

# Abbreviated Water and Sewer Needs

GIVIL AND SURVEY



HUNTER







October 2020

Prepared by: Hunter Engineering, Inc. 10450 North 74<sup>th</sup> Street, #200 Scottsdale, AZ 85258

> 23-DR-2020 23-DR-2020 11/02/20

# SEWER BASIS OF DESIGN REPORT FOR DC RANCH LOT 15/FETZER 9217 E. VERDE GROVE VIEW SCOTTSDALE, ARIZONA 85255

PREPARED FOR

# LGE DESIGN BUILD 1200 NORTH 52<sup>ND</sup> STREET PHOENIX, AZ 85008

PREPARED BY

JORGE ORTIZ, P.E. HUNTER ENGINEERING, INC. 10450 NORTH 74<sup>TH</sup> STREET, #200 SCOTTSDALE, AZ 85258 (480) 991-3985

OCTOBER 2020 H.E. PROJECT NO. LGEC275

> HUNTER engineering 23-DR-2020

## **Table of Contents**

## **Section**

## <u>Title</u>

#### Page #

| 1.0 | Introduction                     | 1   |
|-----|----------------------------------|-----|
| 2.0 | Existing Conditions              | 1   |
| 3.0 | Proposed Sewer Collection System | 1-2 |
| 4.0 | Conclusion                       | 2   |
| 5.0 | References                       | 3   |
| 5.0 | Keleiences                       | 5   |

| <u>Figures</u>  | <u>Title</u> | <b>Location</b> |
|-----------------|--------------|-----------------|
| 1               | Vicinity Map | Appendix A      |
| <u>Appendix</u> | <u>Title</u> |                 |
| А               | Figures      |                 |

| А | Figures                   |
|---|---------------------------|
| В | Sewer Capacity Worksheets |
| С | References                |
| D | Utility Plan              |



HUNTER engineering 23-dr-2020

#### **1.0 INTRODUCTION**

This sewer basis of design report has been prepared under a contract from LGE Design Build, developer of the DC Ranch Lot 15/Fetzer project. The purpose of this report is to provide a final sewer analysis, required by the City of Scottsdale, to support this development. Preparation of this report has been done according to the procedures detailed in Chapter 4 of the City of Scottsdale Design Standards & Policies Manual dated January, 2018 (CSDSPM) (Reference 1), City of Phoenix Water Services Department, Design Standards Manual for Water and Wastewater Systems, 2017 (Reference 2) and the Final Master Design Report - Sanitary Sewer for Corporate Center at DC Ranch, dated April 2006 and prepared by Hunter Engineering (Reference 3).

This development project is located south of Verde Grove View and east of Hidden Spur Trail within the City of Scottsdale, Maricopa County, Arizona. The proposed project is located within an existing undeveloped site. The existing parcel is bound by Verde Grove View to the north, a commercial development to the south and Hidden Spur Trail to the west corporate center at DC Ranch. The site is specifically located in section 34, Township 4 North, Range 5 East, of the Gila and Salt River Base and Meridian. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system. Access to the site is provided from Verde Grove View.

The development proposes the construction of two new buildings. The proposed uses for both buildings are office/warehouse. The current zoning is I-1 Site improvements will include construction of driveway entrances, a parking lot, sidewalk/hardscape, landscape areas, and supporting infrastructure including new storm water drainage system, water, sewer and fire line service. The overall project site is approximately 3.62 ac.

#### 2.0 EXISTING CONDITIONS

The proposed project is located on an undeveloped parcel. There is an existing 8-inch public sewer main located on Verde Grove View and at Hidden Spur Trail.

#### 3.0 PROPOSED SEWER COLLECTION SYSTEM

This project proposes to connect to the existing public 8-inch gravity sewer line at Verde Grove View. Because the property is being planned to be subdivided, two lots connections are being proposed. Wastewater flows for the proposed site were calculated in accordance with the CSDSPM (Reference 1). An office use average day sewer demand (ADSD) of 0.4 and peaking factor of 3 was obtained from the CSDSPM Figure 7.1-2.

HUNTER ENGINEERING 23-DR-2020

According to Section 7-1.402 of the CSDSPM, for ADSD uses not listed in Figure 7.1-2, the City of Scottsdale allows the use of demands from regional accepted references. The demands for warehouse use is not on Figure 7.1-2. As such the ADSD for this use was based on Figure 11 of the City of Phoenix Design Standards Manual for Water and Wastewater Systems (2017). The demands for warehouse use according to Figure 11 is 25 gallons per day per every 1000 sf and a peaking factor of 3 was used.

According to the calculations provided in Appendix B, the proposed Building A will have an estimated Average Daily Flow of 1, 943 GPD and a Peak Hour Flow of 3.9 GPM. The proposed Building B will have an estimated Average Daily Flow of 2, 825 GPD and a Peak Hour Flow of 6 GPM. Refer to Appendix B for pipe capacity calculations for the proposed 8-inch private sewer line and the existing 8- inch public sewer line. The total project Average Daily Flow is 4,768 GPD and the Peak Hour Flow is 10 GPM. This demand was used to calculate the proposed and existing pipe capacities. The Peak Flow estimated with the Final Master Design Report - Sanitary Sewer (FMDRSS) for Corporate Center at DC Ranch Lot 15 was be 7.3 GPM. This is less than the Peak Flow estimated with this report. The FMDRSS estimated Peak Flow estimated for the sewer at Hidden Grove View (Northern Sewer Section) was 65 GPM.

The capacity analysis calculation for the proposed 6-inch and 8-inch service lines is as follows:

- With 1.1% slope flowing full, the capacity is 264 GPM.
- With 0.35% slope flowing full, the capacity is 334 GPM.
- With 0.35% slope flowing 2/3full, the capacity is 158 GPM.

The capacity of the existing 8-inch sewer line is greater than estimated Peak Flow of 65 GPM. The capacity of the proposed 6-in sewer service line is greater than the estimated Peak Hour Flow of 3.9 and 6 GPM generated from Building A and B.

The sanitary sewer pipe and fitting material for this project has been designated as PVC SDR-35. Trenching and bedding details for this project are to be per MAG Standard Specifications Section 601. Trench width above the installed pipe may be as wide as necessary to properly brace/install the work. Bedding backfill and compaction shall be installed per MAG Standard Specification 601.4. Service lines should connect to sewer according to MAG Standard Detail No. 440-3.

# 4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:

• The existing public sewer system and proposed sewer service is adequate to support this development.

# 5.0 **REFERENCES**

- 1) City of Scottsdale Design Standard & Policies Manual, January 2018 (Ref 1).
- 2) City of Phoenix Water Services Department, Design Standards Manual for Water and Wastewater Systems, 2017 (Ref 2).
- 3) Final Master Design Report Sanitary Sewer for Corporate Center at DC Ranch, dated April 2006 and prepared by Hunter Engineering (Ref 3).

# APPENDIX A FIGURES

HUNTER ENGINEERING 23-DR-2020

# APPENDIX B SEWER CAPACITY WORK SHEET

HUNTER ENGINEERING 23-DR-2020

# APPENDIX C REFERENCES

HUNTER ENGINEERING 23-DR-2020

# APPENDIX D UTILITY PLAN

HUNTER ENGINEERING 23-DR-2020

# APPENDIX A FIGURES

HUNTER ENGINEERING 23-DR-2020



#### APPENDIX B SEWER CAPACITY WORK SHEET

HUNTER ENGINEERING 23-DR-2020

23-DR-2020

ENGINEERING

HUNTER

Average Daily Peak Flow (mdg) 3.3 0.6 3.9 0.9 6.0 5.1 10 Flow (gpm) 0.3 1. 0.2 1.7 Daily Flow Average 2,825 4,768 (pd6) 1,943 2,400 1,637 306 425 Factor Figure 7-1.2 Peaking က က က က gpd/1000sf Figure 11 (Wharehose) gpd/1000sf Figure 7-1.2 (Office) Average Day Sewer **City of Scottsdale** per sf per sf **City of Phoenix** Demand (gpd) 25.0 25.0 0.4 0.4 Building Area (sf) 17,000 12,250 4,092 6,000 **PROJECTED SANITARY SEWER LOADS** Building A - Wharehouse Building B - Wharehouse Building A - Office Building B - Office Total Buiding B **Total Buiding A Project Total** Land Use

SCOTTSDALE, AZ

7/21/2020

LGEC275

Project No.:

Date: City:

Project:

Fetzer

7/21/2020

| Project:        | Corporate Center at DC Ranch |
|-----------------|------------------------------|
| Project Number: | LGE CU00                     |
| City:           | Scottsdale                   |

# PROJECTED MAXIMUM SANITARY SEWER LOADS

| Lot<br>Number | Proposed<br>Land Use | Gross<br>Area | Gross<br>Area | Average<br>Daily Flow (gpd) per<br>Gross Area Unit<br>Figure 5.1 Average Dailv | Average<br>Daily Flow<br>(ADF) | Average<br>Daily Flow<br>(ADF) | Peak<br>Daily Flow<br>(PDF)<br>(ADF*4.0) | Peak<br>Daily Flow<br>(PDF)<br>(ADF*4.0) |
|---------------|----------------------|---------------|---------------|--------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------------------|------------------------------------------|
|               |                      | sf            | ac            | Flow by Land Use                                                               | bdg                            | gpm                            | gpd                                      | gpm                                      |
| North Sew     | er Section           |               |               |                                                                                | 1                              | 1                              | 1                                        | 1                                        |
| -             | Commercial           | 54,431        | 1.25          | 3,000 per ac                                                                   | 3,749                          | 2.6                            | 14,995                                   | 10.4                                     |
| 2             | Commercial           | 49,274        | 1.13          | 3,000 per ac                                                                   | 3,394                          | 2.4                            | 13,574                                   | 9.4                                      |
| с<br>С        | Commercial           | 38,247        | 0.88          | 3,000 per ac                                                                   | 2,634                          | 1.8                            | 10,536                                   | 7.3                                      |
| 4             | Commercial           | 62,026        | 1.42          | 3,000 per ac                                                                   | 4,272                          | 3.0                            | 17,087                                   | 11.9                                     |
| 5             | Commercial           | 52,245        | 1.20          | 3,000 per ac                                                                   | 3,598                          | 2.5                            | 14,393                                   | 10.0                                     |
| 9             | Commercial           | 45,076        | 1.03          | 3,000 per ac                                                                   | 3,104                          | 2.2                            | 12,418                                   | 8.6                                      |
| 15            | Commercial           | 38,289        | 0.88          | 3,000 per ac                                                                   | 2,637                          | 1.8                            | 10,548                                   | 7.3                                      |
|               |                      |               |               |                                                                                |                                |                                | Sub Total                                | 65.0                                     |
| South Sew     | ver Section          |               |               |                                                                                |                                |                                |                                          |                                          |
| 7             | Commercial           | 51,727        | 1.19          | 3,000 per ac                                                                   | 3,562                          | 2.5                            | 14,250                                   | <u>6</u> .6                              |
| 8             | Commercial           | 56,072        | 1.29          | 3,000 per ac                                                                   | 3,862                          | 2.7                            | 15,447                                   | 10.7                                     |
| 6             | Commercial           | 31,380        | 0.72          | 3,000 per ac                                                                   | 2,161                          | 1.5                            | 8,645                                    | 6.0                                      |
| 10            | Commercial           | 29,986        | 0.69          | 3,000 per ac                                                                   | 2,065                          | 1.4                            | 8,261                                    | 5.7                                      |
| 11            | Commercial           | 29,921        | 0.69          | 3,000 per ac                                                                   | 2,061                          | 1.4                            | 8,243                                    | 5.7                                      |
| 12            | Commercial           | 45,889        | 1.05          | 3,000 per ac                                                                   | 3,160                          | 2.2                            | 12,642                                   | 8.8                                      |
| 13            | Commercial           | 146,191       | 3.36          | 3,000 per ac                                                                   | 10,068                         | 7.0                            | 40,273                                   | 28.0                                     |
| 14            | Commercial           | 66,053        | 1.52          | 3,000 per ac                                                                   | 4,549                          | 3.2                            | 18,196                                   | 12.6                                     |
| 16            | Commercial           | 136,268       | 3.13          | 3,000 per ac                                                                   | 9,385                          | 6.5                            | 37,539                                   | 26.1                                     |
| 17            | Commercial           | 153,341       | 3.52          | 3,000 per ac                                                                   | 10,561                         | 7.3                            | 42,243                                   | 29.3                                     |
|               |                      |               |               |                                                                                |                                |                                | Sub Total                                | 142.9                                    |
| LOT 18<br>18  | Commercial           | 638 681       | 14.66         | 3 000 ner ac                                                                   | 43 986                         | 305                            | 175 945                                  | 122.2                                    |
| 2             |                      |               |               |                                                                                | 0000                           |                                | Sub Total                                | 122.2                                    |

330.0

TOTAL

#### 8" d/D = 2/3 @ 0.35% Worksheet for Circular Channel

| Project Descriptio | n                   |           |
|--------------------|---------------------|-----------|
| Worksheet          | 8" d/D = 2/         | ′3 @ 0.35 |
| Flow Element       | Circular            | Channel   |
| Method             | Manning's           | Formula   |
| Solve For          | Discharge           |           |
|                    |                     |           |
| Input Data         |                     |           |
| Mannings Coeffic   | ient 0.013          |           |
| Channel Slope      | 0.35 %              |           |
| Depth              | 0.33 ft             |           |
| Diameter           | 8.0 in              |           |
|                    |                     |           |
| Results            |                     |           |
| Discharge          | 157.71 gpm          | >60 gpm   |
| Flow Area          | 0.2 ft <sup>2</sup> |           |
| Wetted Perime      | 1.04 ft             |           |
| Top Width          | 0.00 ft             |           |
| Critical Depth     | 0.28 ft             |           |
| Percent Full       | 49.5 %              |           |
| Critical Slope     | 0.66 %              |           |
| Velocity           | 2.04 ft/s           |           |
| Velocity Head      | 0.06 ft             |           |
| Specific Energy    | 0.39 ft             |           |
| Froude Number      | 0.71                |           |
| Maximum Disc       | 345.15 gpm          |           |
| Discharge Full     | 320.85 gpm          |           |
| Slope Full         | 0.08 %              |           |
| Flow Type          | Subcritical         |           |

Project Engineer: Hunter FlowMaster v7.0 [7.0005] Page 1 of 1



#### 8" d/D=2/3 S=0.35 Cross Section for Circular Channel

| Project Description  |                     |
|----------------------|---------------------|
| Worksheet            | 8" d/D = 2/3 @ 0.35 |
| Flow Element         | Circular Channel    |
| Method               | Manning's Formula   |
| Solve For            | Discharge           |
|                      |                     |
| Section Data         |                     |
| Mannings Coefficient | 0.013               |
| Channel Slope        | 0.35 %              |
| Depth                | 0.33 ft             |
| Diameter             | 8.0 in              |

Discharge

57.71 gpm



Project Engineer: Hunter FlowMaster v7.0 [7.0005] Page 1 of 1

223 DR 20000 11/02/20

#### 8" Full Capacity @ 0.35% Worksheet for Circular Channel

| Project Description |                     |         |
|---------------------|---------------------|---------|
| Worksheet           | 8" Full @           | 0.35%   |
| Flow Element        | Circular C          | hannel  |
| Method              | Manning's           | Formula |
| Solve For           | Discharge           | •       |
|                     |                     |         |
| Input Data          |                     |         |
| Mannings Coeffic    | cient 0.013         |         |
| Channel Slope       | 0.35 %              |         |
| Depth               | 0.66 ft             |         |
| Diameter            | 8.0 in              |         |
|                     |                     | -       |
| Results             |                     | _       |
| Discharge           | 334.32 gpm          | >60 gpm |
| Flow Area           | 0.3 ft <sup>2</sup> |         |
| Wetted Perime       | 1.96 ft             |         |
| Top Width           | 0.00 ft             |         |
| Critical Depth      | 0.41 ft             |         |
| Percent Full        | 99.0 %              |         |
| Critical Slope      | 0.79 %              |         |
| Velocity            | 2.14 ft/s           |         |
| Velocity Head       | 0.07 ft             |         |
| Specific Energy     | 0.73 ft             |         |
| Froude Numbe        | 0.23                |         |
| Maximum Disc        | 345.15 gpm          |         |
| Discharge Full      | 320.85 gpm          |         |
| Slope Full          | 0.38 %              |         |
| Flow Type           | Subcritical         | -       |



#### 8" Full Capacity @ 0.35% Cross Section for Circular Channel

| Project Description |                   |
|---------------------|-------------------|
| Worksheet           | 8" Full @ 0.35%   |
| Flow Element        | Circular Channel  |
| Method              | Manning's Formula |
| Solve For           | Discharge         |
|                     |                   |
| Section Data        |                   |
| Mannings Coeffic    | ient 0.013        |
| Channel Slope       | 0.35 %            |

| enamer elepe | 0.00 /0    |
|--------------|------------|
| Depth        | 0.66 ft    |
| Diameter     | 8.0 in     |
| Discharge    | 334.32 gpm |



Project Engineer: Hunter FlowMaster v7.0 [7.0005] Page 1 of 1



#### 6" Full Capacity @ 1.1% Worksheet for Circular Channel

| Project Description | on         |            |      |     |
|---------------------|------------|------------|------|-----|
| Worksheet           | 6" F       | ull @      | 1.1% |     |
| Flow Element        | Circ       | ular C     | hann |     |
| Method              | Mar        | nning's    | Forr |     |
| Solve For           | Disc       | charge     |      |     |
|                     |            | _          |      |     |
| Input Data          |            |            |      |     |
| Mannings Coeffi     | c).013     |            |      |     |
| Channel Slope       | 1.10 %     | Ď          |      |     |
| Depth               | 0.50 ft    |            |      |     |
| Diameter            | 6.0 in     | ۱ <u> </u> |      |     |
|                     |            |            | -    |     |
| Results             |            |            | _    |     |
| Discharge           | 264.12     | gpm        | >10  | gpm |
| Flow Area           | 0.2        | ft²        |      |     |
| Wetted Perime       | 1.57       | ft         |      |     |
| Top Width           | 0.00       | ft         |      |     |
| Critical Depth      | 0.39       | ft         |      |     |
| Percent Full        | 100.0      | %          |      |     |
| Critical Slope      | 1.21       | %          |      |     |
| Velocity            | 3.00       | ft/s       |      |     |
| Velocity Head       | 0.14       | ft         |      |     |
| Specific Energy     | 0.64       | ft         |      |     |
| Froude Numbe        | 0.00       |            |      |     |
| Maximum Disc        | 284.12     | gpm        |      |     |
| Discharge Full      | 264.12     | gpm        |      |     |
| Slope Full          | 1.10       | %          |      |     |
| Flow Type S         | ubcritical |            | _    |     |

Project Engineer: Hunter FlowMaster v7.0 [7.0005] Page 1 of 1



#### 6" Full Capacity @ 1.1% Cross Section for Circular Channel

| Project Description                                                        |                                      |
|----------------------------------------------------------------------------|--------------------------------------|
| Worksheet                                                                  | 6" Full @ 1.1%                       |
| Flow Element                                                               | Circular Channel                     |
| Method                                                                     | Manning's Formula                    |
| Solve For                                                                  | Discharge                            |
|                                                                            |                                      |
|                                                                            |                                      |
| Section Data                                                               |                                      |
| Section Data<br>Mannings Coefficient                                       | 0.013                                |
| Section Data<br>Mannings Coefficient<br>Channel Slope                      | 0.013<br>1.10 %                      |
| Section Data<br>Mannings Coefficient<br>Channel Slope<br>Depth             | 0.013<br>1.10 %<br>0.50 ft           |
| Section Data<br>Mannings Coefficient<br>Channel Slope<br>Depth<br>Diameter | 0.013<br>1.10 %<br>0.50 ft<br>6.0 in |



Project Engineer: Hunter FlowMaster v7.0 [7.0005] Page 1 of 1

#### APPENDIX C REFERENCES

HUNTER ENGINEERING 23-DR-2020

| LAND USE                               | DEMAND<br>(gpd)        | DESIGN PEAKING<br>FACTOR |
|----------------------------------------|------------------------|--------------------------|
| Commercial/Retail                      | 0.5 per sq. ft.        | 3                        |
| Office                                 | 0.4 per sq. ft.        | 3                        |
| Restaurant                             | 1.2 per sq. ft.        | 6                        |
| High Density                           | 140 per unit           | 4.5                      |
| Condominium (Condo)                    |                        |                          |
| Resort Hotel (includes site amenities) | 380 per room.          | 4.5                      |
| School: without cafeteria              | 30 per student         | 6                        |
| School: with cafeteria                 | 50 per student         | 6                        |
| Cultural                               | 0.1 per sq. ft.        | 3                        |
| Clubhouse for Subdivision              | 100 per patron x 2     | 4.5                      |
| Golf Course                            | patrons per du per day |                          |
| Fitness Center/ Spa/ Health            | 0.8 per sq. ft.        | 3.5                      |

# FIGURE 7-1.2 AVERAGE DAY SEWER DEMAND IN GALLONS PER DAY & PEAKING FACTORS BY LAND USE

# HYDRAULIC DESIGN

No public SS lines will be less than 8 inches in diameter unless permission is received in writing from the Water Resources Department.

SS lines shall be designed and constructed to give mean full flow velocities equal to or greater than 2.5 fps, based upon Manning's Formula, using an "n" value of 0.013. To prevent abrasion and erosion of the pipe material, the maximum velocity will be limited to 10 fps at estimated peak flow. Where velocities exceed this maximum figure, submit a hydraulic analysis along with construction recommendations to the Water Resources Department for consideration. In no case will velocities greater than 15 fps be allowed.

Actual velocities shall be analyzed for minimum, average day and peak day design flow conditions for each reach of pipe.

The SS system shall be designed to achieve uniform flow velocities through consistent slopes. Abrupt changes in slope shall be evaluated for hydraulic jump.

The depth to diameter ratio (d/D) for gravity SS pipes <u>12 inches in diameter and less</u> shall not exceed 0.65 in the ultimate peak flow condition. This d/D ratio includes an allowance for system infiltration and inflow.

The d/D for gravity drains greater than 12 inches diameter shall not exceed 0.70 for the ultimate peak flow condition. This d/D includes an allowance for system infiltration and inflow.

Measures to mitigate hydrogen sulfide shall be analyzed at manhole drops, abrupt changes in pipe slope or direction and at changes in pipe diameter.

# MANHOLES AND CLEAN OUTS

Manholes in city streets shall be located near the center of the inside traffic lane, rather than on or near the line separating traffic lanes. Manholes shall not be in bike trails, equestrian trails, sidewalks, crosswalks or wash crossings. Manholes are required at all

7-1.405

Page 515

#### Design Standards & Policies Manual City of Scottsdale - 2018

# Figure 11 - Water and Wastewater Design Flows

| Land<br>Use                        | Unit                 | Water<br>Average Daily<br>Flow/Unit (gal) | Wastewater<br>Average Daily<br>flow/Unit (gal) |  |  |  |  |
|------------------------------------|----------------------|-------------------------------------------|------------------------------------------------|--|--|--|--|
| Single Family Residential          | Dwelling             | 360                                       | 240                                            |  |  |  |  |
| Multi-family                       | Dwelling             | 240                                       | 180                                            |  |  |  |  |
| Commercial (retail/mall)           | 1000 ft <sup>2</sup> | 125                                       | 75                                             |  |  |  |  |
| Commercial (office)                | 1000 ft <sup>2</sup> | 115                                       | 90                                             |  |  |  |  |
| Warehousing/Big Box Retail         | 1000 ft <sup>2</sup> | 30                                        | 25                                             |  |  |  |  |
| Industrial                         | 1000 ft <sup>2</sup> | 65                                        | 50                                             |  |  |  |  |
| Schools                            | Student              | 25                                        | 20                                             |  |  |  |  |
| Hotel (no restaurant)              | Room                 | 140                                       | 100                                            |  |  |  |  |
| Hotel (with restaurant)            | Room                 | 200                                       | 150                                            |  |  |  |  |
| Resort                             | Room                 | 300                                       | 210                                            |  |  |  |  |
| Hospital (all flows)               | Bed                  | 500                                       | 300                                            |  |  |  |  |
| Landscape Water Requirements       |                      |                                           |                                                |  |  |  |  |
| General Landscaping                | Acre                 | 4,374                                     | N∕A                                            |  |  |  |  |
| Public Right of Way or Streetscape | Acre                 | 1,339                                     | N/A                                            |  |  |  |  |
| Surface Water                      | Acre                 | 5,335                                     | N∕∕A                                           |  |  |  |  |

#### NOTES: The following Italicized notes are for Figure 11, Water and Wastewater Design Flows

Complete design flows are not provided for <u>industrial and hospital facilities</u> because case-by-case evaluation is necessary due to varying water demands observed for these use types. Some industrial uses such as data warehouses, food processing, bottling plants, and semiconductor manufacturing can use more than ten times as much water as compared to warehousing or dry assembly manufacturing with no cooling tower use. Water use in hospitals varies greatly depending upon cooling tower and boiler use, the extent to which the hospital is used as a research and teaching facility, the amount of out-patient versus in-patient services provided, and the types of equipment used. Estimates of anticipated water use and wastewater generation must be produced for each new development or major expansion using projections of demands taking into account the following types of categories:

- <u>Water for cooling towers</u>: Cooling towers use can make up more than fifty percent of water demand at industrial facilities having large refrigeration units or cooling of servers. In most cases, cooling towers use twenty to forty percent of the water requirements for industrial operations and hospitals.
- <u>Water used as an input for production</u>: In some manufacturing operations, water is used as an input in the manufacturing process and must be included in demand projections because of the large volumes used. Examples include ice-making, soft-drink or water bottling operations, and food manufacturing such as industrial bakeries.
- <u>Water used in production/activities</u>: In many manufacturing operations water is used for cooling, cleaning, or other operational activities and must be included in demand projections. Examples include metal forming and finishing, semi-conductor wafer production, and aerospace parts manufacturing. Processes employing newer technologies tend to use less water than older technologies, but estimates must be made on a location and process-specific basis. Some medical facilities are now using the newer medical imaging techniques and sterilization processes that use little or no water, while some medical equipment still requires significant amounts of water.
- <u>Bed to space ratios and mix of services</u>: Bed to space ratios and services provided in hospitals can vary greatly. These variations
  depend upon the proportion of space necessary to provide 24/7 nursing care, full linen service, and full food service to patients staying
  overnight. Furthermore, some hospitals are highly specialized and focus on particular types of treatment and/or research while others
  provide general and emergency services only. Water use on a per-square-foot or per-bed-basis can even vary significantly between
  different parts of hospitals, so large expansions will require an individual analysis.



# APPENDIX D UTILITY PLAN

HUNTER ENGINEERING 23-DR-2020



CIVIL AND SURVEY

# HUNTER







July 2020

Prepared by: Hunter Engineering, 10450 North 74<sup>th</sup> Street Scottsdale, AZ 852:

BY scan



DATE 8/7/2020

# WATER BASIS OF DESIGN REPORT FOR DC RANCH LOT 15/FETZER 9217 E. VERDE GROVE VIEW SCOTTSDALE, ARIZONA 85255

PREPARED FOR

# LGE DESIGN BUILD 1200 NORTH 52<sup>ND</sup> STREET PHOENIX, AZ 85008

PREPARED BY

JORGE ORTIZ, P.E. HUNTER ENGINEERING, INC. 10450 NORTH 74<sup>TH</sup> STREET, #200 SCOTTSDALE, AZ 85258 (480) 991-3985

JULY 2020 H.E. PROJECT NO. LGEC275

HUNTER

#### **TABLE OF CONTENTS**

#### SECTION TITLE

#### PAGE

| 1.0 | Introduction                       | 1   |
|-----|------------------------------------|-----|
| 2.0 | Existing Conditions                | 1   |
| 3.0 | Proposed Water Distribution System | 1-2 |
| 4.0 | Conclusion                         | 2   |
| 5.0 | References                         | 2   |
|     |                                    |     |

#### FIGURES <u>TITLE</u>

# **LOCATION**

| 1 | Vicinity Map | Appendix A |
|---|--------------|------------|
|---|--------------|------------|

#### APPENDIX TITLE

| А | Figures                        |
|---|--------------------------------|
| В | Calculations and Data          |
| С | Fire Hydrant Flow Test Results |
| D | References                     |
| E | Utility Plan                   |
|   |                                |



HUNTER ENGINEERING

## **1.0 INTRODUCTION**

This water basis of design report has been prepared under a contract from LGE Design Build, developer of the DC Ranch Lot 15/Fetzer project. The purpose of this report is to provide a final water analysis, required by the City of Scottsdale, to support this development. Preparation of this report has been done according to the procedures detailed in Chapter 6 of the *City of Scottsdale Design Standards & Policies Manual dated January 2018.* 

This development project is located south of Verde Grove View and east of Hidden Spur Trail within the City of Scottsdale, Maricopa County, Arizona. The proposed project is located within an existing undeveloped site. The existing parcel is bound by Verde Grove View to the north, a commercial development to the south and Hidden Spur Trail to the West Corporate Center at DC Ranch. The site is specifically located in section 34, Township 4 North, Range 5 East, of the Gila and Salt River Base and Meridian. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system. Access to the site is provided from Verde Grove View.

The development proposes the construction of two new buildings. Site improvements will include construction of driveway entrances, a parking lot, sidewalk/hardscape, landscape areas, and supporting infrastructure including new storm water drainage system, water, sewer and fire line service. The overall project site is approximately 3.62 ac.

## 2.0 EXISTING CONDITIONS

There is an existing 8-inch DIP water main located on Verde Grove View and loops around 93<sup>rd</sup> street and Hidden Spur Trail.

#### 3.0 PROPOSED WATER DISTRIBUTION SYSTEM

A new private on-site 10-inch fireline loop will be constructed to provide service to the proposed onsite fire hydrants and building fire sprinkler system. This new private fireline will tie into the 8-inch public water line in Verde Grove View and the 8-inch public water line in Hidden Spur Trail. The buildings fire sprinkler system lines will tie into this private fireline loop. See Utility Plans in Appendix E.

Figure 6.1-2 in the City of Scottsdale *Design Standards & Policies Manual* was used to calculate the Average Day Water Demand (ADWD). Per Table 6.1-2, 0.6 gallons per day (gpd) per square feet for office total use and 1,027 gpd per acre for industrial total use. The Maximum Day Demand is 2.0 times the ADD, and the Peak Hour Demand (PHD) is 3.5 times the ADD. See Appendix B for a summary of these calculations.

The proposed Building A will be 16,344 square feet, and Building B is 23,460 square feet. Both buildings will type V-B construction. Per the 2006 International Fire Code, the minimum

23-DR-2020

7/27/2020

base fire flow rate for a building A of this size and construction type is 3,500 gallons per minute (GPM) and 4,250 GPM for building B. Because this building will be protected by an approved sprinkler system, per NFPA 13, the required fire flow may be reduced by half, but not below 1,500 GPM. A fire flow of 2,125 GPM is used for the site analysis. Per City of Scottsdale, pressure requirements, minimum acceptable design pressures are 30 psi at the hydrant under design fire flow requirements and minimum residual pressure 50 psi at highest finished floor for domestic demand. The required and the calculated fire flows are tabulated below.

| Building   | Construction<br>Type | Building<br>Area<br>(sf) | Minimum Required<br>Fire Flow for Buildings<br>Table B105.1 |     | Min Fire<br>Flow<br>w/ 50%<br>Sprinkler<br>Reduction | Lowest<br>Available<br>Pressure<br>(psi) | Model<br>Node |
|------------|----------------------|--------------------------|-------------------------------------------------------------|-----|------------------------------------------------------|------------------------------------------|---------------|
| Building A | V-B                  | 16,344                   | 3,500                                                       | gpm | 1,750                                                | 50.50                                    | J-6           |
| Building B | V-B                  | 23,460                   | 4,250                                                       | gpm | 2,125                                                | 50.50                                    | J-6           |

A fire flow test was completed on July 16, 2020, by Arizona Flow Testing, LLC. This test data was used to model the proposed system using WaterCad, a pipe network analysis program by Haestad Methods. A reservoir and pump was added to the model near the flow test location to simulate pressure versus flow curve. Note that the pipes PX-1 and PX-2 connecting the pumps and reservoirs are not a part of the system and are oversized to 120-inches to minimize system losses. Pipes and junctions were added to the network model matching the pipe sizes, materials and elevations of the proposed and existing system.

The fire flow model was set up such that full fire flow demand was taken out of the most remote onsite fire hydrants (J-3, J-8). The lowest resultant pressure based upon the required fire flow was calculated to be 50.41 psi, at J-6. Results and data from the WaterCAD is shown in Appendix B.

#### 4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:

• The existing public water system is adequate to support this development.

#### 5.0 **REFERENCES**

1) City of Scottsdale Design Standard & Policies Manual, January 2018.

23-DR-2020

7/27/2020

# APPENDIX A FIGURES





## APPENDIX B CALCULATIONS AND DATA SHEET

HUNTER ENGINEERING

|                 | DC Ranch-    |           |
|-----------------|--------------|-----------|
| Project:        | Lot15/Fetzer | 7/23/2020 |
| Project Number: | LGEC275      |           |
| City:           | Scottsdale   |           |
| Area Building:  | 3.62 A0      | 0         |

#### DOMESTIC DEMAND SUMMARY (PER CITY OF SCOTTSDALE DESIGN STANDARD AND POLICIES MANUAL, JULY 2018)

| Site       | Site Use   | Building<br>Area<br>(sf) | Average<br>Day Demand (gpd)<br>Gross Bldg Area (sf)<br>per Table 6-1.2 Average Day<br>Water Demands | Average<br>Day Demand<br>(ADD)<br>(gpd) | Max Day<br>Demand<br>(MDD)<br>(ADD*2.0)<br>(gpd) | Average<br>Day Demand<br>(ADD)<br>(gpm) | Max Day<br>Demand<br>(MDD)<br>(ADD*2.0)<br>(gpm) | Peak Hour<br>Demand<br>(PHD)<br>(ADD*3.5)<br>(gpm) |
|------------|------------|--------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------------------|
| Building A | Office     | 4,092.00                 | 0.6 per sf                                                                                          | 2,455                                   | 4,910                                            | 1.7                                     | 3.4                                              | 6.0                                                |
| Building B | Office     | 6,000.00                 | 0.6 per sf                                                                                          | 3,600                                   | 7,200                                            | 2.5                                     | 5.0                                              | 8.8                                                |
| Site       | Site Use   | Site<br>Area<br>(ac)     | Average<br>Day Demand (gpd) per<br>Net Site Area                                                    | Average<br>Day Demand<br>(ADD)          | Max Day<br>Demand<br>(MDD)                       | Average<br>Day Demand<br>(ADD)          | Max Day<br>Demand<br>(MDD)                       | Peak Hour<br>Demand<br>(PHD)                       |
|            |            |                          | per Table 6-1.2 Average Day<br>Water Demands                                                        | (apd)                                   | (ADD*2.0)<br>(apd)                               | (apm)                                   | (ADD*2.0)<br>(apm)                               | (ADD*3.5)<br>(apm)                                 |
|            |            |                          | Trater Demanas                                                                                      | (9P=)                                   | (90-)                                            | (91)                                    | (3P)                                             | (31)                                               |
| Building A | Industrial | 0.28                     | 1,027.0 per acre                                                                                    | 288                                     | 575                                              | 0.2                                     | 0.4                                              | 0.7                                                |
| Building B | Industrial | 0.39                     | 1,027.0 per acre                                                                                    | 401                                     | 801                                              | 0.3                                     | 0.6                                              | 1.0                                                |
|            |            |                          | Total:                                                                                              | 6,743                                   | 13,487                                           | 4.7                                     | 9.4                                              | 16.4                                               |

#### FIRE FLOW SUMMARY

| Building   | Construction<br>Type | Building<br>Area<br>(sf) | Minimu<br>Fire Flow<br>Table<br>2006 Interna | m Required<br>for Buildings<br>e B105.1<br>ational Fire Code | Min Fire Flow<br>w/ 50% Sprinkler<br>Reduction | Lowest<br>Available<br>Pressure<br>(psi) | Model<br>Node | Sprinkler<br>Reduction<br>Required | Building<br>Sprinklered |
|------------|----------------------|--------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------|---------------|------------------------------------|-------------------------|
| Building A | V-B                  | 16,344                   | 3,500                                        | gpm                                                          | 1,750.0                                        | 50.50                                    | J-6           | YES                                | YES                     |
| Building B | V-B                  | 23,460                   | 4,250                                        | gpm                                                          | 2,125.0                                        | 50.50                                    | J-6           |                                    |                         |
|            | Total:               | 39,804                   |                                              |                                                              |                                                |                                          |               |                                    |                         |

\* Minimum acceptable design pressures are 40 psi under Peak Hour demands and 20 psi under Max Day + Fire Flow demands.

Scenario: Fire



Project Engineer: Jorge Ortiz

7/27/2020

#### Scenario: Peak Steady State Analysis Pipe Report

| Label | Length<br>(ft) | Diameter<br>(in) | Material     | Hazen-<br>Williams<br>C | Discharge<br>(gpm) | Velocity<br>(ft/s) |
|-------|----------------|------------------|--------------|-------------------------|--------------------|--------------------|
| PX-1  | 1.00           | 120.0            | Ductile Iron | 130.0                   | 16.41              | 0.00               |
| PX-2  | 1.00           | 120.0            | Ductile Iron | 130.0                   | 16.41              | 0.00               |
| P-1   | 97.00          | 8.0              | Ductile Iron | 130.0                   | 16.41              | 0.10               |
| P-2   | 25.00          | 8.0              | Ductile Iron | 130.0                   | 16.41              | 0.10               |
| P-4   | 110.00         | 8.0              | Ductile Iron | 130.0                   | 16.40              | 0.10               |
| P-7   | 40.00          | 8.0              | Ductile Iron | 130.0                   | 16.40              | 0.10               |
| P-6   | 76.00          | 8.0              | Ductile Iron | 130.0                   | 0.00               | 0.00               |
| P-5   | 129.00         | 8.0              | Ductile Iron | 130.0                   | 0.00               | 0.00               |
| P-9   | 143.00         | 8.0              | Ductile Iron | 130.0                   | 0.00               | 0.00               |
| P-3   | 31.00          | 8.0              | Ductile Iron | 130.0                   | -0.00              | 0.00               |
| P-8   | 23.00          | 8.0              | Ductile Iron | 130.0                   | -0.00              | 0.00               |



#### Scenario: Peak Steady State Analysis Junction Report

| Label | Elevation<br>(ft) | Туре   | Base Flow<br>(gpm) | Calculated<br>Hydraulic Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|--------|--------------------|---------------------------------------|-------------------|
| J-1   | 1,588.25          | Demand | 0.00               | 1,763.80                              | 75.95             |
| J-2   | 1,588.59          | Demand | 0.00               | 1,763.80                              | 75.81             |
| J-3   | 1,588.33          | Demand | 0.00               | 1,763.80                              | 75.92             |
| J-4   | 1,589.08          | Demand | 0.00               | 1,763.80                              | 75.59             |
| J-5   | 1,591.95          | Demand | 0.00               | 1,763.80                              | 74.35             |
| J-6   | 1,594.20          | Demand | 0.00               | 1,763.80                              | 73.38             |
| J-7   | 1,592.05          | Demand | 16.40              | 1,763.80                              | 74.31             |
| J-8   | 1,592.00          | Demand | 0.00               | 1,763.80                              | 74.33             |
| J-9   | 1,591.05          | Demand | 0.00               | 1,763.80                              | 74.74             |
| J-10  | 1,593.00          | Demand | 0.00               | 1,763.80                              | 73.90             |

>50psi OK



#### Scenario: Fire Steady State Analysis Junction Report

| Label | Elevation<br>(ft) | Туре   | Base Flow<br>(gpm) | Calculated<br>Hydraulic Grade<br>(ft) | Pressure<br>(psi) |
|-------|-------------------|--------|--------------------|---------------------------------------|-------------------|
| J-1   | 1,588.25          | Demand | 0.00               | 1,720.90                              | 57.39             |
| J-2   | 1,588.59          | Demand | 0.00               | 1,713.71                              | 54.13             |
| J-3   | 1,588.33          | Demand | 1,062.50           | 1,713.08                              | 53.97             |
| J-4   | 1,589.08          | Demand | 0.00               | 1,713.19                              | 53.70             |
| J-5   | 1,591.95          | Demand | 0.00               | 1,710.93                              | 51.48             |
| J-6   | 1,594.20          | Demand | 0.00               | 1,710.93                              | 50.50             |
| J-7   | 1,592.05          | Demand | 4.70               | 1,710.10                              | 51.08             |
| J-8   | 1,592.00          | Demand | 1,062.50           | 1,709.63                              | 50.89             |
| J-9   | 1,591.05          | Demand | 0.00               | 1,710.10                              | 51.51             |
| J-10  | 1,593.00          | Demand | 0.00               | 1,713.19                              | 52.00             |

>30psi OK



#### Scenario: Static Steady State Analysis Junction Report

| Label | Elevation<br>(ft) | Туре   | Base Flow<br>(gpm) | Calculated<br>Hydraulic Grade<br>(ft) | Pressure<br>(psi) |                                        |
|-------|-------------------|--------|--------------------|---------------------------------------|-------------------|----------------------------------------|
| J-1   | 1,588.25          | Demand | 0.00               | 1,763.81                              | 75.96             | ~76psi Model Test Matches Hydrant Test |
| J-2   | 1,588.59          | Demand | 0.00               | 1,763.81                              | 75.81             |                                        |
| J-3   | 1,588.33          | Demand | 0.00               | 1,763.81                              | 75.92             |                                        |
| J-4   | 1,589.08          | Demand | 0.00               | 1,763.81                              | 75.60             |                                        |
| J-5   | 1,591.95          | Demand | 0.00               | 1,763.81                              | 74.36             |                                        |
| J-6   | 1,594.20          | Demand | 0.00               | 1,763.81                              | 73.38             |                                        |
| J-7   | 1,592.05          | Demand | 0.00               | 1,763.81                              | 74.31             |                                        |
| J-8   | 1,592.00          | Demand | 0.00               | 1,763.81                              | 74.33             |                                        |
| J-9   | 1,591.05          | Demand | 0.00               | 1,763.81                              | 74.75             |                                        |
| J-10  | 1,593.00          | Demand | 0.00               | 1,763.81                              | 73.90             |                                        |



#### Scenario: Residual Steady State Analysis Junction Report

| Lab | el Elevation<br>(ft) | Туре   | Base Flow<br>(gpm) | Calculated<br>Hydraulic Grade<br>(ft) | Pressure<br>(psi) |                                        |
|-----|----------------------|--------|--------------------|---------------------------------------|-------------------|----------------------------------------|
| J-1 | 1,588.25             | Demand | 1,682.00           | 1,736.09                              | 63.96             | ~64psi Model Test Matches Hydrant Test |
| J-2 | 1,588.59             | Demand | 0.00               | 1,736.09                              | 63.82             |                                        |
| J-3 | 1,588.33             | Demand | 0.00               | 1,736.09                              | 63.93             |                                        |
| J-4 | 1,589.08             | Demand | 0.00               | 1,736.09                              | 63.60             |                                        |
| J-5 | 1,591.95             | Demand | 0.00               | 1,736.09                              | 62.36             |                                        |
| J-6 | 1,594.20             | Demand | 0.00               | 1,736.09                              | 61.39             |                                        |
| J-7 | 1,592.05             | Demand | 0.00               | 1,736.09                              | 62.32             |                                        |
| J-8 | 1,592.00             | Demand | 0.00               | 1,736.09                              | 62.34             |                                        |
| J-9 | 1,591.05             | Demand | 0.00               | 1,736.09                              | 62.75             |                                        |
| J-1 | 1,593.00             | Demand | 0.00               | 1,736.09                              | 61.91             |                                        |



#### Scenario: Calculated Steady State Analysis Junction Report

| La  | ibel | Elevation<br>(ft) | Туре   | Base Flow<br>(gpm) | Calculated<br>Hydraulic Grade<br>(ft) | Pressure<br>(psi) |                                        |
|-----|------|-------------------|--------|--------------------|---------------------------------------|-------------------|----------------------------------------|
| J-  | 1    | 1,588.25          | Demand | 3,863.00           | 1,634.53                              | 20.02             | ~20psi Model Test Matches Hydrant Test |
| J-: | 2    | 1,588.59          | Demand | 0.00               | 1,634.53                              | 19.87             |                                        |
| J-: | 3    | 1,588.33          | Demand | 0.00               | 1,634.53                              | 19.99             |                                        |
| J-4 | 4    | 1,589.08          | Demand | 0.00               | 1,634.53                              | 19.66             |                                        |
| J-: | 5    | 1,591.95          | Demand | 0.00               | 1,634.53                              | 18.42             |                                        |
| J-( | 6    | 1,594.20          | Demand | 0.00               | 1,634.53                              | 17.45             |                                        |
| J-' | 7    | 1,592.05          | Demand | 0.00               | 1,634.53                              | 18.38             |                                        |
| J-  | 8    | 1,592.00          | Demand | 0.00               | 1,634.53                              | 18.40             |                                        |
| J-! | 9    | 1,591.05          | Demand | 0.00               | 1,634.53                              | 18.81             |                                        |
| J-  | 10   | 1,593.00          | Demand | 0.00               | 1,634.53                              | 17.97             |                                        |



#### **Detailed Report for Pump: PMP-1**

| Scenario Summary                                         |                                                         | •    |  |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------|------|--|--|--|--|
| Scenario                                                 | Peak                                                    | -    |  |  |  |  |
| Active Topology Alternativ                               | e Base-Active Topology                                  |      |  |  |  |  |
| Physical Alternative                                     | Base-Physical                                           |      |  |  |  |  |
| Demand Alternative                                       | Base-Demand                                             |      |  |  |  |  |
| Initial Settings Alternative                             | Base-Initial Settings                                   |      |  |  |  |  |
| Operational Alternative                                  | Operational Alternative Base-Operational                |      |  |  |  |  |
| Age Alternative                                          | Base-Age Alternative                                    |      |  |  |  |  |
| Constituent Alternative                                  | /e Base-Constituent                                     |      |  |  |  |  |
| Trace Alternative                                        | Iternative Base-Trace Alternative                       |      |  |  |  |  |
| Fire Flow Alternative                                    | Base-Fire Flow                                          |      |  |  |  |  |
| Capital Cost Alternative                                 | ase-Capital Cost                                        |      |  |  |  |  |
| Energy Cost Alternative                                  | av Cost Alternative Base-Energy Cost                    |      |  |  |  |  |
| User Data Alternative                                    | Base-User Data                                          |      |  |  |  |  |
|                                                          |                                                         | -    |  |  |  |  |
| Global Adjustments Summa                                 | ary                                                     | -    |  |  |  |  |
| Demand                                                   | <none> Roughness <none></none></none>                   | -    |  |  |  |  |
| Geometric Summary                                        |                                                         | -    |  |  |  |  |
|                                                          | 700 885 22 ft Unetream Dine DV 1                        | -    |  |  |  |  |
| Ŷ                                                        | 962.341.59 ft Downstream Pine PX-2                      |      |  |  |  |  |
| Elevation                                                | 1.588.25 ft                                             |      |  |  |  |  |
|                                                          | .,                                                      | -    |  |  |  |  |
| Pump Definition Summary                                  |                                                         | •    |  |  |  |  |
| Pump Definition                                          | Default Pump Definition                                 | -    |  |  |  |  |
|                                                          |                                                         | -    |  |  |  |  |
| Initial Status                                           |                                                         | _    |  |  |  |  |
| Initial Pump Status On Initial Relative Speed Facto 1.00 |                                                         |      |  |  |  |  |
| Calaulata                                                | d Paquita Summany                                       |      |  |  |  |  |
|                                                          |                                                         |      |  |  |  |  |
| (hr) Status Pump Pur                                     | argebischargePump RelativeCalculated                    |      |  |  |  |  |
| Grade Gra                                                | de (ft) Power                                           |      |  |  |  |  |
| (ft) (ft                                                 | ) (Hp)                                                  |      |  |  |  |  |
| 0.00 On ,588.25 1,763                                    | .79 32.81 75.54 1.00 1.45                               |      |  |  |  |  |
|                                                          |                                                         |      |  |  |  |  |
|                                                          | Pump Head Curve<br>PMP-1 (Relative Speed Factor = 1.00) |      |  |  |  |  |
| 180.0                                                    |                                                         |      |  |  |  |  |
| 160.0                                                    |                                                         |      |  |  |  |  |
| 140.0                                                    |                                                         |      |  |  |  |  |
| 140.0                                                    |                                                         |      |  |  |  |  |
| 120.0                                                    |                                                         |      |  |  |  |  |
| ପ୍ଲ 100.0                                                |                                                         |      |  |  |  |  |
| Ŭ <sup>E</sup> 80.0                                      |                                                         |      |  |  |  |  |
| 60.0                                                     |                                                         |      |  |  |  |  |
| 40.0                                                     |                                                         |      |  |  |  |  |
| 40.0                                                     |                                                         |      |  |  |  |  |
| 20.0                                                     |                                                         | ~~~~ |  |  |  |  |
| 0.0                                                      |                                                         |      |  |  |  |  |
| 0.0                                                      | 1000.0 2000.0 3000.0 4000                               | .0   |  |  |  |  |
|                                                          | Discharge                                               |      |  |  |  |  |
|                                                          | (gpm)                                                   |      |  |  |  |  |

h:\...\water reports\watercad\lgec275\_watercad.wcd Hunter Engineering, Inc 07/20/20 09:41:17 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-16



5000.0

## APPENDIX C FIRE HYDRANT FLOW TEST

HUNTER ENGINEERING

# **Arizona Flow Testing LLC**

# HYDRANT FLOW TEST REPORT

| Project Name:<br>Project Address:<br>Client Project No.:<br>Arizona Flow Testing Project<br>Flow Test Permit No.:<br>Date and time flow test cond<br>Data is current and reliable u<br>Conducted by:<br>Witnessed by: | Fetzer/Lot 15<br>9217 East Ve<br>LGEC275<br>No.: 20258<br>C62628<br>ucted: July 16, 2020<br>ntil: January 16, 2<br>Floyd Vaugha<br>Sonny Schreit | 5<br>rde Grove View, Scottsdale,<br>at 6:15 AM<br>021<br>in – Arizona Flow Testing, Li<br>ner –City of Scottsdale-Inspo | Arizona 85255<br>LC (480-250-8154)<br>ector (602-819-7718) |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| <u>Raw Test Data</u>                                                                                                                                                                                                  |                                                                                                                                                  | Data with 10 % Safety                                                                                                   | Factor                                                     |  |  |  |
| Static Pressure:<br>(Measured in pounds per squ                                                                                                                                                                       | 76.0 PSI<br>are inch)                                                                                                                            | Static Pressure:<br>(Measured in pounds pe                                                                              | 68.4 PSI<br>er square inch)                                |  |  |  |
| Residual Pressure:<br>(Measured in pounds per squ                                                                                                                                                                     | 64.0 PSI<br>are inch)                                                                                                                            | Residual Pressure:<br>(Measured in pounds pe                                                                            | <b>56.4 PSI</b><br>er square inch)                         |  |  |  |
| Pitot Pressure:<br>(Measured in pounds per squ                                                                                                                                                                        | 20.0 PSI<br>are inch)                                                                                                                            |                                                                                                                         |                                                            |  |  |  |
| Diffuser Orifice Diameter: On<br>(Measured in inches)                                                                                                                                                                 | e 4-inch Hose monster                                                                                                                            | Distance between hydra<br>Main size: Not Provide                                                                        | nts: Approx. 500 Feet<br>ed                                |  |  |  |
| Coefficient of Diffuser: .7875                                                                                                                                                                                        |                                                                                                                                                  |                                                                                                                         |                                                            |  |  |  |
| Flowing GPM:<br>(Measured in gallons per mir                                                                                                                                                                          | <b>1,682 GPM</b><br>nute)                                                                                                                        | Flowing GPM:                                                                                                            | 1,682 GPM                                                  |  |  |  |
| GPM @ 20 PSI:                                                                                                                                                                                                         | 3,863 GPM                                                                                                                                        | GPM @ 20 PSI:                                                                                                           | 3,571 GPM                                                  |  |  |  |
| Flow Test Location                                                                                                                                                                                                    | Nort                                                                                                                                             | н <b>†</b>                                                                                                              |                                                            |  |  |  |
| Untitled Map<br>Votes design and a                                                                                                                                                                                    | urup                                                                                                                                             |                                                                                                                         | Ligend .                                                   |  |  |  |
| Pressure Fire Hydrant                                                                                                                                                                                                 | - And                                                                                                        |                                                                                                                         | Flow Fire Hydrant                                          |  |  |  |
| East Hidden Spur Trail                                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                         | East Verde Grove View                                      |  |  |  |
| Google Parts                                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                         | Project Site<br>9217 East Verde Grove<br>View              |  |  |  |

Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

## APPENDIX D REFERENCES



- d. Pipe flow velocity in feet per second (fps)
- e. Each pipe segment's head loss rate (ft. /1,000ft or psi/ft.)
- f. PRVs: Upstream and downstream pressures (psi or HGL elevation)
- g. Tanks: Inflow and outflow (gpm)
- h. Shows all units for the values presented or provide a legend on the diagram page that indicates the units used

AVERAGE DAY WATER DEMANDS (1) IN GALLONS PER DAY (GPD) <sup>(2)</sup> IN GALLONS PER MINUTE (GPM) <sup>(2)(3)</sup> Land Use Total Inside Use Outside Total Use Inside Outside Units Use Use Use Use Residential Demand per Dwelling Unit < 2 dwelling unit 208.9 276.7 485.6 0.30 0.69 0.39 per per acre (DU/ac) unit 2 – 2.9 DU/ac 276.7 470.4 0.27 193.7 0.39 0.66 per unit 3 – 7.9 DU/ac 175.9 72.3 248.2 0.25 0.11 0.36 per unit 227.6 8 – 11.9 DU/ac 155.3 72.3 0.22 0.11 0.33 per unit 12 – 22 DU/ac 72.3 0.33 155.3 227.6 0.22 0.11 per unit 30 0.27 High Density 155.3 185.3 0.22 0.05 per Condominium unit (condo) 401.7 44.6 0.56 0.07 Resort Hotel 446.3 0.63 per (includes site room amenities) Service and Employment 1.2 0.1 1.3 1.67E-03 1.39E-04 1.81E-03 per Restaurant square foot (sq.ft.) Commercial/ 0.7 0.1 0.8 9.73E-04 1.39E-04 1.11E-03 per Retail sq.ft. Commercial High 0.5 0.1 0.6 6.95E-04 1.39E-04 8.34E-04 per Rise sq.ft.



23-DR-2020

7/27/2020

# AVERAGE DAY WATER DEMANDS (1)

| IN GALLONS PER D                         | IN GALLO | IN GALLONS PER MINUTE (GPM) <sup>(2)(3)</sup> |      |          |          |          |               |
|------------------------------------------|----------|-----------------------------------------------|------|----------|----------|----------|---------------|
| Office                                   | 0.5      | 0.1                                           | 0.6  | 6.95E-04 | 1.39E-04 | 8.34E-04 | per<br>sq.ft. |
| Institutional                            | 670      | 670                                           | 1340 | 0.94     | 0.94     | 1.88     | per<br>acre   |
| Industrial                               | 873      | 154                                           | 1027 | 1.22     | 0.22     | 1.44     | per<br>acre   |
| Research and<br>Development              | 1092     | 192                                           | 1284 | 1.52     | 0.27     | 1.79     | per<br>acre   |
| Special Use Areas                        |          |                                               |      |          |          |          | -             |
| Natural Area Oper<br>Space               | 0        | 0                                             | 0    | 0.0      | 0.0      | 0.0      | per<br>acre   |
| Developed Open<br>Space – Parks          | 0        | 1786                                          | 1786 | 0.0      | 2.49     | 2.49     | per<br>acre   |
| Developed Open<br>Space – Golf<br>Course | 0        | 4285                                          | 4285 | 0.0      | 5.96     | 5.96     | per<br>acre   |

Notes:

(1) These values shall not be used directly for service line or water meter sizing.

(2) Gallon per day values are provided for reference only. The instantaneous gallon per minute flow rates presented are intended for use in the required hydraulic modeling scenarios. The gpm values assume a 12-hour active water use period per 24-hour day. In large or specialty developments or master plans the hydraulic analysis criteria and parameters should be discussed with the Water Resources Department. Seasonal peaking should also be considered. Upon review, the Water Resources Department reserves the right to designate flows to be used in hydraulic modeling scenarios that may be different from those presented here.

(3) The hydraulic modeling peaking factors used in select modeling scenarios are to be applied to the gpm values shown here. Max day and peak hour peaking factors can be found in Section 6-1.404.

FIGURE 6-1.2 AVERAGE DAY WATER DEMANDS

|                             | FIRE-FLOW                      | FIRE-FLOW                    | FLOW DURATION                  |                       |                                   |         |
|-----------------------------|--------------------------------|------------------------------|--------------------------------|-----------------------|-----------------------------------|---------|
| Type IA and IB <sup>a</sup> | Type IIA and IIIA <sup>a</sup> | Type IV and V-A <sup>a</sup> | Type IIB and IIIB <sup>a</sup> | Type V-B <sup>a</sup> | (gallons per minute) <sup>b</sup> | (hours) |
| 0-22,700                    | 0-12,700                       | 0-8,200                      | 0-5,900                        | 0-3,600               | 1,500                             |         |
| 22,701-30,200               | 12,701-17,000                  | 8,201-10,900                 | 5,901-7,900                    | 3,601-4,800           | 1,750                             |         |
| 30,201-38,700               | 17,001-21,800                  | 10,901-12,900                | 7,901-9,800                    | 4,801-6,200           | 2,000                             | 2       |
| 38,701-48,300               | 21,801-24,200                  | 12,901-17,400                | 9,801-12,600                   | 6,201-7,700           | 2,250                             | 2       |
| 48,301-59,000               | 24,201-33,200                  | 17,401-21,300                | 12,601-15,400                  | 7,701-9,400           | 2,500                             |         |
| 59,001-70,900               | 33,201-39,700                  | 21,301-25,500                | 15,401-18,400                  | 9,401-11,300          | 2,750                             |         |
| 70,901-83,700               | 39,701-47,100                  | 25,501-30,100                | 18,401-21,800                  | 11,301-13,400         | 3,000                             |         |
| 83,701-97,700               | 47,101-54,900                  | 30,101-35,200                | 21,801-25,900                  | 13,401-15,600         | 3,250                             | 2       |
| 97,701-112,700              | 54,901-63,400                  | 35,201-40,600                | 25,901-29,300                  | 15,601-18,000         | 3,500                             | 3       |
| 112,701-128,700             | 63,401-72,400                  | 40,601-46,400                | 29,301-33,500                  | 18,001-20,600         | 3,750                             |         |
| 128,701-145,900             | 72,401-82,100                  | 46,401-52,500                | 33,501-37,900                  | 20,601-23,300         | 4,000                             |         |
| 145,901-164,200             | 82,101-92,400                  | 52,501-59,100                | 37,901-42,700                  | 23,301-26,300         | 4,250                             |         |
| 164,201-183,400             | 92,401-103,100                 | 59,101-66,000                | 42,701-47,700                  | 26,301-29,300         | 4,500                             |         |
| 183,401-203,700             | 103,101-114,600                | 66,001-73,300                | 47,701-53,000                  | 29,301-32,600         | 4,750                             |         |
| 203,701-225,200             | 114,601-126,700                | 73,301-81,100                | 53,001-58,600                  | 32,601-36,000         | 5,000                             |         |
| 225,201-247,700             | 126,701-139,400                | 81,101-89,200                | 58,601-65,400                  | 36,001-39,600         | 5,250                             |         |
| 247,701-271,200             | 139,401-152,600                | 89,201-97,700                | 65,401-70,600                  | 39,601-43,400         | 5,500                             |         |
| 271,201-295,900             | 152,601-166,500                | 97,701-106,500               | 70,601-77,000                  | 43,401-47,400         | 5,750                             |         |
| 295,901-Greater             | 166,501-Greater                | 106,501-115,800              | 77,001-83,700                  | 47,401-51,500         | 6,000                             | 4       |
|                             | —                              | 115,801-125,500              | 83,701-90,600                  | 51,501-55,700         | 6,250                             |         |
|                             | —                              | 125,501-135,500              | 90,601-97,900                  | 55,701-60,200         | 6,500                             |         |
|                             |                                | 135,501-145,800              | 97,901-106,800                 | 60,201-64,800         | 6,750                             |         |
|                             | —                              | 145,801-156,700              | 106,801-113,200                | 64,801-69,600         | 7,000                             |         |
|                             | —                              | 156,701-167,900              | 113,201-121,300                | 69,601-74,600         | 7,250                             |         |
| —                           | —                              | 167,901-179,400              | 121,301-129,600                | 74,601-79,800         | 7,500                             |         |
| —                           | —                              | 179,401-191,400              | 129,601-138,300                | 79,801-85,100         | 7,750                             |         |
| —                           | —                              | 191,401-Greater              | 138,301-Greater                | 85,101-Greater        | 8,000                             |         |

TABLE B105.1(2) REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

For SI: 1 square foot = 0.0929 m<sup>2</sup>, 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

a. Types of construction are based on the International Building Code.

b. Measured at 20 psi residual pressure.

| TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES |                                                  |                                                      |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--|--|--|--|--|
| AUTOMATIC SPRINKLER SYSTEM<br>(Design Standard)                  | MINIMUM FIRE-FLOW<br>(gallons per minute)        | FLOW DURATION<br>(hours)                             |  |  |  |  |  |
| No automatic sprinkler system                                    | Value in Table B105.1(2)                         | Duration in Table B105.1(2)                          |  |  |  |  |  |
| Section 903.3.1.1 of the International Fire Code                 | 25% of the value in Table B105.1(2) <sup>a</sup> | Duration in Table B105.1(2) at the reduced flow rate |  |  |  |  |  |
| Section 903.3.1.2 of the International Fire Code                 | 25% of the value in Table B105.1(2) <sup>b</sup> | Duration in Table B105.1(2) at the reduced flow rate |  |  |  |  |  |

TABLE B105.2 REQUIRED FIRE-FLOW FOR BUILDINGS OTHER THAN ONE- AND WO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

For SI: 1 gallon per minute = 3.785 L/m.

a. The reduced fire-flow shall be not less than 1,000 gallons per minute.

b. The reduced fire-flow shall be not less than 1,500 gallons per minute.



#### 2015 INTERNAT

23-DR-2020

7/27/2020

Copyright © 2014 ICC. ALL RIGHTS RESERVED. Accessed by David Montgomery on Mar 22, 2016 2:32:13 PM pursuant to Li or distribution authorized. ANY UNAUTHORIZED REPRODUCTION OR DISTRIBUTION IS A VIOLATION OF THE FEDI AGREEMENT, AND SUBJECT TO CIVIL AND CRIMINAL PENALTIES THEREUNDER.

## APPENDIX E UTILITY PLAN





G:\LGEC275\Concept\lg275 CONUTIL.dwg. 7/23/2020 11:49:03 AM. ccal