

Water and Wastewater Study Combined

CIVIL AND SURVEY

Final Design Report Water Report For Platinum Storage 8585 E. Princess Drive Scottsdale, Arizona

BY scan

Disclaimer: If approved; the approval is granted under the condition that the final construction documents submitted for city review will match the information herein. Any subsequent changes in the water or sewer design that materially impact design criteria or standards will require re-analysis, re-submittal, and approval of a revised basis of design report prior to the plan review submission.; this approval is not a guarantee of construction document acceptance. For questions or clarifications contact the Water Resources Planning and Engineering Department at 480-312-5685.

DATE 3/5/2020

January 2020

Prepared by: Hunter Engineering, Inc. 10450 North 74th Street, #200 Scottsdale, AZ 85258 Final Design Report Water Report For Platinum Storage 8585 E. Princess Drive Scottsdale, Arizona

Prepared For:

Platinum Construction 1450 TL Townsend Dr., Rockwall, TX 75032

Prepared By:

Grant Hirneise, PE Hunter Engineering, Inc. 10450 North 74th Street, #200 Scottsdale, AZ 85258 (480) 991-3985

H.E. Project No. PLAT003

TABLE OF CONTENTS

SECTION	TITLE	PAGE NO.
1.0	Introduction	. 1
2.0	Existing Site Conditions	. 1
3.0	Existing Water Distribution System	. 1
4.0	Proposed Domestic Water Demand	
5.0	Proposed Fire Flow Demand	. 2
6.0	Conclusions	
7.0	References	. 3

FIGURES	TITLE	LOCATIONS
1	Vicinity Map	Appendix A
2	Conceptual Utility Plan	Appendix A

<u>APPENDIX</u>	TITLE	LOCATIONS
A	Figures	Appendix A
В	Calculations	Appendix B
С	Reference Information	Appendix C
D	Fire Flow Test	Appendix D

HUNTER ENGINEERING

1.0 INTRODUCTION

This Water Report has been prepared under a contract from Platinum Construction, Owner/Developer of the Platinum Storage site. The purpose of this report is to provide a water analysis, required by the City of Scottsdale, to support this development. Preparations of this report have been done in accordance with the procedures detailed in the City of Scottsdale *Design Standards and Policies Manual* (Reference 1).

This development is located at the southwest corner of Princess Drive and N. Pima Road. The Site is specifically located in the Southeast Quarter of Section 36, Township 4 North, Range 4 East of The Gila and Salt River Base and Meridian, Maricopa County, Arizona. Figure 1 in Appendix A illustrates the location of the project in relation to the City of Scottsdale street system.

On-site improvements include a new storage building with associated parking, utilities, drainage facilities and landscaped areas. The proposed site is bound by Princess Drive to the north, N. Pima Road to the east, and the Pima Medical Center facilities to the south and west. Access to the site will be provided by existing driveways located on Princess Drive and N. Pima Road.

2.0 EXISTING SITE CONDITIONS

The site is located on an undeveloped parcel surrounded by multiple commercial buildings. There is an existing 8" waterline that loops around the commercial buildings and supplies the existing fire hydrants on-site. The existing 8" waterline runs along the drive aisles located to the west and the south of the proposed development. The existing 8" waterline on-site ties into a public 8" waterline located in Princess Drive to the north and a public 8" waterline located in Anderson Drive to the south.

3.0 EXISTING WATER DISTRIBUTION SYSTEM

A fire hydrant flow test was performed on 01/07/2020 by Summit Fire Protection Co. The results show that the existing water distribution system has a static pressure of 85 psi and a residual pressure of 73 psi with a corresponding flow rate of 2430 GPM. The results of the flow test are including in Appendix D.

4.0 PROPOSED DOMESTIC WATER DEMAND

The average day demand (ADD), maximum day demand (MDD), and peak hour demand (PHD) for this development were calculated using the City of Scottsdale *Design Standards & Policies Manual*, Figure 6.1-2 (Appendix C). The maximum day demand is 2 times the average day demand and peak hour demand is 3.5 times the average day demand. See the table below for a summary of these calculations:

Land Use	Building Area (sf)	Fig City Design	ge Day Water Demands gure 6.1-2 of Scottsdale n Standards & cies Manual	Average Day Total Use Flow (ADTUF) (gpd)	Average Day Total Use Flow (ADTUF) (gpm)	Maximum Day Demand (ADTUF* 2) (gpm)	Peak Hour Demand (ADTUF * 3.5) (gpm)
Commercial / Retail	109,759	0.80	gal per s.f.	87,807	61.0	122.0	213.5

5.0 PROPOSED FIRE FLOW DEMAND

The proposed system was modeled using WATERCAD, a pipe network analysis program by Haestad Methods. A reservoir and pump were added to the model near the hydrant flow test location to simulate the pressure versus flow curve. The model has been calibrated to match the results of the hydrant test. Note that the pipes connecting the pump and reservoir are not a part of the system and are oversized to 120-inch to minimize system losses. Pipes and junctions were added to the network model matching the pipe sizes, materials and elevations of the proposed system.

The model is completed as a closed system without extensive information from the entire city pipe network, which is not feasible for the requirements of this report. A closed system is conservative having one-point source of water supply and pressure whereas the existing system can have multiple supply sources feeding the pipe network surrounding the development. The flow test should be representative of the demand adjacent properties have on the system.

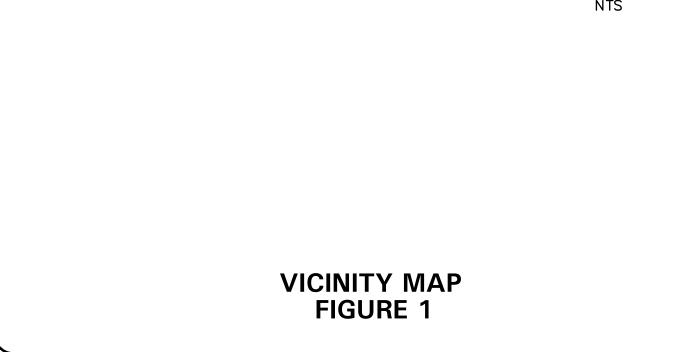
Per the International Fire Code (IFC), the maximum fire flow is based on the construction type of the building and its square footage. The total building area is 109,759 sf. The building construction type is II-B. This requires a fire flow of 7,000 GPM be achieved at a minimum pressure of 20 PSI. The proposed building will utilize sprinklers; therefore, a 50% reduction in the fire flow requirement may be applied. This reduces the required fire flow to 3,500 GPM. The resultant pressure for the fire flow is 56.46 psi which is more than the minimum required 20 psi. Results from the WaterCAD analysis can be found in Appendix B.

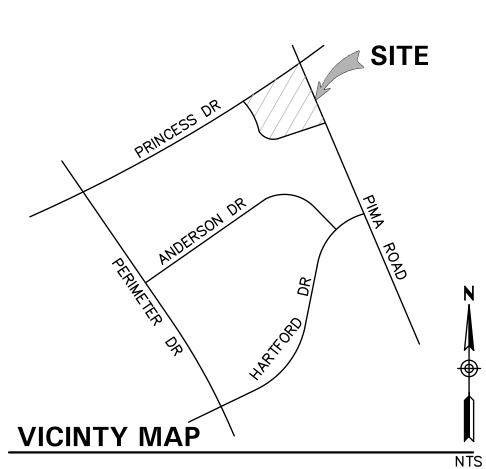
6.0 CONCLUSIONS

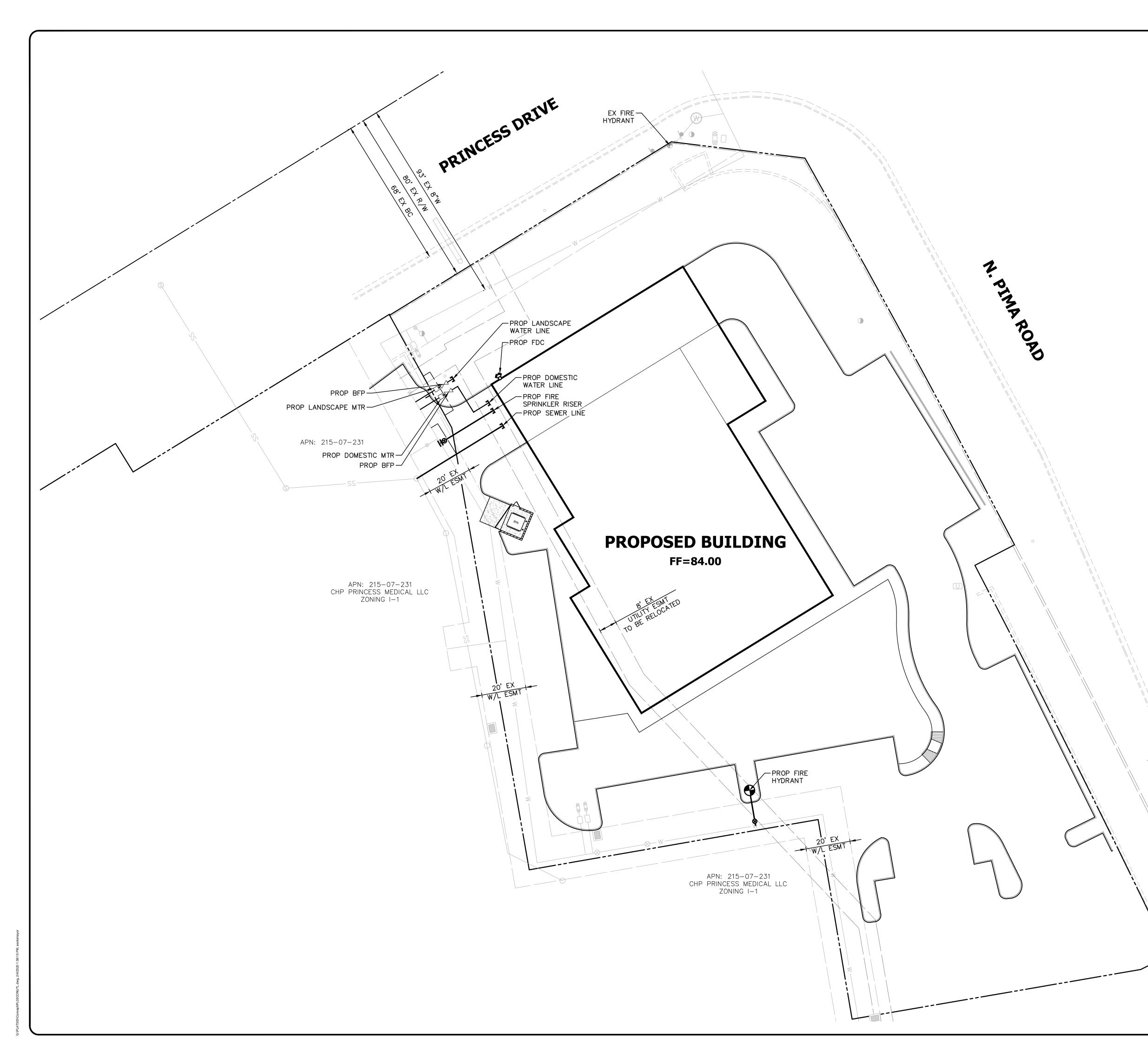
Based on the results of this study, it can be concluded that:

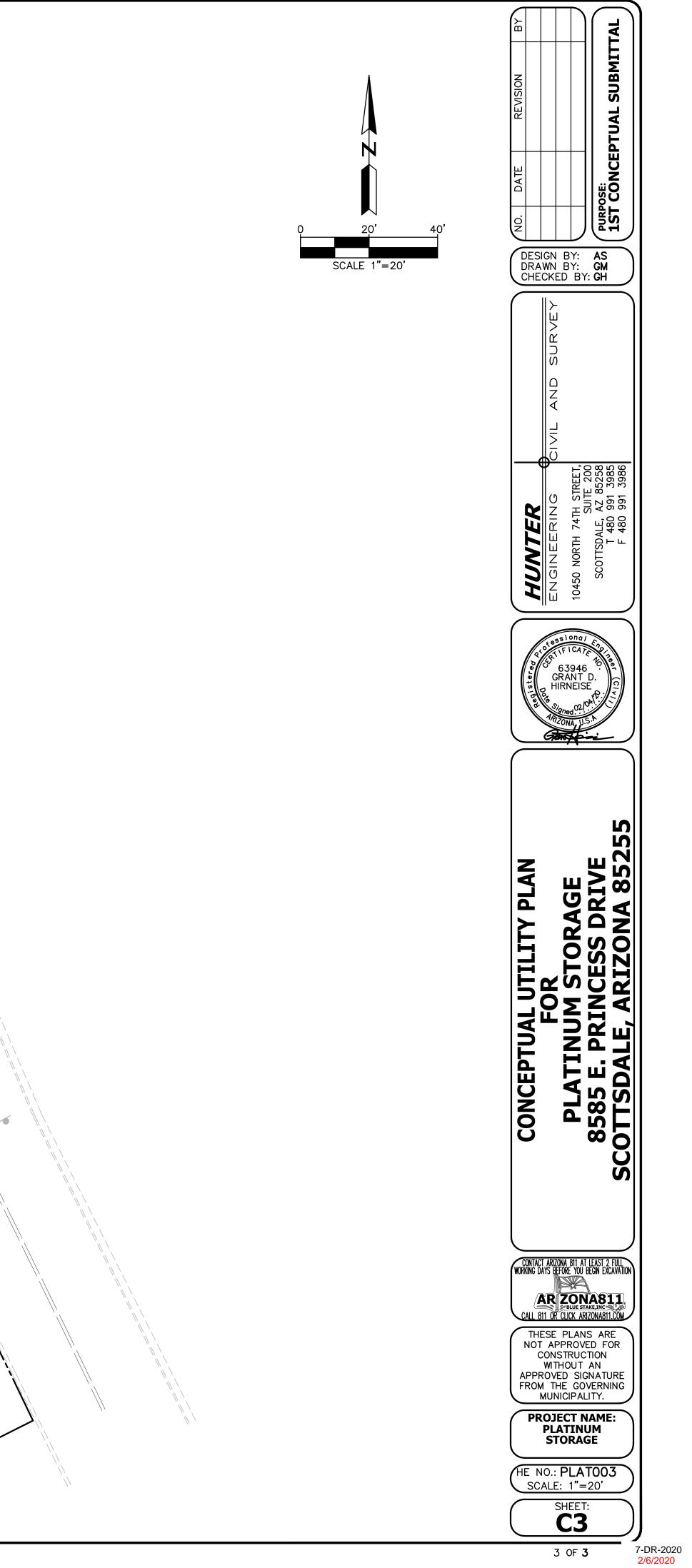
- The proposed water network meets the requirements to support this development.
- Results of the WaterCAD model indicate that the proposed water network does provide the needed fire flow and pressure to service this development.

7.0 REFERENCES


1. City of Scottsdale Design Standards & Policies Manual, January 2018.




APPENDIX A FIGURES

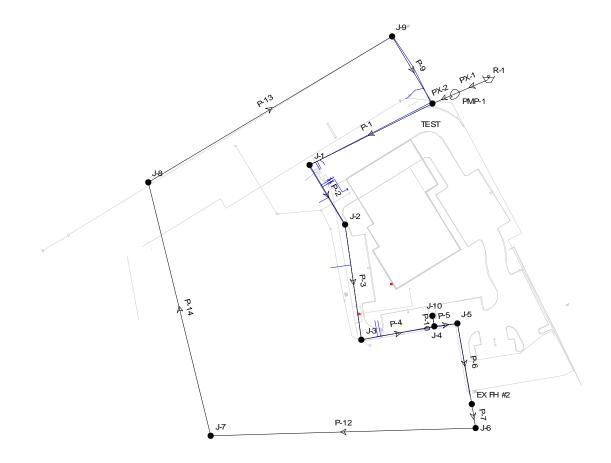


APPENDIX B WATERCAD CALCULATIONS

Project: Platinum Storage Project Number: PLAT003 City: Scottsdale Date: 2/3/2020

PROJECTED MAXIMUM DOMESTIC WATER DEMANDS

Land Use	Building	Average Day Fi _g	Average Day Water Demands Figure 6-2	Average Day Total Use	Average Day	Maximum Day Demand	Peak Hour Demand
	Area (sr)	Design Stan	Design Standards Manual For		FIOW (AUTUF) (ADTUF) (gpm) (ADTUF * 2) (ADTUF * 3.5)	(ADTUF * 2)	(ADTUF * 3.5)
		Water and W	Water and Wastewater Systems	(bdg)		(gpm)	(mdg)
Commercial/ Retail	109,759	0.8	gal per s.f.	87,807	61.0	122	213.5


FIRE FLOW SUMMARY

d Use	Building Area (sf)	Estimated Construction Type	Estimated Minimum Required Fire Flow, Construction Table B105.1, 2015 International Type Fire Code (gpm)	50% Sprinklered Fire Flow (gpm)	Building Sprinklered
nmercial/ Retail	109,759	II-B	7,000	3,500	YES

WATER FLOW TEST REPORT

Project: Project Number: Test Date:	Princess Storage PLAT003 1/27/2020			
TOTAL FLOW DURIN STATIC READING:	NG TEST: 85	2430 GPM PSI	RESIDUAL: 73	PSI
RESULTS: REMARKS:	AT 20 PSI RESIDUAL	6051 GPM	AT 0 PSI	6994 GPM
psi X 2.31 = f	Shutoff Head 85 psi t 196.35 ft	Design 73 psi 168.63 ft 2430 flow	Max Operating 0 psi 0 ft 6994 flow	

Scenario: Residual

Water

Scenario: Peak Steady State Analysis Pipe Report

Length (ft)	Diameter (in)	Material	Hazen- Williams C	Discharge (gpm)	Upstream Structure Hydraulic Grade (ft)	Downstream Structure Hydraulic Grade (ft)	Pressure Pipe Headloss (ft)	Headloss Gradient (ft/1000ft)	Velocity (ft/s)
185.00		8.0 Ductile Iron	130.0	158.97	282.04	281.93	0.11	0.61	1.01
95.00	8.0	Ductile Iron	130.0	158.97	281.93	281.87	0.06	0.61	1.01
55.00	8.0	Ductile Iron	130.0	-54.53	281.87	281.89	0.01	0.08	0.35
100.00	8.0	8.0 Ductile Iron	130.0	-54.53	281.89	281.89	0.01	0.08	0.35
30.00		8.0 Ductile Iron	130.0	-54.53	281.89	281.90	0.00	0.08	0.35
175.00		8.0 Ductile Iron	130.0	54.53	281.91	281.90	0.01	0.08	0.35
25.00		8.0 Ductile Iron	130.0	54.53	281.91	281.91	0.00	0.08	0.35
100.00		8.0 Ductile Iron	130.0	-54.53	282.03	282.04	0.01	0.08	0.35
15.00		8.0 Ductile Iron	130.0	00.00	281.89	281.89	0.00	00.00	00.0
657.00		8.0 Ductile Iron	130.0	-54.53	281.91	281.97	0.05	0.08	0.35
700.00		8.0 Ductile Iron	130.0	-54.53	281.98	282.03	0.06	0.08	0.35
643.00		12.0 Ductile Iron	130.0	-54.53	281.97	281.98	0.01	0.01	0.15
1.00	120.0	120.0 Ductile Iron	130.0	213.50	86.00	86.00	00.00	0.00	0.01
1.00	120.0	120.0 Ductile Iron	130.0	213.50	282.04	282.04	0.00	00.00	0.01

Scenario: Peak Steady State Analysis Junction Report

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	281.91	89.09
J-1	81.50	0.00	0.00	281.93	86.72
J-2	80.00	213.50	213.50	281.87	87.34
J-3	79.00	0.00	0.00	281.89	87.78
J-4	79.00	0.00	0.00	281.89	87.78
J-5	79.25	0.00	0.00	281.90	87.68
J-6	75.00	0.00	0.00	281.91	89.52
J-7	70.00	0.00	0.00	281.97	91.71
J-8	82.00	0.00	0.00	281.98	86.52
J-9	87.00	0.00	0.00	282.03	84.38
J-10	79.50	0.00	0.00	281.89	87.57
TEST	86.00	0.00	0.00	282.04	84.82

>50 psi OK

Scenario: Average Day **Steady State Analysis Junction Report**

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	282.31	89.26
J-1	81.50	0.00	0.00	282.31	86.88
J-2	80.00	61.00	61.00	282.30	87.53
J-3	79.00	0.00	0.00	282.30	87.96
J-4	79.00	0.00	0.00	282.31	87.96
J-5	79.25	0.00	0.00	282.31	87.85
J-6	75.00	0.00	0.00	282.31	89.69
J-7	70.00	0.00	0.00	282.31	91.86
J-8	82.00	0.00	0.00	282.31	86.67
J-9	87.00	0.00	0.00	282.32	84.51
J-10	79.50	0.00	0.00	282.31	87.74
TEST	86.00	0.00	0.00	282.32	84.94

>50 psi OK

Scenario: Max Day Steady State Analysis Junction Report

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	282.19	89.21
J-1	81.50	0.00	0.00	282.20	86.83
J-2	80.00	122.00	122.00	282.18	87.47
J-3	79.00	0.00	0.00	282.19	87.91
J-4	79.00	0.00	0.00	282.19	87.91
J-5	79.25	0.00	0.00	282.19	87.80
J-6	75.00	0.00	0.00	282.20	89.64
J-7	70.00	0.00	0.00	282.21	91.82
J-8	82.00	0.00	0.00	282.22	86.62
J-9	87.00	0.00	0.00	282.24	84.47
J-10	79.50	0.00	0.00	282.19	87.69
TEST	86.00	0.00	0.00	282.24	84.90

>50 psi OK

Scenario: Max Day + Fire **Steady State Analysis Junction Report**

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	212.34	58.99
J-1	81.50	0.00	0.00	219.20	59.58
J-2	80.00	122.00	122.00	216.58	59.09
J-3	79.00	0.00	0.00	213.05	58.00
J-4	79.00	0.00	0.00	210.78	57.01
J-5	79.25	0.00	0.00	211.00	57.00
J-6	75.00	0.00	0.00	212.53	59.50
J-7	70.00	0.00	0.00	217.53	63.83
J-8	82.00	0.00	0.00	218.21	58.93
J-9	87.00	0.00	0.00	223.54	59.07
J-10	79.50	1,750.00	1,750.00	210.00	56.46
TEST	86.00	1,750.00	1,750.00	224.30	59.84

>20 psi OK

Scenario: Static **Steady State Analysis Junction Report**

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
EX FH #2	76.00	0.00	0.00	282.35	89.28	
J-1	81.50	0.00	0.00	282.35	86.90	
J-2	80.00	0.00	0.00	282.35	87.55	
J-3	79.00	0.00	0.00	282.35	87.98	
J-4	79.00	0.00	0.00	282.35	87.98	
J-5	79.25	0.00	0.00	282.35	87.87	
J-6	75.00	0.00	0.00	282.35	89.71	
J-7	70.00	0.00	0.00	282.35	91.87	
J-8	82.00	0.00	0.00	282.35	86.68	
J-9	87.00	0.00	0.00	282.35	84.52	
J-10	79.50	0.00	0.00	282.35	87.76	
TEST	86.00	0.00	0.00	282.35	84.95	≈85 psi

Scenario: Residual Steady State Analysis Junction Report

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	254.63	77.28
J-1	81.50	0.00	0.00	254.63	74.91
J-2	80.00	0.00	0.00	254.63	75.55
J-3	79.00	0.00	0.00	254.63	75.99
J-4	79.00	0.00	0.00	254.63	75.99
J-5	79.25	0.00	0.00	254.63	75.88
J-6	75.00	0.00	0.00	254.63	77.72
J-7	70.00	0.00	0.00	254.63	79.88
J-8	82.00	0.00	0.00	254.63	74.69
J-9	87.00	0.00	0.00	254.63	72.53
J-10	79.50	0.00	0.00	254.63	75.77
TEST	86.00	2,430.00	2,430.00	254.63	72.96

≈73 psi OK

Scenario: Calculated Steady State Analysis Junction Report

Label	Elevation (ft)	Base Flow (gpm)	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
EX FH #2	76.00	0.00	0.00	132.19	24.31
J-1	81.50	0.00	0.00	132.19	21.93
J-2	80.00	0.00	0.00	132.19	22.58
J-3	79.00	0.00	0.00	132.19	23.01
J-4	79.00	0.00	0.00	132.19	23.01
J-5	79.25	0.00	0.00	132.19	22.91
J-6	75.00	0.00	0.00	132.19	24.74
J-7	70.00	0.00	0.00	132.19	26.91
J-8	82.00	0.00	0.00	132.19	21.72
J-9	87.00	0.00	0.00	132.19	19.55
J-10	79.50	0.00	0.00	132.19	22.80
TEST	86.00	6,051.00	6,051.00	132.19	19.98

≈20 psi OK

Detailed Report for Reservoir: R-1

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Scenario Summary				
Scenario	Residual			
Active Topology Alternative	Base-Active	торо	logy	
Physical Alternative	Base-Physi	cal		
Demand Alternative	Demand-Re	sidual		
Initial Settings Alternative	Base-Initial	Settin	gs	
Operational Alternative	Base-Opera	ational		
Age Alternative	Base-Age A	Iterna	tive	
Constituent Alternative	Base-Const	ituent		
Trace Alternative	Base-Trace	Alterr	ative	
Fire Flow Alternative	Base-Fire F	low		
Capital Cost Alternative	Base-Capita	al Cost	t	
Energy Cost Alternative	Base-Energ	y Cos	t	
User Data Alternative	Base-User	Data		
Global Adjustments Summary				
Global Adjustments Summary Demand	<none></none>		Roughness	<none></none>
	<none></none>		Roughness	<none></none>
Demand	<none></none>	ft	Roughness	<none> 86.00 ft</none>
Demand Geometric Summary				
Demand Geometric Summary X	5,109.61		Elevation	86.00 ft
Demand Geometric Summary X	5,109.61 5,024.32		Elevation	86.00 ft

0.00 86.00 2,430.00 ,430.00

Detailed Report for Pump: PMP-1

Note:

The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Residual			
Base-Active Topol	ogy		
Base-Physical			
Demand-Residual			
Base-Initial Setting	ıs		
Base-Operational	, ,		
•	ive		
Base-Constituent			
Base-Trace Alterna	ative		
Base-Fire Flow			
Base-Capital Cost			
Base-Energy Cost			
Base-User Data			
	Pouchnoss	Nora	
	Rouginess	<inoug:< td=""><td>></td></inoug:<>	>
5,064.87 ft	Upstream Pipe	F	PX-1
			PX-2
	Doministroaminip	,	<u> </u>
PLATOUS			
On	Initial Relative Sp	eed Facto	1.00
Presults Summary			
eDischarge Pump R			
	Speed Water Power		
eDischarge Pump R (gpm) Head S	Speed Water		
eDischarge Pump R (gpm) Head S	Speed Water Power		
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63	SpeedWater Power (Hp)1.00103.46		
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	SpeedWater Power (Hp)1.00103.46	e ctor = 1.00)	i1
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	1 1 1 1
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	1 1 1 1 1
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur	Speed Water Power (Hp) 1.00 103.46 mp Head Curv	e ctor = 1.00)	
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur PMP-1 (Relation	Speed Water Power (Hp) 1.00 103.46 mp Head Curv tive Speed Fa	e ctor = 1.00)	0.0 700
eDischarge Pump R (gpm) Head S (ft) 3 2,430.00 68.63 Pur PMP-1 (Relation	Speed Water Power (Hp) 1.00 103.46 mp Head Curv tive Speed Fa	ctor = 1.00)	0.0 700
	Base-Physical Demand-Residual Base-Initial Setting Base-Operational Base-Age Alternat Base-Constituent Base-Trace Alterna Base-Fire Flow Base-Capital Cost Base-Capital Cost Base-Lenergy Cost Base-User Data	Demand-Residual Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Capital Cost Base-Energy Cost Base-User Data 5,064.87 ft Upstream Pipe 5,004.81 ft Downstream Pipe 86.00 ft	Base-Physical Demand-Residual Base-Initial Settings Base-Operational Base-Age Alternative Base-Constituent Base-Trace Alternative Base-Capital Cost Base-Capital Cost Base-Linergy Cost Base-User Data S,064.87 ft Upstream Pipe 5,004.81 ft Downstream Pipe 86.00 ft

APPENDIX C REFERENCE INFORMATION

DESIGN FLOW & HEAD LOSS

The ultimate design flow within the city's water transmission and distribution system will be based on the city's current Integrated Water Master Plan. Water demand for each development will be calculated using the average day demands, as shown in Figure 6-1.2, to ensure that the existing distribution supply is sufficient. Designs will include all necessary improvements, including booster pumping stations, reservoirs, lines and appurtenances to meet the system's ultimate demand.

- A. The four hydraulic modeling scenarios detailed in 6-1.202 will demonstrate that the system is adequately designed.
- B. Select model scenario flows and their respective peaking factors are as follows:
 - 1. Maximum day: Defined as 2 times the average day total use flow as determined per Figure 6-1.2 (use gpm value).
 - 2. Peak hour: Defined as 3.5 times the average day total use as determined per Figure 6-1.2 (use gpm value).
 - 3. <u>Note:</u> These peaking factors shall be appropriately increased for restaurants and high-demand water users, or as designated by the Water Resources Department after review.
- C. The maximum allowable pipe head loss for the various water pipelines is as follows:
 - 1. Transmission mains: 8 feet per 1,000 feet (3.5 psi per 1,000 feet)
 - 2. Distribution lines: 10 feet per 1,000 feet (4.3 psi per 1,000 feet)
 - 3. Service lines domestic, dedicated fire, or combined domestic/fire: size as required to satisfy both hydraulic modeling requirements and Fire Code. Generally, velocities of more than 5 feet per second are undesirable. Velocities more than 7.5 feet per second are not allowed.
 - 4. As otherwise designated by the Water Resources Department

SYSTEM FLOW TEST REQUIREMENTS & USE OF RESULTS

Pressure and available flow information for existing water lines must be obtained by having a fire hydrant flow test performed on the system. Hydrant flow tests are required for the following situations:

- A. On all commercial projects, multi-family residential projects, and public extensions of the city's water distribution system.
- B. For any proposed system connecting to the existing distribution system, the design capacity of the existing system (flow versus pressure) will need to be determined by the engineer.
- C. Prior to acceptance by the city, all platted subdivisions shall conduct an additional flow test at the lowest and highest elevation available in which the development is constructed.
- D. Developments that cross pressure zone boundaries must conduct a flow test within each pressure zone.

A private fire protection company shall perform the tests and certify the results. A right-of-way permit issued by the One Stop Shop is required for a flow test and the Inspection Services Division will be notified a minimum of 48 hours before performing the flow test. The permit is also available <u>online</u>. Refer to the <u>flow test design form</u>.

6-1.405

- d. Pipe flow velocity in feet per second (fps)
- e. Each pipe segment's head loss rate (ft. /1,000ft or psi/ft.)
- f. PRVs: Upstream and downstream pressures (psi or HGL elevation)
- g. Tanks: Inflow and outflow (gpm)
- h. Shows all units for the values presented or provide a legend on the diagram page that indicates the units used

AVERAGE DAY WATER DEMANDS (1) IN GALLONS PER DAY (GPD) ⁽²⁾ IN GALLONS PER MINUTE (GPM) ⁽²⁾⁽³⁾ Land Use Total Inside Use Outside Total Use Inside Outside Units Use Use Use Use Residential Demand per Dwelling Unit 208.9 276.7 0.30 0.69 < 2 dwelling unit 485.6 0.39 per per acre (DU/ac) unit 2 – 2.9 DU/ac 276.7 470.4 0.27 193.7 0.39 0.66 per unit 3 – 7.9 DU/ac 175.9 72.3 248.2 0.25 0.11 0.36 per unit 227.6 0.33 8 – 11.9 DU/ac 155.3 72.3 0.22 0.11 per unit 12 – 22 DU/ac 72.3 0.33 155.3 227.6 0.22 0.11 per unit 30 0.27 High Density 155.3 185.3 0.22 0.05 per Condominium unit (condo) 401.7 44.6 0.56 0.07 Resort Hotel 446.3 0.63 per (includes site room amenities) Service and Employment Restaurant 1.2 0.1 1.3 1.67E-03 1.39E-04 1.81E-03 per square foot (sq.ft.) Commercial/ 0.7 0.1 0.8 9.73E-04 1.39E-04 1.11E-03 per Retail sq.ft. Commercial High 0.5 0.1 0.6 6.95E-04 1.39E-04 8.34E-04 per Rise sq.ft.

873

154

AVERAGE DAY V	VATER DE	MANDS ⁽¹)				
IN GALLONS PE	R DAY (GP	D) ⁽²⁾	IN GALLONS PER MINUTE (GPM) ⁽²⁾⁽³⁾				
Office	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.
Institutional	670	670	1340	0.94	0.94	1.88	per acre

1027

1.22

0.22

1.44

per acre

Research and Development	1092	192	1284	1.52	0.27		per acre
Special Use Areas		1			1	1	
Natural Area Open Space	0	0	0	0.0	0.0		per acre
Developed Open Space – Parks	0	1786	1786	0.0	2.49		per acre
Developed Open Space – Golf Course	0	4285	4285	0.0	5.96		per acre

Notes:

Industrial

(1) These values shall not be used directly for service line or water meter sizing.

(2) Gallon per day values are provided for reference only. The instantaneous gallon per minute flow rates presented are intended for use in the required hydraulic modeling scenarios. The gpm values assume a 12-hour active water use period per 24-hour day. In large or specialty developments or master plans the hydraulic analysis criteria and parameters should be discussed with the Water Resources Department. Seasonal peaking should also be considered. Upon review, the Water Resources Department reserves the right to designate flows to be used in hydraulic modeling scenarios that may be different from those presented here.

(3) The hydraulic modeling peaking factors used in select modeling scenarios are to be applied to the gpm values shown here. Max day and peak hour peaking factors can be found in Section 6-1.404.

FIGURE 6-1.2 AVERAGE DAY WATER DEMANDS

SECTION B101 GENERAL

B101.1 Scope.

The procedure for determining fire-flow requirements for buildings or portions of buildings hereafter constructed shall be in accordance with this appendix. This appendix does not apply to structures other than buildings.

SECTION B102 DEFINITIONS

B102.1 Definitions.

For the purpose of this appendix, certain terms are defined as follows:

FIRE FLOW. The flow rate of a water supply, measured at 20 pounds per square inch (psi) (138 kPa) residual pressure, that is available for fire fighting.

FIRE-FLOW CALCULATION AREA. The floor area, in square feet (m²), used to determine the required fire flow.

SECTION B103 MODIFICATIONS

B103.1 Decreases.

The *fire code official* is authorized to reduce the *fire-flow* requirements for isolated buildings or a group of buildings in rural areas or small communities where the development of full *fire-flow* requirements is impractical.

B103.2 Increases.

The *fire code official* is authorized to increase the *fire-flow* requirements where conditions indicate an unusual susceptibility to group fires or conflagrations. An increase shall be not more than twice that required for the building under consideration.

B103.3 Areas without water supply systems.

For information regarding water supplies for fire-fighting purposes in rural and suburban areas in which adequate and reliable water supply systems do not exist, the *fire code official* is authorized to utilize NFPA 1142 or the *International Wildland-Urban Interface Code*.

SECTION B104 FIRE-FLOW CALCULATION AREA

B104.1 General.

The *fire-flow calculation area* shall be the total floor area of all floor levels within the *exterior walls*, and under the horizontal projections of the roof of a building, except as modified in Section B104.3.

B104.2 Area separation.

Portions of buildings that are separated by *fire walls* without openings, constructed in accordance with the *International Building Code*, are allowed to be considered as separate *fire-flow calculation areas*.

B104.3 Type IA and Type IB construction.

The *fire-flow calculation area* of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors.

Exception: *Fire-flow calculation area* for open parking garages shall be determined by the area of the largest floor.

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration requirements for one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.1(1) and B105.1(2).

TABLE B105.1(1)

REQUIRED FIRE FLOW FOR ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURAT (hours)
0–3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B at the required fire-
0–3,600	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	500	1/2
3,601 and greater	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	¹ / ₂ value in Table B105.1(2)	1

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m.

Т

TABLE B105.1(2)REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

FLOW		FIRE-FLOW CALCULATION AREA (square feet)						
DURATION (hours)	FIRE-FLOW (gallons per minute) ^b	Туре V-В ^а	Type IV andType IIB andV-A ^a IIIB ^a		e IA and Type IIA and IIIA ^a			
	1,500	0-3,600	0-5,900	0-8,200	0-12,700	0-22,700		
	1,750	3,601-4,800	5,901-7,900	8,201-10,900	12,701-17,000	22,701- 30,200		
	2,000	4,801-6,200	7,901-9,800	10,901-12,900	17,001-21,800	30,201- 38,700		
2	2,250	6,201-7,700	9,801-12,600	12,901-17,400	21,801-24,200	38,701- 48,300		
	2,500	7,701-9,400	12,601-15,400	17,401-21,300	24,201-33,200	48,301- 59,000		
	2,750	9,401- 11,300	15,401-18,400	21,301-25,500	33,201-39,700	59,001- 70,900		
	3,000	11,301- 13,400	18,401-21,800	25,501-30,100	39,701-47,100	70,901- 83,700		
3	3,250	13,401- 15,600	21,801-25,900	30,101-35,200	47,101-54,900	83,701- 97,700		
3	3,500	15,601- 18,000	25,901-29,300	35,201-40,600	54,901-63,400	97,701- 112,700		
	3,750	18,001- 20,600	29,301-33,500	40,601-46,400	63,401-72,400	112,701- 128,700		
	4,000	20,601- 23,300	33,501-37,900	46,401-52,500	72,401-82,100	128,701- 145,900		
	4,250	23,301-	37,901-42,700	52,501-59,100	82,101-92,400	145,901-		

2/6/2020

164,200				26,300		
164,201- 183,400	92,401- 103,100	59,101-66,000	42,701-47,700	26,301- 29,300	4,500	
183,401- 203,700	103,101- 114,600	66,001-73,300	47,701-53,000	29,301- 32,600	4,750	
203,701- 225,200	114,601- 126,700	73,301-81,100	53,001-58,600	32,601- 36,000	5,000	
225,201- 247,700	126,701- 139,400	81,101-89,200	58,601-65,400	36,001- 39,600	5,250	
247,701- 271,200	139,401- 152,600	89,201-97,700	65,401-70,600	39,601- 43,400	5,500	
271,201- 295,900	152,601- 166,500	97,701- 106,500	70,601-77,000	43,401- 47,400	5,750	
295,901- Greater	166,501- Greater	106,501- 115,800	77,001-83,700	47,401- 51,500	6,000	4
_	_	115,801- 125,500	83,701-90,600	51,501- 55,700	6,250	
_	_	125,501- 135,500	90,601-97,900	55,701- 60,200	6,500	
_	_	135,501- 145,800	97,901- 106,800	60,201- 64,800	6,750	
_	_	145,801- 156,700	106,801- 113,200	64,801- 69,600	7,000	
_	_	156,701- 167,900	113,201- 121,300	69,601- 74,600	7,250	
_		167,901- 179,400	121,301- 129,600	74,601- 79,800	7,500	
—	_	179,401- 191,400	129,601- 138,300	79,801- 85,100	7,750	
_		191,401- Greater	138,301- Greater	85,101- Greater	8,000	

For SI: 1 square foot = 0.0929 m², 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

a. Types of construction are based on the *International Building Code*.b.Measured at 20 psi residual pressure.

B105.2 Buildings other than one- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration for buildings other than one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.2 and B105.1(2).

TABLE B105.2

REQUIRED FIRE FLOW FOR BUILDINGS OTHER THAN ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURATION (hours)
No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2)
Section 903.3.1.1 of the <i>International</i> <i>Fire Code</i>	25% of the value in Table B105.1(2) ^a	Duration in Table B105.1(2) at the reduced flow rate
Section 903.3.1.2 of the International Fire Code	25% of the value in Table B105.1(2) ^b	Duration in Table B105.1(2) at the reduced flow rate

For SI: 1 gallon per minute = 3.785 L/m.

a. The reduced fire flow shall be not less than 1,000 gallons per minute.

b.The reduced fire flow shall be not less than 1,500 gallons per minute.

B105.3 Water supply for buildings equipped with an automatic sprinkler system.

For buildings equipped with an *approved automatic sprinkler system*, the water supply shall be capable of providing the greater of:

1. The *automatic sprinkler system* demand, including hose stream allowance.

2. The required *fire flow*.

SECTION B106 REFERENCED STANDARDS

ICC IBC—18	International Building Code	B104.2
ICC IWUIC—18	International WildlandUrban Interface Code	B103.3
ICC IRC—18	International Residential Code	Table B105.1(1)
NFPA 1142—17	Standard on Water Supplies for Suburban and Rural Fire Fighting	B103.3

APPENDIX D FIRE FLOW TEST

SUMMIT FIRE PROTECTION CO.

Phone: (480) 966-9178 Fax: (480) 967-9191 2114 East Cedar Street • Tempe, Arizona 85281 DE-mail Address: EBeckman@SummitCoUS.com

AZ Lic. C-16 275324

FIRE · LIFE SAFETY · CONSULTING

FIRE HYDRANT FLOW TEST

Name: SWC Pima Rd & Princess Dr							Date:				
								Time:		0AM	
	Scottsdale, AZ							Report #			
								Tech:	Darry	l Cross	
Static Hydrant: SWC of Pima Rd and						Flowing	Hydrant:	SEC of b	building @ 8575		
Princess Drive								E. Prince	ess Dr. ir	n parking i	sland
	Elevation	:				E	levation:	0			
Dist. Between Hydrants: 500'					r	Туре о	f Supply:	City Mair	1	•	-
Diameter of Main: <u>8"</u>							Hydrant:	1	2	3	4
Static Pressure: 85.0						Outlet D	iameter:	4.0			
Residual Pressure: 73.0						Pitot I	Reading:	32.0			
Pump Present:							Coeff:	0.900			
	Tank Present					Dischar	ge GPM:	2430	0	0	0
	Req. GPM	:	Req. PSI:								
]		Static pressure	of	85	psi @	0	gpm	7		
		F	Residual pressure			psi @	2430	gpm			
			Available flow	@		psi @	6051	gpm			
90											
90				Test C	urve						
80 -	0										
			2430								
70			· · · · · · · · · · · · · · · · · · ·								
60					· · · · ·						
Gauge Pressure (psi)											
50 ne						***					
ess											
6 40											
aug							`	· · · · · · · · · · · · · · · · · · ·			
0 30											
20 -									6	051	
									•		
40											
10											
0											
	0 1000	2	2000 30	00	4	000	50	00	600	0	7000
				Flow	(gpm)						
Commenter with Jarad Barny from City of Spottadala 602 541 4042											

Comments: with Jared Berry from City of Scottsdale 602-541-4942

NOTES:

- 1. Flowing hydrant is assumed to be on a circulating main or downstream of the pressure test hydrant on a dead-end system.
- 2. Flow analysis assumes a gravity flow system with no distribution pumps and having no demand, other than the test
- 3. The distance between hydrants, elevations & main diameters are for information only.