

Drainage Reports

ONE SCOTTSDALE MASTER DRAINAGE PLAN

Revised June 20, 2013 Revised March 26, 2012 Revised April 13, 2009 September 26, 2006 WP# 021584

Submitted to:

City of Scottsdale

7447 East Indian School Road

Suite 205

Scottsdale, Arizona 85251

Prepared for:

DMB Associates, Inc.

7600 East Doubletree Ranch Road

Suite 300

Scottsdale, Arizona 85258

Phone: (480) 367-7000

Fax: (480) 367-9788

Contact: Mr. Steve Loken

Prepared by:

Wood, Patel & Associates, Inc.

2051 West Northern Avenue

Suite 100

Phoenix, Arizona 85021 Phone: (602) 335-8500 Fax: (602) 335-8580

Contact: Mr. Darrel E. Wood, P.E., R.L.S.

ONE SCOTTSDALE MASTER DRAINAGE PLAN

Revised June 20, 2013 Revised March 26, 2012 Revised April 13, 2009 September 26, 2006 WP# 021584

Submitted to:

City of Scottsdale

7447 East Indian School Road

Suite 205

Scottsdale, Arizona 85251

Prepared for:

DMB Associates, Inc.

7600 East Doubletree Ranch Road

Suite 300

Scottsdale, Arizona 85258 Phone: (480) 367-7000 Fax: (480) 367-9788 Contact: Mr. Steve Loken

Prepared by:

Wood, Patel & Associates, Inc.

2051 West Northern Avenue

Suite 100

Phoenix, Arizona 85021 Phone: (602) 335-8500 Fax: (602) 335-8580

Contact: Mr. Darrel E. Wood, P.E., R.L.S.

TABLE OF CONTENTS

1.0	INTRO	ODUCTION1
	1.1	General Background
	1.2	Study Area and Planning Units
	1.3	Drainage Background
	1.4	Drainage Concept
	1.5	Flood Insurance Rate Map (FIRM)
2.0	HYDR	OLOGY10
	2.1	Peak Flows
	2.2	Peak Flows Leaving Site
3.0	HYDR	AULICS13
	3.1	Open Channel Hydraulics
	3.2	Storm Drain System
	3.3	Stormwater Storage
4.0	MAIN	ΓΕΝΑΝCE
5.0		LUSIONS
6.0	REFER	RENCES 18
		•
E212 10 121		PLATES
Plate I		Vicinity Map
		<u>EXHIBITS</u>
Exhibit		Offsite Watershed Map and Existing Conditions HEC-1 Schematic Map
Exhibit		Onsite Watershed Map and Proposed Conditions HEC-1 Schematic Map
Exhibit	1.c	FEMA Map
Exhibit	1.d	Proposed Drainage Facilities and Cross-sections
		APPENDICES
Append	ix A	U.S. Army Corps of Engineers' Letter
Append	ix B	Hydrology 13138
Append	ix C	Hydraulics DARRELE NAMED
iu		Half wood!
Y WPReports	\Hydrology\02	1584 One Scottsdale Master Drainage Plan_Revised_June2013.doc
		h

WOOD/PATEL

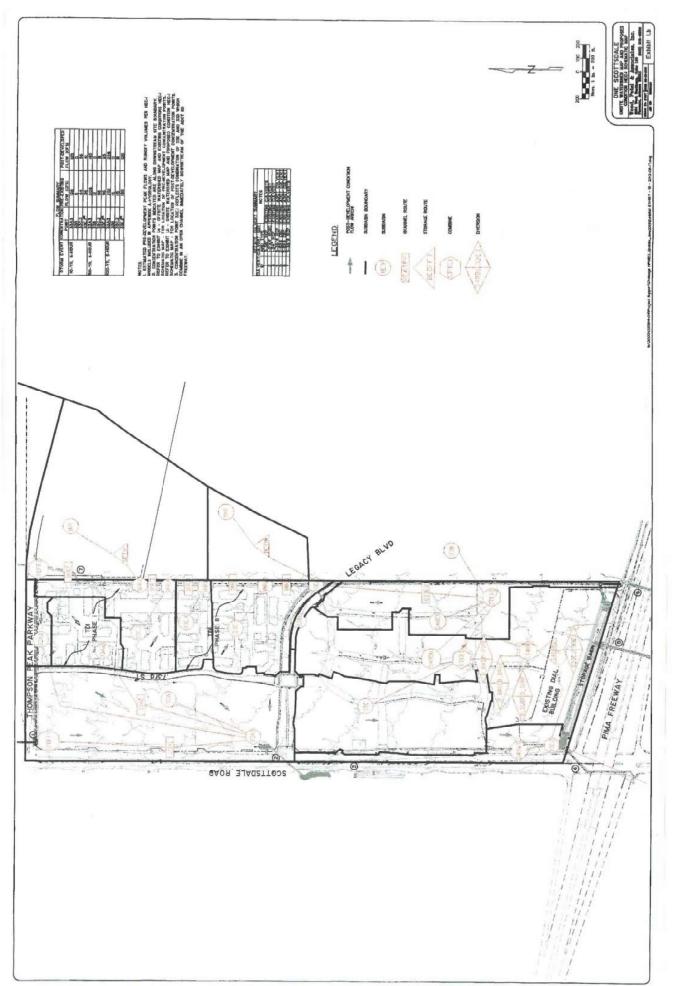
One Scottsdale Master Drainage Plan WP# 021584

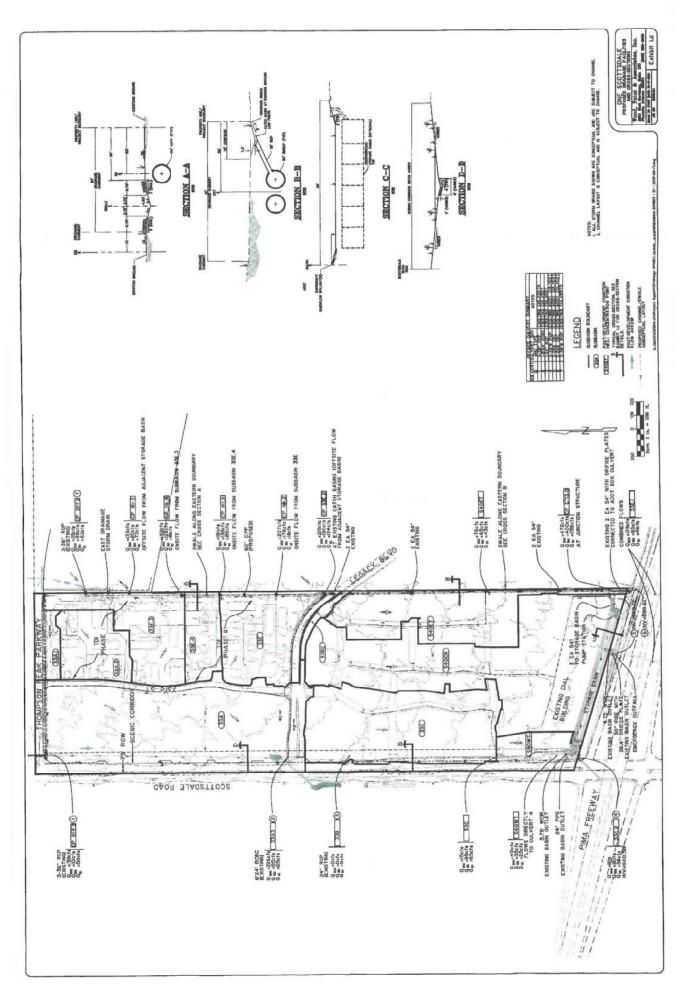
1	0410	51 52	79.	- 1	1	1025	126	5.	ैं	.1	1640	201	1.	*	1	2255	276	0.
		53	74.		1	1030	127	5.	•	1	1645	202	1.	*	1	2300	277	0.
1	0420		71.	- 3	1	1035	128	5.	•	1	1650	203	1.	*	1	2305	278	0.
1	0425	54	67.	15	1	1040	129	5.	•	1	1655	204	1.	*	1	2310	279	D.
1	0430	55	65.	*	1	1045	130	4.	•	1	1700	205	1.	*	1	2315	280	0.
1	0435	56	62.	•	1	1050	131	4.	•	1	1705	206	1.		1	2320	281	0.
1	0440	57	60.	•	1	1055	132	4.		1	1710	207	1.		1	2325	282	0.
1	0445	58	57.	•	1	1100	133	4.	•	1	1715	208	1.		1	2330	283	0.
1	0450	59	55.		1	1105	134	4.	•	1	1720	209	1.		1	2335	284	0.
1	0455	60	53.		1	1110	135	4.		1	1725	210	1.	*	1	2340	285	0.
1	0500	61	52.	*	1	1115	136	4.	*	1	1730	211	1.	*	1	2345	286	0.
1	0505	62	50.	*	1	1120	137	4.		1	1735	212	1.	*	1	2350	287	0.
1	0510	63	48.	*	1	1125	138	4.	*	1	1740	213	1.		1	2355	288	0.
1	0515	64	47.		1	1130	139	3.	*	1	1745	214	1.	*	2	0000	289	0.
1	0520	65	45.		1	1135	140	3.		1	1750	215	1.	*	2	0005	290	0.
1	0525	66	44.	*	1	1140	141	3.		1	1755	216	1.	-	2	0010	291	0.
1	0530	67	42.	*	1	1145	142	3.	*	1	1800	217	1.	*	2	0015	292	0.
1	0535	68	41.		1	1150	143	3.		1	1805	218	1.		2	0020	293	0.
1	0540	69	40.	*	1	1155	144	3.	*	1	1810	219	1.	*	2	0025	294	0.
1	0545	70	38.		1	1200	145	3.		1	1815	220	1.		2	0030	295	0.
1	0550	71	37.		1	1205	146	3.	*	1	1820	221	0.	*	2	0035	296	0.
1	0555	72	36.		1	1210	147	3.	*	1	1825	222	0.	*	2	0040	297	0.
1	0600	73	35.		1	1215	148	3.	*	1	1830	223	0.	*	2	0045	298	0.
1	0605	74	34.		1	1220	149	3.	*	1	1835	224	0.		2	0050	299	0.
1	0610	75	33.		1	1225	150	3.		1	1840	225	0.		2	0055	300	0.
													10.0		7.0			-

PEAK FLOW TIME 6-HR 24-HR 72-HR 24.92-HR
+ (CFS) (HR)
+ 111, 3.67 (INCHES) 46.262 53.855 53.871 53.871 (AC-FT) 21. 25. 25. 25. CUMULATIVE AREA - .01 SQ MI

POST-DEMELOPED PEAK FLOWS FROM HEC-1 MASTER

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES


	OPERATION	STATION	PEAK	TIME OF	AVERAGE F	OW FOR MAXIN	NUM PERIOD	BASIN	NAXIMUM STAGE	TINE OF
*					6-HOUR	24-HOUR	72-HOUR	ALC: N	31905	MAX STAGE
+	HYDROGRAPH AT	181	44.	3.17	4.	1.	1.	.02		
+	ROUTED TO	DETIAL	12.	3,50	4.	1.	1.	.02		
+			2035	(2/425)	0.710				1.73	3.50
.	ROUTED TO	RA1-C4	11.	3.50	4.	1.	1,	.02	.91	3.50
•	HYDROGRAPH AT	104	9.	3.17	1.	0.	0.	.00		
+	2 COMBINED AT	CP1C4	15.	3.17	4.	1.	1.	.02		
÷	ROUTED TO	RC4-C3	15.	3.25	4.	1.	1.	.02	1.05	3.25
+	HYDROGRAPH AT	1Da3	38.	3.08	3.	1.	1.	.01		
÷	ROUTED TO	DE1Da3	3.	3.67	2.	1.	1.	.01	2.51	3.67
+	HYDROGRAPH AT	1Da4	29.	3.08	2.	1.	1.	.01		
+	2 COMBINED AT	CP1Da4	30,	3.08	4.	1.	1.	.02		
+ +	ROUTED TO	DE1Da4	6.	3.58	4.	1.	1.	.02	3.14	3,58
+	HYDROGRAPH AT	1Da5	7.	3.17	1.	0.	0.	.00		
+	3 COMBINED AT	CP1C3I	25.	3.17	9.	3.	3.	.05		
÷	ROUTED TO	RC3-C3	24.	3.25	9.	3.	3.	.05	1.52	3.25
*	HYDROGRAPH AT	Off-la	21.	3,08	2,	0.	0.	.01		
+	HYDROGRAPH AT	1A2	11.	3.08	1.	0.	0.	.00		
٠	HYDROGRAPH AT	1A3	18,	3.08	1.	0.	0.	.01		


•	3 COMBINED AT	CPA3	50.	3.08	4.	1.	1.	.02		
:	ROUTED TO	DET1A3	33.	3.17	4.	1.	1.	.02	2.84	3.17
÷	ROUTED TO	RA3-A6	35.	3.25	4.	1.	1.	.02		
•	HYDROGRAPH AT	186	12.	3.08	1.	0.	0.	.00	.60	3.25
	2 COMBINED AT	CP1A6	40.	3.25	5.	1.	1.	.03		
†	ROUTED TO	DETIA6	35.	3.33	5.	1.	1.	.03	2.87	3.33
	HYDROGRAPH AT	125	42.	3.08	4.	1.	1.	.02		0,00
+	2 COMBINED AT	CP1A5	59.	3.25	в.	2.	2.	.04		
+ +	ROUTED TO	DET1A5	53.	3.33	8.	2.	2.	.04	2.96	3.33
•	HYDROGRAPH AT	184	27.	3.08	2.	1.	1.	.01		
:	ROUTED TO	RA4-A7	25.	3.17	2.	1.	1.	.01	.50	3.17
÷	ROUTED TO	DET1A4	14.	3.33	2.	1.	1.	.01	2,65	3.33
	HYDROGRAPH AT	187	21.	3.08	2.	0.	0.	.01		
+	3 CONBINED AT	CP1A7	74.	3.33	12.	3.	3.	.06		
÷	ROUTED TO	DET1A7	66.	3.42	12.	3.	3.	.06	3.62	3.42
+	HYDROGRAPH AT	101	57.	3.17	5.	1.	1.	.02		3.12
•	2 COMBINED AT	CP1C1	85.	3.33	17.	4.	4.	.08		
:	ROUTED TO	DETICI	78.	3.50	16.	4.	4.	.08	4.86	3.50
+	HYDROGRAPH AT	102	54.	3.17	5.	1.	1.	.02		
+	2 COMBINED AT	CP1C2	92.	3.50	21.	6.	5.	.11		
+	ROUTED TO	DE1C2A	93.	3.50	21.	6.	5.	.11	5.05	3.50
*	ROUTED TO	DE1C2B	90.	3.50	21.	6.	5.	.11	5.02	3.50
:	ROUTED TO	DE1C2C	92.	3.50	21.	6.	5.	.11	5.04	3.50
+	HYDROGRAPH AT	103	68.	3.08	5.	1.	1.	.03	3.04	3.50
+	3 COMBINED AT	CP1C3	128.	3.50	33.	10.	9.	.19		
*	ROUTED TO	DET1C3	109.	3.67	33.	10,	9.	.19	2,55	3.67
:	ROUTED TO	RC3COM	108.	3.67	33.	10.	9.	.19	11.14	3.67
	HYDROGRAPH AT	COHM	110.	3.08	10.	2.	2.	.03	*****	2.01
:	ROUTED TO	DETCOM	11.	3.67	7.	2.	2.	.03	2.55	3.67
+	2 COMBINED AT	СРСОМ	119.	3.67	41.	12.	12.	.22	1470.000	175.533

:	ROUTED TO	COMOF1	119.	3.75	41.	12.	12.	.22	11.20	3.75
	HYDROGRAPH AT	OFF1	84.	3.08	6.	2.	2.	.02	11.20	3.73
:	ROUTED TO	DEOFFI	11.	3.50	6.	2.	2.	.02	2.61	3,50
	2 COMBINED AT	CPOFF1	130.	3.75	46.	14.	13.	.24		
<u>:</u>	ROUTED TO	OFIOF3	129.	3.75	46.	14.	13.	.24	11.31	3.75
•	HI'DROGRAPH AT	OFF3	58.	3.08	5.	1.	1.	.02		
:	ROUTED TO	DEOFF3	10.	3.50	5.	1.	1.	.02	2.20	3.50
	2 COMBINED AT	CPOFF3	138.	3.75	51.	15.	14.	.25		
	ROUTED TO	33A1	137.	3.83	51.	15.	14,	.25		
	HYDROGRAPH AT	33A	150.	3.17	15.	4.	4.	.05		
+	HYDROGRAPH AT	33A.1	11.	3.17	1.	0.	0.	.00		
٠	HYDROGRAPH AT	33A.2	34.	3.08	3.	1.	1.	.01		
	4 COMBINED AT	33A2	30.	3.08	3,	1.	1.	.01		
+	HYDROGRAPH AT	33A3	226.	3.17	67.	20.	19.	.31		
+	ROUTED TO	105	104.	3.08	8,	2.	2.	.04		
:	NOTED TO	DEIDD	13.	3.58	7.	2.	2.	.04	2.99	3.50
+	HYDROGRAPH AT	1Dal	25.	3.08	2.	0.	0.	.01		
:	ROUTED TO	DE1Da1	4.	3,50	2.	0.	0.	.01	2.95	3.50
+	HYDROGRAPH AT	1Da2	5.	3.17	0.	0.	0.	.00		
+	3 COMBINED AT	CP1Dab	18.	3.50	9.	3.	3.	.05		
:	ROUTED TO	RDabE2	18.	3.50	9.	3.	3.	.05	.75	3.50
+	HYDROGRAPH AT	1Eal	44.	3.17	4.	1.	1.0	.02		
:	ROUTED TO	DE1Ea1	4.	3.75	3.	1.	16	.02	2.81	3.75
	HYDROGRAPH AT	1Ea2	65.	3.08	5.	1.	1.	.02		
+	2 COMBINED AT	CP1Ea2	66.	3.08	7.	2.	2.	.04		
:	ROUTED TO	DE1Ra2	16.	3.50	7.	2.	2.	.04	3.25	3.50
	2 COMBINED AT	CPlEa2	34.	3.50	16.	5.	5.	.09		
+	HYDROGRAPH AT	PARK	37.	3.08	3.	1.	1.	.02		
+	HYDROGRAPH AT	SCHOOL	59.	3.00	5.	1.	1	.01		
:	ROUTED TO	DETSCH	12.	3.42	4.	1.	1.	.01	2.84	3.42
:	ROUTED TO	SCH12	12.	3.42	4.	1.	1,	.01	10.43	3.42

+	HYDROGRAPH AT	1Ec	33.	3.08	3.	1.	1.	.01		
+	ROUTED TO	DEIEC	9.	3.33	3.	1.	1.	.01		
+	2 COMBINED AT	3747717171606	35.5	10.000				.01	2.47	3.33
•	ROUTED TO	CP1Ec	21.	3.42	7.	2.	2.	,02		
÷	NOOTED TO	1EcEa2	21.	3.42	7.	2.	2.	.02	10.59	3.42
•	3 COMBINED AT	CP1Ea	67.	3.17	26.	7.	7.	.14		
‡	ROUTED TO	REATPP	67.	3.17	26.	7.	7.	.14		
	HYDROGRAPH AT	104	151			120			10.92	3.17
*	ROUTED TO	1Eb	151.	3.17	14.	4.	3.	.06		
÷		DET1Eb	39.	3.50	13.	4.	3.	.06	2.26	3.50
+	HYDROGRAPH AT	OFF2	121.	3.08	11.	3.	3.	.03		
÷ ÷	ROUTED TO	DEOFF2	11.	3.67	8.	з.	3.	.03	2.59	3.67
	3 COMBINED AT	CPOFF2	115.	3.50	46.	14.	13.	.23		
+	ROUTED TO	1Kr.1	115.	3.50	46.	14.	13.	.23		
+	HYDROGRAPH AT	1Kr	118.	3.17	13.	3.	3.	.05		
+	ROUTED TO	OET1K	18.	3.75	11.	3.	3.	.05		
+	2 COMBINED AT						5.00	(5,53)	2.77	3.75
•	ROUTED TO	1Kr.2	133.	3.50	57.	17.	16.	.28		
•	HYDROGRAPH AT	1Kr.3	133.	3.50	57.	17.	16.	.28		
+	2 COMBINED AT	33E,3	45.	3.08	4.	1.	1.	.01		
•	ROOTED TO	1Kr.4	148.	3.17	60.	18.	17.	.29		
(*)		1Kr.5	147.	3.17	60.	10.	17.	.29		
+	HYDROGRAPH AT	33E.4	28.	3.08	2.	0.	٥.	.01		
+	2 COMBINED AT	1Kr.6	161.	3.17	62.	18.	18.	.30		
+	ROUTED TO	1Mr.1	160.	3.17	62.	18.	18.	.30		
+	HYDROGRAPH AT	33E	68.	3.08	5.	1,	1.	.01		
+	2 COMBINED AT	1Mr.2	207.	3.08	66.	19.	19.	. 32		
+	ROUTED TO	lMr.3	203.	3.08	66.	19.	19.	.32		
+	HYDROGRAPH AT	1Mr	152.	3.17	14.	4.	3,	.05		
÷	ROUTED TO	DETIM	49.	3.42	13.	4.	3.	.05	3 70	3.40
+	HYDROGRAPH AT	33BE	3.	3.17	0.	0.	٥,	.00	3.70	3.42
	3 COMBINED AT	33E.2	219.	3.17	во.	23.	22.			
+	ROUTED TO	R33E.2	219.	3.17				.37		
	HYDROGRAPH AT				80.	23.	22.	.37		
•	BYDROGRAPH AT	330	61.	3.17	5.	1.	1.	.04		
+	HYDROGRAPH AT	540ET	76.	3.08	6.	1.	1.	.02		

+			540CN	180.	3.08	14.	4.	3.	.04	4		
+	4 COMBINED		CT13.0	472.	3.08	103.	30.	20.	.47	7		
•	HYDROGRAPH	AT	33C	115.	3.08	9.	2.	2.	.03	3		
+	2 COMBINED		CT13.1	587.	3.08	111.	32.	31.	. 50	1		
+	DIVERSION		P-PIPE	70.	3.08	56.	18,	17.	.50)		
•	HYDROGRAPH	AT	D_BAS	517.	3.08	55.	14.	13.	.50)		
	DIVERSION		D-BAS2	77.	3.08	2.	1.	0.	. 50			
*	HYDROGRAPH		D_BAS1	517.	3.08	53.	13.	13.	. 50)		
+	DIVERSION		D-SUBF	517.	3.33	22.	5.	5.	. 50	,		
+	HYDROGRAPH		D_SURF	251.	3.33	31.	8.	8.	. 50)		
	HYDROGRAPH		B_PIPE	70.	2.75	56.	18.	17.	.00)		
+	HYDROGRAPH		B_SURF	77.	2.92	2.	1.	٥.	.00	,		
	3 COMBINED	AT	CS40B	321.	3.33	90.	26.	25.	.50	1		
+	ROUTED TO		340BA3	237.	3.67	89.	26.	25,	.50	1		
+	DIVERSION	то								5.71	3.67	
•	HYDROGRAPH		D33C.2	109.	3.67	41.	12.	12.	.50)		
+	HYDROGRAPH	AT	33E.1	128.	3.67	46.	14.	14.	.50	1		
•	HYDROGRAPH		R33C.2	109.	3.67	41.	12.	12.	.00	1		
+	2 COMBINED		S40WT	40.	3.08	3.	1.	1.	.01	el .		
† 1	E COMPINED		33C.2		3,67	43.	13.	12.	.01			
77				SUMMA (RY OF KINEM FLOW IS DIR	ATIC WAVE - ECT RONOFP W	MUSKINGUM ITHOUT BA	SE FLOW)				
	ISTAO	ELEMEN	T DT	PEAK	TIME TO PEAK	VOLUME	DT	INTERPOI COMPUTATION PEAK		VOLUME		
			(MIN)	(CFS)	(MIN)	(IN)	(MIM)	(CFS)	(MIN)	(110)		
	33A1	MANE	1.55	137.77	227,90	2.21	5.00	136.79	230.00	2.21		
CONTINUIT	TY SUMMARY	(AC-FT)	- INFLOW-	.2975E+02	EXCESS00	00E+00 OUTFL	OW2975	E+02 BASIN	STORAGE=	.2975E-02 PERCEN	T ERROR-	.0
	33A	MANE	1.40	150.51	189.00	2.92	5.00	150.01	190.00	2.92		
CONTINUIT	TY SUMMARY	(AC-FT)	- INFLOW-	.00008+00	EXCESS= .73	59E+01 OUTFL	OW7348	E+01 BASIN	STORAGE=	.1343E-02 PERCEN	T ERROR-	.1
	33A.1	MANE	2.44	11.88	191.75	2.92	5.00	11.36	190.00	2.92		
CONTINUIT	TY SUMMARY	(AC-FT)	- INPLON-	.0000E+00	EXCESS= .54	57E+00 OUTFL	OW= .5452	E+00 BASIN	STORAGE=	.1375E-04 PERCEN	T ERROR-	.1
	33A.2	HANE	.34	35.43	185.97	2.92	5.00	34.38	185.00	2.92		
CONTINUIT	Y SUMMARY	(AC-FT)	- INPLOW-	.0000E+00	EXCESS= .13	56E+01 OUTFL	OW1354	B+01 BASIN	STORAGE-	.8482E-04 PERCEN	T ERROR-	.1
	33A2	MANE	. 69	33.99	186,47	2.93	5.00	29.73	185.00	2.93		
CONTINUIT	Y SUMMARY	(AC-FT)	- INFLOW=	.1356E+01	EXCESS00	00E+00 OUTFL	OW1357	E+01 BASIN	STORAGE=	.5409E-05 PERCEN	T ERROR=	1
	1Kr.1	MANE	.33	115.27	209.94	2.20	5.00	115.26	210.00	2.20		
CONTINUIT	TY SUMMARY	(AC-FT)	- INFLOW=	.2702E+02	EXCESS= .00	00E+00 OUTFL	OW2702	E+02 BASIN	STORAGE-	.3385E-03 PERCEN	T ERROR-	.0
	1Kr.3	MANE	.21	132.52	210.12	2.22	5.00	132.51	210.00	2.22		

1415-12-2

24 517-12 TS/S

DRAWAGE

DRAINAGE REPORT
FOR
TDI AT ONE SCOTTSDALE, PHASE I
SCOTTSDALE, ARIZONA

May 17, 2012 WP# 113738

Plan # _1415 -	-12-2
Q-S #	
Accepted Corrections	
M. Rahman Reviewed By	<u> </u>

TABLE OF CONTENTS

1.0	INT	RODUCTION	1					
2.0	EXIS	STING DRAINAGE CONDITIONS AND CHARACTERISTICS	2					
	2.1	FEMA Floodplain	2					
	2.2	Offsite Drainage Conditions						
	2.3	Pre-Developed Onsite Drainage Conditions	3					
3.0	PRO	PROPOSED DRAINAGE PLAN						
	3.1	Post-Development Onsite Drainage Conditions	4					
	3.2	Detention	5					
	3.3	Lowest Floor Elevation						
	3.4	Warning & Disclaimer of Liability	5					
	3.5	Operation and Maintenance	5					
4.0	SPEC	CIAL CONDITIONS	6					
	4.1	Special Conditions	6					
5.0	DAT	A ANALYSIS	7					
	5.1	Hydrologic Analysis	7					
	5.2	Hydraulic Analysis						
6.0	CON	CLUSIONS	9					

APPENDICES

Appendix A City of Scottsdale Forms

Appendix B FEMA/City of Scottsdale Floodplain Regulation Meeting Minutes

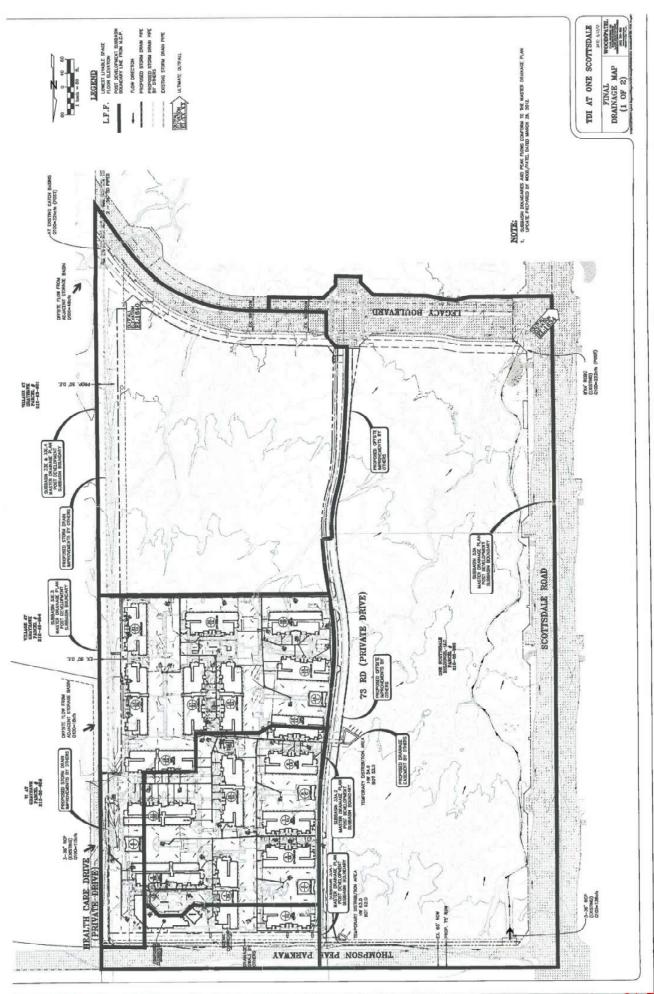
Appendix C Hydrologic Analysis

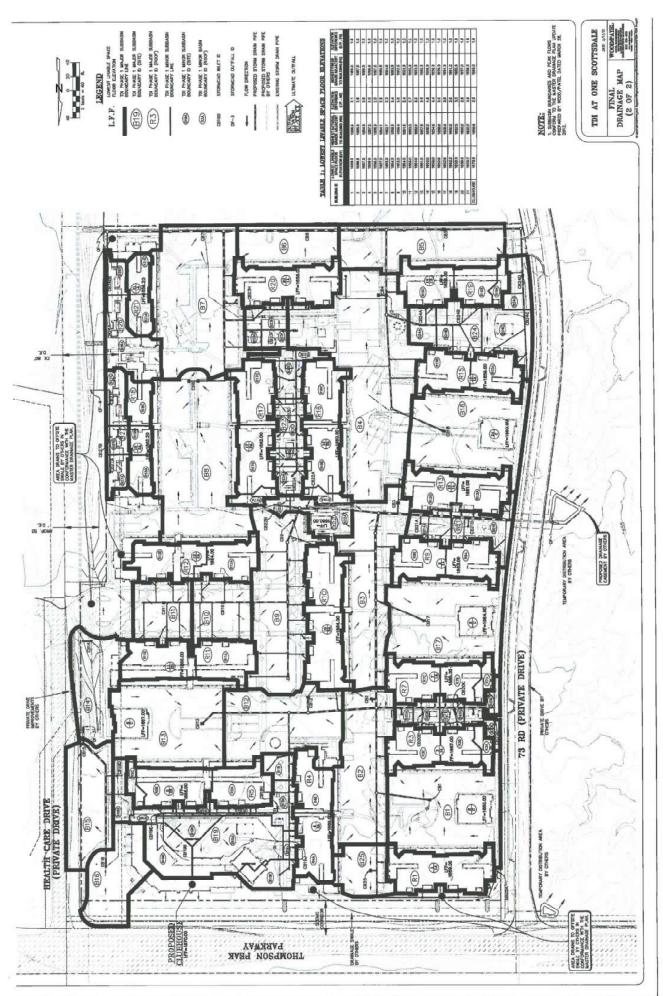
Appendix D Hydraulic Analysis

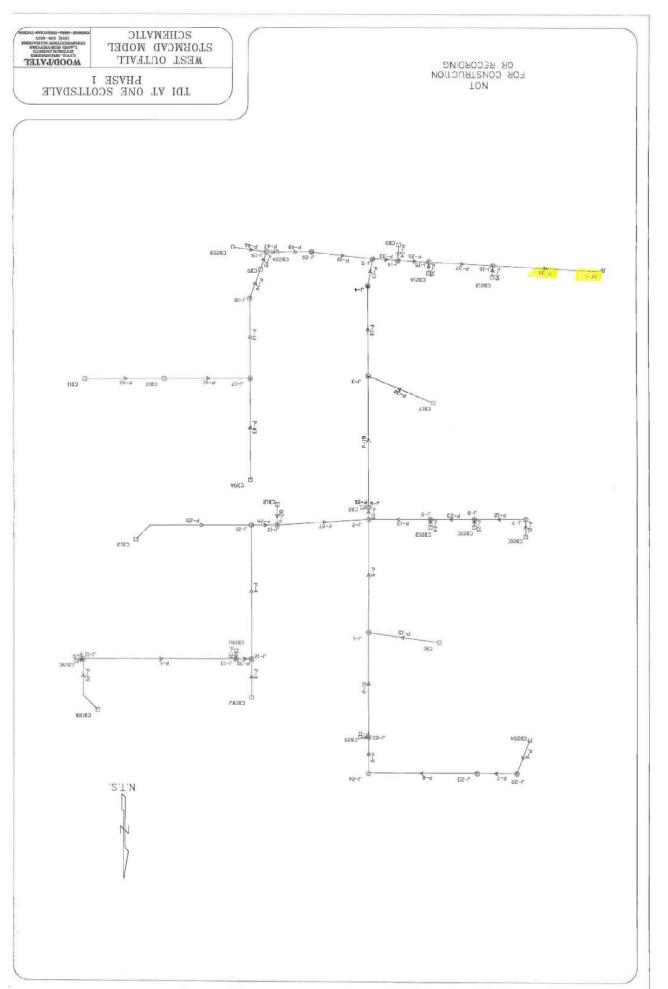
EXHIBITS

Exhibit 1 Vicinity Map

Exhibit 2 Aerial Image


Exhibit 3 FEMA Map


Exhibit 4 Existing Conditions Drainage Map


Exhibit 5 Onsite Drainage Map

jd Y:\WP\Reports\Commercial\113738 TDI One Soottudale Phase I Drainage Report.docx.doc

Scenario: 100 YR Storm **WEST OUTFALL** Pipe Report

Average Velodty (ft/s)	11.72	8,17	8.14	11.92	5.21	4.90	3.63	4,78	2.39	3,31	0.18	3,41	3,63
Hydraulic Grade Line (Out) (ft)	1,656.66	1,656,03	1,654.70	1,656.03	1,658.79	1,658,42	1,657.61	1,658.71	1,658.22	1,658.06	1,658.06	1,657.99	1,657.76
Hydraulic Grade Line (In) (ft)	1,656.63	1,656.21	1,655.31	1,656.09	1,658,75	1,658.63	1,657.75	1,659.93	1,658.25	1,658.10	1,658.06	1,658.01	1,657.84
Downstream Invert (ft)	1,654.45	1,653.10	1,652.50	1,654.10	1,657.22	1,656.76	1,654.75	1,658.30	1,655.43	1,655.33	1,655.83	1,655,28	1,655.09
Upstream Invert (ft)	1,655.90	1,653,45	1,653.10	1,655.50	1,658.00	1,657.22	1,655.09	1,659.41	1,655.59	1,655.43	1,656,01	1,655.33	1,655.28
Total System Flow (ft³/s)	1.71	43.53	45.42	1.89	2.88	2.60	11,40	1.90	7.50	10,40	0.31	10.71	11.40
Manning's n	0.012	0.012	0.012	0,012	0.012	0.012	0,012	0,012	0.012	0.012	0.012	0.012	0.012
Material	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interlor)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)							
Diameter (in)	12.0	36.0	36.0	12.0	18.0	18.0	24.0	18,0	24.0	24.0	18.0	24.0	24.0
Slope (ft/ft)	0.121	0.005	0.005	0.117	600.0	0.005	0.005	0.010	0.005	0.005	0,005	0.005	0.005
Length (#)	12.0	0.69	121.0	12.0	85.0	93.0	67.0	111.0	33.0	20.0	36.0	0,11	38.0
Downstream Node	3-15	1-16	0F-1	3-16	CB10	3-17	3-5	1-17	CB9	1-19	1.19	CB22A	J-20
Upstream	CB21A	3-15	3-16	CB21B	CB11	CB10	3-20	CB9A	J-18	CB9	CB22B	3-19	CB22A
Label	P-36	P-37	P-38	P-39	P-40	P-41	P-42	p-43	p-44	P-45	P-46	P-47	P-48

FINAL DRAINAGE REPORT FOR

ONE SCOTTSDALE PU III INFRASTRUCTURE IMPROVEMENTS

SEC, SCOTTSDALE ROAD & THOMPSON PEAK PARKWAY
SCOTTSDALE, ARIZONA

Prepared for:
ONE SCOTTSDALE HOLDINGS LLC
7600 E. Doubletree Ranch Road, Suite 300
Scottsdale, Arizona 85258
480-367-7000

Plan # 1415-12-51 Case #	Prepared by: BOWMAN CONSULTING 3010 South Priést Drive, Suite 103 Tempe, Arizona 85282 480-629-8830
Accepted Corrections N. Rahman 87	7/12 Swent Kaslid
*#11##################################	ate 35156 SHERRI L KOSHBOL

July 23, 2012 Project No. 9622 3rd Submittal

III. PROPOSED DRAINAGE PLAN

Post-developed Drainage Conditions

A. Streets and Drainage Tracts Flows

The private drive (73rd Street) has been designed to convey the 10-year flow below the top of curb and the 100-year peak flows within the roadway tract area at a maximum depth of 8 inches. Refer to Appendix B for these calculations. Ongrade curb openings are proposed at several locations along the private roadway to remove storm water runoff from the travel lanes and allow it to flow over existing ground to the outlet under Scottsdale Road north of Legacy Drive. These curb openings will have rip-rap protection to mitigate potential erosion. Curb openings design calculations for both the 10-year and 100-year storm conditions are included in Appendix B. The curb opening locations are shown on Figure 5 – Proposed Onsite Drainage Map.

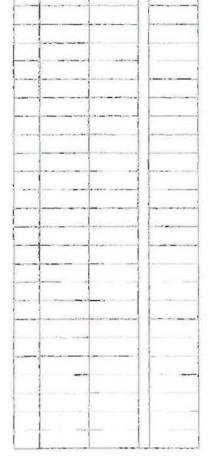
In the future, these street flows may be conveyed to the outfall location under Scottsdale Road through a variety of means including but not limited to: storm drain pipes, channel systems, detention basin areas or any combination thereof. The ultimate design of the property between Scottsdale Road and 73rd Avenue will need to accommodate these flows through the site or within a drainage tract alongside the roadways.

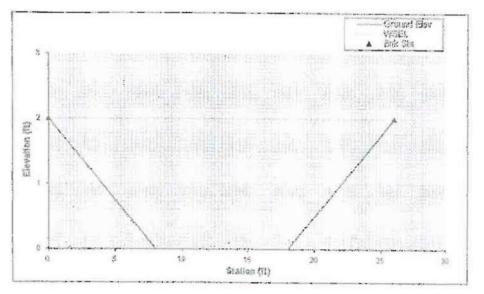
A catchbasin is proposed along Scottsdale Healthcare Drive to intercept upstream contributing areas and convey them to an existing stormdrain system. The location of this catchbasin is shown on Figure 5. Hydraulic calculations are included in Appendix B. As discussed in Offsite Drainage Conditions of Section II of this report, the flow from drainage subbasin 33.A1 (Q100 = 11 cfs) is planned to be conveyed in a drainage channel along the south side of Thompson Peak Parkway and then into a pipe culvert under 73rd Street. Per City of Scottsdale recommendations, the proposed drainage channel has been optimized within the available space to provide a capacity estimated to be 119.4 cfs (100-year flow), which exceeds the contributing flow. Three 36-inch pipes are proposed under 73rd Street to accommodate this channel capacity. Hydraulic calculations for the drainage channel and pipes are included in Appendix B.

A 24-inch pipe culvert is proposed under a sidewalk in the drainage tract located along the north side of Legacy Boulevard. This pipe culvert was sized to accommodate the flow generated within the drainage tract only(subbasin 8 on Figure 5). Hydraulic calculations for the drainage channel and pipe culvert are included in Appendix B.

B. Stormwater Detention

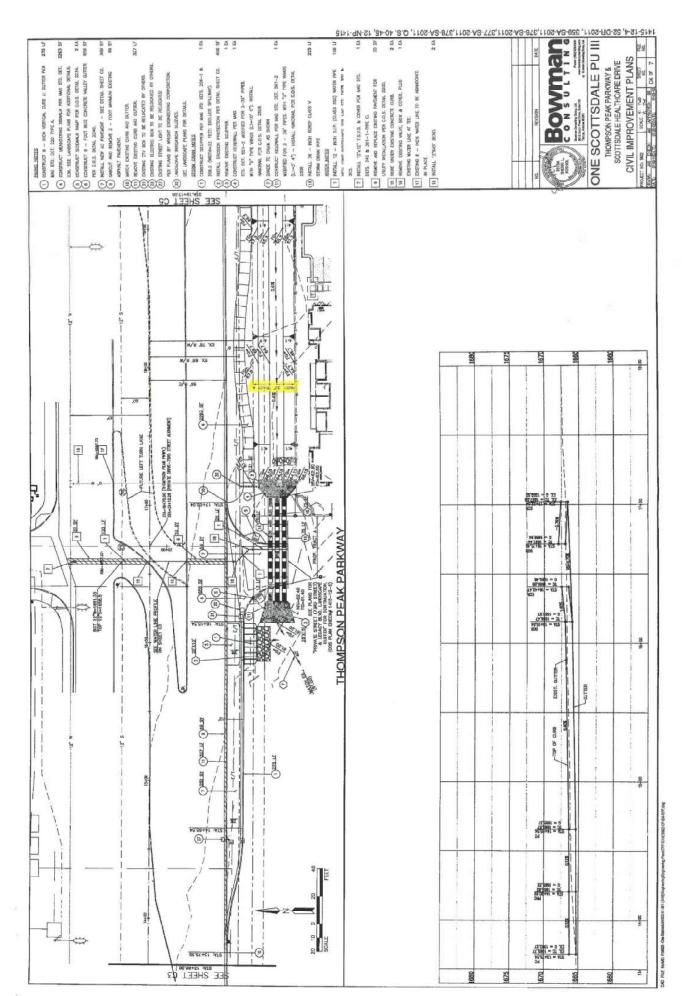
As detailed in the One Scottsdale Master Drainage Plan and as approved by the City of Scottsdale, the drainage plan concept for the large master planned mixed use project, and thereby for this individual site development project, was based on waiving retention requirements and maintaining post-development peak flows to

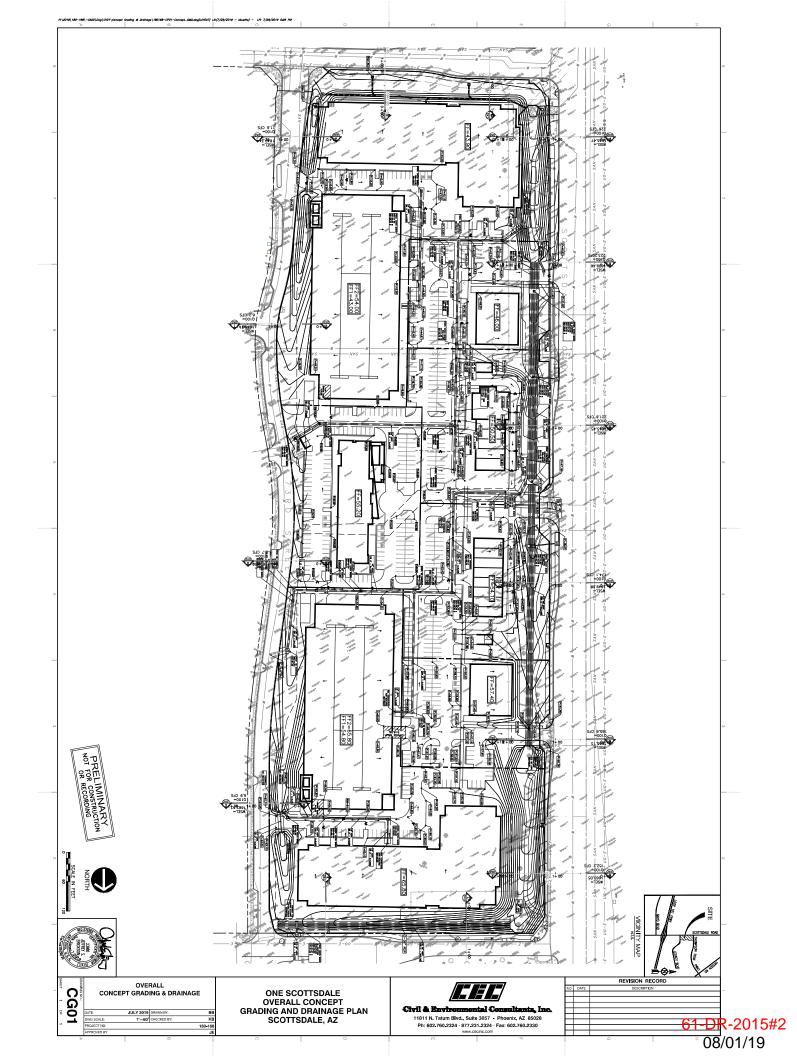

NORMAL DEPTH CALCULTIONS IN CHANNELS USING MANNING EQUATION

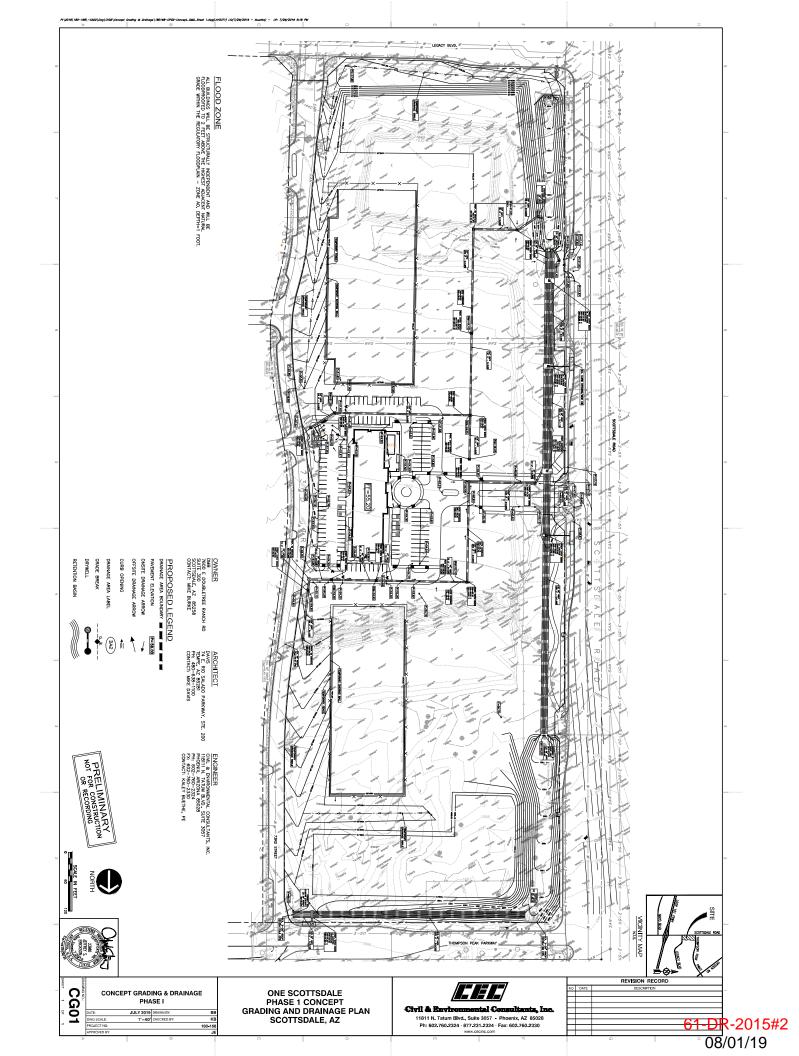

Boss Shoot Proposed By: CA

Project:	One Scottsdale PU fit
Proj. No:	9622
Date :	5/21/12
20	6.5

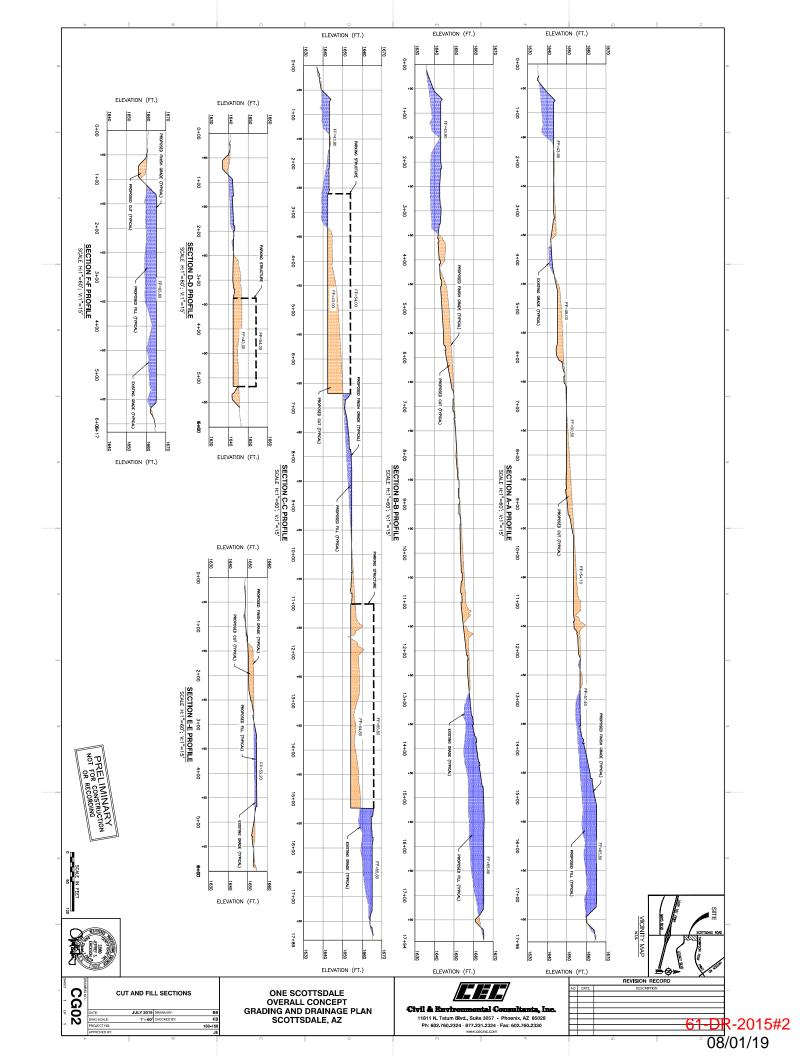
Anter 1	if "n" varie	es by bank	la e	LB,CH,&	RB), or 2 i	by station	1
Poist	Elsy.	Ste.	6.5	n by sta	Loft Bank		Right Famil
no.	(FI)	(FT)	のない	N/A	Sta. (ff)		Sta. (ft)
1	2.00	0.00	2		0.00		26.00
3	0.00	3.00			n-LB	* II-CH *	n-RB
3	0.00	18.00			0.028	0.028	0.028
4	2.00	26.00 *			Clus/arginics	he/wgined-a recitori.	
					3	0.0050	on
					Solve for:	(d or Q)	Q
					d=	2.000	ft
					Qualc.	119.4	c@
			1		WSEL	2.00	ñ
					Vinner.	4.3	fia
			-		Fr	0.50	***

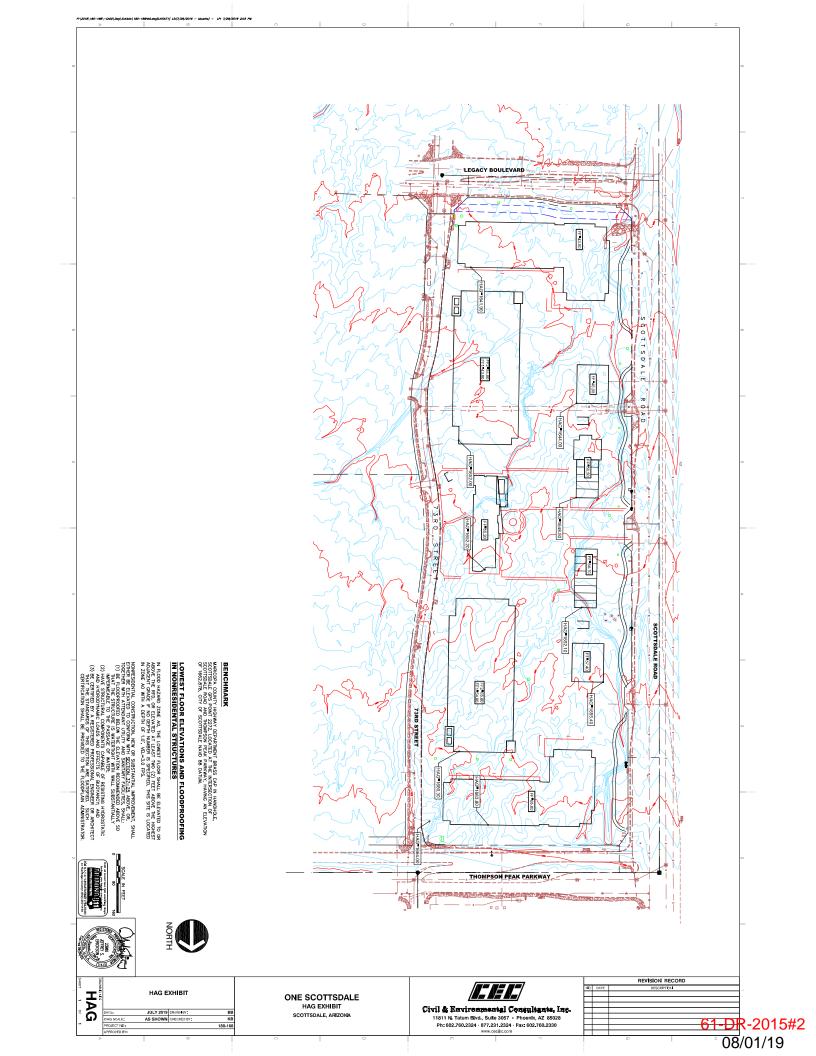

Calc. Flow (cfs)	Quale	119.4
L-Bank Flow (cfs)	Qt.	0.0
Chan Flow (cfs)	Quan	119.4
R-Bank Flow (cfs)	QR	0.0
Avg Section Vel (fps)	V _{sug}	3.3
biain Chamel Vel (ips)	Velia	4.3
Weighted Menning no.	n _{or}	0.0426
Slope (BAY)	S	0.0060
Max Flow Depth (0)	G	2.00
WSFAL (R)	WSEL.	2.00
Min Elsv (ii)	Min Elv	0.00
Area (ut)	.4.	36,0
Wel. Perim. (ft)	P	26.5
Hyd. Radais	R	1.36
Eraude No.	Fr	0.50
Li Floodolnin Sta. (ft)	FPIA	0.0
Ri Floodplain Sta. (It)	FF ₈₀	26.0
Floodplein Width (K)	Wyp	26.6

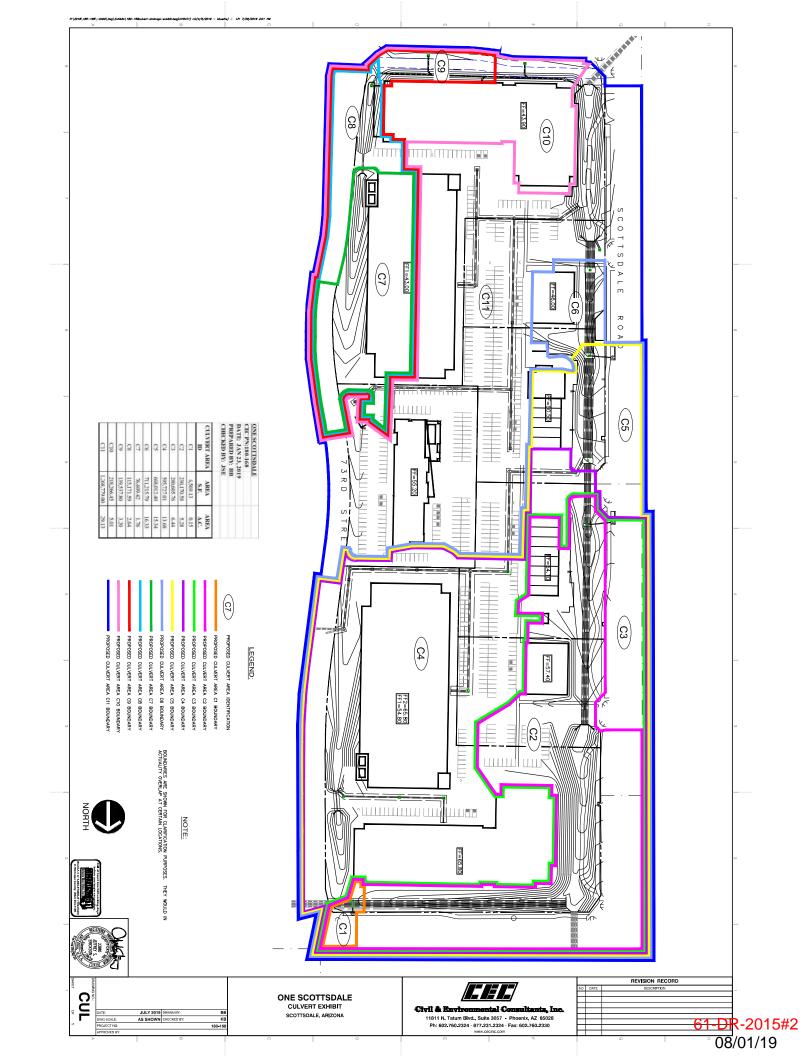




PPW ADMS Web Access Tool existing hydrologic divide. Approximate location of extracted along this Flow hydrograph These bydrographs represent the maximum discharge magainude for the indicated praids) at each reporture time miterval. It does not account for flow direction and thus, may cause "double-counting" of direcharge if not derwn perpendicular to the direction of flow. Export to PNG | U 4 Hydrograph for Sum - All Peak 106.602 cfs at 14.1 hrs 꼫 日帝 19 http://gs.fc/markapagov.orgurfit24_forest@eartheatchean Time (hrs) 124 FLOZO Hydrograph/Profile Display - Internet Explorer 阿斯 Select Data for Display: U Sum - All -+ Graph Table Metadata **-€** Scale 1.767 Discharge (cfs) 4. Ŷ 4 | 3. Model Stability Adjustments | 3. Detailed Surface Raster (2-ft) | 520 Model Boundaries | Project Boundary | 9 Maximum Vaete Surface) | 2 Maximum Yolofty | 2 Maximum Poph | 3 Frand Poph @ Exded (Sim) | 9 Frand Poph @ Exded (Sim) | 9 France of Yologum | 10 France to Thoughty | 10 WOW HAND THE WOW 0 Select model to display Grid Boundarie Wodel Layers







Onsite Drainage Report

For

One Scottsdale

Southeast Corner of Scottsdale Road and Thompson Peak Parkway Scottsdale, Arizona

Prepared for

DMB

7600 E Doubletree Ranch Road, Suite 300 Scottsdale, AZ 85258

January 10, 2020

CEC PN # 180-168

Table of Contents

Page	e No.
INTRODUCTION	1
OFFSITE DRAINAGE AND EXISTING IMPROVEMENTS	3
PROPOSED DRAINAGE AND INFRASTRUCTURE IMPROVEMENTS	5
CONCLUSIONS	11

CONCEPT GRADING AND DRAINAGE EXHIBITS IN EVELOPE AT BACK OF REPORT

DRAINAGE EXHIBIT AND SECTIONS IN ENVELOPE AT BACK OF REPORT

HIGHEST ADJACENT GRADE EXHIBIT IN ENVELOPE AT BACK OF REPORT

CULVERT DRAINAGE EXHIBIT AT BACK OF REPORT

APPENDIX A – STORMWATER STORAGE WAIVER AND CORRESPONDENCE

APPENDIX B – 404 CERTIFICATION AND LETTER

APPENDIX C – HYDROLOGY CALCULATIONS

APPENDIX D – HYDRAULIC CALCULATIONS

APPENDIX E – FEMA FIRM MAP AND STRUCTURE EXHIBIT

APPENDIX F – HY8 REPORTS

APPENDIX G – EXCERPTS FROM ONE SCOTTSDALE MASTER DRAINAGE PLAN

AND DRAINAGE REPORT FOR TDI AT ONE SCOTTSDALE, PHASE I

1.0 INTRODUCTION

The One Scottsdale project is a proposed 21.73 net acre commercial/retail project located southeast of the intersection of Hayden Road and Thompson Peak Parkway in Scottsdale, Arizona. The site is further described as a portion of the NW1/4 of Section 26, Township 4 North, Range 4 East of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. Refer to the Vicinity Map on the following page.

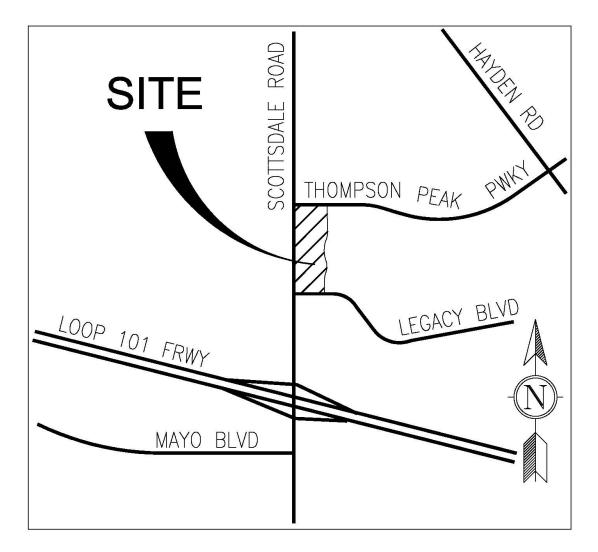
The site will consist of Class A office buildings, underground and above ground parking structures, a hotel, and retail pads. Phase I of the project will incorporate the hotel, drives and rough pad preparation for the remainder of the site. This Preliminary Drainage Report will document onsite and offsite drainage requirements to meet City of Scottsdale drainage guidelines and ordinance criteria for the entire project and will describe Phase I improvements that will be interim until final build out is accomplished.

This report is also based on prior calculations and assumptions as determined in the "One Scottsdale Master Drainage Plan", prepared by Wood/Patel revised June 20, 2013, the "Drainage Report for TDI at One Scottsdale, Phase I dated May 17, 2012, prepared by Wood/Patel, and the "Final Drainage Report for One Scottsdale PU III Infrastructure Improvements" (PUIII), prepared by Bowman Consulting, dated July 23, 2012. The TDI Phase I and II projects are located directly east of the project site on the east side of 73rd Street (a private drive with public access). Only drainage from the TDI project along with previously defined offsite flows from Thompson Peak Parkway will affect the site. TDI drainage is directed to the east and south.

Offsite flows that will impact the project site have been calculated and quantified in both of these reports and have various impacts on the design considerations for the One Scottsdale commercial site. These impacts will be discussed in more detail later in this report.

It should be mentioned that this property does not have to provide onsite retention or detention. A stormwater storage waiver and subsequent construction of downstream improvements along with

payment of in-lieu fees have satisfied this requirement. It is our understanding that first flush will be required. This will be accomplished through the use of the existing basin on-site in the interim condition. Contech Vortech structures will be used in the final condition. In addition, the post-development 100-year flows have been accounted for within the Master Drainage Plan HEC-1 models. Copies of correspondence and the Stormwater Storage Waiver are located in Appendix A.


This site is currently located within a Zone "AO" designation as identified on Flood Insurance Rate Map (FIRM) panel number 1320L (Maricopa County) dated October 16, 2013 from the Federal Emergency Management Agency (FEMA) and labeled "Zone AO, Depth 1', Velocity 3 FPS". Zone AO is described as, "Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined." Refer to the FIRM in Appendix E.

The proposed lowest habitable finished floors will be set a minimum of 2 feet above the highest existing natural adjacent grade elevation on the upstream side of each building or structure. Earthen fill will be incorporated to provide the correct elevation for finished floor protection. Underground parking structures will also be flood proofed to 2 feet above the highest adjacent existing ground elevation along with any entry points into the parking structure. Refer to the FEMA Structure Exhibit in Appendix E and the Highest Adjacent Grade Exhibit (HAG) at the back of this report. This exhibit shows the anticipated finished floor elevations for each proposed building envelope for this development. The topographic base map was compiled in the pre-development existing condition and the datum is on current City of Scottsdale and Maricopa County standards and is reflected on the exhibit. All buildings will be structurally independent and will be flood-proofed to 2 feet above highest adjacent natural grade within the regulatory floodplain Zone AO – Depth=1 foot.

Drainage flow paths and storm drain pipe will be provided around the exterior of the buildings that will allow storm water to flow around the buildings and through the parking lots. Drainage/Pedestrian easements will be dedicated over the exterior drainage swales/culverts/pedestrian paths and on a proposed storm drain that conveys flows from the TDI Phase I project across the site to the west swale

along the east side of Scottsdale Road. Refer to the Drainage Easement Exhibit at the back of this report for locations and approximate widths.

The low lot outfall on the site is 1635.17 at the southwest corner of the site on Scottsdale Road. Lowest finished floors range from 1665.80 on the north to 1644.90 on the southwest. Currently, the site is unimproved with desert vegetation. The site generally slopes form the northeast to the southwest at approximately 1.5%.

VICINITY MAP N.T.S.

2.0 OFFSITE DRAINAGE AND EXISTING IMPROVEMENTS

Offsite Drainage

The offsite drainage analysis was prepared by Wood, Patel & Associates, Inc., in the "One Scottsdale Master Drainage Plan", revised June 20, 2013. Pre- and Post-development 100-year, 6-hour discharges were computed in a HEC-1 models prepared with that report. Future build-out of the development was taken into account within that model. Two additional reports, "Final Drainage Report for One Scottsdale PU III Infrastructure Improvements" (PUIII), prepared by Bowman Consulting, dated July 23, 2012; and "Drainage Report for TDI at One Scottsdale, Phase I" (TDII), prepared by Wood/Patel, dated May 17, 2012. Flo-2D data was also used to analyze offsite drainage. It was calculated that there is 489 cfs at the intersection of Thompson Peak and 73rd Street. This section was analyzed using HY8 and the report is included in Appendix F.

Both of these reports addressed offsite flows that will impact the One Scottsdale Commercial site. The following table identifies the major 100-year, 6-hour post-development flows and locations where they enter or exit the site.

Existing Offsite Flows from Master Drainage HEC-1 Model/Flo 2D

Location	Structure	HEC-1 ID	100-Year Q, cfs	Flo 2D
		(WP Master	(Post Developed)	(Post Developed)
		Report)		
Thompson Peak	3-36" RGRCP	CPOFF3	138 (enter)	
Parkway (just east of				
Scottsdale Road)				
73 rd Street (just south	3-36" RGRCP	33A.1	11 (enter)	489 (enter)
of Thompson Peak				
Parkway)				
73 rd Street (660' south	36" RGRCP	33A.2	34 (enter)	
of Thompson Peak				
Parkway				
Scottsdale Road(north	8'x4'RCBC	33A3	226 (exit)	
of Legacy Drive-				
Convey Flows				
Southwest)				

Existing Offsite Flows from TDI and PU III

Location	Structure	Report	100-Year Q, cfs	100-Year Q, cfs
			(Post Developed)	(Post Developed)
				Flo 2D
73 rd Street (just south of	3-36"	PU III	119.4	489
Thompson Peak	RGRCP			
Parkway)				
73 rd Street (660' south	36" RGRCP	TDII	45.4	N/A
of Thompson Peak				
Parkway				

Excerpts from the "One Scottsdale Master Drainage Plan", "Drainage Report for TDI at One Scottsdale-Phase I", and Final Drainage Report for One Scottsdale PU II Infrastructure improvements are included in Appendix G to verify the above flows.

The 3-36" culverts that cross 73rd Street were sized based on the PU III project. The City of Scottsdale directed Bowman Consultants to account for 119.4 cfs within a 30' drainage swale and the culverts were sized accordingly to convey this flow to the west. Since then, Westwood has been studying this area using Flo 2D data. It was determined that there is 489 cfs in this cross section. This section has been analyzed using HY8 and the results and shown in Appendix F.

The TDII report shows flows were collected from within the north portion of the apartment complex and conveyed to a 36" outlet storm drain that crosses 73rd Street onto the One Scottsdale site.

There are a number of curb openings located along 73rd Street that take the entire street section flows into the project site and are conveyed southwesterly across the site to the existing wash along the east side of Scottsdale Road. Curb openings on Scottsdale Road drain the half street section of Scottsdale

Road itself directly into the adjacent wash. These flows are then conveyed south to the existing 8' x 4' box culvert that crosses Scottsdale Road to the southwest.

A scupper is located on Thompson Peak Parkway (just west of 73rd Street) and directs flow into an existing swale on the south side of the road. Catch basins are located on the north and south side of Thompson Peak Parkway, just east of Scottsdale Road, and tie into the existing pipe crossing of Thompson Peak Parkway. The 3-36" RGRCP collect flows from the north of Thompson Peak Parkway and convey them to the wash located on the site just east of Scottsdale Road.

Catch basins are also located on Legacy Boulevard just east of Scottsdale Road and tie directly to the existing 8' x 4' box culvert. The 8'x4' box culvert collects flows and directs them southwest across Scottsdale Road to an existing wash. Refer to the Drainage Exhibit in the envelope at the back of this report for locations of existing drainage structures.

3.0 PROPOSED DRAINAGE AND INFRASTRUCTURE IMPROVEMENTS

A number of drainage improvements are anticipated with this project and consist of the following:

- A combination of wash and 4-36" HDPE pipe culverts with drop inlet structures along the east side of Scottsdale Road.
- New catch basins at three locations along Scottsdale Road connecting to adjacent culvert crossings. Existing catch basin north of Legacy Boulevard will remain.
- New catch basin on Thompson Peak Parkway west of 73rd Street connecting to a proposed 3-36" storm drain onsite. This will replace the existing scupper at that location.
- ➤ Detention basins and swale along the southern end of 73rd Street.
- > 3-36" HDPE Storm drain pipe and swale along the south side of Thompson Peak Parkway to convey 489 cfs to the west.
- > 24" HDPE Storm drain pipe and swale along the north side of Legacy Boulevard to convey flows to the west.

- ➤ Catch basins and 15"-42" HDPE pipe within the northern portion of the development to drain parking lot, buildings, northern portion of 73rd Street, and offsite flow from TDI Phase I.
- ➤ Catch basins and 15"-42" HDPE pipe within the future southern portion of the development.
- Existing Curb cuts and grouted native riprap spillways to drain the roadway drainage areas along 73rd Street and Scottsdale Road.
- > Grouted native indigenous stone to protect the berm face, spillways, and culvert or storm drain inflow and outflow points.

These drainage infrastructure items are incorporated to provide an overall drainage design that will help to protect the One Scottsdale project during the 100-year storm event. Finished floors will be elevated a minimum of 2 feet above the highest adjacent existing natural grade for each building and a minimum of 1 foot will maintained from proposed grades to protect the buildings within the FEMA Zone AO floodplain. Underground parking structures will be flood proofed to the same standards and will withstand hydrostatic pressures and buoyancy effects. Structural calculations will be submitted with the final improvement plans to justify the design.

First Flush

First flush will be handled using an existing on-site basin and one Contech Vortex structure in the interim. The ultimate build out condition will have a total of three Contech Vortex structures, one from the first phase, and two new units. These structures will be sized in the final drainage report.

Hydrology

The Flood Control District of Maricopa County DDMS computer program was used to calculate 100-year peak flows for each subbasin area. Preliminary hydrology calculations were performed utilizing the Rational Method with a weighted runoff coefficient. Onsite storm drain sizing utilizes peak flows added directly to each subsequent downstream drainage area with no adjustment for time of concentration or routing storage. The conservative approach was used at this time to adequately size

preliminary storm drain capacities onsite. A more detailed analysis will be performed with the final drainage report to assure that drainage infrastructure is sized correctly.

Culvert crossing peak flows utilized the rational method with overall combined drainage areas for each subsequent downstream watershed. This provides a more reasonable solution based on increased times of concentration for the larger overall contributing watershed to that specific point of concentration. These flows also conform closely to the Master Report HEC-1 analysis peak flows for sizing the downstream infrastructure.

Hydrology calculations are located in Appendix C and a summary table of peak flows is included on the Drainage Exhibit located in an envelope at the back of this report.

Hydraulics

Catch basins will consist of MAG Std. Det. 535 Type F or MAG Std. Det. 537 type G. At a depth of 0.5', these catch basins can intercept 7.7 cfs and 6.1 cfs respectively with a 50% clogging factor applied. Subbasin drainage areas will be smaller than the capacities of these catch basins and may have break over depths less than 0.5'. This will be determined during final design. Catch basins on Scottsdale Road will be sized based on half street flows and will generally be the size of the existing curb opening located there. A typical calculation for onsite catch basin capacity is located in Appendix D.

The culvert capacities along Scottsdale Road were calculated using the Federal Highway Administration HY-8 computer program. Drop inlet headwalls are utilized at each crossing to keep the wash slope and erosive velocities within reasonable parameters and to provide cover under the driveways. A small sediment basin will be incorporated at the lip of the drop structure to help settle out sand and small rocks that typically occur within these types of washes. Refer to calculations in Appendix D.

Grouted riprap will also be utilized at inflow and out flow locations to help prevent erosion in those areas. Riprap sizing and lengths will be calculated within the Final Drainage Report. A multi-use trail will meander through the bottom of the wash and will incorporate stabilized decomposed granite along with a turndown edge and riprap along the exterior to help prevent erosion within the wash itself.

Storm drain pipe were sized based on the addition of contributing subbasin areas downstream. Hydraulic Toolbox 4.1, also provided by the Federal Highway Administration, was utilized to size storm drain throughout the project. This program does not analyze pressure flow conduit and the storm drains were sized only using normal depth which is somewhat conservative at this preliminary design stage. A detailed analysis will be performed with approved backwater analysis during the preparation of final plans and the final drainage report.

Refer to the Drainage Exhibit at the back of this report for locations of the drainage infrastructure and to Appendix D calculations. Roof leaders will connect to storm drain onsite and will be sized during final design. Drops may be incorporated at manhole or catch basin locations due to the natural steep nature of the site. This will help to reduce slopes and velocities within the system. Final hydraulic grade line calculations and profiles will be performed with final design as well. Pipe sizing was initially based on an estimated 1.0% slope for each run.

Wash and swales capacities were computed with Hydraulic Toolbox 4.1. This includes the main wash along Scottsdale Road and smaller swales on the east side. Cross section locations, water surface elevations, and limits of inundation are shown on the Drainage Exhibit and calculations are included in Appendix D. Velocities are generally in the 5 fps range to keep with the non-erosive velocity regime. Small sediment basins at the drop inlets will also help to keep channel inverts stabilized. Swales on the north and south side of the project are typically more of a catchment area design and stormwater will be collected in catch basins or small swales and conveyed to the west or south. These are small subbasins and will not covey any significant flow. Inflow areas to the main west wash will still require rock rip rap to prevent head cutting into the upstream swale area that will have higher elevations than the bottom of the wash.

404 Discussion

A 404 jurisdictional delineation was previously performed on the entire Scottsdale One project, referred to as Stack 40. A letter was received from the U.S. Army Corps of Engineers dated February 5th, 2002 and states that no Section 404 permit is required due to flows being cut off by the Grayhawk development. A copy of the Section 404 Certification for this project and the Corps letter is included in Appendix B

Water Quality Requirements /NOI Discussion

Any disturbed area over 1.0 acres will require a Notice of Intent (NOI) Certification from the Arizona Department of Environmental Quality prior to construction. An AZCON number will be acquired and provided to the City of Scottsdale during the Improvement Plans submittal process. A Storm Water Pollution Prevention Plan (SWPPP) and Report will be prepared to address erosion and water quality issues both pre- and post-construction and will be implemented by the contractor during construction to minimize erosion and sediment runoff during the design storm event. In addition, a Maricopa County Dust Control Permit will need to be obtained prior to any construction. Street sweeping for construction track-out will be addressed in the SWPPP Report as well.

Temporary Parking Garage Excavation Discussion

The parking garage for Phase I will include the west half of the full structure including underground parking. The east side will be excavated to depth and left open in the interim condition. A wall on the north and side will be built and an earthen berm will be constructed to an elevation of 1666.00 to flood proof the open excavation. A 6' interim fence will be placed around the perimeter of this temporary excavation. The maximum slope into the excavation will be a 2:1 slope to a collection area/temporary detention basin below the bottom of the bottom floor elevation of 1644.66. This area will be sloped from north to south and a temporary sump will be installed to dewater this area after storm events. A rip rap spillway and curb opening will allow pumped volumes to discharge onto the pavement/drive

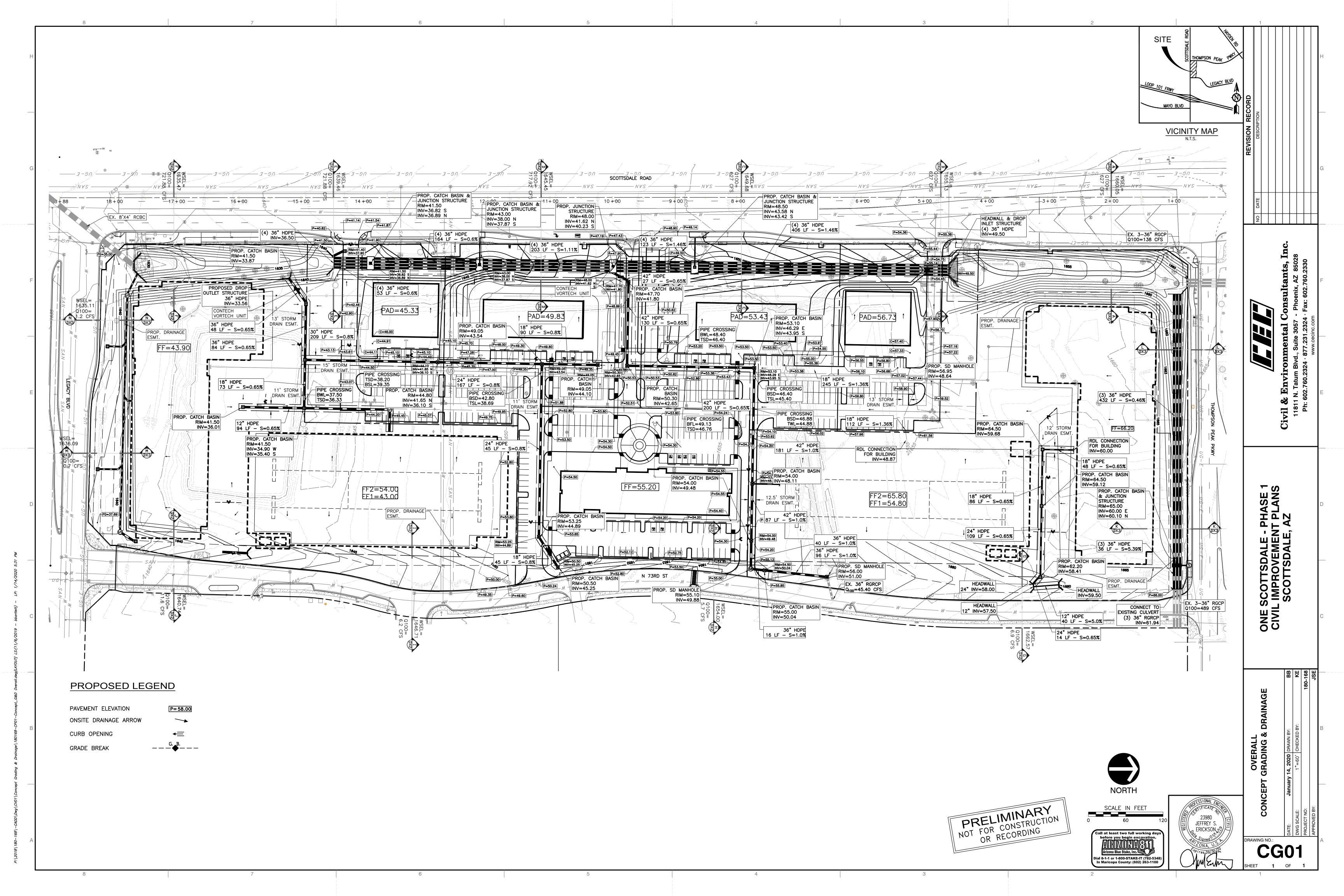
area south of the garage. The volume required for a 100-year, 2-hour storm event is as follows: $V = (2.32/12) \times 0.45 \times 35,406 = 3,080 \text{ CF}.$

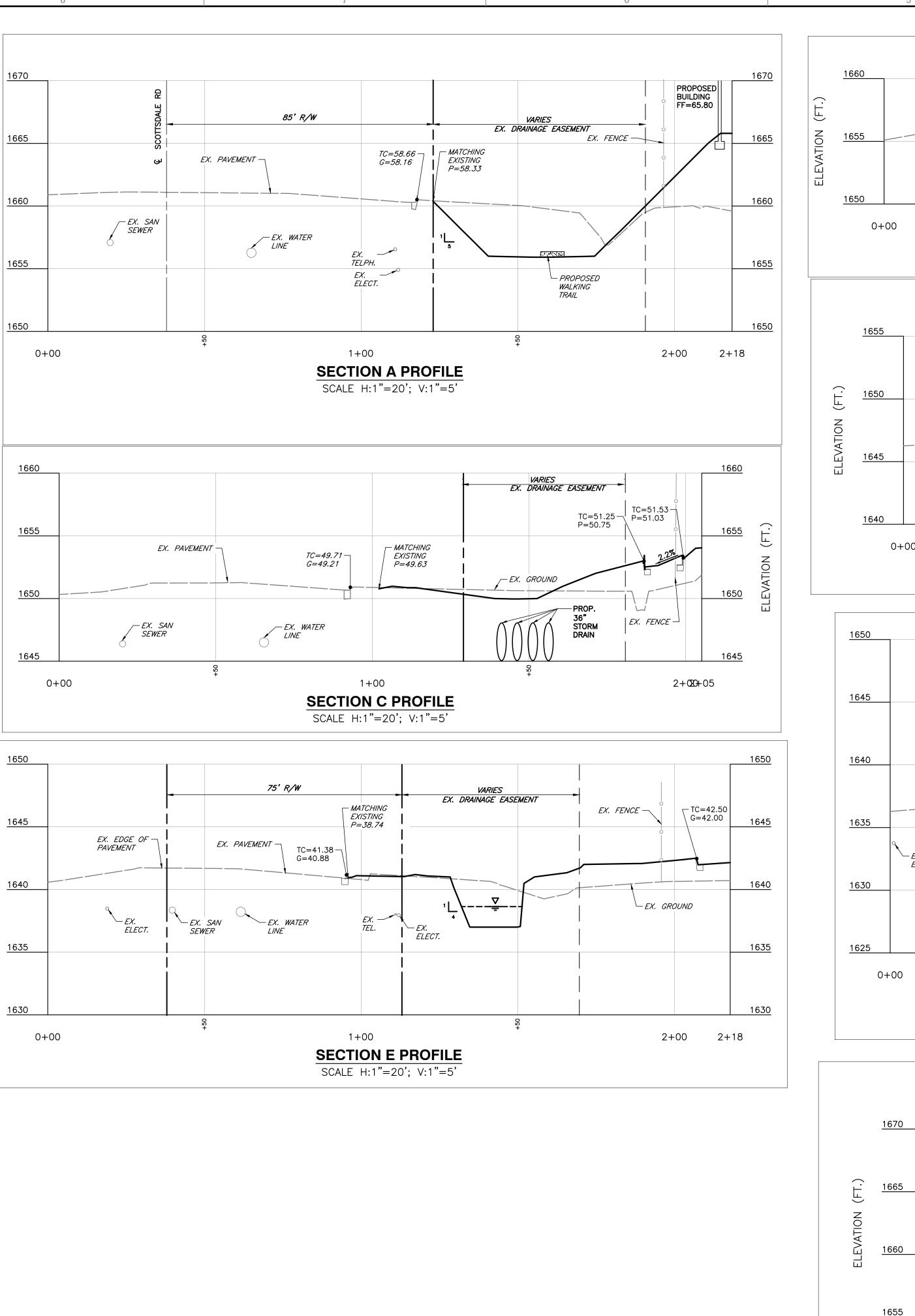
The volume provided at the bottom of the excavation with a bottom elevation average approximately 1642.5 and a high water of 1644.5 provides approximately 5,000 cf. This will provide ample freeboard even for storms above the 100-year, 2-hour event. Refer to the Phase I Concept Grading and Drainage Exhibit at the back of this report for grading specifics in this area.

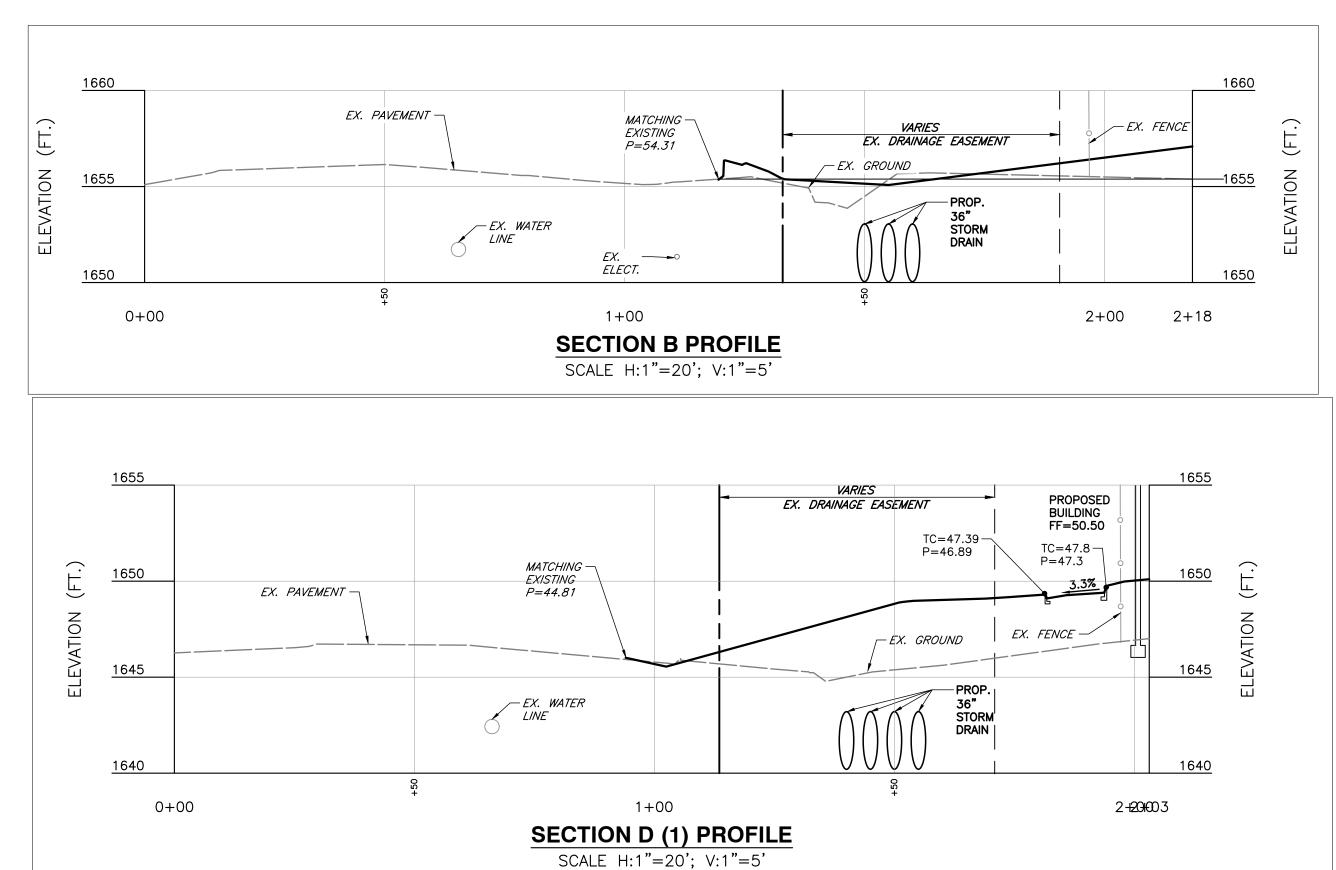
4.0 CONCLUSIONS

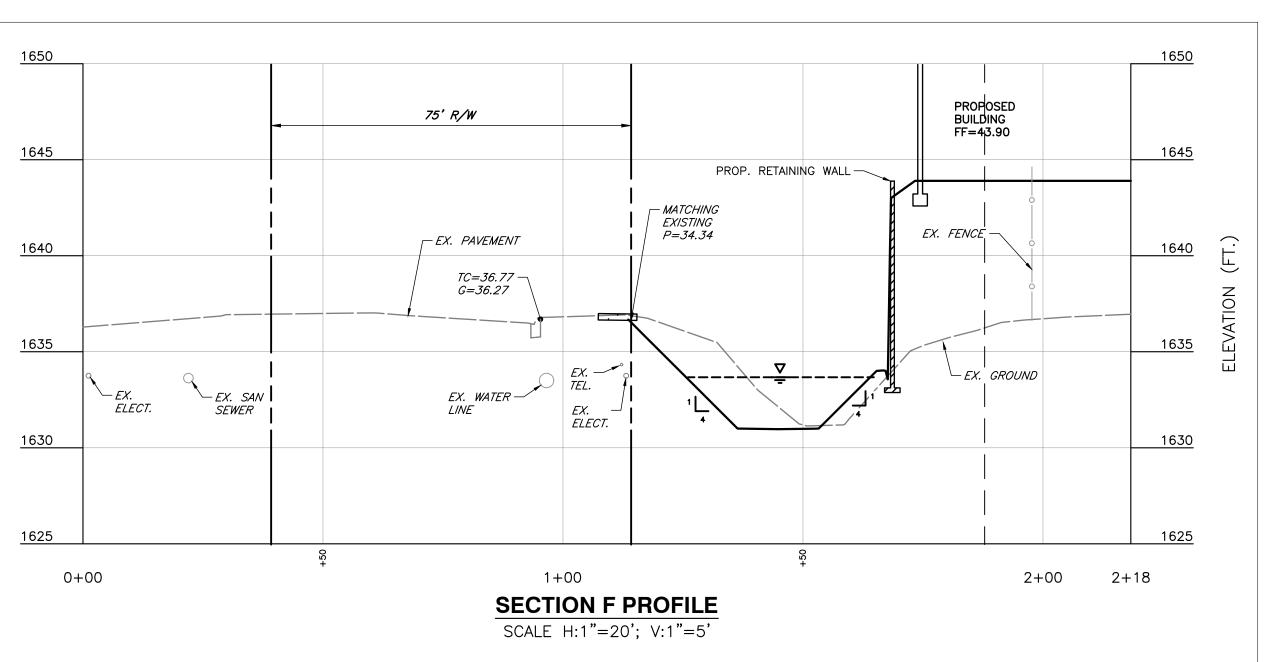
The One Scottsdale commercial project will be designed in accordance with the approved "One Scottsdale Master Drainage Plan", prepared by Wood/Patel dated June 20, 2013, the "Drainage Report for TDI at One Scottsdale, Phase I dated May 17, 2012, prepared by Wood/Patel, and the "Final Drainage Report for One Scottsdale PU III Infrastructure Improvements" (PUIII), prepared by Bowman Consulting, dated July 23, 2012.

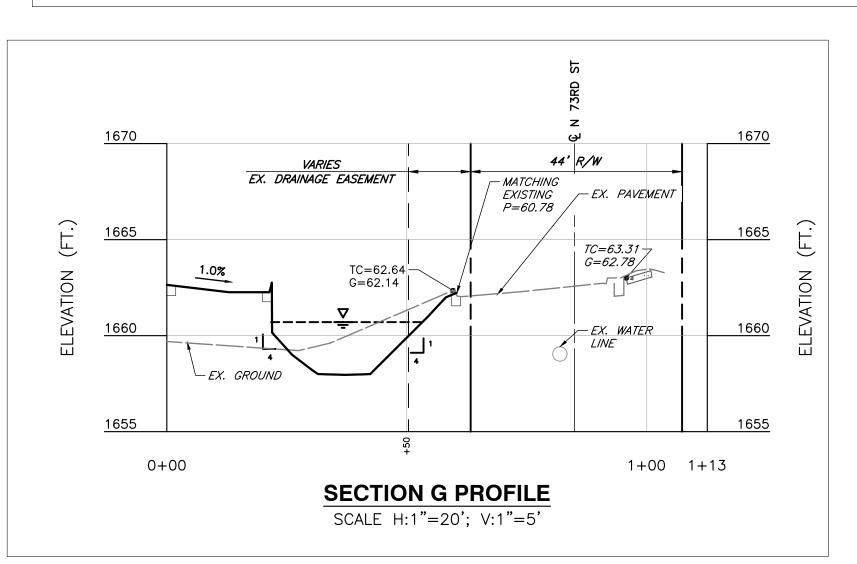
The intent of the drainage design for this project is to provide protection for buildings in a Zone "AO" floodplain, depth = 1', velocity = 3 fps. The lowest habitable finished floor of the buildings will be set at a minimum of 2 foot above the highest adjacent existing grades. Entry points for the underground parking will also be elevated/flood proofed to this elevation for each structure that has underground parking incorporated within the footprint.

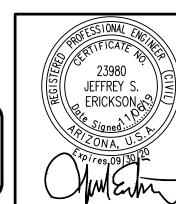

100-year flows will be directed around the exterior of the project in swales, washes, culvert crossings and storm drain pipe. Interior flows will be conveyed away from the edges of the building to parking lots and drive lanes that will collect flows in catch basins and storm drain pipe and convey them to the low lot outfall elevation of 1635.17 at the southwest corner of the site where an existing 8' x 4' box culvert conveys flows southwest across Scottsdale Road.

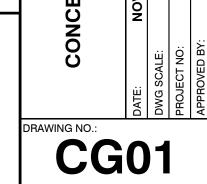

Culverts with drop inlet structures will be constructed along the west wash at driveway locations and at


constricted areas. An 8' multi-use path and 8' sidewalk will be implemented within this corridor and stabilized granite and riprap along the side of the path will be incorporated to reduce erosion of this multi-use trail amenity. Drainage easements will be required on any wash or storm drain conveying more the 50 cfs. Easements for storm drains will be determined based on size and depth of the storm drain. Overlapping drainage and public utility easements may occur in certain instances and will overlap.


The lowest finished floors range from 1666.0 on the north to 1644.3 on the southwest. Curb openings with native stone riprap spillways or catch basins will be provided at locations around the perimeter of the project to accept adjacent half street flows.


No detention or retention is required on this site as prior improvements have been constructed and an in-lieu fee contribution has been paid to the City of Scottsdale. First flush will be handled using an existing on-site basin in the interim, and Contech Vortex structures in the ultimate condition. A 404 jurisdictional delineation has previously been performed on the overall project and no 404 washes are present. Water quality and sediment reduction will be addressed with final design construction documents.

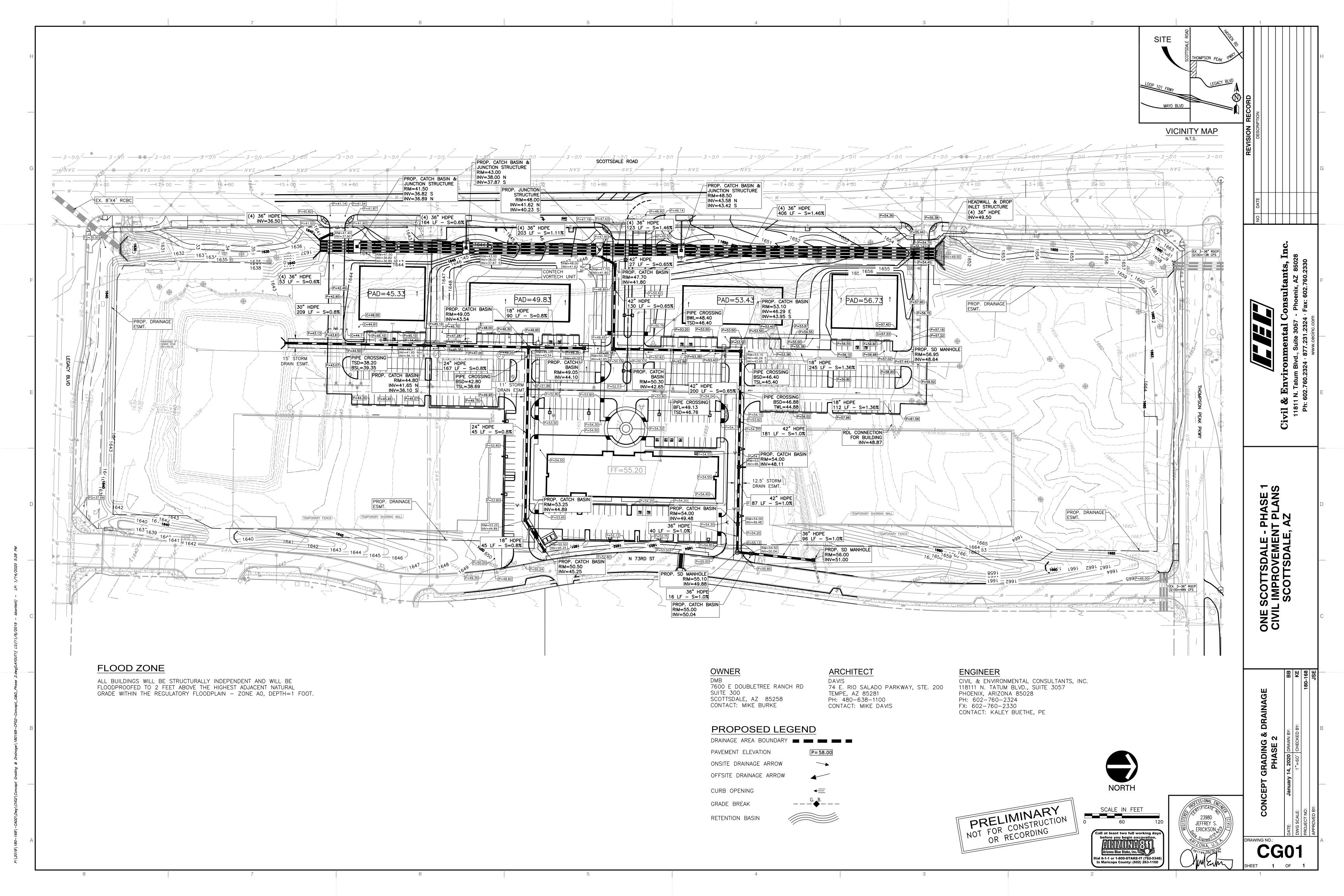


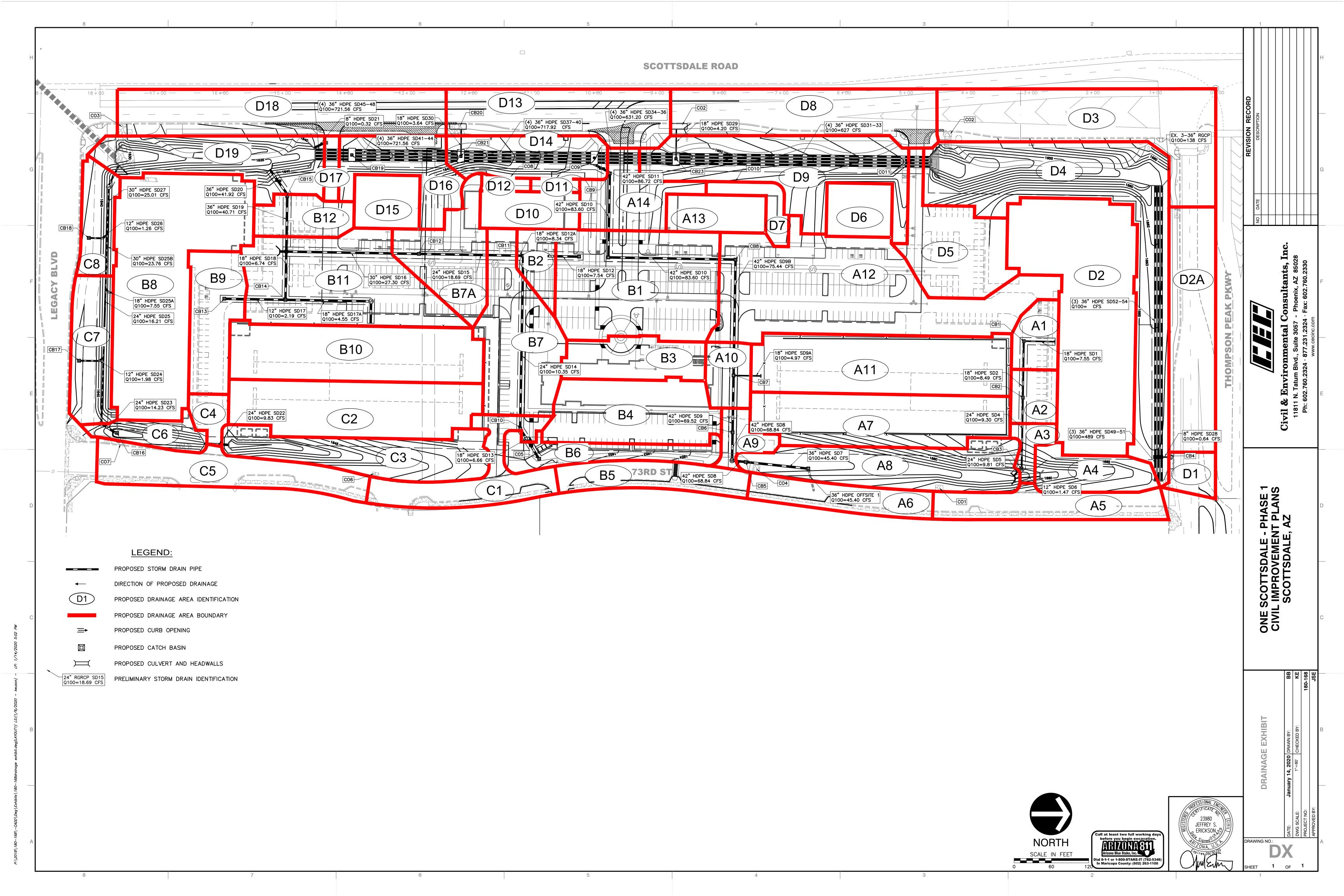


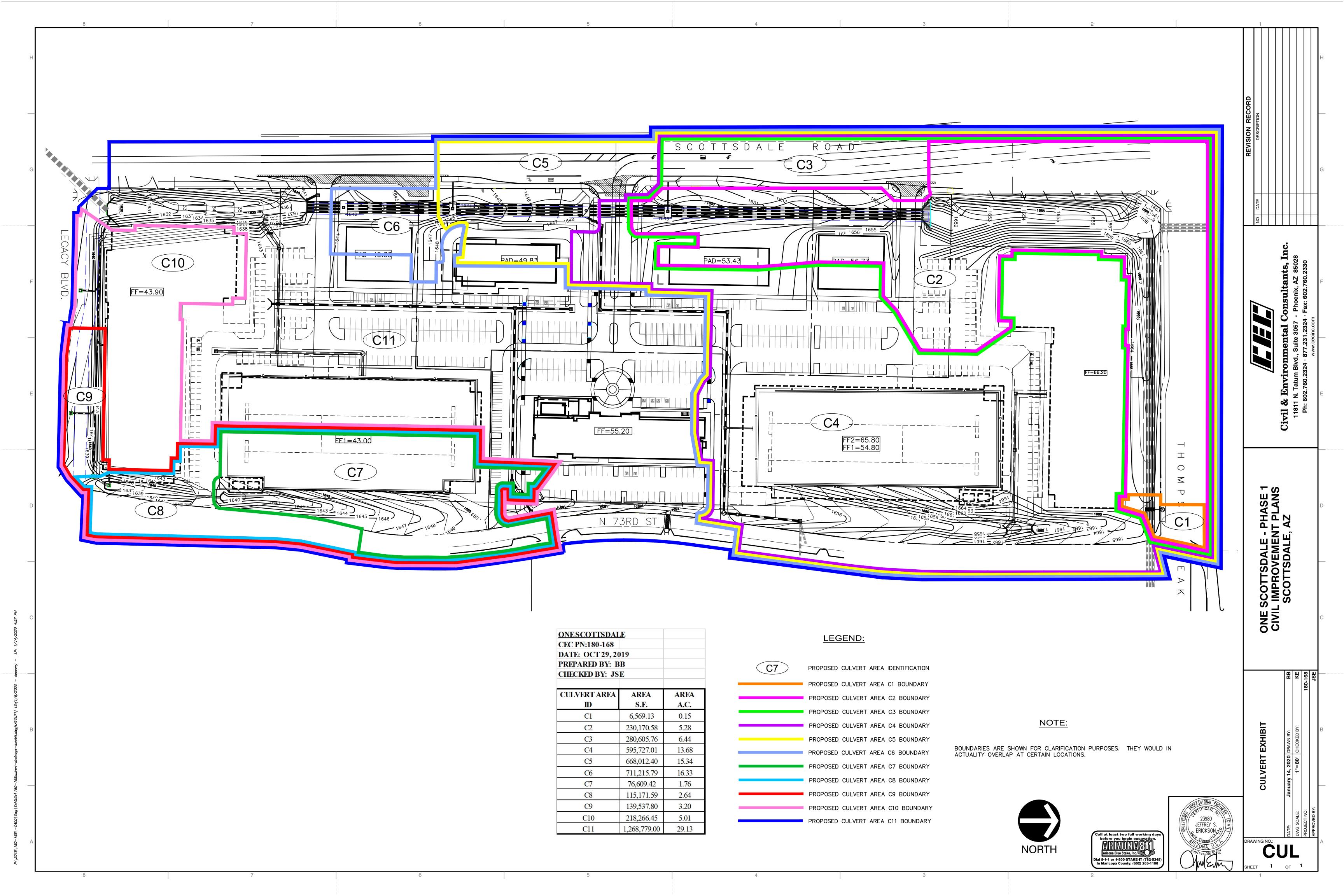
SITE

VICINITY MAP

N.T.S.



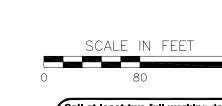




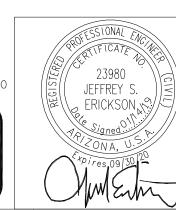
OVERALL GRADING & DRA

ONE SCOTTSDALE L IMPROVEMENT PL/ SCOTTSDALE, AZ

BENCHMARK

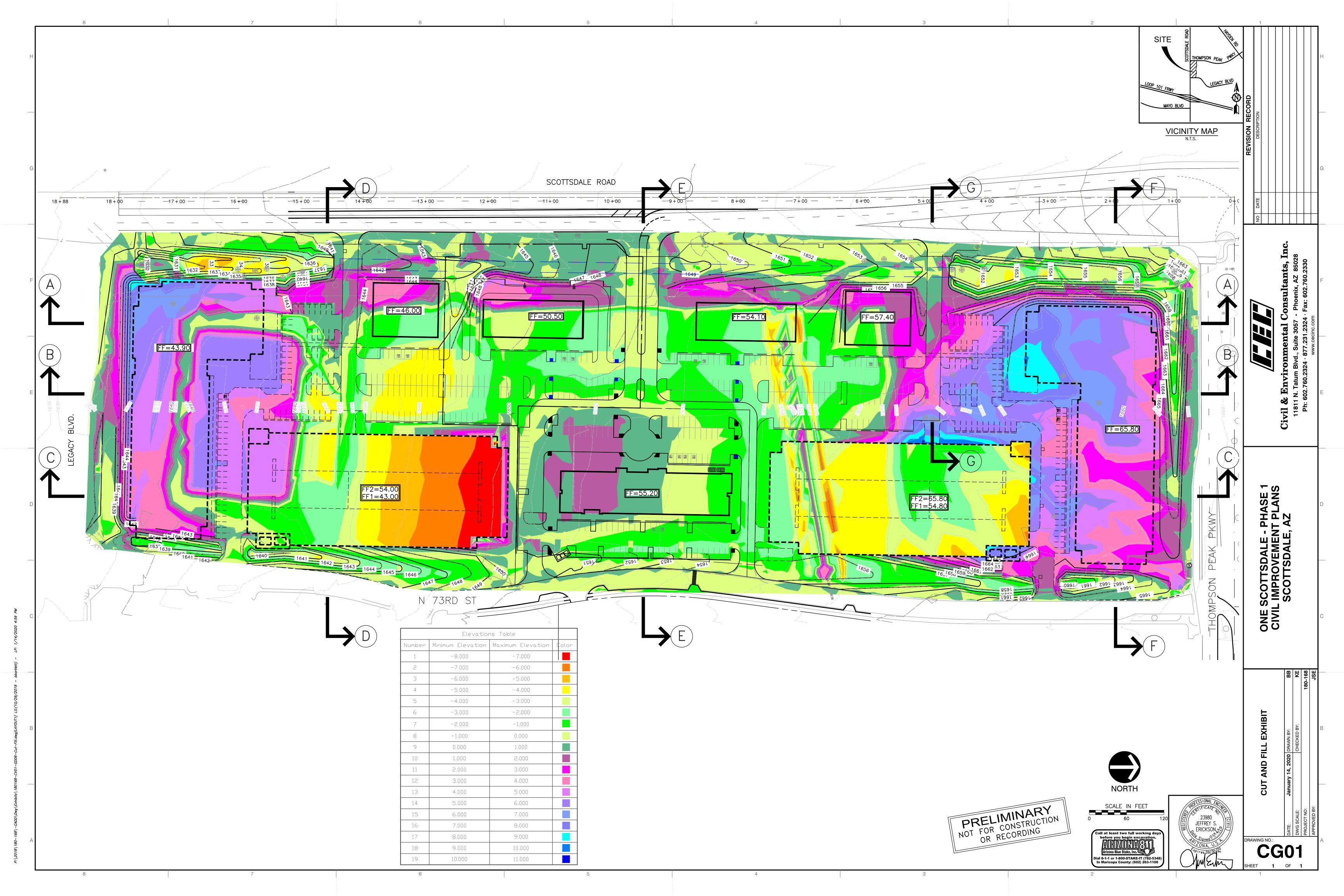

MARICOPA COUNTY HIGHWAY DEPARTMENT BRASS CAP IN HANDHOLE, SCOTTSDALE GPS POINT 2272, LOCATED AT THE INTERSECTION OF SCOTTSDALE ROAD AND THOMPSON PEAK PARKWAY, HAVING AN ELEVATION OF 1662.878, CITY OF SCOTTSDALE NAVD 88 DATUM.

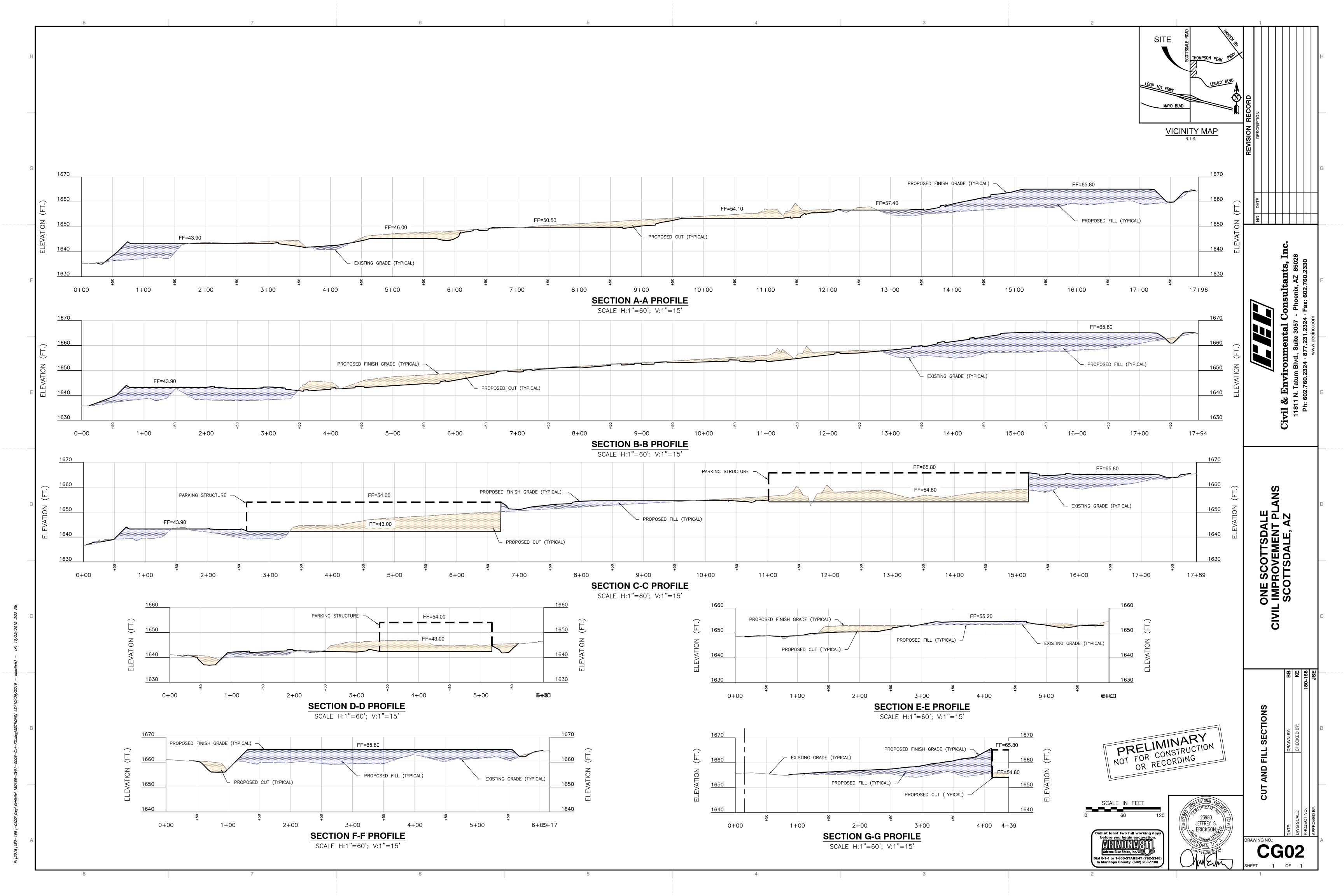
LOWEST FLOOR ELEVATIONS AND FLOODPROOFING IN NONRESIDENTAL STRUCTURES


IN FLOOD HAZARD ZONE AO, THE LOWEST FLOOR SHALL BE ELEVATED TO OR ABOVE THE RFD, OR ELEVATED AT LEAST TWO (2) FEET ABOVE THE HIGHEST ADJACENT GRADE IF NO DEPTH NUMBER IS SPECIFIED, THIS SITE IS LOCATED IN ZONE AO WITH A DEPTH OF 1.0', VEL=3.0 FPS.

NONRESIDENTIAL CONSTRUCTION, NEW OR SUBSTANTIAL IMPROVEMENT, SHALL EITHER BE ELEVATED TO CONFORM WITH <u>SECTION 37-25</u> ABOVE, OR, TOGETHER WITH ATTENDANT UTILITY AND SANITARY FACILITIES, SHALL: (1) BE FLOODPROOFED BELOW THE ELEVATION RECOMMENDED ABOVE SO THAT THE STRUCTURE IS WATERTIGHT WITH WALL SUBSTANTIALLY IMPERMEABLE TO THE PASSAGE OF WATER;

(2) HAVE STRUCTURAL COMPONENTS CAPABLE OF RESISTING HYDROSTATIC AND HYDRODYNAMIC LOADS AND EFFECTS OF BUOYANCY; AND (3) BE CERTIFIED BY A REGISTERED PROFESSIONAL ENGINEER OR ARCHITECT THAT THE STANDARDS OF THIS SECTION ARE SATISFIED. SUCH CERTIFICATION SHALL BE PROVIDED TO THE FLOODPLAIN ADMINISTRATOR.





ONE SCOTTSDALE - PHASE 1 CIVIL IMPROVEMENT PLANS SCOTTSDALE, AZ

BB KE 168 JSE

APPENDIX A – STORMWATER STORAGE WAIVER AND CORRESPONDENCE

November 28, 2011

Mr. Ashley Couch, P.E. Stormwater Planning Director City of Scottsdale 7447 East Indian School Road Suite 205 Scottsdale, AZ 85251

Phone: (480) 312-4317

Email: acouch@scottsdaleaz.gov

Re: One Scottsdale Regional Drainage Channel

WP# 073022, 113713.02

This letter is prepared by Wood, Patel & Associates Inc. (Wood/Patel) under contract to One Scottsdale Holdings, LLC for civil engineering services related to One Scottsdale, a 160-acre mixed use project. This letter is in response to a request by your office to communicate a professional opinion of any potential impacts to the approved watershed for One Scottsdale and its approved contract documents and drainage reports. Specifically, this letter provides an overview of the writer's belief of lack of substantial changes in the watershed pertaining to the Final Drainage Report for Interim Regional Drainage Channel dated October 1, 2008 which has been reviewed and approved by the City of Scottsdale (C.O.S. Plan Check # 1672-08-1).

The following items or matters are noted or observed:

- It is assumed all new projects and public infrastructure completed within the watershed were subject to City of Scottsdale drainage regulations and policies, therefore historic watershed boundaries did not change and drainage discharges were not increased.
- A review of aerial maps dated 2008 when compared to maps dated 2010 displayed a limited number
 of new projects in the watershed, none of which are believed to cause watershed boundary changes or
 create higher peak discharges.

I hereby certify that to the best of my knowledge and based on my understanding of the items disclosed above that the watershed is in substantial conformance to the watershed referenced in the Wood/Patel 2008 report.

Sincerely,

Wood, Patel & Associates, Inc.

Darrel E. Wood, P.E., R.L.S. Principal

DEW/xxx

CC: Jill Kusy Hegardt

C:\Users\SAudsley\Desktop\One Scottsdale Regional Drainage Channel.doc

Stormwater Management

7447 E. Indian School Road, Suite 125 Scottsdale, AZ 85251 PHONE 480-312-2500

FAX 480-312-7781

WEB www.ScottsdaleAZ.gov

June 5, 2013

Via Electronic Mail:

jhegardt@dmbinc.com

Attention:

Jill Kusy Hegardt, Vice President of Entitlements, DMB Associates, Inc.

Subject:

Permanency of Stormwater Storage Waiver for One Scottsdale

Dear Ms. Kusy-Hegardt:

Pursuant to your request, I am writing to document that the regional drainage improvements along the east side of Scottsdale Road, from Mayo Boulevard to approximately 375 feet north of the centerline of Princess Boulevard, have been completed. This work has received a passing final inspection by the city. Therefore, the conditions that justify the approved partial stormwater storage waiver shown in the attached exhibit have been satisfied. Provided that development in One Scottsdale proceeds consistent with the latest approved stormwater master plan for One Scottsdale, no additional stormwater storage will be required. The city's approval of the attached waiver will not expire.

The city's agreement with DMB Associates, Inc., and the Arizona State Land Department regarding this matter is attached for reference.

Please let me know if I can be of further assistance.

Best regards,

C. Ashley Couch, PE, CFM

Stormwater Manager and Floodplain Administrator

CAC/cac

c: Kroy Ekblaw, Executive Assistant for Strategic Projects

Derek Earle, Acting Public Works Director

Randy Grant, Planning, Neighborhood, and Transportation Administrator

Michael Clack, Director of Development Services

Joe Padilla, Senior Assistant City Attorney

Mohammad Rahman, Senior Stormwater Engineer

Attachments: Approved Stormwater Storage Waiver for One Scottsdale

City's agreement with DMB Associates, Inc., and ASLD regarding construction of a regional

drainage conveyance facility

Ref 6787-06-17 ASLD

Request for Stormwater Storage Waiver

subn	applicant/dev mitting impro ew Board.	reloper must complete overnent plans. Deni	and submit this fo al of the waiver ma	orm to the city to ay require the	or processing an	d obtain ap mit a revise	proval of waiver reque d site plan to the Deve	est before elopment
Date	1.5.	1Z Project N	ame) NE	500%	TSD /	PLE	
			K.101 +					
	icant Contac	\$39. 8900	Fax ~	Com	pany NameE-mail	and a	000/147	26
Addre		1/1. 0/4-		4. 1/0	Harr	990 E	Moodped	E /. 201
					PHX	42	85021	
Waiv	ver Criteri	<u>a</u>						
den appl proj	nonstrate to licable box ect meets to erunoff for	rage. However, reg that the effect of a vand provide a signe he criteria and that if the project has bee	walver will not in the design of the effect of a was not included in a so	increase the eport and sup aiver will not i torage facility	potential for f porting engines ncrease the po	looding or ering analy tential for f ation, the a	n any property. Cl sis that demonstrat looding on any prop applicant must	heck the e the perty.
prop	perty and th	at the stormwater so	conveyed to this	is specifically location thro	r designed to ac pugh an adequa	commoda tely design	te runoff from the si ned conveyance f <mark>a</mark> c	ubject :ility.
X	and &	evelopment is adjace constructed to handle	ent to a waterco the additional n	unoff.		ineering ar	nalysis shows is des	igned
	2. The de	evelopment is on a	parcel less than	one-half acre	e in size.			
	Storm Ordina	nwater storage requi ance (ESLO), A cor	rements conflict	with requirer s limited to:	nents of the En	vironmenta	ally Sensitive Lands	I
	 Pi 	roperty located in th roperty where more efined in the city Zor	than thirty-five (3	m as defined 35) percent is	in the city Zoni covered by re	ing Ordina quired natu	nce. ural area open spac	e as
	4. The p	roject is located with	hin the Downtow	n Area as de	lineated by the	Figure 1 b	elow.	
	signing belo	ow, I certify that the mentation.	stated project me	eets the waiv	er criteria selec	ted above	as demonstrated by	/ the
	Check	2 1					1.9.12	
	Engineer	Variet 6.	. 4. 1			Date	-	· · · · · ·

7447 E Indian School Road, Suite 105, Scottsdale, AZ 85251 * Phone: 480-312-7000 * Fax: 480-312-7088

Request for Stormwater Storage Waiver

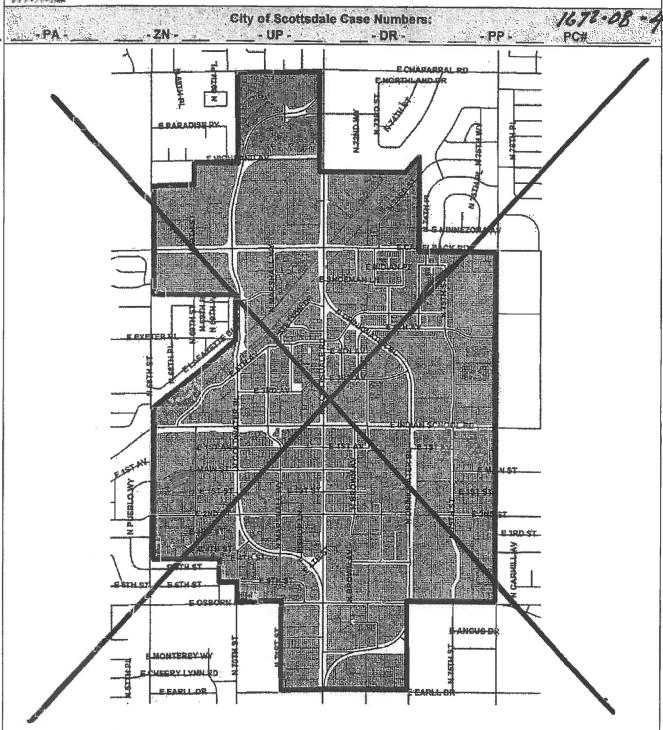


Figure 1. Designated Area for Downtown Stormwater Storage Waivers

Planning, Neighborhood & Transportation Division

7447 E Indian School Road, Suite 105, Scottsdale, AZ 85251 + Phone: 480-312-7000 + Fax: 480-312-7088

Request for Stormwater Storage Waiver

4

Planning, Neighborhood & Transportation Division

7447 E Indian School Road, Suite 105, Scottsdale, AZ 85251 • Phone: 480-312-7000 • Fax: 480-312-7088

Request for Stormwater Storage Waiver

	_			10 -1041001
PA	ZN -	City of Scottsdale Case Numbers: UP DR	PP	1672-08-4 PC#
	1	n-Lieu Fee and In-Kind Contributions	•	
construction, I The fee for thi	he city to provide th andscaping, desigr s cost is \$3.22 per	veloper is required to calculate and cont be waived storage volume, including cos a, construction management, and mainte cubic foot of stormwater storage waived be right to revise the unit cost at any time	its such as land a enance over a 75 I. This unit cost	acquisition, 5-vear design life
contribution ca stormwater re	an serve as part of lated and must con	siders in-kind contributions on a case-boor instead of the calculated in-lieu fee. I stitute a public benefit. In-lieu fees and i ministrator or designee.	In-kind contributi in-kind contributi	ons must be
Project Name	D1	E UCOTTSDAL	左	
The waived st	ormwater storage v	volume is calculated as follows:		
V = CRA; whe V = stormwate C = weighted a R = 100-year/2	e re It storage volume re average runoff coef	equired, in cubic feet, ficient over disturbed area, depth, in feet (DSPM, Appendix 4-1D,)	page 11), and	
Furthermore,				
$V_w = V - V_p$; w $V_w = \text{volume w}$ V = volume re $V_p = \text{volume p}$	<i>r</i> aived, quired, and	C =	T FT Se PT	
An in-lieu f	ee will be paid, bas (\$) = V _w (cu. ft.) x \$	sed on the following calculations and su 3.22 per cubic foot = \$\frac{51,126}{3}	pporting docum	entation:
		made, as follows:	2012	
	de comentii	I regenal drainage	costs of	\$3,300,000.
No In-Lieu	Fee is required. F	Reason:		
Approved by:	C. Manuel	y Cerch	1/31/	2012
Floodplain Admin	istrator or Designee	V	Date	

Planning, Neighborhood and Transportation Division

7447 E Indian School Road, Suite 105, Scottsdale, AZ 85251 • Phone: 480-312-7000 • Fax: 480-312-7088

Attachment to Stormwater Storage Wavier Regional Drainage Solution

This project completes the City of Scottsdale's regional drainage improvements initially constructed a few years ago beginning at the south side of ADOT State Route 101 (just east of Scottsdale Road) and ending just south of Union Hills Road (east of Scottsdale Road). Specifically this project extends a drainage channel along Union Hills Drive and Scottsdale Road; to regional flood control improvements just north of Princess Drive (see Exhibit 1). Drainage will be conveyed to its historic location which is the north side of U.S. Bureau's Central Arizona Project (C.A.P.). Completion of the regional drainage system increases public health and safety with regard to potential regional drainage issues and serves Scottsdale Road, as well, affords reduced detention requirements for two parcels. The ASLD Core South parcel benefits by having 32.5 acres not require onsite detention, the One Scottsdale project benefits by having an outlet thus allowing its detention requirements to be reduced. The privately funded regional drainage solution completes the regional drainage solution for the area and becomes a valuable asset to the residents and businesses in the community at large.

The land area designated for the extension of the drainage channel on the Core South parcel could become the permanent location or the drainage channel could be relocated to another portion of Core South during the land planning process for the parcel. Accordingly, it is anticipated that at the time of disposition of the Core South parcel, a City of Scottsdale drainage easement will be retained for the permanent location of the drainage channel.

Summary:

Total Cost Value

To Complete Regional Drainage Improvements = \$2,300,000 1

COS In Lieu Fee =

\$2,126,390²

\$200,000 \$500,000 \$1,600,000

\$2,300,000

¹ Design Costs: Channel Construction Cost: Land Easement Value

 $^{^2}$ 15.16 acre ft, (reduced detention) x \$3.22/cu ft. = \$2,126,390 Of the 15.16 acre ft of detention being waived; 6.86 ac ft applies to ASLD's 32.5 acres (Exhibit 1) and 8.3 ac ft applies to One Scottsdale. (8.3 + 6.86 = 15.16 ac ft)

A PASSION FOR GREAT PLACES

January 30, 2012

Mr. Darrel Wood Wood/Patel 2051 West Northern Phoenix, AZ 85021

RE: One Scottsdale - Regional Drainage Channel

Dear Darrel:

This letter is in response to your request for information regarding the drainage channel construction estimate submitted as part of the regional drainage channel storm water waiver.

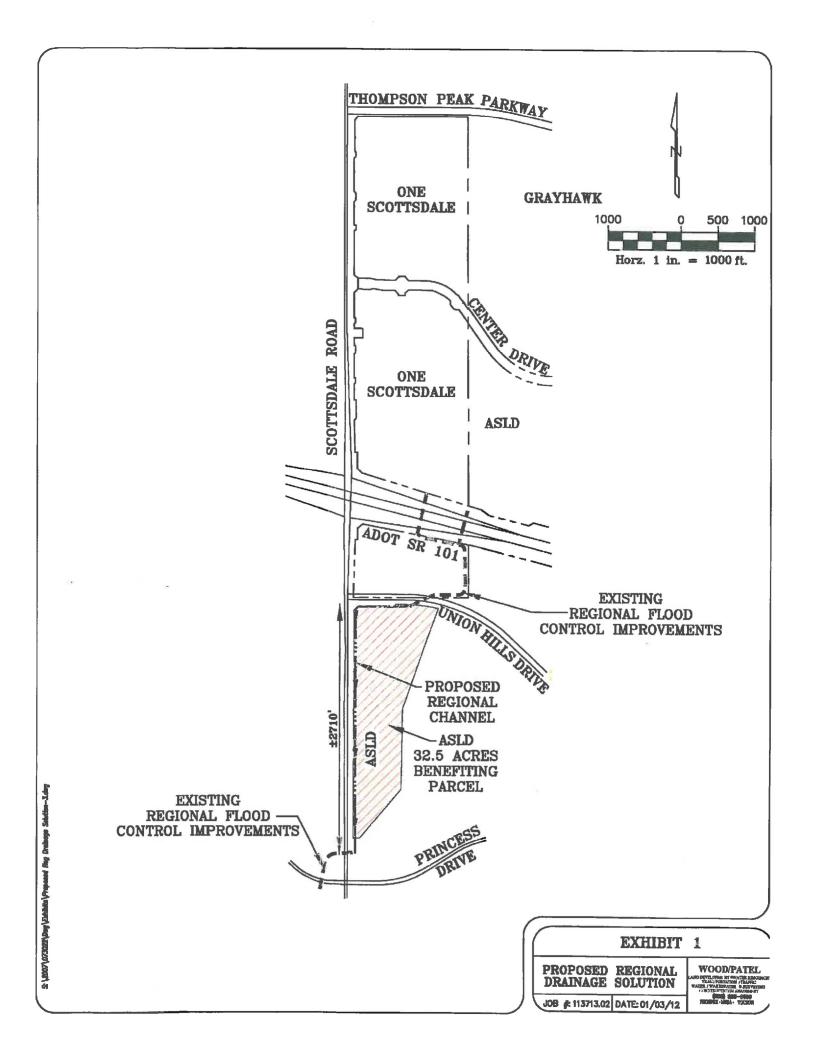
As you know, in late spring of 2011, the potential buyer of the State Land parcel obtained estimates from 5 different construction companies for the cost of the work shown on the approved regional drainage channel drawings prepared by your firm. The information provided to DMB wasn't acceptable to us, but did result in several estimates near the \$500,000 amount.

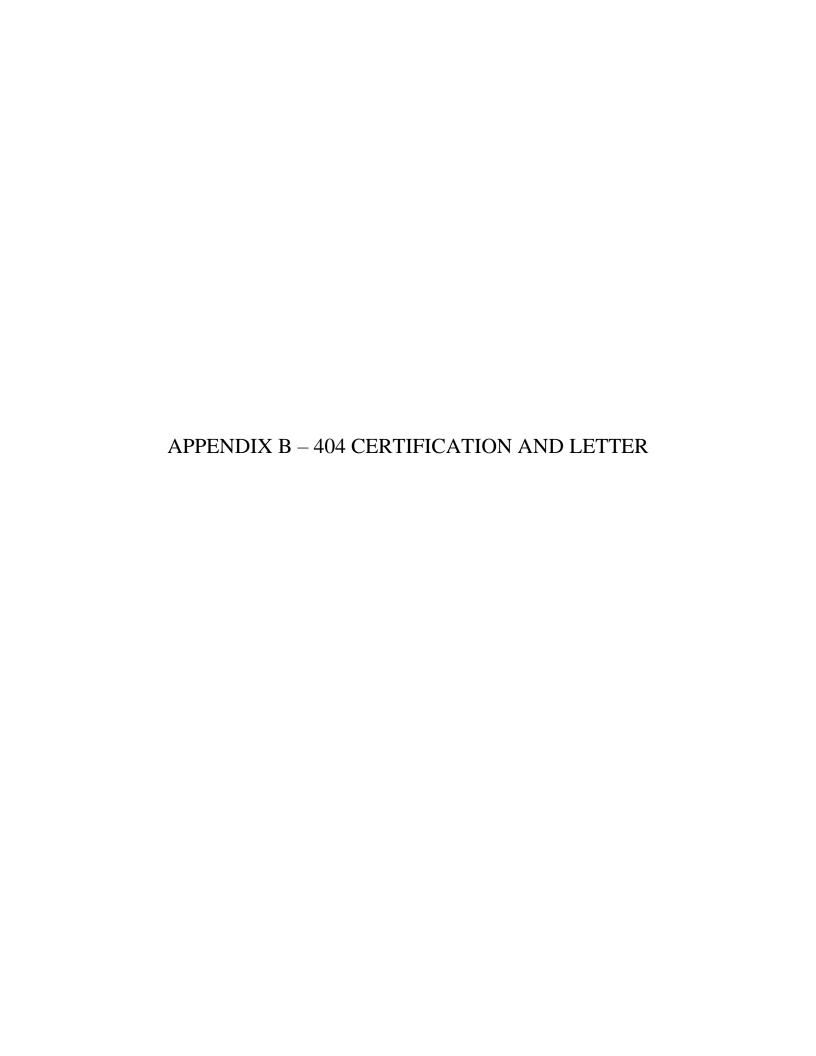
Since the information provided by the potential buyer was the estimated cost of the channel, DMB assembled a complete bid package to determine the cost of the work. The package was delivered in May of 2011 to the following qualified bidders:

Achen Gardner Hunter Markham DCS Contracting

The analysis of the bids resulted in four qualified bids with total costs between \$413,083.75 and \$643,935.90. Based estimates and bids indicating a construction cost of less than \$500,000, DMB, the City of Scottsdale and the State Land Department agreed on a maximum contribution from DMB towards the construction of the channel at \$500,000.

Hopefully, this letter will serve to provide you with the back-up support for the construction costs of the channel requested by the City. Let us know if you required additional information.


Very truly yours,


Michael F. Burke

Vice President of Development

DMB Associates, Inc.

Manager of One Scottsdale Holdings, LLC

Section 404 Certification

Before the City issues development permits for a project, the developer's Engineer or the property owner must certify that it complies with, or is exempt from, Section 404 of the Clean Water Act of the United States. Section 404, administered by the U.S. Army Corps of Engineers (COE), regulates the discharge of dredged or fill material into a wetland, lake, (including dry lakes), river, stream (including intermittent streams, ephemeral washes, and arroyos), or other waters of the United States.

Prior to submittal of improvement plans to Project Review the form below must be completed (and submitted with the improvement plans) as evidence of compliance

		Certification of Section 404 Permit Status
		me/Description: One Scottsdale Plan Check No
A regi below		ed Engineer or the property Owner must check the applicable condition and certify by signing t:
1.	Sect wate	ion 404 <u>does</u> apply to the project because there will be a discharge of dredged or fill material to ers of the U.S., and:
1		A Section 404 Permit has already been obtained for this project.
		-or-
I		This project qualifies for a "Nationwide Permit," and this project will meet all terms and conditions of the applicable nationwide permit.
2. Sec	ction	404 does not apply to the project because:
		No watercourses or other waters of the U.S. exist on the property.
J	X	No jurisdictional waters of the U.S. exist on the property. Attached is a copy of the COE's Jurisdictional Determination.
, I		Watercourses or other waters of the U.S. do exist on the property, but the project will not involve the discharge of dredged or fill material into any of these waters.
	11	Signature and Seal, or Owner's Signature A

Planning & Development Services Department

7447 E Indian School Road, Suite 100, Scottsdale, AZ 85251 • Phone: 480-312-2500 • Fax: 480-312-7088

DEPARTMENT OF THE ARMY

LOS ANGELES DISTRICT, CORPS OF ENGINEERS
ARIZONA-NEVADA AREA OFFICE
3636 NORTH CENTRAL AVENUE, SUITE 760
PHOENIC, ARIZONA 85012-1936

REPLYTO

February 5, 2002

Office of the Chief Regulatory Branch

Corrigan Real Estate Investment LLC and Corrigan Land & Livestock Limited Partnership C/O Robert D. Anderson
Withey, Anderson & Morris
3101 North Central Avenue, Suite 1690
Phoenix, Arizona 85012-2615

File Number: 2002-00484-RWF

Dear Mr. Anderson:

Reference is made to your letter of July 5, 2001 and the accompanying information provided by Wood, Patel & Associates in which you inquired as to whether or not a Clean Water Act Section 404 permit is required from the U.S. Army Corps of Engineers to construct a commercial development within a 160 acre parcel (Stack 40) situated along Scottsdale Road, north of the Central Arizona Project squeduct at (Section 26, T4N, R4E), Scottsdale, Maricopa County, Arizona.

We have reviewed our records and have determined that the waters of the United States that historically transversed the subject property have been impacted and redirected by the construction of the GrayHawk development. The washes observed on the Stack 40 parcel are remnants of watercourses that no longer receive upstream flows. Since there are no longer any waters of the United States within the Stack 40 proposed project area, no Section 404 permit is required from our office.

The receipt of your application and/or letter is appreciated. If you have questions, please contact Ron Fowler at (602) 640-5385 x 226.

Sincerely.

Cindy Lester

Chief, Arizona Section

Regulatory Branch

Enclosure

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.6672°, Longitude: -111.9242° Elevation: 1651.8 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

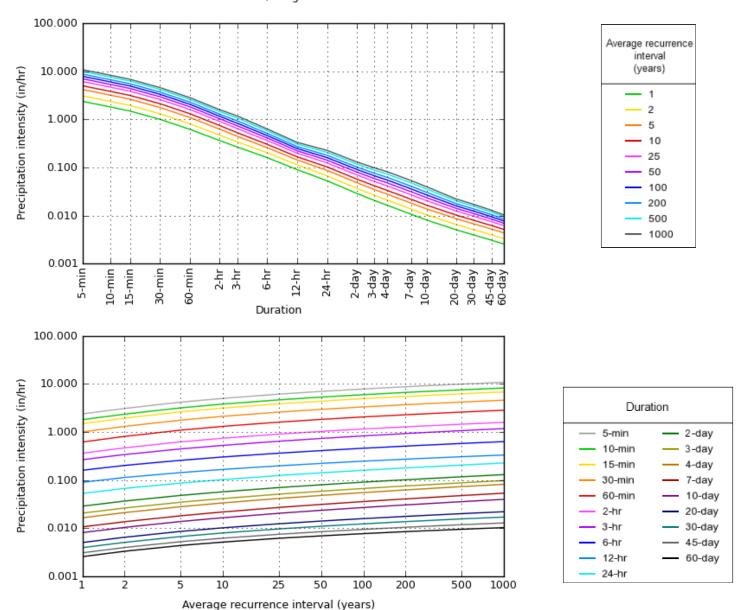
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (y	years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	2.38 (1.97-2.90)	3.10 (2.59-3.79)	4.18 (3.46-5.11)	5.00 (4.13-6.11)	6.13 (4.97-7.44)	6.98 (5.59-8.41)	7.86 (6.18-9.46)	8.74 (6.77-10.5)	9.92 (7.49-11.9)	10.8 (8.00-13.1)
10-min	1.81 (1.50-2.21)	2.35 (1.97-2.89)	3.18 (2.63-3.89)	3.81 (3.14-4.64)	4.66 (3.78-5.66)	5.32 (4.25-6.40)	5.98 (4.70-7.19)	6.65 (5.15-7.99)	7.55 (5.69-9.08)	8.24 (6.09-9.93)
15-min	1.49 (1.24-1.83)	1.94 (1.63-2.39)	2.63 (2.18-3.21)	3.15 (2.59-3.84)	3.85 (3.12-4.68)	4.39 (3.52-5.29)	4.94 (3.89-5.95)	5.50 (4.25-6.60)	6.24 (4.70-7.51)	6.81 (5.03-8.21)
30-min	1.00 (0.834-1.23)	1.31 (1.10-1.61)	1.77 (1.46-2.16)	2.12 (1.75-2.58)	2.59 (2.10-3.15)	2.96 (2.37-3.56)	3.33 (2.62-4.00)	3.70 (2.86-4.45)	4.20 (3.17-5.06)	4.58 (3.39-5.53)
60-min	0.621 (0.516-0.761)	0.811 (0.678-0.995)	1.09 (0.906-1.34)	1.31 (1.08-1.60)	1.61 (1.30-1.95)	1.83 (1.47-2.21)	2.06 (1.62-2.48)	2.29 (1.77-2.75)	2.60 (1.96-3.13)	2.84 (2.10-3.42)
2-hr	0.362 (0.306-0.436)	0.469 (0.396-0.566)	0.624 (0.524-0.748)	0.744 (0.617-0.890)	0.906 (0.744-1.08)	1.03 (0.834-1.22)	1.16 (0.920-1.37)	1.28 (1.01-1.52)	1.46 (1.11-1.72)	1.59 (1.19-1.89)
3-hr	0.266 (0.224-0.325)	0.341 (0.288-0.418)	0.445 (0.374-0.544)	0.528 (0.439-0.641)	0.644 (0.527-0.777)	0.736 (0.595-0.883)	0.831 (0.659-0.998)	0.932 (0.727-1.12)	1.07 (0.809-1.28)	1.18 (0.871-1.41)
6-hr	0.160 (0.138-0.190)	0.202 (0.174-0.241)	0.258 (0.221-0.305)	0.303 (0.257-0.356)	0.364 (0.304-0.426)	0.411 (0.339-0.480)	0.460 (0.373-0.536)	0.511 (0.407-0.596)	0.579 (0.449-0.675)	0.632 (0.480-0.739)
12-hr	0.090 (0.078-0.106)	0.114 (0.098-0.133)	0.144 (0.123-0.168)	0.167 (0.143-0.194)	0.198 (0.168-0.231)	0.223 (0.186-0.258)	0.248 (0.204-0.287)	0.273 (0.222-0.316)	0.307 (0.243-0.357)	0.333 (0.259-0.390)
24-hr	0.053 (0.046-0.061)	0.067 (0.059-0.078)	0.087 (0.076-0.101)	0.103 (0.089-0.119)	0.125 (0.107-0.144)	0.142 (0.121-0.164)	0.160 (0.136-0.185)	0.179 (0.150-0.207)	0.206 (0.169-0.238)	0.227 (0.184-0.264)
2-day	0.029 (0.025-0.033)	0.037 (0.032-0.042)	0.048 (0.042-0.055)	0.057 (0.049-0.066)	0.070 (0.060-0.080)	0.080 (0.068-0.092)	0.091 (0.076-0.105)	0.102 (0.085-0.118)	0.118 (0.096-0.136)	0.130 (0.105-0.152)
3-day	0.021 (0.018-0.024)	0.026 (0.023-0.030)	0.035 (0.030-0.040)	0.041 (0.036-0.047)	0.051 (0.044-0.058)	0.059 (0.050-0.067)	0.067 (0.057-0.077)	0.076 (0.064-0.087)	0.088 (0.073-0.102)	0.098 (0.080-0.114)
4-day	0.017 (0.015-0.019)	0.021 (0.019-0.024)	0.028 (0.025-0.032)	0.034 (0.029-0.038)	0.042 (0.036-0.047)	0.048 (0.042-0.055)	0.055 (0.047-0.063)	0.063 (0.053-0.072)	0.073 (0.061-0.084)	0.082 (0.067-0.095)
7-day	0.011 (0.009-0.012)	0.014 (0.012-0.016)	0.018 (0.016-0.021)	0.022 (0.019-0.025)	0.027 (0.023-0.031)	0.031 (0.027-0.036)	0.036 (0.030-0.041)	0.041 (0.034-0.047)	0.048 (0.040-0.055)	0.053 (0.044-0.062)
10-day	0.008 (0.007-0.009)	0.010 (0.009-0.012)	0.014 (0.012-0.016)	0.017 (0.014-0.019)	0.020 (0.018-0.023)	0.024 (0.020-0.027)	0.027 (0.023-0.031)	0.031 (0.026-0.035)	0.036 (0.030-0.041)	0.040 (0.033-0.046)
20-day	0.005 (0.004-0.006)	0.006 (0.006-0.007)	0.009 (0.008-0.010)	0.010 (0.009-0.012)	0.012 (0.011-0.014)	0.014 (0.012-0.016)	0.016 (0.014-0.018)	0.018 (0.015-0.020)	0.020 (0.017-0.023)	0.022 (0.018-0.026)
30-day	0.004 (0.003-0.004)	0.005 (0.004-0.006)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.010 (0.008-0.011)	0.011 (0.010-0.012)	0.012 (0.011-0.014)	0.014 (0.012-0.016)	0.016 (0.013-0.018)	0.017 (0.014-0.020)
45-day	0.003 (0.003-0.003)	0.004 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.007 (0.007-0.008)	0.008 (0.007-0.010)	0.009 (0.008-0.011)	0.010 (0.009-0.012)	0.012 (0.010-0.014)	0.013 (0.011-0.015)
60-day	0.003 (0.002-0.003)	0.003 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.008 (0.007-0.010)	0.010 (0.008-0.011)	0.010 (0.009-0.012)

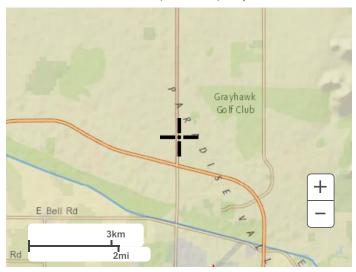

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

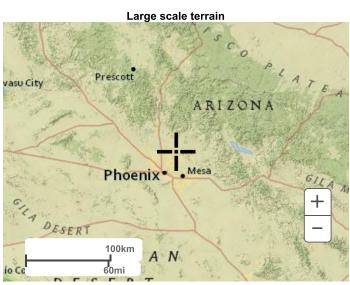
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
Please refer to NOAA Atlas 14 document for more information.

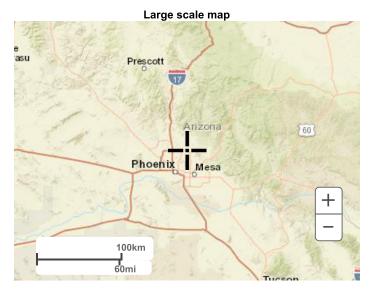
Back to Top

PF graphical

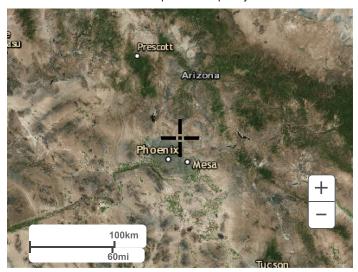
PDS-based intensity-duration-frequency (IDF) curves Latitude: 33.6672°, Longitude: -111.9242°


NOAA Atlas 14, Volume 1, Version 5


Created (GMT): Tue Jan 22 15:32:05 2019


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

ONE SCOTTSDALE CEC PN:180-168 DATE: JULY 2019 PREPARED BY: BB

CHECKED BY: JSE

CULVERT	AREA	AREA
AREA ID	S.F.	A.C.
C1	6,569.13	0.15
C2	230,170.58	5.28
C3	280,605.76	6.44
C4	595,727.01	13.68
C5	668,012.40	15.34
C6	711,215.79	16.33
C7	76,609.42	1.76
C8	115,171.59	2.64
C9	139,537.80	3.20
C10	218,266.45	5.01
C11	1,268,779.00	29.13

Page 1 Project Reference: 215-033 3/31/2016

ID			S	ub Basin Data				Sub Basin Hydrology Summary					
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major	Basin ID: 0)1											
A1	1.0	440	66.00	59.50	78.0	0.040	Q (cfs)	2.3	3.4	4.2	5.4	6.1	6.9
	-						Ć	0.79	0.80	0.82	0.85	0.85	0.85
							CA (ac)	0.81	0.82	0.84	0.87	0.87	0.87
							Tc (min)	6	6	5	5	5	5
							i (in/hr)	2.89	4.09	5.00	6.16	7.01	7.88
A2	1.1	460	60.40	54.40	68.9	0.040	Q (cfs)	1.8	2.6	3.4	4.3	5.0	5.7
							С	0.61	0.61	0.65	0.66	0.68	0.68
							CA (ac)	0.65	0.65	0.69	0.70	0.72	0.72
							Tc (min)	7	6	6	5	5	5
							i (in/hr)	2.82	4.00	4.89	6.16	7.01	7.88
АЗ	5.9	1,200	64.30	49.00	67.3	0.035	Q (cfs)	11.1	15.8	20.6	26.4	32.0	36.8
							С	0.83	0.83	0.86	0.86	0.89	0.89
							CA (ac)	4.93	4.93	5.11	5.11	5.29	5.29
							Tc (min)	11	10	9	8	8	7
							i (in/hr)	2.25	3.21	4.04	5.17	6.05	6.95
A4	0.7	460	65.00	60.00	57.4	0.082	Q (cfs)	0.7	1.0	1.3	1.6	2.0	2.3
							С	0.46	0.46	0.49	0.49	0.52	0.52
							CA (ac)	0.30	0.30	0.32	0.32	0.34	0.34
							Tc (min)	12	10	9	8	8	8
							i (in/hr)	2.23	3.19	4.00	5.11	5.98	6.88
A5	0.7	200	62.80	58.50	113.5	0.041	Q (cfs)	1.8	2.4	3.0	3.7	4.3	4.9
							С	0.86	0.86	0.89	0.89	0.92	0.92
							CA (ac)	0.58	0.58	0.60	0.60	0.62	0.62
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
A6	0.3	200	58.50	56.00	66.0	0.087	Q (cfs)	0.3	0.5	0.7	0.9	1.1	1.2
							С	0.37	0.37	0.42	0.42	0.45	0.45

Page 2 Project Reference: 215-033 3/31/2016

ID			Sı	ub Basin Data				Sub Basin Hydrology Summary					
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major	Basin ID: 0	1											
							CA (ac)	0.12	0.12	0.14	0.14	0.15	0.15
							Tc (min)	7	6	6	5	5	5
							i (in/hr)	2.82	4.00	4.89	6.16	7.01	7.88
A7	0.7	300	53.50	52.00	26.4	0.082	Q (cfs)	0.9	1.3	1.7	2.2	2.7	3.1
							С	0.60	0.60	0.63	0.63	0.66	0.66
							CA (ac)	0.41	0.41	0.43	0.43	0.46	0.46
							Tc (min)	12	10	10	9	8	8
							i (in/hr)	2.21	3.16	3.93	5.05	5.92	6.80
A8	0.9	460	48.70	44.00	53.9	0.081	Q (cfs)	1.2	1.7	2.1	2.7	3.4	3.9
							С	0.60	0.60	0.63	0.63	0.66	0.66
							CA (ac)	0.52	0.52	0.54	0.54	0.57	0.57
							Tc (min)	12	10	9	9	8	8
							i (in/hr)	2.22	3.18	3.98	5.08	5.95	6.88
A9	0.6	270	43.50	42.00	29.3	0.041	Q (cfs)	0.9	1.3	1.7	2.1	2.5	2.8
							С	0.55	0.55	0.58	0.58	0.61	0.61
							CA (ac)	0.32	0.32	0.34	0.34	0.36	0.36
							Tc (min)	7	6	6	5	5	5
							i (in/hr)	2.80	3.98	4.87	6.12	7.01	7.88
A10	1.2	470	39.20	36.00	35.9	0.040	Q (cfs)	1.9	2.7	3.4	4.3	5.3	6.1
							С	0.61	0.61	0.64	0.64	0.67	0.67
							CA (ac)	0.73	0.73	0.76	0.76	0.80	0.80
							Tc (min)	9	8	7	6	6	6
							i (in/hr)	2.54	3.64	4.51	5.70	6.64	7.59
A11	1.6	430	55.20	50.60	56.5	0.039	Q (cfs)	3.8	5.5	6.9	8.7	10.3	11.6
							С	0.84	0.84	0.87	0.87	0.90	0.90
							CA (ac)	1.37	1.37	1.42	1.42	1.47	1.47
							Tc (min)	7	6	6	5	5	5
							i (in/hr)	2.80	3.98	4.89	6.12	7.01	7.88

Page 3 Project Reference: 215-033 3/31/2016

ID			Sı	ub Basin Data					S	Sub Basin Hyd	drology Summ	ary	
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major I	Basin ID: 0)1											
A12	4.5	860	53.60	41.40	74.9	0.036	Q (cfs)	9.6	13.8	17.8	22.4	27.0	30.9
							Ć	0.86	0.86	0.89	0.89	0.92	0.92
							CA (ac)	3.84	3.84	3.98	3.98	4.11	4.11
							Tc (min)	9	8	7	7	6	6
							i (in/hr)	2.50	3.60	4.46	5.64	6.56	7.51
A13	0.7	475	56.00	47.00	100.0	0.082	Q (cfs)	0.7	1.0	1.3	1.6	2.1	2.4
							C	0.39	0.39	0.42	0.42	0.45	0.45
							CA (ac)	0.27	0.27	0.29	0.29	0.32	0.32
							Tc (min)	10	8	8	7	7	6
							i (in/hr)	2.43	3.52	4.36	5.55	6.46	7.38
A14	0.6	530	47.00	37.00	99.6	0.083	Q (cfs)	0.5	0.8	1.1	1.4	1.7	1.9
							С	0.39	0.39	0.42	0.42	0.45	0.45
							CA (ac)	0.23	0.23	0.25	0.25	0.27	0.27
							Tc (min)	10	9	8	7	7	7
							i (in/hr)	2.35	3.39	4.22	5.40	6.28	7.22
A15	0.2	180	37.00	35.00	58.7	0.044	Q (cfs)	0.2	0.3	0.4	0.5	0.6	0.7
							С	0.39	0.39	0.42	0.42	0.45	0.45
							CA (ac)	0.08	0.08	0.08	0.08	0.09	0.09
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
A16	0.3	240	36.00	34.00	44.0	0.088	Q (cfs)	0.4	0.5	0.7	0.9	1.1	1.2
							С	0.53	0.53	0.56	0.56	0.59	0.59
							CA (ac)	0.14	0.14	0.15	0.15	0.16	0.16
							Tc (min)	9	8	7	7	6	6
							i (in/hr)	2.51	3.62	4.48	5.67	6.60	7.55
A17	0.4	140	33.50	32.00	56.6	0.086	Q (cfs)	0.4	0.6	0.8	1.0	1.2	1.3
							С	0.42	0.42	0.45	0.45	0.48	0.48

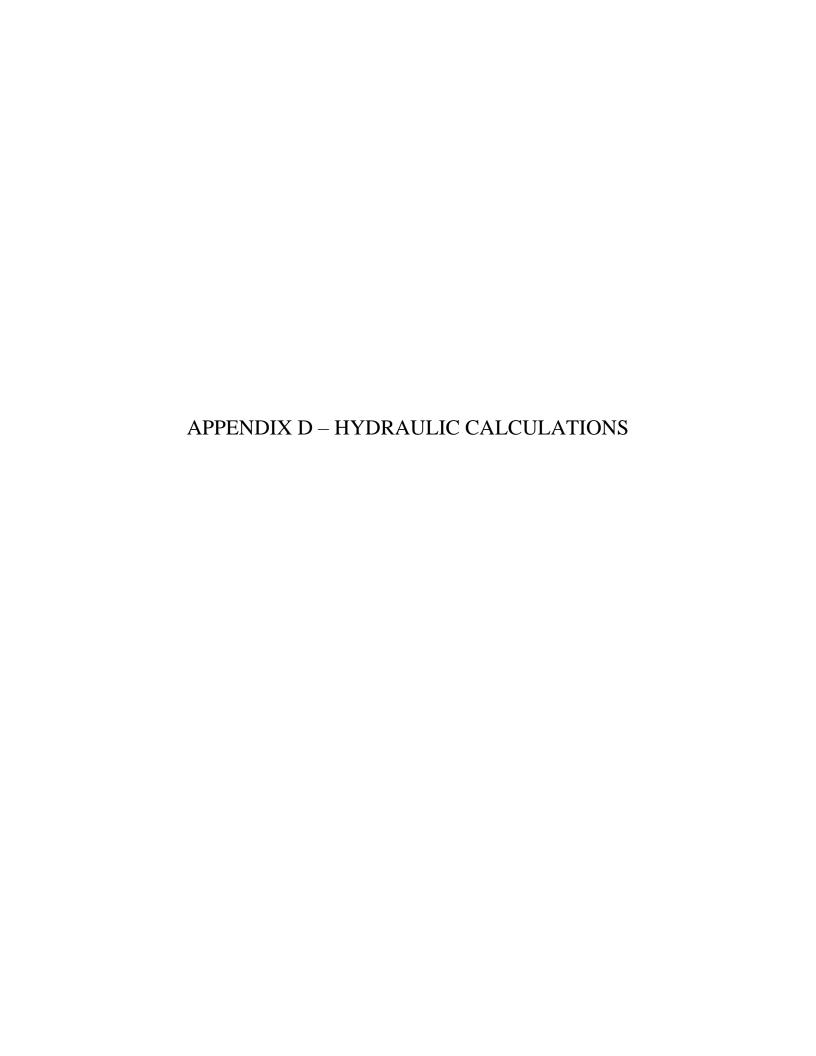
Page 4 Project Reference: 215-033 3/31/2016

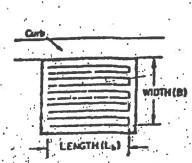
ID			Sı	ub Basin Data				Sub Basin Hydrology Summary					
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major	Basin ID: 0)1											
							CA (ac)	0.15	0.15	0.16	0.16	0.17	0.17
							Tc (min)	6	5	5	5	5	5
							i (in/hr)	2.97	4.18	5.03	6.16	7.01	7.88
O1	0.8	330	65.00	59.50	88.0	0.041	Q (cfs)	2.3	3.2	3.8	4.6	5.3	5.9
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.75	0.75	0.75	0.75	0.75	0.75
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.07	4.20	5.03	6.16	7.01	7.88
O2	1.2	610	59.50	50.20	80.5	0.039	Q (cfs)	3.1	4.4	5.5	6.9	8.0	9.1
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	1.15	1.15	1.15	1.15	1.15	1.15
							Tc (min)	8	7	6	6	5	5
							i (in/hr)	2.71	3.85	4.74	5.99	6.93	7.88
О3	0.7	340	50.20	45.20	77.6	0.041	Q (cfs)	1.9	2.6	3.1	3.8	4.3	4.9
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.62	0.62	0.62	0.62	0.62	0.62
							Tc (min)	6	5	5	5	5	5
							i (in/hr)	3.02	4.20	5.03	6.16	7.01	7.88
O4	1.0	520	45.20	36.60	87.3	0.040	Q (cfs)	2.6	3.6	4.5	5.6	6.4	7.2
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.91	0.91	0.91	0.91	0.91	0.91
							Tc (min)	7	6	5	5	5	5
							i (in/hr)	2.83	4.00	4.92	6.16	7.01	7.88
O5	0.4	340	66.00	60.60	83.9	0.043	Q (cfs)	1.0	1.4	1.7	2.0	2.3	2.6
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.33	0.33	0.33	0.33	0.33	0.33
							Tc (min)	6	5	5	5	5	5
							i (in/hr)	3.02	4.20	5.03	6.16	7.01	7.88

Page 5 Project Reference: 215-033 3/31/2016

ID			Sı	ub Basin Data					S	Sub Basin Hyd	drology Summ	ary	
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major E	Basin ID: 0)1											
O6	0.2	180	60.60	58.00	76.3	0.045	Q (cfs)	0.5	0.7	0.9	1.0	1.2	1.3
							Ć	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.17	0.17	0.17	0.17	0.17	0.17
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
07	0.1	140	58.00	56.40	60.3	0.045	Q (cfs)	0.4	0.5	0.7	0.8	0.9	1.0
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.13	0.13	0.13	0.13	0.13	0.13
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
O8	0.1	110	56.40	54.40	96.0	0.046	Q (cfs)	0.3	0.4	0.5	0.6	0.7	0.8
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.10	0.10	0.10	0.10	0.10	0.10
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
O9	0.2	190	54.40	51.70	75.0	0.044	Q (cfs)	0.6	0.8	1.0	1.2	1.3	1.5
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.19	0.19	0.19	0.19	0.19	0.19
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
O10	0.3	300	51.70	47.10	81.0	0.043	Q (cfs)	0.9	1.2	1.5	1.8	2.0	2.3
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.29	0.29	0.29	0.29	0.29	0.29
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.07	4.20	5.03	6.16	7.01	7.88
O11	0.3	320	47.10	42.40	77.6	0.043	Q (cfs)	1.0	1.3	1.6	2.0	2.2	2.5
							С	0.95	0.95	0.95	0.95	0.95	0.95

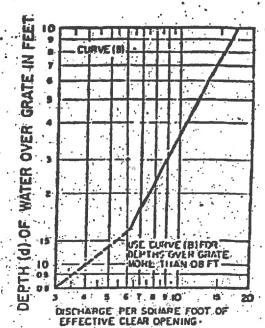
Page 6 Project Reference: 215-033 3/31/2016


ID			Su	ub Basin Data				Sub Basin Hydrology Summary					
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major	Basin ID: 0	1											
							CA (ac)	0.32	0.32	0.32	0.32	0.32	0.32
							Tc (min)	6	5	5	5	5	5
							i (in/hr)	3.02	4.20	5.03	6.16	7.01	7.88
O12	0.1	110	42.40	39.40	144.0	0.045	Q (cfs)	0.4	0.5	0.7	0.8	0.9	1.0
							С	0.95	0.95	0.95	0.95	0.95	0.95
							CA (ac)	0.13	0.13	0.13	0.13	0.13	0.13
							Tc (min)	5	5	5	5	5	5
							i (in/hr)	3.11	4.20	5.03	6.16	7.01	7.88
C1	1.8	720	61.00	58.50	18.3	0.077	Q (cfs)	2.3	3.3	4.4	5.6	6.7	7.7
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	1.42	1.42	1.48	1.48	1.53	1.53
							Tc (min)	22	19	18	16	15	15
							i (in/hr)	1.61	2.35	2.94	3.75	4.37	5.06
C2	3.1	1,000	61.00	56.00	26.4	0.073	Q (cfs)	4.0	5.8	7.5	9.6	11.7	13.4
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	2.51	2.51	2.61	2.61	2.70	2.70
							Tc (min)	23	20	18	17	16	15
							i (in/hr)	1.58	2.31	2.89	3.69	4.32	4.96
C3	5.2	1,340	61.00	52.00	35.5	0.070	Q (cfs)	6.4	9.4	12.2	15.6	19.0	21.9
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	4.17	4.17	4.32	4.32	4.48	4.48
							Tc (min)	24	21	19	18	16	16
							i (in/hr)	1.53	2.26	2.83	3.62	4.25	4.88
C4	15.3	1,620	61.00	42.00	61.9	0.064	Q (cfs)	20.6	29.9	38.6	49.0	59.8	69.4
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	12.20	12.20	12.66	12.66	13.12	13.12
							Tc (min)	21	18	16	15	14	13
							i (in/hr)	1.69	2.45	3.05	3.87	4.56	5.29

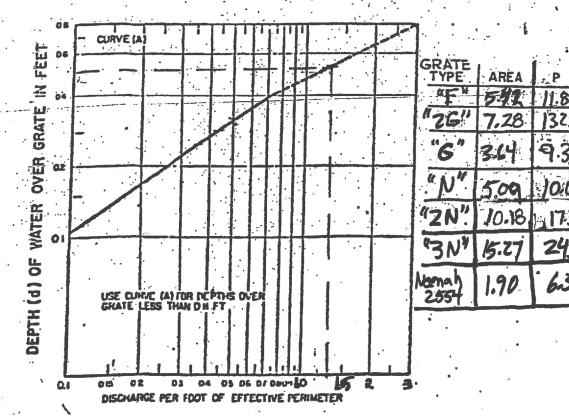

City of Scottsdale Drainage Design Management System SUB BASINS

Page 7 Project Reference: 215-033 3/31/2016

ID			Sı	ub Basin Data					S	Sub Basin Hyd	drology Summ	nary	
	Area (acres)	Length (ft)	USGE	DSGE	Slope (ft/mi)	Kb		2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
Major	Basin ID: 0)1											
C5	16.4	2,000	61.00	36.00	66.0	0.063	Q (cfs)	20.9	30.6	39.9	50.8	61.4	71.0
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	13.15	13.15	13.65	13.65	14.14	14.14
							Tc (min)	23	20	18	17	16	15
							i (in/hr)	1.59	2.33	2.92	3.72	4.34	5.02
C6	26.6	2,210	61.00	33.50	65.7	0.060	Q (cfs)	33.0	48.8	63.4	80.9	98.0	112.9
							С	0.80	0.80	0.83	0.83	0.86	0.86
							CA (ac)	21.30	21.30	22.10	22.10	22.90	22.90
							Tc (min)	24	20	19	17	16	15
							i (in/hr)	1.55	2.29	2.87	3.66	4.28	4.93


* Non default value (stSubBasRat.rpt)

P= 28+Lb


A= AREA OF CLEAR OF CHING IN GRATE
TO ALLOW FOR CHOGGING DIVIDE P OR
A BY 2 BEFORE OBTAINING 4.
WITHOUT CURB P=2(8+L)

Q= 12.2ct / Z Q=6.1ct s MA6 535, Type F @ 05' Detth Q|L= 13 Q=1.3×1183 Q=1.3×1183 Q=1.3×1183

MAG 537, Type 6 @ 0.5' Dath

> Neenah 2554 0.5' Depth .Q/L > 1.3 Q = 1.3 x 6.30 Q = 82cts/2 Q = 4.1 cts

BUREAU OF PUBLIC ROADS

HYDRAULIC CAPACITY OF GRATE INLET IN SUMP

Hydraulic Analysis Report

Project Data

Project Title: One Scottsdale

Designer:

Project Date: Thursday, November 05, 2015

Project Units: U.S. Customary Units

Notes:

Channel Analysis: Section A-A

Notes:

Input Parameters

Channel Type: Trapezoidal

Side Slope 1 (Z1): 4.0000 ft/ft

Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 152.2000 cfs

Result Parameters

Depth: 2.0460 ft

Area of Flow: 33.1137 ft^2 Wetted Perimeter: 24.8722 ft Average Velocity: 4.5963 ft/s

Top Width: 24.3684 ft
Froude Number: 0.6948
Critical Depth: 1.6890 ft
Critical Velocity: 6.1070 ft/s
Critical Slope: 0.0174 ft/ft
Critical Top Width: 21.5118 ft

Calculated Max Shear Stress: 1.0214 lb/ft^2 Calculated Avg Shear Stress: 0.6646 lb/ft^2

Channel Analysis: Section B-B

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 165.6000 cfs

Result Parameters

Depth: 2.1315 ft

Area of Flow: 35.2263 ft^2 Wetted Perimeter: 25.5772 ft Average Velocity: 4.7010 ft/s

Top Width: 25.0524 ft
Froude Number: 0.6986
Critical Depth: 1.7666 ft
Critical Velocity: 6.2219 ft/s
Critical Slope: 0.0172 ft/ft

Critical Top Width: 22.1325 ft

Calculated Max Shear Stress: 1.0641 lb/ft^2 Calculated Avg Shear Stress: 0.6875 lb/ft^2

Channel Analysis: Section C-C

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 174.1000 cfs

Result Parameters

Depth: 2.1838 ft

Area of Flow: 36.5472 ft^2 Wetted Perimeter: 26.0084 ft Average Velocity: 4.7637 ft/s

Top Width: 25.4707 ft
Froude Number: 0.7008
Critical Depth: 1.8140 ft
Critical Velocity: 6.2909 ft/s

Critical Slope: 0.0171 ft/ft

Critical Top Width: 22.5122 ft

Calculated Max Shear Stress: 1.0902 lb/ft^2 Calculated Avg Shear Stress: 0.7015 lb/ft^2

Channel Analysis: Section D-D

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 221.6000 cfs

Result Parameters

Depth: 2.4509 ft

Area of Flow: 43.6356 ft^2 Wetted Perimeter: 28.2109 ft Average Velocity: 5.0784 ft/s

Top Width: 27.6074 ft
Froude Number: 0.7119
Critical Depth: 2.0585 ft
Critical Velocity: 6.6311 ft/s
Critical Slope: 0.0165 ft/ft

Critical Top Width: 24.4683 ft

Calculated Max Shear Stress: 1.2235 lb/ft^2 Calculated Avg Shear Stress: 0.7721 lb/ft^2

Channel Analysis: Section E-E

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 223.2000 cfs

Result Parameters

Depth: 2.4594 ft

Area of Flow: 43.8700 ft^2 Wetted Perimeter: 28.2808 ft Average Velocity: 5.0878 ft/s

Top Width: 27.6753 ft
Froude Number: 0.7121
Critical Depth: 2.0662 ft
Critical Velocity: 6.6414 ft/s
Critical Slope: 0.0165 ft/ft

Critical Top Width: 24.5299 ft

Calculated Max Shear Stress: 1.2277 lb/ft^2 Calculated Avg Shear Stress: 0.7744 lb/ft^2

Channel Analysis: Section F-F

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0080 ft/ft

Manning's n: 0.0350 Flow: 226.0000 cfs

Result Parameters

Depth: 2.4735 ft

Area of Flow: 44.2619 ft^2 Wetted Perimeter: 28.3973 ft Average Velocity: 5.1060 ft/s

7. 14" H. 07 7000 ft

Top Width: 27.7883 ft Froude Number: 0.7130 Critical Depth: 2.0797 ft

Critical Velocity: 6.6594 ft/s Critical Slope: 0.0165 ft/ft Critical Top Width: 24.6372 ft

Calculated Max Shear Stress: 1.2348 lb/ft^2 Calculated Avg Shear Stress: 0.7781 lb/ft^2

Channel Analysis: Section G-G

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 3.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 6.9000 cfs

Result Parameters

Depth: 0.5732 ft

Area of Flow: 3.0335 ft² Wetted Perimeter: 7.7263 ft Average Velocity: 2.2746 ft/s

Top Width: 7.5852 ft

Froude Number: 0.6339 Critical Depth: 0.4459 ft

Critical Velocity: 3.2346 ft/s Critical Slope: 0.0266 ft/ft Critical Top Width: 6.5674 ft

Calculated Max Shear Stress: 0.3576 lb/ft^2 Calculated Avg Shear Stress: 0.2450 lb/ft^2

Channel Analysis: Section H-H

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 5.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 5.7000 cfs

Result Parameters

Depth: 0.4196 ft

Area of Flow: 2.8024 ft^2 Wetted Perimeter: 8.4603 ft Average Velocity: 2.0340 ft/s

Top Width: 8.3570 ft
Froude Number: 0.6190
Critical Depth: 0.3139 ft
Critical Velocity: 2.9023 ft/s
Critical Slope: 0.0283 ft/ft

Critical Top Width: 7.5115 ft

Calculated Max Shear Stress: 0.2618 lb/ft^2 Calculated Avg Shear Stress: 0.2067 lb/ft^2

Channel Analysis: Section I-I

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 5.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 6.2000 cfs

Result Parameters

Depth: 0.4399 ft

Area of Flow: 2.9734 ft² Wetted Perimeter: 8.6274 ft Average Velocity: 2.0851 ft/s

Top Width: 8.5191 ft
Froude Number: 0.6220
Critical Depth: 0.3305 ft
Critical Velocity: 2.9674 ft/s

Critical Slope: 0.0279 ft/ft Critical Top Width: 7.6439 ft

Calculated Max Shear Stress: 0.2745 lb/ft^2 Calculated Avg Shear Stress: 0.2151 lb/ft^2

Channel Analysis: Section J-J

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 3.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 11.6000 cfs

Result Parameters

Depth: 0.7414 ft

Area of Flow: 4.4225 ft² Wetted Perimeter: 9.1134 ft Average Velocity: 2.6229 ft/s

Top Width: 8.9309 ft Froude Number: 0.6569

Critical Depth: 0.5932 ft

Critical Velocity: 3.6396 ft/s Critical Slope: 0.0246 ft/ft Critical Top Width: 7.7456 ft

Calculated Max Shear Stress: 0.4626 lb/ft^2 Calculated Avg Shear Stress: 0.3028 lb/ft^2

Channel Analysis: Section K-K

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 20.0000 ft/ft

Channel Width: 6.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 1.1500 cfs

Result Parameters

Depth: 0.1455 ft

Area of Flow: 1.1266 ft^2 Wetted Perimeter: 9.5124 ft Average Velocity: 1.0208 ft/s

Top Width: 9.4909 ft Froude Number: 0.5221 Critical Depth: 0.0976 ft Critical Velocity: 1.6432 ft/s

Critical Slope: 0.0409 ft/ft Critical Top Width: 8.3422 ft

Calculated Max Shear Stress: 0.0908 lb/ft^2 Calculated Avg Shear Stress: 0.0739 lb/ft^2

Channel Analysis: Section L-L

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.0000 ft/ft Side Slope 2 (Z2): 50.0000 ft/ft

Channel Width: 6.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350 Flow: 2.3000 cfs

Result Parameters

Depth: 0.1901 ft

Area of Flow: 2.1168 ft^2

Wetted Perimeter: 16.2923 ft Average Velocity: 1.0865 ft/s

Top Width: 16.2670 ft Froude Number: 0.5308 Critical Depth: 0.1346 ft Critical Velocity: 1.7734 ft/s

Critical Slope: 0.0388 ft/ft

Critical Top Width: 13.2690 ft

Calculated Max Shear Stress: 0.1186 lb/ft^2 Calculated Avg Shear Stress: 0.0811 lb/ft^2

Channel Analysis: Section M-M

Notes:

Input Parameters

Channel Type: Trapezoidal

Side Slope 1 (Z1): 20.0000 ft/ft

Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 8.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350

Flow: 0.7000 cfs

Result Parameters

Depth: 0.0947 ft

Area of Flow: 0.8648 ft^2

Wetted Perimeter: 10.2858 ft Average Velocity: 0.8094 ft/s

Top Width: 10.2718 ft

Froude Number: 0.4916

Critical Depth: 0.0601 ft

Critical Velocity: 1.3359 ft/s

Critical Slope: 0.0468 ft/ft Critical Top Width: 9.4420 ft

Calculated Max Shear Stress: 0.0591 lb/ft^2

Calculated Avg Shear Stress: 0.0525 lb/ft^2

Channel Analysis: Section N-N

Notes:

Input Parameters

Channel Type: Trapezoidal

Side Slope 1 (Z1): 50.0000 ft/ft

Side Slope 2 (Z2): 4.0000 ft/ft

Channel Width: 10.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0350

Flow: 1.2000 cfs

Result Parameters

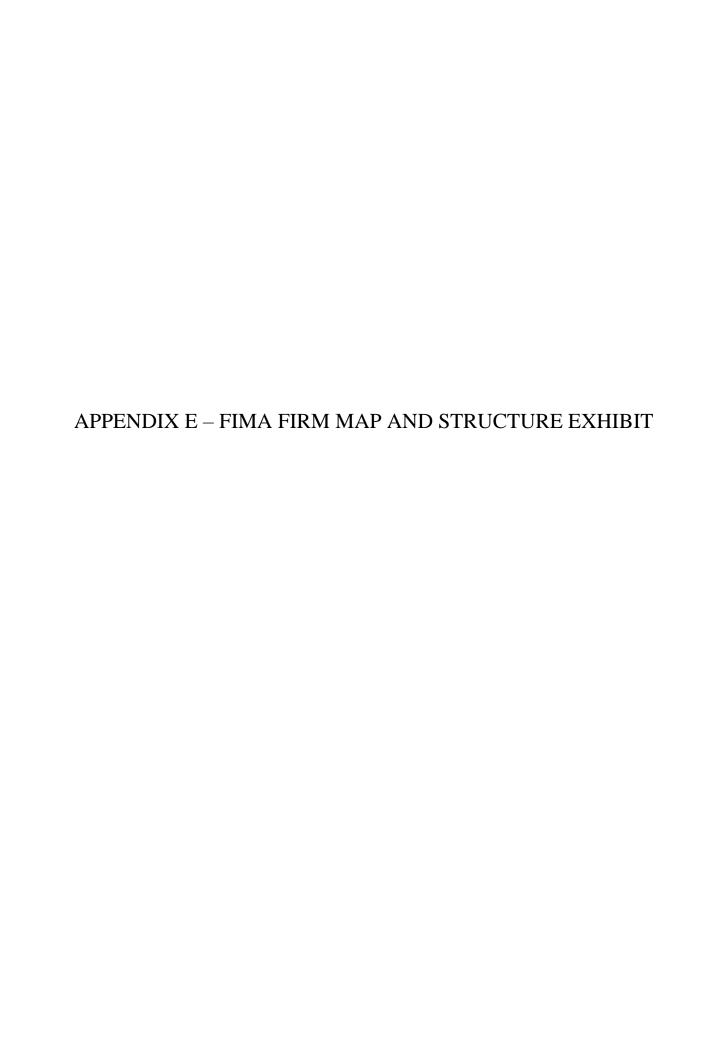
Depth: 0.1092 ft

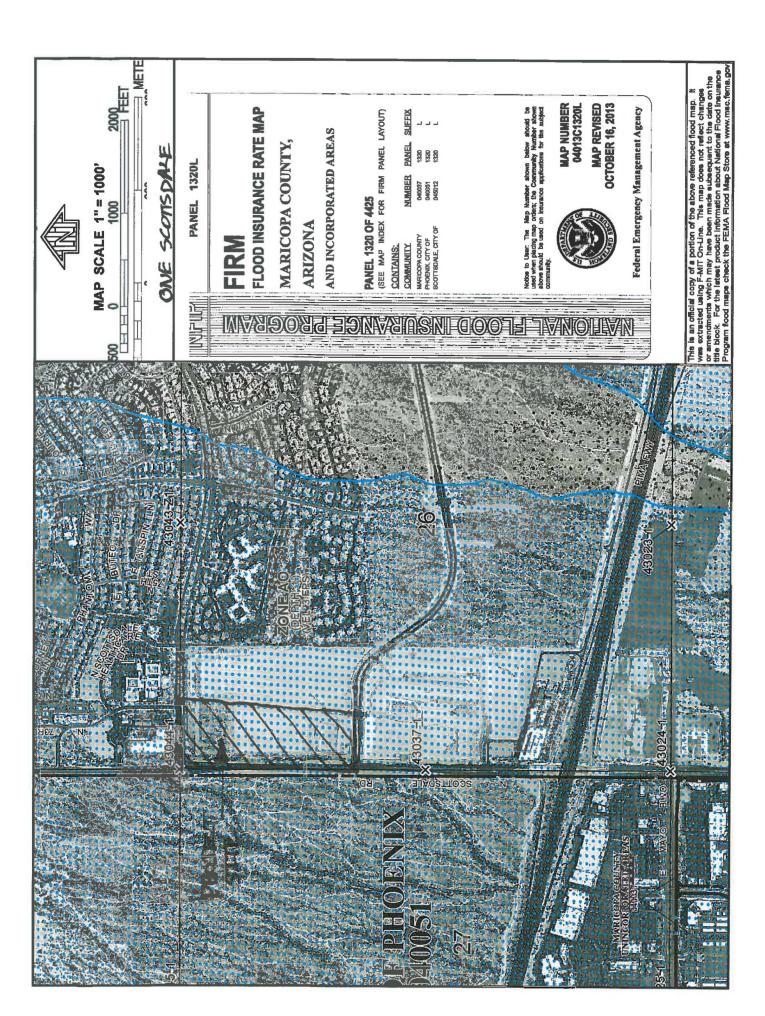
Area of Flow: 1.4146 ft^2

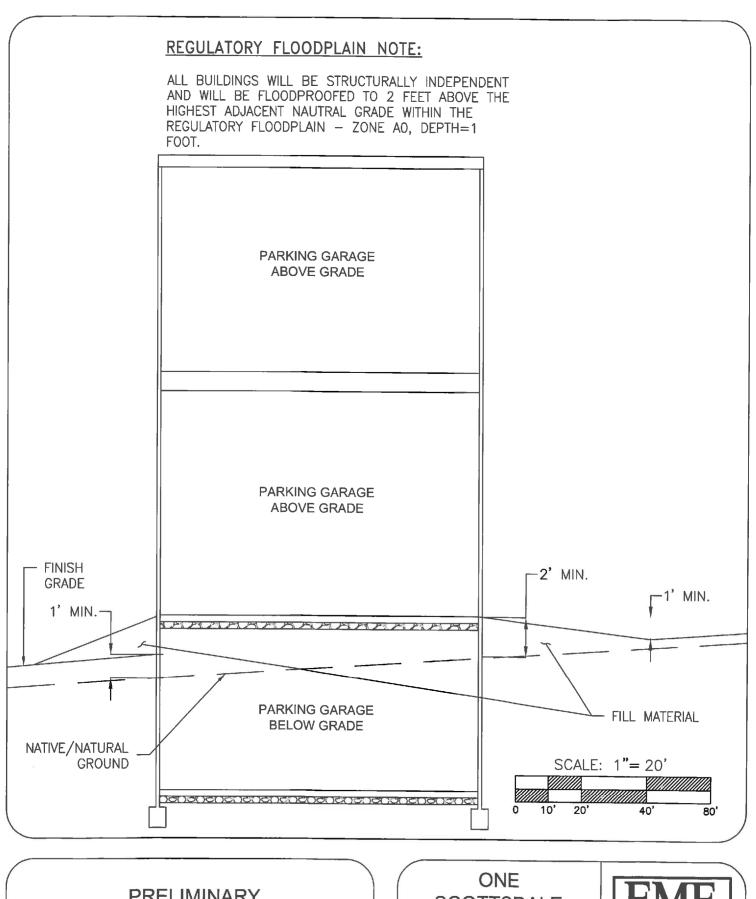
Wetted Perimeter: 15.9136 ft Average Velocity: 0.8483 ft/s

Top Width: 15.8990 ft

Froude Number: 0.5012

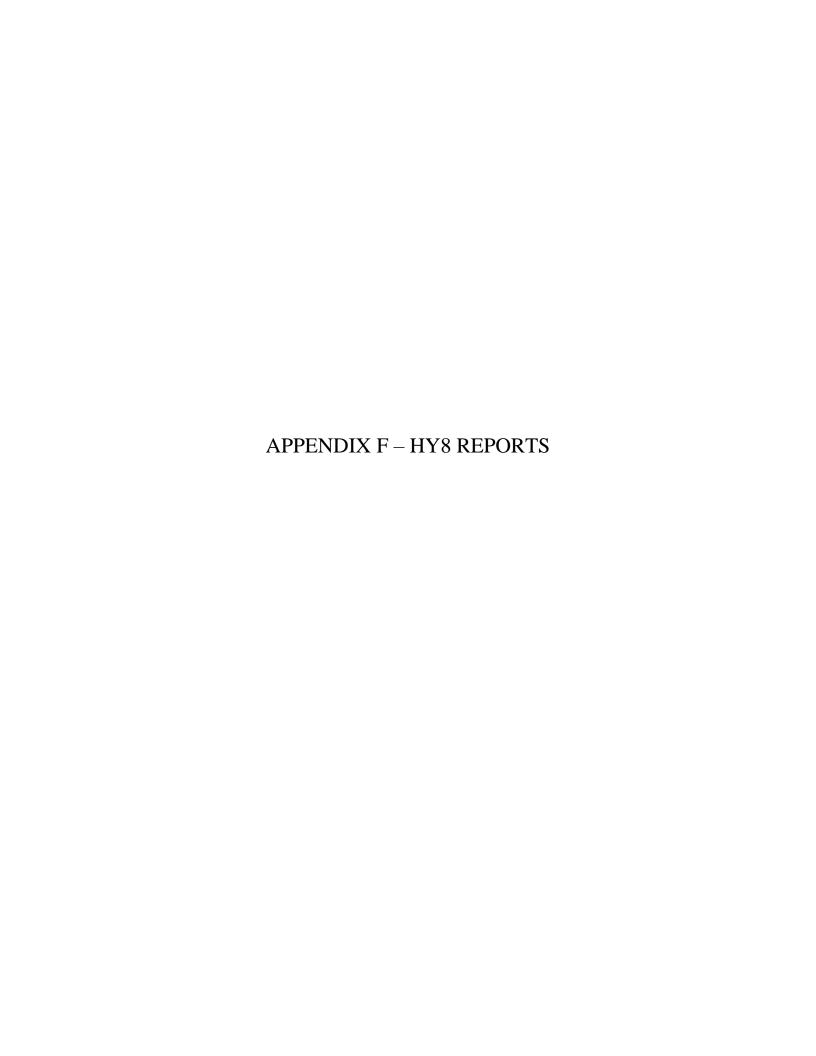

Critical Depth: 0.0715 ft


Critical Velocity: 1.4069 ft/s

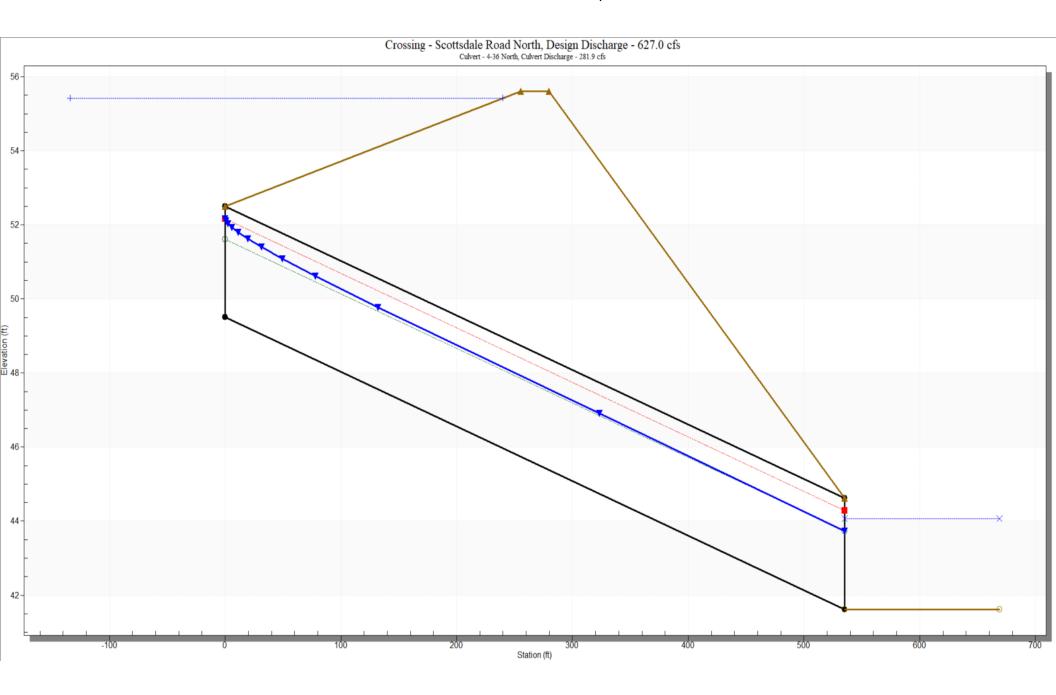

Critical Slope: 0.0452 ft/ft

Critical Top Width: 13.8606 ft

Calculated Max Shear Stress: 0.0682 lb/ft^2 Calculated Avg Shear Stress: 0.0555 lb/ft^2



PRELIMINARY NOT FOR CONSTRUCTION OR RECORDING


SCOTTSDALE

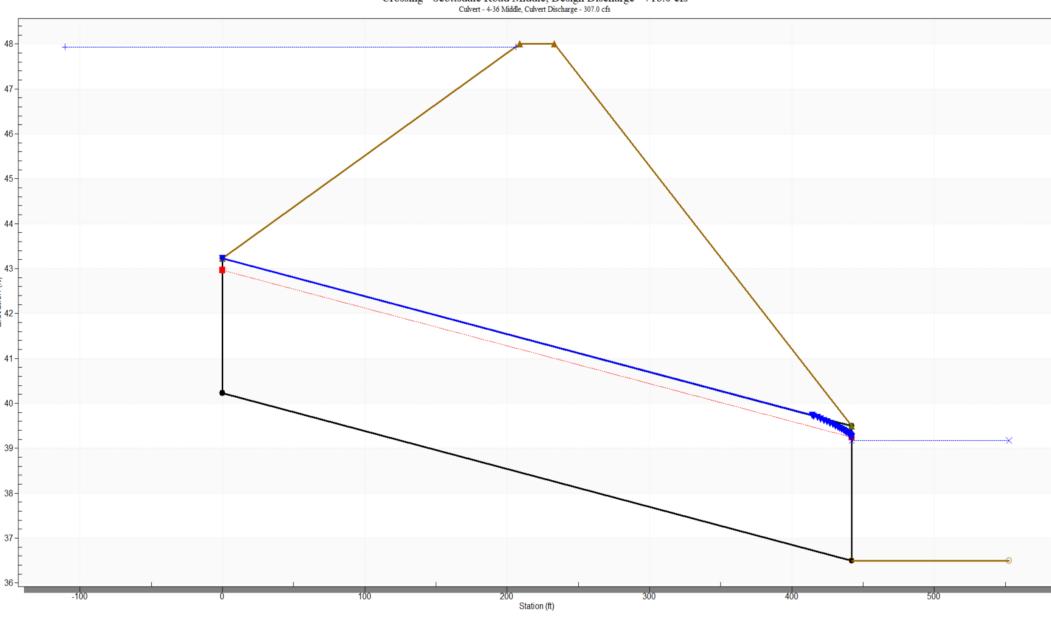
FEMA STRUCTURE EXHIBIT

Erickson & Meeks Engineering, L.L.C.

Section B from Overall Concept G&D

HY-8 Analysis Results

Crossing Summary Table


Culvert Crossing: Scottsdale Road North

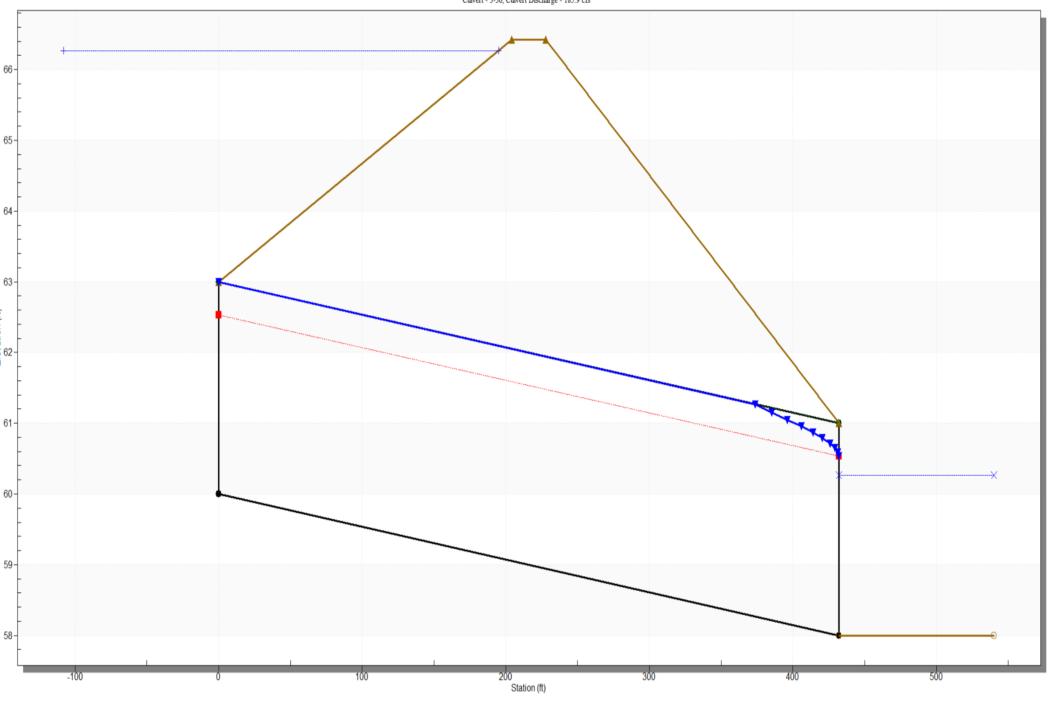
Headwater Elevation	Total Discharge (cfs	4-36 North Discharg (cfs)	Roadway Discharge (cfs)	Iterations
51.05	50.00	50.00	0.00	1
52.00	107.70	107.70	0.00	1
52 87	165 40	165 40	0.00	1
53.92	223.10	221.54	1.44	9
54 39	280 80	242 62	38 09	7
54.67	338 50	254.04	84.28	7
54.88	396.20	262.09	133.89	6
· · · · · · · · · · · · · · · · · · ·	453 90	268 06	185 42	5
55.17	511.60	273.28	238.16	5
55.30	569 30	277 79	291 13	4
55.41	627.00	281.88	344 92	4
53.75	213.59	213.59	0.00	Overtopping

Section B from Overall Concept G&D

Section D from Overall Concept G&D

HY-8 Analysis Results

Crossing Summary Table


Culvert Crossing: Scottsdale Road Middle

Headwater Elevation	Total Discharge (cfs	4-36 Middle Dischar (cfs)	Roadway Discharge (cfs)	Iterations
41.79	50.00	50.00	0.00	1
42.87	116.80	116.80	0.00	1
43 92	183 60	183.60	0.00	1
45.32	250.40	250.40	0.00	1
46 94	317.20	289 62	27.37	10
47.21	384.00	294.44	89 47	7
47.41	450.80	297.83	152.69	6
47.56	517.60	300.44	216 79	5
47.70	584.40	302.91	281.41	5
47.82	651.20	305 04	345 84	4
47.94	718.00	307.01	410.91	4
46.43	280.84	280.84	0.00	Overtopping

Section D from Overall Concept G&D

Section K from Overall Concept G&D

Crossing - Thompson Peak, Design Discharge - 489.0 cfs
Culvert - 3-36, Culvert Discharge - 185.9 cfs

HY-8 Analysis Results

Crossing Summary Table

Culvert Crossing: Thompson Peak

Headwater Elevation	Total Discharge (cfs	3-36 Discharge (cfs	Roadway Discharge (cfs)	Iterations
60.00	0.00	0.00	0.00	1
61.85	48.90	48.90	0.00	1
62.85	97 80	97.80	0.00	1
63.94	146.70	146.70	0.00	1
65 09	195 60	167.38	28 12	9
65.49	244 50	173.68	70.71	8
65.74	293.40	177.47	115.67	8
65.91	342 30	180.47	161.45	6
66.05	391.20	182.68	208.11	5
66 17	440 10	184 28	255 61	5
66.27	489.00	185.88	302.98	4
64.20	154.03	154.03	0.00	Overtopping

Section K from Overall Concept G&D

APPENDIX F – EXCERPTS FROM ONE SCOTTSDALE MASTER DRAINAGE PLAN, DRAINAGE REPORT FOR TDI AT ONE SCOTTSDALE, PHASE I, AND FINAL DRAINAGE REPORT FOR ONE SCOTTSDALE PU III INFRASTRUCTURE IMPROVEMENTS (PUIII)

ONE SCOTTSDALE MASTER DRAINAGE PLAN

Revised June 20, 2013 Revised March 26, 2012 Revised April 13, 2009 September 26, 2006 WP# 021584

Submitted to:

City of Scottsdale

7447 East Indian School Road

Suite 205

Scottsdale, Arizona 85251

Prepared for:

DMB Associates, Inc.

7600 East Doubletree Ranch Road

Suite 300

Scottsdale, Arizona 85258 Phone: (480) 367-7000 Fax: (480) 367-9788 Contact: Mr. Steve Loken

Prepared by:

Wood, Patel & Associates, Inc.

2051 West Northern Avenue

Suite 100

Phoenix, Arizona 85021 Phone: (602) 335-8500 Fax: (602) 335-8580

Contact: Mr. Darrel E. Wood, P.E., R.L.S.

ONE SCOTTSDALE MASTER DRAINAGE PLAN

Revised June 20, 2013 Revised March 26, 2012 Revised April 13, 2009 September 26, 2006 WP# 021584

Submitted to:

City of Scottsdale

7447 East Indian School Road

Suite 205

Scottsdale, Arizona 85251

Prepared for:

DMB Associates, Inc.

7600 East Doubletree Ranch Road

Suite 300

Scottsdale, Arizona 85258 Phone: (480) 367-7000 Fax: (480) 367-9788 Contact: Mr. Steve Loken

Prepared by:

Wood, Patel & Associates, Inc.

2051 West Northern Avenue

Suite 100

Phoenix, Arizona 85021 Phone: (602) 335-8500 Fax: (602) 335-8580

Contact: Mr. Darrel E. Wood, P.E., R.L.S.

TABLE OF CONTENTS

1.0	INTRO	DUCTION 1
	1.1	General Background
	1.2	Study Area and Planning Units
	1.3	Drainage Background
	1.4	Drainage Concept
	1.5	Flood Insurance Rate Map (FIRM)
2.0	HYDR	OLOGY10
	2.1	Peak Flows
		Peak Flows Leaving Site
3.0	HYDRA	AULICS
		Open Channel Hydraulics
		Storm Drain System
		Stormwater Storage
4.0		TENANCE
5.0		LUSIONS
6.0	REFER	ENCES
		10
		PLATES
Plate I		Vicinity Map
		EXHIBITS
Exhibit	l.a	Offsite Watershed Map and Existing Conditions HEC-1 Schematic Map
Exhibit		Onsite Watershed Map and Proposed Conditions HEC-1 Schematic Map
Exhibit Exhibit		FEMA Map
EXIIIOII	1.0	Proposed Drainage Facilities and Cross-sections
		APPENDICES OSSIONAL EN
Append	lix A	U.S. Army Corps of Engineers' Letter
Append		Hydrology 13138
Append	ix C	Hydraulics DARRELE.
'\WP\Report	s\Hydrology\021	584 One Scottsdale Master Drainage Plan_Revised_June2013.doc
		The state of the s

1	0410	51	79.	*	1	1025	126	5.	*	1	1640	201	1.	n	1	2255	276	0.
1	0415	52	74.		1	1030	127	5.	*	1	1645	202	1.	sh	1	2300	277	0.
1	0420	53	71.	*	1	1035	128	5.		1	1650	203	1.		1	2305	27B	ō.
1	0425	54	67.	*	1	1040	129	5.	*	1	1655	204	1.	*	1	2310	279	D.
1	0430	55	65.		1	1045	130	4.		ī	1700	205	1.	*	i	2315	280	o.
1	0435	56	62.		1	1050	131	4.	*	1	1705	206	1.		ī	2320	281	0.
1	0440	57	60.		ī	1055	132	4.	*	ī	1710	207	1.	*	î	2325	282	o.
1	0445	58	57.	4	ī	1100	133	4.		ī	1715	208	1.	*	1	2330	283	
1	0450	59	55.	*	1	1105	134	4.	*	î	1720	209	1.		•	2335	284	0. 0.
3	0455	60	53.		1	1110	135	4.		1	1725	210	i.	*		2340	285	
ī	0500	61	52.	*	ī	1115	136	4.	*	1	1730	211	1.	*	1			0.
î	0505	62	50.		î	1120	137	4.	*	1	1735	212	1.	*	7	2345	286	0.
1	0510	63	48.		î	1125	138			1				*	1	2350	287	0.
1	0515	64	47.		1	1130	139	4.	-	1	1740	213	1.		1	2355	288	0.
1	0520	65	45.	ī	1	1135	140	3.	-	1	1745	214	1.	-	Z	0000	289	0,
1	0525	66	44.	:	1	1140		3.	-	1	1750	215	1.	*	2	0005	290	0.
	0530	67	42,	1	, ·	1145	141 142	3.		1	1755	216	1.	*	2	0010	291	0.
1	0535	68		7	1			3.	*	1	1800	217	1.	*	2	0015	292	0.
1			41.		Ţ	1150	143	3.	*	1	1805	218	1.	*	2	0020	293	0.
1	0540	69	40.	*	1	1155	144	3.	*	1	1810	219	1.	*	2	0025	294	0.
1	0545	70	38.		1	1200	145	3.	*	1	1815	220	1,	*	2	0030	295	0.
1	0550	71	37.	*	1	1205	146	3.	*	1	1820	221	0.	*	2	0035	296	0.
1	0555	72	36.	*	1	1210	147	3.	*	1	1825	222	0.	*	2	0040	297	0.
1	0600	73	35,	*	1	1215	148	3.	*	1	1830	223	0.	*	2	0045	298	0.
1	0605	74	34.	*	1	1220	149	3.	*	1	1835	224	0.	*	2	0050	299	0.
1	0610	75	33.		1	1225	150	3.	*	1	1840	225	0.	*	2	0055	300	0.
				ń										*				

1

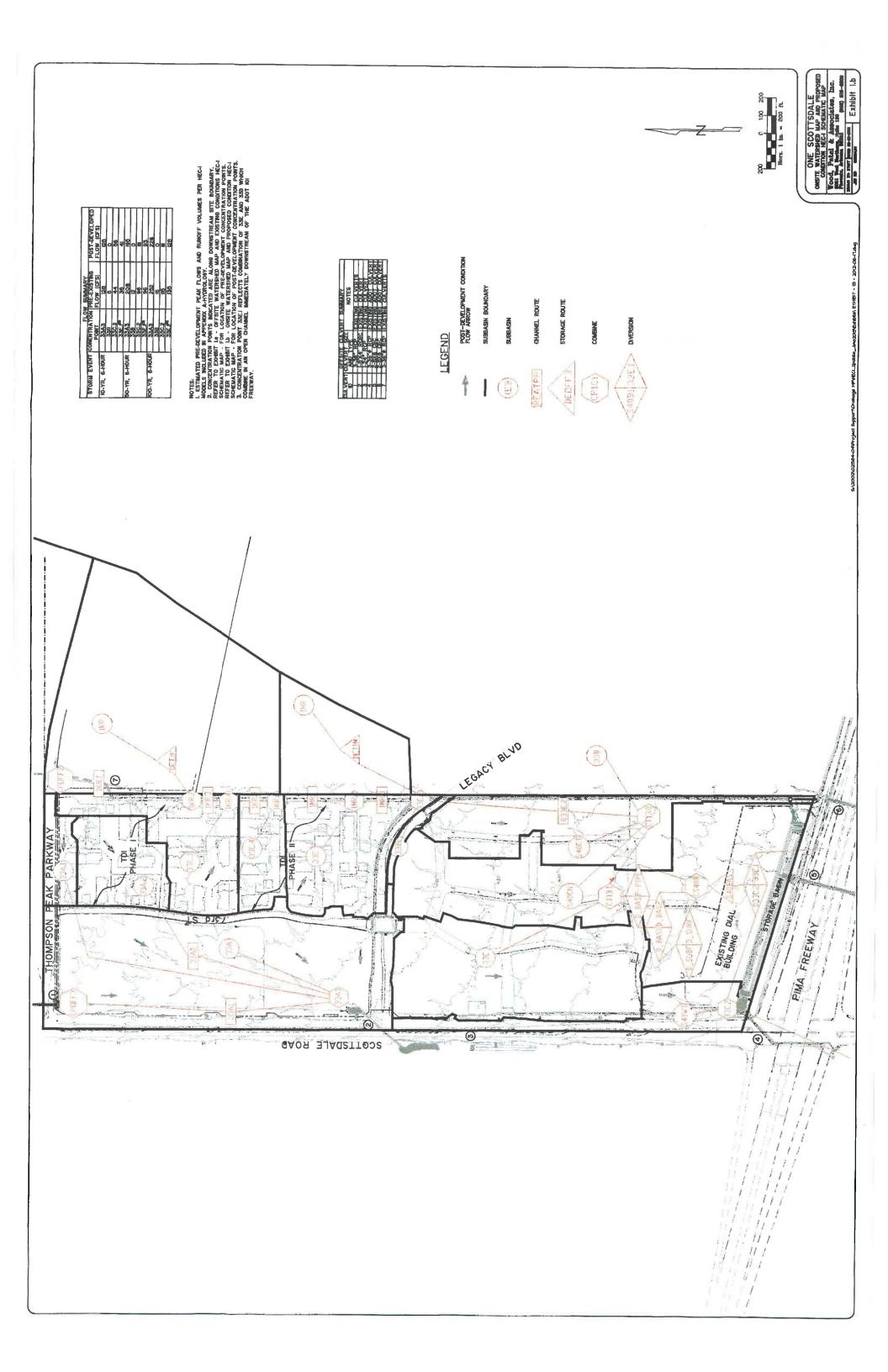
100-YEAR - 6 HOUR

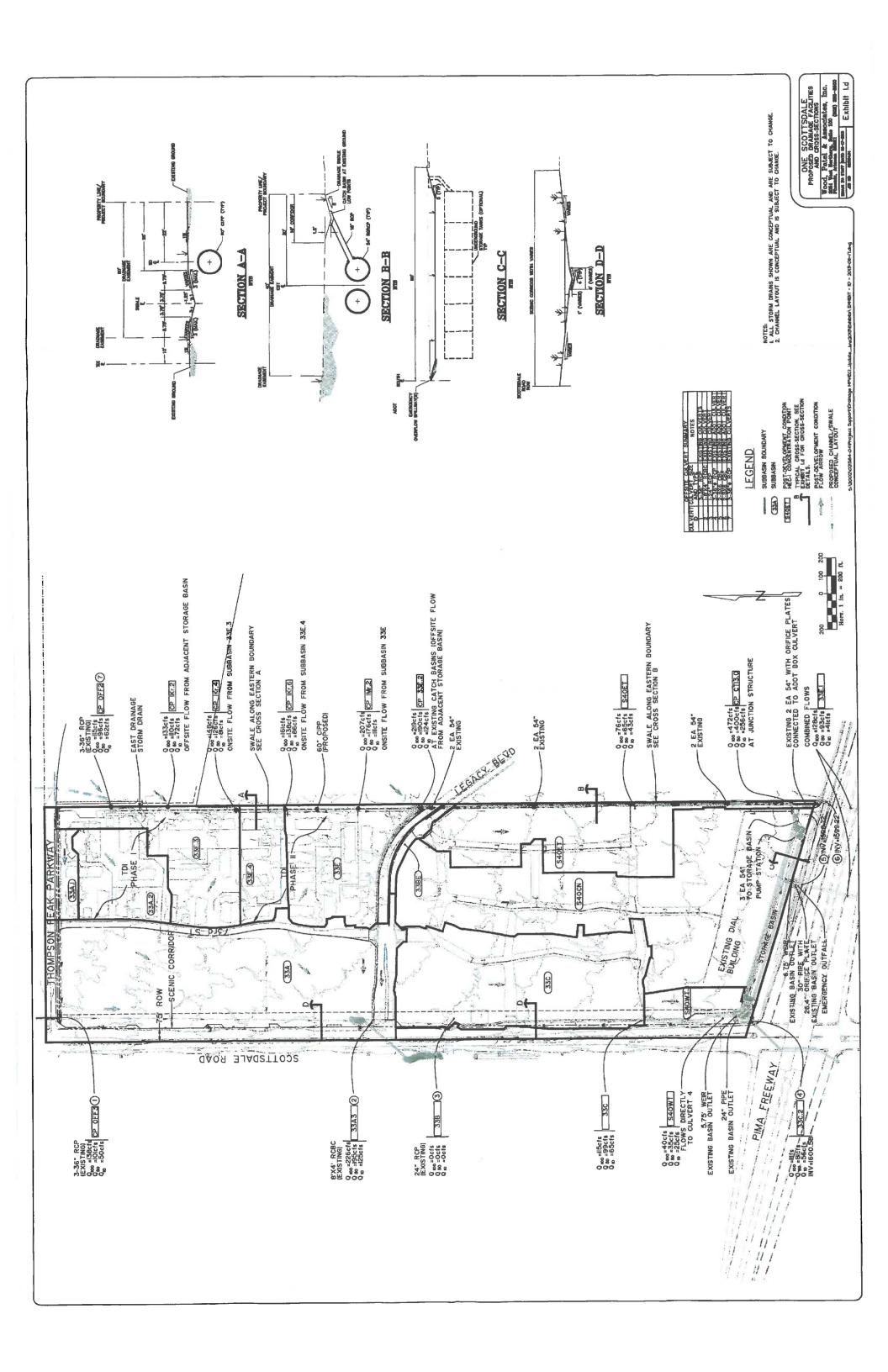
POST-DEMELOPED PEAK FLOWS
FROM HEC-1 MASTER

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATION	PEAK	TIME OF PEAK	AVERAGE F	LOW FOR MAXIM	TUM PERIOD	BASIN	MAXIMUM STAGE	TIME OF MAX STAGE
+					6-HOUR	24-HOUR	72-HOUR	Parties	01,00	nna Jinob
*	HYDROGRAPH AT	1A1	44.	3.17	4.	1.	1.	.02		
:	ROUTED TO	DET1A1	12.	3.50	4.	1.	1.	.02	1.73	3.50
.	ROUTED TO	RA1-C4	11.	3.50	4.	1.	1.	.02	.91	3.50
*	HYDROGRAPH AT	104	9.	3.17	1.	0.	0.	.00		
+	2 COMBINED AT	CP1C4	15.	3.17	4.	1.	1.	.02		
+	ROUTED TO	RC4-C3	15.	3.25	4.	1.	1.	.02	1.05	3.25
*	HYDROGRAPH AT	1Da3	38.	3.08	3.	1.	1.	.01		
+	ROUTED TO	DE1Da3	3.	3.67	2.	1.	1.	.01	2.51	3.67
+	HYDROGRAPII AT	1Da4	29.	3.08	2.	1.	1.	.01		
•	2 COMBINED AT	CP1Da4	30.	3.08	4.	1.	1.	.02		
++	ROUTED TO	DE1Da4	6.	3.58	4.	1.	1.	.02	3.14	3.58
+	HYDROGRAPH AT	1Da5	7.	3.17	1.	0.	0.	.00		
+	3 COMBINED AT	CP1C3I	25.	3.17	9.	3.	3.	.05		
+	ROUTED TO	RC3-C3	24.	3.25	9.	3.	3.	.05	1.52	3,25
+	HYDROGRAPH AT	Off-la	21.	3.08	2.	0.	0.	.01		
+	HYDROGRAPH AT	1A2	11.	3.08	1.	0.	0.	.00		ų.
+	HYDROGRAPH AT	1A3	18.	3.08	1.	0.	0.	.01		

+	3 COMBINED AT	CPA3	50.	3.08	4.	1.	1.	.02			
*	ROUTED TO	DET1A3	33.	3.17	4.	1.	1.	.02	2.84	3.17	
+	ROUTED TO	RA3-A6	35.	3.25	4.	1.	1.	.02	. 60	3.25	
+	HYDROGRAPH AT	186	12.	3.08	1.	0.	0.	.00			
+	2 COMBINED AT	CP1A6	40.	3.25	5.	1.	1.	.03			
;	ROUTED TO	DET1A6	35.	3.33	5,	1.	1.	.03	2.87	3.33	
•	HYDROGRAPH AT	1A5	42.	3.08	4.	1.	1.	.02			
+	2 COMBINED AT	CP1A5	59.	3.25	В.	2.	2.	.04			
÷	ROUTED TO	DET1A5	53.	3.33	8.	2.	2.	.04	2.96	3.33	
+	HYDROGRAPH AT	1A4	27.	3.08	2.	1.	1.	.01			
1	ROUTED TO	RA4-A7	25.	3.17	2.	1,	1.	.01	.50	3.17	
÷ ÷	ROUTED TO	DET1A4	14.	3.33	2.	1.	1.	.01	2.65	3.33	
+	HYDROGRAPH AT	187	21.	3.08	2.	0.	0.	.01			
+	3 COMBINED AT	CP1A7	74.	3.33	12.	3.	3.	.06			
+ +	ROUTED TO	DET1A7	66.	3.42	12.	3.	3.	.06	3.62	3.42	
+	HYDROGRAPH AT	101	57.	3.17	5.	1.	1.	.02			
•	2 COMBINED AT	CP1C1	85.	3.33	17.	4.	4.	.08			
+ +	ROUTED TO	DET1C1	70.	3.50	16.	4.	4.	.08	4.86	3.50	
+	HYDROGRAPH AT	1C2	54.	3.17	5.	1.	1.	.02			
+	2 COMBINED AT	CP1C2	92.	3.50	21.	6.	5.	.11			
÷ +	ROUTED TO	DE1C2A	93.	3.50	21.	6.	5.	.11	5.05	3.50	
+	ROUTED TO	DE1C2B	90.	3.50	21.	6.	5.	.11	5.02	3.50	
+	ROUTED TO	DE1C2C	92.	3.50	21.	6.	5.	.11	5.04	3.50	
+	HYDROGRAPH AT	1C3	6B.	3.08	5.	1.	1.	.03			
+	3 COMBINED AT	CP1C3	128.	3.50	33.	10.	9.	.19			
+ +	ROUTED TO	DET1C3	109.	3.67	33.	10,	9.	.19	2.55	3.67	
÷	ROUTED TO	RC3COM	108.	3.67	33.	10.	9.	.19	11.14	3.67	
*	HYDROGRAPH AT	COMM	110.	3.08	10.	2.	2.	.03			
÷ +	ROUTED TO	DETCOM	11.	3.67	7.	2.	2.	.03	2.55	3.67	
+	2 COMBINED AT	СРСОМ	119.	3.67	41.	12.	12.	.22			


-


-

+	ROUTED TO	COMOF1	119.	3.75	41.	12.	12.	.22			
•	HYDROGRAPH AT	OFF1	84.	3.08	6.	2.	2.	.02	11.20	3.75	
+	ROUTED TO	DEOFF1	11.	3.50	6.	2.	2,	.02	2.61	3.50	
	2 COMBINED AT	CPOFF1	130.	3.75	46.	14.	13.	.24	2.01	3,50	
.	ROUTED TO	OFIOF3	129.	3.75	46.	14.	13,	.24	11.31	3.75	
+	HYDROGRAPH AT	OFF3	58.	3.08	5.	1.	1.	.02	*****	3.73	
* *	ROUTED TO	DEOFF3	10.	3.50	5.	1.	1.	.02	2.20	3.50	
+	2 COMBINED AT	CPOFF3	138.	3.75	51.	15.	14.	.25	2.20	3.30	
+	ROUTED TO	33A1	137.	3.83	51.	15.	14,	.25			
+	HYDROGRAPH AT	33A	150.	3.17	15.	4.	4.	.05			
+	HYDROGRAPH AT	33A.1	11.	3.17	1.	0.	0.	.00			
+	HYDROGRAPH AT	33A.2	34.	3.08	3.	1.	1.	.01			
+	ROUTED TO	33A2	30.	3.08	3,	1.	1.	.01			
+	4 COMBINED AT	33A3	226.	3.17	67.	20.	19,	.31			
+	HYDROGRAPH AT	10b	104.	3.08	8.	2.	2,	.04			
+	ROUTED TO	DEIDB	13.	3.58	7.	2.	2.	.04	2.99	3.50	
+	HYDROGRAPH AT	1Da1	25.	3.08	2.	0.	0.	.01			
+	ROUTED TO	DE1Da1	4.	3.50	2.	0.	0.	.01	2.95	3.50	
+	HYDROGRAPH AT	1Da2	5.	3.17	0.	0.	0.	.00			
+	3 COMBINED AT	CP1Dab	18.	3.50	9.	3.	3.	.05			
* *	ROUTED TO	RDabE2	18.	3.50	9.	3.	3.	.05	.75	3.50	
+	HYDROGRAPH AT	1Ea1	44.	3.17	4.	1.	1.	.02			
:	ROUTED TO	DELEGI	4.	3.75	3.	1,	1.	.02	2.81	3.75	
+	HYDROGRAPH AT	1Ea2	65.	3.08	5.	1.	1.	.02			
+	2 COMBINED AT	CP1Ea2	66.	3.08	7.	2.	2.	.04			
÷	ROUTED TO	DE1Ea2	16.	3.50	7.	2.	2.	.04	3-25	3.50	
+	2 COMBINED AT	CPlEa2	34.	3.50	16.	5.	5.	.09			
+	HYDROGRAPH AT	PARK	37.	3.08	3.	1.	1.	.02			
+	HYDROGRAPH AT	SCHOOL	59.	3.08	5.	1.	1.	.01			
÷	ROUTED TO	DETSCH	12.	3.42	4.	1.	1.	.01	2.84	3,42	
+	ROUTED TO	SCH12	12.	3.42	4.	1.	1.	.01	10,43	3.42	

: # 3:	HYDROGRAPH AT	150		2.40		_				
	ROUTED TO	1Ec	33.	3.08	3.	1.	1.	.01		
† †		DELEC	9.	3.33	3.	1.	1.	.01	2.47	3.33
:#	2 COMBINED AT	CP1EC	21.	3.42	7.	2.	2.	, 02		
÷ +	ROUTED TO	1EcEa2	21.	3.42	7.	2.	2.	.02	10.59	2.40
+	3 COMBINED AT	CP1Ea	67.	3,17	26.	7.	7,	.14	10.59	3.42
+	ROUTED TO	REATPP	67.	3,17	26.	7.				
+	HYDROGRAPH AT		• • • • • • • • • • • • • • • • • • • •	3,1,	20.	٠.	7.	.14	10.92	3.17
+		1Eb	151.	3.17	14.	4.	3.	.06		
+ +	ROUTED TO	DET1Eb	39.	3.50	13.	4.	3.	.06	2.26	3.50
+	HYDROGRAPH AT	OFF2	121.	3.08	11.	3.	3.	.03		
+	ROUTED TO	DEOFF2	11.	3.67	8.	3.	3.	.03		
+	3 COMBINED AT								2.59	3.67
+	ROUTED TO	CPOFF2	115.	3.50	46.	14.	13.	.23		
+	HYDROGRAPH AT	1Kr.1	115.	3.50	46.	14.	13.	.23		
+	ROUTED TO	lKr	118.	3,17	13.	3.	3.	.05		
*		DETIK	18.	3.75	11.	3.	3.	. 05	2.77	3.75
+	2 COMBINED AT	1Kr.2	133,	3.50	57.	17.	16.	. 28		
+	ROUTED TO	1Kr.3	133.	3.50	57.	17.	16.	.28		
+	HYDROGRAPH AT	338.3	45.	3.08	4,	1.	1.	.01		
+	2 COMBINED AT	1Kr.4	148.	3.17	60.	18.	17.	.29		
•	ROUTED TO	1Kr.5	147.	3.17	60.	10.	17.	.29		
+	HYDROGRAPH AT	33E.4	28.	3.08	2.	٥.	0.	.01		
+	2 COMBINED AT	1Kr.6	161.	3.17	62.	18.	18.	.30		
+	ROUTED TO	1Mr.1	160.	3.17	62.	18.	18.	.30		
14	HYDROGRAPH AT	33E	68.	3.08	5.	1.	1.	.01		
+	2 COMBINED AT	1Mr.2	207.	3.08	66.	19.	19.	.32		
+	ROUTED TO	1Mr.3	203.	3.08	66.	19.	19.	.32		
+	HYDROGRAPH AT	1Mr	152.	3.17	14.	4.	3.	.05		
<u> </u>	ROUTED TO	DET1M	49.	3.42	13.	4.	3.	.05		
*	HYDROGRAPH AT	2200	•	2		_	_		3.70	3.42
+	3 COMBINED AT	33BE	3.	3.17	0.	0.	0.	.00		
+	ROUTED TO	33E.2	219.	3.17	во.	23.	22.	.37		
•	HYDROGRAPH AT	R33E.2	219.	3.17	80.	23.	22.	.37		
+	BYDROGRAPH AT	33D	61.	3.17	5.	1.	1.	.04		
+	HYDROGRAPH AT	540ET	76.	3.08	6.	1.	1.	.02		

	+	4 004071100		540CN	180.	3.08	14.	4.	3.	.04			
	+	4 COMBINED	AT	CT13.0	472.	3.08	103.	30.	20.	.47			
,	•	HYDROGRAPH	AT	33C	115.	3.08	9.	2.	2.	.03			
,	+	2 COMBINED	AT	CT13.1	587.	3.08	111.	32.	31.	.50			
	+	DIVERSION	TO	P-PIPE	70.	3.08	56.	18,	17.	.50			
	+	Hydrograph	AT	D_BAS	517.	3.08	55.	14.	13.	.50			
	+	DIVERSION	TO	D-BAS2	77.	3.08	2.	1.	0.	. 50			
	+	HYDROGRAPH	AT	D_BAS1	517.	3.08	53.	13.	13.	.50			
	+	DIVERSION	TO	D-SUBF	517.	3.33	22,	5.	5.	.50			
		HYDROGRAPH	AT	D_SURF		3.33	31.	8.	0.				
		HYDROGRAPH	AT	B_P1PE		2.75				.50			
		HYDROGRAPH	AT	_			56.	18.	17.	.00			
		3 COMBINED	AT	B_SURF		2.92	2.	1.	0.	.00			
•	+	ROUTED TO		CS40B	321.	3.33	90.	26.	25.	.50			
1	+			S40BAS	237.	3.67	89.	26.	25.	.50	5.71	3.67	
4	•	DIVERSION :	TO	D33C.2	109.	3.67	41.	12.	12.	.50			
+		HYDROGRAPH	AT	33B.1	128.	3.67	48.	14.	14.	.50			
4		HYDROGRAPH	AT	R33C.2	109.	3.67	41.	12.	12.	.00			
	•	HYDROGRAPH	AT	S40WT	40.	3.08	3.	1.	1.	.01			
	+	2 COMBINED	AT	33C.2	111.	3.67	43.	13.	12.	.01			
	1						MATIC WAVE - N RECT RUNOFF WI			PING			
		ISTAO	ELEMEN	T DT	PEAK	TIME TO PEAK	VOLUME	DТ	INTERPOI COMPUTATION PEAK		VOLUME		
				(MIM)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(19)		
		33A1	MANE	1.55	137.77	227.80	2.21	5.00	136.79	230.00	2.21		
	CONTINUIT	Y SUMMARY	(AC-FT)	= INFLOW=	.2975E+02	EXCESS00	00E+00 OUTFLO	%= .2975	E+02 BASIN	STORAGE=	.2975E-02 PERCENT E	RROR=	.0
		33A	MANE	1.40	150.51	189.00	2.92	5.00	150.01	190.00	2.92		
	CONTINUIT	y summary	(AC-FT)	- INFLOW-	.00008+00	EXCESS= .73	59E+01 OUTFLO	W7348	E+01 BASIN	STORAGE=	.1343E-02 PERCENT E	RROR=	.1
		33A.1	MANE	2.44	11.88	191.75	2.92	5.00	11.36	190.00	2.92		
	CONTINUIT	Y SUMMARY	(AC-FT)	- INFLOW=	.0000E+00	EXCESS= .54	57E+00 OUTFLO	₩= .5452	E+00 BASIN	STORAGE=	.1375E-04 PERCENT E	RROR=	.1
		33A.2	HANE	.34	35.43	185.97	2.92	5.00	34.30	185.00	2.92		
	CONTINUIT	Y SUMMARY	(AC-FT)	- INPLOW-	.0000E+00	EXCESS= .13	56E+01 OUTFLO	W1354	NIEAG 10+3	STORAGE-	.8482E-04 PERCENT E	RROR=	.1
		33A2	MANE	.69	33.99	186.47	2.93	5.00	29.73	185.00	2.93		
	CONTINUIT	Y SUMMARY	(AC-FT)	- INFLOW=	.1356E+01	EXCESS= .00	00E+00 OUTFLO	W= .1357	E+01 BASIN	STORAGE=	.5409E-05 PERCENT E	RROR=	1
		1Kr.1	MANE	.33	115.27	209.94	2.20	5.00	115.26	210.00	2.20		
	CONTINUIT	Y SUMMARY	(AC-FT)	- INFLOW-	.2702E+02	EXCESS= .00	00E+00 OUTFLO	₩= .2702	E+02 BASIN	STORAGE=	.3385E-03 PERCENT E	RROR=	.0
		1Kr.3	MANE	.21	132.52	210.12	2.22	5.00	132.51	210.00	2.22		

1415-12-2

2-1 517-12 TS/S

DRAWAGE

DRAINAGE REPORT
FOR
TDI AT ONE SCOTTSDALE, PHASE I
SCOTTSDALE, ARIZONA

May 17, 2012 WP# 113738

Plan #
Q-S #
Accepted Corrections
M. Rahman C/5/12_ Reviewed By Date

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1
2.0	EXIST 2.1 2.2 2.3	FING DRAINAGE CONDITIONS AND CHARACTERISTICS FEMA Floodplain Offsite Drainage Conditions Pre-Developed Onsite Drainage Conditions	2
3.0	PROP 3.1 3.2 3.3 3.4 3.5	OSED DRAINAGE PLAN Post-Development Onsite Drainage Conditions Detention Lowest Floor Elevation Warning & Disclaimer of Liability Operation and Maintenance	4 5 5 5
4.0	SPECI 4.1	AL CONDITIONS	6
5.0	DATA 5.1 5.2	ANALYSIS	7
6.0	CONC	LUSIONS	9

APPENDICES

Appendix A City of Scottsdale Forms

Appendix B FEMA/City of Scottsdale Floodplain Regulation Meeting Minutes

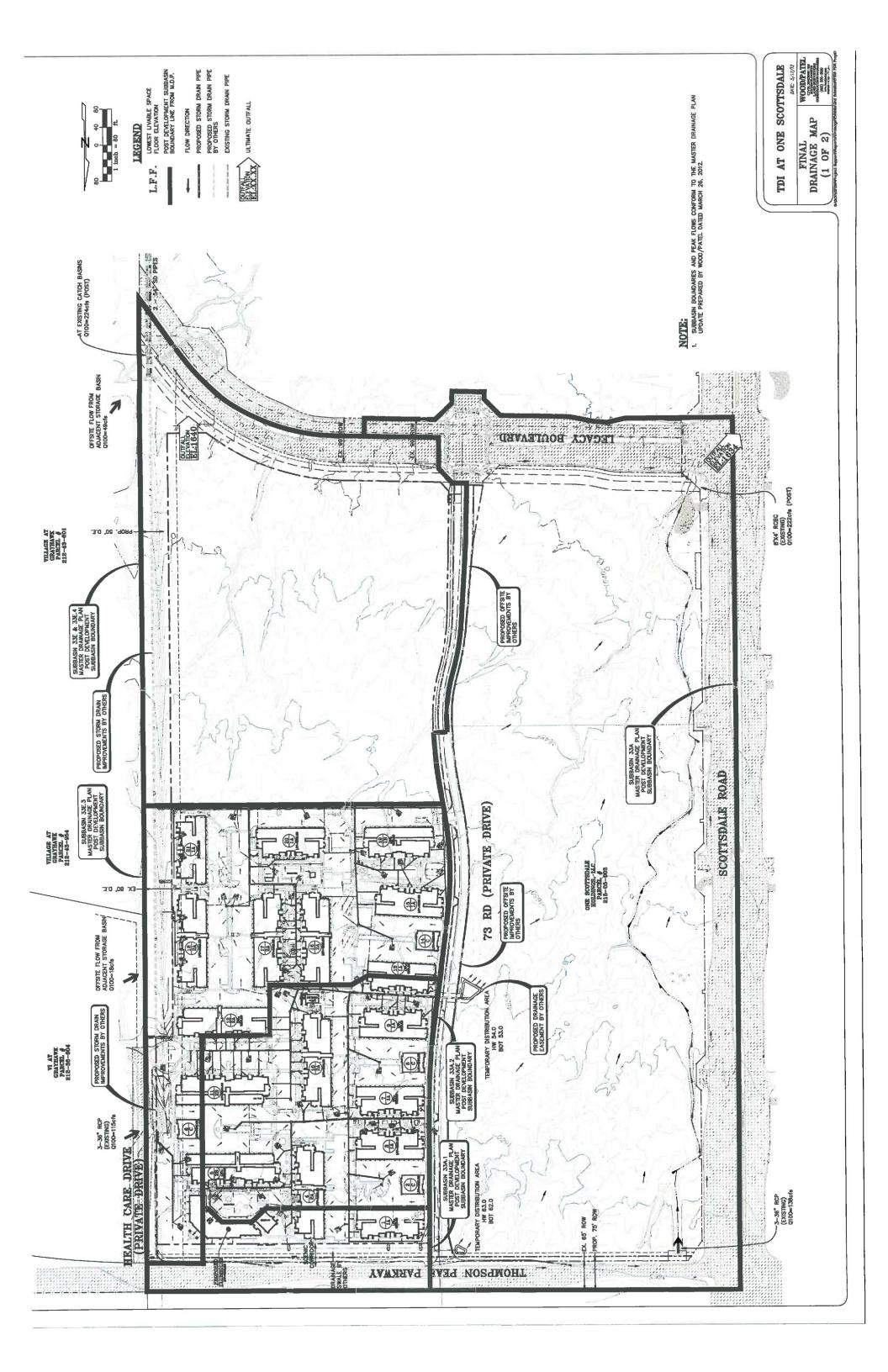
Appendix C Hydrologic Analysis

Appendix D Hydraulic Analysis

EXHIBITS

Exhibit 1 Vicinity Map

Exhibit 2 Aerial Image


Exhibit 3 FEMA Map

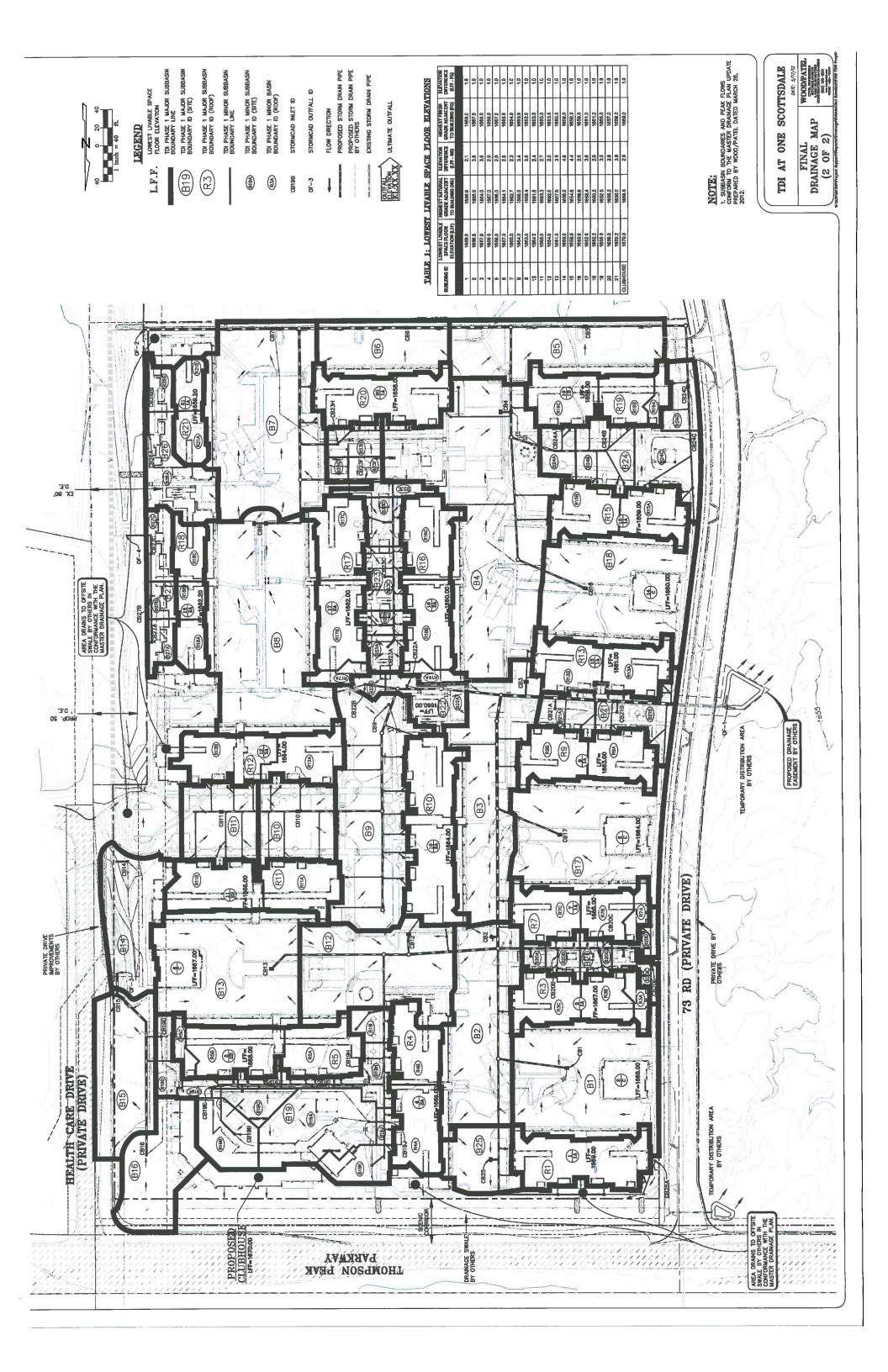

Exhibit 4 Existing Conditions Drainage Map

Exhibit 5 Onsite Drainage Map

jd Y:\WP\Reports\Commercial\113738 TDI One Soottsdale Phase 1 Drainage Report,dock.doc

MOODING MESSON

CIATI PRODUCTION WAVEVERED CONGLIGHT CON **SCHEMATIC SLOKWCAD MODEL** MEST OUTFALL FOR CONSTRUCTION PHASE 1 TON LDI VI ONE SCOLLSDVIE CBSSB CBSSA, P-37 91-12 P-39 свѕтв CBII E-L CBIO ∠t-r CBIZ свэь 🕂 CBSOC P-27 CBS0B © CB13 1-6 СВІЗН P → 05-1-13 CBI CBI37 CBI6B 7-52 CB52 Q CBS2∀ .Z.T.N

Wood/Patel WP # 113738

TDI AT ONE SCOTTSDALE, PHASE 1 5/16/2012

	- CJ													
	Average Velocity (ft/s)	11.72	8,17	8.14	11.92	5.21	4,90	3,63	4.78	2.39	3.31	0.18	3.41	3.63
	Hydraulic Grade Line (Out) (ft)	1,656.66	1,656.03	1,654.70	1,656.03	1,658.79	1,658.42	1,657.61	1,658.71	1,658.22	1,658,06	1,658.06	1,657.99	1,657.76
	Hydraulic Grade Line (In) (ft)	1,656.63	1,656,21	1,655.31	1,656.09	1,658.75	1,658,63	1,657.75	1,659.93	1,658.25	1,658.10	1,658.06	1,658.01	1,657.84
	Downstream Invert (ft)	1,654.45	1,653.10	1,652,50	1,654.10	1,657.22	1,656.76	1,654.75	1,658.30	1,655,43	1,655,33	1,655,83	1,655.28	1,655.09
	Upstream Invert (ft)	1,655.90	1,653.45	1,653.10	1,655,50	1,658.00	1,657.22	1,655,09	1,659.41	1,655,59	1,655,43	1,656,01	1,655,33	1,655.28
	Total System Flow (ft³/s)	1.71	43.53	45.45	1.89	2.88	2.60	11.40	1.90	7.50	10,40	0.31	10.71	11.40
to	Manning's n	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Pipe Repo		OPE ior)	OPE (or)	ar)	or)	.H. (년	문 (등	유 (1	문	문 등	문 ()	유 (년	띮	띮딩
Pipe	Material	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interlor)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)	Corrugated HDPE (Smooth Interior)					
Pipe	Diameter (in)	12.0 Corrugated HI (Smooth Inter	36.0 Corrugated Hi	36.0 Corrugated HD (Smooth Interi	12.0 Corrugated HD (Smooth Interi	18.0 Corrugated HD (Smooth Inter-	18.0 Corrugated HD (Smooth Inter-	24.0 Corrugated HD (Smooth Inter-	18.0 Corrugated HD (Smooth Interior	24.0 Corrugated HD (Smooth Interk	Z4.0 Corrugated HD (Smooth Interk	18.0 Corrugated HD (Smooth Interl	24.0 Corrugated HD (Smooth Interior	24.0 Corrugated HD (Smooth Interior
Pipe														
Pipe	Diameter (in)	12.0	36.0	36.0	12.0	18.0	18.0	24.0	18.0	24.0	24.0	18.0	24.0	24.0
Pipe	Slope Diameter (ft/ft) (in)	0.121 12.0	0.005 36.0	0.005 36.0	0.117 12.0	0.009 18.0	0.005 18.0	0.005 24.0	0.010 18.0	0.005 24.0	0.005 24.0	0.005 18.0	0.005 24.0	0.005 24.0
Pipe	Length Slope Diameter (ft) (ft/ft) (in)	12.0 0.121 12.0	69.0 0.005 36.0	121.0 0.005 36.0	12.0 0.117 12.0	85.0 0.009 18.0	93.0 0.005 18.0	67.0 0.005 24.0	111.0 0.010 18.0	33.0 0.005 24.0	20.0 0.005 24.0	36.0 0.005 18.0	11.0 0.005 24.0	38.0 0.005 24.0

Scenario: 100 YR Storm

WEST OUTFALL

FINAL DRAINAGE REPORT FOR

ONE SCOTTSDALE PU III INFRASTRUCTURE IMPROVEMENTS

SEC, SCOTTSDALE ROAD & THOMPSON PEAK PARKWAY SCOTTSDALE, ARIZONA

Prepared for:
ONE SCOTTSDALE MOLDINGS LLC
7600 E. Doubletree Ranch Road, Suite 300
Scottsdale, Arizona 85258
480-367-7000

Plan # <mark> 4 5- 2-5 </mark> Case #	Prepared by: BOWMAN CONSULTING 3010 South Priést Drive, Suite 103 Tempe, Arizona 85282 480-629-8830
Accepted Corrections N. Rahman 8	7/12 Junit Kashirl
Reviewed By D	235156 SHEPRI L. KOSHIOL

July 23, 2012 Project No. 9622 3rd Submittal

III. PROPOSED DRAINAGE PLAN

Post-developed Drainage Conditions

A. Streets and Drainage Tracts Flows

The private drive (73rd Street) has been designed to convey the 10-year flow below the top of curb and the 100-year peak flows within the roadway tract area at a maximum depth of 8 inches. Refer to Appendix B for these calculations. Ongrade curb openings are proposed at several locations along the private roadway to remove storm water runoff from the travel lanes and allow it to flow over existing ground to the outlet under Scottsdale Road north of Legacy Drive. These curb openings will have rip-rap protection to mitigate potential erosion. Curb openings design calculations for both the 10-year and 100-year storm conditions are included in Appendix B. The curb opening locations are shown on Figure 5 – Proposed Onsite Drainage Map.

In the future, these street flows may be conveyed to the outfall location under Scottsdale Road through a variety of means including but not limited to: storm drain pipes, channel systems, detention basin areas or any combination thereof. The ultimate design of the property between Scottsdale Road and 73rd Avenue will need to accommodate these flows through the site or within a drainage tract alongside the roadways.

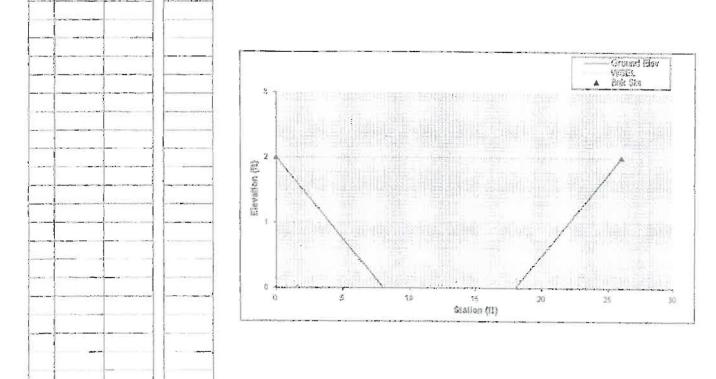
A catchbasin is proposed along Scottsdale Healthcare Drive to intercept upstream contributing areas and convey them to an existing stormdrain system. The location of this catchbasin is shown on Figure 5. Hydraulic calculations are included in Appendix B. As discussed in Offsite Drainage Conditions of Section II of this report, the flow from drainage subbasin 33.A1 (Q100 = 11 cfs) is planned to be conveyed in a drainage channel along the south side of Thompson Peak Parkway and then into a pipe culvert under 73rd Street. Per City of Scottsdale recommendations, the proposed drainage channel has been optimized within the available space to provide a capacity estimated to be 119.4 cfs (100-year flow), which exceeds the contributing flow. Three 36-inch pipes are proposed under 73rd Street to accommodate this channel capacity. Hydraulic calculations for the drainage channel and pipes are included in Appendix B.

A 24-inch pipe culvert is proposed under a sidewalk in the drainage tract located along the north side of Legacy Boulevard. This pipe culvert was sized to accommodate the flow generated within the drainage tract only(subbasin 8 on Figure 5). Hydraulic calculations for the drainage channel and pipe culvert are included in Appendix B.

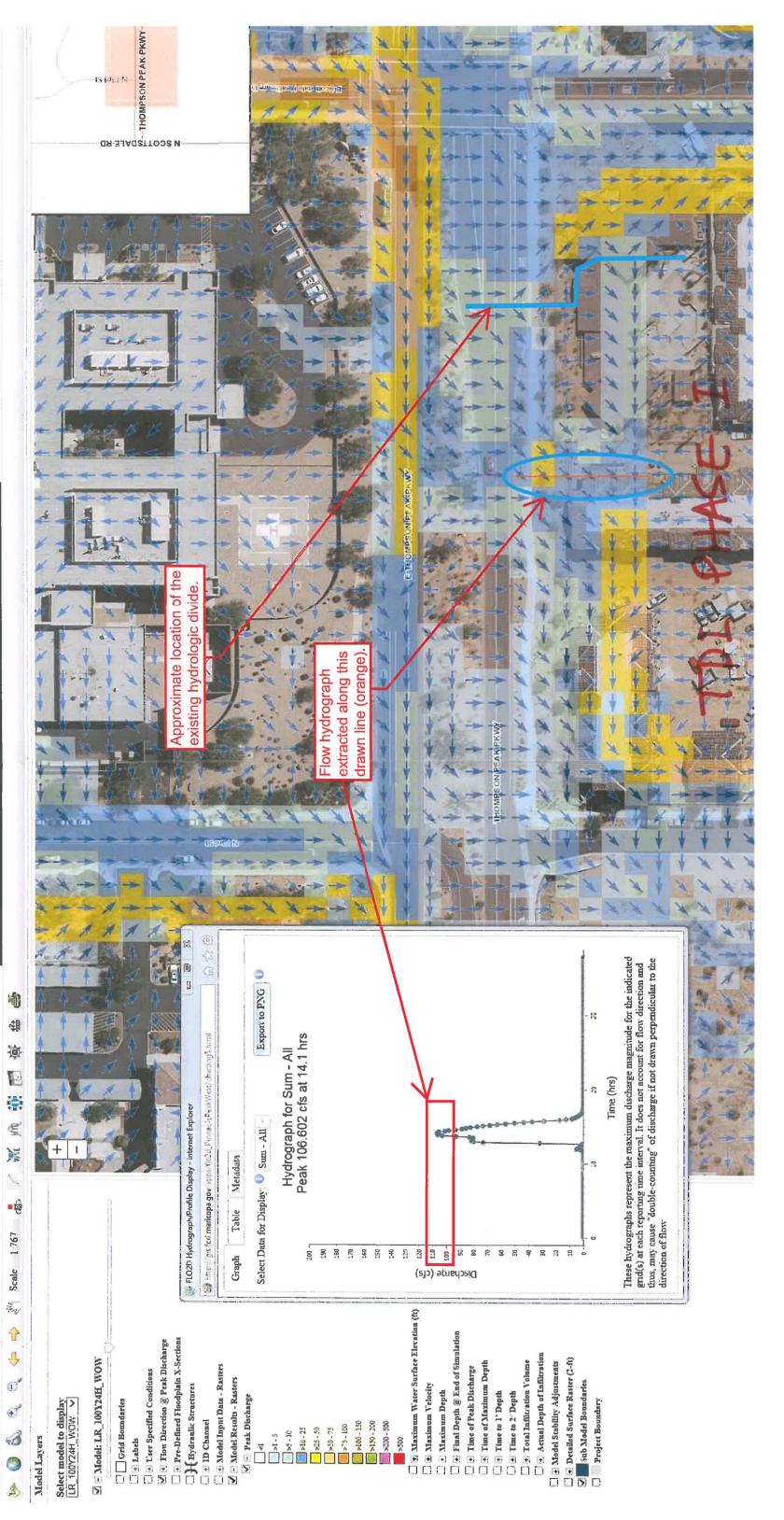
B. Stormwater Detention

As detailed in the *One Scottsdale Master Drainage Plan* and as approved by the City of Scottsdale, the drainage plan concept for the large master planned mixed use project, and thereby for this individual site development project, was based on waiving retention requirements and maintaining post-development peak flows to

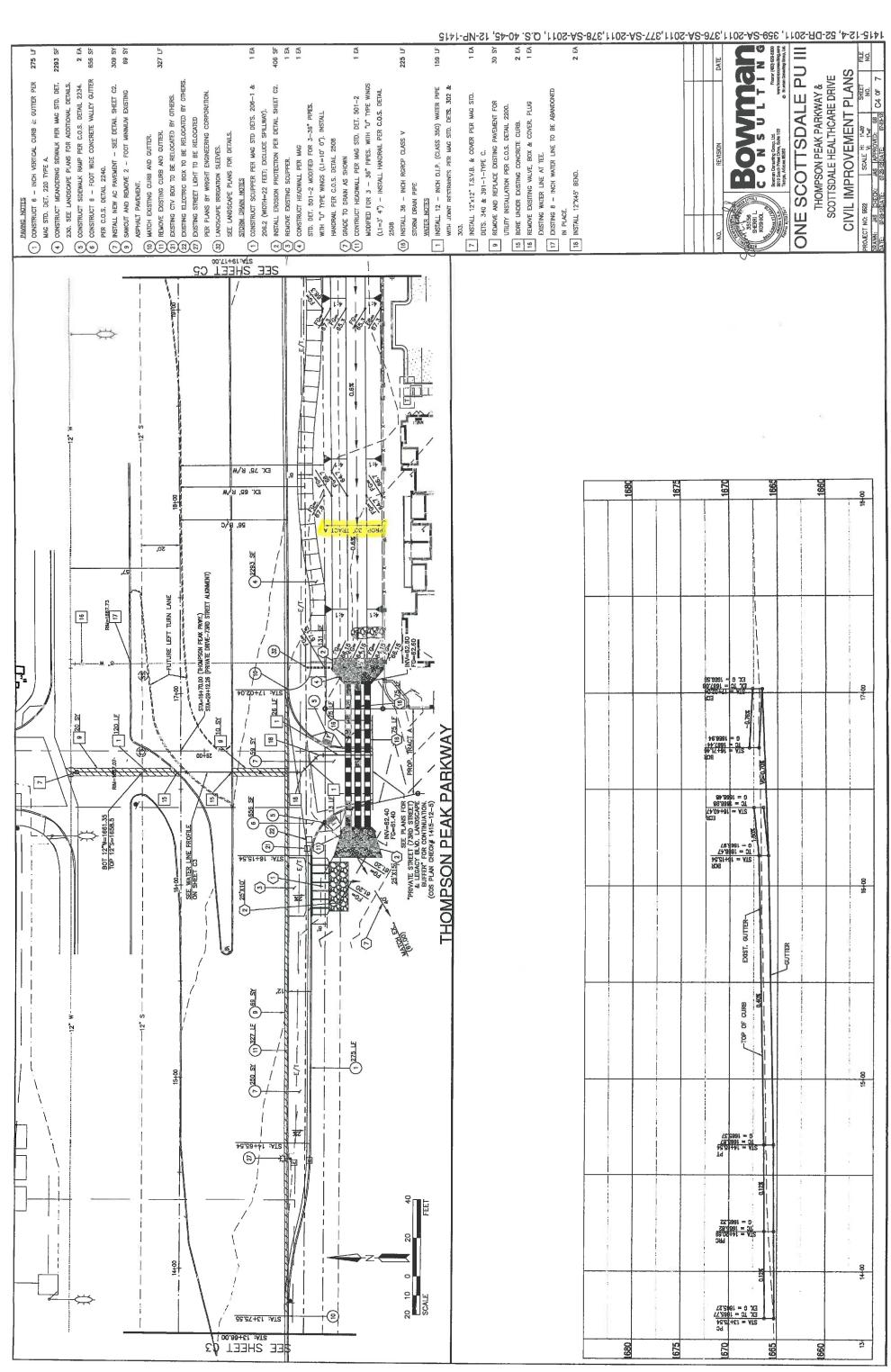
NORMAL DEPTH CALCULTIONS IN CHANNELS USING MANNING EQUATION


Base Sheet Prepared By: CA

Project: One Secusdate PU St


Proj. No: 9822 Date: 5/21/12 Ву: QA.

Enter 1	if "n" vans	es by ban	in i	La,CH,&	RB), or 2 i	by station	1
Point	Elev.	314.	100	n by sta.	Left Bank		Right Bank
no.	(FI)	(FT)	SERVICE SERVICE	N/A	Sta. (ff)		Sta. (ft)
1	2.00	0.00	2		0.00		26.00
3	0.00	8.00			n-LB	* n-CH *	n-RB
3	0.00	18.00	-		0.028	0.028	0.028
4	2.00	26.00	10		Cluc/wgines	-n method:	HEC-RAS
					S	0.0050	n/a
		P - medit			Solve for:	(d or Q)	Q
		, puns			d=	3.000	ft
		6 *** b ==					
	· · · · · · · · · · · · · · · · · · ·				Qealc.	119.4	cß
			1		WSEL	2.00	ñ
					V,max.	4.3	fps
			-		Fr	0.50	


Calc. Flow (cfs)	Quale	119,4
L-Back Flow (cfs)	Qt.	0.0
Chan Flow (cfs)	Quant	119.4
R-Bank Flow (cfs)	Q_{R}	0.0
Avg Section Vel (fps)	Vavg	3.3
Main Channel Vel ((bs)	Velus	4.3
Weighted Munning no.	n_{cs}	0.0426
Slope (MA)	S	0.0060
Max Flow Depth (ft)	G	2.09
WSEL (B)	WSEL.	2.00
Mio Elsv (r)	Min Elv	0.00
Area (ul)	A	36.0
Wei. Perim. (ft)	P	26.5
Hyd. Radius	R	1.36
Fraude Mo.	Fr	0.50
Li Floedolain Sta. (fl)	FPLA	0.0
R2 Floodplain Sta. (8)	FFRI	26.0
Floodplein Width (fl)	WFP	26.0

PPW ADMS Web Access Tool

Viewer Approximate location of the FIO existing hydrologic divide. **PPW ADMS** 0 1 cfs 1 cfs 1 cfs 1 cfs 3 con PEAK

FILE NAME: PASS2 - One Bootsdale 9822-01-001 (ENGNErginesting/Enginesting Plans) TP-SDH79822-0P-004-RPP. Ang