURVEY METHODS

16a. Transect Intervals: 15 m apart

Washington and the second s

and a second sec

Constant in an optimity

A start and a start and

16b. Coverage (%): 100

16c. Site Recording Criteria: ASM

16d. Ground Surface Visibility: poor due to dense vegetation, visibility ranged from 0-50%

16e. Observed Disturbances: Vegetation was dense within the survey area due mostly to desert grasses; some modern construction debris (cinder block fragments, bricks, one piece of sheet metal) was noted near the wash in the southern portion of the project area.

17. FIELD SURVEY RESULTS

17a. No Cultural Resources Identified: 🔀

17b. Isolated Occurrences (IOs) Only:

17c. Number of IOs Recorded:

17d. Table of IOs.

1. IO Number	2. Description	3. Date Range	4. UTMs
			·
·			_
: · · · · · · · · · · · · · · · · · · ·			
• • •			

18. COMMENTS:

5

SECTION 19. ATTACHMENTS 19a. Project Location Map: 19b. Land Jurisdiction Map: 19c. Background Research Map(s): 19d. GLO Map(s): 19e. References:

SECTION 20. CONSULTANT CERTIFICATION

I certify the information provided herein has been reviewed for content and accuracy and all work meets applicable agency standards.

Signature

Vice President

Title

SECTION 21. DISCOVERY CLAUSE

In the event that previously unreported cultural resources are encountered during ground disturbing activities, all work must immediately cease within 30 meters (100 feet) until a qualified archaeologist has documented the discovery and evaluated its eligibility for the Arizona or National Register of Historic Places in consultation with the lead agency, the SHPO, and Tribes, as appropriate. Work must not resume in this area without approval of the lead agency.

If human remains are encountered during ground-disturbing activities, all work must immediately cease within 30 meters (100 feet) of the discovery and the area must be secured. The Arizona State Museum, lead agency, SHPO, and appropriate Tribes must be notified of the discovery. All discoveries will be treated in accordance with NAGPRA (Public Law 101-601; 25 U.S.C. 3001-3013) or Arizona Revised Statutes (A.R.S. § 41-844 and A.R.S. § 41-865), as appropriate, and work must not resume in this area without authorization from ASM and the lead agency.

January 2016 (Rev. 1)

6

Figure 1. Location of project area.

January 2016 (Rev. 1)

State Historic Preservation Office Survey Report Summary Form

Confidential Information has been removed.

8

REFERENCES CITED

Breternitz, Cory Dale

2004 A Cultural Resources Survey of Approximately 10 Acres of Private Land at the Southeast Corner of Rio Verde Drive and 128th Street in North Scottsdale, Maricopa County, Arizona. Technical Report No. 04-27. Soil Systems, Inc., Phoenix.

Bustoz, David

2011 A Cultural Resources Survey of 1,954.6 Acres of State Trust Land Near the McDowell Mountain Regional Park, Scottsdale, Maricopa County, Arizona. Technical Report No. 115004. Logan Simpson Design, Inc., Tempe.

Hart, David R. and Kirk A. Freeman

2003 Cultural Resources Survey of Approximately 210 Acres Northeast of the Intersection of 118th Street and East Rio Verde Drive, North Scottsdale, Maricopa County, Arizona. NRI Technical Report No. 03-44. Northland Research, Inc., Tempe.

Irwin, Donald C.

1991 The Archaic Prehistory of the North American Southwest. Journal of World Prehistory 10(3):305-373.

Lundin, Deil

2001 An Archaeological Survey of 160 Acres at 132nd Street and Dynamite Boulevard in Scottsdale, Maricopa County, Arizona. Report No. 01-375. SWCA Inc., Phoenix.

RECON

1987 North Scottsdale Reconnaissance Survey, Scottsdale, Arizona. Report No. R-1698. RECON, Scottsdale.

Schroeder, K. J.

1998 The Golf Club of Scottsdale Archaeological Survey, Scottsdale, Maricopa County, Arizona. Road Runner Archaeology and Consulting, Tempe.

Stone, Connie L.

1990 An Archaeological Survey of State Trust Land Along Jomax Road, East of Pinnacle Peak, Maricopa County, Arizona, Archaeological Consulting Services, Ltd., Tempe.

Stubing, Michael

2000 An Archaeological Survey of Approximately 275 Acres for the Proposed Scottsdale National Development in North Scottsdale, Maricopa County, Arizona. Report No. 00-78. SWCA Inc., Phoenix.

Turner, Raymond M., and David E. Brown

1994 Tropical-Subtropical Desertlands: Sonoran Desertscrub. In *Biotic Communities: Southwestern* United States and Northwestern Mexico, edited by David E. Brown, pp. 180–221. University of Utah Press, Salt Lake City.

City of Scottsdale Current Planning Services

DEVELOPMENT STANDARDS

Zoning R1-70

Subdivision Name:	Braun 20 Acres 955-PA-2016		Date: August 18, 2017	
and the second second				
Case Number:		Q	uarter Section: 50/59	
	ORDINANCE REQUIREMENTS	AMENDED STANDARD	S MAXIMUM ESLO REDUCTION %	
MIN. LOT AREA	70,000 sf	52,500 sf	25%	
MIN. LOT WIDTH	and the second			
Standard Lot:	250'	187.5'	25%	
Flag Lot:				
MAX. BUILDING HEIGHT	30'			
MIN.YARD SETBACKS				
Front Yard -				
Front (to face of building):	60'	45'	25%	
Front (to face of garage):	60'	45'	25%	
Front (corner lot, side street):	60'	45'	25%	
Front (corner lot, adjacent to key lot, side street):	60'	45'	25%	
Front (double frontage):	60'	45'	25%	
Side Yard -				
Minimum:	30'	22.5'	25%	
Maximum:	60'	45'	25%	
Rear Yard -			S. A. Star	
Standard Depth:	60'	45'	25%	
Min. Depth (% of difference which can be occupied):				
DISTANCE BETWEEN BUILDINGS (MIN)				
Accessory & Main:	10'			
Main buildings/adjacent lots:	60'			
MAX. WALL HEIGHT				
Front:	3'			
Side:	8'			
Rear:	8'			
Corner side not next to key lot:	8' on PL			
Corral fence height (on prop line):	6' on PL			
DEVELOPMENT PERIMETER SETBACKS				
APPLICABLE ZONING CASES		4		
	1			

7447 E Indian School Road, Suite 105, Scottsdale, AZ 85251 + Phone: 480-312-7000 + Fax: 480-312-7088

Sensitive Design Concept Plan and Proposed Design Guidelines

Scottsdale has established a set of guidelines for the design of public and private projects within the city. These guidelines are contained within the Design Standards and Policies Manual, commonly known as the DS&PM. The DS&PM is made up of 12 chapters all dealing with various areas of public and private development issues and intended to provide direction during the design of and construction document preparation for development activities within the City.

The Braun Properties is in its preliminary development stages. As a result, specific detailed design has not begun at this time. However, the following standards and guidelines have been established to ensure that the standards and policies conveyed by the DS&PM will be followed.

Site Features

- Site features such as washes and native vegetation will be kept in a natural state to the maximum extent as practical. Improvements that are required to natural washes will complement their natural function and appearance.
- Existing trees shall be preserved whenever practical or feasible.
- Significant rock outcrops, should there be any, shall be preserved.
- Views of near and distant mountains shall be considered during the design process.

Site Planning

- Roadway and driveway alignments will be located to minimize disruption to the natural drainage patterns of the site. Where crossings are necessary, consideration will be given to flow over the roadway, erosion, sediment transport and clogging.
- Emergency access will meet or exceed Scottsdale Fire Department requirements.
- Gated entrances will comply with the standards of figure 2.1-3 of the DS&PM.

Infrastructure

- Roadway cross-sections will comply with ESL standards as illustrated in the DS&PM.
- To minimize impact, utility lines will be located in road and driveway corridors as much as possible.
 In cases where utility lines cannot follow a road or driveway corridor, they will be located in easements or separate tracts and where desert materials are damaged due to the installation, revegetation will be provided.
- Pavers and natural stone may be used as an alternative to asphalt or concrete streets.

Grading

- Grading and disturbance to the site will be minimized. Fill and cut slopes will be graded to blend back into the natural terrain. Where retaining walls are required, heights will be kept to a minimum and terracing will be incorporated to avoid tall walls.
- Grading for individual residences will be limited to the building envelope area only.

Drainage

Only local native rock will be used for erosion protection.

 Storm water storage basins and drainage channels will comply with DS&PM standards. In additions, they will be shaped to be "free-form" so as to blend into the natural desert surroundings. Landscape material will generally ne native plants capable of surviving periodic inundation such as the species identified in section 2-1.903 of the DS&PM.

Architecture

- All residential structures shall compliment the natural desert in form and color.
- All accessory structures shall match the character of the main building.
- All residences shall utilize four-sided architecture.
- Residences should provide shading and shaded areas to provide protection from the intense sun.
- Buildings should be designed to maximize the beauty of the outdoors and the warm winter climate.
- Building design should draw inspiration from the rich southwest architectural heritage.
- Native materials and colors should be emphasized.
- Garage placement should vary from lot to lot.
- Massing and articulation should be varied.
- Roof tile materials will be concrete or clay, flat or S-tiles, depending on the architectural style.
- Standing seam metal roofs in non-reflective neutral colors shall be permitted in appropriate architectural styles.
- Roof tile colors, shapes and textures shall be consistent with architectural themes.

Landscape

- All landscape plantings shall conform to the standards as identified in DS&PM and ESLO.
- All landscape materials shall compliment the natural vegetation found on-site.
- All areas of disturbance shall be revegetated with plants and densities consistent with the existing natural condition.
- Landscape selection should be consistent in size and scale of the adjacent residence.
- The colors of the landscape material should complement the character of the adjacent building.
- Landscape should enhance the architectural features of the building, not detract or hide them.
- Landscape design should provide for shade and use of outdoor spaces that complement the building.
- Landscape material should be of the desert whenever possible.
- Landscape plantings should be designed in a manner to highlight the uniqueness of the desert landscape.
- Whenever feasible or desirable, existing healthy trees shall be preserved or relocated.
- Existing trees that are salvaged must be placed in a temporary onsite nursery to be maintained until planted in the community.
- Turf shall only be permitted in areas within a residential lot, inside the building envelope, enclosed by a wall or fence, and not in view from the public street.

Hardscape

 All hardscape materials shall be complimentary and compatible with the natural desert environment.

- Concrete used for exposed drainage structures, sidewalks, curbs, gutters and driveways shall be integrally colored.
- Yard walls and fences shall be permitted within the building envelope only. Perimeter lot walls shall not be allowed.
- All utility boxes and other such structures must be screened with landscape and/or walls.
- Mechanical equipment, such as A/C units, pool equipment, etc. must be screened on all residential lots. These units must be screened by a solid masonry wall, at a minimum of four (4) feet in height.

Exterior Lighting

- All exterior lighting shall comply with the provisions as set forth in DS&PM, ESLO, and City Code.
- All exterior lighting shall be consistent with "Dark Skies" and be designed to minimize light pollution.
- All street lights shall be full cut-off and directed downward.

Community Features

- All community features, should there be any, shall comply with the provisions as set forth in DS&PM, ELSO, and City Code.
- Any planned community features will be designed to enhance the community, and compliment the character if the development.

Common Structures

- Although no common structures are planned at this time, all potential common structures shall conform to the standards as set forth in DS&PM, ESLO, and City Code.
- Potential common structures might include, but not be limited to, entry monumentation and signage, trails, shade ramadas, group mailbox.

Sensitive Design Concept Plan and Proposed Design Guidelines

Scottsdale has established a set of guidelines for the design of public and private projects within the city. These guidelines are contained within the Design Standards and Policies Manual, commonly known as the DS&PM. The DS&PM is made up of 12 chapters all dealing with various areas of public and private development issues and intended to provide direction during the design of and construction document preparation for development activities within the City.

The Braun Properties is in its preliminary development stages. As a result, specific detailed design has not begun at this time. However, the following standards and guidelines have been established to ensure that the standards and policies conveyed by the DS&PM will be followed.

Site Features

- Site features such as washes and native vegetation will be kept in a natural state to the maximum extent as practical. Improvements that are required to natural washes will complement their natural function and appearance.
- Existing trees shall be preserved whenever practical or feasible.
- Significant rock outcrops, should there be any, shall be preserved.
- Views of near and distant mountains shall be considered during the design process.

Site Planning

- Roadway and driveway alignments will be located to minimize disruption to the natural drainage patterns of the site. Where crossings are necessary, consideration will be given to flow over the roadway, erosion, sediment transport and clogging.
- Emergency access will meet or exceed Scottsdale Fire Department requirements.
- Gated entrances will comply with the standards of figure 2.1-3 of the DS&PM.

Infrastructure

- Roadway cross-sections will comply with ESL standards as illustrated in the DS&PM.
- To minimize impact, utility lines will be located in road and driveway corridors as much as possible.
 In cases where utility lines cannot follow a road or driveway corridor, they will be located in easements or separate tracts and where desert materials are damaged due to the installation, revegetation will be provided.
- Pavers and natural stone may be used as an alternative to asphalt or concrete streets.

Grading

- Grading and disturbance to the site will be minimized. Fill and cut slopes will be graded to blend back into the natural terrain. Where retaining walls are required, heights will be kept to a minimum and terracing will be incorporated to avoid tall walls.
- Grading for individual residences will be limited to the building envelope area only.

Drainage

• Only local native rock will be used for erosion protection.

 Storm water storage basins and drainage channels will comply with DS&PM standards. In additions, they will be shaped to be "free-form" so as to blend into the natural desert surroundings. Landscape material will generally ne native plants capable of surviving periodic inundation such as the species identified in section 2-1.903 of the DS&PM.

Architecture

- All residential structures shall compliment the natural desert in form and color.
- All accessory structures shall match the character of the main building.
- All residences shall utilize four-sided architecture.
- Residences should provide shading and shaded areas to provide protection from the intense sun.
- Buildings should be designed to maximize the beauty of the outdoors and the warm winter climate.
- Building design should draw inspiration from the rich southwest architectural heritage.
- Native materials and colors should be emphasized.
- Garage placement should vary from lot to lot.
- Massing and articulation should be varied.
- Roof tile materials will be concrete or clay, flat or S-tiles, depending on the architectural style.
- Standing seam metal roofs in non-reflective neutral colors shall be permitted in appropriate architectural styles.
- Roof tile colors, shapes and textures shall be consistent with architectural themes.

Landscape

- All landscape plantings shall conform to the standards as identified in DS&PM and ESLO.
- All landscape materials shall compliment the natural vegetation found on-site.
- All areas of disturbance shall be revegetated with plants and densities consistent with the existing natural condition.
- Landscape selection should be consistent in size and scale of the adjacent residence.
- The colors of the landscape material should complement the character of the adjacent building.
- Landscape should enhance the architectural features of the building, not detract or hide them.
- Landscape design should provide for shade and use of outdoor spaces that complement the building.
- Landscape material should be of the desert whenever possible.
- Landscape plantings should be designed in a manner to highlight the uniqueness of the desert landscape.
- Whenever feasible or desirable, existing healthy trees shall be preserved or relocated.
- Existing trees that are salvaged must be placed in a temporary onsite nursery to be maintained until planted in the community.
- Turf shall only be permitted in areas within a residential lot, inside the building envelope, enclosed by a wall or fence, and not in view from the public street.

Hardscape

 All hardscape materials shall be complimentary and compatible with the natural desert environment.

- Concrete used for exposed drainage structures, sidewalks, curbs, gutters and driveways shall be integrally colored.
- Yard walls and fences shall be permitted within the building envelope only. Perimeter lot walls shall not be allowed.
- All utility boxes and other such structures must be screened with landscape and/or walls.
- Mechanical equipment, such as A/C units, pool equipment, etc. must be screened on all residential lots. These units must be screened by a solid masonry wall, at a minimum of four (4) feet in height.

Exterior Lighting

- All exterior lighting shall comply with the provisions as set forth in DS&PM, ESLO, and City Code.
- All exterior lighting shall be consistent with "Dark Skies" and be designed to minimize light pollution.
- All street lights shall be full cut-off and directed downward.

Community Features

- All community features, should there be any, shall comply with the provisions as set forth in DS&PM, ELSO, and City Code.
- Any planned community features will be designed to enhance the community, and compliment the character if the development.

Common Structures

- Although no common structures are planned at this time, all potential common structures shall conform to the standards as set forth in DS&PM, ESLO, and City Code.
- Potential common structures might include, but not be limited to, entry monumentation and signage, trails, shade ramadas, group mailbox.

PRELIMINARY WATER CAPACITY REPORT Braun Property – 20 acres Scottsdale, AZ

Prepared For:

7525 E. Camelback Rd., Suite #104 Scottsdale, AZ 85251 P: 480.946.5020

ACCEPTED AS PRELIMINARY REPORT W/COMMENTS

City of Scottsdale Prepared by: Water Resources Administration 9379 E. San Salvador Scottsdale, AZ 85258

Aluan . 09/20/2017

File Copy

EXPIRES 9/30/2017

Sustainability Engineering Group 8280 E. Gelding Drive, Suite 101 Scottsdale, AZ 85260 480.588.7226 www.azSEG.com

Project Number: 170601

Original Submittal Date: August 3, 2017

Case No.: TBD

Plan Check No.: TBD

14-ZN-2017 9/1/2017

"LEEDing and Developing Smart Projects"

JA	HE CAN
Register	52743 MARKA MALONEY
C	RELEDINA U.S.A

TABLE OF CONTENTS:

1.	EXECUTIVE SUMMARY	1
2.	INTRODUCTION	
	2.1 PLAN OBJECTIVE	1
	2.2 SITE LOCATION	1
	2.3 PROPOSED DEVELOPMENT	2
	2.3.1 Existing Site Description	2
	2.3.2 Proposed Site Development	2
3.	DESIGN CRITERIA	
	3.1 UTILITY DEVELOPER GUIDE CRITERIA	2
4.	DEMANDS	
	4.1 PROJECT USE DESCRIPTION	3
	4.2 ZONING	4
	4.3 PHASING OF DEMANDS	4
	4.4 SUMMARY NARRATIVE OF DEMANDS	4
5.	EXISTING FACILITIES / CONDITIONS	
	5.1 PREVIOUS MASTER PLANS	4
6.	PROPOSED FACILITIES	
	6.1 DISTRIBUTION SYSTEM PIPING	
	6.1.1 Onsite	4
	6.1.2 Offsite Infrastructure	
7.	WATER MODEL	
	7.1 DESCRIPTION OF MODEL	5
	7.2 ASSUMPTIONS	
	7.3 SUMMARY OF RESULTS	
8.	SUMMARY / CONCLUSIONS	6
	8.1 CONFORMANCE TO DESIGN GOALS	6
	8.2 REQUIRED FACILITIES AND PHASING	

9. REFERENCES

7

"LEEDing and Developing Smart Projects"

LIST OF TABLES:

TABLE 1	-	Design Criteria by demand type
TABLE 2	-	Water Demand Calculations

LIST OF FIGURES:

FIGURE 1	-	Vicinity Map
FIGURE 2	-	Aerial
FIGURE 3	-	Quarter Section Water Map 50-59
FIGURE 4	-	Quarter Section Water Map 50-57

APPENDIX:

APPENDIX I	-	Addendum to Water BOD Report for Reata Ranch
APPENDIX II	-	Preliminary Utility Plan

1. EXECUTIVE SUMMARY

The subject property is a proposed residential development of +/- 20 acres of undeveloped land located within the City of Scottsdale. The site is located on the NWC 132nd Street and East Pinnacle Vista Rd. The parcels are currently zoned R1-70 ESL and will be developed as thirteen residential lots with associated open space and public roads. The purpose of this report is to support an application for a ESL Density Incentive in accordance with the City of Scottsdale zoning ordinance and the environmentally sensitive land ordinance.

City of Scottsdale Quarter Section water maps show there is currently no water infrastructure near the project. The site falls within Quarter Section 50-59. According to the Addendum to Water BOD Report for Reata Ranch, dated September 2014, and Quarter Section Map 50-57, the closest existing water main is located at approximately Rio Verde Drive (Dynamite Blvd.) and 122nd Street. An existing 20" transmission main and an existing 12" golf course irrigation line are located in the Rio Verde R/W at this location. The Reata Ranch BOD report discusses the proposed water infrastructure from the connection to these existing water mains. A proposed 16-inch water main is planned along Rio-Verde Drive from 120th Street (connecting into the existing main) to 128th Street feeding and existing PRV, and a 12-inch water main from 128th Street to 136th Street. A 12-inch water main is also proposed south from Rio Verde Drive, down 132nd street to E. Pinnacle Vista.

2. INTRODUCTION

2.1 PLAN OBJECTIVE:

The purpose of this report is to provide discussions defining the water system concepts necessary to comply with the requirements outlined in the City of Scottsdale Design Standards & Policy Manual. It is intended to describe the requirements of providing water service to the site. At detailed study (with flow testing and calculations) of the existing and proposed water system will be completed prior to submission of the improvement plans to the City of Scottsdale.

2.2 SITE LOCATION

The project property consists of one (1) parcel of land located on the NWC 132nd Street and East Pinnacle Vista Rd. It is further defined as being in the E ½ of the SE ¼ of the NW ¼ of Section 36, Township 5 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Scottsdale, Arizona; Parcel ID number is APN: 216-77-024C. Refer to **FIGURE 1** - **Vicinity Map** for the project's location with respect to major cross streets.

The site is bounded by E. Pinnacle Vista to the south, N 132 Street to the east, and the Desert Estates at Pinnacle Peak subdivision to the north and the east. The site is located approximately ¼ of a mile south of Rio Verde Drive.

Desert Estates at Pinnacle Peak is a recorded residential subdivision adjacent to the property, that is currently in the process of re-platting, and re-approval for onsite and offsite infrastructure. We have used the Addendum to Water BOD Report for Reata Ranch, dated September 2014, is the basis of this study.

2.3 PROPOSED DEVELOPMENT

2.3.1 Existing Site Description:

Land ownership includes 20.05 +/- net acres (19.26+/- gross acres) of undeveloped land designated as R1-70 (Single Family Residential-Low Density) per City of Scottsdale Zoning Map 39.

The site slopes from west to east and contains average cross-slopes generally ranging from 2% to 15%. Predominantly, the buildable areas of the site contain slopes ranging from 2% to 10%. The Rio Verde Wash 10 Tributary 3 splits the center of the property. FIRM Map Number 04013C1331M dated November 4, 2015 indicates this site is designated as Zone "X" with a portion of the property zone AE where the Rio Verde Wash 10 Tributary 3 crosses the site. A CLOMR has been approved by FEMA for improvements along this tributary, but the improvements have yet to be completed. A recorded drainage easement along this tributary exists for installing these drainage improvements. Two thirds of the AE zone have base flood elevations determined while the western one third was not part of the detailed study. The layout of the residential lots is such that the developable envelopes are outside of the determined flood plain and the dedicated drainage easement. Finished floor elevations for the home sites will be set a minimum one (1) foot above the high-water elevations of this tributary. Refer to FIGURE 2 for an aerial of the overall project existing conditions.

The City of Scottsdale Water Quarter Section Map (**QS 50-59**) shows the project site with no water infrastructure in the area. Also included is Quarter Section Map (**QS 50-57**) showing the nearest point of connection at this time. Refer to **Figures 3 and 4** for the COS Water Quarter Section Maps (QS 50-59 and 50-57).

Due to the lack of current water infrastructure in the area, the parcel will be developed subsequent to or concurrently with the Reata Ranch development which proposes a 12-inch water main fronting the property. This water main is proposed as part of the Reata Ranch – Offsite Improvement plans currently being process through the City of Scottsdale under Case #2-PP-2014 and Plan #5483-14.

2.3.2 Proposed Site Development:

The property is proposed to be developed with a lot configuration for thirteen residential units. The development will include two 24' wide cul-de-sac roadways entering from 132nd Street. Refer to **Appendix II** for the preliminary utility plan showing the proposed site layout.

An 8" main is proposed at each roadway tying into the proposed 12" DIP water main per the Reata Ranch - Offsite Improvements (Plan #5483-14). Domestic and irrigation services to the units will be tapped off these new 8" mains.

3. **DESIGN CRITERIA**

UTILITY DEVELOPER GUIDE CRITERIA 3.1

This project is designed using 13 du / 19.26 gross acres = 0.67 du/ac. Refer to **Table 1** below for applicable "Design Criteria for Water Systems" based on Figure 6.1-2 (<2 du/ac) in accordance with the City of Scottsdale DS&PM.

Table 1 - COS	Design Criteria by	demand type	
	Average Day	Max Day	Peak Hour

	Land Use	Demand (gal/day/unit)	Peaking Factor	Peak Hour Peaking Factor	
ţ	Residential (<2 DU/ac)	485.6	2.0	3.5	

The system pressures, velocities, head losses and fire flow are in accordance with the COS DS&PM as follows:

Minimum Pressures:

50 psi residual pressure at the highest delivery point and 30 psi @ max day +fire flow

Maximum Pressures:

Maximum Pressure =120 psi

The City of Scottsdale operates its system such that pressures may exceed 80 psi. Therefore, the city requires all metered services to have a pressure-regulating valve installed on the private service line per DS&PM 6-1.402. 407.

Velocity & Head loss:

10 ft. head loss maximum per 1,000 linear feet of pipe for pipes less than 16 inches in diameter.

Hazen-Williams Coefficient 130

Fire Flows:

This site is under the jurisdiction of the City of Scottsdale Fire Department. Fire flows must be in accordance with the 2015 International Fire Code which, for one- and two-family dwellings, is determined as follows:

. Dwellings having a fire-flow calculation area that does not exceed 3,600 s.f. that have automatic sprinklers shall be 500 gpm for 1/2 hour. 🗸 Higher Fire flow demand for 73,600 SF. Homes. Confirm Home Sizes, as this Will govern The F.F. demand.

4. **DEMANDS**

4.1 **PROJECT USE DESCRIPTION**

Proposed demands for this project are based on a Residential Demand per Dwelling Unit for a density <2 DU/ac. Refer to Table 2 below for the proposed water demand calculations based on the design criteria established in Section 3.1 above

	Units	Avg. Day Flow (gpd/unit)	Max Day Peaking Factor	Peak Hour Peaking Factor	Avg. Day Demand (GPD)	Max. Day Demand (GPD)	Peak Hour (GPD)
Res. (<2 DU/ac)	13	485.6	2	3.5	6,312.8	12,625.6	22,094.8
							Sellin In
TOTAL PROPOSED BLDG UNITS	9						
		т	TOTAL DEMANDS (GPD):		6,312.8	12,625.6	22,094.8
		тс	DTAL DEMA	NDS (gpm):	4.38	8.77	15.34

4.2 ZONING

This site is in Zone 11 according to Figure 6.1-3 Pressure Zone Map in DS&PM.

4.3 PHASING OF DEMANDS

This residential project may be phased as dictated by unit demand. The infrastructure will be built in a single phase. Include Max. Day + Fire Flow dema-

4.4 SUMMARY NARRATIVE OF DEMANDS

The demand scenario that governs the design was the peak hour demand.

5. **EXISTING FACILITIES / CONDITIONS**

5.1 **PREVIOUS MASTER PLANS**

No existing master plan or water report is available from COS for this site. However, a copy of the Addendum to Water BOD Report for Reata Ranch, dated September 2014 has been included in Appendix I of this report.

6. PROPOSED FACILITIES

6.1 DISTRIBUTION SYSTEM PIPING

6.1.1 Onsite:

The proposed water supply will consist of two new 8" public water lines and two new fire hydrants. The proposed 8" pipe will be DIP in accordance with COS requirements.

Domestic service will be provided by 1" copper service connections to each lot. Irrigation will be tapped from the domestic service and require backflow prevention.

Irrigation for common areas will be provided by a separate system tapped from the 8" line and maintained by the Home Owners Association.

-nd Scenario

Offsite Infrastructure: 2.1.3

infrastructure is required to service this site. Assuming this development proceeds the development of Reata Ranch no offsite

WATER MODEL ·L

DESCRIPTION OF MODEL I.T

Environmental Services Department ("MCESD"). Water, the Arizona Department of Environmental Quality ("ADEQ"), and Maricopa County The final model of the proposed water system will be designed to meet the criteria of COS

Bentley WaterCAD® Version 8i will be used to model the water system.

Network analysis input parameters included the following:

- Pipe diameters (inches) ٦.
- Pipe lengths (feet) ٠2
- Pipes invert elevations (feet) 3.
- General Purpose Valve to model Water Meter and Double Check Valve Assembly .4
- A reservoir and a pump to model the tire flow test performed 'S
- (mgg) sbnsmeb metsy2 .9
- Fire flows (gpm) ٠٢
- Model piping is ductile iron pipe using Hazen-Williams frictional losses (C = 130) .8

Output parameters will include but not necessarily limited too:

1. Pressure (psig)

 Velocities (fps) 2. Flow rates (gpm)

waterline within 132na street. (Refer to Appendix I at nodes 7 and 23). During Max Day and maximum day and peak hour conditions provides a pressure of roughly 77 psi within the However, referencing the modeling results from the Water BOD Report for Reata Ranch during Demand 4. Head loss (feet) A which is Max Day + Fire Flow

Include the worst case scenario

approximately 400 foot of 8-inch pipe providing service to the proposed subdivision.

subdivision. The Hazen Williams headloss equation provides a negligible friction loss for the Peak hour the pressure in this line is constant (77 psi) at both of the proposed taps for this

 $R_{\text{psi per foot}} = \frac{P_d}{L} = \frac{4.52 \text{ Q}^{1.852}}{C^{1.852} \text{ d}^{4.870}}$

Where;

- J_{psi per foot} = frictional resistance (pressure drop per foot of pipe) in psi/ft
- P_d = pressure drop over the length of pipe in
- L = length of pipe in feet
- Q = flow, gpm

- C = pipe roughness coefficient (130)
- d = inside pipe diameter, (inches)
- H_f = friction headloss

S (psi/ft) = $[4.52 \times (15 \text{ gpm})^{1.852}] / [(130)^{1.852} \times (8.38)^{4.8704} = 2.640 \times 10^{-6} \text{ psi/ft}$

At 400 lf of onsite pipe length; $H_f = 0.0011 \text{ psi}$ show Headloss @ Max Day + F.F. Gordh Far, 1000 gpm FF, ~ Headloss ~ 2.4' For, 1000 gpm FF, ~ Headloss ~ 8'3'

Approximately 10 ft -15 ft (4.3 psi – 6.5 psi) of elevation head loss will occur at the highest proposed PAD elevation on site. Consequently, the minimum Max Day and Peak Hour pressure should be around;

Elv. for Node 7 (App-I) is 2506: 47. From GIS MAP, Approx. Highest Elv. C Site is 25,35. Resulting Approx. of 12.4 psi of Elv. headloss.

7.2 ASSUMPTIONS

Please refer to Section 3.1 for the design criteria.

The general methodology that will be used to provide the final design of this water infrastructure will consist of modeling a network of water distribution mains to meet COS pressure, head loss, and water demand requirements during daily demands and fire events. The connection to the water system will be modeled as a reservoir and pump. The pump will simulate the pressure drop and the available flow from the existing water system as depicted by the fire flow test.

7.3 SUMMARY OF RESULTS

Modeling of the water system will be completed in the final BOD water report for the subdivision.

8. SUMMARY / CONCLUSIONS

- 8.1 CONFORMANCE TO DESIGN GOALS
 - The proposed water main will be designed in accordance with COS design standards and policies¹. The following summary is based on the above analysis summary.
 - Minimum 50 psi residual @ highest delivery point required, 70.5 psi minimum provided (per standard headloss calculations). - Show Min available pressure for M
 - Minimum 30 psi @ max+ fire flow required. Day + F.F. Conder
 - 10 ft of headloss per 1000 feet of pipe will not be exceeded during fire flow conditions.
 - The system will be designed to support the minimum 500 gpm fire flow requirements.
 - If homes exceed 3,600 sf a fireflow rate of 1500 gpm will be required. This can be reduced to 750 gpm with the installation of a fire sprinkler system.

8.2 REQUIRED FACILITIES AND PHASING

• Proposed facility improvements for this project are limited to a two 8" mains (approximately 400 If each), two new fire hydrants, and 1" domestic service connections.

This project will be constructed in a single phase.

REFERENCES

- 1. City of Scottsdale Design Standards & Policies Manual-Chapter 6, Water
- 2. Water BOD Report for Reata Ranch, dated September 2014

"LEEDing and Developing Smart Projects"

"LEED®ing and Developing Smart Projects"

APPENDIX I

Addendum to Water BOD Report for Reata Ranch September 2014
ADDENDUM TO WATER BOD REPORT For REATA RANCH City of Scottsdale project Number: 3902-12

Prepared for: Land Development Services, L.L.C. 7525 E. Camelback Road, Suite 104 Scottsdale, AZ 85251 Phone (480) 946-5020 Fax (480) 946-5041 Date:

Accepted For: City of Scottsdale Water Resources Department 9379 E. San Salvador Scottsdale, Arizona

VI

ssiona/

25970 SHAKIR GUSHGARI

16

SK

Prepared by: **SKG Enterprises, Inc**. 9260 East Raintree Drive, Suite 140 Scottsdale, Arizona 85260 Phone (480) 998-5600 Fax (480) 998-5603

> September 2014 SKG Project #30-11

> > 4508-14

2-PP-2014

ADDENDUM TO WATER BOD REPORT

For

REATA RANCH

City of Scottsdale project Number: 3902-12

Prepared for: Land Development Services, L.L.C. 7525 E. Camelback Road, Suite 104 Scottsdale, AZ 85251 Phone (480) 946-5020 Fax (480) 946-5041

Prepared by: **SKG Enterprises, Inc**. 9260 East Raintree Drive, Suite 140 Scottsdale, Arizona 85260 Phone (480) 998-5600 Fax (480) 998-5603

> September 2014 SKG Project #30-11

2-PP-2014

4508-14

TABLE OF CONTENTS

EXHIBITS

Exhibit 1	Location Map
Exhibit 2	Parcel Configuration Layout
Exhibit 3	Key map – Ultimate Buildout Scenario
Exhibit 4	Hydraulic model computer run for Ultimate Buildout

TABLES

Table 1	Parcel Infrastructure Dependency
Table 2	Water demand calculation for Ultimate Buildout Scenario
Table 3	Pressure at tie in locations
Table 4	Summary of Water System Design Parameters
Table 5	Summary of Water Demand Calculation for Each parcel and Site
Table 6	Summary of Scour depth for Sewer Line Segment under Wash

LIST OF APPENDICES

APPENDIX A	Demand Computation for Ultimate Buildout Scenario
APPENDIX B	Copy of City Approved SKG Water Report, Case # 3902-12
APPENDIX C	Scour Depth Analysis Excerpts from REATA RANCH Drainage Report

Page

1.0 INTRODUCTION

Purpose of Study and Relative History

The master water distribution system basis of design report (BOD) for Reata Ranch was originally developed by SKG Enterprises, Inc. on August 24th, 2012 (Reference 1 and Appendix B). This Water BOD report was approved by the City of Scottsdale under case number 3902-12 on September of 2012. Further, the proposed offsite waterline, along Rio Verde Drive, was designed as a part of Water Master Plan (Hunn & Associates, Inc.) by GTA Engineering Inc. on April 25th, 2001 (Reference 2), which was also City approved. Since the approval of the Rio Verde waterline design and the SKG water BOD report, the proposed development of Reata Ranch has undergone slight lot layout configuration changes, while the intent of the original design is still maintained.

The purpose of this addendum is to present the most recent proposed onsite water system's layout within the Reata Ranch development as has recently been approved by the City of Scottsdale Development Review Board under case number 2-PP-2014 and to demonstrate that the development of Reach Ranch (with its new and revise lot configuration) still meets the water design standards in accordance with the City of Scottsdale's Design Standards and Policy Manual.

• Location of Study

Reata Ranch is a proposed master planned development bounded by 136th to 128th Streets (east-westdirection) and Rio Verde Drive to Pinnacle Vista Drive (north-south-direction) and is situated in a portion of the north half of Section 36, Township 5 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Scottsdale, Arizona (Exhibit 1).

Exhibit 1 – Location Map

2.0 EXISTING INFRASTRUCTURE

Currently, there is no existing water main along the perimeter of the site. The closest existing water line to Reata Ranch is located within the vicinity of Rio Verde Drive and 120th Street. A proposed 16-inch water main is planned along Rio-Verde Drive from 120th Street (connecting into the existing main) to 128th Street (Reference 2) and a 12-inch water main from 128th Street to 136th Street. In addition to the proposed Rio Verde water main, additional water lines are also proposed as follow:

- 12-inch water main along 128th Street,
- 12-inch water main along 132nd Street,
- 12-inch water main along 136th Street, and
- Pressure Reducing Valve (PRV) at 128th Street

3.0 ONSITE WATER DISTRIBUTION SYSTEM

The proposed water distribution infrastructure for the Reata Ranch development will consist of two components:

- 1. Offsite water main along Rio Verde Drive, 128th Street, 132nd Street and 136th Street, and
- 2. Onsite water distribution system

It is currently anticipated that entire Reata Ranch site grading and infrastructure activities be constructed at one time. This construction plan was a result of balancing earthwork grading activity to mitigate potential earthwork import or export. In order to maintain flexibility to close-out of some parcels while the rest of the parcels are still under construction, the design team has elected to submit improvement plans via seven separate cover sheets labeled as Parcels "A" through "G". The final plat for the development is; however, planned to be submitted as one complete final plat document (as opposed to seven separate plats). It should be noted; however, that all seven parcels are planned to be submitted to the City of Scottsdale for review at the same time. Associated with seven separate plans submittals, this water BOD report was prepared as a one document (not seven separate documents) with the understanding that the entire water system will be constructed at one time. The water hydraulic model has been prepared as one complete system to be constructed at one time. However, in case where one parcel should be closed-out while the rest of the infrastructure is still being constructed, the following table has been prepared to demonstrate which parcel can be closed-out "as a standalone parcel" and which parcel is dependent on others relative to water, sewer, and access. It is implied that the offsite water distribution system will be constructed prior to any onsite line installation (See Exhibit 2). It should be noted herein that the intent of the table below is not to suggest the project will be phased, relative to infrastructure construction, but rather which parcel can be closed-out while others are still being under construction.

Sequence Number	Activity	Description of Construction Work
1	CLOMR channel grading	Channelization grading of wash and area directly adjacent to wash. Installation of drainage structures within the wash to comply with the FEMA-CLOMR application. The only utility to be installed with this construction activity is water line and potentially dry-utility sleeves under the drainage structures. These plans will also include channel erosion protection and channel re- vegetation plans.

2	Offsite	Construction of offsite improvements will consist of:
2	Improvements	1. 136 th Street: roadway, 12" water, and 4" sewer force main
	Improvements	 1. 156 Street: roadway, 12 water, and 4 sewer force main 2. 132nd Street: roadway and 12" water
		2. 132 Street: roadway and 12 water
		3. 128 th Street: roadway and 12" water
		4. Rio Verde Drive: right & left turn lanes
		5. Rio Verde Drive: 12" & 16" water line
		6. Rio Verde Drive: 4" sewer force main
		These plans will also include storm-drain related construction, re-
		vegetation plans, landscape & irrigation, and dry utilities.
3	Parcel "E"	Residential subdivision with access drive off Rio Verde Drive.
		Secondary access will be toward 132 nd Street (north of Parcel "C") since
		the channel grading will be 100% completed prior to completion of
		Parcel "E"; therefore, a graded access will be available from Parcel; "E"
		to 132 nd Street. Water will have 2 sources, the 1 st is via Rio Verde Drive
		and the 2 nd is via 6" water line parallel to the force main connecting into
		136 th Street. Sewer is available all the way to the lift station. Parcel "E"
		is a "standalone parcel" that can be closed-out independent of any other
		parcel.
4	Parcel "C"	Access is through Rio Verde and 132 nd Street (2 access points). Water
		will have 3 sources (Rio Verde, 136 th Street, and 132 nd Street). Sewer is
		gravity through Parcel "E". Parcel "C" depends on Parcel "E" for sewer
		outfall and therefore, cannot complete its "certificate of occupancy"
		status prior to Parcel "E" sewer line construction completion.
5	Parcel "G"	Access is through Rio Verde and 136 th Street (2 access points). Water
5	Tarcer O	will have 2 sources (Rio Verde and 136 th Street). Sewer is gravity all
		the way to the lift station. <u>Parcel</u> "G" is a "standalone" parcel that can
		be closed-out independent of any other parcel.
6	Parcel "F"	Access is through Rio Verde and 136 th Street (2 access points). Water
0	raicei r	Access is through Kio Verde and 130 Street (2 access points). Water
		will have 3 sources (Rio Verde, 136 th Street, and 132 nd Street). Sewer is
		gravity through Parcel "G". <u>Parcel "F" depends on Parcel "G" for sewer</u>
		outfall and therefore, cannot complete its "certificate of occupancy:
7	D1 ((D))	status prior to Parcel "G" sewer line construction completion.
/	Parcel "B"	Access will be through 132 nd Street and 128 th Street (2 access points).
		Access to 128 th Street will be through the graded portion of the CLOMR
		wash grading activity in sequence number 1 above. The channel grading
		will be 100% completed prior to completion of Parcel "B"; therefore a
		graded access will be available to 128 th Street. Water will be via 2
		sources (132 nd Street and 128 th Street) which means that Parcel "A"
		water line must be installed with Parcel "B" to create the 2 nd water
		source for Parcel "B". Also Parcel "B" sewer outfall depends on Parcels
		"E" and "C". Therefore Parcel "B" cannot be completed without Parcels
		"E", "C", and "A". Parcel "B" & "A" will be submitted and
		constructed together.
8	Parcel "A"	Access will be through 132 nd Street and 128 th Street (2 access points).
		Water will have 2 sources (128 th Street and 132 nd Street). Sewer outfall
		will be through Parcels "B", "C", and "E". Therefore, Parcel "A" is
		depends on parcels "B", "C", and "E" to function. Parcel "A" cannot be
		completed without Parcels "B", "C", and "E".
		Parcel "B" & "A" will be submitted and constructed together.

9	Parcel "D"	Access is through Rio Verde, 136 th , and 132 nd Street (3 access points). Water will have 3 sources (Rio Verde, 136 th Street, and 132 nd Street). Sewer is gravity through Parcel "E". <u>Parcel "D" depends on Parcel "E"</u> for sewer outfall and 2 nd source water connection. Therefore, cannot
		complete its "certificate of occupancy" status prior to Parcel "E"
		construction completion.
10	Final Plat	Final plat will be prepared is one complete documents and be submitted
		"as reference" with each parcel submittal.

See Exhibit 2 for parcel configuration layout

The onsite water distribution system facility will entail the installation of the following:

- Onsite water distribution system consisting of 8-inch and 12-inch, water lines.
- 6-inch water line to create looping system at two locations.
- All water line shall be of ductile iron pipe material.

The proposed onsite distribution system design intent is to maintain pressure to range from an upper limit of approximately 120 pounds-per-square-inch (psi) to a lower limit of 50 psi limit at the highest end of the development's pressure zone. The lower limit could drop to as low as 30 psi during fire flow demand.

The water distribution system described in this report consists of ultimate buildout scenario where the water system model considered the entire developments of the Reata Ranch. The water infrastructure sizes for Reata Ranch development were based on this "ultimate buildout" scenario.

3.1 ULTIMATE BUILDOUT

Ultimate build-out is a final build-out scenario and includes the entire development areas of all 7 parcels and all offsite infrastructure improvements. As such, the ultimate build-out water model was prepared to include the entire Reata Ranch developments.

The proposed 12" D.I.P. along East Running Deer Trail connecting 128th, 132nd, and 136th streets and 8" D.I.P. for the remaining streets within the master planned development of Reata Ranch project is to deliver potable water and fire protection to the farthest of the development. Exhibit 3 illustrates the general layout of the water system infrastructure for each of the parcel development.

The table below outlines the projected water demand for the proposed Reata Ranch Ultimate build-out scenario. It describes the water demand in terms of average daily demand, maximum day demand and peak hourly demand.

Type 1	Acres 2	DU/Ac 3	Units 4	Demand Per Unit 5	Ave. Daily Demand (gpd) 6	Max Daily Demand (gpd) 7	Peak Hourly Demand (gpd) 8
Parcel A	17.9	3.5	36	485.6	17,482	34,963	61,186
Parcel B	20.5	3.5	40	485.6	19,424	38,848	67,984
Parcel C	26.3	3.5	63	485.6	30,593	61,186	107,075
Parcel D	24.7	3.5	37	485.6	17,967	35,934	62,885
Parcel E	16.6	3.5	24	485.6	11,654	23,309	40,790
Parcel F	22.3	3.5	78	485.6	37,877	75,754	132,569
Parcel G	20.6	3.5	50	485.6	24,280	48,560	84,980
Equestrian Center & Club House	15.3	-	-	1,786	27,322	54,644	95,627
Offsite - South of Property	420	3	140	485.6	67,984	135,968	237,944
Offsite - East of 136th Street	420	3	142	485.6	68,955	137,910	241,343

Table 2 -	- Water demand	calculation	for Ultimate	Build-out Scenario
-----------	----------------	-------------	--------------	---------------------------

Design Criteria:

1. Average Daily Demand for Residential = 485.6 gpd per unit

2. Average Daily Demand for Resort town homes = 485.6 gpd per unit

2. Average Daily Demand for Developed Open Space - Parks = 1786 gpd per acre

2. Max Day Demand = 2 X Avg Daily Flow

3. Peak Hour Demand = 3.5 X Avg Daily Flow

4. Fire Flow = 1000 gpm for single family residential

5. Fire Flow = 2500 gpm for Resort

6. Offsite Water Demand was computed assuming that the surrounding Parcels are zoned as R1-130. Since Reata Ranch is 220acres, the adjoining Parcels of 420 acres is expected to develop 140 potential residential lots. Parcel to the east (Wildcat Ridge/Scottsdale National/ Scottsdale Appendage) is expected to develop 142 lots.

The City of Scottsdale has approved the proposed water distribution system along Rio Verde Drive consisting of 16" and 12" mains (Ref. 1 and 2). This approved water system will be the main domestic and fire flow water sources for the proposed development of Reata Ranch. A hydraulic water model for this water system was also previously prepared and City approved on May 7, 2001 (Ref. 5). Excerpt from this water model report is included in Ref. 3 of this report. The available water flow and pressure are summarized in Table-3.

Table 3 – Pressure at tie in locations

Node #	Near	Flow (GPM)	Pressure (psi)
1	2	3	4
210	128 th Street	299.56	55.00
212	East of 128 th Street	299.56	63.46
220	West of 132 nd Street	299.56	80.45
224	136 th Street	299.56	91.11

In the Ultimate build-out scenario, all the parcels (Parcels "A" through "G") are considered for Hydraulic Analysis, the results of which are included in Section 5.

Demand assigned at each of the junctions is summarized in Appendix A for Ultimate Build-out Scenario.

4.0 WATER SYSTEM DESIGN PARAMETERS

The design parameters used to calculate the water demand for this development are presented in the table below.

Criteria	Parameters
Average Single-family Residential Demand	485.6 GPD per dwelling unit
Resort Development Demand	485.6 GPD per unit
Residential Fire Flow	1,000 GPM, 4 hour Duration
Commercial Fire Flow (Resort)	2,500 GPM, 4 hour Duration
Velocity Range	0 to 5 foot-per-second
Water pipe material	Ductile Iron Pipe
Allowable pipe sizes (inches)	8" and 12"
Peak Day Peaking Factor	2.0 times average day demand
Maximum Hour Peaking Factor	3.5 times average day demand

Table 4 - Summary of Water System Design Parameters

GPM = gallon per minute

GPD = gallon per day

Water Design parameters obtained from City of Scottsdale, "Chapter 6 Potable Water System Design, Design Standards and

Policies Manual", Dated August 2008.

5.0 HYDRAULIC ANALYSIS

This report provided the water hydraulic analysis for ultimate build-out development scenario. The model is analyzed for 4 independent demand scenarios:

- 1 Average Day Demand;
- 2 Maximum Day Demand;
- 3 Peak Hour Demand; and
- 4 Maximum Day + Fire Flow Demands

The hydraulic system is modeled for "steady state analysis" using Bentley WaterCAD V8i software. Fire flow analysis is performed for all the nodes to meet the fire demand. Based on the model results, the proposed water infrastructure is found to be adequate to meet ultimate buildout domestic and fire demands, and serve as a reliable source of water supply for the entire development. The hydraulic model analysis results and corresponding demand patterns, with the proposed water system diagram of the ultimate buildout scenario for steady state analysis is presented in Exhibit 4 of this report. The following summarizes the water distribution system design criteria under these four scenarios.

□ The Hazen-Williams "C" for ductile iron pipe is 120.

- □ Minor losses are ignored.
- □ The overall head-loss through the piping networks is low at peak hour demand and at the maximum day+fire demand. The maximum and minimum pressures at each junction nodes are within the pressure zone range.
- The upper limit of water pressure shall be on the order of 120 psi.
- The lower limit of water pressure shall be on the order of 50 psi.
- □ The lower limit of water pressure shall be on the order of 30 psi with fire flow.
- On-site water system distribution will consist of adequate size to deliver the needed flows and pressures.
- □ Fire Flow analysis for all nodes were conducted based on 1,000-GPM for residential units, and 2,500-GPM flow for resort parcels, with pressure equal to or greater than 30 psi at all nodes.
- □ All pipe material shall be of ductile iron pipe.
- □ Hydraulic model output print out is presented in Exhibit 3 of this report.
- Digital copy of the hydraulic model is attached in a "CD" at the back of this report

Table 5 presents a summary of the water demand calculation for each parcel and that of the total site. Table 6 presents the calculated scour-depth for the proposed 6" water line segment that will be installed under the wash (see Exhibit 3 for water line segment to be installed within a wash).

Parcel No.	Junction No.	No. of Units	Average Daily Flow (gpm)	Maximum Day Demand (gpm)	Peak Hour Demand (gpm)	Maximum Day + Fireflow (gpm)
A	2	18	6.07	12.14	21.25	1000
	3	18	6.07	12.14	21.25	1000
	4	22	7.42	14.84	25.97	1000
В	5	7	2.36	4.72	8.26	1000
	6	11	3.71	7.42	12.98	1000
Sala Shirt	7	-	-	-	-	1000
	8	5	1.69	3.37	5.90	1000
	9	8	2.70	5.40	9.44	1000
-	10	17	5.73	11.47	20.06	1000
С	11	9	3.04	6.07	10.62	1000
	12	11	3.71	7.42	12.98	1000
	13	5	1.69	3.37	5.90	1000
A STATE AS	14	5	1.69	3.37	5.90	1000
	15	3	1.01	2.02	3.54	1000
	16	-	-	-	-	1000
	17	4	1.35	2.70	4.72	1000
	18	8	2.70	5.40	9.44	1000
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	19	12	4.05	8.09	14.16	1000
E	35	-	-	-	-	1000
	36	-			-	1000
	27	-	-	-	-	2500
n mil a faire an	31		18.97	37.95	66.41	2500
	41	-	-	-	-	1000
	20	7	2.36	4.72	8.26	1000
	21	5	1.69	3.37	5.90	1000
and the second	22	3	1.01	2.02	3.54	1000
D	23	5	1.69	3.37	5.90	1000
	24	-	-	-	-	1000
S. E.	25	3	1.01	2.02	3.54	1000
and the second	26	14	4.72	9.44	16.52	1000
and the second	28	30	10.12	20.23	35.41	2500
	29	32	10.79	21.58	37.77	2500
_	30	16	5.40	10.79	18.88	2500
F	40	-	-		-	1000
	44	-	-	-		2500
	45	-	-	-	-	2500
	32	25	8.43	16.86	29.51	2500
-	33	25	8.43	16.86	29.51	2500
G	34	-	-	-	-	2500
	42	-	-	-	-	1000

Table 5 - Summary of Water Demand Calculation for Each Parcel and the Total Site

Continued....

Parcel No.	Junction No.	No. of Units	Average Daily Flow (gpm)	Maximum Day Demand (gpm)	Peak Hour Demand (gpm)	Maximum Day + Fireflow (gpm)
	37	47	15.74	31.47	55.08	1000
Offsite	38	47	15.74	31.47	55.08	1000
Demand	39	47	15.74	31.47	55.08	1000
	43	142	47.89	95.77	167.60	1000

Table 6 – Scour depth for the 6" Water Line Segment under Wash

Pipe ID	Pipe Size	Start Node	End Node	Scour Depth	Depth of Pipe below Proposed Channel Bottom
P-46	6"	J-35	J-36	5'	7'

6.0 REFERENCE

- Water Distribution System Basis of Design Report for Reata Ranch, Case # 3902-12 by SKG Enterprises, Inc., City of Scottsdale, AZ, August 24th, 2012. City of Scottsdale approved on 09-19-2012.
- 2. GTA Engineering, Inc., Scottsdale National Water Supply System, Scottsdale. Arizona. April 25, 2001. Project number GTA00145 (Approved by the City of Scottsdale on May 07, 2001).
- 3. City of Scottsdale, "Chapter 6 Potable Water System Design, Design Standards and Policies Manuel", Dated August 2008.
- 4. Arizona Department of Environmental Quality, "engineering bulletin 110.10 Guidelines for the Construction of Water, Minimum Requirements (or Design, Submission of Pimts and Specifications of Sewage Works". May, 1978.
- 5. 2006 International Fire Code, International Code Council, dated 2006

EXHIBIT 2

EXHIBIT 3

Scenario Summary			
ID	115		
Label	AVG DAY		
Notes			
Active Topology	Base Active Topology		
Physical	Base Physical		
Demand	Average Day Demand		
Initial Settings	Base Initial Settings		
Operational	Base Operational		
Age	Base Age		
Constituent	Base Constituent		
Trace	Base Trace		
Fire Flow	Base Fire Flow		
Energy Cost	Base Energy Cost		
Transient	Base Transient		
Pressure Dependent Demand	Base Pressure Dependent Demand		
Failure History	Base Failure History		
User Data Extensions	Base User Data Extensions		
Steady State/EPS Solver Calculation Options	Hydraulic SSA Calculation Options		
Transient Solver Calculation Options	Base Calculation Options		

Time Analysis Type	Steady State	Use simple controls during steady state?	True
Friction Method	Hazen- Williams	Is EPS Snapshot?	False
Accuracy	0.001	Start Time	00:00:00
Trials	40	Calculation Type	Hydraulics Only

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Title	REATA RANCI	H - WATER MODEL			
Engineer					
Company					
Date	04-06-2014				
Notes					
Scenario Summary					
ID	115				
Label	AVG DAY				
Notes					
Active Topology	Base Active T	opology			
Physical	Base Physical				
Demand	Average Day	Demand			
Initial Settings	Base Initial Se				
Operational	Base Operatio	onal			
Age	Base Age				
Constituent	Base Constitu	ent			
Trace	Base Trace				
Fire Flow	Base Fire Flow	V			
Energy Cost	Base Energy (Cost			
Transient	Base Transier	nt			
Pressure Dependent Demand	Base Pressure	e Dependent Demand			
Failure History	Base Failure H	listory			
User Data Extensions	Base User Da	ta Extensions			
Steady State/EPS Solver Calculation Options	Hydraulic SSA	Calculation Options			
Transient Solver Calculation Options	Base Calculati	ion Options	 		
Network Inventory		-	8.7	-	
Pipes	53	PRV's	0	_	
Junctions	44	PSV's	0		

REATA - WATER.wtg 24-09-2014

Hydrants

Tanks

0

0

PBV's

FCV's

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

0

0

Network Inventory			
Reservoirs	1	TCV's	0
Pumps	0	GPV's	0
Pump Stations	0	Isolation Valves	0
Variable Speed Pump Batteries	0	Spot Elevations	0
Transient Network Inventory			
Turbines	0	Rupture Disks	0
Periodic Head-Flows	0	Discharges to Atmosphere	0
Air Valves	0	Orifices Between Pipes	0
Hydropneumatic Tanks	0	Valves With Linear Area Change	0
Surge Valves	0	Surge Tanks	0
Check Valves	0		
Pressure Pipes Inventory	18	30	
6.0 (in)	1,140 ft	12.0 (in)	18,405 ft
8.0 (in)	13,796 ft	All Diameters	33,340 ft

REATA - WATER.wtg 24-09-2014

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
J-2	2,568.27	2,686.91	51	118.64	6
J-3	2,524.09	2,686.83	70	162.74	6
J-4	2,537.19	2,686.83	65	149.64	7
J-5	2,512.73	2,686.82	75	174.09	2
J-6	2,520.42	2,686.82	72	166.40	4
J-7	2,506.47	2,686.82	78	180.35	0
J-8	2,506.36	2,686.82	78	180.46	2
J-9	2,503.28	2,686.81	79	183.53	3
J-10	2,497.23	2,686.81	82	189.58	6
J-11	2,501.59	2,686.81	80	185.22	3
J-12	2,590.86	2,686.81	42	95.95	4
J-13	2,491.74	2,686.80	84	195.06	2
J-14	2,487.20	2,686.80	86	199.60	2
J-15	2,486.56	2,686.80	87	200.24	1
J-16	2,482.41	2,686.80	88	204.39	0
J-17	2,480.84	2,686.80	89	205.96	1
J-18	2,482.82	2,686.80	88	203.98	3
J-19	2,472.71	2,686.79	93	214.08	4
J-20	2,493.38	2,686.80	84	193.42	2
J-21	2,506.54	2,686.81	78	180.27	2
J-22	2,507.93	2,686.81	77	178.88	1
J-23	2,510.78	2,686.81	76	176.03	2
J-24	2,492.32	2,686.80	84	194.48	0
J-25	2,489.07	2,686.80	86	197.73	1
J-26	2,467.25	2,686.80	95	219.55	5
J-27	2,480.42	2,686.80	89	206.38	0
J-28	2,485.63	2,686.79	87	201.16	10
J-29	2,504.36	2,686.80	79	182.44	11
J-30	2,513.02	2,686.80	75	173.78	5

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
J-31	2,477.85	2,686.79	90	208.94	19
J-32	2,474.60	2,686.79	92	212.19	8
J-33	2,469.66	2,686.79	94	217.13	8
J-34	2,464.99	2,686.79	96	221.80	0
J-35	2,473.14	2,686.79	92	213.65	0
J-36	2,458.52	2,686.79	99	228.27	0
J-37	2,572.61	2,686.91	49	114.30	16
J-38	2,514.21	2,686.81	75	172.60	16
J-39	2,455.97	2,686.79	100	230.82	16
J-40	2,520.01	2,686.82	72	166.81	0
J-41	2,490.35	2,686.80	85	196.45	0
J-42	2,476.80	2,686.79	91	209.99	0
J-43	2,476.20	2,686.79	91	210.59	48
]-44	2,513.05	2,686.80	75	173.75	0
J-45	2,516.89	2,686.82	74	169.93	0

Current Time: 0.000 hours

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-3	12.0	Open	R-1	J-2	415	117	0.33	2,686.93	2,686.91	0.000
P-4	12.0	Open	J-2	J-3	2,417	95	0.27	2,686.91	2,686.83	0.000
P-5	8.0	Open	J-3]-4	999	7	0.05	2,686.83	2,686.83	0.000
P-6	12.0	Open	J-3	J-5	434	81	0.23	2,686.83	2,686.82	0.000
P-7	8.0	Open	J-5	J-6	392	4	0.02	2,686.82	2,686.82	0.000
P-8	12.0	Open	J-5	J-7	233	75	0.21	2,686.82	2,686.82	0.000
P-9	12.0	Open	J-7	J-8	6	103	0.29	2,686.82	2,686.82	0.000
P-12	12.0	Open	J-8	3-9	328	66	0.19	2,686.82	2,686.81	0.000
P-14	8.0	Open	3-9	J-11	786	13	0.08	2,686.81	2,686.81	0.000
P-16	8.0	Open	J-11	J-10	521	6	0.04	2,686.81	2,686.81	0.000
P-13	12.0	Open	J-10	3-9	517	51	0.14	2,686.81	2,686.81	0.000
P-17	12.0	Open	J-10	J-13	168	51	0.14	2,686.81	2,686.80	0.000
P-18	8.0	Open	J-13	J-14	547	2	0.01	2,686.80	2,686.80	0.000
P-15	8.0	Open	J-12	J-11	538	4	0.02	2,686.81	2,686.81	0.000
P-19	12.0	Open	J-13	J-15	545	48	0.13	2,686.80	2,686.80	0.000
P-20	8.0	Open	J-15	J-16	279	6	0.04	2,686.80	2,686.80	0.000
P-21	8.0	Open	J-16	J-20	829	7	0.04	2,686.80	2,686.80	0.000
P-28	8.0	Open	J-20	J-24	109	6	0.04	2,686.80	2,686.80	0.000
P-29	8.0	Open	J-24	J-25	102	1	0.01	2,686.80	2,686.80	0.000
P-25	8.0	Open	J-20	J-21	799	15	0.10	2,686.80	2,686.81	0.000
P-27	8.0	Open	J-21	J-23	301	18	0.11	2,686.81	2,686.81	0.000
P-30	8.0	Open	J-24	J-26	1,076	5	0.03	2,686.80	2,686.80	0.000
P-22	8.0	Open	J-16	J-17	211	13	0.09	2,686.80	2,686.80	0.000
P-23	8.0	Open	J-17	J-18	341	3	0.02	2,686.80	2,686.80	0.000
P-31	12.0	Open	J-15	J-27	624	40	0.11	2,686.80	2,686.80	0.000
P-32	8.0	Open	J-27	J-28	183	6	0.04	2,686.80	2,686.79	0.000
P-33	8.0	Open	J-28	J-29	919	2	0.01	2,686.79	2,686.80	0.000
P-35	8.0	Open	J-29	J-28	1,259	2	0.01	2,686.80	2,686.79	0.000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-36	12.0	Open	J-27	J-31	143	34	0.10	2,686.80	2,686.79	0.000
P-37	8.0	Open	J-31	J-41	1,034	14	0.09	2,686.79	2,686.80	0.000
P-42	12.0	Open	J-42	J-34	1,560	2	0.01	2,686.79	2,686.79	0.000
P-41	12.0	Open	J-34	J-33	269	13	0.04	2,686.79	2,686.79	0.000
P-40	8.0	Open	J-33	J-32	823	5	0.03	2,686.79	2,686.79	0.000
P-39	12.0	Open	J-32	J-33	748	16	0.05	2,686.79	2,686.79	0.000
P-38	12.0	Open	J-32	J-31	503	30	0.08	2,686.79	2,686.79	0.000
P-11	12.0	Open	J-8	J-23	1,355	35	0.10	2,686.82	2,686.81	0.000
P-26	8.0	Open	J-21	J-22	184	1	0.01	2,686.81	2,686.81	0.000
P-61	8.0	Open	J-17	J-35	904	9	0.06	2,686.80	2,686.79	0.000
P-62	8.0	Open	J-35	J-19	153	4	0.03	2,686.79	2,686.79	0.000
P-45	12.0	Open	J-34	J-36	228	10	0.03	2,686.79	2,686.79	0.000
P-46	6.0	Open	J-36	J-35	742	5	0.06	2,686.79	2,686.79	0.000
P-66	12.0	Open	R-1	J-40	2,633	108	0.31	2,686.93	2,686.82	0.000
P-67	12.0	Open	J-40	J-41	1,411	60	0.17	2,686.82	2,686.80	0.000
P-68	12.0	Open	J-41	J-42	1,245	46	0.13	2,686.80	2,686.79	0.000
P-69	12.0	Open	J-2	J-37	265	16	0.04	2,686.91	2,686.91	0.000
P-70	12.0	Open	J-23	J-38	205	16	0.04	2,686.81	2,686.81	0.000
P-71	12.0	Open	J-36	J-39	861	16	0.04	2,686.79	2,686.79	0.000
P-72	12.0	Open	J-42	J-43	187	48	0.14	2,686.79	2,686.79	0.000
P-73	8.0	Open	J-29	J-44	365	15	0.10	2,686.80	2,686.80	0.000
P-74	8.0	Open	J-44	J-30	141	5	0.03	2,686.80	2,686.80	0.000
P-77	12.0	Open	J-7	J-45	939	28	0.08	2,686.82	2,686.82	0.000
P-78	12.0	Open	J-45	J-40	166	48	0.14	2,686.82	2,686.82	0.000
P-80	6.0	Open	J-45]-44	398	20	0.23	2,686.82	2,686.80	0.000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

ID	Label	Elevation (ft)	Flow (Out net) (gpm)	Hydraulic Grade (ft)
135	R-1	2,686.93	225	2,686.93

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario Summary		
ID	116	
Label	MAX DAY	
Notes		
Active Topology	Base Active Topology	
Physical	Base Physical	
Demand	Max Day Demand	
Initial Settings	Base Initial Settings	
Operational	Base Operational	
Age	Base Age	
Constituent	Base Constituent	
Trace	Base Trace	
Fire Flow	Base Fire Flow	
Energy Cost	Base Energy Cost	
Transient	Base Transient	
Pressure Dependent Demand	Base Pressure Dependent Demand	
Failure History	Base Failure History	
User Data Extensions	Base User Data Extensions	
Steady State/EPS Solver Calculation Options	Hydraulic SSA Calculation Options	
Transient Solver Calculation Options	Base Calculation Options	

Hydraulic Summary			
Time Analysis Type	Steady State	Use simple controls during steady state?	True
Friction Method	Hazen- Williams	Is EPS Snapshot?	False
Accuracy	0.001	Start Time	00:00:00
Trials	40	Calculation Type	Hydraulics Only

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Title	REATA RANG	CH - WATER MODEL				
Engineer						
Company						
Date	04-06-2014					
Notes						
Scenario Summary						
ID	116					
Label	MAX DAY					
Notes						
Active Topology	Base Active	Topology				
Physical	Base Physica	al				
Demand	Max Day Der					
Initial Settings	Base Initial S	Settings				
Operational	Base Operati	ional				
Age	Base Age					
Constituent	Base Constit	uent				
Trace	Base Trace					
Fire Flow	Base Fire Flo	W				
Energy Cost	Base Energy	Cost				
Transient	Base Transie	ent				
Pressure Dependent Demand	Base Pressur	re Dependent Demand				
Failure History	Base Failure	History				
User Data Extensions	Base User Da	ata Extensions				
Steady State/EPS Solver Calculation Options	Hydraulic SS	A Calculation Options				
Transient Solver Calculation Options	Base Calcula	tion Options				
Network Inventory					_	
Network Inventory	1.4				_	
Pipes	53	PRV's		0		
Junctions	44	PSV's		0		
Hydrants	0	PBV's		0		
Tanks	0	FCV's		0		

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Network Inventory				
Reservoirs	1	TCV's	0	
Pumps	0	GPV's	0	
Pump Stations	0	Isolation Valves	0	
Variable Speed Pump Batteries	0	Spot Elevations	0	
Transient Network Inventory	· · · · ·			
Turbines	0	Rupture Disks	0	
Periodic Head-Flows	0	Discharges to Atmosphere	0	
Air Valves	0	Orifices Between Pipes	0	
Hydropneumatic Tanks	0	Valves With Linear Area Change	0	
Surge Valves	0	Surge Tanks	0	
Check Valves	0			
Pressure Pipes Inventory				
6.0 (in)	1,140 ft	12.0 (in)	18,405 ft	
8.0 (in)	13,796 ft	All Diameters	33,340 ft	

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
]-2	2,568.27	2,686.86	51	118.59	12
J-3	2,524.09	2,686.58	70	162.49	12
]-4	2,537.19	2,686.57	65	149.38	15
]-5	2,512.73	2,686.54	75	173.81	5
1-6	2,520.42	2,686.54	72	166.12	7
]-7	2,506.47	2,686.52	78	180.05	0
1-8	2,506.36	2,686.52	78	180.16	3
1-9	2,503.28	2,686.50	79	183.22	5
J-10	2,497.23	2,686.48	82	189.25	11
-11	2,501.59	2,686.49	80	184.90	6
J-12	2,590.86	2,686.48	41	95.62	7
-13	2,491.74	2,686.48	84	194.74	3
1-14	2,487.20	2,686.48	86	199.28	3
0-15	2,486.56	2,686.46	86	199.90	2
J-16	2,482.41	2,686.46	88	204.05	0
J-17	2,480.84	2,686.45	89	205.61	3
-18	2,482.82	2,686.45	88	203.63	5
-19	2,472.71	2,686.44	92	213.73	8
-20	2,493.38	2,686.46	84	193.08	5
J-21	2,506.54	2,686.48	78	179.94	3
1-22	2,507.93	2,686.48	77	178.55	2
1-23	2,510.78	2,686.50	76	175.72	3
1-24	2,492.32	2,686.46	84	194.14	0
1-25	2,489.07	2,686.46	85	197.39	2
-26	2,467.25	2,686.46	95	219.21	9
-27	2,480.42	2,686.44	89	206.02	0
-28	2,485.63	2,686.44	87	200.81	20
1-29	2,504.36	2,686.44	79	182.08	22
1-30	2,513.02	2,686.45	75	173.43	11

Current Time: 0.000 hours

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
J-31	2,477.85	2,686.44	90	208.59	38
J-32	2,474.60	2,686.43	92	211.83	17
J-33	2,469.66	2,686.43	94	216.77	17
J-34	2,464.99	2,686.43	96	221.44	0
J-35	2,473.14	2,686.44	92	213.30	0
J-36	2,458.52	2,686.43	99	227.91	0
J-37	2,572.61	2,686.86	49	114.25	31
J-38	2,514.21	2,686.49	75	172.28	31
J-39	2,455.97	2,686.43	100	230.46	31
J-40	2,520.01	2,686.54	72	166.53	0
J-41	2,490.35	2,686.47	85	196.12	0
3-42	2,476.80	2,686.43	91	209.63	0
J-43	2,476.20	2,686.42	91	210.22	96
]-44	2,513.05	2,686.45	75	173.40	0
J-45	2,516.89	2,686.53	73	169.64	0

Current Time: 0.000 hours

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-3	12.0	Open	R-1	J-2	415	233	0.66	2,686.93	2,686.86	0.000
P-4	12.0	Open	J-2	J-3	2,417	190	0.54	2,686.86	2,686.58	0.000
P-5	8.0	Open	J-3]-4	999	15	0.09	2,686.58	2,686.57	0.000
P-6	12.0	Open	J-3	J-5	434	163	0.46	2,686.58	2,686.54	0.000
P-7	8.0	Open	J-5	J-6	392	7	0.05	2,686.54	2,686.54	0.000
P-8	12.0	Open	J-5	J-7	233	150	0.43	2,686.54	2,686.52	0.000
P-9	12.0	Open	J-7	J-8	6	206	0.58	2,686.52	2,686.52	0.000
P-12	12.0	Open	J-8	3-9	328	132	0.37	2,686.52	2,686.50	0.000
P-14	8.0	Open	3-9	J-11	786	26	0.16	2,686.50	2,686.49	0.000
P-16	8.0	Open	J-11	J-10	521	12	0.08	2,686.49	2,686.48	0.000
P-13	12.0	Open	J-10	3-9	517	101	0.29	2,686.48	2,686.50	0.000
P-17	12.0	Open	J-10	J-13	168	102	0.29	2,686.48	2,686.48	0.000
P-18	8.0	Open	J-13	J-14	547	3	0.02	2,686.48	2,686.48	0.000
P-15	8.0	Open	J-12	J-11	538	7	0.05	2,686.48	2,686.49	0.000
P-19	12.0	Open	J-13	J-15	545	95	0.27	2,686.48	2,686.46	0.000
P-20	8.0	Open	J-15	J-16	279	13	0.08	2,686.46	2,686.46	0.000
P-21	8.0	Open	J-16	J-20	829	14	0.09	2,686.46	2,686.46	0.000
P-28	8.0	Open	J-20	J-24	109	11	0.07	2,686.46	2,686.46	0.000
P-29	8.0	Open	J-24	J-25	102	2	0.01	2,686.46	2,686.46	0.000
P-25	8.0	Open	J-20	J-21	799	30	0.19	2,686.46	2,686.48	0.000
P-27	8.0	Open	J-21	J-23	301	35	0.23	2,686.48	2,686.50	0.000
P-30	8.0	Open	J-24	J-26	1,076	9	0.06	2,686.46	2,686.46	0.000
P-22	8.0	Open	J-16	J-17	211	27	0.17	2,686.46	2,686.45	0.000
P-23	8.0	Open	J-17	J-18	341	5	0.03	2,686.45	2,686.45	0.000
P-31	12.0	Open	J-15	J-27	624	80	0.23	2,686.46	2,686.44	0.000
P-32	8.0	Open	J-27	J-28	183	12	0.08	2,686.44	2,686.44	0.000
P-33	8.0	Open	J-28	J-29	919	5	0.03	2,686.44	2,686.44	0.000
P-35	8.0	Open	J-29	J-28	1,259	4	0.02	2,686.44	2,686.44	0.000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-36	12.0	Open	J-27	J-31	143	68	0.19	2,686.44	2,686.44	0.000
P-37	8.0	Open	J-31	J-41	1,034	29	0.18	2,686.44	2,686.47	0.000
P-42	12.0	Open	J-42	J-34	1,560	5	0.01	2,686.43	2,686.43	0.000
P-41	12.0	Open	J-34	J-33	269	25	0.07	2,686.43	2,686.43	0.000
P-40	8.0	Open	J-33	J-32	823	10	0.07	2,686.43	2,686.43	0.000
P-39	12.0	Open	J-32	J-33	748	32	0.09	2,686.43	2,686.43	0.000
P-38	12.0	Open	J-32	J-31	503	59	0.17	2,686.43	2,686.44	0.000
P-11	12.0	Open	J-8	J-23	1,355	70	0.20	2,686.52	2,686.50	0.000
P-26	8.0	Open	J-21	J-22	184	2	0.01	2,686.48	2,686.48	0.000
P-61	8.0	Open	J-17	J-35	904	19	0.12	2,686.45	2,686.44	0.000
P-62	8.0	Open	J-35	J-19	153	8	0.05	2,686.44	2,686.44	0.000
P-45	12.0	Open	J-34	J-36	228	21	0.06	2,686.43	2,686.43	0.000
P-46	6.0	Open	J-36	J-35	742	10	0.12	2,686.43	2,686.44	0.000
P-66	12.0	Open	R-1	J-40	2,633	216	0.61	2,686.93	2,686.54	0.000
P-67	12.0	Open	J-40	J-41	1,411	120	0.34	2,686.54	2,686.47	0.000
P-68	12.0	Open	J-41	J-42	1,245	91	0.26	2,686.47	2,686.43	0.000
P-69	12.0	Open	J-2	J-37	265	31	0.09	2,686.86	2,686.86	0.000
P-70	12.0	Open	J-23	J-38	205	31	0.09	2,686.50	2,686.49	0.000
P-71	12.0	Open	J-36	J-39	861	31	0.09	2,686.43	2,686.43	0.000
P-72	12.0	Open	J-42	J-43	187	96	0.27	2,686.43	2,686.42	0.000
P-73	8.0	Open	J-29]-44	365	30	0.19	2,686.44	2,686.45	0.000
P-74	8.0	Open	J-44	J-30	141	11	0.07	2,686.45	2,686.45	0.000
P-77	12.0	Open	J-7	J-45	939	55	0.16	2,686.52	2,686.53	0.000
P-78	12.0	Open	J-45	J-40	166	96	0.27	2,686.53	2,686.54	0.000
P-80	6.0	Open	J-45	J-44	398	41	0.46	2,686.53	2,686.45	0.000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

ID	Label	Elevation (ft)	Flow (Out net) (gpm)	Hydraulic Grade (ft)
135	R-1	2,686.93	449	2,686.93

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario Summary			
ID	117		
Label	PEAK HOUR		
Notes			
Active Topology	Base Active Topology		
Physical	Base Physical		
Demand	Peak Hour Demand		
Initial Settings	Base Initial Settings		
Operational	Base Operational		
Age	Base Age		
Constituent	Base Constituent		
Trace	Base Trace		
Fire Flow	Base Fire Flow		
Energy Cost	Base Energy Cost		
Transient	Base Transient		
Pressure Dependent Demand	Base Pressure Dependent Demand		
Failure History	Base Failure History		
User Data Extensions	Base User Data Extensions		
Steady State/EPS Solver Calculation Options	Hydraulic SSA Calculation Options		
Transient Solver Calculation Options	Base Calculation Options		

Tryuraulic Summary			
Time Analysis Type	Steady State	Use simple controls during steady state?	True
Friction Method	Hazen- Williams	Is EPS Snapshot?	False
Accuracy	0.001	Start Time	00:00:00
Trials	40	Calculation Type	Hydraulics Only

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Title	REATA RANCH - WATER MODEL	
Engineer		
Company		
Date	04-06-2014	
Notes		
Scenario Summary		
ID	117	
Label	PEAK HOUR	
Notes		
Active Topology	Base Active Topology	
Physical	Base Physical	
Demand	Peak Hour Demand	
Initial Settings	Base Initial Settings	
Operational	Base Operational	
Age	Base Age	
Constituent	Base Constituent	
Trace	Base Trace	
Fire Flow	Base Fire Flow	
Energy Cost	Base Energy Cost	
Transient	Base Transient	
Pressure Dependent Demand	Base Pressure Dependent Demand	
Failure History	Base Failure History	
User Data Extensions	Base User Data Extensions	
Steady State/EPS Solver Calculation Options	Hydraulic SSA Calculation Options	
Transient Solver Calculation Options	Base Calculation Options	
Network Inventory		

Network inventory			
Pipes	53	PRV's	0
Junctions	44	PSV's	0
Hydrants	0	PBV's	0
Tanks	0	FCV's	0
Reservoirs	1	TCV's	0
Pumps	0	GPV's	0
Pump Stations	0	Isolation Valves	0
Variable Speed Pump Batteries	0	Spot Elevations	0

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

(SELECTseries 4) [08.11.04.50] Page 2 of 4

Transient Network Inventory			
Turbines	0	Rupture Disks	0
Periodic Head-Flows	0	Discharges to Atmosphere	0
Air Valves	0	Orifices Between Pipes	0
Hydropneumatic Tanks	0	Valves With Linear Area Change	0
Surge Valves	0	Surge Tanks	0
Check Valves	0		
Pressure Pipes Inventory			
6.0 (in)	1,140 ft	12.0 (in)	18,405 ft
8.0 (in)	13,796 ft	All Diameters	33,340 ft

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
]-2	2,568.27	2,686.73	51	118.46	21
]-3	2,524.09	2,685.94	70	161.85	21
]-4	2,537.19	2,685.92	64	148.73	26
)-5	2,512.73	2,685.83	75	173.10	8
]-6	2,520.42	2,685.83	72	165.41	13
]-7	2,506.47	2,685.78	78	179.31	0
]-8	2,506.36	2,685.78	78	179.42	6
]-9	2,503.28	2,685.72	79	182.44	9
J-10	2,497.23	2,685.67	82	188.44	20
J-11	2,501.59	2,685.68	80	184.09	11
J-12	2,590.86	2,685.67	41	94.81	13
J-13	2,491.74	2,685.65	84	193.91	6
]-14	2,487.20	2,685.65	86	198.45	6
J-15	2,486.56	2,685.60	86	199.04	4
J-16	2,482.41	2,685.60	88	203.19	0
]-17	2,480.84	2,685.58	89	204.74	5
J-18	2,482.82	2,685.58	88	202.76	9
J-19	2,472.71	2,685.55	92	212.84	14
1-20	2,493.38	2,685.61	83	192.23	8
J-21	2,506.54	2,685.67	78	179.13	6
J-22	2,507.93	2,685.67	77	177.74	4
J-23	2,510.78	2,685.71	76	174.93	6
]-24	2,492.32	2,685.61	84	193.29	0
J-25	2,489.07	2,685.61	85	196.54	4
J-26	2,467.25	2,685.60	94	218.35	17
1-27	2,480.42	2,685.56	89	205.14	0
1-28	2,485.63	2,685.56	86	199.93	35
1-29	2,504.36	2,685.56	78	181.20	38
J-30	2,513.02	2,685.59	75	172.57	19

Current Time: 0.000 hours

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation (ft)	Hydraulic Grade (ft)	Pressure (psi)	Pressure Head (ft)	Demand (gpm)
J-31	2,477.85	2,685.55	90	207.70	66
J-32	2,474.60	2,685.53	91	210.93	30
J-33	2,469.66	2,685.52	93	215.86	30
J-34	2,464.99	2,685.52	95	220.53	0
J-35	2,473.14	2,685.55	92	212.41	0
J-36	2,458.52	2,685.52	98	227.00	0
J-37	2,572.61	2,686.73	49	114.12	55
J-38	2,514.21	2,685.70	74	171.49	55
J-39	2,455.97	2,685.51	99	229.54	55
J-40	2,520.01	2,685.83	72	165.82	0
J-41	2,490.35	2,685.63	84	195.28	0
J-42	2,476.80	2,685.52	90	208.72	0
J-43	2,476.20	2,685.50	91	209.30	168
J-44	2,513.05	2,685.59	75	172.54	0
J-45	2,516.89	2,685.81	73	168.92	0

Current Time: 0.000 hours

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-3	12.0	Open	R-1	J-2	415	408	1.16	2,686.93	2,686.73	0.000
P-4	12.0	Open	J-2	J-3	2,417	332	0.94	2,686.73	2,685.94	0.000
P-5	8.0	Open	J-3]-4	999	26	0.17	2,685.94	2,685.92	0.000
P-6	12.0	Open	J-3	J-5	434	284	0.81	2,685.94	2,685.83	0.000
P-7	8.0	Open	J-5	J-6	392	13	0.08	2,685.83	2,685.83	0.000
P-8	12.0	Open	J-5	J-7	233	263	0.75	2,685.83	2,685.78	0.000
P-9	12.0	Open	J-7	J-8	6	360	1.02	2,685.78	2,685.78	0.000
P-12	12.0	Open	J-8	3-9	328	231	0.66	2,685.78	2,685.72	0.000
P-14	8.0	Open	J-9	J-11	786	45	0.29	2,685.72	2,685.68	0.000
P-16	8.0	Open	J-11	J-10	521	21	0.13	2,685.68	2,685.67	0.000
P-13	12.0	Open	J-10	3-9	517	177	0.50	2,685.67	2,685.72	0.000
P-17	12.0	Open	J-10	J-13	168	178	0.51	2,685.67	2,685.65	0.000
P-18	8.0	Open	J-13	J-14	547	6	0.04	2,685.65	2,685.65	0.000
P-15	8.0	Open	J-12	J-11	538	13	0.08	2,685.67	2,685.68	0.000
P-19	12.0	Open	J-13	J-15	545	166	0.47	2,685.65	2,685.60	0.000
P-20	8.0	Open	J-15	J-16	279	23	0.14	2,685.60	2,685.60	0.000
P-21	8.0	Open	J-16	J-20	829	24	0.15	2,685.60	2,685.61	0.000
P-28	8.0	Open	J-20	J-24	109	20	0.13	2,685.61	2,685.61	0.000
P-29	8.0	Open	J-24	J-25	102	4	0.02	2,685.61	2,685.61	0.000
P-25	8.0	Open	J-20	J-21	799	52	0.33	2,685.61	2,685.67	0.000
P-27	8.0	Open	J-21	J-23	301	62	0.40	2,685.67	2,685.71	0.000
P-30	8.0	Open	J-24	J-26	1,076	17	0.11	2,685.61	2,685.60	0.000
P-22	8.0	Open	J-16	J-17	211	47	0.30	2,685.60	2,685.58	0.000
P-23	8.0	Open	J-17	J-18	341	9	0.06	2,685.58	2,685.58	0.000
P-31	12.0	Open	J-15	J-27	624	140	0.40	2,685.60	2,685.56	0.000
P-32	8.0	Open	J-27	J-28	183	21	0.13	2,685.56	2,685.56	0.000
P-33	8.0	Open	J-28	J-29	919	8	0.05	2,685.56	2,685.56	0.000
P-35	8.0	Open	J-29	J-28	1,259	7	0.04	2,685.56	2,685.56	0.000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Diameter (in)	Status (Initial)	Start Node	Stop Node	Length (Scaled) (ft)	Flow (Absolute) (gpm)	Velocity (ft/s)	Hydraulic Grade (Start) (ft)	Hydraulic Grade (Stop) (ft)	Headloss Gradient (ft/ft)
P-36	12.0	Open	J-27	J-31	143	120	0.34	2,685.56	2,685.55	0.000
P-37	8.0	Open	J-31	J-41	1,034	50	0.32	2,685.55	2,685.63	0.000
P-42	12.0	Open	J-42	J-34	1,560	8	0.02	2,685.52	2,685.52	0.000
P-41	12.0	Open	J-34	J-33	269	45	0.13	2,685.52	2,685.52	0.000
P-40	8.0	Open	J-33	J-32	823	18	0.12	2,685.52	2,685.53	0.000
P-39	12.0	Open	J-32	J-33	748	56	0.16	2,685.53	2,685.52	0.000
P-38	12.0	Open	J-32	J-31	503	104	0.29	2,685.53	2,685.55	0.000
P-11	12.0	Open	J-8	J-23	1,355	123	0.35	2,685.78	2,685.71	0.000
P-26	8.0	Open	J-21	J-22	184	4	0.02	2,685.67	2,685.67	0.000
P-61	8.0	Open	J-17	J-35	904	33	0.21	2,685.58	2,685.55	0.000
P-62	8.0	Open	J-35	J-19	153	14	0.09	2,685.55	2,685.55	0.000
P-45	12.0	Open	J-34	J-36	228	37	0.10	2,685.52	2,685.52	0.000
P-46	6.0	Open	J-36	J-35	742	18	0.21	2,685.52	2,685.55	0.000
P-66	12.0	Open	R-1	J-40	2,633	378	1.07	2,686.93	2,685.83	0.000
P-67	12.0	Open	J-40	J-41	1,411	210	0.60	2,685.83	2,685.63	0.000
P-68	12.0	Open	J-41	J-42	1,245	160	0.45	2,685.63	2,685.52	0.000
P-69	12.0	Open	J-2	J-37	265	55	0.16	2,686.73	2,686.73	0.000
P-70	12.0	Open	J-23	J-38	205	55	0.16	2,685.71	2,685.70	0.000
P-71	12.0	Open	J-36	J-39	861	55	0.16	2,685.52	2,685.51	0.000
P-72	12.0	Open	J-42	J-43	187	168	0.48	2,685.52	2,685.50	0.000
P-73	8.0	Open	J-29]-44	365	53	0.34	2,685.56	2,685.59	0.000
P-74	8.0	Open	J-44	J-30	141	19	0.12	2,685.59	2,685.59	0.000
P-77	12.0	Open	J-7	J-45	939	97	0.27	2,685.78	2,685.81	0.000
P-78	12.0	Open	J-45	J-40	166	168	0.48	2,685.81	2,685.83	0.000
P-80	6.0	Open	J-45	J-44	398	72	0.81	2,685.81	2,685.59	0.001

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

ID	Label	Elevation (ft)	Flow (Out net) (gpm)	Hydraulic Grade (ft)
135	R-1	2,686.93	786	2,686.93

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario Summary		
ID	118	
Label	MAX DAY + FIRE	
Notes		
Active Topology	Base Active Topology	
Physical	Base Physical	
Demand	Max Day + Fire	
Initial Settings	Base Initial Settings	
Operational	Base Operational	
Age	Base Age	
Constituent	Base Constituent	
Trace	Base Trace	
Fire Flow	Automated Fire Flow	
Energy Cost	Base Energy Cost	
Transient	Base Transient	
Pressure Dependent Demand	Base Pressure Dependent Demand	
Failure History	Base Failure History	
User Data Extensions	Base User Data Extensions	
Steady State/EPS Solver Calculation Options	Automated Fire Calculation Options	
Transient Solver Calculation Options	Base Calculation Options	

Time Analysis Type	Steady State	Use simple controls during	True
		steady state?	
Friction Method	Hazen- Williams	Is EPS Snapshot?	False
Accuracy	0.001	Start Time	00:00:00
Trials	40	Calculation Type	Fire Flow

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Title	REATA RAN	REATA RANCH - WATER MODEL						
Engineer								
Company								
Date	04-06-2014							
Notes								
Scenario Summary								
ID	118							
Label	MAX DAY +	FIRE						
Notes								
Active Topology	Base Active	Topology						
Physical	Base Physic	al						
Demand	Max Day +	Fire						
Initial Settings	Base Initial	Settings						
Operational	Base Opera	tional						
Age	Base Age							
Constituent	Base Consti	tuent						
Trace	Base Trace							
Fire Flow	Automated	Fire Flow						
Energy Cost	Base Energy	Cost						
Transient	Base Transi	ent						
Pressure Dependent Demand	Base Pressu	re Dependent Demand						
Failure History	Base Failure	History						
User Data Extensions	Base User D	Data Extensions						
Steady State/EPS Solver Calculation Options	Automated	Fire Calculation Options						
Transient Solver Calculation Options	Base Calcul	ation Options		d				
Network Inventory			· · · · ·					
Pipes	53	PRV's		0				
Junctions	44	PSV's		0				
Hydrants	0	PBV's		0				

REATA - WATER.wtg 24-09-2014

Tanks

0

FCV's

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

0

Network Inventory			
Reservoirs	1	TCV's	0
Pumps	0	GPV's	0
Pump Stations	0	Isolation Valves	0
Variable Speed Pump Batteries	0	Spot Elevations	0
Transient Network Inventory			
Turbines	0	Rupture Disks	0
Periodic Head-Flows	0	Discharges to Atmosphere	0
Air Valves	0	Orifices Between Pipes	0
Hydropneumatic Tanks	0	Valves With Linear Area Change	0
Surge Valves	0	Surge Tanks	0
Check Valves	0		
Pressure Pipes Inventory	1	1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 -	
6.0 (in)	1,140 ft	12.0 (in)	18,405 ft
8.0 (in)	13,796 ft	All Diameters	33,340 ft

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Elevation (ft)	Pressure (Calculated Residual @ Total Flow Needed) (psi)	Flow (Total Needed) (gpm)
J-2	2,568.27	51	1,012
J-3	2,524.09	69	1,012
J-4	2,537.19	55	1,015
J-5	2,512.73	74	1,005
J-6	2,520.42	67	1,007
J-7	2,506.47	76	1,000
J-8	2,506.36	76	1,003
J-9	2,503.28	77	1,005
J-10	2,497.23	80	1,011
J-11	2,501.59	77	1,006
J-12	2,590.86	34	1,007
J-13	2,491.74	82	1,003
J-14	2,487.20	80	1,003
J-15	2,486.56	84	1,002
J-16	2,482.41	85	1,000
J-17	2,480.84	85	1,003
J-18	2,482.82	82	1,005
J-19	2,472.71	85	1,008
J-20	2,493.38	79	1,005
J-21	2,506.54	74	1,003
J-22	2,507.93	72	1,002
J-23	2,510.78	73	1,003
J-24	2,492.32	79	1,000
J-25	2,489.07	79	1,002
J-26	2,467.25	81	1,009
J-27	2,480.42	80	2,500
J-28	2,485.63	73	2,520

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Elevation (ft)	Pressure (Calculated Residual @ Total Flow Needed) (psi)	Flow (Total Needed) (gpm)
J-29	2,504.36	60	2,522
J-30	2,513.02	48	2,511
J-31	2,477.85	81	2,538
J-32	2,474.60	81	2,517
J-33	2,469.66	83	2,517
J-34	2,464.99	85	2,500
J-35	2,473.14	86	1,000
J-36	2,458.52	96	1,000
J-37	2,572.61	49	1,031
J-38	2,514.21	72	1,031
J-39	2,455.97	96	1,031
J-40	2,520.01	70	1,000
J-41	2,490.35	83	1,000
J-42	2,476.80	88	1,000
J-43	2,476.20	88	1,096
J-44	2,513.05	71	1,000
J-45	2,516.89	72	1,000

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Satisfies Fire Flow Constraints?	Fire Flow (Needed) (gpm)	Fire Flow (Available) (gpm)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (Zone)	Is Fire Flow Run Balanced?
J-2	True	1,000	1,005	1,012	1,017	30	51	J-12	True
J-3	True	1,000	1,005	1,012	1,017	30	69	J-12	True
J-4	True	1,000	1,005	1,015	1,020	30	55	J-12	True
J-5	True	1,000	1,005	1,005	1,010	30	74	J-12	True
J-6	True	1,000	1,005	1,007	1,012	30	67	J-12	True
J-7	True	1,000	1,005	1,000	1,005	30	76	J-12	True
J-8	True	1,000	1,005	1,003	1,008	30	76	J-12	True
J-9	True	1,000	1,005	1,005	1,010	30	77	J-12	True
J-10	True	1,000	1,005	1,011	1,016	30	80	J-12	True
J-11	True	1,000	1,005	1,006	1,011	30	77	J-12	True
J-12	True	1,000	1,005	1,007	1,012	30	34	J-37	True
J-13	True	1,000	1,005	1,003	1,008	30	82	J-12	True
J-14	True	1,000	1,005	1,003	1,008	30	80	J-12	True
J-15	True	1,000	1,005	1,002	1,007	30	84	J-12	True
J-16	True	1,000	1,005	1,000	1,005	30	85	J-12	True
J-17	True	1,000	1,005	1,003	1,008	30	85	J-12	True
J-18	True	1,000	1,005	1,005	1,010	30	81	J-12	True
J-19	True	1,000	1,005	1,008	1,013	30	85	J-12	True
J-20	True	1,000	1,005	1,005	1,010	30	79	J-12	True
J-21	True	1,000	1,005	1,003	1,008	30	74	J-12	True
J-22	True	1,000	1,005	1,002	1,007	30	72	J-12	True
J-23	True	1,000	1,005	1,003	1,008	30	73	J-12	True
J-24	True	1,000	1,005	1,000	1,005	30	79	J-12	True
J-25	True	1,000	1,005	1,002	1,007	30	79	J-12	True
J-26	True	1,000	1,005	1,009	1,014	30	81	J-12	True
J-27	True	2,500	2,505	2,500	2,505	30	80	J-12	True
J-28	True	2,500	2,505	2,520	2,525	30	73	J-12	True

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Current Time: 0.000 hours

Label	Satisfies Fire Flow Constraints?	Fire Flow (Needed) (gpm)	Fire Flow (Available) (gpm)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (Zone)	Is Fire Flow Run Balanced?
J-29	True	2,500	2,505	2,522	2,527	30	60	J-12	True
J-30	True	2,500	2,505	2,511	2,516	30	48	J-12	True
J-31	True	2,500	2,505	2,538	2,543	30	81	J-12	True
J-32	True	2,500	2,505	2,517	2,522	30	81	J-12	True
J-33	True	2,500	2,505	2,517	2,522	30	83	J-12	True
J-34	True	2,500	2,505	2,500	2,505	30	85	J-12	True
J-35	True	1,000	1,005	1,000	1,005	30	86	J-12	True
J-36	True	1,000	1,005	1,000	1,005	30	96	J-12	True
J-40	True	1,000	1,005	1,000	1,005	30	70	J-12	True
J-41	True	1,000	1,005	1,000	1,005	30	83	J-12	True
J-42	True	1,000	1,005	1,000	1,005	30	88	J-12	True
J-37	True	1,000	1,005	1,031	1,036	30	49	J-12	True
J-38	True	1,000	1,005	1,031	1,036	30	72	J-12	True
J-39	True	1,000	1,005	1,031	1,036	30	96	J-12	True
J-43	True	1,000	1,005	1,096	1,101	30	88	J-12	True
]-44	True	1,000	1,005	1,000	1,005	30	71	J-12	True
J-45	True	1,000	1,005	1,000	1,005	30	72	J-12	True

REATA - WATER.wtg 24-09-2014 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

APPENDIX A

Usage	No. of Units	Area (Sq. ft)	Demand (gallons/day/ unit)	Average Daily Demand (gpd)	Average Daily Flow (gpm)	Maximum Day Demand (gpm)	Peak Hour Demand (gpm)
1	2	3	4	5 = 2 x 4 or 5 = 3 x 4	6 = 5 / 1440	7 = 6 X 2.0	8 = 6 X 3.5
Residential	200		485.6	97,120	67.44	134.89	236.06
Resort Town Homes	128		485.6	62,157	43.16	86.33	151.08
Equestrian & Club House Offsite - South of Property (3Nodes)	140	666,387	1786 485.6	27,322 67,984	18.97 47.21	37.95 94.42	66.41 165.24
Offsite - East of 136 th Street (1Node)	142		485.6	68,955	47.89	95.77	167.60
Total	328	666,387		186,599	130	259	454

Reata Ranch - Water Demand Computation

Design Criteria:

1. Average Daily Demand for Residential = 248.2 gpd per unit

2. Average Daily Demand for Resort town homes = 446.3 gpd per unit

2. Average Daily Demand for Developed Open Space - Parks = 1786 gpd per acre

2. Max Day Demand = 2 X Avg Daily Flow

3. Peak Hour Demand = 3.5 X Avg Daily Flow

4. Fire Flow = 1000 gpm for single family residential

5. Fire Flow = 2500 gpm for Resort

6. Offsite Water Demand was computed assuming that the surrounding Parcels are zoned as R1-130. Since Reata is 220acres, the adjoining Parcels of 420 acres is expected to develop 140 potential residential lots. Parcel to the east (Wildcat Ridge/Scottsdale National/ Scottsdale Appendage) is expected to develop 142 lots.

APPENDIX B

WATER DISTRIBUTION SYSTEM BASIS OF DESIGN REPORT FOR REATA RANCH

Case # 3902-12

Prepared For:

Land Development Services 7525 East Camelback Road Suite 104 Scottsdale, AZ 85251

Accepted In-

Drug Mann

9.19.2012

City of Scottsdale Water Resources Administration 9379 E. San Salvador Scottsdale, AZ 85258

Eng Copy

1

3902-12

Prepared By:

SKG ENTERPRISES, INC. 9260 E. Raintree Drive Suite 140 Scottsdale, AZ 85260 Ph: (480) 998-5600 Fax: (480) 998-5603 www.skgaz.com info@skgaz.com

Job # 30-11.2 Prepared: July 2019 Revised: August 2012

WATER DISTRIBUTION SYSTEM BASIS OF DESIGN REPORT FOR REATA RANCH

Prepared For:

Land Development Services 7525 East Camelback Road Suite 104 Scottsdale, AZ 85251

Prepared By:

SKG ENTERPRISES, INC. 9260 E. Raintree Drive, Suite 140 Scottsdale, AZ 85260 Ph: (480) 998-5600 Fax: (480) 998-5603 www.skgaz.com

Job # 30-11.2 Prepared: July 2012

Reata Ranch

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	EXISTING WATER DISTRIBUTION SYSTEM
3.0	PRESSURE ZONES
4.0	PROPOSED WATER DISTRIBUTION SYSTEM
5.0	HYDRAULIC ANALYSIS
6.0	RECOMMENDATIONS
7.0	CONCLUSIONS
8.0	REFERENCES

EXHIBITS

EXHIBIT

DESCRIPTION

1	Site Location Map
2	Conceptual Site Plan
3	Exerts from GTA Engineering Water System Model
4	Hydraulic model computer run
	25970 25970

SHAKIR K

Expires 3-31-13

1.0 INTRODUCTION

Reata Ranch is a proposed master planned community located in Section 36 of Township 5 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. This site is located within the City of Scottsdale's Upper Desert Landform of the Environmentally Sensitive Lands Ordinance (E.S.L.O.) area. Reata Ranch consists of three separate parcels that are combined into one development totaling 220-acres in size. A site location map is included as Exhibit 1 in this report.

The land generally slopes from northwest to southeast at an average rate of 5 percent and is traversed by several well-defined washes. The site is currently platted as single family residential development with various lot sizes and will undergo a re-platting process as a planned community consisting of various residential parcels, ranch resort, and open space. The name and address of the developer's agent is:

Land Development Services, L.L.C. 7525 East Camelback Road, Suite 104 Scottsdale, AZ 85251 480-946-5020

2.0 EXISTING WATER DISTRIBUTION SYSTEM

At present, no domestic water system exists within the immediate project area. According to the City of Scottsdale water quarter section maps 50-57 through 50-60, an existing 20" Ductile Iron Pipe (DIP) City water line terminates at 122nd Street along Rio Verde Drive (Dynamite Boulevard), as shown on quarter section map number 50-57. However, there had been several previous projects that provided water line extension designs connecting into the existing 20"-line and extending it to 136th Street. These plans have previously been City approved but never constructed and have now expired. One of the referenced expired water extension design plans were prepared by SKV Engineering, which proposed to construct a 16" water line from 122nd Street to 128th Street and continues with a 12" water line from 128th Street to 132nd Street along the Rio Verde Drive (Ref. 1). The other project was prepared by Evolution Engineering, which proposed to construct a 12" water line from 132nd to 136th Street along the Rio Verde Drive (Ref. 2).

This project will need to utilize the aforementioned City approved water extension design plans (Ref. 1 and 2) as its main water source. As the referenced water extension design plans have expired, this project should consider resurrecting the expired plans for re-approval and constructing the proposed water line from 122nd Street to 136th Street, as specified on the referenced expired design plans. Per the City of Scottsdale Design Standards and Procedures Manual (DS&PM), Section 6-1.103 the Developer intends to file for "Payback Agreements" for the proposed extension. As payback agreements are based upon construction cost, a completed package containing all required materials will be submitted with the final improvement plans with supplemental documentation provided by contractors bid documents and receipts.

3.0 PRESSURE ZONES

The ground elevation range of Reata Ranch is 2,455 to 2,565 in elevation, which is classified as pressure zone 11E (City of Scottsdale). City of Scottsdale Design Standard and Policies Manual for Potable Water System Design (Ref. 2) requires the maximum allowable pressure not exceed 120 pounds per square inch (psi) and the minimum residual pressure of 50 psi be maintained under all non-fire flow conditions at the highest finished floor elevation.

Table 1 Pressure Zone Service Elevations

Pressure Zone	Minimum Elevation	Maximum Elevation
11E	2,440	2,570

4.0 PROPOSED WATER DISTRIBUTION SYSTEM

The proposed water infrastructure for Reata Ranch shall be composed of eight (8) and twelve (12) inch diameter Ductile Iron (poly-wrapped) pipes. The 8-inch diameter pipes will be along the interior roadways within the development and the 12-inch diameter pipes will be along 128th, 132nd, and 136th Streets. A conceptual site plan depicting major infrastructure layout is presented on Exhibit 2 of this report. The onsite water distribution system will follow the roadway system shown in Exhibit 2.

There will be four points of connections into the 12" water main along Rio Verde Drive to serve the Reata Ranch development and they are:

- 1. At 128th Street
- At Rio Verde Drive at the main development entrance, midway between 128th and 132nd Streets
- 3. At 132nd Street
- 4. At 136th Street

3

According to the offsite water line plans along Rio Verde (Ref. 1), there will be a Pressure Reducing Valve (PRV) directly to the west of 128th Street. This PRV is located at the water pressure zone 12E / 11E line. The offsite water distribution system, along Rio Verde Drive, shall follow the City approved plans prepared by SVK Engineering (Ref. 1) and Evolution Engineering (Ref. 2). The proposed 12" water line along 128th, 132nd, and 136th Street together with the interior onsite water distribution system shall be designed in accordance with Chapter 4 of the City of Scottsdale Water Distribution System design guidelines (Ref. 3), the Arizona Administrative Code R18-4-502, and Engineering Bulletin no. 10 (Ref. 4).

Reata Ranch

Demand

The design parameters for the proposed water distribution system for Reata Ranch is presented in the table below

Table 3 Design Criteria

Parameter
485.6
330
3.5 times average day demand
1.7 times peak day
1,000 gpm Residential, 2,500 gpm Commercial
40 psi
0 to 8

⁽¹⁾Commercial Fire Flow values assumed from 2006 International Fire Code, Appendix B "Fire-Flow Requirements for Buildings", Section B105 and Table B105.1 (Ref. 6).

The table below outlines the projected water demand for the proposed Reata Ranch development. It describes the water demand in terms of average daily demand, Peak demand, and peak demand with fire flow.

Туре	Acres	DU/Ac	Units	Demand	Ave,	Peak	Max
				per unit	daily	daily	Hourly
					demand	demand	demand
					(GPD)	(GPD)	(GPM)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Resort		1.000	75	485.6	36,420	127,470	150
Parcel A	5.7	3.5	20	485.6	9,712	33,992	40
Parcel B	5.9	3.5	21	485.6	10,198	35,692	42
Parcel C	8,3	3.5	29	485.6	14,082	49,288	58
Parcel D	9.6	3.5	34	485.6	16,510	57,786	68
Parcel E	5.9	3.5	21	485.6	10,198	35,692	42
Parcel F	8.4	3.5	30	485.6	14,568	50,988	60
Parcel G	10.1	3.5	35	485.6	16,996	59,486	70
Parcel H	8.1	3.5	26	485.6	12,626	44,190	52
Parcel I	10.4	3.5	36	485.6	17,482	61,186	72
TOTAL	-	-	330	-	158,791	555,769	656

Table 3 Water demand calculation by development category

Notes:

 $(6) = (4) \times (5)$

 $(7) = (6) \times 3.5$ $(8) = \{(7) \times 1.7\}/1,440 \text{ minutes/day}$

5.0 HYDRAULIC ANALYSIS

The City of Scottsdale has approved the proposed water distribution system along Rio Verde Drive consisting of 16" and 12" mains (Ref. 1 and 2). This approved water system will be the main domestic and fire flow water sources for the proposed development of Reata Ranch. A hydraulic water model for this water system was also previously prepared and City approved on May 7, 2001 (Ref. 5). Exerts from this water model report is included in Exhibit 3 of this report. According to the enclosed exert, the available water flow and pressure are as described in the table below.

Reata Ranch

Node	Near	Flow (GPM)	⁽¹⁾ Pressure (psi)
210	128th Street	299.56	55.00
212	East of 128 nd Street	299.56	63,46
220	West of 132 nd Street	299.56	80.45
224	136 th Street	299.56	91.11

(1) Based upon Average Day Demand

A hydraulic model has been developed connecting into the water system along Rio Verde Drive with the flows and pressures provided in the table above. The purpose of this hydraulic model is to present the water demand for Reata Ranch development and for the single family residential parcels to the south of Reata Ranch relative to flow and pressure. The model is presented in Exhibit 4 of this report. The hydraulic model employed the following parameters:

- ✓ The water source (PRV at Rio Verde Road, east of 128th Street) is modeled at fixed grade node with a constant pressure head of 55 psig;
- ✓ The Hazen-Williams "C" for ductile iron pipe is 120;
- ✓ Ignore minor losses

The results of the computer runs are included in Exhibit 4 and are summarized below.

- ✓ The overall head-loss through the piping networks is low at peak day demand and also at maximum day + fire demands. The maximum and minimum pressures at each junction nodes are within the pressure zone range.
- ✓ The proposed piping network for this subdivision is adequate for peak and maximum day + fire flow demands.
- ✓ Fire flow is modeled at Node J14 to coincide with the Resort parcel and a fire flow demand of 2,500 gpm. Results, as shown prove the sustainability of the proposed system under modeled conditions.

Reala Ranch

6.0 RECOMMENDATIONS

- ✓ Construct the offsite water line from 122nd Street to 136th Street per City approved plans, project number 3357-04-4 and project number 3357-04-1 upon plans re-approval.
- Construct the onsite piping network consisting of 8-inch diameter pipe following the backbone roadway alignment s as shown in Exhibit 2 for the Reata Ranch development.

7.0 CONCLUSIONS

7

- ✓ The project is located in City of Scottsdale pressure zones 11E (El. 2,440-2,570).
- ✓ Fire hydrants shall be placed per requirements of City of Scottsdale Fire Department.
- A "Water Quality Sampling Station" shall be placed in Reata Ranch development. The water quality sampling station shall be constructed according the City of Scottsdale Standard Detail 2349.
- ✓ The proposed offsite piping improvement shall comply with the approved Water Distributions System Master Plan. (Ref. 1, 2, and 5).
- ✓ When the water line alignments cross natural washes they shall be protected from scouring by the use of a downstream cutoff wall in the flow area.

8.0 REFERENCES

- SVK Engineering, Inc., <u>"Rio Verde Estates offsite Water, Rio Verde / Dynamite</u> <u>Boulevard - Water Main Plans Phase 2"</u>. April 10, 2008, Plan number 23-PP-2004, 3357-04-4 (Approved by the City of Scottsdale on May 20, 2008).
- Evolution Engineering, LLC, <u>"Desert Estates Offsite, Rio Verde Drive Water Main</u> <u>Plans"</u>. September 26, 2007, Plan number 5-PP-03, 73-NP-2001, 1346-03-4 (Approved by the City of Scottsdale on May 20, 2008).
- 3. City of Scottsdale, <u>"Chapter 6 Potable Water System Design, Design Standards and</u> Policies Manual", Dated August 2008.
- 4. Arizona Department of Environmental Quality, <u>"engineering builetin no. 10</u> <u>Guidelines for the Construction of Water, Minimum Requirements for Design</u>, <u>Submission of Plans and Specifications of Sewage Works</u>". May, 1978.
- GTA Engineering, Inc., <u>Scottsdale National Water Supply System</u>, <u>Scottsdale</u>, <u>Arizona</u>. April 25, 2001. Project number GTA00145 ((Approved by the City of Scottsdale on May 07, 2001).
- 6. 2006 International Fire Code, International Code Council, dated 2006

EXHIBIT 1

EXHIBIT 2

EXHIBIT 3

Scottsdale National Water Supply System Scottsdale, Arizona

Water Master Plan

prepared for: Hunn & Associates, Inc.

prepared by

GTA ENGINEERING, INC. Consulting Engineers 1990 W. Camelback Rd., Suite 401

Phoenix, Atizona 85015 TEL (602) 246-7759 FAX (602) 246-7645 e-mail: gta@goldmantoy.com

Revised April, 2001

Accepted w/ comments:

CITY OF SCOTTSDALE WATER RESOURCES DEPT 9388 E SAN SALVADOR DR. SCOTTSDALE, AZ 85258

B. T. 2001

GTA00145

Page 1

Scottsdale National Links Map

EPANET 2

L

Page 1	4/24/0	1 3113113 PH
	***************************************	**********
* *	BPANET	4
*	Hydraulic and Water Quality	*
*	Analysis for Pips Networks	
	Version 2.0	
***********	***************************************	**********

Input File: SN3ADF.inp

Scottsdale National (w/o Map) AVERAGE DAILY FLOW RUN Hap displays entire network w/o backdrop. To see partial network w/ bacdrop, open: SNrap.net

Link - Nod	le Table:	•		
Link	Start	End	Length	Diameter
1D '	Mode	Node	ft	1
1	R100	105	3300	2
2	105	110	1700	2
-3	111	112	.,1300	2
4	. 112	114	. 1200	2
5.	114	118	1200	···· /1
6	116	118	1500	1
.7	118	120	1000	U
6	121	210	500	1
9	210	212	1000	1
10	212	214	1300	1
11	214	220	1200	1
12 .	220	224	1300	1
13	224	228	200	1
14	228	230	500	1
15	230	23.12	500	1
P100	233	3100	551.79	1
P500	J100	J500	1789.21	1
P510	J500	J510	950.00	1
P120	3100	5120	420.01	
P140	J120	J140	187.09	
P160	J140	J160	272.99	
P170	J160	PH170	489.42	
P180 .	FH170	J180	83.32	
P200	J180	J200	745,39	
P210	J200	FH210	192.30	
P220	FH210	3220	192,43.	
P240	J220	3240	474.89	
P260	3240	J260	217.32	
P280	J260	J280	161,15	
P290	J280	FH2 90	32.26	
P300 .	PH290	3300	307.32	
P310	3300	J600	465.63	
P520	3500	J520	411.75	

" Revised to 16" M9.14.01 0KW/ 9Ary LANR AFter discussion.

2

C:\AllJobsJoe\Scottsdale National\SN3ADF.rpt April 24, 2001 (3:14PM)

Marth at

	te Table: {conti		Scottedale Nati	
Link	Start	End	Length	Diarater
ID	Node	Node	£t	in
	FH522	FH524	705.52	8
P524		FH526		8
7526	FH524		849.87 60.79	8
P528	¥H526 J600	J600 FH610	772.03	8
P\$10	FH610	3620	69.46	8
2620	J620	FH626	535.35	
2626	3620	J640	309.40	8
P640	J140		121.59	6
P145	3160	J145	262.24	6
P165		J165	396.87	6
P185	J160 PH185	PH185	369,92	6
P190		J190	254.73	č
P205	J200 J220	J205 FH223	130.50	6
P223 P226	FH223	J226	313.79	6
	3220	J229	472.71	6
2229			331.57	6
P245	J240	PE245		6
9250	FE245	J250	263.17	6
P265	J260	J265	476.27	
PZ85	3280	J285	82.83	
P305	J300	FH305	352.12	-
P320	FH305	J320		6
P323	3320	3323	203.66	6
P326	3320	FE326	70.13	6
P329	FR326	J329 J340	769.79	6
P340	J320		339.53	
P343	J340 FH343	FH343 J346	131.87	•
P346 P350	J340	FH350	111.93	6
P360	FH350	J360	348.78	-
			. 211.31	-
P363 P366	3360	FB363 J366	190.78	
2369	FH363	3369	255.68	6
P370	J360 J360	PH370	299.99	6
P380	FR370	3380	205.82	
P385		3385	297.69	
P400	J380 J380	3400	167.31	6
P405	J400		315.39	-
P410	3400	J405 FH410	203,58	-
P420	FH410	3120	222.19	-
P540	J520	3540	963.88	
2545	3540	3545	434.39	•
P550	3540	FH550	174.49	
P560	FESSO	J560	355.24	-
P563	J660	FH563	189.48	-
P566	F8563	J566	125.01	6
2570	J560	FH570	612.60	
P580	FH570	J580	139.43	6
1,240	FN570	0200	133.43	0

Page 2

Dire.

1000

Link	Start	End		Length	Diameter				
ID	Node	Node		ft	in				
P600	J580	J600		309.74	6				
P622	J620	FH622		575.20	6				
P624	F8622	3624		235.33	6				
P628	FH626	J628		544.80	5				
PRV1	120	121		ALIA	12	Valve			
PRV2	232	233		#H/A -	12	Valve			
PRV13	110	111		A/KR	12	Valve			
Noda Result						1.			
Node	Desand		Pressure	Quality					
1D	0PM	ft	psi						
105	0.00	2814.60	53.99	0.00					
110		2814.39		0.00					
111		2814.39		0.00					
112	0.00	2814,29		0.00					
114	0.00	2814.20		0.00					
116	0.00	2813.06		0.00	And Personal Property lies of the left				
118	0.00	2811.69		0.00					
120	235.00	2810.75		0.00					
121	0.00	2686.93	55.00	0.00	1 12	All	ch / 5	RID Ve	de
210	0.00	2686.78		0.00	the second s	Chil	prof v	NO YE	
212	0.00	2686.45		0.00					
214	0.00	2686.05		0.00					
220	0.00	2685.67		0.00					
224	0.00	2685.26		0.00					
228	0.00	2685.20		0.00					
230	251.00	2685.04		0.00					
232	0.00	2685.04		0.00					
233	0.00	2576.93		0.00					
J100	0.00	2576.93		0.00					
J120	0.00	2576.92		0.00					
J140	0.00	2576.91		0.00					
J145	1.01	2576.91		0.00					
J160	0.67	2576.91		0.00					
J165	1.01	2576.91		0.00					
FR170	0.00	2576.91		0.00					
3180	2,02	2576.91		0.00					
FR185	0.00	2576.91		0.00					
J190	2.36	2576.91		0.00					
3300	1.35	2576.90							
3205	1.35	2576.90							
PH210	0.00	2576.90							
J220	2.02	2576.90							
FH223	.00.00	2576.90							
J226	1.35	2576.90	67.55	0.00					

Page 3

1

1

Page 4 Node Results:				dale National		
Node	Demand		Pressure			
ID	OPM	ft	psi			
	************				****	
J229	2.35	2576.90	64.74	0.00		
J240	0.34	2576.90		0.00		
FH245	0.00			0.00		
J250	1.69	2576.90	71.45	0.00		
J260	0.34	2576.90	74.49	0.00		
J265	1.01	2576.90	67.55	0.00		
J280	0.67	2576.90	76.44	0.00		
J285	1.35	2576.90		0.00		
FH290	0.00	2576.90	76.65	0.00		
J300	1.01	2576.90	72.75	0.00		
PH305	0.00	2576.90	74.49	0.00		
J320	1.01	2576.90	73.62	0.00		
J323	1.69	2576.90	75.78	0.00		
FH326	0.00	2576,90				
J329	1.69	2576.90				
J340	1.69	2576,90	71.45	0.00		
FH343		2576.90		0.00		
J346	1.69	2576.90		0.00		
PH350	0.00	2576.90		0.00		
J360	1.35	2576.90	66.69	0.00		
FH363		2576,90				
J366		2576.90		0.00		
J369	0,67				· . ·	•
PH370		2576.91		0.00		
J380	0.00	2576.91		0.00		
J385	1.35	2576.91		0.00		
3400	0.34	2576.91		0.00		
J405		2576.91	62.36	0.00		
FH410		2576.91		0.00		
J500		2576.92		0.00		
J510	0.00			0.00		
J520	1.35			8.00		
FH522		2576.91		0.00		
FH524		2576.91		0.00		
FH526		2576.90		0.00		
3540		2576.91	81.85	0.00		
J545	1,35	2576.91	77.52	0.00		
FH550		2576,91		8.00		
J560	3.01	2576.90		0.00		
73563		2576.90		0.00		
3566		2576.90		0.00		
FB570	0.00			0.00		
3580		2576.90		0.00		
3600		2576.90		0.00		
FH610		2576,90		0.00		
J620		2576.90		0.00		
PH622		2576.90		0.00		
	0.00	2010130	03.13			

Page 4

....

	continued)									
Node	Denand	Head	Fressure	Quality						
ID	OFN	ft	psi							

3624	2.02	2576.90	83.60	0.00						
FH626	0.00	2576.90	72.32	0.00						
J628	1.01	2576.90	71.45	0.00						
3640	0.00	2576.90	78.08	0.00	Reservoir	lan II	1-1	11. 1	1.0	701
R100	-1106.57	2815.00	0.00		Reservoir	Axell	EST	Hard	> NOW C	10
VolCurve	0.00	2400.00	0.00	0.00	Keservoar		- 1-2	THEA	A	
Link Results:						w	610	FRAG	Now C	
Link	Flow	Velocity	Headloss	Status		• •				
ID	GPM	fps	ft/Kft							

1	1106.57	0.78	0.12	Open						
2	1106.57	0.78	0.12	Open						
3	534.57	0.55	0.08	Open						
4	534.57	0.55	0.08	Open						
5	534.57	1.52	0.95	Open						
6	534.57	1.52	0.92	Open	-					
7	534.57	1.52	0.92	Open	11					
8	299,56	0.85	0.32	Open	11					
9	299.56	0.85	0.32	Open						
10	289.56	0.65	0.32	Open	11					
11	299.56	0.85	0.32	Open	11					
12	299.56	0.85	0.32	Open	11					
13	299.56	0.85	0.31	Open	11					
14	299.56	0.85	0.32	Open						
15	48.56	0.14	0.01	Open						
P100	48.57	0.14	0.01	Open						
P500	21.70	0.06	0.00	Open						
P510	0.00	0.00	0.00	Open						
P120	26.86	0.17	0.03	Open						
P140	17.04	0,11	0.01	Open				1		
P160	16.03	0.10	0.01	Open						
P170 P180	14.34	0.09	0.01	Open Open						
P200	34.34	0.05	0.01	Open						
P200 P210	9.96	0.05	0.00	Open						
P220	7.26	0.05	0.00	Open						
P240	2.54	0.02	0.00	Open						
P260	0.51	0.00		Open						
P280	-0.83	0.01	0.00	Open						
P290	-2.86	0.02	0.00	Open						
P300	-2,86		0.00	Open						
P310	-7.87		0.00	Open						
P520	21.70	0.14	0.02	Open						
P522	13,10	0.08	0.01	Open						
P524	13.10	0.08	0.01	Open						

Page 6 Link Results:	(continued)			ale National	
Link	Flow	Velocity	Headloss ft/Kft	Status	
2526	13.10	0.08	0.01	Open	
P528	13.10	80.0	0.01	Open	
P610	4.72	0.03	0.00	Open	
P620	1.01	0.01	0.00	Open	
P626 P640	0.00	0.00	0.00	Open	
P145	1.01	0.01	0.00	Open	
P165	1.01	0.01	0.00	Open	
P185	2.36	0.03	0.00	Open	
P190	2.36	0.03	0.00	Open	
\$205	1.35	0.02	0.00	Open	
P223	1.35	0.02	0.00	Open	
\$226	1.35	0.02	0.00	Open	
P229	1.35	0.02	0.00	Open	
P245	1.69	0.02	0.00	Open	
P250	1.69	0.02	0.00	Open	
P265	1.01	0.01	0.00	Opan	
P285	1.15	0.02	0.00	Open	
P305	4.00		0.00	Open	
P320	4.00	0.05	0.00	Open	
P323	1.69	0.02	0.00	Open	
P326	1,69	0.02	0.00	Open	
P329	1.69		0.00	Open	
P340	-0.38	0.00	0.00	Open	
P343	1.69	0.02	0.00	Open	
P346	1.69	0.02	0.00	Open	
2350	-3.75		0.00	Opan	
2360	-3.75		0.00	Open	
P363	1.35		0.00	Open	
P366	1.35		0.00	Open	
P369	0.67	0.01	0.00	Open	
P370	-7.13	0.08	0.01	Open	
P380	-7.13	0.08	0.01	Open	
P365	1.35	0.02	0.00	Open	
P400	-8.47	0.10	0.01	Open	
P405	1.01	0.01	0.00	Open	
P410	-9.82	.0.11	0.02	Open	
P420	-9.82	0.11	0.02	Open	
P540	7.25	0.08	0.01	Open	
P545	1.35	0.02	0.00	Open	
2550	4.21	0.05	0.00	Open.	
P560	4.21	0.05	0.00	Open	
P563	1.01	0.01	0.00	Open	
P566	. 1.01	0.01	0.00	Open	
P570	2.19	0.02		Open	
P580	2.19		0.00	Open	
P600	0.17	0.00	0.00	Open	

Page 6

Scottedale National (w/o Map)

continued)	Scottsd	ale Nation	al (w/o Hap)	

Flox	Velocity	Headloss	Status	
GPH	fps	Et/KEt		
2.02	0.02	0.00	Open	
2.02	0.02	0.00	Open	
1.01	0.01	D.00	Open	
299.57	0.85	123.82	Active \	alve
48.56	0.14	108.10	Active V	alve
534.57	1.52	0.00	Open \	alve
	Flox GPN 2.02 2.02 1.01 299.57 48.56	Plow Velocity GPN fps 2.02 0.02 2.02 0.02 1.01 0.01 2.9,57 0.85 48.56 0.14	Plow Velocity Headloss GPN fps ft/Kft 2.02 0.02 0.00 2.02 0.02 0.00 1.01 0.01 0.00 29.57 0.65 123.82 48.56 0.14 106.10	Flow Velocity Headloss Status GFH fps ft/Kft 2.02 0.02 0.00 Open 2.02 0.02 0.00 Open 1.01 0.01 0.00 Open 2.957 0.85 123.82 Active V 48.56 0.14 106.10 Active V

Page 7

11

Elen

D'IN

EXHIBIT 4

APPENDIX B

FIRE-FLOW REQUIREMENTS FOR BUILDINGS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance,

SECTION B101 GENERAL

B101.1 Scope. The procedure for determining fire-flow requirements for buildings or portions of buildings hereafter constructed shall be in accordance with this appendix. This appendix does not apply to shuctures other than buildings.

SECTION B102 DEFINITIONS

B102.1 Definitions. For the purpose of this appendix, certain terms are defined as follows:

FIRE-FLOW. The flow rate of a water supply, measured at 20 pounds per square inch (psi) (138 kPa) residual pressure, that is available for fire fighting.

FIRE-FLOW CALCULATION AREA. The floor area, in square feet (m²), used to determine the required fire flow.

SECTION B103 MODIFICATIONS

B103.1 Decreases. The fire chief is authorized to reduce the fire-flow requirements for isolated buildings or a group of buildings in rural areas or small communities where the development of full fire-flow requirements is impractical.

B103.2 Increases. The fire chief is authorized to increase the fire-flow requirements where conditions indicate an unusual susceptibility to group fires or conflagrations. An increase shall not be more than twice that required for the building under consideration.

B103.3 Areas without water supply systems, For information regarding water supplies for fire-fighting purposes in rural and suburban areas in which adequate and reliable water supply systems do not exist, the fire code official is authorized to utilize NFPA 1142 or the International Wildland-Urban Interface Code,

SECTION B104 FIRE-FLOW CALCULATION AREA

B104.1 General. The fire-flow calculation area shall be the total floor area of all floor levels within the exterior walls, and under the horizontal projections of the roof of a building, except as modified in Section B104.3.

B104.2 Area separation. Portions of buildings which are separated by fire walls without openings, constructed in accordance with the *International Building Code*, are allowed to be considered as separate fire-flow calculation areas.

2008 INTERNATIONAL FIRE CODE®

B104.3 Type IA and Type IB construction. The fire-flow calculation area of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors.

Exception: Fire-flow calculation area for open parking garages shall be determined by the area of the largest floor.

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings. The million of the second s

Exception: A failuation in required fire flow of a percent, as approved, is allowed when the building is provided with an approved antomatic sprinkler system.

B105.2 Buildings other than one- and two-family dwellings. The minimum fire-flow and flow duration for buildings other than one- and two-family dwellings shall be as specified in Table B105.1.

Exception: A reduction in required fire-flow of up to 75 percent, as approved, is allowed when the building is provided with an approved automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2. The resulting fire-flow shall not be less than 1,500 gallons per minute (5678 L/min) for the prescribed duration as specified in Table B105.1.

SECTION B106 REFERENCED STANDARDS

ICC	IBC	International Building Code		B104.2, Table B105.1
ICC	IWUIC	International Wildland- Urban Interface Code	•	B103.3

NFPA 1142 Standard on Water Supplies for B103.3 Suburban and Rural Fire Fighting

393

APPENDIX B

IDICAL WOOD FUMME

TABLE B105.1	1
MINIMUM REQUIRED FIRE-FLOW AND FLOW DURATION	FOR BUILDINGS

	FIRE-FLOW	CALCULATION AREA	(square feel)	V			(
Type IA and IB ⁶	. Type IIA and IIIA ⁶	Type IV and V-A*	Type IIB and IIIB ^b	Type V-B ^b	(galions per minute)°	FLOW DURATION (hours)	
0-22,700	0-12,700	0-8,200	0-5,900	03,600	1,500	3600 mg	× is
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	- BASIS OF	> SUO Sym
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000		
38,701-48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2	
48,301-59,000	. 24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500		
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	,2,750		
70,901-83,700	39,701-47,100	.25,501-30,100	18,401-21,800	11,301-13,400	3,000		
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250		
97,701-112,700	. 54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	3	
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750		
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000		
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250		
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500		
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750		
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5,000		1-
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5,250		(
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5,500	1.1	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5,750		
295,901-Greater	166,501-Greater	106,501-115,800	77,001-83,700	47,401-51,500	6,000	4	
	-	115,801-125,500	83,701-90,600	· 51,501-55,700	6,250		
	_	125,501-135,500	90,601-97,900	55,701-60,200	6,500		
-	_	135,501-145,800	97,901-106,800	60,201-64,800	6,750		
-		145,801-156,700	106,801-113,200	64,801-69,600	7,000		
· <u></u> :		156,701-167,900	113,201-121,300	69,601-74,600	7,250		
_	-	167,901-179,400	121,301-129,600	74,601-79,800	7,500		
_	_	179,401-191,400	129,601-138,300	79,801-85,100	7,750		
	****	191,401-Greater	138,301-Greater	85,101-Greater	8,000		

For SI: 1 square foot = 0.0929 m², 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa. a. The minimum required fire flow shall be allowed to be reduced by 25 percent for Group R. b. Types of construction are based on the *International Building Code*. c. Measured at 20 pst.

DISvegland per FD - Armistrang

2008 INTERNATIONAL FIRE CODE®

i

ł

THE CODE CONNECTION

Hosted by Terry Welker AIA

Construction Types

All buildings are classified according to their construction type. Type I is least combustible and Type V is most combustible. The more combustible a building is and the more hazardous the use is, the more the maximum allowable area is limited (in table 503). All construction types and use groups are allowed to have increased areas by using sprinklers.

Type I

I-A or I-B

Typically these are concrete frame buildings made of noncombustible materials. All of the building elements (structural frame, bearing walls, floors and roofs) are fire resistance rated according to Tables 601 and 602.

Type II

II-A or II-B

These buildings are constructed of noncombustible materials. Typically these are masonry bearing walls structures with steel studs for walls and steel bar joists for floor and roof structures. IIA has fire rated building elements (structural frame, bearing walls, floors and roofs). IIB is the most common construction type for commercial buildings because the building elements are not required to be fire resistance rated but still must be non-combustible.

Types I and II. (602.2)

Types I and II construction are those types of construction in which the building elements listed in Table 601 are of noncombustible materials.

Type III

III-A or III-B

Type III construction is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by the code (combustible or non-combustible). This is typical of buildings with masonry bearing walls and wood roofs or floors.

Type III. (602.3)

Type III construction is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code. Fire-retardant-treated wood framing complying with Section 2303.2 shall be parmitted within exterior wall assomblies of a 2-hour rating or less.

Type IV

IV-A or IV-B This is Heavy Timber construction which is not common in Ohio except perhaps in some worship facilities.

Type IV. (602.4) Type IV construction (Heavy Timber, HT) is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of solid or laminated wood without concealed spaces. The details of Type IV construction shall comply with the provisions of this section. Fire-retardant-treated wood framing complying with Section 2303.2 shall be permitted within exterior wall assemblies with a 2-hour rating or less.

Type V

V-A or V-B

Type V construction is typically wood frame construction. V-A requires fire rated assemblies for all building elements (structural frame, bearing walls, floors and roofs); this is often seen in older construction that predates sprinklers but still not commonly used. V-B is very common because it does not require any fire rating.

Type V. (602.5)

Type V construction is that type of construction in which the structural elements, exterior walls and interior walls are of

http://codeconnection.squarespace.com/click-here-for-detailed-constr/

03/20/2008

İ

EPANET 2

Page 1	7/11/2012 4	:50:55 PM
******	******	*******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*************	* * * * * * * * * * * * * * * * * * * *	********

Input File:	Reata Ranch	Water S	ystem	(AVG DAY)	7-11-2012.net
-------------	-------------	---------	-------	-----------	---------------

Link - Nod	e Table:			
Link	Start	End	Length	Diameter
[D	Node	Node	ft	in
1	J1	J2	455.3	12
12	J12	J13	404	12
11	J7	J12	2693	12
10	J11	J8	1610	12
2	J2	J3	19	8
3	J2	J4	232,9	12
6	J5	J7	1299	12
5	J5	J6	50	8
7	J8	J7	1053	12
8	J9	J8	100	8
9	J8	J10	100	12
14	J13	J15	2220	12
13	J13	J14	35	12
	R1	J1	75	36
4	J1	J5	1280	12

Node Results:

Node ID	Demand GPM	Head ft	Pressure psi	Quality
J1	0.00	2706.77	59.26	0.00128th/BioVerde
J2	0.00	2706.77	58.83	0.00
J12	0.00	2706.58	97.74	0.00
J13	0.00	2706.57	104.67	0.00
J7	0.00	2706.61	78.69	0.00
J11	0.00	2706.59	81.71	0.00
J8	0.00	2706.59	84,75	0.00
J3	6.74	2706.77	59,70	0.00
J4	0.00	2706.77	57.10	0.00
J5	0.00	2706.69	70.06	0.00
J6	0.00	2706.69	71,36	0.00
J9	16.86	2706.58	83,88	0.00
J10	43.16	2706.58	85,18	0.00
J15	0.00	2706.57	106,84	0.00
J14	43.84	2706.57	104,67	0.00
R1	-110.61	2706.77	0,00	0.00 Reservoir

p	2	2	e	2
۶.	а	У	ç	64

Link	Results:

Link	Flow	VelocityUn	it Headloss	Status
ID	GPM	fps	ft/Kft	
P1	6.74	0.02	0.00	Open
P12	43.84	0.12	0.01	Open
P11	43.84	0.12	0.01	Open
P10	0.00	0.00	0.00	Open
P2	6.74	0.04	0.00	Open
P3	0.00	0.00	0.00	Open
P6	103.86	0.29	0.06	Open
P5	0.00	0.00	0.00	Open
P7	-60.02	0.17	0.02	Open
P8	-16.86	0.11	0.01	Open
P9	43.16	0.12	0.01	Open
P14	0.00	0.00	0.00	Open
P13	43.84	0.12	0.01	Open
1	110.61	0.03	0.00	Open
P4	103,87	0.29	0.06	Open

Page 1	7/11/2012	4:51:46 PM
************	************************************	********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
**********	***************************************	*******

- Input File: Reata Ranch Water System (MAX DAY)_7-11-2012.NET
- Link Node Table:

Link	Start	End	Length	Diameter
ID	Node	Node	ft	in
P1	J1	J2	455.3	12
P12	J12	J13	404	12
P11	J7	J12	2693	12
<u>P10</u>	J11	JB	1610	12
P10 P2 P3	J2	J3	19	8
	J2	J4	232,9	12
P6	J5	J7	1299	12
P5	J5	J6	50	8
<u>P7</u>	J8	J7	1053	12
P8	J9	J8	100	8,
Р9	J8	J10	100	12
P14	J13	J15	2220	12 12
P13	J13	J14	35	12
1	R1	J1	75	12,
P4	J1	J5	1280	12

Node Results:

Node ID	Demand GPM	Head ft	Pressure psi	Quality
J1 J2	0.00	2706.77 2706.77	5 <u>9.26</u> 58.83	0.00 128th (Rio Verde
J12 J13	0.00	2706.07	97.52	0.00 0.00
J7 J11	0.00	2706.19	104.45	0.00 0.00
J8 J3	0.00 0.00 13.49	2706.11	81.51 84.54	0,00 0,00
J4 J5	0.00	2706.77	59.70 57.10	0.00
J6 J9	0.00	2706.48	69.97 71.27	0.00
J10	33,72 86,33	2706.10 2706.10	83.67 84.97	0.00
J15 J14	0.00 87.68	2706.05	<u>106.61</u> 104.45	0.00
R1	-221.23	2706.77	0.00	0.00 Reservoir

!

Page 2

Link Results:

Link	Flow	VelocityUn	it Headloss	Status
ID	GPM	fps	ft/Kft	
P1	13.49	0.04	0.00	Open
P12	87.68	0,25	0.05	Open
P11	87.68	0.25	0.05	Open
P10	0.00	0.00	0.00	Open
P2	13.49	0.09	0.01	Open
P3	0.00	0.00	0.00	Open
P6	207.73	0.59	0.22	Open
P5	0.00	0.00	0.00	Open
P7	-120.05	0.34	0.08	Open
P8	-33.72	0.22	0.06	Open
P9	86,33	0.24	0.04	Open
P14	0.00	0.00	0.00	Open
P13	87.68	0.25	0.04	Open
1	221,23	0.07	0.00	Open
P4	207.74	0.59	0.22	Open

Reata Ranch

EPANET 2

Page 1	7/12/2012	12:37:20 PM
**************	***************************************	*********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
**************	***************************************	*******

Input	File:	Reata	Ranch	Water	System	(MAX	DAY-W	FIRE)	7-11-2012.NET

Link	Start	End	Length	Diameter
ID	Node	Node	gt.	in
P1	J1	J2	455.3	12
P12	J12	J13	404	12
P11	37	J12	2693	12
P10	J11	J8	1610	12
P2	J2	J3	19	8
P3	J2	J4	232,9	12
P6	J5	J7	1299	12
P5	J5	J6	50	8
P7	J8	J7	1053	12
P8	J9	J8	100	8
P9	J8	J10	100	12
P14	J13	J15	2220	12
P13	J13	J14	35	12
1	R1	J1	75	36
P4	J1	J5	1280	12

Node Results:

Node	Demand	Head	Pressure	Quality
ID	GPM	ft	psi	2
J1	0.00	2706.76	59.26	0,00 128th RIDVERDE
J2	0.00	2706.76	58.82	0.00
J12	0.00	2574.98	40.72	0.00
J13	0.00	2565.30	43.46	0.00
J7	0.00	2639.53	49.63	0.00
_J11	0.00	2639.44	52.62	0.00
J8	0.00	2639,44	55.66	0.00
J3	13.49	2706.76	59.69	0.00
_J4	0.00	2706.76	57.09	0,00
J5	0.00	2673.39	55.63	0,00
J6	0.00	2673.39	56.93	0.00
J9	33.72	2639,44	54.79	0.00
J10	86.33	2639,44	56.09	0.00
_J15	0.00	2565.30	45.63	0.00
J14	2587,68	2564.46	43.10	0.00
R1	-2721.23	2706.77	0.00	0.00 Reservoir

Page 2

Reata Ranch

Link Results:				
Link	Flow	VelocityUnit	Headloss	Status
ID	GPM	fps	ft/Kft	
P1	13.49	0.04	0.00	Open
P12	2587.68	7.34	23,97	Open
P11	2587.68	7.34	23,97	Open
P10	0.00	0.00	0,00	Open
P2	13,49	0.09	0.01	Open
P3	0.00	0.00	0.00	Open
P6	2707.73	7.68	26.07	Open
P5	0.00	0.00	0.00	Open
P7	-120.05	0.34	0.08	Open
P8	-33.72	0.22	0.06	Open
29	86,33	0.24	0.04	Open
P14	0.00	0.00	0.00	Open
P13	2587.68	7.34	23.97	Open
1	2721,23	0.86	0.12	Open
P4	2707.74	7.68	26.07	Open

EPANET 2

Page 1	7/11/2012	4:53:27 PM
**********	*****	*********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
*********	***************************************	******

Input File: Reata Ranch Water System (PEAK HOUR)_7-11-2012.NET

Link	Start	End	Length	Diameter
ID	Node	Node	ft	in
P1	J1	J2	455.3	12
P12	J12	J13	404	12
P11	37	J12	2693	12
P10	J11	J8	1610	12
P2	J2	J3	19	8
P3	J2	J4	232,9	12
P6	J5	37	1299	12
25	J5	J6	50	8
27	J8	J7	1053	12
28	J9	J8	100	8
29	J8	J10	100	12
P14	J13	J15	2220	12
P13	J13	J14	35	12
1	R1	J1	75	36
P4	J1	J5	1280	12

Link - Node Table:

Node Results:

Node ID	Demand GPM	Head ft	Pressure psi	Quality
J1	0.00	2706.77	59,26	0.00128th/RioVerde
J2	0.00	2706.77	58.83	0.00
J12	0.00	2704.79	96,97	0.00
J13	0.00	2704.74	103.88	0.00
J7	0.00	2705.14	78.05	0.00
J11	0.00	2704.90	80.98	0.00
J8	0.00	2704.90	84.02	0.00
J3	23.61	2706.77	59,69	0.00
J4	0.00	2706.77	57.09	0.00
J5	0.00	2705.96	69.74	0.00
J6	0.00	2705.96	71.04	0.00
J9	59.01	2704.88	83.14	0.00
J10	151.08	2704.88	84.44	0.00
J15	0.00	2704.74	106.05	0.00
J14	153.44	2704.74	103.88	0.00
R1	-387.15	2706.77	0.00	0.00 Reservoir

Page 2

Link Results:

Link	Flow	VelocityUn	it Headloss	Status
ID	GPM	fps	ft/Kft	
P1	23.61	0.07	0.00	Open
P12	153.44	0.44	0.13	Open
P11	153.44	0.44	0.13	Open
P10	0.00	0.00	0.00	Open
P2	23.61	0.15	0,03	Open
P3	0.00	0.00	0,00	Open
26	363,54	1.03	0.63	Open
25	0.00	0.00	0.00	Open
27	-210.09	0.60	0.23	Open
89	-59,01	0.38	0.16	Open
9	151,08	0.43	0.12	Open
214	0.00	0.00	0.00	Open
213	153,44	0.44	0.13	Open
L	387,15	0.12	0.00	Open
24	363.54	1.03	0.63	Open

and the second se	rprises, Inc	and Demand	1			
West and the state of the second state of the					Date:	7/11/2012
roject kea	a Ranch (Sco	ttsdale, Arizona)			SKG Project No.	30-9
Junction Number (node)	Elevation (feet)	Number of Units	Average Day Water Demand (gpm)	Maximum Day Water Demand (gpm)	Peak Hour Water Demand (gpm)	Notes
Res1	2706.77(4)		Units*485.6/1440	2*Avg. Day	3.5*Average Day	Base Parameters
J1 ⁽⁵⁾	2570.0 ft	0	0.00	0.00	0.00	
J2	2571.0 ft	0	0.00	0.00	0.00	
J3	2569.0 ft	20	6.74	13.49	23.61	Parcel A
4 ⁽¹⁾	2575.0 ft	0	0.00	0.00	0.00	
J5	2545.0 ft	0	0.00	0.00	0.00	
J6	2542.0 ft	0	0.00	0.00	0.00	
J7	2525.0 ft	0	0.00	0.00	0.00	
J8	2511.0 ft	0	0.00	0.00	0.00	
J9	2513.0 ft	50	16.86	33.72	59.01	Parcel B and Parcel C
J10	2510.0 ft	128	43.16	86.33	151.08	Parcels F, G, H and I
11 ⁽¹⁾	2518.0 ft	0	0.00	0.00	0.00	
J12	2481.0 ft	0	0.00	0.00	0.00	
J13	2465.0 ft	0	0.00	0.00	0.00	
J14 ⁽²⁾⁽³⁾	2465.0 ft	130	43.84	87.68	153.44	Parcels D, E and Resort (Fire Flow)
J15 ⁽¹⁾	2460.0 ft	0	0.00	0.00	0.00	
Total		328	110.61	221.22	387.13	Total
= Boundary no	de Future syst	em expansion estima	ted based on adjacent zo	ning opportunity		
The second s	The second s	0 gpm for Resort as S		9 - FF		
and the second s	The second se	the second state of the se	sort and Guest Ranch fa	cilities as units more	closely resemble Singl	e Family bousing
		ad + ground elevation				e , anny nousing.

SKG Enterprises, Inc. 9260 East Raintree Drive #140 Scottsdale, Arizona 85260 ph) 480.998.5600

.....

APPENDIX C

The N
X
JA INI
2 HANILA
DAIGT
KILLE
1/71111

Scour Analysis - Reata Ranch

			13.1																	
						Neill's Equ	ation				Lacey's	Equation			Blench's E	quation				
			100-Year Peak Discharge	Top Width	Unit Water Discharge	Velocity	Average Depth	Bank Full Discharge	Multiplying	Neill's Equation Scour Depth	Mean Grain Size	Lacey's	Multiplying	Lacey's Equation Scour Depth	Blench's Zero Bed Factor	Multiplying	Blench's Equation Scour Depth	Maximum Scour Depth	Minimum Toe Length Req.	Toe Length Provided
River	Reach	River Sta.	(ft.3/sec.)	(ft.)	(ft.3/sec./ft.)	(ft. ² /sec.)	(ft.)	(ft.)	Factor	(ft.)	(mm)	Silt Factor	Factor	(ft.)	(ft./sec.)	Factor	(ft.)	(ft.)	(ft.)	(ft.)
RVW10T4	R1	0.373	990	401.99	2	5.94	0.4	990	0.5	0.2	0.6	1.36	0.5	2.6	2.2	0.6	1.4	3	4.5	6.0
RVW10T4	R1	0.31	990	319.65	3	4.58	0.7	990	0.5	0.3	0.6	1.36	0.5	2.6	2.2	0.6	1.7	3	4.5	6.0
RVW10T4	R1	0.222	2215	418.35	5	8.23	0.6	2215	0.5	0.3	0.6	1.36	0.5	3.4	2.2	0.6	2.4	3	4.5	6.0
RVW10T4	R1	0.21	2215	388.19	6	6.39	0.9	2215	0.5	0.4	0.6	1.36	0.5	3.4	2.2	0.6	2.5	3	4.5	6.0
RVW10T4	R1	0.205	Lat Struct											1	in all					S.C.
RVW10T4	R1	0.145	2215	118.29	19	10.25	1.8	2215	0.5	0.9	0.6	1.36	0.5	3.4	2.2	0.6	5.5	6	9.0	9.0
RVW10T4	R1	0.034	2215	132.37	17	7.16	2.3	2215	0.5	1.2	0.6	1.36	0.5	3.4	2.2	0.6	5.1	5	7.5	7.5
RVW10T3	R1	0.615	815	138.7	6	5.75	1.0	815	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	2.5	3	4.5	6.0
RVW10T3	R1	0.520	815	126.45	6	5.95	1.1	815	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	2.7	3	4.5	6.0
RVW10T3	R1	0.438	815	149.58	5	5.69	1.0	815	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	2.4	2	3.0	6.0
RVW10T3	R1	0.411	815	107.15	8	6.27	1.2	815	0.5	0.6	0.6	1.36	0.5	2.4	2.2	0.6	3.0	3	4.5	6.0
RVW10T3	R1	0.357	815	151.5	5	5.60	1.0	815	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	2.4	2	3.0	6.0
RVW10T3	R1	0.356	815	88.32	9	2.79	3.3	815	0.5	1.7	0.6	1.36	0.5	2.4	2.2	0.6	3.4	3	4.5	6.0
RVW10T3	R1	0.300	Culvert																	
RVW10T3	R1	0.290	815	72.75	11	6.51	1.7	815	0.5	0.9	0.6	1.36	0.5	2.4	2.2	0.6	3.9	4	6.0	6.0
RVW10T3	R1	0.289	815	81.04	10	5.58	1.8	815	0.5	0.9	0.6	1.36	0.5	2.4	2.2	0.6	3.6	4	6.0	6.0
RVW10T3	R1	0.259	815	135.76	6	5.80	1.0	815	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	2.6	3	4.5	6.0
RVW10T3	R13	0.200	1570	143.96	11	7.11	1.5	1570	0.5	0.8	0.6	1.36	0.5	3	2.2	0.6	3.8	4	6.0	6.0
RVW10T3	R13	0.123	1570	165.84	9	6.73	1.4	1570	0.5	0.7	0.6	1.36	0.5	3	2.2	0.6	3.5	3	4.5	6.0
RVW10T2	R1	0.845	755	189.03	4	6.01	0.7	755	0.5	0.3	0.6	1.36	0.5	2.4	2.2	0.6	2.0	2	3.0	6.0
RVW10T2	R1	0.843	755	107.66	7	6.10	1.1	755	0.5	0.6	0.6	1.36	0.5	2.4	2.2	0.6	2.9	3	4.5	6.0
RVW10T2	R1	0.747	755	97.65	8	7.17	1.1	755	0.5	0.5	0.6	1.36	0.5	2.4	2.2	0.6	3.1	3	4.5	6.0
RVW10T2	R1	0.711	755	429.89	2	5.08	0.3	755	0.5	0.2	0.6	1.36	0.5	2.4	2.2	0.6	1.1	2	3.0	6.0
RVW10T2	R1	0.684	755	282.05	3	5.54	0.5	755	0.5	0.2	0.6	1.36	0.5	2.4	2.2	0.6	1.5	2	3.0	6.0
RVW10T2	R1	0.663	755	325.25	2	5.04	0.5	755	0.5	0.2	0.6	1.36	0.5	2.4	2.2	0.6	1.4	2	3.0	6.0
RVW10T2	R1	0.581	755	48.46	16	7.80	2.0	755	0.5	1	0.6	1.36	0.5	2.4	2.2	0.6	4.9	5	7.5	7.5
RVW10T2	R1	0.540	755	60.96	12	7.35	1.7	755	0.5	0.8	0.6	1.36	0.5	2.4	2.2	0.6	4.2	4	6.0	6.0
RVW10T2	R1	0.530	755	54.62	14	7.84	1.8	755	0.5	0.9	0.6	1.36	0.5	2.4	2.2	0.6	4.5	4	6.0	6.0
RVW10T2	R1	0.520	755	42.99	18	8.31	2.1	755	0.5	1.1	0.6	1.36	0.5	2.4	2.2	0.6	5.3	5	7.5	7.5
RVW10T2	R1	0.450	755	42.01	18	8.39	2.1	755	0.5	1.1	0.6	1.36	0.5	2.4	2.2	0.6	5.4	5	7.5	7.5
RVW10	R1	9.689	735	235.93	3	4.74	0.7	735	0.5	0.3	0.6	1.36	0.5	2.3	2.2	0.6	1.7	2	3.0	6.0
RVW10	R1	9.564	735	345.95	2	3.03	0.7	735	0.5	0.4	0.6	1.36	0.5	2.3	2.2	0.6	1.3	2	3.0	6.0
RVW10	R1	9.429	1045	296.98	4	4.82	0.7	1045	0.5	0.4	0.6	1.36	0.5	2.6	2.2	0.6	1.8	3	4.5	6.0
RVW10	R1	9.252	1045	268.75	4	6.52	0.6	1045	0.5	0.3	0.6	1.36	0.5	2.6	2.2	0.6	1.9	3	4.5	6.0
RVW10	R1	9.176	1045	211.84	5	6.59	0.7	1045	0.5	0.4	0.6	1.36	0.5	2.6	2.2	0.6	2.3	3	4.5	6.0
RVW10	R1	9.175	Lat Struct														314	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13 19 14	
RVW10	R1	9.104	1045	298.07	4	7.23	0.5	1045	0.5	0.2	0.6	1.36	0.5	2.6	2.2	0.6	1.8	3	4.5	6.0
RVW10	R1	9.103	Lat Struct				5.0		5.0		1				1					
RVW10	R1	9.102	880	152.01	6	7.25	0.8	880	0.5	0.4	0.6	1.36	0.5	2.5	2.2	0.6	2.5	3	4.5	6.0
RVW10	R1	9.011	Lat Struct				0.0	000	0.0	0.1	0.0		0.0							
RVW10	R1	8.937	400	65.29	6	5.91	1.0	400	0.5	0.5	0.6	1.36	0.5	1.9	2.2	0.6	2.6	3	4.5	6.0
RVW10	R1	8.936	Lat Struct	00.20		0.01	1.0	100	0.0	0.0	0.0	1.00	0.0			5.0				5.0
RVW10	R1	8.826	170	47.74	4	2.12	1.7	170	0.5	0.8	0.6	1.36	0.5	1.4	2.2	0.6	1.8	2	3.0	6.0
RVW10 RVW10	R2	8.740	2285	290.17	8	5.79	1.4	2285	0.5	0.7	0.6	1.36	0.5	3.4	2.2	0.6	3.1	3	4.5	6.0
RVW10 RVW10	R2 R2	8.586	2285	302.07	8	6.25	1.4	2285	0.5	0.6	0.6	1.36	0.5	3.4	2.2	0.6	3.0	3	4.5	6.0
RVW10 RVW10	R2 R2	8.467	2285	185.92	12	7.40	1.2	2285	0.5	0.8	0.6	1.36	0.5	3.4	2.2	0.6	4.2	4	6.0	6.2

						Neill's Equ	ation				Lacey's	Equation			Blench's E	quation				
			100-Year Peak		Unit Water		Average	Bank Full		Neill's Equation Scour	Mean Grain			Lacey's Equation Scour	Blench's Zero Bed		Blench's Equation Scour	Maximum Scour	Minimum Toe Length	Toe Length
			Discharge	Top Width	Discharge	Velocity	Depth	Discharge	Multiplying	Depth	Size	Lacey's	Multiplying	Depth	Factor	Multiplying	Depth	Depth	Req.	Provide
River	Reach	River Sta.	(ft. ³ /sec.)	(ft.)	(ft.3/sec./ft.)	(ft. ² /sec.)	(ft.)	(ft.)	Factor	(ft.)	(mm)	Silt Factor	Factor	(ft.)	(ft./sec.)	Factor	(ft.)	(ft.)	(ft.)	(ft.)
RVW10	R2	8.354	2285	211.88	11	7.08	1.5	2285	0.5	0.8	0.6	1.36	0.5	3.4	2.2	0.6	3.8	4	6.0	6.0
RVW10	R2	8.353	2285	139.91	16	4.27	3.8	2285	0.5	1.9	0.6	1.36	0.5	3.4	2.2	0.6	5.0	5	7.5	7.5
RVW10	R2	8.300	Culvert												-				- Carlotter	
RVW10	R2	8.135	2285	101.42	23	9.02	2.5	2285	0.5	1.2	0.6	1.36	0.5	3.4	2.2	0.6	6.2	6	9.0	9.0
RVW10	R2	8.134	2285	161.08	14	7.72	1.8	2285	0.5	0.9	0.6	1.36	0.5	3.4	2.2	0.6	4.6	5	7.5	7.5
RVW10	R3	7.984	3925	654.17	6	7.94	0.8	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	2.6	4	6.0	6.0
RVW10	R3	7.886	3925	655.86	6	8.91	0.7	3925	0.5	0.3	0.6	1.36	0.5	4.1	2.2	0.6	2.6	4	6.0	6.0
RVW10	R3	7.784	3925	777.07	5	5.44	0.9	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	2.3	4	6.0	6.0
RVW10	R3	7.678	3925	591.39	7	8.91	0.7	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	2.8	4	6.0	6.0
RVW10	R3	7.611	3925	659.92	6	6.06	1.0	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	2.6	4	6.0	6.0
RVW10	R3	7.596	3925	430.97	9	8.87	1.0	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.4	4	6.0	6.0
RVW10	R3	7.541	3925	690.82	6	9.78	0.6	3925	0.5	0.3	0.6	1.36	0.5	4.1	2.2	0.6	2.5	4	6.0	6.0
RVW10	R3	7.491	3925	460.96	9	9.44	0.9	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.3	4	6.0	6.0
RVW10	R3	7.450	3925	576.08	7	8.56	0.8	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	2.8	4	6.0	6.0
RVW10	R3	7.382	3925	574.19	7	9.94	0.7	3925	0.5	0.3	0.6	1.36	0.5	4.1	2.2	0.6	2.8	4	6.0	6.0
RVW10	R3	7.331	3925	516.62	8	9.58	0.8	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	3.0	4	6.0	6.0
RVW10	R3	7.283	3925	458.96	9	10.62	0.8	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	3.3	4	6.0	6.0
RVW10	R3	7.240	3925	408.82	10	10.13	0.9	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.5	4	6.0	6.0
RVW10	R3	7.215	3925	501.65	8	10.35	0.8	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	3.1	4	6.0	6.0
RVW10	R3	7.193	3925	441.41	9	4.83	1.8	3925	0.5	0.9	0.6	1.36	0.5	4.1	2.2	0.6	3.3	4	6.0	6.0
RVW10	R3	7.174	3925	455.70	9	7.91	1.1	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.3	4	6.0	6.0
RVW10	R3	7.155	3925	492.95	8	8.10	1.0	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.1	4	6.0	6.0
RVW10	R3	7.076	3925	665.71	6	8.20	0.7	3925	0.5	0.4	0.6	1.36	0.5	4.1	2.2	0.6	2.5	4	6.0	6.0
RVW10	R3	6.982	3925	502.03	8	8.09	1.0	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	3.1	4	6.0	6.0
RVW10	R3	6.977	3925	501.11	8	6.54	1.2	3925	0.5	0.6	0.6	1.36	0.5	4.1	2.2	0.6	3.1	4	6.0	6.0
RVW10	R3	6.849	3925	539.10	7	7.82	0.9	3925	0.5	0.5	0.6	1.36	0.5	4.1	2.2	0.6	2.9	4	6.0	6.0
RVW10	R3	6.697	3925	462.10	8	3.22	2.6	3925	0.5	1.3	0.6	1.36	0.5	4.1	2.2	0.6	3.2	4	6.0	6.0

Notes:

See Exhibit 5 for cross section location See Appendix C (HEC RAS Model) for channel velocity Assume mean grain size to be 0.6 mm

Regime Equation (Pemberton and Lara, 1984)

		Value of Z					
Condition	Neill d _s = Z d _f	Lacey d _s = Z d _m	Blend d _S = Z				
Equation Types A and B							
Straight reach Moderate bend Severe bend Right angle bends Vertical rock bank or wall	0.5 0.6 0.7	0.25 0.5 0.75 1.0 1.25	} <u>1</u> / 1.				

"LEED®ing and Developing Smart Projects"

APPENDIX II

Preliminary Utility Plan

Sustainability Engineering Group

8280 E. Gelding Drive, Suite 101 Scottsdale, AZ 85260 <u>info@azSEG.com</u> 480.588.7226 <u>www.azSEG.com</u>

APPENDIX

PRELIMINARY SEWER CAPACITY REPORT Braun Property – 20 acres Scottsdale, AZ

Prepared For:

7525 E. Camelback Rd., Suite #104 Scottsdale, AZ 85251 P: 480.946.5020

ACCEPTED AS RELIMINARY Prepared by: REPORT W/COMMENTS

City of Scottsdale Water Resources Administration 9379 E. San Salvador Scottsdale, AZ 85258

09/20/2017.

EXPIRES 9/30/2017

14-ZN-2017 9/1/2017

Sustainability Engineering Group

8280 E. Gelding Drive, Suite 101 Scottsdale, AZ 85260 480.588.7226 <u>www.azSEG.com</u>

Project Number: 170601

Original Submittal Date: August 3, 2017

Case No.: TBD

Plan Check No.: TBD

"LEEDing and Developing Smart Projects"

LIST OF FIGURES:

FIGURE 1	-	Vicinity Map
FIGURE 2	-	Aerial
FIGURE 3	-	Sewer Quarter Section Map 50-59
FIGURE 4	-	Sewer Quarter Section Map 50-55
FIGURE 5	-	COS Waste Water Service Areas
FIGURE 6	-	ADWR Well Registry Information

APPENDIX:

Appendix I - Preliminary Utility Plan

1. INTRODUCTION

1.1 SUMMARY OF PROPOSED DEVELOPMENT:

The property is a proposed residential development of +/- 20.0 net acres (+/-19.3 gross acres) of undeveloped land located within the City of Scottsdale. The property is to be developed with a lot configuration for thirteen (13) residential units with lot sizes ranging from 52,500 sf to 80,800 sf. The overall development will include two 24' wide cul-de-sac roadways entering from 132nd Street. The site is located on the NWC 132nd Street and East Pinnacle Vista Rd.

1.2 LEGAL DESCRIPTION:

The project property consists of one (1) parcel of land located on the NWC 132nd Street and East Pinnacle Vista Rd. It is further defined as being in the E ½ of the SE ¼ of the NW ¼ of Section 36, Township 5 North, Range 5 East of the Gila and Salt River Base and Meridian, Maricopa County, Scottsdale, Arizona; Parcel ID number is APN: 216-77-024C. Refer to **FIGURE 1** - **Vicinity Map** for the project's location with respect to major cross streets

1.3 EXISTING AND PROPOSED SITE ZONING AND LAND USES:

The parcels are currently zoned R1-70 ESL and will remain. The purpose of this report is to support an application for a ESL Density Incentive in accordance with the City of Scottsdale zoning ordinance and the environmentally sensitive land ordinance. The property is currently undeveloped and is proposed as a single family residential development consisting of thirteen (13) lots.

1.4 **REFERENCES**:

The project site is shown in the City's General Plan to be in the Dynamite Foothills area. Conceptual Land Use Maps identify the land use as Rural Neighborhoods.

2. DESIGN DOCUMENTATION

2.1 DESIGN COMPLIANCE:

With the overall acreage of the site equivalent to +/-19.3 gross acres containing a proposed 13 residential units, the overall proposed gross density for the site will be 0.67 DU/acre. The property is in a location of Scottsdale that is not reasonably accessible to an existing sanitary sewer system. Refer to FIGURES 3 & 4 for the City quarter section map (QS 50-59 and QS 50-55). It is unknown if, and when a reasonably accessible public sewer system will be constructed near the project. Consequently, the site developer is proposing individual onsite disposal systems (Septic) for the 13 residential units. The subject parcel is located within an area of the City of Scottsdale identified as an "existing septic area". Refer to FIGURE 5 showing the site location identified as a City of Scottsdale Septic System area. In addition, the density of the

"LEEDing and Developing Smart Projects"

subdivision is within the A.A.C Title 18, Article 9 requirements of "One lot per acre" meeting the minimum septic system requirements. The proposed onsite disposal systems will be designed in accordance with the City of Scottsdale design standards and the Arizona Administrative Code Title 18-9. The follow setbacks for onsite Wastewater disposal facilities (including reserve areas) The septic system shall be per COS DSPM, chapters 7-1.300 & 7-1.301 are applicable to this development;

- ٠ 10 feet from Buildings
 - The Arizona Department of Water Resources Well Registry shows that the closest domestic water well is located approximately 330 feet from the site. This exceeds the
- requirement of A.A.C 18-9-A312-C which requires a 100-foot setback.
- 5 feet from property lines
- An existing drainage easement with a drainage area of more than 20 acres traverses through the middle of the site. This wash will affect the placement of onsite disposal areas on lots 4 through 9. The setback shall be 50 foot from the drainage easement, and reduced to 25 foot in areas that have erosion protection.
- 5 feet from a domestic water service line.
- Downslopes or cut banks greater than 15%. (measured from the bottom of the lowest ٠ point of disposal pipe or drip lines, to the closest point of daylighting on the surface)
 - 10 feet for Treatment Works
 - 20 feet for Trench, Bed, chamber technology, or gravel-less trench
 - 3 feet for subsurface drip lines.

- -3 feet for subsurface drip lines. 5 feet from driveways 5 feet from swimming pool excavations 5 feet from easements (other than drainage) easements. 5 feet from easements (other than drainage) easements. 5 feet from easements (other than drainage) easements. 5 percention & Maintenance of Septic 5 (CONDITIONS 5 (Statem, Design & Construction Shall be per MCESD Requirements.
- 3. EXISTING CONDITIONS

EXISTING ZONING & LAND USE: 3.1

Land ownership includes 20.05 +/- net acres (19.26+/- gross acres) of undeveloped land designated as R1-70 Low Density Residential.

3.2 EXISTING TOPOGRAPHY, VEGETATION AND LANDFORM FEATURES:

The site slopes from west to east and contains average cross-slopes generally ranging from 2% to 15%. Predominantly, the buildable areas of the site contain slopes ranging from 2% to 10%. The Rio Verde Wash 10 Tributary 3 splits the center of the property. FIRM Map Number 04013C1331M dated November 4, 2015 indicates this site is designated as Zone "X" with a portion of the property zone AE where the Rio Verde Wash 10 Tributary 3 crosses the site. A CLOMR has been approved by FEMA for improvements along this tributary, but the improvements have yet to be completed. A recorded drainage easement along this tributary exists for installing these drainage improvements. Two thirds of the AE zone have base flood elevations determined while the western one third was not part of the detailed study. The layout of the residential lots is such that the developable envelopes are outside of the

determined flood plain and the dedicated drainage easement. Finished floor elevations for the home sites will be set a minimum one (1) foot above the high-water elevations of this tributary. Refer to **FIGURE 2** for an aerial of the overall project existing conditions.

3.3 EXISTING UTILITIES:

The property is in a location of Scottsdale that is not reasonably accessible to an existing sanitary sewer system. Refer to FIGURES 3 & 4 for the City quarter section map (QS 50-59 and QS 50-55)

4. PROPOSED CONDITIONS

4.1 SITE PLAN:

The property is proposed to be developed with a lot configuration for thirteen (13) residential units. The development will include two 24' wide road cul-de-sac roadways entering from N 132nd Street. Refer to the Preliminary Utility Plan in **Appendix I** for proposed site layout.

4.2 **PROPOSED SEWER SYSTEM:**

Since onsite disposal systems are being proposed an onsite proposed sewer system will not be constructed.

4.3 MAINTENANCE RESPONSIBILITIES:

The proposed onsite disposal systems (Septic Systems) will be private, and will be the responsibility of the home owner to maintain, and Operate. The City will not accept Onsite Septic System for Operation and Maintenance 5. SANITARY SYSTEM COMPUTATIONS per DSPM, Chapter 7-1-301.

5.1. SEWER FLOW DEMANDS:

DS&PM, Chapter 7 Section 7-1.403 – Wastewater specifies that for residential uses, average day sanitary sewer loadings will designed using 100 gallons per person per day and a peaking factor of 4. Residential densities are to assume 2.5 persons per dwelling unit.

Therefore, the average design flow is: 13 du x 100 gpcpd x 2.5 people/du = **3,250 gpd (Average)**

5.2. VARIANCE FROM STATED DESIGN FLOWS:

Stated design flows for the on-site system will be used as recommended.

5.3. SEWER SYSTEM ANALYSIS (Off-Site):

Since onsite disposal systems are being proposed an offsite sewer system analysis is not applicable.

5.4. DEMAND FACTORS:

DS&PM requires a peak factor of 4. Therefore, from Section 5.1: 3,250 gpd x 4 = **13,000 gpd** (Peak)

5.5. SEWER CAPACITY CALCULATIONS

Since onsite disposal systems are being proposed an offsite sewer system analysis is not applicable.

6. SUMMARY

6.1 SUMMARY OF PROPOSED IMPROVEMENTS:

- The proposed site constraints meet the criteria allowing the use of onsite disposal systems specified in the Arizona Administrative Code Title 18-9-A312 and the City of Scottsdale DS&PM.
- According to ADWR Well Registrations there are no registered wells within 100 feet of the proposed site.
- Percolation Tests will be conducted by a qualified geotechnical engineer for the design and sizing of the proposed onsite disposal leach fields in accordance with R-18-9-A310.

6.2 **PROJECT SCHEDULE:**

As a residential development, the infrastructure is proposed to be constructed in a single phase to accommodate dwelling unit growth. The dwelling units may be phased based on \checkmark consumer demand. The onsite disposal systems will be permitted and constructed by each home owner at the time each home is constructed.

7 SUPPORTING MAPS

7.1 SANITARY SEWER PLAN

Refer to Preliminary Utility Plan located in Appendix I. This Preliminary Utility Plan summarizes important information regarding the location of the proposed private onsite disposal system with regards to Register Water Wells and Flood Plains adjacent or within the site.

8 REFERENCES

- 1. COS QS Sewer Plan number 28-54 and 29-54
- 2. City of Scottsdale Design Standards & Policies Manual, 2010 (Chapter 7 Wastewater)
- 3. Arizona Administrative Code Title 18, Section 9.

FIGURE 7.1-1 WASTEWATER SERVICE AREAS

FIGURE 5

ADWR - WELL REGISTRY INFORMATION

FIGURE 6

"LEED[®]ing and Developing Smart Projects"

APPENDIX I Preliminary Utility Plan

Sustainability Engineering Group

8280 E. Gelding Drive, Suite 101 Scottsdale, AZ 85260 info@azSEG.com 480.588.7226 www.azSEG.com

APPENDIX