

Drainage Reports

3 engineering

64TH St. & Oak

Preliminary Drainage Report

3 engineering Job #: 5153 Original Date: April 10, 2020

COS #: 4-PA-2020

64th St. & Oak PRELIMINARY DRAINAGE REPORT

Prepared for:

K Hovnanian Great Western Homes, LLC 20830 N. Tatum Blvd, Suite 250 Phoenix, Arizona 85050 Contact: Chuck Chisholm Phone: (480) 824-4175

Expires 12/31/2021
Matthew J. Mancini, P.E.

April 10, 2020

Submittal to:

City of Scottsdale 7447 E. Indian School Road, Suite 105 Scottsdale, AZ 85251

Prepared by:

3 engineering, L.L.C. 6370 E. Thomas Road, Suite 200 Scottsdale, Arizona 85251 Contact: Matthew J. Mancini, P.E.

Job Number 5153

Table of Contents

		Page
1.	Introduction	1
2.	Site Description	1
3.	Drainage Design - Offsite	1
4.	Drainage Design - Onsite	2
5.	Conclusions	5
6.	References	5
App	<u>endix</u>	
Appe	ndix A – Vicinity Map	A-1
Appe	ndix B – FEMA FIRM	A-2
Appe	ndix C – Warning and Disclaimer of Liability	A-3
Appe	ndix D – Topographic Map of Onsite Conditions	A-4
Appe	ndix E – Aerial Photograph of Site,,	A-5
Appe	ndix F – Drainage Maps (incl. Lower Indian Bend FLOD-2D)	A-6
Appe	ndix G - Onsite Hydrologic & Hydraulic Calculations	A-7
Appe	ndix H - Preliminary Grading and Drainage Plans	A-8

1. Introduction

The purpose of this report is to present the existing and proposed drainage plan for the project site, 64th St. & Oak. It is our opinion the preliminary grading and drainage design is in accordance with the City of Scottsdale drainage requirements.

The project site, 64th St. & Oak, is located in Section 33, Township 2 North, Range 4 East of the Gila and Salt River Meridian, Maricopa County, Arizona within the City of Scottsdale. The project is located North of Oak Street, and West of 64th Street Road at 6300 E. Oak Street, Scottsdale, Arizona 85257. The site is bounded on the north by an existing commercial polo club, on the west by a residential neighborhood, on the south and east by a commercial property. See Appendix A for a site map.

Per the City of Scottsdale General Plan's Land Use Map, the project site is designated Suburban Neighborhood and is also located within the Southern Scottsdale Character Area Plan (SSCAP). The project site is zoned S-R (Service Residential) and R1-10 (Single-Family Residential). The proposed zoning is R-3. The existing land is occupied by an operational medical facility with three (3) buildings, including existing parking & site improvements. The intent of the project is to construct an 89-lot single-family attached residential subdivision project.

2. Site Description

Existing

The existing land is occupied by an operational medical facility with three (3) buildings, including existing parking & site improvements. The existing topography has an approximate slope of one percent (1.40%) and has an overall general slope from southwest to northeast. Based on field reconnaissance, and general review of asbuilt plans and aerial photos, offsite flow impacts the site from the south. Existing outfalls for the property are along the northern and eastern boundaries of the site. The site does not show any signs of containing waters of the US (404 washes).

Federal Emergency Management Agency (FEMA) Designation

According to FEMA Flood Insurance Rate Map (FIRM) # 04013C2230L, updated October 16, 2013, the site is located within the "Zone X" floodplain designation. "Zone X" is described as follows: "Area of Minimal Flood Hazard". Refer to the updated FIRM information in Appendix B.

Proposed

The proposed site, 64th St. & Oak, is proposed as an 89-lot single-family attached residential subdivision project with a private drive and gated access from Oak Street.

3. Drainage Design - Offsite

The existing land is occupied by an operational medical facility with three (3) buildings, including existing parking & site improvements. The existing topography has an approximate slope of one percent (1.40%) and has an overall general slope from southwest to northeast. Based on field reconnaissance, and general review of asbuilt plans and aerial photos, offsite flow impacts the site from the south. There are two low points near the site's southern boundary. One low point towards the site's southwest corner accepts flow in a concrete ditch, and conveys storm water through the adjacent site to the west. Asbuilt plans, and County FLO-2D models, indicate this flow remains on the adjacent site. The second low point is near the center of the site along Oak Street that conveys flow through 2-24" storm drains and into an existing rip rap channel where it directs flow to the northeast. Existing outfalls for the property are along the northern and eastern boundaries of the site. The site does not show any signs of containing waters of the US (404 washes).

According to the Lower Indian Bend FLO-2D (Ref. 4) (Appendix F), the offsite flow adjacent to the west enters the adjacent site at 21.02 cfs. Evaluating County Mapping using Rational Method (Appendix F & G), the flow was calculated at 37.30 cfs. According to the FLO-2D mapping, this flow is contained on the adjacent site and conveyed north. In the event any overtopping does occur, the site has been designed with open space adjacent to the western property, and has a channel that would convey any flow north into basins, and to the project's outfall.

According to the Lower Indian Bend FLO-2D (Ref. 4) (Appendix F), the flow crossing Oak Street near its midpoint, enters at 28.16 cfs. Evaluating County Mapping using Rational Method (Appendix F & G), the flow was calculated at 28.41 cfs. This flow currently is conveyed through two (2) existing 24iinch storm drains that convey flow to a rip rap lined channel along the eastern edge of the project. This flow travels north and, according to the FLO-2D model, exits in various places along the eastern boundary. To mitigate this flow, the project proposes accepting the flow in the same location along Oak Street, conveying it through tow (2) 24-inch storm drains under the project's entrance, and channelizing it to the existing rip rap channel. It is proposed to maintain this existing rip rap channel in order to maintain existing historical drainage patterns. Refer to Appendix G for a CulvertMaster calculation of the proposed pipe culvert under the entrance.

4. <u>Drainage Design - Onsite</u>

The City of Scottsdale Design Standards and Policies Manual and the Drainage Design Manual for Maricopa County, Volume 1 was followed in designing on-site drainage facilities for the site. The following standards shall be met as part of this project:

- 10-year peak discharges shall be contained below the top of curb elevations.
- 100-year peak discharges shall be contained within the private street tract.
- Sump condition catch basins and storm drain shall be designed, at a minimum, for the 10-year storm event with 100-year overflowing the sump.
- Flow-By condition catch basins storm drain shall be designed for the 100-year storm event.
- Channels shall be designed for the 100-year event.
- Retention shall be provided for the 100-year 2-hour storm event.
- There shall be 1-foot of freeboard on the basin. This freeboard shall NOT count towards the 100-year 2-hour storage requirement.
- Retention basins shall drain within 36-hour. 0.1 cfs shall be used as a drywell design rate. (post construction percolation tests shall be used to determine higher rates)
- Drainage shall enter and exit in a similar and/or historical manner as existing conditions.

Refer to the Preliminary Grading and Drainage Plan in Appendix H and the Onsite Drainage Map in Appendix F for the following discussion:

On-site drainage areas will be conveyed via surface drainage from the lots to the private accessways' curb and gutter for flow draining to the front of the lots, and directly into retention basins for flow draining to the rear of lots. Storm water exiting the lots in the front flows into the curb and gutter flows into storm drain systems and then into the surface retention basins and underground tanks. Site peak flows have been calculated using the Rational Method, as established in Ref. 1. The calculations determined the amount of flow generated on-site and directly to the catch basins. Drainage areas were determined based on the preliminary grading plans, and are shown on the Drainage Map in Appendix F. For the purposes of this report a minimum time of concentration of 5 minutes was used. (See Appendix G for street hydraulic capacities)

StormCAD was used to design storm drain sizes. Refer to Appendix G for the StormCAD calculations. Weir Calculations were used to determined catch basin sizes. Refer to Appendix G for the Weir calculations.

Per Ref. 1 & Ref. 2 the Site is required to retain the storm water generated from the 100-year 2-hour storm event. Based on Ref. 1, and the weighted C value calculation (for retention) in Appendix G, the Site's 100-year runoff coefficient for the site is 0.79. Based on NOAA14, the site's precipitation value is 2.14 inches. For required and proposed retention volume calcs, refer to Appendix G.

All basins are designed to overflow in events exceeding 100-years storms. The following are descriptions of each basin's overflow:

- Basin A/Tank 1- Basin A & Tank 1 will fill up, and over top to the adjacent property, which is consistent with existing outfalls.
- Basin B Basin B will fill up, and over top to the adjacent property, which is consistent with existing outfalls.
- Basin C Basin C will fill up, and over top to the offsite channel and then to the adjacent property, which is consistent with existing outfalls.
- Basin D Basin C will fill up, and over top to the offsite channel and then to the adjacent property, which is consistent with existing outfalls.
- Basin E/Tank 2- Basin E & Tank 2 will fill up, and back up into the street and then into Basin B, and then to adjacent property, which is consistent with existing outfalls.
- Basin F Basin F will fill up, and overflow via channel to Basin H, which will overflow to Basin A, which will over top to the adjacent property, which is consistent with existing outfalls.
- Basin G/Tank 3- Basin G & Tank 3 will fill up, and back up into the street and then into Basin B, and then to adjacent property, which is consistent with existing outfalls.
- Basin H Basin H will fill up, which will overflow to Basin A, which will over top to the adjacent property, which is consistent with existing outfalls.

The surface basins & tanks will drain via basin infiltration and use of drywells, as there is not a channel/wash, or existing storm drain system to bleed off into. A drywell rate of 0.1 cfs is used for the purposes of this design report; however, Geotechnical percolation tests shall be completed after construction of the basins to determine if the drywell systems can be reduced or eliminated. Refer to Appendix G for percolation calculations.

Per the City's DS&PM, the following items shall be addressed for proposed underground retention tank systems:

Water Quality

o The underground system is designed to connect to dual-chamber drywells. Dual-chamber drywells utilize a sediment chamber which removes oils and pollutants from entering the ground water during disposal.

System Failure (No-Storage)

o If the system fails, and provides no storage, storm water will back-up to the floodplain elevations associated with the bank of the wash. Finished Floors are elevated above this outfall and floodplain elevation.

Vector Control (mosquito breeding)

o The system is designed to bleed-off via drywells. The number of drywells designed shall dispose of the storm water within 36-hours, which is the maximum time period to eliminate the risk of vector control.

Redundancy

o There is not redundancy provided in the system in terms of additional pipe storage; however, an Operations & Manual has been prepared. This manual sets forth the guidelines to keep the underground system functioning correctly. This manual is reviewed and approved by the City, recorded with Maricopa County, and is enforceable by the City shall the owner not follow the guidelines. This will ensure that sediments will not cause the system to fail.

- Initial Suspended Load Removal (First Flush)

o The tanks are designed with a smooth bottom, and a 0.25% slope to ensure proper drainage to the disposal portion of the system. As mentioned for Water Quality, the drywells include a sediment chamber which functions to remove oils and pollutants, typical present in first flush runoff, from the storm water.

75-year Design Life

 The tanks are designed with a minimum 75-year design life. Resistivity testing shall be completed.

Outfall

o The tanks are designed with dual chamber drywell bleed-off. Since this area is within a floodplain, pumps are not a feasible drain method. There are no storm drain outfalls for this underground system, as well. Therefore, drywells will be the means for tank outfall, and the Operations & Maintenance program will be the mechanism used to ensure proper function of the system.

Pipes

o As mentioned in Initial Suspended Load Removal, the tanks are designed with a smooth bottom. The interior shall be designed per City of Scottsdale Detail 2554.

Installation

o Excavation, bedding and backfill procedures and materials must be in accordance with MAG standards.

Access

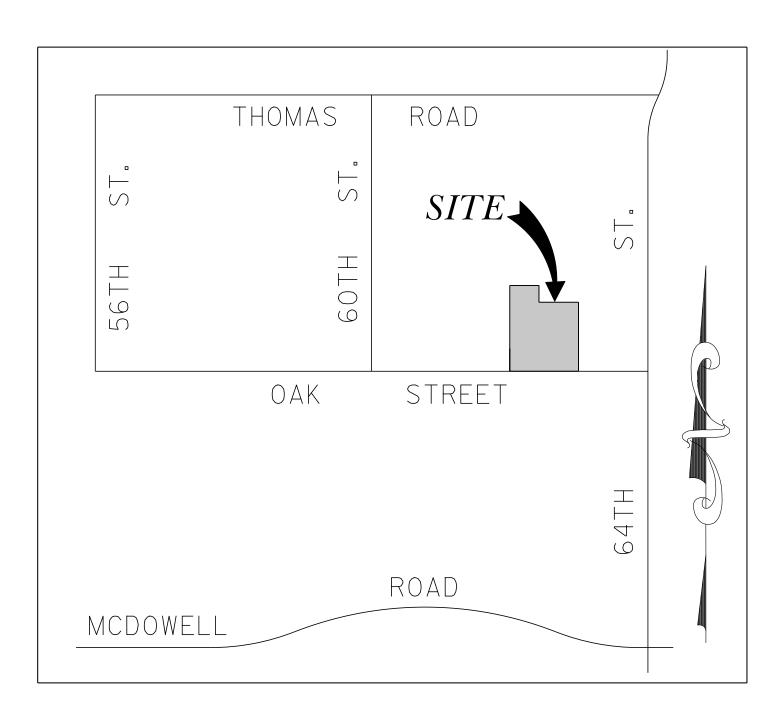
o The underground tanks are designed with a minimum of two access points. These access points are designed in accordance with MAG standards.

Drainage easements are to be dedicated over the basin tracts. In addition, the private street (Tract A), has a drainage easement as part of its use. This will ensure that the basins and storm drain systems can be maintained in order to perform properly during storm events.

For the purpose of design, finished floors for the project have been placed a minimum of 14-inches above lot outfalls, and 18-inches above ultimate outfalls along the north boundary. The proposed project disturbs over 1.0 acre and therefore a SWPP Plan, NOI and Authorization to Discharge Letter will be required from ADEQ.

5. Conclusions

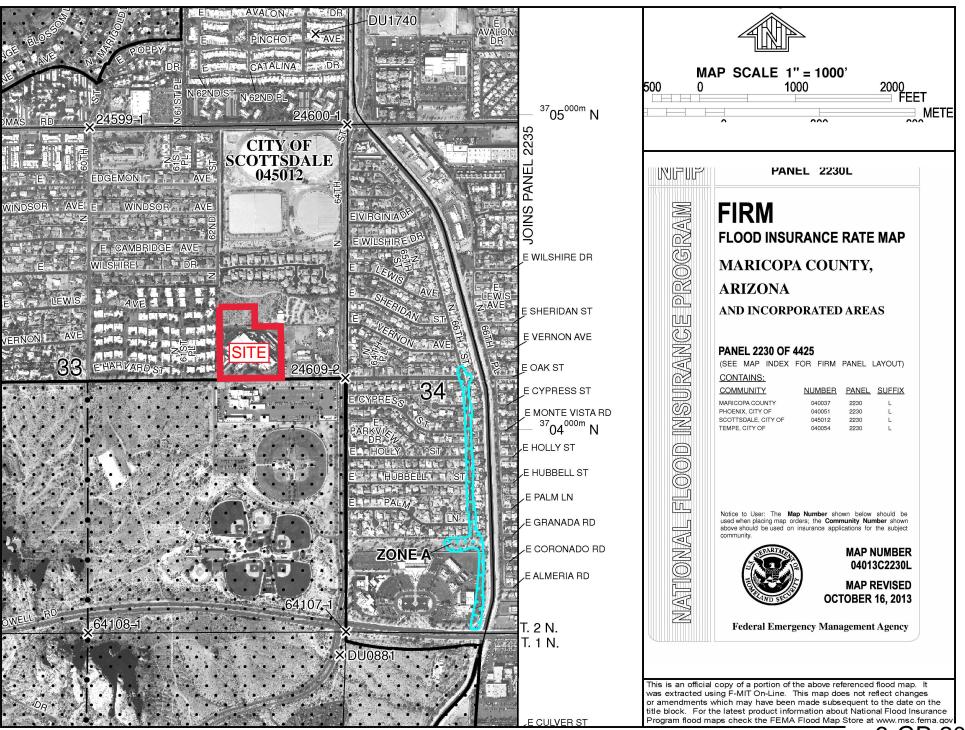
The following is a summary of the Scottsdale Heights Phase 2 Drainage Report.


- The site currently lies within "Zone X" floodplain designation.
- Retention is provided for 100-year 2 hour storm event.
- Retention shall dissipate within 36 hours via drywells.
- Offsite drainage is accepted and discharged in its historical locations.
- Finished floors are set a minimum of 14-inches above lot outfalls, and 18-inches above ultimate outfalls.

6. References

- 1. Maricopa County, *Drainage Design Manual*, *Volume I*, *Hydrology*, Flood Control District of Maricopa County.
- 2. City of Scottsdale, Design Standards and Policies Manual, 2018.
- 3. Maricopa County Drainage Design Manual, Hydraulics, Flood Control District of Maricopa County, 2013.
- 4. Lower Indian Bend Wash, FLO-2D, Flood Control District of Maricopa County
- 5. FlowMaster Version V8i, Bentley.
- 6. StormCAD Version V8i, Bentley.

APPENDIX A
Vicinity Map



VICINITY MAP

N.T.S.

APPENDIX B FEMA FIRM

APPENDIX C

Warning and Disclaimer of Liability

WARNING & DISCLAIMER OF LIABILITY

The Drainage and Floodplain Regulations and Ordinances of the City of Scottsdale are intended to "minimize the occurrence of losses, hazards and conditions adversely affecting the public health, safety and general welfare which might result from flooding caused by the surface runoff of rainfall" (Scottsdale Revised Code §37-16).

As defined in S.R.C. §37-17, a flood plain or "Special flood hazard area means an area having flood and/or flood related erosion hazards as shown on a FHBM or FIRM as zone A, AO, A1-30, AE, A99, AH, or E, and those areas identified as such by the floodplain administrator, delineated in accordance with subsection 37-18(b) and adopted by the floodplain board." It is possible that a property could be inundated by greater frequency flood events or by a flood greater in magnitude than a 100-year flood. Additionally, much of the Scottsdale area is a dynamic flood area; that is, the floodplains may shift from one location to another, over time, due to natural processes.

WARNING AND DISCLAIMER OF LIABILITY PURSUANT TO S.R.C §37-22

"The degree of flood protection provided by the requirements in this article is considered reasonable for regulatory purposes and is based on scientific and engineering considerations. Floods larger than the base flood can and will occur on rare occasions. Floodwater heights may be increased by manmade or natural causes. This article (Chapter 37, Article II) shall not create liability on the part of the city, any officer or employee thereof, or the federal government for any flood damages that result from reliance on this article or any administrative decision lawfully made thereunder."

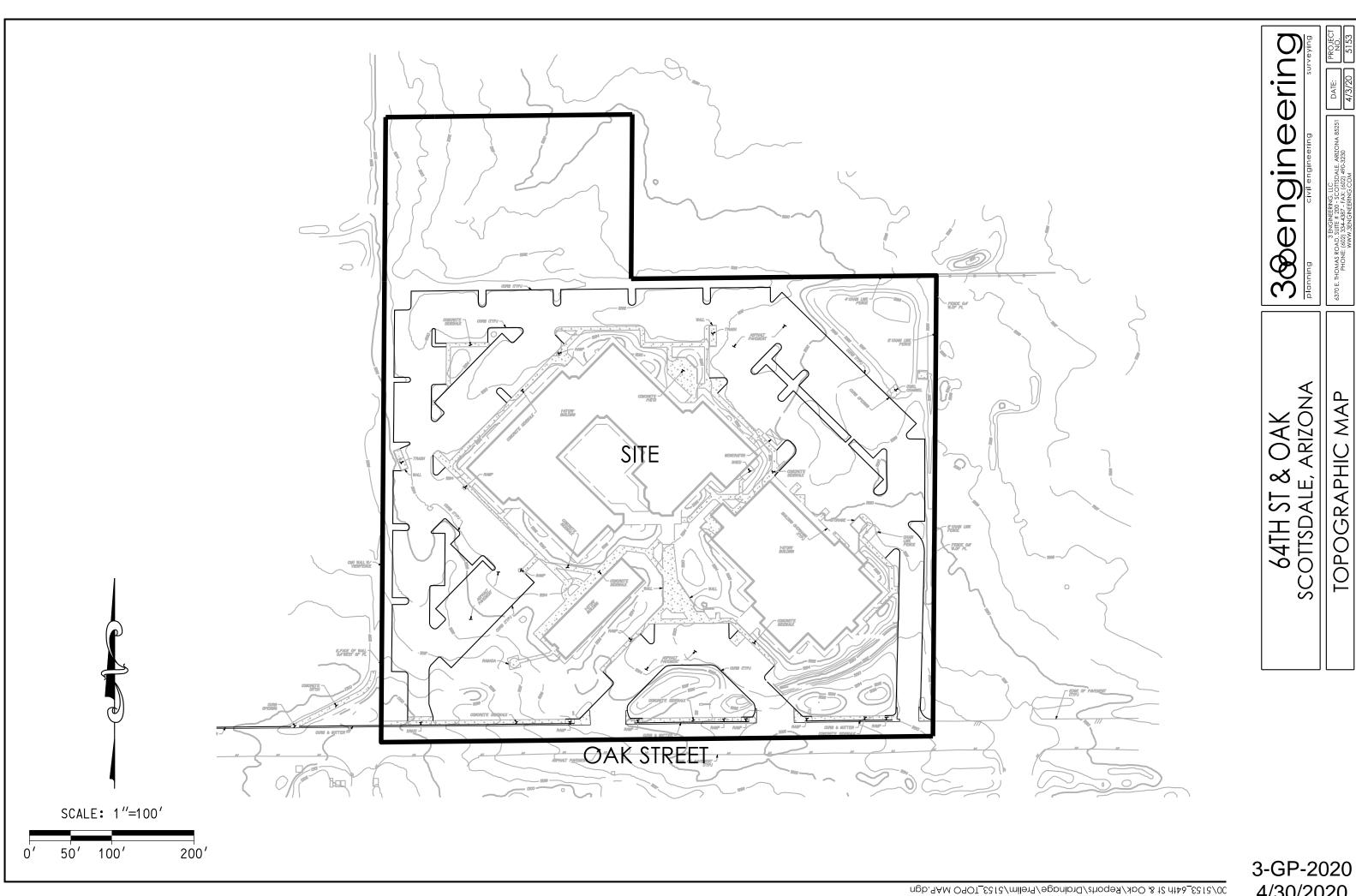
Compliance with Drainage and Floodplain Regulations and Ordinances does not insure complete protection from flooding. The Floodplain Regulations and Ordinances meet established local and federal standards for floodplain management, but neither this review nor the Regulations and Ordinances take into account such flood related problems as natural erosion, streambed meander or man-made obstructions and diversions, all of which may have an adverse affect in the event of a flood. You are advised to consult your own engineer or other expert regarding these considerations.

I have read and understand the above. If I am an agent for an owner I have made the owner aware of and explained this disclaimer.

X-XX-XXXX

Plan Check No.

4/3/20


Owner or Agent

Date

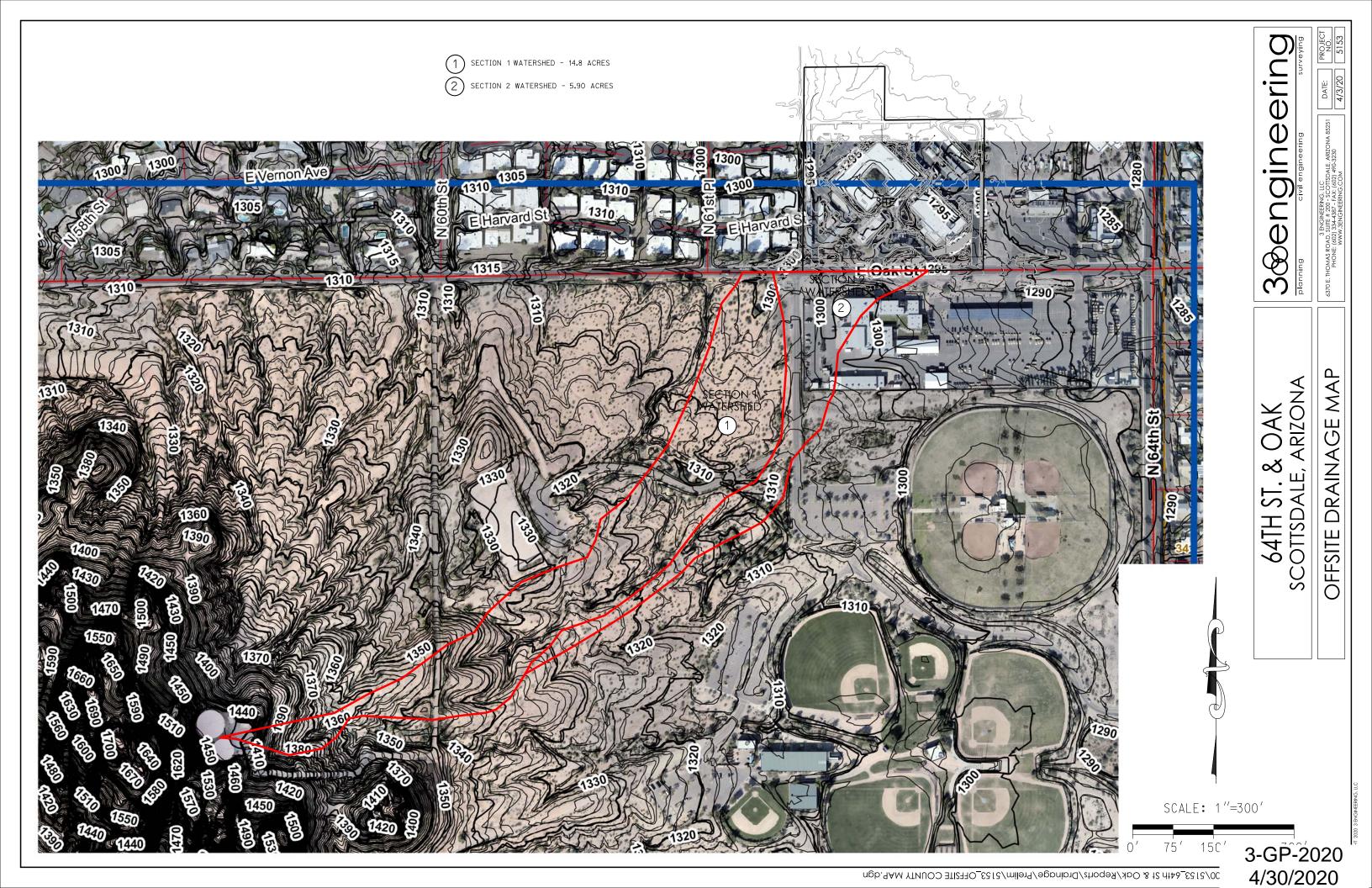
APPENDIX D

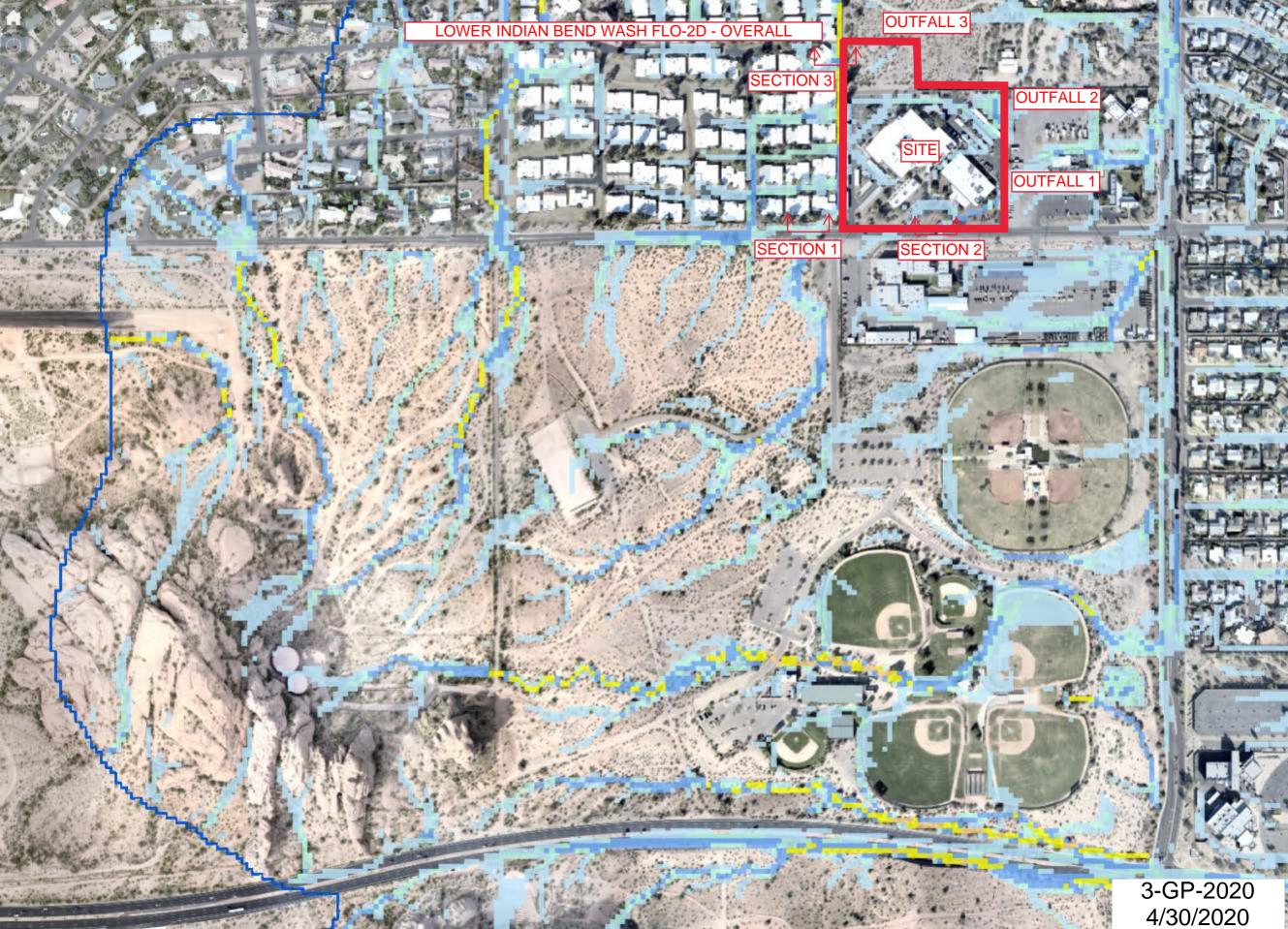
Topographic Map of Onsite Conditions

APPENDIX E Aerial Photograph of Site

64TH ST & OAK SCOTTSDALE, ARIZONA

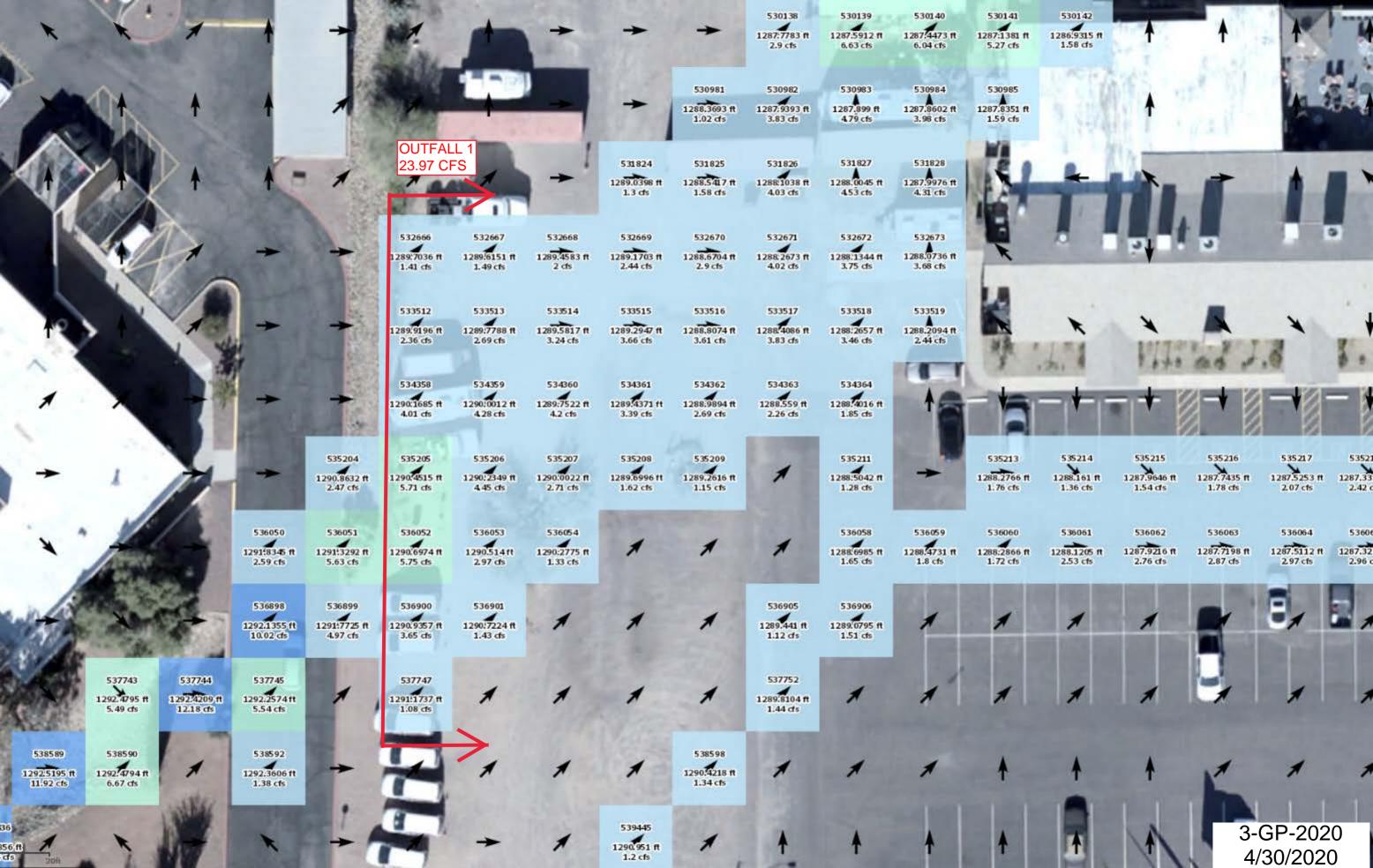
AERIAL MAP

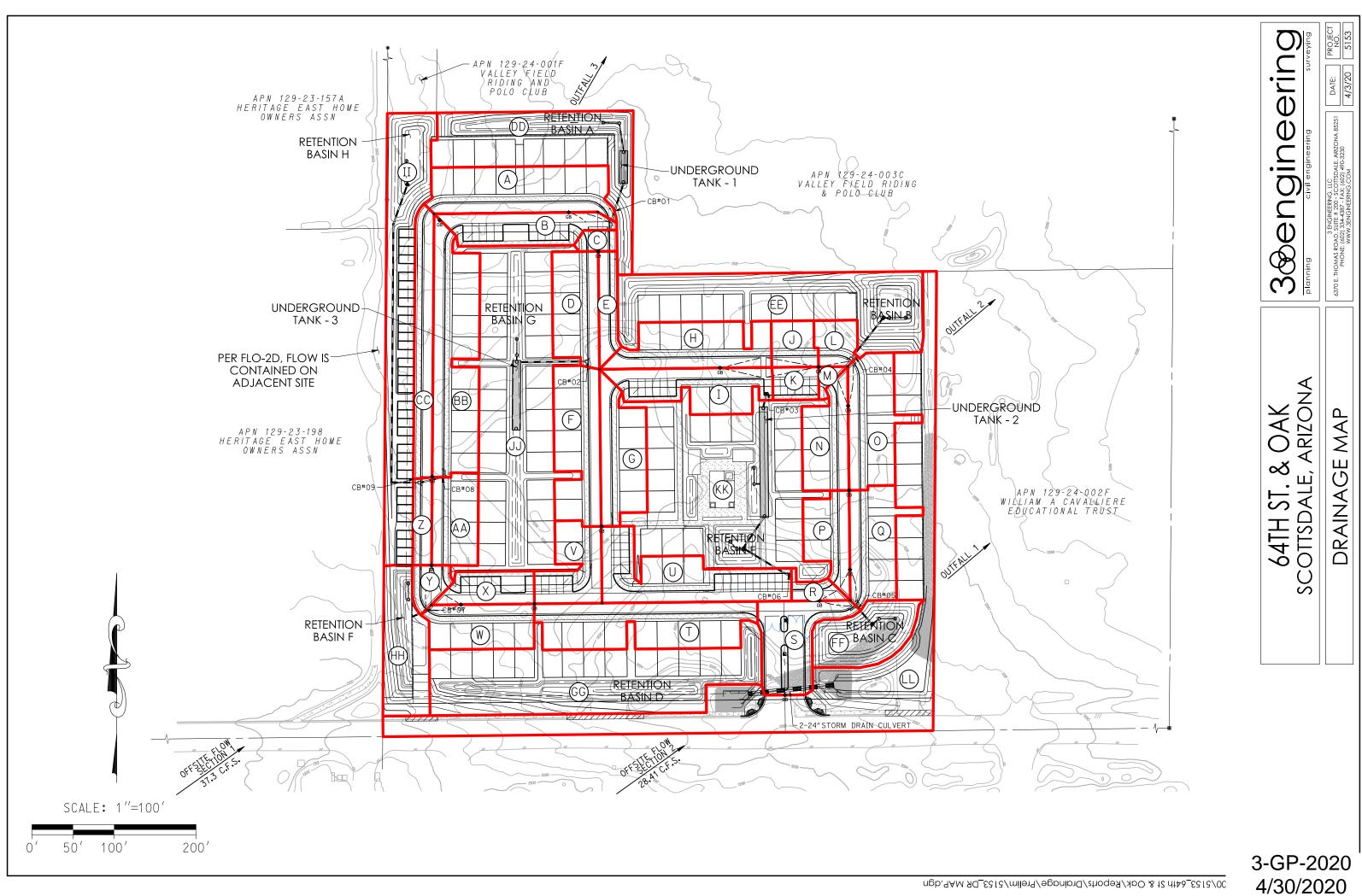

3%engineering surveying


3-GP-2020 4/30/2020

APPENDIX F

Drainage Maps (incl. Lower Indian Bend Wash FLO2D)





- 12	ALC: N	24	190	20.0000		41	-	FER	10000		I de en	A MARIE						-
20174 8,6927 ft 99 cfs	520175 1288.6926 ft 4.91 cfs	520176 1288.6941 ft 7.57 cfs	520177 1288.6926 ft 1.69 cfs		OUTFAL 20.09 CF	The second secon	520181 1288.092 ft 2.63 cfs	520182 1287.8264 ft 4.33 cfs	520183 1287.6331 ft 5.48 cfs	520184 1287,4064 ft 5,44 cfs	520185 1287:0983 ft 3.24 cfs	520186 1286:7478 ft 2.46 cfs	520187 1286:4075 ft 2.66 cfs	520188 1286:2499 ft 2.19 cfs	520189 1286/1461 ft 1.65 cfs	520190 1286.0891 ft 1.63 cfs	520191 1286,0596 ft 1,42 cfs	1
20980 1 8.6919 ft 43 cfs	520981 1288.6936 ft 8.58 cfs	520982 1288.6941 ft 15.83 cfs	520983 1288.6931 ft 9.32 cfs		520985 288:4658 ft 1.59 cfs	520986 1288 286 ft 2.83 cfs	520987 1288.1393 ft 3.64 cfs	520988 1287,9923 ft 3.27 cfs	520989 1287:8293 ft 1.74 cfs	1	1	-	+	+	+	+	+	1
21786 1.6929 ft 72 cfs	521787 1288.6925 ft 9.23 cfs	521788 1288.6925 ft 11.52 cfs	521789 1288.6926 ft 8.43 cfs	521790 1288.639 ft 3.35 cfs	521791 1288:5121 ft 2.37 cfs	521792 1288.4146 ft 3.15 cfs	521793 1288,2814ft 2.79 cfs	521794 1288:1146 ft 2.02 cfs	521795 1287:9493 ft 1.28 cfs	*	+	+	+	*	+	•	*	*
22593 8.6924 ft 08 cfs	522594 1288.6926 ft 7.52 cfs	522595 1288.6929 ft 12.87 cfs	522596 1288.692 ft 9.76 cfs		522598 1288:5565 ft 3.13 cfs	522599 1288.5021 ft 3.68 cfs	522600 1288:3906 ft 2.14 cfs	522601 1288:2161 ft 1.18 cfs	+	-(+	*	+	-	+	→	-	*
	523421 1288.6909 ft 6.08 cfs	523422 1288.6913 ft 13356 ds	523423 1288.6926 ft 11.65 cfs	**	523425 1288.614ft 4.12 cfs	523426 1288.5621 ft 1.58 cfs	1	1	~	÷	→ T		*	1	1	1	→	>
7		524254 1288.6877 ft 7.98 cfs	524255 1288.6919 ft 12.48 cfs	524256 1288.6725 ft 4.25 cfs	524257 1288:6554 ft 3.08 cfs	1	1	→	-	+	+	+	-	1	1	1		+
25087 0.2039 ft 01 cfs	525088 1289.1383 ft 2.98 cfs	525089 1288,9307 ft 8.58 cfs	525090 1288.6914 ft 5.96 cfs	1	525092 1288 6635 ft 1.67 cfs	-	1	+	*	V-4/	+		4		1	TE.		A
25924 0.2045 ft 61 cfs	525925 1289:2039 ft 8.12 cfs	525926 1289:1327 ft 5.55 cfs	-	1	525929 1288,6743 ft 1.54 cfs	*	1	+	+		→	-	Veri I	1	4			
26762 8:2067 ft 28 cfs	526763 1289:2039 ft 3.08 cfs	526764 1289.2028 ft 2.28 cfs	+	1	526767 1288 8408 ft 1.37 cfs	*	-	+	*	-		3		1	*	4	>	
	527603 1289.2198 ft 1.86 cfs	A			527607 1288,9802 ft 1.22 cfs		-	+	*	4	1	+1	-	+	1	1	1	7
28443 2,4564 ft 64 cfs	10	/ +	1	-			+	+	-	*	+	528455 1287.2261 ft 1.19 cfs	528456 1286.941 ft 2.07 cfs	528457 1286.6798 ft 3.61 cfs	528458 1286.2866 ft 5.32 cfs	528459 1285.8993 ft 6.07 cfr	528460 1285.6373 ft 3-GP-2	528461 1285:5785 #
9285		1000		4	1				700 h		529296	529297	529298	529299	529300	529301	4/30/20	

Page | A6

APPENDIX G

Onsite Hydrologic and Hydraulic Calculations

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4734°, Longitude: -111.9472° Elevation: 1300.97 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

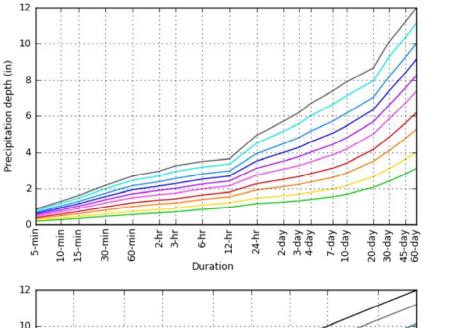
NOAA, National Weather Service, Silver Spring, Maryland

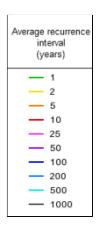
PF tabular | PF graphical | Maps & aerials

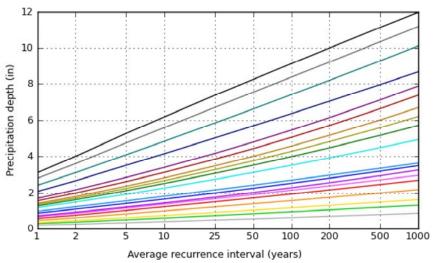
PF tabular

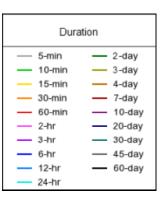
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration				Averaç	ge recurrenc	e interval (y	years)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.180 (0.152-0.218)	0.236 (0.200-0.285)	0.321 (0.270-0.386)	0.386 (0.323-0.463)	0.475 (0.391-0.566)	0.543 (0.441-0.645)	0.613 (0.488-0.725)	0.684 (0.536-0.809)	0.780 (0.594-0.924)	0.853 (0.637-1.01)	
10-min	0.274 (0.231-0.332)	0.358 (0.304-0.433)	0.489 (0.410-0.587)	0.588 (0.492-0.704)	0.722 (0.595-0.861)	0.827 (0.671-0.981)	0.933 (0.743-1.10)	1.04 (0.816-1.23)	1.19 (0.905-1.41)	1.30 (0.970-1.54)	
15-min	0.340 (0.286-0.411)	0.444 (0.376-0.537)	0.605 (0.509-0.728)	0.729 (0.609-0.873)	0.895 (0.737-1.07)	1.02 (0.832-1.22)	1.16 (0.921-1.37)	1.29 (1.01-1.53)	1.47 (1.12-1.74)	1.61 (1.20-1.91)	
30-min	0.458 (0.386-0.554)	0.598 (0.507-0.723)	0.816 (0.686-0.980)	0.982 (0.821-1.18)	1.21 (0.993-1.44)	1.38 (1.12-1.64)	1.56 (1.24-1.84)	1.74 (1.36-2.06)	1.98 (1.51-2.35)	2.17 (1.62-2.57)	
60-min	0.566 (0.477-0.685)	0.740 (0.627-0.895)	1.01 (0.848-1.21)	1.22 (1.02-1.45)	1.49 (1.23-1.78)	1.71 (1.39-2.03)	1.93 (1.54-2.28)	2.15 (1.69-2.54)	2.45 (1.87-2.90)	2.68 (2.01-3.19)	
2-hr	0.656 (0.563-0.778)	0.850 (0.729-1.01)	1.14 (0.976-1.35)	1.36 (1.15-1.61)	1.66 (1.39-1.95)	1.90 (1.56-2.22)	2.14 (1.74-2.50)	2.38 (1.90-2.78)	2.71 (2.11-3.17)	2.96 (2.25-3.48)	
3-hr	0.710 (0.605-0.846)	0.911 (0.781-1.09)	1.20 (1.02-1.43)	1.43 (1.21-1.69)	1.75 (1.46-2.06)	2.01 (1.65-2.36)	2.27 (1.83-2.67)	2.55 (2.03-2.99)	2.94 (2.26-3.45)	3.25 (2.44-3.83)	
6-hr	0.856 (0.745-1.00)	1.09 (0.949-1.27)	1.40 (1.22-1.63)	1.64 (1.42-1.91)	1.98 (1.68-2.28)	2.24 (1.88-2.58)	2.52 (2.08-2.90)	2.80 (2.26-3.23)	3.19 (2.51-3.68)	3.49 (2.69-4.05)	
12-hr	0.961 (0.844-1.11)	1.22 (1.07-1.41)	1.55 (1.35-1.78)	1.80 (1.56-2.08)	2.15 (1.84-2.47)	2.42 (2.05-2.77)	2.69 (2.25-3.09)	2.97 (2.45-3.41)	3.34 (2.68-3.86)	3.63 (2.87-4.22)	
24-hr	1.16 (1.04-1.31)	1.48 (1.32-1.66)	1.91 (1.71-2.15)	2.26 (2.01-2.53)	2.74 (2.42-3.07)	3.11 (2.73-3.48)	3.51 (3.05-3.92)	3.92 (3.38-4.38)	4.48 (3.83-5.01)	4.93 (4.17-5.52)	
2-day	1.25 (1.12-1.41)	1.61 (1.44-1.81)	2.11 (1.88-2.37)	2.51 (2.23-2.81)	3.07 (2.72-3.44)	3.51 (3.09-3.93)	3.98 (3.49-4.47)	4.47 (3.88-5.02)	5.16 (4.43-5.80)	5.71 (4.85-6.44)	
3-day	1.33 (1.19-1.49)	1.70 (1.52-1.91)	2.23 (1.99-2.50)	2.66 (2.37-2.98)	3.27 (2.89-3.66)	3.76 (3.30-4.20)	4.27 (3.73-4.78)	4.82 (4.17-5.40)	5.58 (4.77-6.26)	6.20 (5.25-6.97)	
4-day	1.40 (1.25-1.57)	1.79 (1.60-2.01)	2.36 (2.10-2.64)	2.82 (2.50-3.15)	3.47 (3.06-3.88)	4.00 (3.51-4.47)	4.56 (3.97-5.10)	5.16 (4.46-5.77)	6.00 (5.12-6.72)	6.69 (5.64-7.50)	
7-day	1.55 (1.38-1.74)	1.98 (1.77-2.22)	2.61 (2.32-2.93)	3.12 (2.77-3.50)	3.84 (3.39-4.30)	4.42 (3.89-4.95)	5.05 (4.40-5.65)	5.70 (4.93-6.39)	6.63 (5.66-7.43)	7.38 (6.23-8.28)	
10-day	1.68 (1.50-1.89)	2.15 (1.92-2.42)	2.84 (2.53-3.18)	3.39 (3.01-3.80)	4.17 (3.68-4.65)	4.79 (4.20-5.34)	5.44 (4.75-6.08)	6.14 (5.31-6.86)	7.11 (6.08-7.95)	7.89 (6.68-8.84)	
20-day	2.06 (1.85-2.31)	2.66 (2.38-2.96)	3.51 (3.14-3.90)	4.15 (3.70-4.61)	5.01 (4.45-5.57)	5.68 (5.02-6.31)	6.35 (5.60-7.07)	7.04 (6.17-7.84)	7.96 (6.92-8.89)	8.68 (7.48-9.70)	
30-day	2.41 (2.15-2.69)	3.10 (2.77-3.46)	4.09 (3.65-4.55)	4.83 (4.30-5.37)	5.84 (5.17-6.49)	6.61 (5.83-7.33)	7.40 (6.50-8.21)	8.20 (7.17-9.10)	9.29 (8.06-10.3)	10.1 (8.71-11.3)	
45-day	2.79 (2.51-3.12)	3.60 (3.23-4.01)	4.74 (4.25-5.28)	5.59 (4.99-6.22)	6.70 (5.97-7.45)	7.53 (6.69-8.38)	8.38 (7.41-9.32)	9.23 (8.12-10.3)	10.3 (9.03-11.5)	11.2 (9.71-12.5)	
60-day	3.10 (2.79-3.45)	4.00 (3.60-4.44)	5.26 (4.72-5.84)	6.17 (5.53-6.86)	7.37 (6.58-8.18)	8.25 (7.34-9.16)	9.14 (8.10-10.2)	10.00 (8.83-11.1)	11.1 (9.77-12.4)	12.0 (10.4-13.4)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

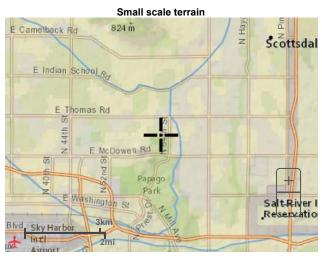

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

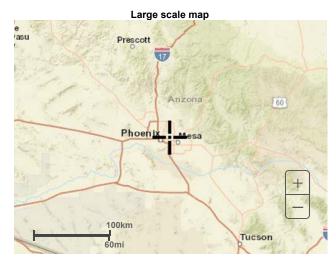

Back to Top

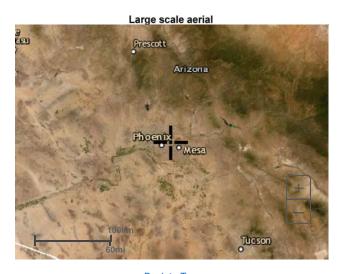

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.4734°, Longitude: -111.9472°



NOAA Atlas 14, Volume 1, Version 5


Created (GMT): Thu Mar 19 21:39:09 2020


Back to Top

Maps & aerials

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4734°, Longitude: -111.9472° Elevation: 1300.97 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

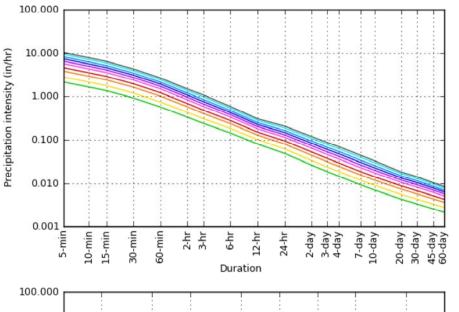
NOAA, National Weather Service, Silver Spring, Maryland

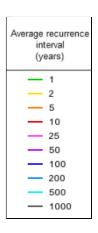
PF tabular | PF graphical | Maps & aerials

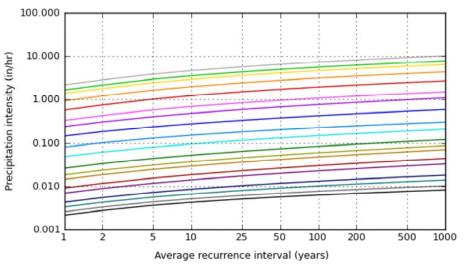
PF tabular

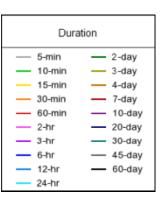
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹												
Duration				Avera	ge recurren	ce interval (years)					
Duration	1	2	5	10 25		50 100		200	500	1000		
5-min	2.16 (1.82-2.62)	2.83 (2.40-3.42)	3.85 (3.24-4.63)	4.63 (3.88-5.56)	5.70 (4.69-6.79)	6.52 (5.29-7.74)	7.36 (5.86-8.70)	8.21 (6.43-9.71)	9.36 (7.13-11.1)	10.2 (7.64-12.2)		
10-min	1.64 (1.39-1.99)	2.15 (1.82-2.60)	2.93 (2.46-3.52)	3.53 (2.95-4.22)	4.33 (3.57-5.17)	4.96 (4.03-5.89)	5.60 (4.46-6.62)	6.25 (4.90-7.39)	7.12 (5.43-8.44)	7.79 (5.82-9.25)		
15-min	1.36 (1.14-1.64)	1.78 (1.50-2.15)	2.42 (2.04-2.91)	2.92 (2.44-3.49)	3.58 (2.95-4.27)	4.10 (3.33-4.86)	4.62 (3.68-5.47)	5.16 (4.05-6.11)	5.88 (4.48-6.97)	6.44 (4.81-7.64)		
30-min	0.916 (0.772-1.11)	1.20 (1.01-1.45)	1.63 (1.37-1.96)	1.96 (1.64-2.35)	2.41 (1.99-2.87)	2.76 (2.24-3.28)	3.11 (2.48-3.68)	3.48 (2.72-4.11)	3.96 (3.02-4.69)	4.34 (3.24-5.15)		
60-min	0.566 (0.477-0.685)	0.740 (0.627-0.895)	1.01 (0.848-1.21)	1.22 (1.02-1.45)	1.49 (1.23-1.78)	1.71 (1.39-2.03)	1.93 (1.54-2.28)	2.15 (1.69-2.54)	2.45 (1.87-2.90)	2.68 (2.01-3.19)		
2-hr	0.328 (0.282-0.389)	0.425 (0.364-0.505)	0.570 (0.488-0.674)	0.681 (0.576-0.802)	0.832 (0.695-0.974)	0.948 (0.782-1.11)	1.07 (0.868-1.25)	1.19 (0.948-1.39)	1.35 (1.05-1.58)	1.48 (1.13-1.74)		
3-hr	0.236 (0.201-0.282)	0.303 (0.260-0.363)	0.400 (0.341-0.476)	0.476 (0.402-0.563)	0.582 (0.486-0.686)	0.668 (0.549-0.784)	0.757 (0.611-0.888)	0.849 (0.674-0.996)	0.978 (0.752-1.15)	1.08 (0.812-1.27)		
6-hr	0.143 (0.124-0.168)	0.181 (0.158-0.212)	0.233 (0.203-0.272)	0.274 (0.237-0.319)	0.330 (0.281-0.381)	0.375 (0.314-0.431)	0.421 (0.347-0.484)	0.467 (0.378-0.539)	0.532 (0.420-0.615)	0.583 (0.449-0.676)		
12-hr	0.080 (0.070-0.092)	0.101 (0.089-0.117)	0.128 (0.112-0.148)	0.150 (0.130-0.172)	0.179 (0.153-0.205)	0.201 (0.170-0.230)	0.223 (0.187-0.256)	0.246 (0.203-0.283)	0.277 (0.223-0.320)	0.302 (0.238-0.351)		
24-hr	0.048 (0.043-0.054)	0.062 (0.055-0.069)	0.080 (0.071-0.090)	0.094 (0.084-0.106)	0.114 (0.101-0.128)	0.130 (0.114-0.145)	0.146 (0.127-0.163)	0.163 (0.141-0.182)	0.187 (0.159-0.209)	0.205 (0.174-0.230)		
2-day	0.026 (0.023-0.029)	0.033 (0.030-0.038)	0.044 (0.039-0.049)	0.052 (0.047-0.059)	0.064 (0.057-0.072)	0.073 (0.064-0.082)	0.083 (0.073-0.093)	0.093 (0.081-0.105)	0.107 (0.092-0.121)	0.119 (0.101-0.134)		
3-day	0.018 (0.016-0.021)	0.024 (0.021-0.026)	0.031 (0.028-0.035)	0.037 (0.033-0.041)	0.045 (0.040-0.051)	0.052 (0.046-0.058)	0.059 (0.052-0.066)	0.067 (0.058-0.075)	0.078 (0.066-0.087)	0.086 (0.073-0.097)		
4-day	0.015 (0.013-0.016)	0.019 (0.017-0.021)	0.025 (0.022-0.028)	0.029 (0.026-0.033)	0.036 (0.032-0.040)	0.042 (0.037-0.047)	0.048 (0.041-0.053)	0.054 (0.046-0.060)	0.063 (0.053-0.070)	0.070 (0.059-0.078)		
7-day	0.009 (0.008-0.010)	0.012 (0.011-0.013)	0.016 (0.014-0.017)	0.019 (0.016-0.021)	0.023 (0.020-0.026)	0.026 (0.023-0.029)	0.030 (0.026-0.034)	0.034 (0.029-0.038)	0.039 (0.034-0.044)	0.044 (0.037-0.049)		
10-day	0.007 (0.006-0.008)	0.009 (0.008-0.010)	0.012 (0.011-0.013)	0.014 (0.013-0.016)	0.017 (0.015-0.019)	0.020 (0.018-0.022)	0.023 (0.020-0.025)	0.026 (0.022-0.029)	0.030 (0.025-0.033)	0.033 (0.028-0.037)		
20-day	0.004 (0.004-0.005)	0.006 (0.005-0.006)	0.007 (0.007-0.008)	0.009 (0.008-0.010)	0.010 (0.009-0.012)	0.012 (0.010-0.013)	0.013 (0.012-0.015)	0.015 (0.013-0.016)	0.017 (0.014-0.019)	0.018 (0.016-0.020)		
30-day	0.003 (0.003-0.004)	0.004 (0.004-0.005)	0.006 (0.005-0.006)	0.007 (0.006-0.007)	0.008 (0.007-0.009)	0.009 (0.008-0.010)	0.010 (0.009-0.011)	0.011 (0.010-0.013)	0.013 (0.011-0.014)	0.014 (0.012-0.016)		
45-day	0.003 (0.002-0.003)	0.003 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.006-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.009 (0.008-0.010)	0.010 (0.008-0.011)	0.010 (0.009-0.012)		
60-day	0.002 (0.002-0.002)	0.003 (0.002-0.003)	0.004 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.005-0.006)	0.006 (0.006-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.008 (0.007-0.009)		

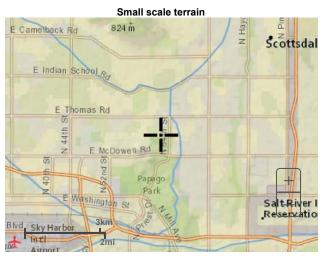
¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

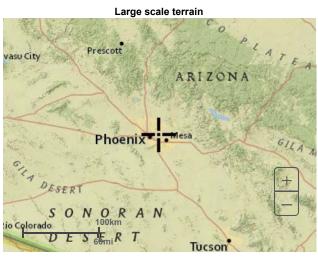

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

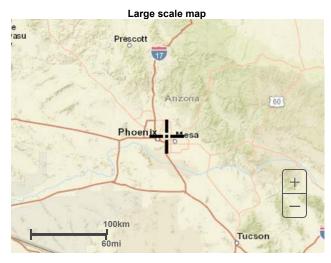

Please refer to NOAA Atlas 14 document for more information.

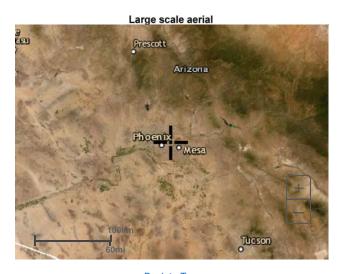

Back to Top


PF graphical




NOAA Atlas 14, Volume 1, Version 5


Created (GMT): Thu Mar 19 21:55:04 2020


Back to Top

Maps & aerials

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

- 1. The Rational Method (generally used for watersheds less than 160 acres that are regularly shaped and uniformly contoured). The methodology is provided in the FCDMC Hydrology Manual.
- 2. A rainfall runoff model using the USACE's HEC 1 Flood Hydrograph Package (generally used for watersheds that are larger than 160 acres, irregular in shape and contour, or if routing of flows is necessary).

B. Watershed Conditions

Watersheds are subject to change. Grading and drainage plans shall consider all watershed conditions that would result in the greatest peak discharge rate, to:

- 1. Size drainage facilities, and
- 2. Determine lowest floor elevations.

C. Split-Flow Conditions

Projects in northern parts of Scottsdale must address split-flow channel conditions where applicable. These splits in the alluvial channels usually include highly erosive soils and are generally unstable and unpredictable. In setting lowest floor elevations relative to upstream splits, assume that 100% of the flow could go either direction in any given flood event. For infrastructure design, the estimate of the actual split, based on a hydraulic analysis of the current channel cross sections, must include a minimum safety factor of 30% of the total flow. If there are extenuating factors affecting the stability of the split, the safety factor should be increased accordingly.

D. Environmentally Sensitive Lands

For special considerations regarding Environmentally Sensitive Lands, refer to the City Zoning Ordinance and DSPM Chapter 2 Section 2-2. Modification of natural watercourses with a flow of 50 cfs or greater are addressed in the City Zoning Ordinance.

E. The Rational Method

- 1. Precipitation. Precipitation input is rainfall intensity, "i," and can be obtained directly from NOAA 14 at http://hdsc.nws.noaa.gov/hdsc/pfds/sa/az pfds.html
- 2. Time of Concentration. Time of concentration " t_c " is the total time of travel from the most hydraulically remote part of the watershed to the concentration point of interest. The calculation of " t_c " must follow FCDMC Hydrology Manual procedures.
- 3. Runoff Coefficients. Use Fig. 4-1.5, Runoff Coefficients for Use with Rational Method, or equivalent to obtain the runoff coefficients or "C" values. Composite "C" values for the appropriate zoning category or weighted average values calculated for the specific site are both acceptable approaches.

RUNOFF COEFFICIENTS - "C" VALUE

LAND USE	STORM FR	REQUENC'	Y
Composite Area-wide Values	2-25	50	100
	Year	Year	Year
Commercial & Industrial Areas	0.80	0.83	0.86
Residential Areas – Single Family, slopes 10%			
or less			
R1-190	0.33	0.50	0.53

	R1-130	0.35	0.51	0.59
	R1-70	0.37	0.52	0.60
	R1-43	0.38	0.55	0.61
	R1-35	0.40	0.56	0.62
	R1-18	0.43	0.58	0.64
	R1-10	0.47	0.62	0.70
	R1-7	0.51	0.66	0.80
	R1-5	0.54	0.69	0.86
_	Residential Areas – Single Family, slopes			
	greater than 10%			
	R1-190	0.65	0.74	0.82
	R1-130	0.68	0.76	0.84
	R1-70	0.69	0.77	0.85
	R1-43	0.70	0.77	0.85
	R1-35	0.70	0.78	0.85
	R1-18	0.71	0.79	0.86
	R1-10	0.75	0.82	0.88
	R1-7	0.81	0.86	0.91
	R1-5	0.85	0.89	0.92
	Townhouse (R-2, R-4)	0.63	0.74	0.94
use for rational -	Apartments & Condominiums (Condos) (R-3,	0.76	0.83	0.94
	R-5)			
	Specified Surface Type Values			
	Paved streets, parking lots (concrete or	0.90	0.93	0.95
use for	asphalt), roofs, driveways, etc.			
weighted calc	Lawns, golf courses, & parks (grassed areas)	0.20	0.25	0.30
for retention	Undisturbed natural desert or desert	0.37	0.42	0.45
	landscaping (no impervious weed barrier)			
	Desert landscaping (with impervious weed	0.63	0.73	0.83
	barrier)			
	Mountain terrain - slopes greater than 10%	0.60	0.70	0.80
	Agricultural areas (flood irrigated fields)	0.16	0.18	0.20
	Gravel floodways and shoulders	0.68	0.78	0.82

FIGURE 4-1.5 RUNOFF COEFFICIENTS FOR RATIONAL METHOD

F. HEC-1 Model

- 1. Minimum submittals
 - **a.** A printout of the input data.
 - **b.** A schematic (routing) diagram of the stream network.
 - c. The runoff summary output table, including drainage basin name, area, 2, 10, and 100- year flow values.
 - d. Electronic input file(s) on compact disc (CD) or digital versatile/video disc (DVD).
 - e. Supporting documentation and source material for parameter selection.
 - f. A narrative detailing the impact of adjustments to the modeling parameters made to address warnings and error messages.
- 2. Precipitation

Post-Development Rational Method Calculations for Inlets (Zoning R3)

Post-Deve	elopment	<u>kational</u>	<u>ivietnoa</u>	Calcula	lions	<u>tor iniets</u>	(Zoning	K3)	
Sub-Area	Area	Area	C ₁₀	C ₁₀₀	Тс	İ 10	İ 100	Local Q ₁₀	Local Q100
	(SF)	(AC)	-	-	(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
Α	12427	0.29	0.76	0.94	5	4.63	7.36	1.00	1.97
В	7199	0.17	0.76	0.94	5	4.63	7.36	0.58	1.14
С	1222	0.03	0.76	0.94	5	4.63	7.36	0.10	0.19
D	7574	0.17	0.76	0.94	5	4.63	7.36	0.61	1.20
Е	3069	0.07	0.76	0.94	5	4.63	7.36	0.25	0.49
F	10461	0.24	0.76	0.94	5	4.63	7.36	0.85	1.66
G	8462	0.19	0.76	0.94	5	4.63	7.36	0.68	1.34
Η	9688	0.22	0.76	0.94	5	4.63	7.36	0.78	1.54
I	8644	0.20	0.76	0.94	5	4.63	7.36	0.70	1.37
J	3056	0.07	0.76	0.94	5	4.63	7.36	0.25	0.49
K	2247	0.05	0.76	0.94	5	4.63	7.36	0.18	0.36
L	2775	0.06	0.76	0.94	5	4.63	7.36	0.22	0.44
М	726	0.02	0.76	0.94	5	4.63	7.36	0.06	0.12
Ν	6690	0.15	0.76	0.94	5	4.63	7.36	0.54	1.06
0	9445	0.22	0.76	0.94	5	4.63	7.36	0.76	1.50
Р	5395	0.12	0.76	0.94	5	4.63	7.36	0.44	0.86
Q	8245	0.19	0.76	0.94	5	4.63	7.36	0.67	1.31
R	1513	0.03	0.76	0.94	5	4.63	7.36	0.12	0.24
S	8450	0.19	0.76	0.94	5	4.63	7.36	0.68	1.34
Т	14059	0.32	0.76	0.94	5	4.63	7.36	1.14	2.23
U	12536	0.29	0.76	0.94	5	4.63	7.36	1.01	1.99
V	6332	0.15	0.76	0.94	5	4.63	7.36	0.51	1.01
W	7081	0.16	0.76	0.94	5	4.63	7.36	0.57	1.12
X	4283	0.10	0.76	0.94	5	4.63	7.36	0.35	0.68
Υ	2107	0.05	0.76	0.94	5	4.63	7.36	0.17	0.33
Z	2443	0.06	0.76	0.94	5	4.63	7.36	0.20	0.39
AA	6256	0.14	0.76	0.94	5	4.63	7.36	0.51	0.99
BB	15794	0.36	0.76	0.94	5	4.63	7.36	1.28	2.51
CC	7536	0.17	0.76	0.94	5	4.63	7.36	0.61	1.20
DD	19281	0.44	0.76	0.94	5	4.63	7.36	1.56	3.06
EE	26173	0.60	0.76	0.94	5	4.63	7.36	2.11	4.16
FF	7989	0.18	0.76	0.94	5	4.63	7.36	0.65	1.27
GG	31169	0.72	0.76	0.94	5	4.63	7.36	2.52	4.95
HH	9113	0.21	0.76	0.94	5	4.63	7.36	0.74	1.45
II	21695	0.50	0.76	0.94	5	4.63	7.36	1.75	3.45
JJ	38220	0.88	0.76	0.94	5	4.63	7.36	3.09	6.07
KK	40104	0.92	0.76	0.94	5	4.63	7.36	3.24	6.37
LL ⁽¹⁾	46551	1.07	0.76	0.94	5	4.63	7.36	3.76	7.39
Total	436010.00	10.01						1.68	69.25
	SUB	BASINS T	HAT CONT	RIBUTE T	о вто	RM DRAII	SYSTEMS	S	

(1) NOTE: SUBBASIN LL DOES NOT CONTRIBUTE TO BASIN. IT IS OFFSITE FLOW CONVEYANCE AREA

Curb Opening Catch Basin Capacity Calculations - Weir Condition

			Inlet Capacity				
			W/25%				
Inlet Type	Inlet Area	Q	Clogging	d	Cw	L	
		(cfs)	(cfs)	(ft)		(ft)	
CB1	A,B,C	3.31	5.09	0.50	3	6	Designed for 100yr
CB2	D,F	2.86	5.09	0.50	3	6	Designed for 100yr
CB4	L,M,N,O	3.12	5.09	0.50	3	6	Designed for 100yr
CB5	P,Q,R,S,T	5.98	7.64	0.50	3	9	Designed for 100yr
CB7	W,X,Y	2.14	2.55	0.50	3	3	Designed for 100yr
CB8	AA,BB	3.50	5.09	0.50	3	6	Designed for 100yr
CB9	Z,CC	1.58	2.55	0.50	3	3	Designed for 100yr

Q=Cw*L*d^1.5

Cw= 3.0 weir coefficient

Q10 within curb

Q = discharge capacity $L=(Q/(Cw*d^1.5))*1.25$ L = curb opening length Q100 to overtop into basin

d = flow depth

CF = clogging factor = 25% (1.25xL)

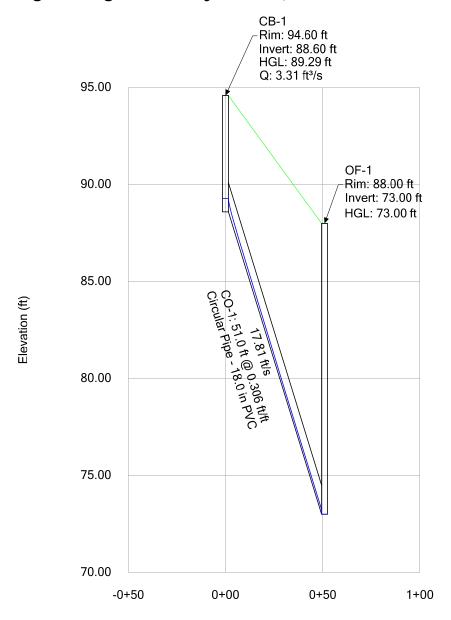
Type F Catch Basin - Grated Inlet Capacity - Weir Condition

			Inlet Capacity				
			W/25%				
Inlet Type	e Inlet Area	Q	Clogging	d	Cw	P ⁽¹⁾	
		(cfs)	(cfs)	(ft)		(ft)	
CB3	E,G,H,I,J,K	5.59	10.04	0.50	3	11.83	D
CB6	U,V	3.00	10.04	0.50	3	11.83	D

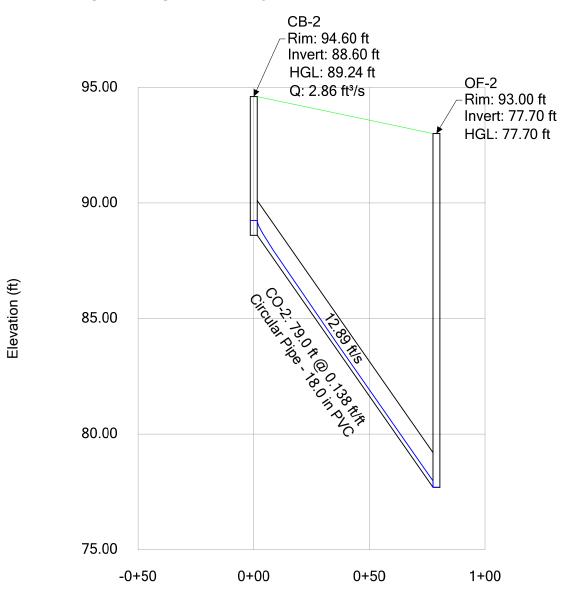
d = flow depth

Designed for 100yr Designed for 100yr

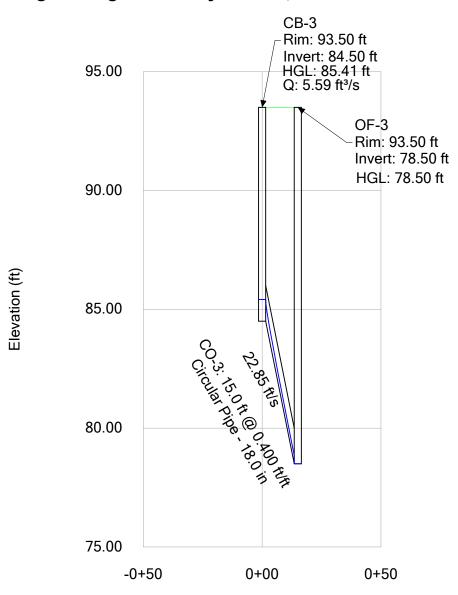
Q=Cw*P*d^1.5

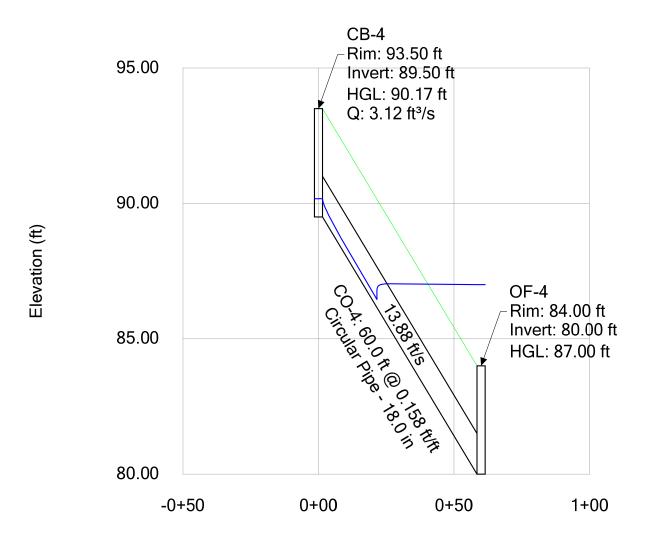

£4

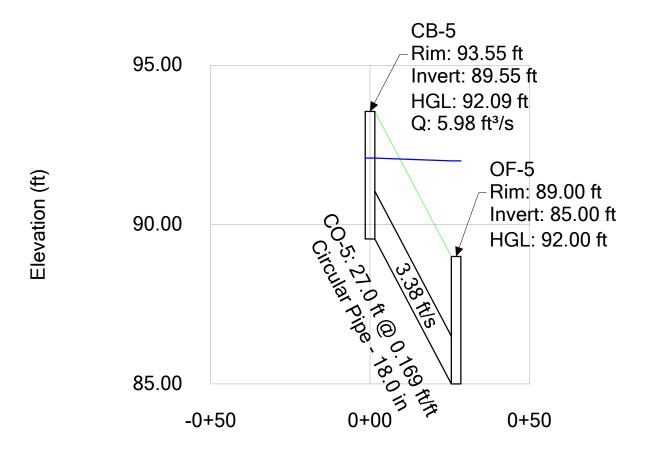
(1) Wetted Perimeter ft 1 Type F Catch Basins 11.8

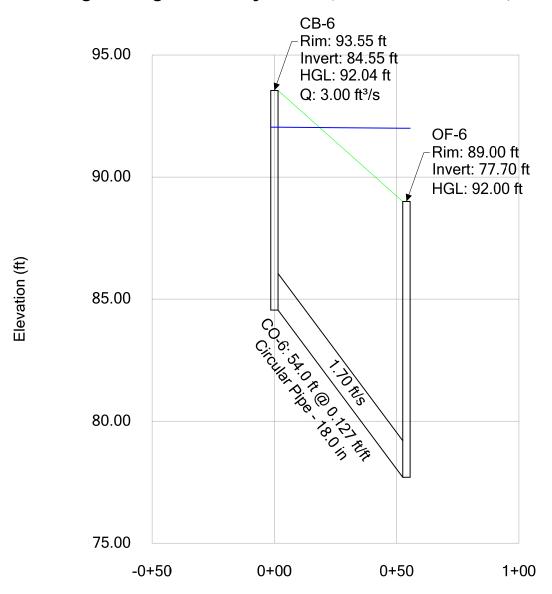

1 Type F Catch Basins 11.83 2 Type F Catch Basins 18.67

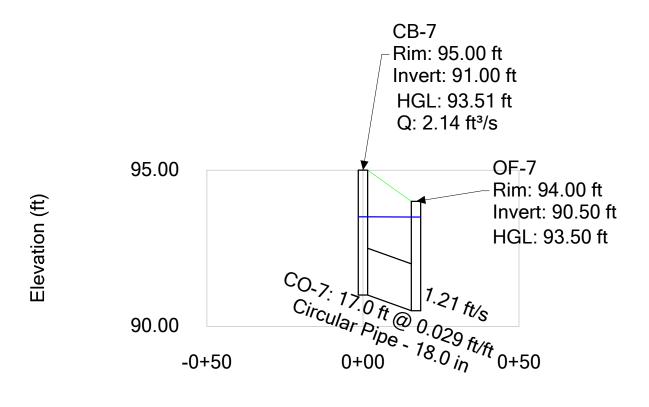
3 Type F Catch Basins 25.50 4 Type F Catch Basins 32.33 Cw= 3.0 weir coefficient Q = discharge capacity P = inlet perimeter

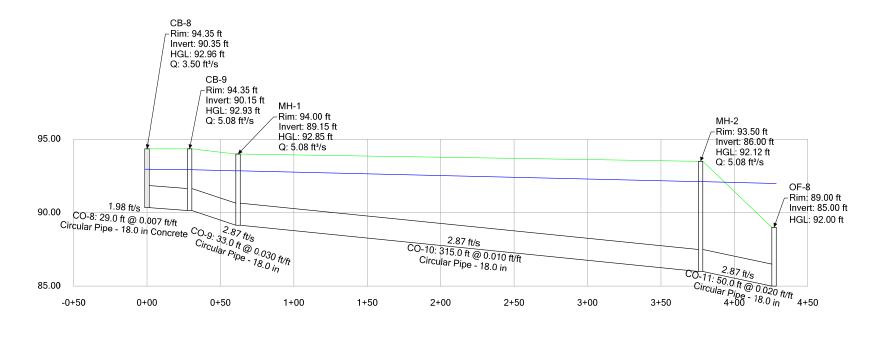

Profile Report Engineering Profile - System 1 (5153_StormCAD.stc)


Profile Report Engineering Profile - System 2 (5153_StormCAD.stc)


Profile Report Engineering Profile - System 3 (5153_StormCAD.stc)


Profile Report Engineering Profile - System 4 (5153_StormCAD.stc)


Profile Report Engineering Profile - System 5 (5153_StormCAD.stc)


Profile Report Engineering Profile - System 6 (5153_StormCAD.stc)

Profile Report Engineering Profile - System 7 (5153_StormCAD.stc)

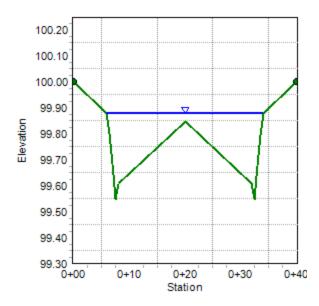
Profile Report Engineering Profile - System 8 (5153_StormCAD.stc)

Street Capacity Check

Jueer Ca	ipadity	Oncok		(FROM RATING TABLES) (1)			
				Street	Street		
				Capacity - Roll	Capacity - Roll		
Sub-Area	Slope	Q 10	Q 100	Curb ^{10 yr}	Curb ^{100 yr}		
-	%	cfs	cfs	cfs	cfs		
Α	0.40	1.00	1.97	4.55	10.79		
В	0.40	0.58	1.14	4.55	10.79		
С	0.40	0.10	0.19	4.55	10.79		
D	0.40	0.61	1.20	4.55	10.79		
Е	0.40	0.25	0.49	4.55	10.79		
F	0.40	0.85	1.66	4.55	10.79		
G	0.40	0.68	1.34	4.55	10.79		
E,H	0.40	1.03	2.03	4.55	10.79		
G,I	0.40	1.38	2.72	4.55	10.79		
J	0.75	0.25	0.49	6.22	14.77		
K	0.75	0.18	0.36	6.22	14.77		
L	0.40	0.22	0.44	4.55	10.79		
M	0.40	0.06	0.12	4.55	10.79		
N	0.40	0.54	1.06	4.55	10.79		
0	0.40	0.76	1.50	4.55	10.79		
Р	0.50	0.44	0.86	5.09	12.07		
Q	0.50	0.67	1.31	5.09	12.07		
R,U,V	0.40	1.65	3.24	4.55	10.79		
S,T	0.40	1.82	3.57	4.55	10.79		
Т	0.40	1.14	2.23	4.55	10.79		
U,V	0.40	1.52	3.00	4.55	10.79		
V	0.40	0.51	1.01	4.55	10.79		
W	0.40	0.57	1.12	4.55	10.79		
X	0.40	0.35	0.68	4.55	10.79		
Υ	0.40	0.17	0.33	4.55	10.79		
Z	0.45	0.20	0.39	4.82	11.43		
AA	0.45	0.51	0.99	4.82	11.43		
BB	0.40	1.28	2.51	4.55	10.79		
CC	0.40	0.61	1.20	4.55	10.79		

(1) Note: Flows are 1/2 of rating table to show 1/2 street capacity

Requires 6" Vertical For Portion That Exceeds Flow Rate


Cross Section for Roll Curb - 10yr

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

Cross Section Image

Worksheet for Roll Curb - 10yr

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 Channel Slope
 0.40000 %

 Normal Depth
 0.33 ft

Section Definitions

ı		
	Station (ft)	Elevation (ft)
	0+00.00	100.00
	0+06.00	99.88
	0+06.40	99.80
	0+06.80	99.72
	0+07.20	99.64
	0+07.58	99.55
	0+08.00	99.61
	0+20.00	99.85
	0+32.00	99.61
	0+32.42	99.55
	0+32.80	99.64
	0+33.20	99.72
	0+33.60	99.80
	0+34.00	99.88
	0+40.00	100.00

Roughness Segment Definitions

Start Station		Ending Station	Roughness Coefficient	
(0+00.00, 10	0.00)	(0+40.00, 100.00)		0.013
Options				
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Metho Pavlovskii's Metho Pavlovskii's Metho	od		

Bentley Systems, Inc. Haestad Methods SoBatirite©FirterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

	Worksheet for Roll Curb - 10yr
Results	
Discharge	9.09 ft³/s
Elevation Range	99.55 to 100.00 ft
Flow Area	4.36 ft ²
Wetted Perimeter	28.08 ft
Hydraulic Radius	0.16 ft
Top Width	28.00 ft
Normal Depth	0.33 ft
Critical Depth	0.32 ft
Critical Slope	0.00467 ft/ft
Velocity	2.09 ft/s
Velocity Head	0.07 ft
Specific Energy	0.40 ft
Froude Number	0.93
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0
GVF Output Data	

Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.33	ft	
Critical Depth	0.32	ft	
Channel Slope	0.40000	%	
Critical Slope	0.00467	ft/ft	

Rating Table for Roll Curb - 10yr

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 Channel Slope
 0.40000 %

 Normal Depth
 0.33 ft

Section Definitions

Station (ft)	Elevation (ft)
0+00.00	100.00
0+06.00	99.88
0+06.40	99.80
0+06.80	99.72
0+07.20	99.64
0+07.58	99.55
0+08.00	99.61
0+20.00	99.85
0+32.00	99.61
0+32.42	99.55
0+32.80	99.64
0+33.20	99.72
0+33.60	99.80
0+34.00	99.88
0+40.00	100.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00.00, 100.00)	(0+40.00, 100.00)	0.013

Channel Slope (%)	Discharge (ft³/s)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)

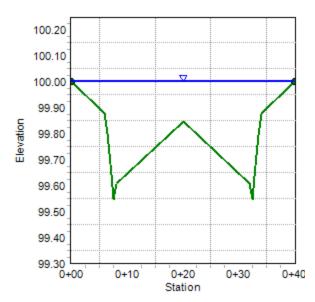
Bentley Systems, Inc. Haestad Methods SoBatirite©FirterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Rating Table for Roll Curb - 10yr

Input Data

Channel Slope (%)	Discharge (ft³/s)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
0.40000	9.09	2.09	4.36	28.08	28.00
0.50000	10.17	2.33	4.36	28.08	28.00
0.60000	11.14	2.56	4.36	28.08	28.00
0.70000	12.03	2.76	4.36	28.08	28.00
0.80000	12.86	2.95	4.36	28.08	28.00
0.90000	13.64	3.13	4.36	28.08	28.00
1.00000	14.38	3.30	4.36	28.08	28.00

Cross Section for Roll Curb - 100yr


Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{ccc} \text{Channel Slope} & 0.40000 & \% \\ \text{Normal Depth} & 0.45 & \text{ft} \\ \text{Discharge} & 21.58 & \text{ft}^3/\text{s} \\ \end{array}$

Cross Section Image

Worksheet for Roll Curb - 100yr

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 Channel Slope
 0.40000
 %

 Normal Depth
 0.45
 ft

Section Definitions

Station (ft)	Elevation (ft)
0+00.00	100.00
0+06.00	99.88
0+06.40	99.80
0+06.80	99.72
0+07.20	99.64
0+07.58	99.55
0+08.00	99.61
0+20.00	99.85
0+32.00	99.61
0+32.42	99.55
0+32.80	99.64
0+33.20	99.72
0+33.60	99.80
0+34.00	99.88
0+40.00	100.00

Roughness Segment Definitions

Start Station	End	ing Station	Roughness Coefficient	
(0+00.00, 10	00.00)	(0+40.00, 100.00)		0.013
Options				
Current Rougnness weighted Method Open Channel Weighting Method Closed Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method Pavlovskii's Method			

Bentley Systems, Inc. Haestad Methods SoBatirite©FirterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Roll Curb - 100yr

			D 100yi
Results			
Discharge		21.58	ft³/s
Elevation Range	99.55 to 100.00 ft		
Flow Area		8.44	ft²
Wetted Perimeter		40.08	ft
Hydraulic Radius		0.21	ft
Top Width		40.00	ft
Normal Depth		0.45	ft
Critical Depth		0.45	ft
Critical Slope		0.00416	ft/ft
Velocity		2.56	ft/s
Velocity Head		0.10	ft
Specific Energy		0.55	ft
Froude Number		0.98	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.45	ft
Critical Depth		0.45	ft
Channel Slope		0.40000	%
onamic ciopo			

Rating Table for Roll Curb - 100yr

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 Channel Slope
 0.40000
 %

 Normal Depth
 0.45
 ft

Section Definitions

Station (ft)	Elevation (ft)
0+00.00	100.00
0+06.00	99.88
0+06.40	99.80
0+06.80	99.72
0+07.20	99.64
0+07.58	99.55
0+08.00	99.61
0+20.00	99.85
0+32.00	99.61
0+32.42	99.55
0+32.80	99.64
0+33.20	99.72
0+33.60	99.80
0+34.00	99.88
0+40.00	100.00

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00.00, 100.00)	(0+40.00, 100.00)	0.013

Channel Slope (%)	Discharge (ft³/s)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)

Bentley Systems, Inc. Haestad Methods SoBatirite©FirterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Rating Table for Roll Curb - 100yr

Input Data

С	channel Slope (%)	Discharge (ft³/s)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
	0.40000	21.58	2.56	8.44	40.08	40.00
	0.50000	24.13	2.86	8.44	40.08	40.00
	0.60000	26.43	3.13	8.44	40.08	40.00
	0.70000	28.55	3.38	8.44	40.08	40.00
	0.80000	30.52	3.62	8.44	40.08	40.00
	0.90000	32.37	3.84	8.44	40.08	40.00
	1.00000	34.12	4.04	8.44	40.08	40.00

RETENTION REQUIRED (100-yr 2-hr)

Sub-Area	Area	C-Value	Р	Volume	Volume
	(SF)	weighted	inches	CF	AF
Α	12427	0.79	2.14	1745	0.04
В	7199	0.79	2.14	1011	0.02
С	1222	0.79	2.14	172	0.00
D	7574	0.79	2.14	1064	0.02
E	3069	0.79	2.14	431	0.01
F	10461	0.79	2.14	1469	0.03
G	8462	0.79	2.14	1188	0.03
Н	9688	0.79	2.14	1361	0.03
I	8644	0.79	2.14	1214	0.03
J	3056	0.79	2.14	429	0.01
K	2247	0.79	2.14	316	0.01
L	2775	0.79	2.14	390	0.01
M	726	0.79	2.14	102	0.00
N	6690	0.79	2.14	940	0.02
0	9445	0.79	2.14	1326	0.03
Р	5395	0.79	2.14	758	0.02
Q	8245	0.79	2.14	1158	0.03
R	1513	0.79	2.14	212	0.00
S	8450	0.79	2.14	1187	0.03
Т	14059	0.79	2.14	1974	0.05
U	12536	0.79	2.14	1761	0.04
V	6332	0.79	2.14	889	0.02
W	7081	0.79	2.14	994	0.02
X	4283	0.79	2.14	601	0.01
Υ	2107	0.79	2.14	296	0.01
Z	2443	0.79	2.14	343	0.01
AA	6256	0.79	2.14	879	0.02
BB	15794	0.79	2.14	2218	0.05
CC	7536	0.79	2.14	1058	0.02
DD	19281	0.79	2.14	2708	0.06
EE	26173	0.79	2.14	3676	0.08
FF	7989	0.79	2.14	1122	0.03
GG	31169	0.79	2.14	4377	0.10
HH	9113	0.79	2.14	1280	0.03
II	21695	0.79	2.14	3047	0.07
JJ	38220	0.79	2.14	5368	0.12
KK	40104	0.79	2.14	5632	0.13
Total	389459			54695	1.26

NOTE: Sub Areas A, & V are not included in table, as these are associated offsite drainage areas

Basin Volume - Basin A

240111101111111111111111111111111111111								
		Average						
Elevation	Area	Area	TOTAL	TOTAL				
FT	SF	SF	CF	AF				
86.5	1			0.00				
87.5	1227	614	614	0.01				
88.5	3231	2229	2843	0.07				
0	0	0	2843	0.07				
		TOTAL	2042	CE				

TOTAL 2843 CF

Values a Daguira d	
Volume Required	
Subbasin	
A,B,C,DD	
(CF)	
5636	
2793	CF
SHORT	

Basin Volume - Basin B

		Average		
G	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
84	1276			0.00
85	1916	1596	1596	0.04
86	2673	2295	3891	0.09
87	3576	3125	7015	0.16

TOTAL 7015 CF

Volume Required	
Subbasin	ı
L,M,N,O,EE	
(CF)	
6433	
Volume OK	CF

Basin Volume - Basin C

		Average		
Elevation	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
89	1953			0.00
90	2872	2413	2413	0.06
91	3916	3394	5807	0.13
92	5084	4500	10307	0.24

TOTAL 10307 CF

Volume Required	
Subbasin	
P,Q,R,S,T,FF	
(CF)	
6411	
Volume OK	CF

Basin Volume - Basin D

		Average		
Elevation	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
91	363			0.00
92	1887	1125	1125	0.03
93	4476	3182	4307	0.10
93.5	6214	2673	6979	0.16

TOTAL 6979 CF

Volume Required	
Subbasin	
GG	
(CF)	
4377	
Volume OK	CF

Basin Volume - Basin E

		Average		
Elevation	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
89	280			0.00
90	620	450	450	0.01
91	1088	854	1304	0.03
92	2359	1724	3028	0.07

TOTAL 3028 CF

Volume Required	
Subbasin	
E,G,H,I,J,K,U,V,KK	
(CF)	
13220	·
10193	CF
VOLUME SHORT	

Basin Volume - Basin F

		Average		
Elevation	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
90.5	663			0.00
91.5	1203	933	933	0.02
92.5	1798	1501	2434	0.06
93.5	2447	2123	4556	0.10
•				

TOTAL 4556 CF

Volume Required	
Subbasin	
W,X,Y,HH	
(CF)	
3172	
Volume OK	CF

Basin Volume - Basin G

		TOTAL	4005	OF.
0	0	0	1625	0.04
0	0	0	1625	0.04
93	2981	1625	1625	0.04
92	268			0.00
FT	SF	SF	CF	AF
Elevation	Area	Area	TOTAL	TOTAL
		Average		

TOTAL 1625 CF

Volume Required	
Subbasin	7
D,F,JJ	
(CF)	
7900	
6276	CF
VOLUME SHORT	

Basin Volume - Basin H

		Average		
Elevation	Area	Area	TOTAL	TOTAL
FT	SF	SF	CF	AF
89	1194			0.00
90	1988	1591	1591	0.04
91	2970	2479	4070	0.09
92	4170	3570	7640	0.18

TOTAL 7640 CF

Volume Required	
Subbasin	
Z,AA,BB,CC,II	
(CF)	
7545	
Volume OK	CF

Underground Storage Tank - 1

	X-	U	
	section		
Diameter	Area	Length	TOTAL
FT	SF	LF	CF
10	78.5	40	3140

TOTAL: 3140 CF

Volume Required	
Subbasin	
Excess from Basin A	
(CF)	
2793	
Volume OK	CF

Underground Storage Tank - 2

	X-	U	
	section		
Diameter	Area	Length	TOTAL
FT	SF	LF	CF
10	78.5	135	10598

TOTAL: 10598 CF

Volume Required	
Subbasin	
Excess from Basin E	
(CF)	
10193	
Volume OK	CF

Underground Storage Tank - 3

onacigic	Julia Sic	nage iai	110 5
	X-		
	section		
Diameter	Area	Length	TOTAL
FT	SF	LF	CF
10	78.5	85	6673

TOTAL: 6673 CF

Volume Required	
Subbasin	,
Excess from Basin G	,
(CF)	
6276	
Volume OK	CF

Basin Percolation Rates - FOR VOLUME PROVIDED

<u>Busini c</u>	roolatioir	itates it	OK VOLU	VIE I IXO V	
Sub-Area	Rate of Bleedoff	Total Volume Provided	Dry-Up Time	# drywells for 36 hour dry up	
	(cfs)	(cf)	(hr)	#	
Basin A -					
Tank 1	0.1	5,983	16.6	0.5	USE 1 DRYWELL
Basin B	0.1	7,015	19.5	0.5	USE 1 DRYWELL
Basin C	0.1	10,307	28.6	0.8	USE 1 DRYWELL
Basin D	0.1	6,979	19.4	0.5	USE 1 DRYWELL
Basin E -					
Tank 2	0.1	13,625	37.8	1.1	USE 2 DRYWELLS
Basin F	0.1	4,556	12.7	0.4	USE 1 DRYWELL
Basin G-					
Tank 3	0.1	8,297	23.0	0.6	USE 1 DRYWELL
Basin H	0.1	7,640	21.2	0.6	USE 1 DRYWELL

Offsite Watershed Rational Method Check					
Sub-Area	Area	C ₁₀₀	Тс	İ 100	Local Q ₁₀₀
	(acre)	DSPM	(min)	(in/hr)	(cfs)
SECTION 1	14.80	0.45	10	5.60	37.30
SECTION 2	5.90	0.86	10	5.60	28.41

Culvert Calculator Report Worksheet-1

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	94.00	ft	Headwater Depth/Height	1.70	
Computed Headwater Elev	/a 93.39	ft	Discharge	28.41	cfs
Inlet Control HW Elev.	92.50	ft	Tailwater Elevation	92.50	ft
Outlet Control HW Elev.	93.39	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	90.00	ft	Downstream Invert	89.50	ft
Length	105.00	ft	Constructed Slope	0.004762	ft/ft
Hydraulic Profile					
Profile Pr	essureProfile		Depth, Downstream	3.00	ft
Slope Type	N/A		Normal Depth	1.50	ft
Flow Regime	N/A		Critical Depth	1.36	ft
Velocity Downstream	4.52	ft/s	Critical Slope	0.006105	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	93.39	ft	Upstream Velocity Head	0.32	ft
Ke	0.50		Entrance Loss	0.16	ft
Inlet Control Properties					
Inlet Control HW Elev.	92.50	ft	Flow Control	Unsubmerged	
Inlet Type Square edg	e w/headwall		Area Full	6.3	ft²
K	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Υ	0.67000				

OFFSITE SECTION 1

Equations Used: $T_{C}=1.14I^{0.5}K$

 $Tc=1.14L^{0.5}Kb^{0.52}S^{-0.3}i^{-0.38}$

Where, Tc = time of concentration

L = length of the longest flow path (miles) Kb = watershed resistance coefficient

S = watercourse slope (ft/mile) i = rainfall intensity (inches/hour)

From Drainage Design Manual for Maricopa County Table 3.1:

Kb=mLogA + b

Assuming Minimal Roughness:

m=-.00625; b=0.04

Watershed A

Kb=mLogA + b

A = 14.8 Ac

Kb=(-0.00625)(Log14.8)+0.04

Kb=.0327

 $Tc=1.14L^{0.5}Kb^{0.52}S^{-0.3}i^{-0.38}$

L = 0.56 mi

Kb=.0327

S = (120ft/1 mi) = 120 ft/mi

i = 5.60(based on Tc of 10 min)

 $Tc=(11.4)(0.56)^{0.5}(.0327)^{0.52}(120)^{-0.31}(5.60)^{-0.38}$

Tc=0.170 hrs = 10.18 mins

OFFSITE SECTION 2

Equations Used:

 $Tc=1.14L^{0.5}Kb^{0.52}S^{-0.3}i^{-0.38}$

Where, Tc = time of concentration

L = length of the longest flow path (miles) Kb = watershed resistance coefficient S = watercourse slope (ft/mile)

i = rainfall intensity (inches/hour)

From Drainage Design Manual for Maricopa County Table 3.1:

Kb=mLogA + b

Assuming Minimal Roughness:

m=-.00625; b=0.04

Watershed A

Kb=mLogA + b

A = 5.9 Ac

Kb=(-0.00625)(Log5.9)+0.04

Kb=.0352

 $Tc=1.14L^{0.5}Kb^{0.52}S^{-0.3}l^{-0.38}$

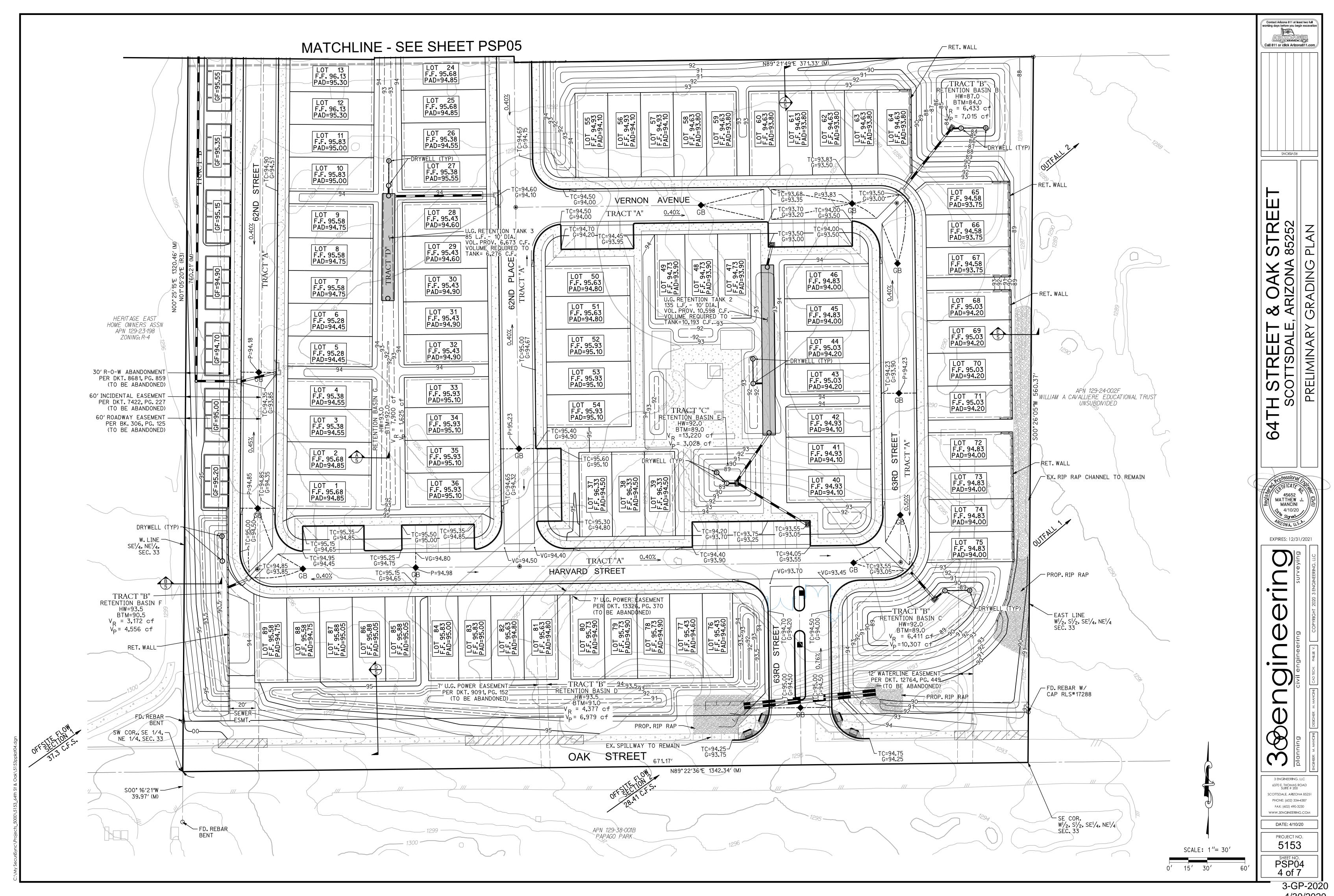
L = 0.37 mi

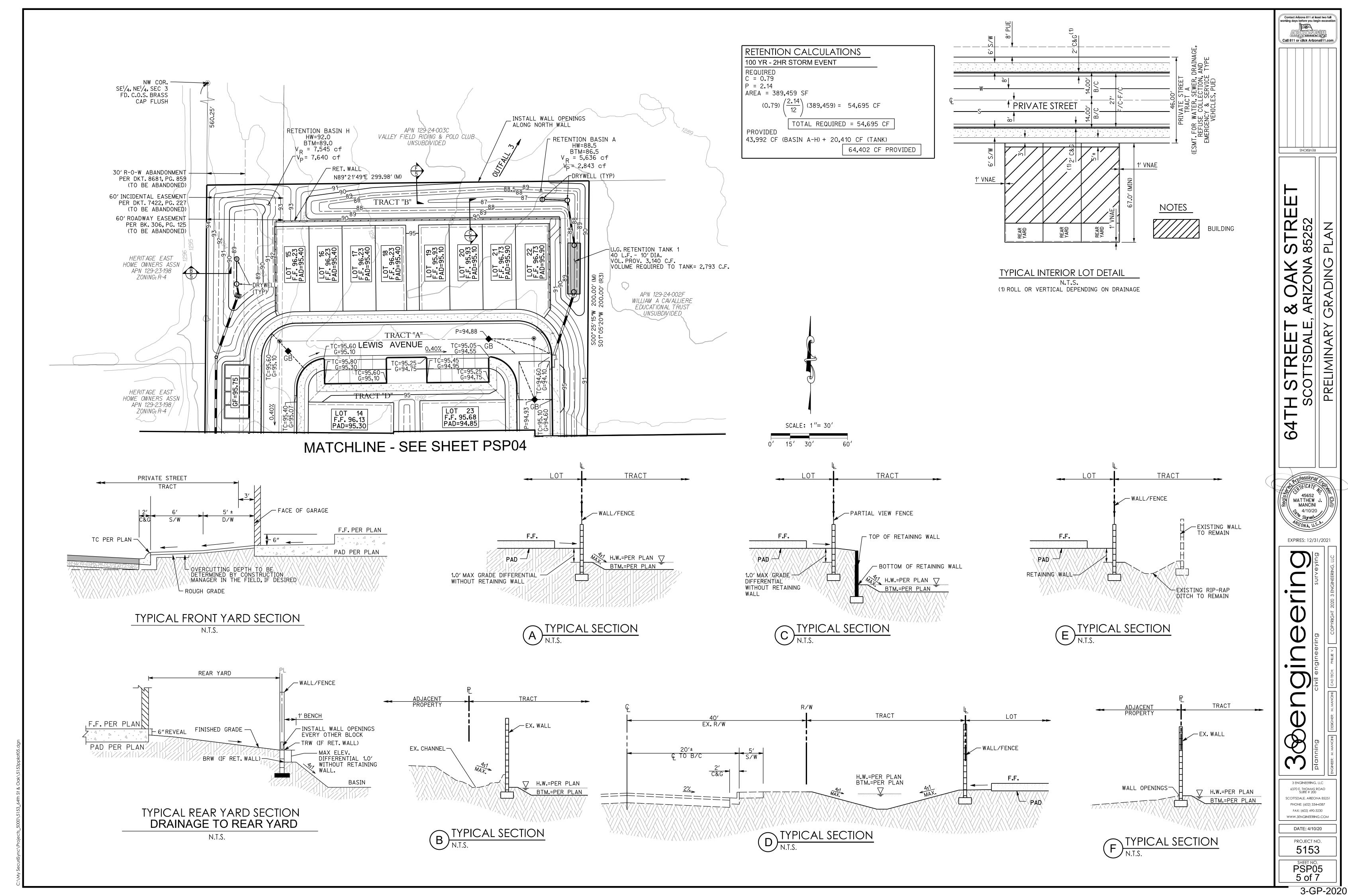
Kb=.0352

S = (107ft/1 mi) = 107 ft/mi

i = 5.60(based on Tc of 10 min)

 $Tc=(11.4)(0.37)^{0.5}(.0352)^{0.52}(107)^{-0.31}(5.60)^{-0.38}$


Tc=0.15 hrs = 9 mins



APPENDIX H

Preliminary Grading and Drainage Plans

4/30/2020

4/30/2020