Exterior Building Color & Material Samples Color Drawdowns Archaeological Resources Airport Vicinity Development Checklist Parking Study Trip Generation Comparison Parking Master Plan Page 1 of 1

Xtra copy of red line comments given to applicant

City of Scottsdale Stormwater Management Division

Memorandum

To: Hubbard Engineering Shannon Wolfe 480-949-6800

From Nerijus Baronas, PE, CFM City of Scottsdale Stormwater Engineer 480-312-7072, nbaronas@scottsdaleaz.gov

Re: Drainage review comments for the Cottonwoods Mixed Use Project. Case number: 21-ZN-2013 Review date: 1-7-14

CASE RESUBMITTAL INFORMATION: Case not approved. Please address the following review comments:

- Compute and present pre and post development runoff coefficient "C". If post development "C" value show increase provide 100yr 2hr retention volume to the ∆C. If additional storage volume is needed provide drywell percolation calculations.
- 2. Re-submit existing and proposed condition exhibits as 24"x36" prints.
- 3. Depict and callout drainage easements for detention basins.

Please briefly respond to the above comments and include the response in the resubmittal. Address mark-ups in Preliminary Drainage Report.

Resubmittal Checklist

Please submit the following items with your next review:

- 2 Drainage Reports (with 24"x36" exhibits)
- 2 CD's with pdf files of drainage reports and excel spreadsheets.

COTTONWOODS MIXED USE PROJECT

LOCATED AT ON THE SOUTHWEST CORNER OF ROSE LANE AND SCOTTSDALE ROAD SCOTTSDALE, AZ

PRELIMINARY DRAINAGE REPORT

NOVEMBER 5, 2013

PREPARED FOR:

NELSEN PARTNERS, LLC. 15210 N.Scottsdale Rd, Suite 300 Scottsdale, AZ 85254 (480) 949-6800

PREPARED BY:

HUBBARD ENGINEERING 1840 S. STAPLEY DRIVE, SUITE 137 MESA, ARIZONA 85204 ENGINEER: SHANNON WOLFE SWOLFE@HUBBARDENGINEERING.COM (480) 892-3313 HUBBARD PROJ. No.: 13178

H U B B A R D E N G I N E E R I N G

Add expiration date

21-ZN-2013 12/16/2013

TABLE OF CONTENTS

1.0	INT	RODUCTION	. 2
	1.1 1.2	SITE DESCRIPTION PROPOSED DEVELOPMENT	.2
2.0	РНУ	SICAL SETTING	
	2.1	TOPOGRAPHY	. 4
	2.2	REGIONAL HYDROLOGY	.4
3.0	DRA	INAGE CHARACTERISTICS Existing	
	3.1	EXISTING	. 6
	3.2	PROPOSED	. 6
4.0	SUM	IMARY AND CONCLUSIONS	. 8
5.0	REF	ERENCES CITED AND REVIEWED	0

FIGURES

Figure 1	Vicinity Map
Figure 2	FEMA Map

APPENDICES

Appendix A	Rational/Peak Flows
Appendix B	Detention Calculations

EXHIBITS

Exhibit 1	Existing Conditions Map
Exhibit 2	Preliminary Grading and Drainage Plan

-Add expiration date

1.0 INTRODUCTION

This report presents the findings of a Preliminary drainage study of a proposed Cottonwoods Mixed Use project ("site") conducted by Hubbard Engineering ("HE") at the request of Nelsen Partners, LLC ("Client'). This report addresses the off-site flows, existing and proposed on-site conditions as well as storm water runoff detention requirements.

1.1 Site Description

The site sits on Parcel 174-65-012G, Section 10 of Township 2 North, Range 4 East of the Gila and Salt River Base and Meridian, Maricopa County, in the City of Scottsdale, Arizona. The location of the site is shown on the *Site Vicinity Map*, **FIGURE 1** on the next page. The project is bounded on the north and the west by Rose Lane, on the south by the Alamos development and the east by Scottsdale Road.

The site is irregular in shape and encompasses approximately 1.60 acres. General land use in the vicinity of the site is commercial and residential. The site is currently a one story building serving as the lobby to the Cottonwoods Resort and a restaurant. See **EXHIBIT 1** for the existing conditions map.

1.2 Proposed Development

Proposed development of the project consists of a four story building with a parking garage below ground, (see **EXHIBIT 2**). Proposed access to the site is provided from Rose Lane.

1.3 FEMA Flood Map

The site is located within Flood Zone D FEMA flood map 04013C1770L dated October 16, 2013. Zone 'D' is defined as unstudied areas where flood hazards are undetermined, but flooding is possible. Flood Insurance is not mandatory, but may be available in some participating communities.

н

www.h

UBBARD

ENGINEERING

ubbardengineering.com

1840 S. Stapley Dr. Suite 137

Mesa, AZ 85204

Ph: 480.892.3313

VICINITY MAPProject No.
09/13/13Date
09/13/13THE COTTONWOODS MIXED USE PROJECT
FIGURE "1"
Scottsdale, Maricopa County, ArizonaProject Manager
SHANNON WOLFEProject Eng.
Shi: 1 of 1

2.0 PHYSICAL SETTING

2.1 Topography

The Site is located approximately 1 mile west of the Indian Bend Wash and is characterized by very flat terrain that slopes towards the southeast. The site is fully developed. A review of topographic survey for this site indicates that the project ranges in elevation from approximately 1304.5 ft. at the northwest corner to approximately 1302 ft. at the southeast boundary. This is a total elevation of approximately 2.5 feet across the site in a northwest to southeast direction.

2.2 Regional Hydrology

The area is well developed with property that has planned for detention storage and storm drains in the major arterial streets. Rose Lane flows in the gutter and outlets at Scottsdale Road. Scottsdale Road has a storm drain system. Most of the storm water runoff from this area ultimately outfalls to the Indian Bend Wash. No offsite flows impact the site.

3.0 DRAINAGE CHARACTERISTICS

3.1 Existing

The existing site design directs storm water via overland flow including valley gutter and curb openings to a surface detention basin adjacent the the east property line and Scottsdale Road. There are several existing drywells in the detention area. The property does not have any underground storm drain or underground detention tanks. On-site storm water runoff flows through the site from west to east (detention basin) with the ultimate outfall at the southeast corner of the site. There are no offsite flows entering the site. See **EXHIBIT 1** for the existing site conditions.

to

3.2 Proposed

The low finish floor elevation will be set a minimum of 14-inches above the ultimate outfall of the site.

The 100-year, 6-hour storm runoff will be directed away from the building via underground roof drains and area inlets, or with overland flow to surface basins on the north and the southeast of the proposed building.

The inlets in the parking area will be Type F MAG 535 catch basins. One drywell is required per the preliminary drain time calculations in **Appendix B**. The hydraulic grade lines will be at least 1 foot below the grate elevations of the area inlets. There will be a trench drain at the bottom of the ramp into the underground parking garage.

K-Where will it outsall?

Peak Flows were calculated using Rational Method and the Time of Concentration calculated using methodology from the Maricopa County Hydrology Manual. The minimum Time of Concentration used was 5 minutes which is standard for small sites. Per the City Design Standards, peak flows for the 2 year, 10 year and 100 year were calculated. See preliminary rational peak flow calculations in Appendix A and Table 1, and Drainage Area designations (DA-1, DA-2,) in EXHIBIT 2.

Sub-Basin	C Runoff Coefficient			A Area	Q Peak Discharge Frequency		
&							
Concentration	Frequency		- States				
Point	2-year	10-year	100-year	7	2-year	10-year	100-year
ID			[acres]	[cfs]			
DA-1	0.80	0.80	0.86	0.56	1.3	2.1	3.7
DA-2	0.80	0.80	0.86	0.87	2.1	3.3	5.8
DA-3	0.80	0.80	0.86	0.09	0.2	0.4	0.6
DA-4	0.95	0.95	0.95	0.09	0.2	0.4	0.7
DA-5	0.83	0.83	0.88	0.48	0.9	1.6	3.1

Table 1: Rational/Peak Flows Summary

Cottonwoods Mixed Use Project Preliminary Drainage Report Hubbard Project No.: 13178 November 2013 Per discussions with the client and the City, additional retention is not required because this is an existing site, and Hubbard was directed to use the existing retention basin for design. Therefore, Hubbard has shown that the basin has capacity for above the first flush. Detention for the first flush will be provided by the existing basin adjacent to Scottsdale Road. The existing surface detention basin has several existing drywells which will be used for drying up the basin.

The site will drain via overland flow to the basin at the southeast corner of the site which is the ultimate outfall at an elevation of 1303.0.

The required detention to accommodate the first flush, which is the first 0.5 inches of runoff is shown in the Table below. The C value, C=0.86 (100 yr Commercial) from Figure 4.1-4 per the City of Scottsdale Design Standards, see results in **Appendix B**. See **Table 2** for a summary of the Detention Calculations.

Fall detection is 100yr 24r this is First Flush Table 2: Detention-Calculations Summary

Identifiers	CALCULATE DETENTION VOLUME REQUIRED			Vol	ume	
Contributory	Area		С		Required	
Area ID	[acres]		in the second	Rita stante e e	[acre- ft]	[ft ³]
DA-1	0.56		0.8	36	0.02	870.79
DA-2	0.87		0.8	36	0.03	1,357.
DA-3	0.09		0.86		0.00	140.54
DA-4	0.09		0.95		0.00	151.29
DA-5	0.48		0.88		0.02	770.88
Total Area:	2.09 -		тот	TAL VOLUME REQUIRED:	0.08	3,291
		DETEN	TION BASIN	IS	S. Company	S. Carlos
Detention Basin	HW Area	Bottom Area ft2	H	Volume Provide	co	Drainage Areas ntributing o Basins
RB-1	3,500.00	1,400.00	2	7,113.59		ALL RAINAGE AREAS
	m	nd	Total ->	7,113.59		Production of

It is unclear how this volame was estimated. Please attach excel spreadsheet to the CD with next submittal.

see hydraulic calculation sheet.

Cottonwoods Mixed Use Project Preliminary Drainage Report Hubbard Project No.: 13178 November 2013

4.0 SUMMARY AND CONCLUSIONS

- 1. The site is in a residential and commercial area of Scottsdale and is fully developed with an existing one story building and parking lot. There is an existing detention basin located adjacent to Scottsdale Road with existing drywells. The site does not have offsite flows entering it.
- 2. The proposed development will be a four story building with underground parking. The system of roof drains, area inlets, and catch basins will direct storm runoff to the existing first flush detention basin.
- 3. Per the client, discussions with the City, the client was told no additional retention was necessary as part of this development. The site was checked for capacity of first flush detention and the existing basin has capacity.
- 4. Existing drywells in the existing detention basin will be used to dry the detention area within 36 hours.
- 5. The runoff from Rose Lane drains to Scottsdale Road and Scottsdale Road discharges to the Indian Bend Wash via street gutter and storm drains. First Flush Detention was calculated for the site and the existing adjacent half streets.
- 6. Low Finish Floor elevations are a minimum of 14-inches above the ultimate outfall of the site, which is at the southeast corner of the site.
- 7. FEMA classifies the site area as Zone D, therefore Flood Insurance is not mandatory, but may be available in participating communities. Zone D is defined as areas where flood hazards are undetermined, but flooding is possible.

Calculate and present pre and post development runoff coefficient "c". If Crost is larger than Cree provide 100 yr 2hr storage for the 1C.

Page 8

5.0 REFERENCES CITED AND REVIEWED

- 1. Design Standards and Policies Manual, City of Scottsdale, January 2010.
- 2. Drainage Design Manual For Maricopa County, Arizona, Volume I, Hydrology, Flood Control District Of Maricopa County, February 2011.
- 3. Drainage Design Manual For Maricopa County, Arizona, Volume II, Hydraulics, Flood Control District Of Maricopa County, February 2011.
- 4. Flood Insurance Rate Map (F.I.R.M.) Maricopa County, Arizona and Incorporated Areas, Panel Number 04013C1770L, Federal Emergency Management Agency, October 16, 2013.

APPENDIX A Rational/Peak Flow Calculations

HYDROLOGIC CALCULATION SUMMARY SHEET RATIONAL METHOD Hubbard Engineering Project No. 13178

Attach complete calculations in next submittal.

Project Name: Cottonwoods Mixed Use Project No.: 13178 Prepared by: CSW Revised by: Date: 09/12/12 Date:

Te values.

Add colamn with

Complete calculations for each concentration point are presented in the attached hydrologic calculation sheets.

Sub-Basin С Q I A & **Runoff Coefficient** Intensity Area Peak Discharge Concentration Frequency Frequency Frequency Point 2-year 10-year 100-year 10-year 100-year 10-year 100-year 2-year 2-year ID [in/hr] [acres] [cfs] DA-1 0.80 0.80 0.86 3.00 7.80 0.56 4.80 1.3 2.1 3.7 DA-2 0.80 0.80 0.86 3.00 4.80 7.80 0.87 2.1 3.3 5.8 3.00 DA-3 0.80 0.80 0.86 4.80 7.80 0.09 0.2 0.4 0.6 2.75 7.80 DA-4 0.95 0.95 0.95 4.80 0.09 0.2 0.4 0.7 DA-5 0.83 0.83 0.88 2.25 4.00 7.20 0.48 0.9 1.6 3.1

APPENDIX B *Retention Calculations*

;

HYDRAULIC CALCULATION SHEET First Flush Detention Calculations Hubbard Engineering Volume Project No. 13178

Project Name: Cottonwoods Mixed Use Project No.: 13178

Prepared by: CSW Revised By:

Date: 11/05/13 Date:

Purpose: Evaluate the required and provided retention volumes in order to assess conformance to project criteria. Methodology: Calculate the volume of stormwater required to be retained using City of Scottsdale criteria. Calculate the estimated volume of stormwater retained using retention basin geometry.

Criteria: Detain the first flush (first 0.5 inches of rainfall)

References: 1. Drainage Design Amanual for Maricopa County, Arizona, Volume I: Hydrology, February 2011. 2. Drainage Design Manual for Maricopa County, Arizona, Volume II: Hydraulics, September 2003.

Calculations: Volume Required = $C_{Composite} * P/12* A [ft^3]$

P = 0.5C = 0.86[in] (Commercial)

(Reference 1) (Reference 1) (Reference 1)

(Reference 1)

Composite C= (C_{0.95}*A_{0.95} + C_{0.50}*A_{0.50})/A_{Total}

Volume Required = Composite C*P/12*A

detention is 100yr 2hr this is First Flush Volume

es		

Identifiers Contributory	CALCULATED	ETENTION VOLUME REQUIRED	Volume Required		
Area ID	[acres]		[acre-ft]	[ft ³]	
DA-1	0.56	0.86	0.02	870.79	
DA-2	0.87	0.86	0.03	1,357.51	
DA-3	0.09	0.86	0.00	140.54	
DA-4	0.09	0.95	0.00	151.29	
DA-5	0.48	0.88	0.02	770.88	
Total Area:	2.09	TOTAL VOLUME REQUIRED:	0.08	3,291.00	

1 of 1

HYDRAULIC CALCULATION SHEET **Retention Provided Hubbard Engineering** Project No. 13178

Project Name: Cottonwoods Mixed Use Project No.: 13178

Prepared By: CSW **Revised By:**

Date: 11/05/13 Date:

	State State State	DETENT	TION BAS	INS			
Drainage basin or tank	HW Area	Bottom Area	H ft	Volume Provided ft ³	Drainage Areas contributing to Basins		
RB-1	4,921.00	2,350.00	2	7,114,43	ALL DRAINAGE AREAS		
R	Volume Provideo	<= Total Area @ H.N I = H/3*(A _{H.W.} + A _{BO} 2ME 05 -			Volume do total volume	es not match	11

Reference name of ~ total voi this method Please review/revise as needed. Areas do not match Table 2 areas on page 7.

. . .

November 5, 2013

City of Scottsdale Planning Commission

FILE COPY

Re: Cottonwoods Mixed Use Development Sewer Assessment 6160 North Scottsdale Road, Scottsdale, Az. 85253 APN # 174-65-012G Gross Area 1.52 Acres, Net Area 0.96 Acres

We are writing on behalf of the developer, SCS Advisors, Inc., regarding the proposed Mixed Use Development located at the southwest corner of Rose Lane and Scottsdale Road. Currently a one story approximately 5,000 SF building serving as the Cottonwoods Resort Lobby and a restaurant exists on the site. The proposed plan entails demolishing the existing building and constructing a multi-level mixed use building (parking garage, surface parking, restaurant, and office space).

Hubbard Engineering has evaluated the existing and proposed sewer demands. Currently, there is an 8-inch sewer in Rose Lane that discharges to another 8-inch sewer in Scottsdale Road at a 0.33% slope which serves the Cottonwoods Resort, the Alamos, the Marriot, and the Borgata. The increase in peak flows are estimated to be approximately 61 gallons per day, and an increase in average day flows of 18 gallons per day. The existing and proposed sewer demands are attached.

Discussions through email with Doug Mann confirmed that the City of Scottsdale sewer capacity would be sufficient for the proposed project.

Sincerely,

C.Sh Wolfe

C. Shannon Wolfe, PE Project Manager Hubbard Engineering 480-398-3828

21-ZN-2013 12/16/2013

Hubbard Eng. Job Name: Cottonwoods Mixed Use Project Hubbard Eng. Job No.: 13178

Site:

.

Location:

Section: 10 Township: 2N Range: 4E County: Maricopa

Sewage Generation Calculations

EXISTING

Waste Water Source ¹ :	commercial	
Applicable Unit ¹ :	sf	
Sewage Design Flow per Applicable Unit, (GPD) ¹ :	1.20	gal/unit/day
Number of Units:	5,000	units
Total GPD:	6,000	gal/day
Waste Water Source ¹ :	not used	
Applicable Unit ¹ :	not used	
Sewage Design Flow per Applicable Unit, (GPD) ¹ :	0	gal/unit/day
Number of Units:	50	units
Sub-Total GPD:	0	gal/day
Total GPD:	6,000	gal/day
Total Maximum:	6,000	X 6.0
Peak Flow:	36,000	gal/day
Total Site GPD:	6,000	gal/day
Total Site GPD:	4.17	gal/min
Total Site Peak Flow:	36,000	gal/day
Total Site Peak Flow:	25.00	gal/min

Hubbard Eng. Job Name: Co	ttonwoods Mixed Use Project
Hubbard Eng. Job No.:	13178

Site:

.

÷.

Location: Section: 10 Township: 2N Range: 4E County: Maricopa

Sewage Generation Calculations

PROPOSED

Waste Water Source ¹ :	office	
Applicable Unit ¹ :	sf	
Sewage Design Flow per Applicable Unit, (GPD) ¹ :	0.40	gal/unit/day
Number of Units:	41,540	units
Total GPD:	16,616	gal/day
Waste Water Source ¹ :	restaurant	
Applicable Unit ¹ :	sf	
Sewage Design Flow per Applicable Unit, (GPD) ¹ :	1	gal/unit/day
Number of Units:	6,605	units
Sub-Total GPD:	7,926	gal/day
Total GPD:	24,542	gal/day
	7,926	X 6.0
	16,616	X 3.0
Peak Flow:	97,404	gal/day
Total Site GPD:	24,542	gal/day
Total Site GPD:	17.04	gal/min
Total Site Peak Flow:	97,404	gal/day
Total Site Peak Flow:	67.64	gal/min

Н

UBBARD ERING G

1840 S. Stapley Dr. Suite 137 Mesa, AZ 85204 Ph: 480.892.3313 ubbardengineering.com

INDIAN BEND ROAD SCOTTSDALE ROAD 68TH STREET DRIVE LINCOLN ROSE LANE QUAIL RUN ROAD SITE 70TH STREET MCDONALD DRIVE

Project No. 13178 Date VICINITY MAP 09/13/13 THE COTTONWOODS MIXED USE PROJECT Sht: 1 of 1 FIGURE "1" Project Manager Project Eng. SHANNON WOLFE Scottsdale, Maricopa County, Arizona

| NelsenPartners Noises Partners, Inc. Architecture Planning Inte Austin - Sociladele

15210 N. Scottadaia Road, Suita 300 Scottadaia, Artona 55254 tel 490.949.6800 fax 450.949.6501 www.nelsonpertners.com

> PRELIMINARY NOT FOR CONSTRUCTION OR RECORDING

> > SCOTTSDALE, ARIZONA

 \oplus

REF: NORTH A101.2 AERIAL SITE PLAN

TRAFFIC IMPACT AND MITIGATION ANALYSIS (TIMA)

For

Cottonwoods Mixed Use Project SWC of Scottsdale Road and Rose Lane Scottsdale, Arizona

Prepared For:

Nelsen Partners, Inc.

Project No. 191378002 December 2013 Copyright © 2013, Kimley-Horn and Associates, Inc.

21-ZN-2013 12/16/2013

TRAFFIC IMPACT AND MITIGATION ANALYSIS (TIMA)

For

Cottonwoods Mixed Use Project SWC of Scottsdale Road and Rose Lane Scottsdale, Arizona

Prepared For:

Nelsen Partners, Inc. 15210 N. Scottsdale Road, Suite 300 Scottsdale, Arizona 85254

Prepared By:

Kimley-Horn and Associates, Inc. 7740 North 16th Street, Suite 300 Phoenix, Arizona 85020

Project No. 191378002 December 2013 Copyright © 2013, Kimley-Horn and Associates, Inc.

Table of Contents

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	TIMA Objectives	1
1.3	Executive Summary	2
1.	3.1 Site Location	
1.	3.2 Study Area	
1.	3.3 Development Description	
1.	3.4 Principal Findings	
1.	3.5 Conclusions and Recommendations	4
	Area Conditions	_
2.0	Area Conditions	7
2.1	Study Area	
2.2	Study Area Land Use	
2.3	Site Accessibility	
2.4	Transit service	
2.5	Access	
2.6	Phasing and Timing	8
3.0	Existing Traffic Conditions	0
3.1	Traffic Volumes	
3.1		
3.2	Traffic Control	
3.4	Capacity and Level of Service	
3.4	Accident History	. 10
4.0	Projected Traffic	12
4.1	Site traffic	
	1.1 Trip generation	
4.	1.2 Trip distribution and Assignment	
4.	1.3 Alternative Modes	
4.2	Future Background Traffic	
4.3	Future Total Traffic	
	Factores Tan file O and lititation	40
5.0	Future Traffic Conditions	
5.1	Capacity and Level of Service	
5.2	Intersection Queuing Analysis	
5.3	On-site Driveway Storage	. 20
6.0	Conclusions and Recommendations	
6.1	Conclusions	
6.2	Recommendations	
7.0	APPENDIX	23

i

List of Figures

Figure 1 – Vicinity Map and Context Plan	5
Figure 2 – Cottonwoods Redevelopment Site Plan	
Figure 3 – Existing Traffic Volumes	11
Figure 4 – Future Background Traffic Volumes	15
Figure 5 - Project Trip Distribution and Traffic Assignment	16
Figure 6 – Future Traffic Volumes with All Planned Cottonwoods Redevelopment	17
Figure 7 – Recommended Capacity Improvements – Mitigation Option #1	

List of Tables

Table 1 – Allowable Land Use Comparison – Potential vs. Proposed	3
Table 2 – Existing Level of Service – Scottsdale Road and Rose Lane	9
Table 3 – Trip Generation - Potential Use of Project Site	12
Table 4 – Trip Generation - Proposed Use of Project Site	12
Table 5 – Trip Generation Comparison – Potential vs. Proposed	13
Table 6 – 2016 Level of Service: AM Peak Hour	18
Table 7 – 2016 Level of Service: PM Peak Hour	19
Table 8 - Left-Turn Storage Recommendations	19

K:\PHX_Traffic\191378002 - Cottonwoods Resort\Commercial Parcef\Reports\2013-12-04 Cottonwoods Mixed Use TIMA.doc

Kimley-Hom and Associates, Inc.

1.0 INTRODUCTION

1.1 PURPOSE

This report presents the results of a Category 2 Traffic Impact and Mitigation Analysis (TIMA) of a property rezoning and redevelopment proposal identified as the Cottonwoods Mixed Use Project. The Cottonwoods Mixed Use Project proposes to redevelop 2.7 acres of property (the CMU parcel or, "Project site") located on the southwest corner of Scottsdale Road and Rose Lane. The Project Site is identified in **Figure 1**. The Project site is one of several contiguous land parcels (over 26 acres in total) collectively forming the Cottonwoods Resort (CR). The majority of the CR property (the 22.5-acre main resort site in particular) is located in the Town of Paradise Valley; just west of Scottsdale City limit. The CR guest lobby, check-in facilities, and restaurant are currently located on the Project site. Under the Cottonwoods Mixed Use redevelopment plan; and in conjunction with complementary redevelopment plans currently under review by the Town of Paradise Valley for the main resort site¹, the lobby and check-in facilities will be relocated to the Paradise Valley side of the CR property; and the 10,647 square foot single story building and 67 surface parking spaces currently occupying the Project site will be replaced with a four-story, 57,754 square foot mixed use (restaurant and office) building; and a combination of underground and surface parking.

Kimley-Horn and Associates, Inc. (KHA) has prepared this report on behalf of the applicant, to support the Cottonwoods Mixed Use rezoning application. City approval of the CMU application would rezone the Project site from Resort/Townhouse Residential (R-4R), to Planned Unit Development (PUD); and would allow the Cottonwoods Mixed Use Project to move forward in accordance with the redevelopment plan just described; and in accordance with the conceptual site plan shown in **Figure 2**.

1.2 TIMA OBJECTIVES

The TIMA for the Cottonwoods Mixed Use Project has been prepared to accomplish the following objectives:

- 1. Describe the Project in terms most relevant to the determination of traffic impact.
- 2. Quantify the trip generation potential of the Project, and relate Project trip generation to the trip generation potential of the Project site as currently zoned.
- Identify the assumed opening year for the Project; the assumed build-out (horizon) year for the Project; and any anticipated development phasing. In the case of the Cottonwoods Mixed Use Project, opening and build-out years are assumed to be one and the same; and no phasing of the Project is anticipated.
- 4. Define the area of significant traffic impact (the "study area").
- 5. Evaluate existing peak hour traffic conditions within the study area.
- 6. Evaluate readily available traffic accident history for the study area.

¹ The Paradise Valley portion of the Cottonwoods Resort affiliated property includes 22.5 acres within the Town of Paradise Valley established boundaries of an existing Special Use Permit area; and an adjacent 5.0 acre parcel (to the existing resort's southwest) the resort redevelopment plan proposes to add to the SUP area. The "in Scottsdale" CR parcels include, in addition to the CMU parcel; two other very small parcels (one 0.1 acre in size; and the other 0.9 acre in size). All three CR parcels in Scottsdale, are located along the south side of Rose Lane.

- 7. Estimate and account for general population related growth in existing background traffic volumes within the study area; between now and 2016.
- Recognize and account for other planned development projects likely to draw additional background traffic to the study area between now and 2016, regardless of whether or not the Cottonwoods Mixed Use project moves forward.
- 9. Distribute and assign peak hour Project traffic to the Project site driveways and study area roadway network.
- 10. Evaluate horizon year peak hour traffic conditions under both "with the Project", and "without the Project" scenarios. Identify any traffic operational or safety deficiencies within the study area revealed by the horizon year traffic conditions evaluation, and distinguish between deficiencies caused solely by the Project; and pre-existing deficiencies the Project will just make more significant.
- 11. Indicate the conditions under which the Project can be developed in a manner that allows pre-existing Level of Service to continue to be provided within the City of Scottsdale public right of way.

1.3 EXECUTIVE SUMMARY

1.3.1 Site Location

The Project site is located on the southwest corner of Scottsdale Road and Rose Lane; just inside the western boundary of the City of Scottsdale. The City's western boundary line in this vicinity, as indicated in Figure 1, runs in a north-south direction, along the 71st Street alignment. The Project site and two other parcels (0.1 acres and 0.8 acres) currently occupied by the Cottonwoods Resort-affiliated conference center are the only Cottonwoods Resort-affiliated land parcels located inside Scottsdale City limits. The other 22.5 acres of Cottonwoods Resort property (the "CR" area as it is identified in TIMA report figures) is located in the Town of Paradise Valley. A redevelopment plan for the Paradise Valley component of the Cottonwoods Resort property relies on Rose Lane for access to the surrounding public roadway network) is not a part of this application. A copy of the CR property redevelopment-supporting traffic impact and parking analysis (also prepared by KHA) submitted to the Town of Paradise Valley as a supporting document to a Special Use Permit amendment (SUP) application for the CR property has been included with this report for reference.

1.3.2 Study Area

The area of significant influence, within the limits of the City of Scottsdale public right of way, is anticipated to be limited to points within 300 feet of the intersection returns at Rose Lane. Outside the public right of way, but still recognized and addressed as impacted area for the purposes of this report, is Rose Lane, from the western City limit (660 feet west of Scottsdale Road) to approximately 100 feet east of Scottsdale Road. Rose Lane is a private driveway within the limits just described; upon which several residential and commercial development projects rely for signalized access (and for some, the only route of vehicular access) to the public roadway network.

1.3.3 Development Description

Redevelopment as currently proposed would replace an existing single-story, 10,647 square foot commercial building, and all surface parking; with a four story, 57,754 square foot mixed use building with mostly underground parking. The proposed building will provide approximately 6,605 square feet of restaurant space, 41,540 square feet of office space and 9,609 square feet of common/accessory area.

1.3.4 Principal Findings

The existing use of the property is but one of several combinations of R-4R allowable land use that could potentially occur on the property without any zoning change; and without requiring any additional on-site parking. For the purposes of this analysis, which includes determining the relative trip generation impact of approving this rezoning request; and in recognition of the probability that over 70% of the existing building floor area will be vacated as part of previously indicated relocation plans for the Cottonwoods Resort-affiliated guest lobby and check-in facilities, an "already allowed" land use scenario has been established as the "without rezoning approval" condition. The differences between already allowed and currently proposed uses of the Project site are indicated in **Table 1**.

Scenario	Zoning Designation	Land Use Mix
Already Allowed (without rezoning approval)	R-4R	6,000 sf Restaurant + 4,647 sf Retail
Currently Proposed (with rezoning approval)	PUD	6,605 sf Restaurant + 51,149 sf Office and Common/Accessory Area*

Table 1 – Allowable Land Use Comparison – Potential vs. Proposed

* For trip generation estimation purposes, the common/accessory area has been treated as part of the office component of the project.

Redevelopment in accordance with the above-described proposed land use mix; and in accordance with the conceptual site plan shown in **Figure 2**, is expected to collectively result in a development that generates 1,404 vehicular trips per day, 151 of which will occur during the AM peak hour and 141 of which will occur during the PM peak hour. Relative to the above described already allowed use of the property, this constitutes an increase of 419 vehicular trips per day on Scottsdale Road, 81 of which will AM peak hour trips and 68 of which will be PM peak hour trips. This level of trip generation increase is generally not considered significant enough to warrant more than a summarized traffic impact statement.

Further analysis of the traffic implications of this Project, in the context of all of the redevelopment anticipated to occur between now and 2016 (the assumed build-out/horizon year), indicates that all currently proposed redevelopment of property relying on the Scottsdale Road/Rose Lane intersection for public street access can be reasonably accommodated through 2016 and full build out of all currently proposed redevelopment, subject to the project site access and off-site improvement recommendations identified as "recommended" in this report, being carried out before the Cottonwoods Mixed Use Project occupied and open for business. "Reasonably accommodated", for the purpose of the preceding statement, means that:

- 1. All traffic movements at the Scottsdale Road/Rose Lane intersection can operate at acceptable levels of service (LOS "D" or higher).
- 2. All projected peak hour 95th percentile left turn queues can be accommodated within their respective available storage areas, without causing spillback (within the public right of way) into an adjacent travel lane.

1.3.5 Conclusions and Recommendations

The conclusions reached through the completion of this analysis support the Cottonwoods Mixed Use rezoning request and redevelopment plan, subject to the following recommendations:

Rose Lane pavement markings, lane use control signing, and/or other traffic control features on Rose Lane should be removed and replaced, or otherwise modified, to the extent necessary to accomplish the following:

- 1. Improve eastbound/westbound left turn lane alignment across Scottsdale Road.
- 2. With regard to lane use designation on the eastbound Rose Lane approach to Scottsdale Road convert the existing shared through/left turn lane plus exclusive right turn lane configuration to an exclusive left turn lane plus shared through/right turn lane configuration.
- 3. With regard to the lane use on the westbound Rose Lane approach to Scottsdale Road convert the existing shared through/left turn lane plus exclusive right turn lane configuration to an exclusive left turn lane plus shared through/right turn lane configuration.
- 4. Provide a single westbound lane on Rose Lane that is at least 15 feet wide, from Scottsdale Road to the western City limit (71st Street alignment).
- 5. Optimize the signal timing splits for each movement in a manner that accounts for and takes full advantage of the above described improvements.

With regard to Project site specific access features, it is additionally recommended that

- the easternmost of the existing Project site driveways (the one located on the south side of Rose Lane, 75 feet from Scottsdale Road) be removed; and
- 7. new project site driveway(s) be located such that the primary site entry drive will align with the planned (by others) north side driveway that will provide access to the future Borgata Residential development.

Not to Scale

LEGEND

Cottonwoods Mixed Use Parcel - 2.7 Acres

Existing Cottonwoods Resort/SUP Area – 22.5 Acres (Proposed for Development; Not a part of this application)

Cottonwoods Resort Expansion Parcel – 5.0 Acres (Residential Use Proposed; Not a part of this application)

Existing Cottonwoods Conference Center (Not a part of this application)

Borgata Redevelopment Site - 5.2 Acres (Not a part of this application)

Existing Alamos Residential (Not a part of this application)

Existing Marriott Residence Inn (Not a part of this application)

Existing Signalized Intersection

Recognized Future Signalized Intersection

Stop Sign Controlled Intersection Approach

December 2013

Figure

Not to Scale

December 2013

Figure

2

Kimley-Hom and Associates, Inc.

2.0 AREA CONDITIONS

2.1 STUDY AREA

The area of significant influence, within the limits of the City of Scottsdale public right of way, is anticipated to be limited to points within 300 feet of the intersection returns at Rose Lane. Outside the public right of way, but still recognized and addressed as impacted area for the purposes of this report, is Rose Lane, from the western City limit (660 feet west of Scottsdale Road) to approximately 100 feet east of Scottsdale Road. Rose Lane is a private driveway within the limits just described; upon which a several residential and commercial development projects rely for signalized access (and for some the only route of vehicular access) to the public roadway network.

2.2 STUDY AREA LAND USE

Seven (7) developed (or redeveloping) properties rely on the "west of Scottsdale Road" segment of Rose Lane for public street access. Development sites with access point along the south side of Rose Lane consist of (east to west; four in total), the Project site, the Alamos residential condominium site, the Cottonwoods Resort Conference Center, and (south of and sharing access with the conference center) the Kerr Cultural Center site. North side development sites include (east to west; two in total) the remaining commercial component of what was originally the Borgata Shopping Center property (which remains occupied by restaurants); and the Borgata Residential (BR) property. The BR property is now a standalone parcel, with cross access rights through above-sited restaurant parcel, to a single right in right out only driveway on Scottsdale Road. The BR property was recently rezoned from C-2 to PUD to allow redevelopment into 216 residential condominiums.

All six of the above-cited Rose Lane adjacent properties are located within Scottsdale City limits, which end in this vicinity along the 71st Street alignment. The seventh (and largest) piece of property relying on Rose Lane for public street access is the Cottonwoods main resort site, which lies just outside Scottsdale City limits; and totally within the City of Scottsdale. The main resort side and the CMU/Project site share a common boundary line that runs north-south along the city/town limit line. The main resort side is currently occupied by 171 casita guest units, gust and employee parking, and various recreational amenities considered accessory to the guest units in terms of trip generation potential. Redevelopment plans for the main resort site (and an adjacent five acre parcel) are currently under review by the Town of Paradise Valley Planning Commission. The resort redevelopment plan proposes the following changes on the resort and resort adjacent expansion parcel:

- 1. The replacement of 26 existing guest casita units with 90 new hotel rooms. The hotel rooms will occupy two 45-room hotel buildings.
- 2. The relocation of off-site guest lobby and check-in facilities (from the Cottonwoods Mixed use site) to an on-site location within the new hotel building complex.
- 3. The addition of a residential component to the resort, providing 47 new single family residences.

2.3 SITE ACCESSIBILITY

The Project site is reached by turning west onto Rose Lane from Scottsdale Road; and then left/south off of Rose Lane into the property, at either of the site's two existing driveways. Rose

Lane is a private driveway to which several developed (and/or redeveloping) properties currently share access.

2.4 TRANSIT SERVICE

There are two Valley Metro bus stops located in the immediate vicinity of the Project site; one bus stop without a pullout area on the west (southbound) side of Scottsdale Road, right in front of the Project site; and one bus stop (with a pullout area) on the east (northbound) side of Scottsdale Road, just north of Rose Lane. Both bus stops are pick-up/drop off points along Route 72, which runs along Scottsdale/Rural Road, from its northern terminus at Thompson Peak Parkway, to its southern terminus at Chandler Fashion Center. Route 72 busses arrive at these two bus stops at 20-30 minute intervals all day long on weekdays and at slightly less frequent intervals late in the evenings and on weekends. Transit information for Route 72 is included in the **Appendix**.

2.5 ACCESS

The Project site is reached by turning west onto Rose Lane from Scottsdale Road; and then left/south off of Rose Lane into the property, at either of the site's two existing driveways. One of these two driveways is located only about 75 feet clear of Scottsdale Road, making the driveway of limited value during peak hours, as eastbound traffic already queues back from the intersection far enough to block ingress and egress during these periods. Rose Lane is a private driveway to which several developed (and/or redeveloping) properties currently share access. Most of the development along Rose Lane, including the Project site, relies on Rose Lane as its only vehicular connection to Scottsdale Road and the rest of the public roadway network.

2.6 PHASING AND TIMING

For the purposes of this analysis, it has been assumed that the Cottonwoods Mixed Use Project will be developed in a single phase; that the opening year will be 2016; and that the opening year and the build-out year are one and the same. It has been further assumed that, by 2016, the Borgata (Residential) and Cottonwoods (Resort/Residential) redevelopment projects – each of which is discussed in more detail later in this report) will be complete and operating at full trip generation potential as defined in the traffic impact (and mitigation) analysis documents that support their respective associated rezoning applications.

3.0 EXISTING TRAFFIC CONDITIONS

The existing street intersection of Scottsdale Road and Rose Lane was considered by City of Scottsdale traffic engineers and KHA to be appropriate for consideration in this TIMA analysis.

3.1 TRAFFIC VOLUMES

In order to establish existing traffic conditions at the Scottsdale Road and Rose Lane intersection, KHA used AM and PM peak hour traffic count data collected in December 2012 which was obtained from the *Borgata Development Traffic Impact and Mitigation Analysis (TIMA) Addendum #1* prepared by David Evans and Associates, Inc. (DEA), dated March 1, 2013. The DEA collected count data is presented in **Figure 3**. A copy of the count data is included in the **Appendix**.

3.2 TRAFFIC CONTROL

Traffic control information regarding the phasing and timing currently in effect at Scottsdale Road and Rose Lane was obtained from the City of Scottsdale. This information has been used to analyze the study intersection, and is reflected in the Synchro model runs, output for which is attached. Signal timing information is included in the **Appendix**.

3.3 CAPACITY AND LEVEL OF SERVICE

The capacity and level of service (LOS) provided at a street or driveway intersection is a function of traffic volumes, traffic composition, roadway geometry, and the manner in which traffic is being controlled. The methodology applied to the evaluation of LOS at the existing study intersection, is based on the widely accepted guidelines and criteria found in the Transportation Research Board's Highway Capacity Manual, 2010 Edition (HCM). The level of service, as outlined in the HCM, is reported as a letter designation of LOS A through LOS F. A LOS of "A" indicates motorists are experiencing nominal delays as they attempt to pass through the intersection; whereas, a LOS of "F" indicates heavy delays being incurred. Existing traffic conditions were evaluated using SYNCHRO 8© traffic analysis software. Results of the existing conditions evaluation for the Scottsdale Road and Rose Lane intersection are summarized in **Table 2** below. Analysis outputs are included in the **Appendix**.

				Movement	Leve	lofS	ervice	e (A-F))		Intersection
Scenario		rthbou tsdale		Eastbou Rose La			uthbou tsdale		Westbo Rose L		LOS Delay
	L	Т	R	LT	R	L	Т	R	LT	R	Delay
Existing AM	A	А	А	D	D	A	A	A	E	D	A 7.2
Existing PM	С	В	В	F	D	С	В	В	F	D	B 15.5

Results of the existing conditions level of service analysis indicate that, while the Scottsdale Road/Rose Lane intersection is operating at an overall acceptable level of service (LOS of C or better) during peak hours; long delays (LOS E or F) are being incurred by left turn traffic on the eastbound and westbound approaches. Based on field observations made in September 2013, of existing PM peak hour conditions at this intersection, followed by informal discussion of the same with City traffic engineering staff, it was preliminarily concluded that improved alignment of

eastbound and westbound left turn lanes across the intersection, coupled with the conversion of the existing "shared through/left turn lane + right turn only lane" eastbound and westbound approach lane designation, to a "left turn only lane + shared through/right turn lane" designation could have a positive impact on level of service for the eastbound and westbound movements that are currently operating at LOS F conditions during peak hours.

3.4 ACCIDENT HISTORY

Three years-worth (2010 - 2012) of accident data for the Scottsdale Road and Rose Lane study intersection was obtained from ADOT. The accident data indicates an average annual rate of approximately 9 crashes per year. Considering that this segment of Scottsdale Road carries over 12 million vehicles per year, this represents a crash rate² of less than 0.68. Approximately 70% of these have been rear-end crashes; 73% non-injury and none through 2012 resulted in a fatality. Accident data has been included in the **Appendix**.

² Crash rate as defined by the FHWA = Crashes per million entering vehicles; well below the 1.0 threshold generally considered high accident locations.

Cottonwoods Mixed Use - Traffic Impact and Mitigation Analysis

Not to Scale

Existing Roadway Existing Private Access Drive Existing Private Access Drive Approved Future Roadway Potential Future Roadway Signalized Intersection
(Existing) Signalized Intersection
(Existing) Signalized Intersection
(Bacognized Future) Stop Sign Controlled Approach 102(160)
(Eristing) AM (PM) Peak Hour Volumes
(Dalaly Volumes)

Figure

4.0 PROJECTED TRAFFIC

4.1 SITE TRAFFIC

4.1.1 Trip generation

The Institute of Transportation Engineer's (ITE) *Trip Generation*, 9th Edition was used to estimate the weekday trip generation rates for both previously approved and currently proposed uses of the site. Results of these calculations are summarized in **Table 4** and **Table 5**. Vehicular trip generation conclusions reflect consideration that the subject property has the potential to attract trips located within a short walking distance of the Cottonwoods Resort and Borgata Residential Development as well as attracting trips from the on-site office use. Therefore, a conservative estimate of twenty (20%) percent of the restaurant trips will be made without adding any vehicles to Scottsdale Road. Trip generation documentation is included in the **Appendix**.

	ITE				Trip	os Genera	ited		
Land Use	Land Use	Quantity		AN	/I Peak H	our			
	Code		Daily	In	Out	Total	In	Out	Total
Restaurant	932	6,000 sf	763	36	29	65	35	24	59
Retail ¹	826	4,647 sf	206	2	2	4	6	7	13
Total Tri	ps – All I	Nodes	969	38	31	69	41	31	72
20% Alter	nate Mod	le Trips	152	7	6	13	7	5	12
Total Ve	ehicular	Trips	817	31	25	56	34	26	60

Table 3 – Trip Generation - Potential Use of Project Site

1. ITE does not provide AM Peak Hour trip generation rates for Specialty Retail (LUC 826), so ITE's Shopping Center (LUC 820) trip rate was used for the AM Peak Hour time period estimates of the Specialty Retail component trip generation.

	ITE				Trip	os Genera	ited			
Land Use	Land Use	Quantity		AN	l Peak H	our	PM Peak Hour			
	Code		Daily	In	Out	Total	In	Out	Total	
Restaurant	932	6,605 sf	840	39	32	71	39	26	65	
Office	710	51,149 sf	564	70	10	80	13	63	76	
Total Tri	ps – All I	Vodes	1,404	109	42	151	52	89	141	
20% Alter	nate Mod	le Trips	168	7	7	14	7	6	13	
Total V	ehicular	Trips	1,236	102	35	137	45	83	128	

Table 4 - Trip Generation - Proposed Use of Project Site

			Tri	ps Generat	ed					
Scenario		A	M Peak Ho	our	P	PM Peak Hour				
	Daily	In	Out	Total	In	Out	Total			
Potential	817	31	25	56	34	26	60			
Proposed	1,236	102	35	137	45	83	128			
Trip Generation Increase	419			81			68			

Table 5 - Trip Generation Comparison - Potential vs. Proposed

As **Table 6** indicates, results of this analysis indicate the largest increase in peak hour trip generation that the Cottonwoods Mixed Use project will create is 81 trips; and this increase will occur during the AM peak hour of adjacent street (Scottsdale Road) traffic. Peak hour trip generation increases of fewer than 100 vehicles are generally not considered significant enough to warrant more traffic impact analysis documentation than a summarized traffic impact statement.

4.1.2 Trip distribution and Assignment

Site traffic, in the "proposed" quantities indicated in **Table 5** and **Table 6**, were assigned to the study area roadway network as the first step in estimating future peak hour traffic demands under the "proposed" scenario. Results of the site traffic assignment process and directional distribution assumptions are presented in **Figure 5**.

4.1.3 Alternative Modes

The restaurant component of the Cottonwoods Mixed Use project is likely to draw a significant portion of their peak hour traffic from complementary land uses in the immediately surrounding area, including those located in the same building (offices); and those that would walk from the existing and planned residential and resort development located immediately west of the Project site. For the purposes of this analysis, 20% of the total trip generation has been assumed as "alternate mode" trip generation; alternate mode covering both internally captured trips and externally captured trips that do not require vehicular travel within the public right of way. This modal split assumption is reflected in the trip generation tables and in the project traffic assignment figures. The remaining (external vehicular) trip generation has all been directionally distributed and assigned to the intersection of Scottsdale Road and Rose Lane.

4.2 FUTURE BACKGROUND TRAFFIC

Developing future background traffic volume projections was the next step in estimating peak hour traffic demands. The approach by which future peak hour traffic volumes were established is detailed below:

- 1. Existing through volumes on Scottsdale Road, shown in **Figure 3**, were grown from 2012 to 2016 using an annual growth rate of 1.5%.
- 2. Borgata Residential traffic, as reported in the Borgata Residential DEA TIMA, was added to the growth-adjusted traffic volumes, to create future background traffic volumes.

3. Cottonwoods Resort Redevelopment traffic (CRR), as reported in the Cottonwoods Resort SUP Amendment, prepared by KHA, were added to the future background traffic volumes to create future "background plus CRR" volumes.

2016 traffic volumes for both "background" and "background plus CRR" scenarios are presented in **Figure 4**.

4.3 FUTURE TOTAL TRAFFIC

Future "total traffic" volumes, anticipated to exist in 2016, assuming all of the currently proposed Borgata and Cottonwoods redevelopment has occurred to the full intentions of the respective project developments. These volumes were determined by adding site traffic to the "background plus CRR" volumes. 2016 total traffic volumes are presented in **Figure 6**.

Cottonwoods Mixed Use - Traffic Impact and Mitigation Analysis

Not to Scale

LEGEND

8

Signalized Intersection (Existing) Signalized Intersection

(Recognized Future)

Stop Sign Controlled Approach

102(160) AM (PM) Peak Hour Volumes 1570 Total Daily Volumes

December 2013 Figure

Not to Scale

LEGEND

- 8
- Signalized Intersection (Existing)
- Signalized Intersection
- (Recognized Future)
- Stop Sign Controlled Approach
- 102(160) AM (PM) Peak Hour Volumes 1570 Total Daily Volumes

December 2013 Figure

5.0 FUTURE TRAFFIC CONDITIONS

5.1 CAPACITY AND LEVEL OF SERVICE

Post-redevelopment conditions at the Scottsdale Road and Rose Lane intersection, under a "no mitigation" scenario were analyzed using the same methodologies and techniques used to analyze existing conditions, as discussed earlier in this report. Results are reported in the "2016 Background" and "2016 Background plus CRR" scenarios.

The analysis was conducted under the existing lane geometry and signal timings and comparing several mitigation options to determine their effectiveness and impact on traffic operations. Those mitigation options include:

- Eastbound and westbound Rose Lane approaches to Scottsdale Road converted to an exclusive left turn lane plus shared through/right turn lane configuration and optimization of signal timing splits.
- The eastbound approach being converted to include a single left-turn lane, through lane, and exclusive right lane and the westbound approach being converted to an exclusive left turn lane plus shared through/right turn lane configuration. Optimization of the signal timing splits.
- Eastbound and westbound approaches to Scottsdale Road converted to an exclusive left turn lane, through lane, and right turn lane configuration and optimizing signal timing splits.
- 4. Eastbound and westbound approaches to Scottsdale Road converted to an exclusive left turn lane, through lane, and right turn lane configuration. Modifications to the signal timing to add a protected left turn phase for the eastbound and westbound approaches and optimize signal timing splits.

Results of these analyses are summarized in **Table 7** and **Table 8**. Summarized analysis results consist of the two background scenarios: "2016 Background" and "2016 Background plus CRR" and the two post development scenarios: 2016 Total-Unmitigated, without any off-site improvements, and 2016 Total-Mitigated, with recommended off-site improvements mentioned in mitigation option 1 and shown in **Figure 7**. All other mitigation options although considered in this analysis did not generate any significant improvement to the LOS are not recommended at this time. Analysis outputs are included in the **Appendix** for reference.

				Move	ment	Leve	ofSe	ervice	e (A-F)			Intersection
Scenario		orthbou tsdale T			istbou ose La T			uthbou tsdale T			estbour ose Lar T		LOS Delay
2016 Background	А	А	А	F	=	D	А	А	А	E		D	В 11.7
2016 Background + CRR ¹	В	A	А	F	=	D	А	А	А	E		D	В 14.5
2016 Total-Unmitigated ²	в	A	A	F	=	E	в	A	А	C)	D	C 22.9
2016 Total-Mitigated ³	в	A	А	D	I	D	А	в	в	D	C)	B 12.0

Table 6 – 2016 Level of Service: AM Peak Hour

Cottonwoods Mixed Use Project Traffic Impact and Mitigation Analysis

	1			Move	ment	Leve	ofS	ervice	e (A-F)			Intersection
Scenario		orthbou tsdale		Eastbound Rose Lane				uthbou tsdale		Westbound Rose Lane			LOS Delay
	L	Т	R	L	Т	R	L	T	R	L	Т	R	Delay
2016 Background	D	В	В	1	F	D	С	В	В	F	-	D	C 19.9
2016 Background + CRR ¹	D	D B B F		D	С В Е		В	F		D	C 22.7		
2016 Total-Unmitigated ²	D	в	в	1	F	D	С	в	В	F	-	D	D 39.0
2016 Total-Mitigated ³	D	в	в	D	[D	С	в	С	D	[D	C 20.5

Table 7 – 2016 Level of Service: PM Peak Hour

Notes: 1 - "CRR" Stand for Cottonwoods Resort Redevelopment

2 - "Unmitigated" mean without any off-site improvements

3 - "Mitigation" means with recommended off-site improvements

Results of the analysis indicate that with the implementation of mitigation option 1 the study intersection will continue to operate at acceptable levels of service (LOS of C or better) during peak hours for the northbound and southbound through movements while the left turning movements and minor street approaches will operate at slightly lower than acceptable conditions (LOS of D) during the AM and PM peak hours, with average driver delays in the range of 40-55 seconds per vehicle.

5.2 INTERSECTION QUEUING ANALYSIS

The Scottsdale Road and Rose Lane intersection was analyzed to establish left turn storage needs for projected 2016 traffic conditions. Since the PM peak hour volumes are higher, the 2016 PM peak future traffic conditions were used to establish turn lane length recommendations. The left turn storage lengths were determined for the study intersection by using 95th percentile queue lengths from Synchro8© analysis software. Results from the left-turn storage length analysis are presented in **Table 9**. Documentation of the queuing analysis is provided in the **Appendix**.

Intersection Left Turn Movement	Existing Storage Length (ft)	Calculated 95 th Percentile Queues (ft)	Recommended Storage Length (ft)
Scottsdale Road and	Rose Lane (Sig	gnalized)	
NB Left	170	200	Existing is Adequate
SB Left	170	100	Existing is Adequate
EB Left ¹	See note 1	175	175
WB Left ¹	See note 1	75	75

Table 8 - Left-Turn Storage Re	commendations
--------------------------------	---------------

1. Left turn movement is a shared left/through movement without mitigation.

The left turn lane storage at the study intersection in 2016 with recommended mitigation measures can accommodate future queue lengths at all left turning movements. The eastbound left turning back of queue is anticipated to block traffic exiting the driveway on the north side of Rose Lane in close proximity to Scottsdale Road during the peak hours. This exiting traffic making a left turn from this driveway will likely reroute to other available driveways to exit during this time period.

5.3 ON-SITE DRIVEWAY STORAGE

Traffic exiting the proposed site is not anticipated to experience significant delays waiting to turn onto Rose Lane because of the relatively low volumes on this roadway. It is recommended that 50 of on-site storage be provided for site driveways.

Cottonwoods Mixed Use - Traffic Impact and Mitigation Analysis

December 2013

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The requested zoning change, for the purposes of creating he Cottonwoods Mixed Use Project described in this report, is anticipated to increase peak hour trip generation by approximately 81 trips. This trip generation increase will cause an increase in peak hour traffic volumes at the adjacent Scottsdale Road/Rose Lane intersection of less than 2%. This analysis has determined that there is adequate physical capacity within the public right of way (roadway width and turn lane storage length) to accommodate this increase without sacrificing what is typically considered "acceptable level of service" (LOS D or better) for any traffic movement at the intersection subject to the improvements cited as recommended, below being carried to completion before the proposed mixed use building is occupied and open for business. Under these conditions, the TIMA supports the rezoning and the Cottonwoods Mixed Use redevelopment plan.

6.2 RECOMMENDATIONS

It is recommended that Rose Lane pavement markings, lane use control signing, and/or other traffic control features on Rose Lane be removed and replaced, or otherwise modified, to the extent necessary to accomplish the following:

- 1. Improve eastbound/westbound left turn lane alignment across Scottsdale Road.
- With regard to lane use designation on the eastbound Rose Lane approach to Scottsdale Road convert the existing shared through/left turn lane plus exclusive right turn lane configuration to an exclusive left turn lane plus shared through/right turn lane configuration.
- 3. With regard to the lane use on the westbound Rose Lane approach to Scottsdale Road convert the existing shared through/left turn lane plus exclusive right turn lane configuration to an exclusive left turn lane plus shared through/right turn lane configuration.
- 4. Provide a single westbound lane on Rose Lane that is at least 15 feet wide, from Scottsdale Road to the western City limit (71st Street alignment).
- 5. Optimize the signal timing splits for each movement in a manner that accounts for and takes full advantage of the above described improvements.

With regard to Project site specific access features, it is additionally recommended that

- 6. the easternmost of the existing Project site driveways (the one located on the south side of Rose Lane, 75 feet from Scottsdale Road) be removed;
- new project site driveways be located such that the primary site entry drive will align with the planned (by others) north side driveway that will provide access to the future Borgata Residential development.

7.0 APPENDIX

Appendix A

Transit Service Information

valleymetro.org • 602.253.5000

Route 72 — Scottsdale/Rural

Monday-Friday Northbound Lunes a Viernes, Rumbo al norte

Monday-Friday Southbound

Lunes a Viernes, Rumbo al sur

	CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FASHION CTR
			4:54	5:00	5:14	5:28	5:46	5:56	6:06	6:16	6:22	6:28	6:37								5:17	5:35	5:47	5:53	5:56	6:02
	ALC: N		5:14	5:20	5:34	5:48	6:06	6:16	6:26	6:36	6:42	6:48	6:57	- Patrice							5:37	5:55	6:07	6:13	6:16	6:22
			5:34	5:40	5:54	6:08	6:26	6:36	6:46	6:56	7:02	7:08	7:17	4:54	5:01	5:08	5:13	5:23	5:32	5:41	5:57	6:15	6:27	6:33	6:36	6:42
	5:45	5:51	5:54	6:00	6:14	6:28	6:46	6:56	7:06	7:16	7:22	7:28	7:37	5:14	5:21	5:28	5:33	5:43	5:52	6:01	6:17	6:35	6:47	6:53	6:56	7:02
	6:05	6:11	6:14	6:20	6:34	6:48	7:06	7:16	7:26	7:36	7:42	7:48	7:57	5:34	5:41	5:48	5:53	6:03	6:12	6:21	6:37	6:55	7:07	7:13	7:16	7:22
	6:25	6:31	6:34	6:40	6:54	7:08	7:26	7:36	7:46	7:56	8:02	8:08	8:17	5:54	6:01	6:08	6:13	6:23	6:32	6:41	6:57	7:15	7:27	7:33	7:36	7:42
	6:45	6:51	6:54	7:00	7:14	7:28	7:46	7:56	8:06	8:16	8:22	8:28	8:37	6:14	6:21	6:28	6:33	6:43	6:52	7:01	7:17	7:35	7:47	7:53	7:56	8:02
	7:05	7:11	7:14	7:20	7:34	7:48	8:06	8:16	8:26	8:36	8:42	8:48	8:57	6:34	6:41	6:48	6:53	7:03	7:12	7:21	7:37	7:55	8:07	8:13	8:16	8:22
	7:25	7:31 7:51	7:34 7:54	7:40 8:00	7:54 8:14	8:08 8:28	8:26	8:36 8:56	8:46 9:06	8:56 9:16	9:02 9:21	9:07 9:26	9:16 9:35	6:54 7:14	7:01	7:08	7:13 7:33	7:23 7:43	7:32	7:41 8:01	7:57 8:17	8:15	8:27 8:47	8:33 8:53	8:36 8:56	8:42 9:02
1	8:05	8:11	8:14	8:20	8:34	8:48	8:46 9:06	9:16	9:06	9:36	9:21	9:46	9:55	7:34	7:41	7:48	7:53	8:03	8:12	8:21	8:37	8:35 8:55	9:06	9:12	9:15	9:02
	8:24	8:30	8:33	8:39	8:53	9:08	9:26	9:36	9:46	9:56	10:01	10:06	10:15	7:54	8:01	8:08	8:13	8:23	8:32	8:41	8:57	9:15	9:26	9:32	9:35	9:41
1	8:44	8:50	8:53	8:59	9:12	9:28	9:46	9:56	10:06	10:16	10:21	10:26	10:35	8:14	8:21	8:28	8:33	8:43	8:52	9:01	9:17	9:35	9:46	9:52	9:55	10:01
	9:04	9:10	9:13	9:19	9:32	9:48	10:06	10:16	10:26	10:36	10:41	10:46	10:55	8:32	8:39	8:46	8:51	9:01	9:11	9:21	9:37	9:55	10:06	10:12	10:15	10:21
	9:24	9:30	9:33	9:39	9:52	10:08	10:26	10:36	10:46	10:56	11:01	11:06	11:15	8:51	8:58	9:05	9:11	9:21	9:31	9:41	9:57	10:15	10:26	10:32	10:35	10:41
	9:44	9:50	9:53	9:59	10:12	10:28	10:46	10:56	11:06	11:16	11:21	11:26	11:35	9:11	9:18	9:25	9:31	9:41	9:51	10:01	10:17	10:35	10:46	10:52	10:55	11:01
	10:04	10:10	10:13	10:19	10:32	10:48	11:06	11:16	11:26	11:36	11:41	11:46	11:55	9:31	9:38	9:45	9:51	10:01	10:11	10:21	10:37	10:55	11:06	11:12	11:15	11:21
	10:24	10:30	10:33	10:39	10:52	11:08	11:26	11:36	11:46	11:56	12:01	12:06	12:15	9:51	9:58	10:05	10:11	10:21	10:31	10:41	10:57	11:15	11:26	11:32	11:35	11:41
	10:44	10:50	10:53	10:59	11:12	11:28	11:46	11:56	12:06	12:16	12:21	12:26	12:35	10:11	10:18	10:25	10:31	10:41	10:51	11:01	11:17	11:35	11:46	11:52	11:55	12:01
1	11:04	11:10	11:13	11:19	11:32	11:48	12:06	12:16	12:26	12:36	12:41	12:46	12:55	10:31	10:38	10:45	10:51	11:01	11:11	11:21	11:37	11:55	12:06	12:12	12:15	12:21
	11:24	11:30	11:33	11:39	11:52	12:08	12:26	12:36	12:46	12:56	1:01	1:07	1:16	10:51	10:58	11:05	11:11	11:21	11:31	11:41	11:57	12:15	12:26	12:32	12:35	12:41
	11:44 12:04	11:50 12:10	11:53 12:13	11:59 12:19	12:12 12:32	12:28 12:48	12:46	12:56	1:07	1:17	1:23	1:29	1:38	11:11	11:18 11:38	11:25 11:45	11:31 11:51	11:41 12:01	11:51 12:11	12:01 12:21	12:17 12:37	12:35 12:55	12:46	12:52	12:55	1:01
	12:24	12:30	12:33	12:39	12:52	1:08	1:28	1:38	1:50	2:00	2:06	2:12	2:21	11:51	11:58	12:05	12:11	12:21	12:31	12:41	12:57	1:15	1:06	1:12	1:15	1:21
	12:44	12:50	12:53	12:59	1:12	1:28	1:48	1:58	2:10	2:20	2:26	2:32	2:41	12:11	12:18	12:25	12:31	12:41	12:51	1:01	1:17	1:35	1:46	1:52	1:55	2:01
1	1:04	1:10	1:13	1:19	1:32	1:48	2:08	2:18	2:30	2:40	2:46	2:52	3:01	12:31	12:38	12:45	12:51	1:01	1:11	1:21	1:37	1:55	2:06	2:12	2:15	2:21
	1:24	1:30	1:33	1:39	1:52	2:08	2:28	2:38	2:50	3:00	3:06	3:12	3:21	12:51	12:58	1:05	1:11	1:21	1:31	1:41	1:57	2:15	2:26	2:32	2:35	2:41
	1:44	1:50	1:53	1:59	2:12	2:28	2:48	2:58	3:10	3:20	3:26	3:32	3:41	1:11	1:18	1:25	1:31	1:41	1:51	2:01	2:17	2:36	2:48	2:54	2:57	3:03
	2:04	2:10	2:13	2:19	2:32	2:48	3:08	3:18	3:30	3:40	3:46	3:52	4:01	1:31	1:38	1:45	1:51	2:01	2:11	2:21	2:37	2:57	3:09	3:15	3:18	3:24
	2:24	2:30	2:33	2:39	2:52	3:08	3:28	3:38	3:50	4:00	4:06	4:12	4:21	1:50	1:57	2:04	2:10	2:20	2:30	2:41	2:57	3:17	3:29	3:35	3:38	3:44
	2:44	2:50	2:53	2:59	3:12	3:28	3:48	3:58	4:10	4:20	4:26	4:32	4:41	2:07	2:14	2:21	2:27	2:38	2:50	3:01	3:17	3:37	3:49	3:55	3:58	4:04
	3:04	3:10	3:13	3:19	3:32	3:48	4:08	4:18	4:30	4:40	4:46	4:52	5:01	2:24	2:32	2:41	2:47	2:58	3:10	3:21	3:37	3:57	4:09	4:15	4:18	4:24
1	3:24	3:30	3:33	3:39	3:52	4:08	4:28	4:38	4:50	5:00	5:06	5:12 5:32	5:21	2:44	2:52	3:01	3:07	3:18	3:30	3:41	3:57	4:17	4:29	4:35	4:38	4:44
	3:44 4:04	4:10	4:13	4:19	4:12	4:48	4:48 5:08	4:58 5:18	5:30	5:40	5:26 5:46	5:52	5:41 6:01	3:04	3:32	3:21 3:41	3:47	3:38	3:50 4:10	4:01 4:21	4:17 4:37	4:37 4:57	4:49 5:09	4:55	4:58 5:18	5:04 5:24
1	4:24	4:30	4:33	4:39	4:52	5:08	5:28	5:38	5:50	6:00	6:06	6:12	6:21	3:44	3:52	4:01	4:07	4:18	4:30	4:41	4:57	5:17	5:29	5:35	5:38	5:44
	4:44	4:50	4:53	4:59	5:12	5:28	5:48	5:58	6:10	6:20	6:26	6:32	6:39	4:04	4:12	4:21	4:27	4:38	4:50	5:01	5:17	5:37	5:49	5:55	5:58	6:04
	5:04	5:10	5:13	5:19	5:32	5:48	6:08	6:18	6:30	6:38	6:43	6:48	6:55	4:24	4:32	4:41	4:47	4:58	5:10	5:21	5:37	5:57	6:09	6:15	6:18	6:24
		5:30		5:39		6:08	6:28	6:37			6:59	7:04	7:11	4:44	4:52	5:01	5:07	5:18	5:30	5:41			6:29	6:34	6:37	6:43
	5:46		5:55	6:01	6:14	6:30	6:46	6:55	7:04	7:12	7:17	7:22	7:29	5:04		5:21	5:27	5:38	5:50	6:01	6:17	6:36	6:46	6:51	6:54	7:00
	6:21	6:27	6:30	6:36	6:46	7:00	7:16	7:25	7:34	7:42	7:47	7:52	7:59	5:25	5:33	5:42	5:48	5:59	6:11	6:22	6:37	6:53	7:03	7:08	7:11	7:17
	6:51	6:57	7:00	7:06	7:16	7:30	7:46	7:55	8:04	8:12	8:17	8:22	8:29	5:49	5:57	6:06	6:12	6:23	6:34	6:43	6:57	7:13	7:23	7:28	7:31	7:37
	7:21		7:30			8:00	8:16	8:25			8:47	8:52	8:59	6:13				6:44	6:54			7:33	7:43	7:48	7:51	7:57
	7:51		8:00	8:06		8:30	8:46	8:55			9:17	9:22	9:29	6:46	6:53		7:05	7:14	7:24		7:47	8:03	8:13	8:18	8:21	8:27
	8:21		8:30	8:36		9:00	9:16	9:25		9:42			9:59	7:16	7:23	7:30		7:44	7:54	8:03	8:17	8:33	8:43	-	8:51	8:57
1	8:51	8:57	9:00	9:06	9:16	9:30	9:46	9:55	10:04	10:12	10:17	10:22	10:29	7:46	7:53	8:00	8:05	8:14	8:24	8:33	8:47	9:03	9:13	9:18	9:21	9:27

Continued on next page / Continua en la página seguiente

Effective/Validez: July 22, 2013

Light type = AM. Bold type = PM. / Texto normal = la mañana. Texto remarcado = la tarde.

valleymetro.org • 602.253.5000

Route 72 — Scottsdale/Rural

(continued / continua) **Monday-Friday Northbound**

Construction of the second sec	CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK
	9:21	9:27	9:30	9:36	9:46	10:00	10:16	10:25	10:34	10:42	10:47	10:52	10:59
	9:51	9:57	10:00	10:06	10:16	10:30	10:46	10:55	11:04	11:12	11:17	11:22	11:29
	10:21	10:27	10:30	10:36	10:46	11:00							
			11:00	11:06	11:16	11:30							
			11:30	11:36	11:46	12:00				1			
			12:00	12:06	12:16	12:30							

Monday-Friday Southbound

Lunes a Viernes, Rumbo al sur

Saturday Southbound

SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FASHION CTR
8:16	8:23	8:30	8:35	8:44	8:54	9:03	9:17	9:33	9:43	9:48	9:51	9:57
8:46	8:53	9:00	9:05	9:14	9:24	9:33	9:47	10:03	10:13	10:18		
9:16	9:23	9:30	9:35	9:44	9:54	10:03	10:17	10:33	10:43	10:48		
9:46	9:53	10:00	10:05	10:14	10:24	10:33	10:47	11:03	11:13	11:18		A CONTRACT
10:16	10:23	10:30	10:35	10:44	10:54	11:03	11:17	11:33	11:43	11:48		
10:46	10:53	11:00	11:05	11:14	11:24	11:33	11:47	12:03	12:13	12:18		
							12:17	12:33	12:43	12:48		

Saturday Northbound Sábado Dumbo al norto

Sába	-			norte									Sába	-											
CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FA SHION CTP
-	1	5:01	5:07	5:18	5:30	5:42	5:51	5:57	6:03	6:09	6:15	6:22				Nel				5:07	5:22	5:33	5:38		
		5:31	5:37	5:48	6:00	6:12	6:21	6:27	6:33	6:39	6:45	6:52	No.							5:37	5:52	6:03	6:08		
		6:01	6:07	6:18	6:30	6:42	6:51	6:57	7:03	7:09	7:15	7:22	5:06	5:13	5:19	5:25	5:35	5:44	5:53	6:07	6:22	6:33	6:38		
		6:31	6:37	6:48	7:00	7:12	7:21	7:27	7:33	7:39	7:45	7:52	5:36	5:43	5:49	5:55	6:05	6:14	6:23	6:37	6:52	7:03	7:08		
		7:01	7:07	7:18	7:30	7:42	7:51	7:57	8:03	8:09	8:15	8:22	6:06	6:13	6:19	6:25	6:35	6:44	6:53	7:07	7:22	7:33	7:38	7:41	7:4
12.14		7:31	7:37	7:48	8:00	8:12	8:21	8:27	8:33	8:39	8:45	8:52	6:36	6:43	6:49	6:55	7:05	7:14	7:23	7:37	7:54	8:05	8:10	8:13	8:1
		8:01	8:07	8:18	8:30	8:42	8:51	8:57	9:05	9:11	9:17	9:26	7:01	7:08	7:14	7:20	7:30	7:41	7:52	8:07	8:24	8:35	8:40	8:43	8:4
8:22	8:28	8:31	8:37	8:48	9:00	9:18	9:29	9:40	9:49	9:55	10:01	10:10	7:28	7:35	7:43	7:49	8:00	8:11	8:22	8:37	8:54	9:05	9:10	9:13	9:1
8:47	8:53	8:56	9:02	9:14	9:30	9:48	9:59	10:10	10:19	10:25	10:31	10:40	7:58	8:05	8:13	8:19	8:30	8:41	8:52	9:07	9:24	9:35	9:40	9:43	9:4
9:17	9:23	9:26	9:32	9:44	10:00	10:18	10:29	10:40	10:49	10:55	11:01	11:10	8:28	8:35	8:43	8:49	9:00	9:11	9:22	9:37	9:54	10:05	10:10	10:13	10:1
9:47	9:53	9:56	10:02	10:14	10:30	10:48	10:59	11:10	11:19	11:25	11:31	11:40	8:58	9:05	9:13	9:19	9:30	9:41	9:52	10:07	10:24	10:35	10:40	10:43	10:4
10:17	10:23	10:26	10:32	10:44	11:00	11:18	11:29	11:40	11:49	11:55	12:01	12:10	9:28	9:35	9:43	9:49	10:00	10:11	10:22	10:37	10:54	11:05	11:10	11:13	11:19
10:47	10:53	10:56	11:02	11:14	11:30	11:48	11:59	12:10	12:19	12:25	12:31	12:40	9:58	10:05	10:13	10:19	10:30	10:41	10:52	11:07	11:24	11:35	11:40	11:43	11:49
11:17	11:23	11:26	11:32	11:44	12:00	12:18	12:29	12:40	12:49	12:55	1:01	1:10	10:28	10:35	10:43	10:49	11:00	11:11	11:22	11:37	11:54	12:05	12:10	12:13	12:19
11:47	11:53	11:56	12:02	12:14	12:30	12:48	12:59	1:10	1:19	1:25	1:31	1:40	10:58	11:05	11:13	11:19	11:30	11:41	11:52	12:07	12:24	12:35	12:40	12:43	12:49
12:17	12:23	12:26	12:32	12:44	1:00	1:18	1:29	1:40	1:49	1:55	2:01	2:10	11:28	11:35	11:43	11:49	12:00	12:11	12:22	12:37	12:54	1:05	1:10	1:13	1:19
12:47	12:53	12:56	1:02	1:14	1:30	1:48	1:59	2:10	2:19	2:25	2:31	2:40	11:58	12:05	12:13	12:19	12:30	12:41	12:52	1:07	1:24	1:35	1:40	1:43	1:49
1:17	1:23	1:26	1:32	1:44	2:00	2:18	2:29	2:40	2:49	2:55	3:01	3:10	12:28	12:35	12:43	12:49	1:00	1:11	1:22	1:37	1:54	2:05	2:10	2:13	2:19
1:47	1:53	1:56	2:02	2:14	2:30	2:48	2:59	3:10	3:19	3:25	3:31	3:40	12:58	1:05	1:13	1:19	1:30	1:41	1:52	2:07	2:24	2:35	2:40	2:43	2:49
2:17	2:23	2:26	2:32	2:44	3:00	3:18	3:29	3:40	3:49	3:55	4:01	4:10	1:28	1:35	1:43	1:49	2:00	2:11	2:22	2:37	2:54	3:05	3:10	3:13	3:19
2:47	2:53	2:56	3:02	3:14	3:30	3:48	3:59	4:10	4:19	4:25	4:31	4:40	1:58	2:05	2:13	2:19	2:30	2:41	2:52	3:07	3:24	3:35	3:40	3:43	3:49
3:17	3:23	3:26	3:32	3:44	4:00	4:18	4:29	4:40	4:49	4:55	5:01	5:10	2:28	2:35	2:43	2:49	3:00	3:11	3:22	3:37	3:54	4:05	4:10	4:13	4:19
3:47	3:53	3:56	4:02	4:14	4:30	4:48	4:59	5:10	5:19	5:25	5:31	5:40	2:58	3:05	3:13	3:19	3:30	3:41	3:52	4:07	4:24	4:35	4:40	4:43	4:49
4:17	4:23	4:26	4:32	4:44	5:00	5:18	5:29	5:40	5:49	5:55	6:01	6:10	3:28	3:35	3:43	3:49	4:00	4:11	4:22	4:37	4:54	5:05	5:10	5:13	5:19
4:47	4:53	4:56	5:02	5:14	5:30	5:48	5:59	6:10	6:19	6:25	6:31	6:40	3:58	4:05	4:13	4:19	4:30	4:41	4:52	5:07	5:24	5:35	5:40	5:43	5:49
5:17	5:23	5:26	5:32	5:44	6:00	6:18	6:29	6:40	6:49	6:55	7:01	7:10	4:28	4:35	4:43	4:49	5:00	5:11	5:22	5:37	5:54	6:05	6:10	6:13	6:19
5:47	5:53	5:56	6:02	6:14	6:30	6:48	6:59	7:10	7:19	7:25	7:31	7:38	4:58	5:05	5:13	5:19	5:30	5:41	5:52	6:07	6:24	6:35	6:40	6:43	6:49

Continued on next page / Continua en la página seguiente

Light type = AM. Bold type = PM. / Texto normal = la mañana. Texto remarcado = la tarde.

valleymetro.org • 602.253.5000

Effective/Validez: July 22, 2013 163

Route 72 — Scottsdale/Rural (continued / continuo)

Saturday Northbound Sábado, Rumbo al norte

CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK
6:17	6:23	6:26	6:32	6:44	7:00	7:18	7:29	7:38	7:45	7:51	7:57	8:04
6:47	6:53	6:56	7:02	7:14	7:30	7:48	7:57	8:06	8:13	8:19	8:25	8:32
7:20	7:26	7:29	7:35	7:46	8:00	8:18	8:27	8:36	8:43	8:49	8:55	9:02
7:50	7:56	7:59	8:05	8:16	8:30	8:48	8:57	9:06	9:13	9:19	9:25	9:32
8:20	8:26	8:29	8:35	8:46	9:00	9:18	9:27	9:36	9:43	9:49	9:55	10:02
8:50	8:56	8:59	9:05	9:16	9:30	9:48	9:57	10:06	10:13	10:19	10:25	10:32
9:20	9:26	9:29	9:35	9:46	10:00	10:18	10:27	10:36	10:43	10:49	10:55	11:02
9:50	9:56	9:59	10:05	10:16	10:30	10:48	10:57	11:06	11:13	11:19	11:25	11:32
10:20	10:26	10:29	10:35	10:46	11:00							
		10:59	11:05	11:16	11:30							
		11:29	11:35	11:46	12:00							
	2	11:59	12:05	12:16	12:30			0		a por	100	30.00

Saturday Southbound

Sábado, Rumbo al sur

SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FASHION CTR
ACCOUNTS OF	menteria	Interior	mand	Charles and	-	THE OWNER		Milliona		-		-
5:28	5:35	5:43	5:49	6:00	6:11	6:22	6:37	6:54	7:05	7:10	7:13	7:19
5:58	6:05	6:13	6:19	6:30	6:41	6:52	7:07	7:24	7:35	7:40	7:43	7:49
6:28	6:35	6:43	6:49	7:00	7:11	7:22	7:37	7:52	8:03	8:08	8:11	8:17
6:59	7:06	7:14	7:20	7:31	7:42	7:53	8:07	8:22	8:33	8:38	8:41	8:47
7:29	7:36	7:44	7:50	8:01	8:12	8:23	8:37	8:52	9:03	9:08	9:11	9:17
7:59	8:06	8:14	8:20	8:31	8:42	8:53	9:07	9:22	9:33	9:38	9:41	9:47
8:29	8:36	8:44	8:50	9:01	9:12	9:23	9:37	9:52	10:03	10:08		
8:59	9:06	9:14	9:20	9:31	9:42	9:53	10:07	10:22	10:33	10:38		
9:29	9:36	9:44	9:50	10:01	10:12	10:23	10:37	10:52	11:03	11:08		
9:59	10:06	10:14	10:20	10:31	10:42	10:53	11:07	11:22	11:33	11:38		
10:29	10:36	10:44	10:50	11:01	11:12	11:23	11:37	11:52	12:03	12:08		
10:59	11:06	11:14	11:20	11:31	11:42	11:53	12:07	12:22	12:33	12:48		

Sunday Southbound

Domingo Rumbo al cur

Sund Dom	-				te		NUMBER OF	-					Sund Dom	-					manie		NUCLEAR OF STREET, STR	No.			
CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FASHION CTR
		5:01	5:07	5:18	5:30	5:42	5:51	5:57	6:03	6:09	6:15	6:22								5:07	5:22	5:33	5:38		
		5:31	5:37	5:48	6:00		175519		100		allan.		ESSER.			1222				5:37	5:52	6:03	6:08		
		6:01	6:07	6:18	6:30	6:42	6:51	6:57	7:03	7:09	7:15	7:22	5:06	5:13	5:19	5:25	5:35	5:44	5:53	6:07	6:22	6:33	6:38		
		6:31	6:37	6:48	7:00															6:37	6:52	7:03	7:08		
		7:01	7:07	7:18	7:30	7:42	7:51	7:57	8:03	8:09	8:15	8:22	6:06	6:13	6:19	6:25	6:35	6:44	6:53	7:07	7:22	7:33	7:38		-
	Nice and	7:31	7:37	7:48	8:00									1.0						7:37	7:55	8:03	8:08	8:11	8:17
		8:01	8:07	8:18	8:30	8:42	8:51	8:57	9:05	9:11	9:17	9:26	7:06	7:13	7:19	7:25	7:35	7:44	7:53	8:07	8:22	8:33	8:38	8:41	8:47
8:22	8:28	8:31	8:37	8:48	9:00					Ref 23		A. S.								8:37	8:54	9:05	9:10	9:13	9:19
8:47	8:53	8:56	9:02	9:14	9:30	9:48	9:59	10:10	10:19	10:25	10:31	10:40	8:01	8:08	8:14	8:20	8:30	8:41	8:52	9:07	9:24	9:35	9:40	9:43	9:49
9:17	9:23	9:26	9:32	9:44	10:00						223									9:37	9:54	10:05	10:10	10:13	10:19
9:47	9:53	9:56	10:02	10:14	10:30	10:48	10:59	11:10	11:19	11:25	11:31	11:40	8:58	9:05	9:13	9:19	9:30	9:41	9:52	10:07	10:24	10:35	10:40	10:43	10:49
10:17	10:23	10:26	10:32	10:44	11:00	19.99				1000			Constant of							10:37	10:54	11:05	11:10	11:13	11:19
10:47	10:53	10:56	11:02	11:14	11:30	11:48	11:59	12:10	12:19	12:25	12:31	12:40	9:58	10:05	10:13	10:19	10:30	10:41	10:52	11:07	11:24	11:35	11:40	11:43	11:49
11:17	11:23	11:26	11:32	11:44	12:00								10.50							11:37	11:54	12:05	12:10	12:13	12:19
11:47	11:53	11:56	12:02	12:14		12:48	12:59	1:10	1:19	1:25	1:31	1:40	10:58	11:05	11:13	11:19	11:30	11:41	11:52	12:07	12:24	12:35	12:40	12:43	12:49
12:17	12:23	12:26	12:32	12:44	1:00		1.50			2.25		2.10	11.50	13.05	12:13	12.10	12:30	12.41	12.52	12:37	12:54	1:05	1:10	1:13	1:19
12:47	12:53	12:56	1:02	1:14	1:30	1:48	1:59	2:10	2:19	2:25	2:31	2:40	11:58	12:05	12:13	12:19	12:30	12:41	12:52	1:37	1:24	2:05	2:10	1:43	2:19
1:47	1:53	1:56	1:32	1:44	2:30	2:48	2:59	3:10	3:19	3:25	3:31	3:40	12:58	1:05	1:13	1:19	1:30	1:41	1:52	2:07	2:24	2:35	2:40	2:43	2:49
2:17	2:23	2:26	2:32	2:44	3:00	4.40	2.37	3.10	3.19	3.23	3.31	3.40	12.30	1.05	1.13	1.19	1.30	1.41	1.52	2:37	2:54	3:05	3:10	3:13	3:19
2:47	2:53	2:56	3:02	3:14	3:30	3:48	3:59	4:10	4:19	4:25	4:31	4:40	1:58	2:05	2:13	2:19	2:30	2:41	2:52	3:07	3:24	3:35	3:40	3:43	3:49
2.41	A.JJ	2.00	3.02	3.14	3.30	3.40	3.39	4.10	4.12	7.23	4.31	4.40	1.50	2.03	2.13	4.12	2.30	6.91	2.32	3.07	9.6.4	0.00	3.40	3.43	3.47

Continued on next page / Continua en la página seguiente

Effective/Validez: July 22, 2013

Light type = AM. Bold type = PM. / Texto normal = la mañana. Texto remarcado = la tarde.

valleymetro.org • 602.253.5000

Route 72 — Scottsdale/Rural

(continued / continua) Sunday Northbound Domingo, Rumbo al norte

Sunday Southbound Domingo, Rumbo al sur

20111	ingo,	Кин	100 0	1 1101	1C	and the second second	and the second	interested.	and the second	Inclusion	concerno.	and the second	Dom	ingo	, isan	100 0	1 341	and the second state	-	plantaining.	and shares	PROFESSION IN	CONVER 1	and the second	No. of Concession, Name
CHANDLER FASHION CTR	RURAL AT CHANDLER BLVD	RURAL AT RAY	ELLIOT AT RURAL	RURAL AT SOUTHERN	TEMPE TRANS CTR	SCOTTSDALE RD AT MCDOWELL	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT FLW	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE HEALTHCARE THOMPSON PEAK	SCOTTSDALE RD AT FLW	SCOTTSDALE RD AT THUNDERBIRD	SCOTTSDALE RD AT SHEA	SCOTTSDALE RD AT LINCOLN	SCOTTSDALE RD AT INDIAN SCHOOL	SCOTTSDALE RD AT MCDOWELL	TEMPE TRANS CTR	RURAL AT SOUTHERN	ELLIOT AT RURAL	RURAL AT RAY	RURAL AT CHANDLER BLVD	CHANDLER FASHION CTR
3:17	3:23	3:26	3:32	3:44	4:00											and a	10.650			3:37	3:54	4:05	4:10	4:13	4:19
3:47	3:53	3:56	4:02	4:14	4:30	4:48	4:59	5:10	5:19	5:25	5:31	5:40	2:58	3:05	3:13	3:19	3:30	3:41	3:52	4:07	4:24	4:35	4:40	4:43	4:49
4:17	4:23	4:26	4:32	4:44	5:00					1991										4:37	4:54	5:05	5:10	5:13	5:19
4:47	4:53	4:56	5:02	5:14	5:30	5:48	5:59	6:10	6:19	6:25	6:31	6:40	3:58	4:05	4:13	4:19	4:30	4:41	4:52	5:07	5:24	5:35	5:40	5:43	5:49
5:17	5:23	5:26	5:32	5:44	6:00															5:37	5:54	6:05	6:10	6:13	6:19
5:47	5:53	5:56	6:02	6:14	6:30	6:48	6:59	7:10	7:19	7:25	7:31	7:38	4:58	5:05	5:13	5:19	5:30	5:41	5:52	6:07	6:24	6:35	6:40	6:43	6:49
6:17	6:23	6:26	6:32	6:44	7:00															6:37	6:54	7:05	7:10		
6:47		6:56	7:02	7:14		7:48	7:57	8:06	8:13	8:19	8:25	8:32	5:58	6:05	6:13	6:19	6:30	6:41	6:52	7:07	7:24	7:35	7:40	Long and the second second	
7:20	7:26	7:29		7:46	8:00							1000			1999	2	1000		12473	7:37		8:03	8:08	201	
		7:59		8:16		8:48	8:57	9:06	9:13	9:19	9:25	9:32	6:59	7:06	7:14	7:20	7:31	7:42	7:53	8:07	8:22	8:33	8:38	Incrusion	
		8:29		8:46		Real Providence														8:37	8:52	9:03	9:08		
STATES.		8:59		9:16		9:48	9:57	10:06	10:13	10:19	10:25	10:32	7:59	8:06	8:14	8:20	8:31	8:42	8:53	9:07	9:22		9:38		
		9:29		and the second second	10:00								0.50			0.00	0.01	0.40	0.53	9:37	No. of Concession, Name		numeroupure.		
		9:59	10:05	10:16	10:30						12.1.1		8:59	9:06	9:14	9:20	9:31	9:42	9:53	10:07	10:22	10:33	10:38		

Appendix B

Traffic Count Data

TRAFFIC IMPACT AND MITIGATION ANALYSIS (TIMA) PROJECT NO. AVHODODODOT

PEAK HOUR TRAFFIC VOLUMES

Appendix C

,

.

Signal Timing Information

.

· · · · · ·

•

Appendix D

Existing Capacity Analysis

Timings 3: Scottsdale Road & Rose Lane

e Andre Sta	٠	-	*	4	-	*	1	1	4	Ŧ	Sec.
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4	견		\$	ř	ł	种物	靬	***	
Volume (vph)	11	3	12	11	1	10	39	1097	34	1386	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		1
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase								1.			
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	84.0	8.0	84.0	
Minimum Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (%)	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	10.0%	75.0%	10.0%	75.0%	PART ST
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	1. C. C. A. C.
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0	- 1 - L - L - L - L - L - L - L - L - L	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag						a state	Lag	Lead	Lag	Lead	
Lead-Lag Optimize?				1000			Yes	Yes	Yes	Yes	The second
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	and a line of
1 C C	State of the second sec		ALC: NOT THE OWNER.	a state and state of	ALC: NO PROVIDE AND	STREET, STREET, STR	Contraction of the local division of the	Contraction of the local division of the loc	State of the state	Source Assources from	The second s

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated

Splits and Phases: 3: Scottsdale Road & Rose Lane

Ø2 (R)	▶ _{g1} → _{g4}	
90 s	12 s 18 s	
₩ ø6 (R)	↑ <i>ø</i> 5 ∲ <i>ø</i> 8	
90 s	12 s 18 s	

	٠	-	7	*	-	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		\$	P ^r		4	f	Ŧ	牛牛 协	N. S.	٩Ę	并 件协	947
Volume (veh/h)	11	3	12	11	1	10	39	1097	43	34	1386	2
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	(
Cap, veh/h	56	8	133	60	3	133	356	3876	153	435	3971	72
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	0.05	0.73	0.73	0.05	0.73	0.73
Sat Flow, veh/h	0	96	1583	0	32	1583	1774	5341	210	1774	5471	99
Grp Volume(v), veh/h	15	0	13	13	0	11	43	850	417	38	1049	519
Grp Sat Flow(s), veh/h/ln	96	0	1583	32	0	1583	1774	1863	1826	1774	1863	1845
Q Serve(g_s), s	0.0	0.0	0.9	0.0	0.0	0.7	0.0	9.4	9.4	0.0	12.4	12.4
Cycle Q Clear(g_c), s	9.7	0.0	0.9	9.7	0.0	0.7	0.0	9.4	9.4	0.0	12.4	12.4
Prop In Lane	0.80		1.00	0.92		1.00	1.00		0.12	1.00		0.05
Lane Grp Cap(c), veh/h	64	0	133	62	0	133	356	2704	1325	435	2704	1339
V/C Ratio(X)	0.23	0.00	0.10	0.21	0.00	0.08	0.12	0.31	0.31	0.09	0.39	0.39
Avail Cap(c_a), veh/h	93	0	164	90	0	164	387	2704	1325	466	2704	1339
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.8	0.0	48.9	55.9	0.0	48.9	7.3	5.6	5.6	5.8	6.1	6.1
Incr Delay (d2), s/veh	0.7	0.0	0.1	0.6	0.0	0.1	0.1	0.3	0.6	0.0	0.4	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	0.4	0.0	0.4	0.4	0.0	0.3	0.4	3.5	3.6	0.3	4.8	4.9
Lane Grp Delay (d), s/veh	53.5	0.0	49.1	56.5	0.0	49.0	7.3	5.9	6.3	5.9	6.5	6.9
Lane Grp LOS	D		D	E		D	A	Α	A	A	A	A
Approach Vol, veh/h		28			24			1310			1606	
Approach Delay, s/veh		51.4			53.0			6.1			6.6	
Approach LOS		D			D			А			А	
Timer Assigned Phs		4			8		5	2	References	1	6	
Phs Duration (G+Y+Rc), s		15.7		and the second	15.7		10.0	90.0		10.0	90.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0	Section 1	4.0	6.0	
Max Green Setting (Gmax), s		12.0			12.0		8.0	84.0		8.0	84.0	
Max Q Clear Time (g_c+11), s		11.7			11.7		2.0	11.4		2.0	14.4	
Green Ext Time (p_c), s		0.0			0.0	30.00	0.0	1.2		0.0	1.6	
Intersection Summary					San Part of					1	Sales in	11
HCM 2010 Ctrl Delay			7.2								An Ala	
HCM 2010 LOS			А									
Notes				No. Con								

Timings 3: Scottsdale Road & Rose Lane

		-	~	*	-		1	Ť	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4	됕		4	· 관	μĻ	牛牛 协	殅	牛牛 孙	
Volume (vph)	41	3	33	37	3	49	62	1905	55	1836	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4	1	4	8	1.16.20	8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase				A set all							
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	18.0	8.0	78.0	8.0	78.0	
Vinimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Fotal Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Fotal Split (%)	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	10.0%	70.0%	10.0%	70.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
ost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
_ead/Lag							Lag	Lead	Lag	Lead	
_ead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
ntersection Summary				ASS STORES			1 8 13	and the second	No.		No. A Market

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

Splits and Phases: 3: Scottsdale Road & Rose Lane

	\$ø1	4 ø4
84 s	12 s	24s
96 (R)	↑ ø5	₽ Ø8
34 s	12 s	245

Sec. S.	٠	+		1	+	*	1	Ť	r	1	÷.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1.0.8	4	Pf		*	f	Ŧ	种种物		Ŧ	种物	-
Volume (veh/h)	41	3	33	37	3	49	62	1905	13	55	1836	30
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	0
Cap, veh/h	59	2	239	58	2	239	257	3629	24	250	3589	58
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.06	0.65	0.65	0.06	0.65	0.65
Sat Flow, veh/h	0	13	1583	0	15	1583	1774	5545	37	1774	5484	89
Grp Volume(v), veh/h	49	0	37	44	0	54	69	1422	709	61	1385	688
Grp Sat Flow(s), veh/h/ln	13	0	1583	15	0	1583	1774	1863	1856	1774	1863	1847
Q Serve(g_s), s	0.0	0.0	2.4	0.0	0.0	3.6	0.0	25.4	25.5	0.0	24.4	24.4
Cycle Q Clear(g_c), s	18.0	0.0	2.4	18.0	0.0	3.6	0.0	25.4	25.5	0.0	24.4	24.4
Prop In Lane	0.94		1.00	0.93		1.00	1.00		0.02	1.00		0.05
Lane Grp Cap(c), veh/h	61	0	239	61	0	239	257	2438	1215	250	2438	1209
V/C Ratio(X)	0.81	0.00	0.15	0.73	0.00	0.23	0.27	0.58	0.58	0.24	0.57	0.57
Avail Cap(c_a), veh/h	61	0	239	61	0	239	269	2438	1215	263	2438	1209
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	58.8	0.0	44.0	58.7	0.0	44.5	21.9	11.5	11.5	21.9	11.3	11.3
Incr Delay (d2), s/veh	51.0	0.0	0.1	31.1	0.0	0.2	0.2	1.0	2.1	0.2	1.0	1.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	2.4	0.0	1.0	1.9	0.0	1.5	1.5	10.8	11.1	1.3	10.3	10.6
Lane Grp Delay (d), s/veh	109.9	0.0	44.1	89.7	0.0	44.6	22.1	12.5	13.6	22.1	12.3	13.3
Lane Grp LOS	F	100/14	D	F	10.015	D	С	В	В	С	В	B
Approach Vol, veh/h		86			98			2200			2134	
Approach Delay, s/veh		81.6			64.9			13.2		1	12.9	
Approach LOS		F			E			В			В	
Timer	A strank			1211911						San Internet		
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			24.0		11.2	84.0		11.2	84.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		18.0			18.0		8.0	78.0		8.0	78.0	3,75
Max Q Clear Time (g_c+l1), s		20.0			20.0		2.0	27.5		2.0	26.4	
Green Ext Time (p_c), s		0.0			0.0		0.0	2.4		0.0	2.3	199
Intersection Summary												
HCM 2010 Ctrl Delay			15.5							Berth.		
HCM 2010 LOS			В									
Notes		No. Contraction		and the second								

Appendix E

,

Accident Data

.

.

2

.

																		Π			ies	ities		T	TT						1000		Т	TT	П	TT			П		TT				Code
	redDate	008Flag	۵	eTime			ofWeek	-				ic	rtumithiag nFlag erName	erID erAgency	AtSceneFla	vestigated	ion	Illocation	ists otorists	es	istsInjuries otoristsInjur	istsFatalitie: otoristsFata	ty sportFlag	ag	ble elatedFlag	sentFlag	lvementFla	mentFlag	lag		ture		redFlag				a	1.00	nFlag	tionFlag	RoutelD	ATISCode	ype Type	ation	nageOwner nageDescCo
IncidentID Microfilm	ADOTReceiv	Status DataConv20	IncidentDat	IncidentDat		IncidentYea	IncidentMo	IncidentHou	OfficerNcic	OfficerId	FileNumber	ExtendedNc	DamageOve PhotosTake Photograph	Photograph	Investigated	DateTimeIn	CollisionMa LightConditi	FirstHarmfu	TotalMotori TotalMotori	TotalInjurie: TotalFataliti	TotalMotori TotalNonMo	TotalMotori TotalNonMo	InjurySeveri MedicalTran	TowAwayFla	NscReportal SchoolBusRe	WorkersPre	Alcoholinvo	Druginvolve	HazardousF HitAndRunF	Onroad	CrossingFeat	Offset	OffsetMeasu OffsetUnit	MPNum MPOffset	Cityld Countyld	StateId StateCode	Latitude	Longitude	ValidLocatio	HESIntersect	Intersection	Intersection	TrafficWayT Intersection	JunctionRela Weather	PropertyDan
														1.1																	States and														
2413910 19685169	5/25/2010 0:00	200 -1	1 5/12/2010 0:00	5/12/201	0 12:22	2010	5 4	1 12	725	882	1011865	5 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 1	3 3 (0 0	0 0 0	0 0	1 -1	0 1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.042	0 1	0 0 2	260 13	3 AZ U	\$ 33.5283993	9 -111.925765	5 1 Sep-:	10 -1	1 18777 0	07 ROSE L	N 5 1	1 1 1	-1 -1
2395300 19544900	3/25/2010 0:00	200 -1	1 3/4/2010 0:00	3/4/201	0 19:23	2010	3 5	5 19	725	1204	1005748	3 725	1 -1		-1 1/	/1/1900 0:00	4 4 1	6 1	2 2 0	0 0 0	0 0	0 0	1 0	0 0	1 0	1 1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0	0 1	0 0 2	260 13	3 AZ U	\$ 33.5277902	1 -111.925786	1 1 Sep-:	10 1	1 18777 0	07 ROSE L	LN 5 0	0 0 1	-1 -1
2377281 19433717	1/19/2010 0:00	200 -1	1 1/8/2010 0:00	1/8/20	10 9:11	2010	1 6	5 9	725	1158	1000707	7 725	1 0		1 1/	/8/2010 9:00	4 1 1	6 1	3 3 (0 0 0	0 0	0 0	1 0	0 1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.011	0 1	0 0 2	260 13	3 AZ U	S 33.5279057	1 -111.92569	7 1	1	1 18777 0	07 ROSE L	LN 5 1	1 2 1	-1 -1
2408087 19653265	5/13/2010 0:00	200 -1	1 4/17/2010 0:00				4 7	7 22	725	1339	1009630	725	1 -1	111	-1 1/	/1/1900 0:00	4 4 1	6 1	3 7 (2 0	2 0	0 0	4 1	0 1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0129	0 1	0 0 2	260 13	3 AZ U	S 33.5279762	4 -111.925778	9 1 Sep-	10 1	1 18777 0	7 ROSE L	N 5 0	0 1	-1 -1
2478729 20123724	1/13/2011 0:00	210 -1	1 12/18/2010 0:00	12/18/201	0 22:44	2010	12 7	7 22	725	1299	103092	1 725	1 -1		-1 1/	/1/1900 0:00	2 4 1	6 1	3 5 (5 0	5 0	0 0	3 0	0 1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0284	0 1	0 0 2	260 13	3 AZ U	\$ 33.5282010	8 -111.925771	8 1 Sep-	10 1	1 18777 0	07 ROSE L	N 5 1	1 12 2	-1 -1
																		100			1. 1.									12.12.12.1	Contraction of the							1.7.6.7.9.4.				2944 C			
2503642 20310986	5/3/2011 0:00	210 -1	1 3/14/2011 0:00				3 2	2 3	725	1233	1106173	3 725	1 -1		-1 1,	/1/1900 0:00	1 4 3	3 3	1 1 (0 0 0	0 0	0 0	1 -1	0 -1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0028	0 1	0 0 2	260 13	3 AZ U	\$ 33.5278309	2 -111.925783	6 1 Sep-:	10 1	1 18777 0	7 ROSE L	LN 5 0	0 0 1	-1 -1
2552718 20625062	10/7/2011 0:00	200 -1	1 8/22/2011 0:00	8/22/201	1 14:46	2011	8 2	2 14	725	1281	1119702	2 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	2 2 0	0 0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0189	0 1	0 0 2	260 13	3 AZ U	\$ 33.5280639	8 -111.925776	1 1 Sep-:	10 1	1 18777 0	07 ROSE L	LN 5 0	0 0 1	-1 -1
2587392 20810626	1/31/2012 0:00	200 -1	1 8/26/2011 0:00	8/26/201	1 14:30	2011	8 6	5 14	725	882	1120034	1 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	2 2 (0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	-0.008	0 1	0 0 2	260 13	3 AZ U	S 33.5276750	5 -111.925789	8 1 Sep-	10 1	1 18777 0	07 ROSE L	LN 5 1	1 11 1	-1 -1
2618759 20985596	5/11/2012 0:00	200 -1	1 4/3/2012 0:00	4/3/201	2 15:47	2012	4 3	3 15	725	882	1207689	725	1 -1		-1 1	/1/1900 0:00	4 1 1	6 255	2 3 (1 0	1 0	0 0	2 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0473	0 1	0 0 2	260 13	3 AZ U	\$ 33.5284761	6 -111.92576	3 1 Sep-	10 -1	0 18777 0	7 ROSE	LN 5 99	0 1	-1 -1
2630687 21065766	6/29/2012 0:00	200 -1	1 2/27/2012 0:00	2/27/201	2 18:16	2012	2 2	2 18	725	1266	1204736	5 725	1 -1		-1 1/	/1/1900 0:00	6 3 1	6 255	2 2 0	0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0568	0 1	0 0 7	260 13	3 AZ U	\$ 33.5286132	6 -111.925758	7 1 Sep-	10 -1	0 18777 0	07 ROSE L	LN 5 99	0 1	-1 -1
2635764	8/6/2012 0:00	200 -1	1 6/22/2012 0:00	6/22/201	2 11:07	2012	6 6	5 11	725	772	1214150	725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	3 3 (0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0284	0 1	0 0 2	60 13	3 AZ U	\$ 33.5282010	8 -111.925771	8 1 Sep-	10 1	1 18777 0	7 ROSE L	LN 5 1	1 2 1	-1 -1
2638602	8/14/2012 0:00	200 -1	1 4/24/2012 0:00	4/24/201	2 10:49	2012	4 3	3 10	725	601	1209466	5 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	3 4 (0 0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0623	0 1	0 0 2	60 13	3 AZ U	5 33.5286927	8 -111.925756	2 1 Sep-	10 -1	0 18777 0	7 ROSE L	LN 5 99	0 1	-1 -1
638655	8/14/2012 0:00	200 -1	1 6/4/2012 0:00	6/4/201	2 19:34	2012	6 2	2 19	725	1266	1212847	7 725	1 -1		-1 1/	/1/1900 0:00	4 4 1	6 255	2 5 (1 0	0 1 0	0 0	3 0	0 1	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0189	0 1	0 0 2	260 13	3 AZ U	\$ 33.5280639	8 -111.925776	1 1 Sep-	10 1	1 18777 0	7 ROSE L	LN 5 1	1 2 1	-1 -1
2642679	8/30/2012 0:00	200 -1	1 7/24/2012 0:00	7/24/201	2 13:51	2012	7 3	3 13	725	1229	1216500	725	0 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	2 2 0	0 0 0	0 0 0	0 0	1 0	0 0	2 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	-0.0076	0 1	0 0 2	260 13	3 AZ U	S 33.5276805	4 -111.925789	6 1 Sep-	10 1	1 18777 0	7 ROSE L	LN 5 1	1 2 1	-1 -1
2655295 21100337	7/16/2012 0:00	200 -1	1 1/18/2012 0:00	1/18/201	2 11:40	2012	1 4	1 11	725	601	1201376	5 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	2 2 0	0 0	0 0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	-0.0095	0 1	0 0 2	260 13	3 AZ U	S 33.5276531	2 -111.925790	5 1 Sep-:	10 1	1 18777 0	07 ROSE L	N 5 0	0 0 1	-1 -1
2692960	2/11/2012 0.00	200	11/2/2012 0.00	11/2/20	12 0.52	2012				1000																								-											
2695628	2/14/2013 0:00	200 -1	1 11/3/2012 0:00					8	725	1323	1224514		1 -1			/1/1900 0:00	4 1 1	6 255	2 4 0	0 0	0 0 0	0 0	1 0	0 0	1 0			Not Available	-	Scottsdale Rd	Rose Ln				260 13	3 AZ U	S 33.5279597				1 18777 0		N 4 1	1 2 1	-1 -1
2095028	2/22/2013 0:00	200 -1	1 12/4/2012 0:00	12/4/201	2 16:52	2012	12 3	5 16	725	1266	1226984	1 725	0 -1		-1 1/	/1/1900 0:00	4 1 1	6 255	2 5 0	0 0	0 0 0	0 0	1 0	0 0	2 0	0 -1 Not	Available	Not Available	0 0 5	Scottsdale Rd	Rose Ln	0.0189	0 1	0 0 2	260 13	3 AZ U	\$ 33.5280639	8 -111.925776	1 1 Sep-:	10 1	1 18777 0	07 ROSE L	N 5 1	1 2 1	-1 -1
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	10000	1.000																							C																		
2396075 19551993	4/1/2010 0:00	200 -1	1 3/4/2010 0:00	3/4/201	0 17:55	2010	3 5	5 17	725	831	1005746	5 725	1 -1		-1 1/	/1/1900 0:00	97 3 1	7 1	3 1 2	2 0	0 2	0 0	4 1	0 -1	1 0	0 -1 Not	Available	Not Available	0 0 F	Rose Ln	Scottsdale Rd	0	0 1	0 0 2	60 13	3 AZ U	s 33.5277902	1 -111.925786	1 1 Sep-	10 1	1 19149 0	7 SCOTTSDALE	5 1	1 1 1	-1 -1
2405524 19634225	4/29/2010 0:00	200 -1	1 4/21/2010 0:00	4/21/201	0 18:23	2010	4 4	1 18	725	1241	1009994	1 725	1 -1		1 1	/1/1900 0:00	2 3 1	6 1	2 3 0	0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	0 0 F	Rose Ln	Scottsdale Rd	0.0049	0 1	0 0 2	260 13	3 AZ U	S 33.5277889					7 SCOTTSDALE	5 1	11 2	-1 -1
2420603 19741399	6/24/2010 0:00	200 -1	1 6/12/2010 0:00	6/12/201	0 16:13	2010	6 7	7 16	725	1266	1014617	7 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 1	2 3 (1 0	1 0	0 0	2 -1	0 -1	1 0	0 -1 Not	Available	Not Available	0 0 6	Rose Ln	Scottsdale Rd	0	0 1	0 0 2	60 13	3 AZ U	S 33,5277902	1 -111.925786			_	7 SCOTTSDALE	5 1	1 1 2	-1 -1
2446136 19932643	10/19/2010 0:00	210 -1	9/24/2010 0:00	9/24/201	0 15:57	2010	9 6	5 15	725	1346	1023585	5 725	1 -1		-1 1/	/1/1900 0:00	4 1 1	6 1	2 2 0	0 0	0 0	0 0	1 -1	0 -1	1 0	0 -1 Not	Available	Not Available	0 0 F	Rose Ln	Scottsdale Rd	0.01	0 1	0 0 2	260 13	3 AZ U		5 -111.925612		_		7 SCOTTSDALE	2 0	0 0 1	-1 -1
2486482 20186149	2/18/2011 0:00	210	1/20/2011 0.00	1/20/201	1 17.24	2011		1.17	725	1227	1100000	705			1	1 /1000 0.00	-					-								-				-		-									
2494340 20246818		210 -1	1 1/30/2011 0:00 1 2/10/2011 0:00			2011	1 1	1/	725	1277	1102399		1 -1		-1 1/	/1/1900 0:00	2 1 1	0 1	2 4 0	0 0	0 0	0 0	1 0	0 1	1 0			Not Available		Rose Ln	Scottsdale Rd	0	0 1	0 0 2								7 SCOTTSDALE	5 1	1 1	-1 -1
2522868 20432562	5/27/2011 0:00	210 1	1 5/7/2011 0:00	-			2 5			2000	1103339		1 1		-1 1/	/1/1900 0:00	3 1 1		2 2 0	1 0	1 0	0 0	3 1	0 1	1 0	-		Not Available	-	Rose Ln	Scottsdale Rd	0	0 1	0 01		3 AZ U	S 33.5277902					7 SCOTTSDALE	5 1	11 1	-1 -1
2536781 20533093	8/1/2011 0:00	200 1	1 7/15/2011 0:00				3 /	++	725	1250	111094		1 -1		-1 1/	/1/1900 0:00	9/ 1 1	1 0	2 2 0	0 0	0 0	0 0	1 -1	0 1	1 0	-		Not Available		Rose Ln	Scottsdale Rd	0			260 13	_		1 -111.925786			_	7 SCOTTSDALE	5 1	12 1	-1 -1
200001 2000000	0/1/20110.00		//15/20110.00	//15/201	1 10:01	2011	/ 0	18	123	1230	1110603	125	1 -1		-1 1/	/1/1900 0:00	4 1 1	0 255	2 2 0	0 0	0 0	0 0	1 0	0 0	1 0	0 -1 Not	Available	Not Available	UOF	Rose Ln	Scottsdale Rd	0	0 1	0 0 2	60 13	3 AZ U	\$ 33.5277902	1 -111.925786	1 1 Sep-:	10 1	1 19149 0	7 SCOTTSDALE	5 1	12 1	-1 -1
2612896 20955998	4/24/2012 0:00	200 -1	1 2/14/2012 0:00	2/14/201	2 11-30	2012	2 2	11	725	601	1203617	7 725	1 .1		-1 1	/1/1900 0:00	4 1 4	6 255	2 4 4		0 0	0 0	1 0	0 0	1 0	0 1 1-1	Ausilahl	Net Availabl	0 0	Desela	Castledala D.1	-	0 1	0 0	10 12	2 47	C 22 527700	1 111 035 700			1 10110				
2012030 20333330	124/2012 0:00		1 14/2012 0.00	2/14/201	- 11.33	2012	4 3	1 11	125	001	120501	123			-1 1/	1/1900 0:00	4 1 1	222	4 4	0 0	0 0 0	0 0	1 0	0 0	1 0	ol -Tlyot	Available	Not Available	U OF	Rose Ln	Scottsdale Rd	0	0 1	0 0 2	00 13	JAZ U	5 33.527/902	1 -111.925786	1 1 Sep-	10 1	1 19149 0	7 SCOTTSDALE	5 1	1 1 2	-1 -1 7

Crash Data Summary

1 Single Vehicle 3 Angle (front to side) 1 Left-Turn 18 Rear-End 1 Sideswipe (Same Dir.) 2 Other

6

26

97

 1
 19
 No Injury

 2
 2
 Possible Injury

 3
 3
 Non Inapacititating Injury

 4
 2
 Incapacitating Injury

 5
 0
 Fatality

Appendix F

Trip Generation Calculations
				Daily		AM Peak			PM Peak	
Land Use	ITE Code	Quantity	Units	Total	In	Out	Total	Iл	Out	Tota
High-Turnover Restaurant	932	6,000	SF	763	36	29	65	35	24	59
Specialty Retail*	826	4,647	SF	206	2	2	4	6	7	13
Total 1	rips			969	38	31	69	41	31	72
Internally Captured Trips (20%	assumed of r	estaurant tri	ips)	152	7	6	13	7	5	12
Total Nev	w Trips	_		817	31	25	56	34	26	60

Land Use	THE CODE	Quantity	Units	lotai	in	Out	lotal	IN .	Out	lotal
High-Turnover Restaurant	932	6,605	SF	840	39	32	71	39	26	65
Office	710	51,149	SF	564	70	10	80	13	63	76
Total Tri	ps			1404	109	42	151	52	89	141
Internally Captured Trips (20% as	ssumed of re	estaurant tri	ps)	168	7	7	14	7	6	13
Total New	Trips			1236	102	35	137	45	83	128

.

<u>.</u>

.

*Used average rate for landuse code 820 - Shopping Center to get an AM Peak trip generation estimate

			Sit-Down) Resta		1-1-11-	101070000
Designed by Checked by	And in case of the local division of the loc		Date	Date Date	Job No Sheet No.	191378002 1 of 1
Checked by	Name			Date		
TRIP GENE	RATION MA	NUAL TECHN	IIQUES			
ITE Trip Ger	neration 9th	Edition, Averag	ge Rate Equatior	าร		
Land Use Co	ode -	932 Hi	igh-Turnover (Sit	t-Down) Resta	urant	
Independent	Variable -	1,000 Sq F	t			
Number of U	Inits (X) -	6				
T = Trip End	S					
Peak Hour	Adjacent	Street Traffic	One Hour Be	etween 7 and	<u>9 AM</u>	
AM Peak					Directional	Distribution:
T = (X) *	10.81		er 1,000 Sq Ft		55% Entering	0
T = 65		Trip Ends			36 Entering	29 Exiting
Peak Hour	Adjacent	Street Traffic	<u>One Hour Be</u>	etween 4 and	<u>6 PM</u>	
	Adjacent :	Street Traffic	<u>One Hour Be</u>	etween 4 and	The second second	Distribution:
PM Peak				etween 4 and	Directional	Distribution: 40% Exiting
PM Peak T = (X) *			<u>One Hour Be</u> er 1,000 Sq Ft	etween 4 and	The second second	40% Exiting
PM Peak T = (X) *		Trip Ends P		etween 4 and	Directional 60% Entering	40% Exiting
PM Peak T = (X) *		Trip Ends P		etween 4 and	Directional 60% Entering	40% Exiting
PM Peak T = (X) *		Trip Ends P		etween 4 and	Directional 60% Entering	40% Exiting
PM Peak T = (X) * T = 59		Trip Ends P		etween 4 and	Directional 60% Entering	40% Exiting
PM Peak T = (X) * T = 59 <u>Weekday</u>	9.85	Trip Ends P		etween 4 and	Directional 60% Entering 35 Entering	40% Exiting 24 Exiting
<u>Peak Hour</u> PM Peak T = (X) * T = 59 <u>Weekday</u> Daily Weekd T = (X) *	9.85 ay	Trip Ends Po Trip Ends		etween 4 and	Directional 60% Entering 35 Entering	40% Exiting 24 Exiting Distribution:
PM Peak T = (X) * T = 59 <u>Weekday</u> Daily Weekd	9.85 ay	Trip Ends Po Trip Ends	er 1,000 Sq Ft	etween 4 and	Directional 60% Entering 35 Entering Directional	40% Exiting 24 Exiting
PM Peak T = (X) * T = 59 <u>Weekday</u> Daily Weekd T = (X) *	9.85 ay	Trip Ends Po Trip Ends Trip Ends Po	er 1,000 Sq Ft	etween 4 and	Directional 60% Entering 35 Entering Directional 50% Entering	40% Exiting 24 Exiting Distribution: 50% Exiting
PM Peak T = (X) * T = 59 Weekday Daily Weekd T = (X) * T = 764	9.85 lay 127.15	Trip Ends Po Trip Ends Trip Ends Po Trip Ends	er 1,000 Sq Ft		Directional 60% Entering 35 Entering Directional 50% Entering	40% Exiting 24 Exiting Distribution: 50% Exiting
PM Peak T = (X) * T = 59 Weekday Daily Weekd T = (X) * T = 764 Non-Pass-E	9.85 lay 127.15	Trip Ends Po Trip Ends Trip Ends Po Trip Ends	er 1,000 Sq Ft	Non-Pass-By	Directional 60% Entering 35 Entering Directional 50% Entering 382 Entering 382 Entering	40% Exiting 24 Exiting Distribution: 50% Exiting 382 Exiting
PM Peak T = (X) * T = 59 <u>Weekday</u> Daily Weekd T = (X) *	9.85 lay 127.15	Trip Ends Po Trip Ends Trip Ends Po Trip Ends	er 1,000 Sq Ft		Directional 60% Entering 35 Entering Directional 50% Entering 382 Entering	40% Exiting 24 Exiting Distribution: 50% Exiting
PM Peak T = (X) * T = 59 <u>Weekday</u> Daily Weekd T = (X) * T = 764 <u>Non-Pass-E</u> AM 100%	9.85 lay 127.15	Trip Ends Po Trip Ends Trip Ends Po Trip Ends	er 1,000 Sq Ft	Non-Pass-By AM Peak	Directional 60% Entering 35 Entering Directional 50% Entering 382 Entering 382 Entering 7 Trip Volumes 36 Entering	40% Exiting 24 Exiting Distribution: 50% Exiting 382 Exiting 29 Exiting

Kimley-Horn and Associates, Inc.

	r Specialty Re				0.1070000
	Name		Date	Job No. 1	
Checked by	Name	_ Date	Date	Sheet No1	OT
TRIP GENERATI	ON MANUAL TEC	HNIQUES			
ITE Trip Generati	ion 9th Edition , Ave	erage Rate Equat	ions		
Land Use Code -	826	Specialty Retail	Center		
Independent Varia	able - 1,000 Se	q Ft GLA			
Number of Units ((X) - 4.647				
T = Trip Ends					
<u>Peak Hour</u> <u>Adj</u>	acent Street Traff	ic One Hour	Between 7 and	9 AM	
AM Peak				Directional Dis	tribution:
T = (X) * *		s Per 1,000 Sq F	t GLA	0% Entering	0% Exiting
T = 0	Trip Ends	5		0 Entering	0 Exiting
Peak Hour Adj	acent Street Traff	ic One Hour	Between 4 and	6 PM	
		<u>one nour</u>	Detween 4 and		
PM Peak				Directional Dis	stribution:
T = (X) * 2.7		s Per 1,000 Sq F	t GLA	44% Entering	-
	1 Trip Ends Trip Ends		t GLA		56% Exiting 7 Exiting
T = (X) * 2.7			t GLA	44% Entering	-
T = (X) * 2.7			t GLA	44% Entering	-
T = (X) * 2.7 T = 13			t GLA	44% Entering	-
T = (X) * 2.7 T = 13 <u>Weekday</u>			t GLA	44% Entering 6 Entering	7 Exiting
T = (X) * 2.7 T = 13 <u>Weekday</u> Daily Weekday	Trip Ends	5		44% Entering 6 Entering Directional Dis	7 Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3	Trip Ends	s Per 1,000 Sq F		44% Entering 6 Entering Directional Dis 50% Entering	7 Exiting stribution: 50% Exiting
T = (X) * 2.7 T = 13 <u>Weekday</u> Daily Weekday T = (X) * 44.3	Trip Ends	s Per 1,000 Sq F		44% Entering 6 Entering Directional Dis	7 Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3	Trip Ends 32 Trip Ends Trip Ends	s Per 1,000 Sq F	t GLA	44% Entering 6 Entering Directional Dis 50% Entering	7 Exiting stribution: 50% Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3 T = 206 Non-Pass-By Tri	Trip Ends 32 Trip Ends Trip Ends	s Per 1,000 Sq F	t GLA <u>Non-Pass-By</u>	44% Entering 6 Entering Directional Dis 50% Entering 103 Entering	7 Exiting stribution: 50% Exiting 103 Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3 T = 206 Non-Pass-By Tri AM 100%	Trip Ends 32 Trip Ends Trip Ends	s Per 1,000 Sq F	t GLA <u>Non-Pass-By</u> AM Peak	44% Entering 6 Entering Directional Dis 50% Entering 103 Entering 7 Trip Volumes 0 Entering	7 Exiting stribution: 50% Exiting 103 Exiting 0 Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3 T = 206 Non-Pass-By Tri	Trip Ends 32 Trip Ends Trip Ends	s Per 1,000 Sq F	t GLA <u>Non-Pass-By</u>	44% Entering 6 Entering Directional Dis 50% Entering 103 Entering	7 Exiting stribution: 50% Exiting 103 Exiting
T = (X) * 2.7 T = 13 Weekday Daily Weekday T = (X) * 44.3 T = 206 Non-Pass-By Tri AM 100%	Trip Ends 32 Trip Ends Trip Ends	s Per 1,000 Sq F	t GLA <u>Non-Pass-By</u> AM Peak	44% Entering 6 Entering Directional Dis 50% Entering 103 Entering 7 Trip Volumes 0 Entering	7 Exiting stribution: 50% Exiting 103 Exiting 0 Exiting

	Shopping Center	Date	Job No.	191378002
Designed by Name Checked by Name	Date	Date		1 of 1
	2 - R ^E -			-
TRIP GENERATION M	ANUAL TECHNIQUES			
ITE Trip Generation 9th	Edition, Average Rate Equa	tions		
Land Use Code -	820 Shopping Cent	er		
Independent Variable -	1,000 Sq Ft GLA			
Number of Units (X) -	4.647			
T = Trip Ends				
Peak Hour Adjacent	Street Traffic One Hour	Between 7 and	<u>9 AM</u>	
AM Peak			Directional I	Distribution:
T = (X) * 0.96	Trip Ends Per 1,000 Sq I	Ft GLA	62% Entering	
T = 4	Trip Ends		2 Entering	2 Exiting
and the second second	Street Traffic One Hour	Between 4 and		
PM Peak			Directional [
PM Peak T = (X) * 3.71	Trip Ends Per 1,000 Sq I		Directional I 48% Entering	52% Exiting
Peak Hour Adjacent PM Peak			Directional [
PM Peak T = (X) * 3.71	Trip Ends Per 1,000 Sq I		Directional I 48% Entering	52% Exiting
PM Peak T = (X) * 3.71 T = 17	Trip Ends Per 1,000 Sq I		Directional I 48% Entering	52% Exiting
PM Peak T = (X) * 3.71 T = 17 <u>Weekday</u>	Trip Ends Per 1,000 Sq I		Directional I 48% Entering 8 Entering	52% Exiting 9 Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday	Trip Ends Per 1,000 Sq I Trip Ends	⁼t GLA	Directional I 48% Entering 8 Entering Directional I	52% Exiting 9 Exiting Distribution:
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70	Trip Ends Per 1,000 Sq I	⁼t GLA	Directional I 48% Entering 8 Entering	52% Exiting 9 Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70	Trip Ends Per 1,000 Sq I Trip Ends Trip Ends Per 1,000 Sq I	⁼t GLA	Directional I 48% Entering 8 Entering Directional I 50% Entering	52% Exiting 9 Exiting Distribution: 50% Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70 T = 200	Trip Ends Per 1,000 Sq F Trip Ends Trip Ends Per 1,000 Sq F Trip Ends	=t GLA	Directional I 48% Entering 8 Entering Directional I 50% Entering	52% Exiting 9 Exiting Distribution: 50% Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70 T = 200 Mon-Pass-By Trip Perc AM 100%	Trip Ends Per 1,000 Sq F Trip Ends Trip Ends Per 1,000 Sq F Trip Ends	⁼ t GLA ⁼ t GLA <u>Non-Pass-By</u> AM Peak	Directional I 48% Entering 8 Entering Directional I 50% Entering 100 Entering 7 Trip Volumes 2 Entering	52% Exiting 9 Exiting Distribution: 50% Exiting 100 Exiting 2 Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70 T = 200 Non-Pass-By Trip Perc	Trip Ends Per 1,000 Sq F Trip Ends Trip Ends Per 1,000 Sq F Trip Ends	Ft GLA Ft GLA <u>Non-Pass-By</u>	Directional I 48% Entering 8 Entering Directional I 50% Entering 100 Entering	52% Exiting 9 Exiting Distribution: 50% Exiting 100 Exiting
PM Peak T = (X) * 3.71 T = 17 Weekday Daily Weekday T = (X) * 42.70 T = 200 Mon-Pass-By Trip Perc AM 100%	Trip Ends Per 1,000 Sq F Trip Ends Trip Ends Per 1,000 Sq F Trip Ends	Ft GLA Ft GLA <u>Non-Pass-By</u> AM Peak	Directional I 48% Entering 8 Entering Directional I 50% Entering 100 Entering 7 Trip Volumes 2 Entering	52% Exiting 9 Exiting Distribution: 50% Exiting 100 Exiting 2 Exiting

Trip generati		eneral Office Building (1)	Data	Int. Ale	04070000
Designed by	Name Name	Date Date	Date Date		191378002
Checked by	Name	Dale	Date	Sheet No1	of
TRIP GENER	RATION MA	NUAL TECHNIQUES			
TE Trip Gen	eration 9th E	Edition , Average Rate Equation	ons		
and Use Co	de -	710 General Office B	uilding (1)		
ndependent	Variable -	1,000 Sq Ft			
Number of U	nits (X) -	51.149			
T = Trip End	6				
Peak Hour	Generator				
AM Peak				Directional Di	
Γ = (X) * Γ = 80	1.56	Trip Ends Per 1,000 Sq Ft Trip Ends		88% Entering 70 Entering	12% Exiting 10 Exiting
Peak Hour	<u>Generator</u>				
PM Peak				Directional Di	
Γ = (X) * Γ = 76	1.49	Trip Ends Per 1,000 Sq Ft Trip Ends		17% Entering 13 Entering	83% Exiting 63 Exiting
<u>Neekday</u>					
Daily Weekd				Directional Dis	
$\Gamma = (X) * $ $\Gamma = 566$	11.03	Trip Ends Per 1,000 Sq Ft		50% Entering	50% Exiting
000 = 1		Trip Ends		283 Entering	283 Exiting
Non-Pase-P	y Trip Perce	ntage	Non-Pass Pu	/ Trip Volumes_	
1011-1 000-0	11101 0100	intugo	101-1 a55-Dy	The volumes	
AM 100%			AM Peak	70 Entering	10 Exiting
PM 100%			PM Peak	13 Entering	63 Exiting

		High-Turnover (Sit-Dow		Inh Ma	101070000
Chec		me Date	Date Date		191378002 of 1
Chec		Date_	Date	Oneer No	0/
TRIP	GENERATION	MANUAL TECHNIQUES			
ITE 7	Trip Generation 9	oth Edition, Average Rate	Equations		
Land	Use Code -	932 High-Turn	over (Sit-Down) Resta	urant	
Indep	endent Variable	- 1,000 Sq Ft			
Num	ber of Units (X) -	6.605			
Т = Т	rip Ends				
Peak	Hour Adjace	nt Street Traffic One	Hour Between 7 and	<u>9 AM</u>	
AM P	Peak			Directional Di	stribution:
	(X) * 10.81	Trip Ends Per 1,000) Sq Ft	55% Entering	45% Exiting
T =	71	Trip Ends		39 Entering	32 Exiting
Peak	Hour Adjace	nt Street Traffic One	Hour Between 4 and	<u>6 PM</u>	
PM P	Peak			Directional Di	stribution:
	(X) * 9.85	Trip Ends Per 1,000) Sq Ft	60% Entering	40% Exiting
T =	65	Trip Ends		39 Entering	26 Exiting
Τ=	65	Trip Ends		39 Entering	26 Exiting
Τ=	65	Trip Ends		39 Entering	26 Exiting
T = Weel		Trip Ends		39 Entering	26 Exiting
Weel Daily	<mark>kday</mark> Weekday			Directional Di	stribution:
Weel Daily T =	<mark>kday_</mark> Weekday (X) * 127.15	Trip Ends Per 1,000) Sq Ft	Directional Di 50% Entering	stribution: 50% Exiting
Weel Daily	<mark>kday</mark> Weekday) Sq Ft	Directional Di	stribution:
Weel Daily T = T =	<mark>kday_</mark> Weekday (X) * 127.15 840	Trip Ends Per 1,000 Trip Ends		Directional Di 50% Entering 420 Entering	stribution: 50% Exiting
Weel Daily T = T =	<mark>kday_</mark> Weekday (X) * 127.15	Trip Ends Per 1,000 Trip Ends		Directional Di 50% Entering	stribution: 50% Exiting
Weel Daily T = T = <u>Non-</u> AM	kday Weekday (X) * 127.15 840 Pass-By Trip Po 100%	Trip Ends Per 1,000 Trip Ends	<u>Non-Pass-By</u> AM Peak	Directional Di 50% Entering 420 Entering <u>7 Trip Volumes</u> 39 Entering	stribution: 50% Exiting 420 Exiting 32 Exiting
Weel Daily T = T = <u>Non-</u>	<mark>kday</mark> Weekday (X) * 127.15 840 Pass-By Trip P e	Trip Ends Per 1,000 Trip Ends	<u>Non-Pass-Br</u>	Directional Di 50% Entering 420 Entering	stribution: 50% Exiting 420 Exiting
Weel Daily T = T = <u>Non-</u> AM PM	kday Weekday (X) * 127.15 840 Pass-By Trip Po 100% 57%	Trip Ends Per 1,000 Trip Ends	<u>Non-Pass-By</u> AM Peak	Directional Di 50% Entering 420 Entering <u>7 Trip Volumes</u> 39 Entering	stribution: 50% Exiting 420 Exiting 32 Exiting

1

Appendix G

2016 AM Capacity Reports

Borgata Development Only

	۰	-	\mathbf{r}	1	-	*	1	†	1	÷.	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		\$	f		4	f	Ŧ	种种物	μ,	十 十] }	
Volume (vph)	45	8	63	12	2	11	52	1164	36	1471	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase									2		
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	84.0	8.0	84.0	
Minimum Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (%)	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	10.0%	75.0%	10.0%	75.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
_ost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
ntoreaction Summary				1. 1. 1. 1. 1. 1.			Contraction of the		Set alterna	2	

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

₫ ø2 (R)	b ₀₁	0 4
90 s	12 s 18 s	Section .
₩ ø6 (R)	↑ ø5 ◆	ø8
90 s	12 5 18 5	

HCM 2010 Signalized Intersection Summary 3: Scottsdale Road & Rose Lane

	*	-	>	-	-	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	1	\$	같	1.19	-	f	Ŧ	种物	Jacob States	摧	种种	a de
Volume (veh/h)	45	8	63	12	2	11	52	1164	46	36	1471	33
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	0
Cap, veh/h	56	6	160	57	5	160	334	3775	149	411	3848	87
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	0.06	0.71	0.71	0.06	0.71	0.71
Sat Flow, veh/h	0	56	1583	0	48	1583	1774	5340	211	1774	5443	123
Grp Volume(v), veh/h	59	0	70	15	0	12	58	902	442	40	1118	553
Grp Sat Flow(s), veh/h/ln	56	0	1583	48	0	1583	1774	1863	1826	1774	1863	1841
Q Serve(g_s), s	0.0	0.0	4.9	0.0	0.0	0.8	0.0	11.1	11.1	0.0	14.9	14.9
Cycle Q Clear(g_c), s	12.0	0.0	4.9	12.0	0.0	0.8	0.0	11.1	11.1	0.0	14.9	14.9
Prop In Lane	0.85	0.0	1.00	0.87	0.0	1.00	1.00	11.1	0.12	1.00	11.0	0.07
Lane Grp Cap(c), veh/h	62	0	160	61	0	160	334	2634	1291	411	2634	1301
V/C Ratio(X)	0.96	0.00	0.44	0.24	0.00	0.08	0.17	0.34	0.34	0.10	0.42	0.42
Avail Cap(c_a), veh/h	62	0.00	160	61	0.00	160	352	2634	1291	428	2634	1301
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	58.3	0.0	50.2	55.6	0.0	48.4	9.7	6.7	6.7	7.1	7.3	7.3
Incr Delay (d2), s/veh	98.6	0.0	0.7	0.8	0.0	0.1	0.1	0.4	0.7	0.0	0.5	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/ln	3.5	0.0	2.1	0.4	0.0	0.3	0.7	4.4	4.4	0.4	5.9	6.0
Lane Grp Delay (d), s/veh	156.9	0.0	50.9	56.4	0.0	48.5	9.7	7.1	7.5	7.2	7.8	8.3
Lane Grp LOS	F	0.0	D	E	0.0	D	A	A	A	A	A	A
Approach Vol, veh/h		129			27			1402			1711	
Approach Delay, s/veh		99.4			52.8			7.3			7.9	-
Approach LOS		F			D			A			A	132.55
Timer								T.			TX.	
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		18.0			18.0		10.8	90.0		10.8	90.0	
Change Period (Y+Rc), s	1000	6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		12.0			12.0		8.0	84.0		8.0	84.0	
Max Q Clear Time (g_c+11), s		14.0			14.0		2.0	13.1		2.0	16.9	
Green Ext Time (p_c), s		0.0			0.0	1.087	0.0	1.3		0.0	1.7	
Intersection Summary				1 Salak								
HCM 2010 Ctrl Delay			11.7		States .	2.34	1233		The second			
HCM 2010 LOS			В									
Notes		and the set	-				Praticipality				Realty News	

2016 AM Borgata and Resort Development Only

	1	-	>	*	-	*	1	1	1	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		4	P#	19 10 19 19	4	F	ħ	种物	ħ	件 件存	
Volume (vph)	57	9	81	12	3	11	65	1164	36	1471	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	84.0	8.0	84.0	
Vinimum Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (%)	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	10.0%	75.0%	10.0%	75.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
_ead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
ntersection Summary	State State	The second	10			Constant of the					

intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated

√¶ ø2 (R)	ø1 + ø4
90 s	12 s 18 s
Ø6 (R)	↑ ø5 ↓ ø8
90 s	12 s 18 s

	٠	-	7	*	+	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		*	ᢪ		4	f	Ŧ	种种物	1. 1. 1. 1.	ţ۴.	种物	
Volume (veh/h)	57	9	81	12	3	11	65	1164	46	36	1471	42
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	0
Cap, veh/h	56	5	159	55	7	159	337	3761	148	415	3807	109
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	0.06	0.70	0.70	0.06	0.70	0.70
Sat Flow, veh/h	0	49	1583	0	72	1583	1774	5340	211	1774	5405	155
Grp Volume(v), veh/h	73	0	90	16	0	12	72	902	442	40	1126	555
Grp Sat Flow(s),veh/h/ln	49	0	1583	72	0	1583	1774	1863	1826	1774	1863	1835
Q Serve(g_s), s	0.0	0.0	6.5	0.0	0.0	0.8	0.0	11.3	11.3	0.0	15.3	15.3
Cycle Q Clear(g_c), s	12.0	0.0	6.5	12.0	0.0	0.8	0.0	11.3	11.3	0.0	15.3	15.3
Prop In Lane	0.86		1.00	0.81		1.00	1.00		0.12	1.00		0.08
Lane Grp Cap(c), veh/h	61	0	159	62	0	159	337	2624	1286	415	2624	1293
V/C Ratio(X)	1.19	0.00	0.56	0.26	0.00	0.08	0.21	0.34	0.34	0.10	0.43	0.43
Avail Cap(c_a), veh/h	61	0	159	62	0	159	348	2624	1286	426	2624	1293
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	58.7	0.0	51.1	54.3	0.0	48.6	10.4	6.9	6.9	7.2	7.5	7.5
Incr Delay (d2), s/veh	176.4	0.0	2.9	0.8	0.0	0.1	0.1	0.4	0.7	0.0	0.5	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/ln	4.9	0.0	2.8	0.5	0.0	0.3	0.9	4.5	4.6	0.4	6.1	6.2
Lane Grp Delay (d), s/veh	235.0	0.0	54.0	55.1	0.0	48.7	10.5	7.2	7.6	7.2	8.0	8.5
Lane Grp LOS	F	19 3	D	E		D	В	А	А	А	A	A
Approach Vol, veh/h		163			28			1416			1721	
Approach Delay, s/veh		135.1			52.4			7.5			8.1	
Approach LOS		F			D			А			А	
Timer												
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		18.0			18.0	1	11.3	90.0		11.3	90.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		12.0			12.0		8.0	84.0		8.0	84.0	
Max Q Clear Time (g_c+l1), s		14.0			14.0		2.0	13.3		2.0	17.3	
Green Ext Time (p_c), s		0.0			0.0		0.0	1.3		0.0	1.8	
Intersection Summary												
HCM 2010 Ctrl Delay			14.5									
HCM 2010 LOS			В									
Notes		No.	CONT AND	New York	1993	March 27	1019					AN LOS

2016 AM Post-development Borgata, Resort and Mixed-USe Development

	۶	-	7	*	+	*	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	Section St.	\$	f		4		ħ	种物	¥۲.	牛牛 羚	
Volume (vph)	77	11	94	12	8	11	104	1164	36	1471	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	12.0	12.0	12.0	8.0	84.0	8.0	84.0	
Minimum Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (s)	18.0	18.0	18.0	18.0	18.0	18.0	12.0	90.0	12.0	90.0	
Total Split (%)	15.0%	15.0%	15.0%	15.0%	15.0%	15.0%	10.0%	75.0%	10.0%	75.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
Intersection Summary	BARRIS NAME		A REAL PROPERTY.	- AND - A	a la transier			Carriet Series	S. M. S. M. S. M.		and the second second

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated

Ø2 (R)	¢1 + ¢4	
90 s	12 s 18 s	
ø6 (R)	↑ <i>ø</i> 5 ∲ <i>ø</i> 8	and a
90 s	12 s 18 s	

	٠	-	7	1	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	74		*	F	Ŧ	并 件称	12010	Ŧ	并 件协	
Volume (veh/h)	77	11	94	12	8	11	104	1164	46	36	1471	100
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	(
Cap, veh/h	56	0	159	48	21	159	331	3744	148	421	3628	246
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	0.07	0.70	0.70	0.07	0.70	0.70
Sat Flow, veh/h	0	0	1583	0	214	1583	1774	5340	211	1774	5175	351
Grp Volume(v), veh/h	98	0	104	22	0	12	116	902	442	40	1176	569
Grp Sat Flow(s), veh/h/ln	0	0	1583	214	0	1583	1774	1863	1826	1774	1863	1801
Q Serve(g_s), s	0.0	0.0	7.6	0.0	0.0	0.8	0.0	11.4	11.4	0.0	16.5	16.6
Cycle Q Clear(g_c), s	12.0	0.0	7.6	12.0	0.0	0.8	0.0	11.4	11.4	0.0	16.5	16.6
Prop In Lane	0.88		1.00	0.59		1.00	1.00		0.12	1.00		0.20
Lane Grp Cap(c), veh/h	56	0	159	69	0	159	331	2612	1280	421	2612	1262
V/C Ratio(X)	1.74	0.00	0.66	0.32	0.00	0.08	0.35	0.35	0.35	0.09	0.45	0.45
Avail Cap(c_a), veh/h	56	0	159	69	0	159	333	2612	1280	424	2612	1262
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	59.9	0.0	51.9	49.6	0.0	48.9	14.3	7.1	7.1	7.2	7.8	7.8
Incr Delay (d2), s/veh	395.0	0.0	7.6	1.0	0.0	0.1	0.2	0.4	0.7	0.0	0.6	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	7.9	0.0	3.4	0.6	0.0	0.3	2.0	4.5	4.6	0.4	6.6	6.6
Lane Grp Delay (d), s/veh	454.9	0.0	59.5	50.5	0.0	49.0	14.6	7.4	7.8	7.2	8.4	9.0
Lane Grp LOS	F		E	D		D	В	А	А	А	А	A
Approach Vol, veh/h	A TReak	202			34			1460			1785	
Approach Delay, s/veh		251.3			50.0			8.1			8.6	
Approach LOS		F			D			А			А	
Timer				the states of	die en						T. See De	
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		18.0			18.0		11.8	90.0		11.8	90.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		12.0			12.0		8.0	84.0		8.0	84.0	
Max Q Clear Time (g_c+l1), s		14.0			14.0		2.0	13.4		2.0	18.6	
Green Ext Time (p_c), s		0.0			0.0		0.0	1.3		0.0	1.9	
Intersection Summary								Lines III				
HCM 2010 Ctrl Delay			22.9									
HCM 2010 LOS			С									
Notes						18-10-10-10-10-10-10-10-10-10-10-10-10-10-	24 TOPS	CALIFIC AND				

	1	-	-	-	1	1	1	÷.
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	Ħ	14	Ħ	14	١	种物	Ŧ	种物
Volume (vph)	77	11	12	8	104	1164	36	1471
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	pm+pt	NA
Protected Phases		4		8	5	2	1	6
Permitted Phases	4		8		2	1.15	6	
Detector Phase	4	4	8	8	5	2	1	6
Switch Phase								
Minimum Initial (s)	12.0	12.0	12.0	12.0	8.0	74.0	8.0	70.0
Minimum Split (s)	18.0	18.0	18.0	18.0	12.0	80.0	12.0	76.0
Total Split (s)	22.0	22.0	22.0	22.0	22.0	80.0	18.0	76.0
Total Split (%)	18.3%	18.3%	18.3%	18.3%	18.3%	66.7%	15.0%	63.3%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7
All-Red Time (s)	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0
Lead/Lag					Lag	Lead	Lag	Lead
Lead-Lag Optimize?					Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	C-Max	None	C-Max
	A CONTRACTOR OF THE OWNER	ALC: NOT	Contrast Contrast	-				

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

	ø1	404
80 s	18 s	22 s
₩ø6 (R)	₹ø5	₹ø8
76 s	22 s	22 5

	٠	-	>	*	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	14	1.213	Ŧ	14	1	Ŧ	牛牛 协		ΨŢ	并 件际	
Volume (veh/h)	77	11	94	12	8	11	104	1164	46	36	1471	100
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	0	1	1	0	1	3	0	1	3	0
Cap, veh/h	206	19	161	121	81	108	359	3674	145	382	3368	229
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.11	0.09	0.69	0.69	0.05	0.65	0.65
Sat Flow, veh/h	1385	166	1442	1271	725	967	1774	5340	211	1774	5175	351
Grp Volume(v), veh/h	86	0	116	13	0	21	116	902	442	40	1176	569
Grp Sat Flow(s), veh/h/ln	1385	0	1608	1271	0	1692	1774	1863	1826	1774	1863	1801
Q Serve(g_s), s	6.4	0.0	7.4	1.1	0.0	1.2	0.0	10.7	10.7	0.0	17.3	17.4
Cycle Q Clear(g_c), s	7.6	0.0	7.4	8.5	0.0	1.2	0.0	10.7	10.7	0.0	17.3	17.4
Prop In Lane	1.00		0.90	1.00		0.57	1.00		0.12	1.00		0.20
Lane Grp Cap(c), veh/h	206	0	179	121	0	189	359	2563	1256	382	2424	1172
V/C Ratio(X)	0.42	0.00	0.65	0.11	0.00	0.11	0.32	0.35	0.35	0.10	0.49	0.49
Avail Cap(c_a), veh/h	258	0	239	168	0	252	498	2563	1256	521	2424	1172
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.4	0.0	45.8	49.8	0.0	43.0	16.5	6.9	6.9	9.4	9.6	9.6
Incr Delay (d2), s/veh	0.5	0.0	1.5	0.1	0.0	0.1	0.2	0.4	0.8	0.0	0.7	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	2.3	0.0	3.1	0.4	0.0	0.5	2.0	4.1	4.2	0.4	7.1	7.1
Lane Grp Delay (d), s/veh	46.9	0.0	47.2	50.0	0.0	43.1	16.7	7.3	7.7	9.5	10.3	11.0
Lane Grp LOS	D	1224	D	D	1.1	D	В	A	A	A	В	B
Approach Vol, veh/h		202			34			1460			1785	
Approach Delay, s/veh		47.1			45.7	1.1.1.1.1.		8.2			10.5	
Approach LOS		D			D			А			В	
Timer	1							-				
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s	-	18.0	-		18.0		13.6	80.0		9.6	76.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		16.0			16.0		18.0	74.0		14.0	70.0	
Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s		9.6 0.4			10.5 0.3		2.0 0.0	12.7 1.3		2.0 0.0	19.4 1.9	
Intersection Summary										1		
HCM 2010 Ctrl Delay			12.0						-			
HCM 2010 LOS			В									
Notes	1000		NER S									

3: Scottsdale Road & Rose Lane

	٠	-	7	-	+	1	1	1	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Sector Strates
Lane Configurations	Ħ	牛	F	ĥ	1+	¥	+† ‰	¥	牛牛 羚	
Volume (vph)	77	11	94	12	8	104	1164	36	1471	
Turn Type	Perm	NA	Perm	Perm	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8	5	2	1	6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	8	8	5	2	1	6	
Switch Phase										
Ainimum Initial (s)	12.0	12.0	12.0	12.0	12.0	8.0	68.0	8.0	64.0	
/linimum Split (s)	18.0	18.0	18.0	18.0	18.0	12.0	74.0	12.0	70.0	
Total Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	80.0	18.0	76.0	
Fotal Split (%)	18.3%	18.3%	18.3%	18.3%	18.3%	18.3%	66.7%	15.0%	63.3%	and a second of the
(ellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	
.ead/Lag						Lag	Lead	Lag	Lead	
ead-Lag Optimize?		Star 1				Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	
stargastion Cummony			AND A DAY OF	A DIA CARD DATE	Service States	The state of the second			Contraction of the local division of the loc	Contraction (201) (201) (201)

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

∮ ≪¶ ø2 (R)	b ₀₁	₩ø4
80 s	18 s	22 s
ø6 (R)	↑ ø5	₹ø8
76 s	22.5	22.5

Sector State	۶	-	*	1	+	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ħ	肀		ħ	1+	1. 1 M	Ŧ	种种物		Ŧ	种种物	1
Volume (veh/h)	77	11	94	12	8	11	104	1164	46	36	1471	100
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	0	1	3	0	1	3	0
Cap, veh/h	206	208	176	201	81	108	359	3674	145	382	3368	229
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.11	0.09	0.69	0.69	0.05	0.65	0.65
Sat Flow, veh/h	1385	1863	1583	1271	725	967	1774	5340	211	1774	5175	351
Grp Volume(v), veh/h	86	12	104	13	0	21	116	902	442	40	1176	569
Grp Sat Flow(s), veh/h/ln	1385	1863	1583	1271	0	1692	1774	1863	1826	1774	1863	1801
Q Serve(g_s), s	6.4	0.6	6.7	1.0	0.0	1.2	0.0	10.7	10.7	0.0	17.3	17.4
Cycle Q Clear(g_c), s	7.6	0.6	6.7	1.6	0.0	1.2	0.0	10.7	10.7	0.0	17.3	17.4
Prop In Lane	1.00		1.00	1.00		0.57	1.00		0.12	1.00		0.20
Lane Grp Cap(c), veh/h	206	208	176	201	0	189	359	2563	1256	382	2424	1172
V/C Ratio(X)	0.42	0.06	0.59	0.06	0.00	0.11	0.32	0.35	0.35	0.10	0.49	0.49
Avail Cap(c_a), veh/h	258	277	236	249	0	252	498	2563	1256	521	2424	1172
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.4	42.7	45.4	43.5	0.0	43.0	16.5	6.9	6.9	9.4	9.6	9.6
Incr Delay (d2), s/veh	0.5	0.0	1.2	0.0	0.0	0.1	0.2	0.4	0.8	0.0	0.7	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	2.3	0.3	2.8	0.3	0.0	0.5	2.0	4.1	4.2	0.4	7.1	7.1
Lane Grp Delay (d), s/veh	46.9	42.8	46.6	43.5	0.0	43.1	16.7	7.3	7.7	9.5	10.3	11.0
Lane Grp LOS	D	D	D	D		D	В	A	A	A	В	В
Approach Vol, veh/h		202			34			1460			1785	
Approach Delay, s/veh		46.5			43.3			8.2			10.5	
Approach LOS		D			D			А			В	
Timer								12.01				
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		18.0			18.0		13.6	80.0		9.6	76.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		16.0			16.0		18.0	74.0		14.0	70.0	
Max Q Clear Time (g_c+l1), s		9.6			3.6		2.0	12.7		2.0	19.4	
Green Ext Time (p_c), s		0.2			0.3		0.0	1.3		0.0	1.9	
Intersection Summary								4. IST	1415			
HCM 2010 Ctrl Delay			11.9									-
HCM 2010 LOS			В									
Notes	Carl Contra									and the second		

2016 AM Post-development Mitigation - EB/WB L, T, R and Perm Phase

EBL T7 Perm 4	EBT 个 11 NA 4	EBR [#] 94 Perm	WBL 12 Perm	WBT the second s	WBR	NBL ¹	NBT 十十 ゆ	SBL *	SBT 个个计	
77 Perm 4	11 NA	94	12	of the second designed in the second second		4	种物	Ŧ	44%	
77 Perm 4	11 NA	AND INCOMENDATION AND INCOMENDATION AND AND AND AND AND AND AND AND AND AN		of the second designed in the second second	14					
4		Perm	Perm		11	104	1164	36	1471	
4				NA	Perm	pm+pt	NA	pm+pt	NA	
				8		5	2	1	6	
States and a state of the		4	8		8	2		6		
4	4	4	8	8	8	5	2	1	6	
			E							12
12.0	12.0	12.0	12.0	12.0	12.0	8.0	68.0	8.0	60.0	
22.0				18.0	18.0	12.0	78.0	12.0	70.0	
22.0	22.0	22.0	22.0	22.0	22.0	22.0	80.0	18.0	76.0	
18.3%	18.3%	18.3%	18.3%	18.3%	18.3%	18.3%	66.7%	15.0%	63.3%	
3.0	3.0	3.0		3.0	3.0	3.0	4.7	3.0	4.7	
3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	Sector Sector
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	1 1 1
Call State				A COM		Lag	Lead	Lag	Lead	
		Mary Ma				Yes	Yes	Yes	Yes	
None	None	None	None	None	None	None	C-Max	None	C-Max	
	12.0 22.0 22.0 18.3% 3.0 3.0 0.0 6.0	12.0 12.0 22.0 22.0 22.0 22.0 18.3% 18.3% 3.0 3.0 3.0 3.0 0.0 0.0 6.0 6.0	12.0 12.0 12.0 22.0 22.0 22.0 22.0 22.0 22.0 18.3% 18.3% 18.3% 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 6.0 6.0 6.0	12.0 12.0 12.0 12.0 22.0 22.0 22.0 18.0 22.0 22.0 22.0 22.0 18.3% 18.3% 18.3% 18.3% 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 6.0 6.0 6.0 6.0	12.012.012.012.012.022.022.022.022.018.018.022.022.022.022.022.022.018.3%18.3%18.3%18.3%18.3%18.3%3.03.03.03.03.03.03.03.03.03.03.03.00.00.00.00.00.00.06.06.06.06.06.0	12.012.012.012.012.022.022.022.018.018.022.022.022.022.022.018.3%18.3%18.3%18.3%18.3%3.03.03.03.03.03.03.03.03.03.00.00.00.00.00.06.06.06.06.06.0	12.0 12.0 12.0 12.0 12.0 12.0 8.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 22.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 3.0 <td>12.0 12.0 12.0 12.0 12.0 12.0 12.0 8.0 68.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 3.0 3.0 3.0 3.0 1.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 4.0 6.0</td> <td>12.0 12.0 12.0 12.0 12.0 12.0 8.0 68.0 8.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 12.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 15.0% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 0.0 0.0 0.0 6.0 6.0 4.0 4.0 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 10.0 0.0 0.0</td> <td>12.0 12.0 12.0 12.0 12.0 8.0 68.0 8.0 60.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 12.0 70.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.0 76.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 15.0% 63.3% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 4.7 3.0 3.0 3.0 3.0 3.0 1.0 1.3 1.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 6.0 1.0 1.3 1.0 1.3</td>	12.0 12.0 12.0 12.0 12.0 12.0 12.0 8.0 68.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 3.0 3.0 3.0 3.0 1.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 6.0 6.0 6.0 6.0 4.0 6.0	12.0 12.0 12.0 12.0 12.0 12.0 8.0 68.0 8.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 12.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 15.0% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 0.0 0.0 0.0 6.0 6.0 4.0 4.0 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 10.0 0.0 0.0	12.0 12.0 12.0 12.0 12.0 8.0 68.0 8.0 60.0 22.0 22.0 22.0 18.0 18.0 18.0 12.0 78.0 12.0 70.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 80.0 18.0 76.0 18.3% 18.3% 18.3% 18.3% 18.3% 18.3% 66.7% 15.0% 63.3% 3.0 3.0 3.0 3.0 3.0 3.0 4.7 3.0 4.7 3.0 3.0 3.0 3.0 3.0 1.0 1.3 1.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 6.0 6.0 6.0 4.0 6.0 4.0 6.0 1.0 1.3 1.0 1.3

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

[∞] 1 ø2 (R)	\$1	₩ 84
80 s	18 s	22 s
₩ø6 (R)	▲ ø5	₽ 8
76 s	22 s	22 s

	*	-	>	1	+	*	1	1	F	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	Ť	忄	r.	٣	肀	Ť	Ŧ	十 件 [}	A. S.		种物	- dial
Volume (veh/h)	77	11	94	12	8	11	104	1164	46	36	1471	10
Number	7	4	14	3	8	18	5	2	12	1	6	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.0
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	1	1	3	0	1	3	(
Cap, veh/h	155	267	227	153	130	111	343	3538	140	365	3243	220
Arrive On Green	0.14	0.14	0.14	0.07	0.07	0.07	0.09	0.66	0.66	0.05	0.63	0.63
Sat Flow, veh/h	1385	1863	1583	1271	1863	1583	1774	5340	211	1774	5175	35
Grp Volume(v), veh/h	86	12	104	13	9	12	116	902	442	40	1176	569
Grp Sat Flow(s), veh/h/ln	1385	1863	1583	1271	1863	1583	1774	1863	1826	1774	1863	180
Q Serve(g_s), s	6.9	0.6	6.7	1.1	0.5	0.8	0.0	12.0	12.0	0.0	19.2	19.3
Cycle Q Clear(g_c), s	15.6	0.6	6.7	1.1	0.5	0.8	0.0	12.0	12.0	0.0	19.2	19.3
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.12	1.00		0.20
Lane Grp Cap(c), veh/h	155	267	227	153	130	111	343	2468	1210	365	2335	1129
V/C Ratio(X)	0.55	0.04	0.46	0.08	0.07	0.11	0.34	0.37	0.37	0.11	0.50	0.50
Avail Cap(c_a), veh/h	155	267	227	247	267	227	475	2468	1210	497	2335	1129
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	52.0	41.3	43.9	48.8	48.5	48.7	20.3	8.4	8.4	11.5	11.4	11.4
Incr Delay (d2), s/veh	2.6	0.0	0.5	0.1	0.1	0.2	0.2	0.4	0.9	0.0	0.8	1.(
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/ln	2.6	0.3	2.8	0.4	0.2	0.3	2.4	4.9	5.0	0.5	8.1	8.
Lane Grp Delay (d), s/veh	54.6	41.3	44.4	48.9	48.6	48.8	20.6	8.8	9.2	11.5	12.1	13.0
Lane Grp LOS	D	D	D	D	D	D	С	Α	А	В	В	E
Approach Vol, veh/h		202			34			1460			1785	
Approach Delay, s/veh		48.5			48.8			9.9			12.4	
Approach LOS		D			D			А			В	
Timer					a contra la							
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		22.0			13.8		13.7	80.0		9.7	76.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		16.0			16.0		18.0	74.0		14.0	70.0	
Max Q Clear Time (g_c+l1), s		17.6			3.1		2.0	14.0		2.0	21.3	
Green Ext Time (p_c), s		0.0			0.0		0.0	1.3		0.0	1.9	
Intersection Summary			Ser. Ser.									
HCM 2010 Ctrl Delay			13.8						1			
HCM 2010 LOS			В									
Notes	Contraction of the				-	- CALIFORNIA		Contraction of the	CALL PROPERTY OF	And in case of the local division of	ALC: NOT THE OWNER OF	

User approved pedestrian interval to be less than phase max green.

Kimley-Horn & Associates, Inc. 11/14/2013 NB

3: Scottsdale Road & Rose Lane

	1	-	7	*	+	*	1	1	1	ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	Ħ	牛	F	ħ	+		Ŧ	并 件协	μ	牛牛 羚	
Volume (vph)	77	11	94	12	8	11	104	1164	36	1471	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4		3	8		5	2	1	6	
Permitted Phases			4			8	2		6		
Detector Phase	7	4	4	3	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	12.0	12.0	12.0	4.0	6.0	6.0	10.0	60.0	8.0	60.0	
Minimum Split (s)	16.0	18.0	18.0	8.0	12.0	12.0	16.0	70.0	12.0	70.0	
Total Split (s)	20.0	22.0	22.0	10.0	12.0	12.0	18.0	76.0	12.0	70.0	
Total Split (%)	16.7%	18.3%	18.3%	8.3%	10.0%	10.0%	15.0%	63.3%	10.0%	58.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	1.0	3.0	3.0	1.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	

Intersection Summary

Cycle Length: 120

Actuated Cycle Length: 120 Offset: 65 (54%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 115

Control Type: Actuated-Coordinated

Ø2 (R)	ø1		+	√ ø3
76 s	12 s	22 s	Contraction of the	10 s
₽ ₽6 (R)	↑ ø5	4 ⁴ /	. ▲ p7	
70 s	18 s	12 5	20 s	

		-	*	-		-	1	1	1	*	ŧ	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ħ	忄	P	Ť	肀	F	Ŧ	种种族		Ť	牛牛 协	1200
Volume (veh/h)	77	11	94	12	8	11	104	1164	46	36	1471	100
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	1	1	3	0	1	3	0
Cap, veh/h	176	198	168	81	98	83	344	3313	131	334	2935	199
Arrive On Green	0.10	0.11	0.11	0.05	0.05	0.05	0.10	0.62	0.62	0.05	0.57	0.57
Sat Flow, veh/h	1774	1863	1583	1774	1863	1583	1774	5340	211	1774	5175	351
Grp Volume(v), veh/h	86	12	104	13	9	12	116	902	442	40	1176	569
Grp Sat Flow(s),veh/h/ln	1774	1863	1583	1774	1863	1583	1774	1863	1826	1774	1863	1801
Q Serve(g_s), s	5.2	0.7	7.1	0.8	0.5	0.8	0.0	13.7	13.7	0.0	22.5	22.6
Cycle Q Clear(g_c), s	5.2	0.7	7.1	0.8	0.5	0.8	0.0	13.7	13.7	0.0	22.5	22.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.12	1.00		0.20
Lane Grp Cap(c), veh/h	176	198	168	81	98	83	344	2311	1132	334	2113	1021
V/C Ratio(X)	0.49	0.06	0.62	0.16	0.09	0.14	0.34	0.39	0.39	0.12	0.56	0.56
Avail Cap(c_a), veh/h	252	264	224	94	99	84	380	2311	1132	370	2113	1021
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	48.1	45.4	48.2	51.8	50.9	51.0	29.0	10.7	10.7	15.9	15.5	15.5
Incr Delay (d2), s/veh	2.1	0.0	1.4	0.9	0.1	0.3	0.2	0.5	1.0	0.1	1.1	2.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	2.5	0.3	3.0	0.4	0.3	0.3	3.0	5.7	5.7	0.6	9.8	9.8
Lane Grp Delay (d), s/veh	50.2	45.4	49.6	52.7	51.0	51.3	29.2	11.2	11.7	15.9	16.5	17.7
Lane Grp LOS	D	D	D	D	D	D	С	В	В	В	В	В
Approach Vol, veh/h		202			34			1460			1785	
Approach Delay, s/veh		49.6			51.8			12.8			16.9	
Approach LOS		D			D			В			В	
Timer				- States							N.S. SAR	M S
Assigned Phs	7	4		3	8		5	2		1	6	
Phs Duration (G+Y+Rc), s	15.2	18.0		9.1	11.9		15.7	76.0		9.7	70.0	
Change Period (Y+Rc), s	4.0	6.0		4.0	6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s	16.0	16.0		6.0	6.0		14.0	70.0		8.0	64.0	
Max Q Clear Time (g_c+I1), s	7.2	9.1		2.8	2.8		2.0	15.7		2.0	24.6	
Green Ext Time (p_c), s	0.1	0.1		0.1	0.0		0.0	1.3		0.0	1.9	
Intersection Summary										1. 2	1	
HCM 2010 Ctrl Delay	1.5		17.4									
HCM 2010 LOS			В									
Notes					2.4.5		anger a					

Appendix H 2016 PM Capacity Reports

.

	٠	-	7	*	-	*	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	States of the
Lane Configurations		4	Pf		4	관	Ŧ	种物	¥	牛牛 孙	
Volume (vph)	59	5	61	39	8	52	113	2022	58	1949	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	18.0	8.0	78.0	8.0	78.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Total Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Total Split (%)	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	10.0%	70.0%	10.0%	70.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
ntoreaction Cummony		State State	and a state of the		anter en auto	BARCHER BAR	1 × 1 5 1 1 1	and the second second	CARGO MARTIN	Street of the second	

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

√ ¶ ø2 (R)	v ø1	₩ø4
34 <i>s</i>	12 s	24 s
₩ ø6 (R)	1 ø5	₽ Ø 8
34s	12 s	245

	٠	-	>	*	+	*	1	1	r	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		-	ř		*	译	ħ	种种族		辉	种种族	42.10
Volume (veh/h)	59	5	61	39	8	52	113	2022	14	58	1949	64
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	0
Cap, veh/h	58	3	238	55	7	238	247	3606	26	245	3501	114
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.07	0.65	0.65	0.07	0.65	0.65
Sat Flow, veh/h	0	19	1583	0	43	1583	1774	5542	39	1774	5381	176
Grp Volume(v), veh/h	72	0	68	52	0	58	126	1510	753	64	1497	740
Grp Sat Flow(s), veh/h/ln	19	0	1583	43	0	1583	1774	1863	1856	1774	1863	1832
Q Serve(g_s), s	0.0	0.0	4.6	0.0	0.0	3.9	0.0	28.5	28.6	0.0	28.1	28.4
Cycle Q Clear(g_c), s	18.0	0.0	4.6	18.0	0.0	3.9	0.0	28.5	28.6	0.0	28.1	28.4
Prop In Lane	0.92		1.00	0.83		1.00	1.00		0.02	1.00		0.10
Lane Grp Cap(c), veh/h	60	0	238	61	0	238	247	2424	1207	245	2424	1192
V/C Ratio(X)	1.19	0.00	0.29	0.85	0.00	0.24	0.51	0.62	0.62	0.26	0.62	0.62
Avail Cap(c_a), veh/h	60	0	238	61	0	238	249	2424	1207	247	2424	1192
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	59.1	0.0	45.2	57.7	0.0	44.9	38.5	12.3	12.3	26.7	12.2	12.3
Incr Delay (d2), s/veh	177.0	0.0	0.2	61.7	0.0	0.2	0.7	1.2	2.4	0.2	1.2	2.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	4.8	0.0	1.9	2.7	0.0	1.6	3.7	11.9	12.3	1.6	11.8	12.1
Lane Grp Delay (d), s/veh	236.1	0.0	45.5	119.4	0.0	45.1	39.2	13.5	14.7	26.9	13.4	14.7
Lane Grp LOS	F		D	F		D	D	В	В	С	В	В
Approach Vol, veh/h		140			110			2389			2301	
Approach Delay, s/veh		143.5			80.2			15.3			14.2	
Approach LOS		F			F			В			В	
Timer							-	0.5	1	AN BAS		
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			24.0		11.9	84.0		11.9	84.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		18.0			18.0	-	8.0	78.0		8.0	78.0	
Max Q Clear Time (g_c+l1), s		20.0			20.0		2.0	30.6		2.0	30.4	
Green Ext Time (p_c), s		0.0			0.0		0.0	2.6		0.0	2.6	
Intersection Summary		12.22				174.27	C-Star	- 14. S.V	1818.2 M			
HCM 2010 Ctrl Delay			19.9									
HCM 2010 LOS			В									
Notes		2. Y . W										

2016 PM Borgata + Resort Development Only

	٠	-	>	1	+	*	1	1	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	Sector Sector
Lane Configurations	1.5.5.1	4	P		4	F	Ŧ	种物	ħ	***	
Volume (vph)	72	6	80	39	10	52	136	2022	58	1949	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	18.0	8.0	78.0	8.0	78.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Total Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Total Split (%)	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	10.0%	70.0%	10.0%	70.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?	11.5						Yes	Yes	Yes	Yes	E Inst Lucas
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
storestion Cummony	WE SHARE STREET	State of the state of the	Party in the second second	A COLUMN TWO IS	States and states	Canada Martine Canada	C. S. S. C. S. S.	The second second	- New York Com	and the second second	

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated

∮ ⁴ ø2 (R)	ø1 ø4	
34 s	12 s 24 s	
₩ø6 (R)	1 ø5 1 ø8	
34 s	12 s 24 s	

And see	٠	-	7	*	+	*	1	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	N. Strate	\$			4	f	哘	种物		łĘ	种物	
Volume (veh/h)	72	6	80	39	10	52	136	2022	14	58	1949	79
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	0
Cap, veh/h	58	3	238	54	8	238	246	3604	26	246	3469	140
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.07	0.65	0.65	0.07	0.65	0.65
Sat Flow, veh/h	0	18	1583	0	53	1583	1774	5542	39	1774	5334	216
Grp Volume(v), veh/h	87	0	89	54	0	58	151	1510	753	64	1510	744
Grp Sat Flow(s), veh/h/ln	18	0	1583	53	0	1583	1774	1863	1856	1774	1863	1825
Q Serve(g_s), s	0.0	0.0	6.1	0.0	0.0	3.9	0.9	28.6	28.6	0.0	28.6	28.9
Cycle Q Clear(g_c), s	18.0	0.0	6.1	18.0	0.0	3.9	0.9	28.6	28.6	0.0	28.6	28.9
Prop In Lane	0.92		1.00	0.80		1.00	1.00		0.02	1.00		0.12
Lane Grp Cap(c), veh/h	60	0	238	62	0	238	246	2423	1207	246	2423	1187
V/C Ratio(X)	1.44	0.00	0.37	0.87	0.00	0.24	0.61	0.62	0.62	0.26	0.62	0.63
Avail Cap(c_a), veh/h	60	0	238	62	0	238	247	2423	1207	246	2423	1187
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	59.2	0.0	45.9	57.4	0.0	45.0	41.2	12.3	12.3	26.7	12.3	12.4
Incr Delay (d2), s/veh	270.5	0.0	0.4	69.3	0.0	0.2	3.3	1.2	2.4	0.2	1.2	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/ln	6.4	0.0	2.5	2.9	0.0	1.6	4.5	11.9	12.3	1.6	11.9	12.2
Lane Grp Delay (d), s/veh	329.7	0.0	46.3	126.6	0.0	45.2	44.5	13.6	14.8	26.9	13.6	14.9
Lane Grp LOS	F		D	F		D	D	В	В	С	В	B
Approach Vol, veh/h		176			112			2414			2318	
Approach Delay, s/veh	- Contraction	186.4			84.5			15.9			14.4	
Approach LOS		F			F			В			В	
Timer			de al		S. S. A.							
Assigned Phs		4	-		8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			24.0		11.9	84.0		11.9	84.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0	a la serie	4.0	6.0	
Max Green Setting (Gmax), s		18.0	25.62		18.0		8.0	78.0		8.0	78.0	
Max Q Clear Time (g_c+I1), s		20.0			20.0		2.9	30.6		2.0	30.9	
Green Ext Time (p_c), s		0.0	1		0.0		0.0	2.6		0.0	2.7	
Intersection Summary		15-535			1949	Sur and						
HCM 2010 Ctrl Delay		-	22.7					1				
HCM 2010 LOS			С			545 165						
Notes		Star I.								1		

3: Scottsdale Road & Rose Lane

	٠	-	7	-	+	*	1	†	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations		1	P [#]	E E	4	F	Ŧ	种物	Ŧ	件 件称	STATES SA
Volume (vph)	119	10	112	39	12	52	153	2022	58	1949	E.M. Darke
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	18.0	8.0	78.0	8.0	78.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	and shares the
Total Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	84.0	12.0	84.0	
Total Split (%)	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	10.0%	70.0%	10.0%	70.0%	CONTRACTOR OF
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	24.55 m 2125
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
Internetien Commune	STATE OF TAXABLE PARTY.	No. of Contraction	No. of Concession, Name	State of the state of the state	STATISTICS.	Contractor of the	Statistics of the state	STATISTICS.	A COLORADO	the statements	And the second se

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green Natural Cycle: 120

Control Type: Actuated-Coordinated

	Ø1	A 104
84 s	12 s	24 s
₩ø6 (R)	▲ ø5	₽ g8
345	12 s	24 s

	*	-	>	*	+	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	The second	4	Pf	1-5.4	4	같	Ŧ	种种族			牛牛 协	
Volume (veh/h)	119	10	112	39	12	52	153	2022	14	58	1949	105
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	190.0	186.3	186.3	190.0	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	0	1	1	0	1	1	1	3	0	1	3	C
Cap, veh/h	58	0	238	53	9	238	243	3603	26	246	3417	183
Arrive On Green	0.15	0.15	0.15	0.15	0.15	0.15	0.07	0.65	0.65	0.07	0.65	0.65
Sat Flow, veh/h	0	0	1583	0	63	1583	1774	5542	39	1774	5256	282
Grp Volume(v), veh/h	143	0	124	56	0	58	170	1510	753	64	1531	752
Grp Sat Flow(s), veh/h/ln	0	0	1583	63	0	1583	1774	1863	1856	1774	1863	1813
Q Serve(g_s), s	0.0	0.0	8.7	0.0	0.0	3.9	2.5	28.6	28.7	0.0	29.3	29.7
Cycle Q Clear(g_c), s	18.0	0.0	8.7	18.0	0.0	3.9	2.5	28.6	28.7	0.0	29.3	29.7
Prop In Lane	0.92		1.00	0.77		1.00	1.00		0.02	1.00		0.16
Lane Grp Cap(c), veh/h	58	0	238	62	0	238	243	2422	1207	246	2422	1179
V/C Ratio(X)	2.48	0.00	0.52	0.90	0.00	0.24	0.70	0.62	0.62	0.26	0.63	0.64
Avail Cap(c_a), veh/h	58	0	238	62	0	238	244	2422	1207	246	2422	1179
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	60.0	0.0	47.0	57.0	0.0	45.0	43.3	12.3	12.4	26.7	12.5	12.5
Incr Delay (d2), s/veh	713.9	0.0	1.0	76.6	0.0	0.2	7.2	1.2	2.4	0.2	1.3	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	13.2	0.0	3.6	3.1	0.0	1.6	5.4	11.9	12.3	1.6	12.3	12.6
Lane Grp Delay (d), s/veh	773.9	0.0	48.0	133.7	0.0	45.2	50.5	13.6	14.8	26.9	13.7	15.2
Lane Grp LOS	F		D	F		D	D	В	В	С	В	B
Approach Vol, veh/h		267			114		. There is	2433	C. C. Land		2347	
Approach Delay, s/veh		436.8			88.6	12.2.1	2.2.2	16.5	15-11-11		14.6	
Approach LOS		F			F			В			В	
Timer									Maria			
Assigned Phs		4	-		8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			24.0		12.0	84.0		12.0	84.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		18.0			18.0		8.0	78.0		8.0	78.0	
Max Q Clear Time (g_c+11), s		20.0			20.0		4.5	30.7		2.0	31.7	
Green Ext Time (p_c), s		0.0			0.0		0.0	2.6		0.1	2.7	
Intersection Summary						1892.3	and the			N. 207.9		
HCM 2010 Ctrl Delay		- Brides	39.0	A A A A	The Second	(Service)			1			
HCM 2010 LOS			D									
Notes	-	The state state			THEFT		Considering the	72.35523	-	-	City State	Line and

Notes

.

2016 PM Post-development Mitigation - Restripe/lane use change

	1	-	+	+	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	Ħ	14	Ħ	14	μ	牛牛 协	Ŧ	十 十]>	
Volume (vph)	119	10	39	12	153	2022	58	1949	
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		4		8	5	2	1	6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	5	2	1	6	
Switch Phase									
Minimum Initial (s)	14.0	14.0	10.0	10.0	12.0	68.0	8.0	56.0	
Minimum Split (s)	20.0	20.0	16.0	16.0	18.0	74.0	12.0	62.0	
Total Split (s)	26.0	26.0	26.0	26.0	22.0	80.0	14.0	72.0	
Total Split (%)	21.7%	21.7%	21.7%	21.7%	18.3%	66.7%	11.7%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag					Lag	Lead	Lag	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	None	C-Max	

.

.

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

¶ ø2 (R)	b 01	404
80 s	14s	26 s
Ø6 (R)	★ ø5	₹ø8
72 s	22.5	26 s

A Standard	*	-	>	*	+	*	1	1	1	4	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	Ť	1		Ť	1.		ħ	并 件协	1010101	Ŧ	种种物	
Volume (veh/h)	119	10	112	39	12	52	153	2022	14	58	1949	105
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	0	1	1	0	1	3	0	1	3	C
Cap, veh/h	219	20	230	161	47	208	335	3569	25	225	3019	162
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	0.13	0.64	0.64	0.06	0.57	0.57
Sat Flow, veh/h	1324	131	1472	1249	298	1330	1774	5542	39	1774	5256	282
Grp Volume(v), veh/h	132	0	135	43	0	71	170	1510	753	64	1531	752
Grp Sat Flow(s), veh/h/ln	1324	0	1603	1249	0	1628	1774	1863	1856	1774	1863	1813
Q Serve(g_s), s	11.2	0.0	8.9	3.8	0.0	4.4	3.1	27.9	27.9	0.0	34.1	34.6
Cycle Q Clear(g_c), s	15.6	0.0	8.9	12.7	0.0	4.4	3.1	27.9	27.9	0.0	34.1	34.6
Prop In Lane	1.00		0.92	1.00		0.82	1.00		0.02	1.00		0.16
Lane Grp Cap(c), veh/h	219	0	250	161	0	254	335	2399	1195	225	2140	1041
V/C Ratio(X)	0.60	0.00	0.54	0.27	0.00	0.28	0.51	0.63	0.63	0.28	0.72	0.72
Avail Cap(c_a), veh/h	242	0	279	183	0	283	382	2399	1195	272	2140	1041
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	49.7	0.0	44.7	50.5	0.0	42.8	40.3	12.2	12.3	34.4	17.7	17.8
Incr Delay (d2), s/veh	2.0	0.0	0.7	0.3	0.0	0.2	0.4	1.3	2.5	0.3	2.1	4.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	4.0	0.0	3.7	1.2	0.0	1.9	4.3	11.5	11.9	1.8	14.9	15.5
Lane Grp Delay (d), s/veh	51.7	0.0	45.3	50.8	0.0	43.0	40.7	13.5	14.8	34.7	19.8	22.1
Lane Grp LOS	D		D	D		D	D	В	В	С	В	C
Approach Vol, veh/h		267			114			2433			2347	
Approach Delay, s/veh		48.5			46.0			15.8			20.9	
Approach LOS		D			D			В			С	
Timer .	a la staning a											
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s	62.52	23.9			23.9		19.0	80.0		11.0	72.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		20.0			20.0		18.0	74.0		10.0	66.0	
Max Q Clear Time (g_c+l1), s		17.6			14.7	The states	5.1	29.9		2.0	36.6	
Green Ext Time (p_c), s		0.3			0.6		0.1	2.6		0.1	2.7	
Intersection Summary			00.5			197 3						
HCM 2010 Ctrl Delay			20.5									
HCM 2010 LOS			С									
Notes						1.0	1		A. C.	1 38 30	TER	

2016 PM Post-development Mitigation - Geometry to EB L, T, R / WB L, TR

	×	-	~	1	+	-	Ť	4	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	Ħ	中	F	堶	1+	Ť	朴 朴称	¥	十 十]]	March 199
Volume (vph)	119	10	112	39	12	153	2022	58	1949	
Turn Type	Perm	NA	Perm	Perm	NA	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8	5	2	1	6	
Permitted Phases	4		4	8		2		6		
Detector Phase	4	4	4	8	8	5	2	1	6	
Switch Phase										
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	8.0	74.0	8.0	64.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	20.0	80.0	14.0	70.0	
Total Split (s)	26.0	26.0	26.0	26.0	26.0	22.0	80.0	14.0	72.0	
Total Split (%)	21.7%	21.7%	21.7%	21.7%	21.7%	18.3%	66.7%	11.7%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag						Lag	Lead	Lag	Lead	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	None	C-Max	

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120 Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120

Control Type: Actuated-Coordinated

1 ø2 (R)	×ø1	
0 s	14s	26 s
₩ø6 (R)	↑ ø5	₹ø8
25	22 s	26 s

	*	-	>	-	+	*	1	1	1	4	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	¥	牛	P	Ŧ	14	S. A.K.	Ŧ	牛牛 狗	the net for	Ŧ	种种的	
Volume (veh/h)	119	10	112	39	12	52	153	2022	14	58	1949	10
Number	7	4	14	3	8	18	5	2	12	1	6	10
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	0	1	3	0	1	3	C
Cap, veh/h	219	292	248	252	47	208	335	3567	25	225	3018	162
Arrive On Green	0.16	0.16	0.16	0.16	0.16	0.16	0.13	0.64	0.64	0.06	0.57	0.57
Sat Flow, veh/h	1324	1863	1583	1249	298	1330	1774	5542	39	1774	5256	282
Grp Volume(v), veh/h	132	11	124	43	0	71	170	1510	753	64	1531	752
Grp Sat Flow(s), veh/h/ln	1324	1863	1583	1249	0	1628	1774	1863	1856	1774	1863	1813
Q Serve(g_s), s	11.2	0.6	8.2	3.5	0.0	4.4	3.1	27.9	28.0	0.0	34.2	34.7
Cycle Q Clear(g_c), s	15.6	0.6	8.2	4.1	0.0	4.4	3.1	27.9	28.0	0.0	34.2	34.7
Prop In Lane	1.00		1.00	1.00		0.82	1.00		0.02	1.00		0.16
Lane Grp Cap(c), veh/h	219	292	248	252	0	255	335	2398	1195	225	2139	1041
V/C Ratio(X)	0.60	0.04	0.50	0.17	0.00	0.28	0.51	0.63	0.63	0.28	0.72	0.72
Avail Cap(c_a), veh/h	242	324	275	274	0	283	382	2398	1195	272	2139	1041
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	49.7	41.1	44.4	42.9	0.0	42.8	40.3	12.3	12.3	34.5	17.7	17.8
Incr Delay (d2), s/veh	2.0	0.0	0.6	0.1	0.0	0.2	0.4	1.3	2.5	0.3	2.1	4.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	4.0	0.3	3.4	1.1	0.0	1.9	4.3	11.5	11.9	1.8	14.9	15.5
Lane Grp Delay (d), s/veh	51.7	41.2	44.9	43.0	0.0	43.0	40.8	13.5	14.8	34.7	19.8	22.2
Lane Grp LOS	D	D	D	D		D	D	В	В	С	В	C
Approach Vol, veh/h		267			114	Market and a	- Allenak	2433			2347	
Approach Delay, s/veh		48.1	1. 190		43.0			15.8			21.0	
Approach LOS		D			D			В			С	
Timer												
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			24.0		19.0	80.0		11.0	72.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		20.0			20.0		18.0	74.0		10.0	66.0	
Max Q Clear Time (g_c+l1), s		17.6			6.4		5.1	30.0		2.0	36.7	
Green Ext Time (p_c), s		0.2			0.7		0.1	2.6		0.1	2.7	
Intersection Summary				Section 1								
HCM 2010 Ctrl Delay	Statute and		20.4									
HCM 2010 LOS			С									
Notes								A State of the	R. S. YA	12101	Star Star	

3: Scottsdale Road & Rose Lane

2016 PM Post-development Mitigation - EB/WB L,T,R and Perm LT Phase

	٠	-	>	*	-	*	1	1	4	ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	ħ	ŧ	계	哘	ŧ	F	ħ	种物	¥	件 件存	
Volume (vph)	119	10	112	39	12	52	153	2022	58	1949	
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases		4			8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		
Detector Phase	4	4	4	8	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	18.0	18.0	18.0	18.0	18.0	18.0	8.0	70.0	8.0	62.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	12.0	76.0	12.0	68.0	
Total Split (s)	26.0	26.0	26.0	26.0	26.0	26.0	22.0	80.0	14.0	72.0	
Total Split (%)	21.7%	21.7%	21.7%	21.7%	21.7%	21.7%	18.3%	66.7%	11.7%	60.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag							Lag	Lead	Lag	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max	None	C-Max	
Interneting Commence		AND DESCRIPTION OF	ALC: NOT THE OWNER	States at the	Line of the local day	Contraction of the	Contraction of the	States and street	Contraction of the local division of the	No. of Concession, Name	

Intersection Summary Cycle Length: 120

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 115

Control Type: Actuated-Coordinated

ø2 (R)	ø1	↓p 4
80 s	145	26 s
₩ ø6 (R)	▲ ø5	4 Ø8
72 s	22 s	26 s

A State Party	٠	->	7	-	+	*	1	†	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ħ	ŧ	Pf	Ŧ	ŧ	f	Ŧ	牛牛 狗	-	Ŧ	种种物	
Volume (veh/h)	119	10	112	39	12	52	153	2022	14	58	1949	105
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	1	1	3	0	1	3	0
Cap, veh/h	257	292	248	252	284	241	335	3567	25	225	3018	162
Arrive On Green	0.16	0.16	0.16	0.15	0.15	0.15	0.13	0.64	0.64	0.06	0.57	0.57
Sat Flow, veh/h	1324	1863	1583	1249	1863	1583	1774	5542	39	1774	5256	282
Grp Volume(v), veh/h	132	11	124	43	13	58	170	1510	753	64	1531	752
Grp Sat Flow(s), veh/h/ln	1324	1863	1583	1249	1863	1583	1774	1863	1856	1774	1863	1813
Q Serve(g_s), s	10.9	0.6	8.2	3.5	0.7	3.7	3.1	27.9	28.0	0.0	34.2	34.7
Cycle Q Clear(g_c), s	12.0	0.6	8.2	3.6	0.7	3.7	3.1	27.9	28.0	0.0	34.2	34.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.02	1.00		0.16
Lane Grp Cap(c), veh/h	257	292	248	252	284	241	335	2398	1195	225	2139	1041
V/C Ratio(X)	0.51	0.04	0.50	0.17	0.05	0.24	0.51	0.63	0.63	0.28	0.72	0.72
Avail Cap(c_a), veh/h	280	324	275	279	324	275	382	2398	1195	272	2139	1041
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	46.5	41.1	44.4	42.9	41.6	42.9	40.3	12.3	12.3	34.5	17.7	17.8
Incr Delay (d2), s/veh	0.6	0.0	0.6	0.1	0.0	0.2	0.4	1.3	2.5	0.3	2.1	4.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	3.8	0.3	3.4	1.1	0.3	1.5	4.3	11.5	11.9	1.8	14.9	15.5
Lane Grp Delay (d), s/veh	47.1	41.2	44.9	43.0	41.6	43.0	40.8	13.5	14.8	34.7	19.8	22.2
Lane Grp LOS	D	D	D	D	D	D	D	В	В	С	В	С
Approach Vol, veh/h		267			114	THE SE		2433			2347	
Approach Delay, s/veh		45.9			42.9			15.8			21.0	
Approach LOS		D			D			В			С	
Timer					The second	a starter a						
Assigned Phs		4			8		5	2		1	6	
Phs Duration (G+Y+Rc), s		24.0			23.5		19.0	80.0		11.0	72.0	
Change Period (Y+Rc), s		6.0			6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s		20.0		1.18	20.0		18.0	74.0		10.0	66.0	
Max Q Clear Time (g_c+l1), s		14.0			5.7		5.1	30.0		2.0	36.7	
Green Ext Time (p_c), s		0.2			0.1		0.1	2.6		0.1	2.7	
Intersection Summary	de la											
HCM 2010 Ctrl Delay			20.3									
HCM 2010 LOS			С									
Notes			Land Ber									

3: Scottsdale Road & Rose Lane

2016 PM Post-development Mitigation - EB/WB L,T,R and Prot LT Phase

	٠	-	>	1	+	*	1	1	4	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Configurations	٣	ŧ	관	堶	牛	7º	哘	种种	ካ	并 并存	
Volume (vph)	119	10	112	39	12	52	153	2022	58	1949	Stephen L
Turn Type	Prot	NA	Perm	Prot	NA	Perm	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4		3	8		5	2	1	6	
Permitted Phases			4			8	2	1000-	6		
Detector Phase	7	4	4	3	8	8	5	2	1	6	
Switch Phase											
Minimum Initial (s)	12.0	14.0	14.0	8.0	9.0	9.0	12.0	50.0	8.0	50.0	
Minimum Split (s)	16.0	20.0	20.0	12.0	15.0	15.0	16.0	56.0	12.0	56.0	
Total Split (s)	19.0	22.0	22.0	12.0	15.0	15.0	22.0	71.0	15.0	64.0	
Total Split (%)	15.8%	18.3%	18.3%	10.0%	12.5%	12.5%	18.3%	59.2%	12.5%	53.3%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.7	3.0	4.7	
All-Red Time (s)	1.0	3.0	3.0	1.0	3.0	3.0	1.0	1.3	1.0	1.3	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.0	6.0	6.0	4.0	6.0	6.0	4.0	6.0	4.0	6.0	
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lag	Lead	
Lead-Lag Optimize?	Yes										
Recall Mode	None	C-Max	None	C-Max							

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120 Offset: 53 (44%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

1 1 g2 (R)	9 1	₩ ø4	√ ø3
71s	15 s	22 s	12 s
₩ ø6 (R)	▲ ø5	ø8	₽ Ø7
i4s	22 5	15 s	19 s

	٠	-	>	1	+	*	1	1	1	4	¥	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ħ	牛	P	Ŧ	肀	f	Ŧ	并 件协		Ŧ	种种物	1000
Volume (veh/h)	119	10	112	39	12	52	153	2022	14	58	1949	105
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow veh/h/ln	186.3	186.3	186.3	186.3	186.3	186.3	186.3	186.3	190.0	186.3	186.3	190.0
Lanes	1	1	1	1	1	1	1	3	0	1	3	0
Cap, veh/h	187	230	195	96	133	113	311	3225	23	213	2729	147
Arrive On Green	0.11	0.12	0.12	0.05	0.07	0.07	0.12	0.58	0.58	0.06	0.52	0.52
Sat Flow, veh/h	1774	1863	1583	1774	1863	1583	1774	5542	39	1774	5256	282
Grp Volume(v), veh/h	132	11	124	43	13	58	170	1510	753	64	1531	752
Grp Sat Flow(s),veh/h/ln	1774	1863	1583	1774	1863	1583	1774	1863	1856	1774	1863	1813
Q Serve(g_s), s	8.0	0.6	8.3	2.6	0.7	3.9	4.1	31.8	31.9	0.0	37.5	38.0
Cycle Q Clear(g_c), s	8.0	0.6	8.3	2.6	0.7	3.9	4.1	31.8	31.9	0.0	37.5	38.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.02	1.00		0.16
Lane Grp Cap(c), veh/h	187	230	195	96	133	113	311	2168	1080	213	1934	941
V/C Ratio(X)	0.70	0.05	0.63	0.45	0.10	0.51	0.55	0.70	0.70	0.30	0.79	0.80
Avail Cap(c_a), veh/h	238	267	227	127	150	128	376	2168	1080	278	1934	941
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	48.3	43.2	46.6	51.2	48.5	50.0	42.1	16.4	16.4	41.3	21.9	22.1
Incr Delay (d2), s/veh	6.6	0.0	2.6	3.3	0.1	1.3	0.6	1.9	3.7	0.3	3.4	7.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile Back of Q (50%), veh/In	4.0	0.3	3.5	1.3	0.4	1.7	4.6	13.8	14.3	1.7	17.1	17.7
Lane Grp Delay (d), s/veh	54.8	43.2	49.2	54.5	48.6	51.3	42.7	18.3	20.2	41.6	25.3	29.1
Lane Grp LOS	D	D	D	D	D	D	D	В	С	D	С	С
Approach Vol, veh/h		267			114			2433			2347	
Approach Delay, s/veh		51.7	Section 1		52.2	1.	14.9	20.6	1. A. A.		27.0	1
Approach LOS		D			D			С			С	
Timer							T					
Assigned Phs	7	4		3	8	and the	5	2		1	6	
Phs Duration (G+Y+Rc), s	15.8	19.8		10.0	14.0		17.9	71.0	12010	10.9	64.0	12.31.52
Change Period (Y+Rc), s	4.0	6.0		4.0	6.0		4.0	6.0		4.0	6.0	
Max Green Setting (Gmax), s	15.0	16.0		8.0	9.0		18.0	65.0		11.0	58.0	
Max Q Clear Time (g_c+l1), s	10.0	10.3		4.6	5.9		6.1	33.9		2.0	40.0	P. Star
Green Ext Time (p_c), s	0.2	0.1		0.1	0.0		0.1	2.6		0.1	2.7	
Intersection Summary			0				Che Ma					
HCM 2010 Ctrl Delay			25.8								-	
HCM 2010 LOS			С									
Notes	1.5.1.5			12 10-10			1000				States and	1

Appendix I

Queuing Analysis

.

.

.

Queues

3: Scottsdale Road & Rose Lane

2016 AM Post-development Mitigation - Restripe/lane use change

	٠	-	~	1	-	*	1	1	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph)	77	11	94	12	8	11	104	1164	46	36	1471	100
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)							14					
Lane Group Flow (vph)	86	116	0	13	21	0	116	1344	0	40	1745	0
v/c Ratio	0.55	0.42		0.10	0.10	Salar	0.40	0.37	2. N	0.12	0.52	
Control Delay	64.0	16.5		48.4	29.7		16.4	7.1		4.1	11.1	
Queue Delay	0.0	0.0	19 19 19	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	64.0	16.5		48.4	29.7		16.4	7.1		4.1	11.1	
Queue Length 50th (ft)	65	9		9	6		14	138		5	228	
Queue Length 95th (ft)	116	63		29	30		40	191		14	304	
Internal Link Dist (ft)		835	100		207			664			581	
Turn Bay Length (ft)							170			170		
Base Capacity (vph)	187	308		155	241		399	3680		428	3366	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	-
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.46	0.38		0.08	0.09		0.29	0.37		0.09	0.52	2.4
Intersection Summary					a lassa		11 22 4					

Queues

3: Scottsdale Road & Rose Lane

2016 PM Post-development Mitigation - Restripe/lane use change

	1	-	7	-	-	*	1	1	r	1	÷.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph)	119	10	112	39	12	52	153	2022	14	58	1949	105
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Shared Lane Traffic (%)												
Lane Group Flow (vph)	132	135	0	43	71	0	170	2263	0	64	2283	0
v/c Ratio	0.71	0.41		0.30	0.26		0.59	0.66		0.35	0.76	
Control Delay	69.5	13.2		50.6	17.2		41.6	13.4		23.7	20.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	69.5	13.2		50.6	17.2		41.6	13.4		23.7	20.4	
Queue Length 50th (ft)	99	8		30	9		70	355		9	446	
Queue Length 95th (ft)	163	63		65	50		147	471		43	576	
Internal Link Dist (ft)		835			220			664			581	
Turn Bay Length (ft)							170			170		
Base Capacity (vph)	222	374		181	323	and the let	328	3442		211	3018	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.59	0.36		0.24	0.22		0.52	0.66		0.30	0.76	
Intersection Summary												