

September 10, 2020

Charles Huellmantel Huellmantell & Affiliates 605 South Ash Avenue Tempe, Arizona 85281 Telephone: (480) 921-2800 Email: charles@huellmantel.com

RE: ENHANCED TRAFFIC STATEMENT FOR THE AXON CAMPUS - SCOTTSDALE, ARIZONA

Dear Mr. Huellmantel:

CivTech is pleased to present this enhanced traffic statement for the proposed Axon Campus ('project site') located in on the south and west side of Loop 101, north of the Mayo Boulevard/Union Hills alignment and east of Hayden Road in Scottsdale, Arizona. The proposed project would develop one (1) parcel on approximately 70 acres that was previously proposed as a part of the Crossroads East PCD (Parcel 13). The previous assumptions for this parcel included industrial, manufacturing and warehousing uses totaling approximately 1.5 million square feet. The Axon Campus is an allowable use for Parcel 13 with the PCD. The proposed trip generation assumptions utilized during the Crossroads East TIA prepared for the PCD zoning process with the Arizona State Land Department (ASLD) were similar in scale. The proposed site plan can be found in **Attachment A**.

PURPOSE AND SCOPE

The purpose of this traffic statement is to determine if the relocated Mayo Boulevard, which is now proposed in a different location than originally shown within the Crossroads East TIA, can utilize roundabouts to help realign the roadway and provide more developable land for the Axon Campus. The location and potential size of roundabouts used in the relocation will be reviewed to determine if adequate spacing is provided from the arterial street network to avoid queueing through the roundabout. The typical section required for Mayo Boulevard east of Hayden Road with the Axon Campus is also being reviewed as part of this statement.

The Crossroads east TIA was approved by the City of Scottsdale on September 23, 2011 with a stipulation that the developer provide an additional lane in the northbound direction on Hayden Road fronting the project. This lane has been considered within the analysis. A trip generation comparison will be conducted as well as a capacity analysis to determine if there are additional changes to the surrounding roadway network that are needed due to the development of this parcel.

EXISTING CONDITIONS

SURROUNDING LAND USES

The project site is currently undeveloped land. Directly north of the site is the Pima (Loop 101) Freeway, and the City of Scottsdale water treatment plant. Directly to the south of the site is the Scottsdale Stonebrook single-family detached housing, Pacesetter Business complex, Hilton Garden Inn, Scottsdale Sports Complex, Sonoran Corporate Center Condominium, Hartford Place Condominium, Scottsdale Liberty Hospital, and other business buildings. Directly to the east of the site is the Pima (Loop 101) Freeway, DC Ranch Crossing Shopping Center, DC Ranch Crossing Apartment complex, Corporate Center at DC Ranch, and single-family detached housing. Directly to the west of the site is currently undeveloped land.

EXISTING ROADWAY NETWORK

The existing roadway network within the study area includes Mayo Boulevard and Hayden Road. The study roadways are discussed in further detail as follows:

Mayo Boulevard is an east-west collector roadway with one (1) lane in each direction within the vicinity of the proposed site. Mayo Boulevard begins at the southwest corner of the site at Hayden Road and continues for approximately half a mile where it turns into Union Hills Drive at Perimeter Drive. The posted speed limit is 35 miles per hour (mph) within the vicinity of the site.

Hayden Road is a north-west minor arterial roadway with two (2) lanes and a bike lane in each direction with a raised center median within the vicinity of the proposed site. Hayden Road begins southwest of the site at Scottsdale Road and continues north of the site to Deer Valley Road where it turns into Miller Road. Hayden Road provides direct access to the Loop 101 Freeway. The posted speed limit is 40 miles per hour (mph) within the vicinity of the site.

EXISTING INTERSECTION CONFIGURATION

The intersection of **Hayden Road & Mayo Boulevard** operates as an unsignalized "T" intersection with stop control in the westbound approach. The northbound approach consists of two (2) through lanes, one (1) dedicated right-turn lane, and a bike lane. The southbound approach consists of two (2) through lanes, one (1) left-turn lane, and a bike lane. The westbound approach consists of one (1) shared left-turn/through/right-turn lane. Designated pedestrian crosswalks are provided along all legs of the intersection.

EXISTING CAPACITY ANALYSIS

Peak hour capacity analyses have been conducted for the study intersections based on existing intersection configurations and traffic volumes. All intersections have been analyzed using the methodologies presented in the *Highway Capacity Manual (HCM), Special Report 209,* and Updated 2016 and using Synchro software, version 10.0 under the HCM 6th edition methodology.

The concept of level of service (LOS) uses qualitative measures that characterize operational conditions within the traffic stream. The individual levels of service are described by factors that

include speed, travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six levels of service are defined for each type of facility for which analysis procedures are available. They are given letter designations A through F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions. Levels of service for intersections are defined in terms of delay ranges. **Table 3** lists the level of service criteria for signalized and unsignalized intersections, respectively.

Level-of-Service	Signalized Control Delay (sec/veh)	Unsignalized Control Delay (sec/veh)
A	≤ 10	≤ 10
В	> 10-20	> 10-15
С	> 20-35	> 15-25
D	> 35-55	> 25-35
E	> 55-80	> 35-50
F	> 80 (or v/c > 1)	> 50 (or v/c > 1)

Table 3 – Level of Service Criteria for Controlled Intersections

Source: Exhibits 19-8, 20-2, 21-8, and 22-8, Highway Capacity Manual 2017

Synchro 10.0 software calculates the LOS per the HCM 2016 methodology. The 2016 HCM documents the signalized LOS calculation methodology which takes into account lane geometry, traffic volumes and cycle length/phasing to compute LOS. Synchro analysis worksheets report individual movement delay/LOS and overall delay/LOS for signalized intersections; unsignalized intersection worksheets report the worst-case delay/LOS and the average overall intersection delay. Results of the existing level of service analyses are shown in **Table 4** for both AM and PM peak hours. The existing conditions analysis worksheets have been included in **Attachment B**.

Existing volumes for this analysis were determined by using traffic counts previously conducted at this intersection from June of 2018. These counts were grown by a factor of 2.1% per year from 2018 to 2020 in order to represent traffic as it would be today.

Table 4 – Existing Peak Hour Levels of Service

ID	Intersection	Intersection Control	Approach/ Movement	Existing LOS AM (PM)
1	Hayden Road & Mayo Boulevard	1-way stop (WB)	SB left WB Shared	A (B) A (C)

The results of the existing conditions analysis summarized in Table 4 indicate that the intersection of Hayden Road & Mayo Boulevard operates with acceptable levels of service (LOS D or better).

FUTURE ROADWAY CONDITIONS

Upon buildout of this project, the Mayo Boulevard alignment will be reconstructed approximately 760 feet, center to center, north of the existing alignment. Mayo Boulevard west of Hayden Road is also currently under construction so that it connects to the existing alignment east of Scottsdale Road.

The City of Scottsdale will assist with constructing Mayo Boulevard east of Hayden Road to Perimeter Drive, no access to the Loop 101 freeway will be constructed. Mayo Boulevard could provide up to a four lane section with two lanes of travel in each direction of travel. The proposed cross-section will be determined as part of this traffic analysis and to accommodate the needs of the Axon Campus.

SITE ACCESS

Access to the site will be via one main access point along Mayo Boulevard. Future development could also provide a second access from Mayo Boulevard. Both access points will utilize the proposed roundabouts to connect to private driveways. The primary access, located at 82nd Street will be a four-legged roundabout with two eastbound approach lanes and two westbound departure lanes. All other approach and departure lanes have been assumed with one lane in each direction.

TRIP GENERATION

The potential trip generation for the Axon Campus was estimated utilizing the Institute of Transportation Engineers (ITE) *Trip Generation Manual, 10th Edition* and *Trip Generation Handbook,* \mathcal{J}^d *Edition*. The ITE *Trip Generation Manual* contains data collected by various transportation professionals for a wide range of different land uses. The data are summarized in the report and average rates and equations have been established that correlate the relationship between an independent variable that describes the development size and generated trips for each categorized land use. The anticipated trip generation comparison for the project site is provided in **Table 1**.

e das East)	Indus Manu Ware General O	Jse Name trial Park facturing housing		490.76 490.76 490.76	6 KSF	In 82% 78%	Out 18% 22%	In 21% 36%	Out 79% 64%
	Manu Ware General O	facturing housing		490.76	6 KSF	78%		-	
)	Manu Ware General O	facturing housing		490.76	6 KSF	78%		-	
	Ware General O	housing					22%	36%	64%
) (General O	3		490.76					
		ffico buildi			0 135	79%	21%	25%	75%
		ffice build							
)	14/	ince bulla	ing	780.00	0 KSF	86%	14%	16%	84%
	Ware	housing		130.00	0 KSF	77%	23%	27%	73%
A	DT		AM Pe	ak Hour			PM Pea	k Hour	
Avg. Rate*	Total	Avg. Rate*	In	Out	Total	Avg. Rate*	In	Out	Total
ds East)									
5.25	2,576	0.49	196	43	239	0.79	81	305	386
3.87	1,900	0.82	313	88	402	0.77	137	243	380
3.13	1,534	0.19	74	20	94	0.18	23	68	91
	6,010		583	151	732		241	616	857
9.98	7,782	0.97	654	106	760	1.03	128	673	801
1.93	250	0.31	32	9	41	0.33	12	31	43
	8,032		686	115	801		140	704	844
ssumption)	1,797		103	-36	66		-101	88	-13
	30%		18%	-24%	9%		42%	14%	-2%
lated by divi	ding total t	rips genera	ted using r	egression e	quation by t	he number	of dwelling	units. (Se	e below.)
CALCL	ILATIONS	(Equation	s shown d	nlv where	annlicahle)			
	Avg. Rate* ads East) 5.25 3.87 3.13 9.98 1.93 ssumption)	Rate* 10tal ads East) 5.25 2,576 3.87 1,900 3.13 1,534 6,010 9.98 7,782 1.93 250 8,032 ssumption) 1,797 30%	Avg. Rate* Total Avg. Rate* ads East) 5.25 2,576 0.49 3.87 1,900 0.82 3.13 1,534 0.19 9.98 7,782 0.97 1.93 250 0.31 ssumption) 1,797 30% ulated by dividing total trips general 30%	Avg. Rate* Total Avg. Rate* In ads East) 5.25 2,576 0.49 196 3.87 1,900 0.82 313 3.13 1,534 0.19 74 6,010 583 9.98 7,782 0.97 654 1.93 250 0.31 32 ssumption) 1,797 103 30% 18%	Avg. Rate* Total Avg. Rate* In Out ads East) 5.25 2,576 0.49 196 43 3.87 1,900 0.82 313 88 3.13 1,534 0.19 74 20 6,010 583 151 9.98 7,782 0.97 654 106 1.93 250 0.31 32 9 8,032 686 115	Avg. Rate* Total Avg. Rate* In Out Total ads East) 5.25 2,576 0.49 196 43 239 3.87 1,900 0.82 313 88 402 3.13 1,534 0.19 74 20 94 6,010 583 151 732 9.98 7,782 0.97 654 106 760 1.93 250 0.31 32 9 41 8,032 686 115 801 ssumption) 1,797 103 -36 66 30% 18% -24% 9%	Avg. Rate* Total Avg. Rate* In Out Total Avg. Rate* ads East) 5.25 2,576 0.49 196 43 239 0.79 3.87 1,900 0.82 313 88 402 0.77 3.13 1,534 0.19 74 20 94 0.18 6,010 583 151 732 732 732 732 9.98 7,782 0.97 654 106 760 1.03 1.93 250 0.31 32 9 41 0.33 ssumption 1,797 103 -36 66 66	Avg. Rate* Total Avg. Rate* In Out Total Avg. Rate* In ads East) 5.25 2,576 0.49 196 43 239 0.79 81 3.87 1,900 0.82 313 88 402 0.77 137 3.13 1,534 0.19 74 20 94 0.18 23 6,010 583 151 732 241 9.98 7,782 0.97 654 106 760 1.03 128 1.93 250 0.31 32 9 41 0.33 12 ssumption) 1,797 103 -36 66 -101 30% 18% -24% 9% 42%	Avg. Rate* Total Avg. Rate* In Out Total Avg. Rate* In Out ads East) 5.25 2,576 0.49 196 43 239 0.79 81 305 3.87 1,900 0.82 313 88 402 0.77 137 243 3.13 1,534 0.19 74 20 94 0.18 23 68 6,010 583 151 732 241 616 9.98 7,782 0.97 654 106 760 1.03 128 673 1.93 250 0.31 32 9 41 0.33 12 31 ssumption) 1,797 103 -36 66 -101 88 30% 18% -24% 9% 42% 14%

Table 1 - Trip Generation Summary

	CALCULATIONS (Equations	shown only where applicable)	
Land Use [Units]	Daily	AM Peak Hour	PM Peak Hour
General Office Building [X = 780 SF]	FC: LN(T)=0.97*LN(X)+2.5 [9.98]	FC: T=0.94*X+26.49 [0.97]	FC: LN(T)=0.95*LN(X)+0.36 [1.03]
Warehousing $[X = 130 \text{ SF}]$	FC: T=1.58*X+45.54 [1.93]	FC: T=0.12*X+25.32 [0.31]	FC: T=0.12*X+27.82 [0.33]

The proposed Axon Campus development could generate up to 8,032 weekday daily trips with 801 trips occurring during the AM peak hour (686 in/115 out) and 844 trips occurring during the PM peak hour (140 in/704 out)

The Axon Campus is expected to generate 1,797 additional external daily trips as compared to the original Crossroads East TIA, with 66 additional trips generated during the AM peak hour (103 trips in/-36 trips out) and 13 fewer trips generated during the PM peak hour (-101 trips in/88 trips out).

TRIP DISTRIBUTION AND ASSIGNMENT

A single trip distribution pattern was taken from the previously approved Crossroads East TIA. It is expected that the development will generate trips based on future population within a 10-mile radius of the site. Future total population within a 10-mile radius of the site, as predicted by the 2030 socioeconomic data compiled by the Maricopa Association of Governments (MAG), was used in that study as a basis to estimate trip distribution for the development.

Enhanced Traffic Statement Scottsdale Economic Development World Headquarters – Scottsdale, Arizona September 10, 2020 Page 6

Based on this information and the local street network, distribution percentages were assigned to the study roadway network. The resulting trip distribution percentages were applied to the generated trips to determine the AM and PM peak hour site traffic at the intersections within the study area and are illustrated in **Figure 1**.

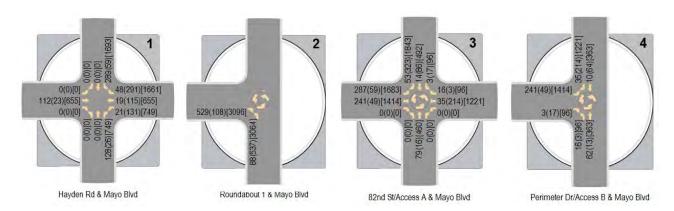


Figure 1 – Site Trip Distribution

BACKGROUND TRAFFIC GROWTH PROJECTIONS

Background traffic along Hayden Road was determined by growing the existing 2020 traffic volumes by 2.1% per year to the opening year 2035. This gives a growth factor of 1.366 applied to the existing Hayden Road volumes.

CivTech recently conducted a traffic study for the Cavasson development, located on the southwest corner of Hayden Road and Legacy Boulevard. This development is anticipated to produce additional traffic on Hayden Road by the horizon year 2035. This anticipated additional traffic was added to the grown existing volumes to represent future traffic on the surrounding roadway network.

Along with the Cavasson development, Mayo Boulevard is currently being constructed so that it connects west to Scottsdale Road. The original Crossroads East TIA projected volumes for this portion of Mayo Boulevard between Hayden Road and Scottsdale Road. In order to have a more conservative estimate of approach traffic volumes, the eastbound and westbound volumes from Crossroads East for this portion of Mayo Boulevard were included in place of the existing volumes since the roadway is not yet completed and existing traffic that was present is likely construction vehicles. The horizon year for Crossroads East TIA was 2030, so the volumes used in the Axon Campus background traffic were grown by 2.1% per year for 5 years in order to represent the 2035 horizon year as projected for the Cavasson development.

Background traffic calculations as well as the Cavasson and Crossroads East volumes referenced above are located within **Attachment C**.

TRAFFIC AND IMPROVEMENT ANALYSIS

The overall intersection and approach levels of service are summarized in **Table 5** for the 2035 background and total traffic conditions. Detailed analysis worksheets for the 2035 analyses can be found in **Attachment D**.

		Intorcostio	Approach /	20	35
ID	Intersection	Intersectio n Control	Approach/ Movement	No Build	Build
		II CONTION	Movement	AM (PM)	AM(PM)
			NB	C(C)	D(D)
			SB	C(C)	D(D)
1	Hayden Road & Mayo Boulevard	Signalized	EB	D(D)	D(D)
			WB	D(D)	D(D)
			Overall	C(C)	D(D)
T			NB		A(B)
2	Roundabout 1 & Mayo Boulevard	Roundabout	EB	NA	A(A)
2	Roundabout 1 & Mayo Boulevaru	Roundabout	WB	INA	A(A)
			Overall		A(A)
T			NB		A(A)
			SB		A(A)
3	82 nd Street & Mayo Boulevard	Roundabout	EB	NA	A(A)
			WB		A(A)
			Overall		A(A)
			NB		A(A)
4	Perimeter Drive & Mayo	Roundabout	SB	NA	A(A)
4	Boulevard	Roundbout	EB	INA	A(A)
			Overall		A(A)

Table 5 – Peak Hour Levels of Service

The results of the Synchro analysis summarized in **Table 5** indicate that all study intersections operate with overall acceptable levels of service D or better.

QUEUE STORAGE ANALYSIS

Adequate turn storage should be supplied on any approach where turn lanes are permitted and/or warranted. A queuing analysis was performed for all warranted/recommended and existing intersection turn lanes where site traffic is expected as well as left turn lanes adjacent to the site. According to the methodology documented in *A Policy on Geometric Design of Highways and Streets* (the AASHTO "Green Book"), the storage length for a turn lane is typically estimated as the length required to hold the average number of arriving vehicles per two minutes, where unsignalized, or per

one-and-a half signal cycles, where signalized.¹ The formulas used for the calculations are shown below.

For signalized intersections, the storage length is determined by the following formula:

Storage Length = [1.5 x (veh/hr)/(cycles/hr)] x 25 feet

For unsignalized intersections, the storage length is determined by the following formula:

Storage Length = $[(veh/hr)/(30 \text{ periods/hr})] \times 25 \text{ feet}$

The total projected traffic volumes were utilized for the calculations. From this, the resulting turn lane storage for turn movements using AASHTO guidelines were calculated and are summarized in **Table**. Calculations for the AASHTO queue storage length recommendations and the 50th percentile HCM 2016 queue storage length recommendations are provided in **Appendix E**. The 50th percentile HCM 2016 queue storage lengths are given in vehicles and multiplied by 25 feet per vehicle to determine the storage length.

		Intersection			Queue Stor	rage
ID	Intersection	Control	Movement	AASHTO	HCM ⁽²⁾	Recommended
			NB Left	50′	35′	150′
			SB Left	900′	45′	(1)300'
4	Hayden Road &	Cianalizad	EB Left	50′	225′	150′
L	Mayo Boulevard	Signalized	WB Left	225′	85′	150′
	-		SB Right	75′	160′	200′
			WB Right	1025′	390′	(3)

Table 6 – Queue Storage Lengths

(1) A minimum of 150-feet of queue storage is recommended at all signalized intersections.

(2) HCM 50th percentile queue reported in vehicles/lane, assuming 1 vehicle \sim 25 feet.

(3) Westbound right-turn lane is a through trap lane that will provide more then the calculated queue storage.

The recommended storage lengths in **Table 6** is provided for study horizon year 2035 using the total traffic projections.

¹ The American Association of Highway and Transportation Officials on pages 714-715 of its publication, Geometric Design of Highways and Streets ("AASHTO Green Book"), indicates that storage length for a turn lane, exclusive of taper, "should usually be based on one and one-half to two times the average number of vehicles that would store per cycle" at a signalized intersection.

Conclusions

The following conclusions and recommendations have been documented in this statement:

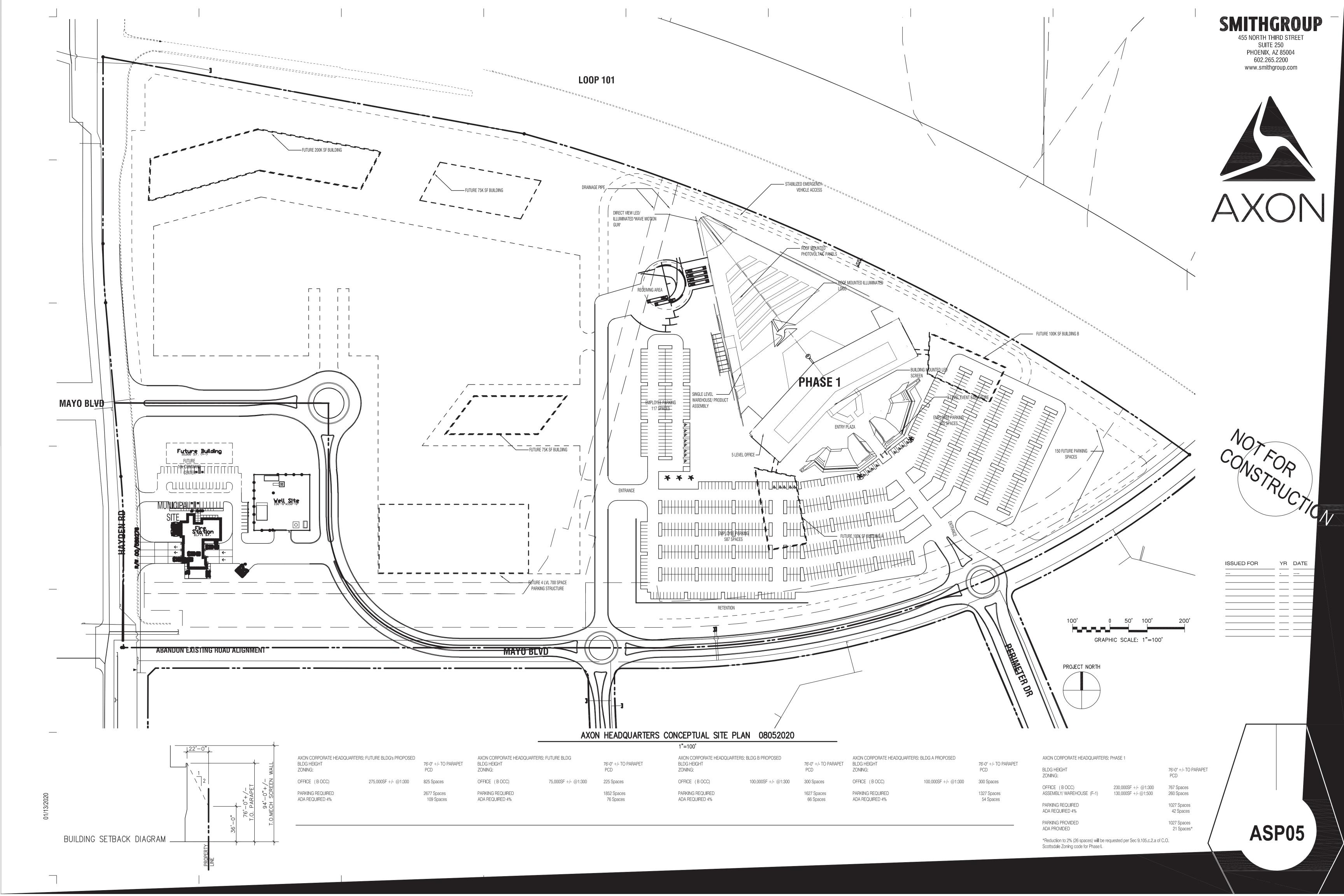
- The proposed Axon Campus development could generate up to 8,032 weekday daily trips with 801 trips occurring during the AM peak hour (686 in/115 out) and 844 trips occurring during the PM peak hour (140 in/704 out).
- The Axon Campus is expected to generate 1,797 additional external daily trips as compared to the original Crossroads East TIA, with 66 additional trips generated during the AM peak hour (103 trips in/-36 trips out) and 13 fewer trips generated during the PM peak hour (-101 trips in/88 trips out).
- All proposed intersections are anticipated to operate at acceptable levels of service.
- All intersections are anticipated to operate at acceptable levels of service with the proposed intersection lane configuration and the following roadway typical sections:
 - Mayo Boulevard should be constructed with a four-lane section, two lanes in each direction of travel between Hayden Road and 82nd Street. This will require the construction of a two-lane roundabout approximately 400 feet east of the Hayden Road alignment.
 - Mayo Boulevard could be reduced to provide a two-lane section, one lane in each direction of travel from 82nd Street to Perimeter Drive.
- Queue storage recommendations and proposed lane configuration recommendation have been provided in **Attachment E**.

Thank you for allowing CivTech to assist you on this project. We wish you the best as you proceed with the development. Please call me if you have any questions about this statement and/or if we can be of further assistance.

Sincerely,

CivTech

Dawn D Cartier, P.E., PTOE


Project Manager/President

Attachments:

- A. Site Plan
- B. Existing Conditions Analysis
- C. Background Growth Calculations
- D. 2035 Analysis Worksheets
- E. Queue Storage Analysis

Z:\Civtech\Projects\20-0170 InTown Suites NWC Dobson & Pecos Roads Traffic Statement, Chandler\Submittal\1st Submittal\Drafts\InTown Suites TIS V1_1.docx

Intersection

Int Delay, s/veh	1.7						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	۰Y		^	1	٦	††	•
Traffic Vol, veh/h	0	41	307	9	176	568	}
Future Vol, veh/h	0	41	307	9	176	568	}
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	,
Storage Length	0	-	-	145	365	-	-
Veh in Median Storage	, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	90	90	90	90	90	90)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	46	341	10	196	631	

Major/Minor	Minor1	Μ	lajor1	Ν	/lajor2	
Conflicting Flow All	1049	171	0	0	351	0
Stage 1	341	-	-	-	-	-
Stage 2	708	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	223	843	-	-	1204	-
Stage 1	692	-	-	-	-	-
Stage 2	449	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 187	843	-	-	1204	-
Mov Cap-2 Maneuver	r 187	-	-	-	-	-
Stage 1	692	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Annraach			ND		CD.	

Approach	WB	NB	SB	
HCM Control Delay, s	9.5	0	2	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRWB	Ln1	SBL	SBT
Capacity (veh/h)	-	- 6	843	1204	-
HCM Lane V/C Ratio	-	- 0.	054	0.162	-
HCM Control Delay (s)	-	-	9.5	8.6	-
HCM Lane LOS	-	-	А	Α	-
HCM 95th %tile Q(veh)	-	-	0.2	0.6	-

Intersection Int Delay, s/veb

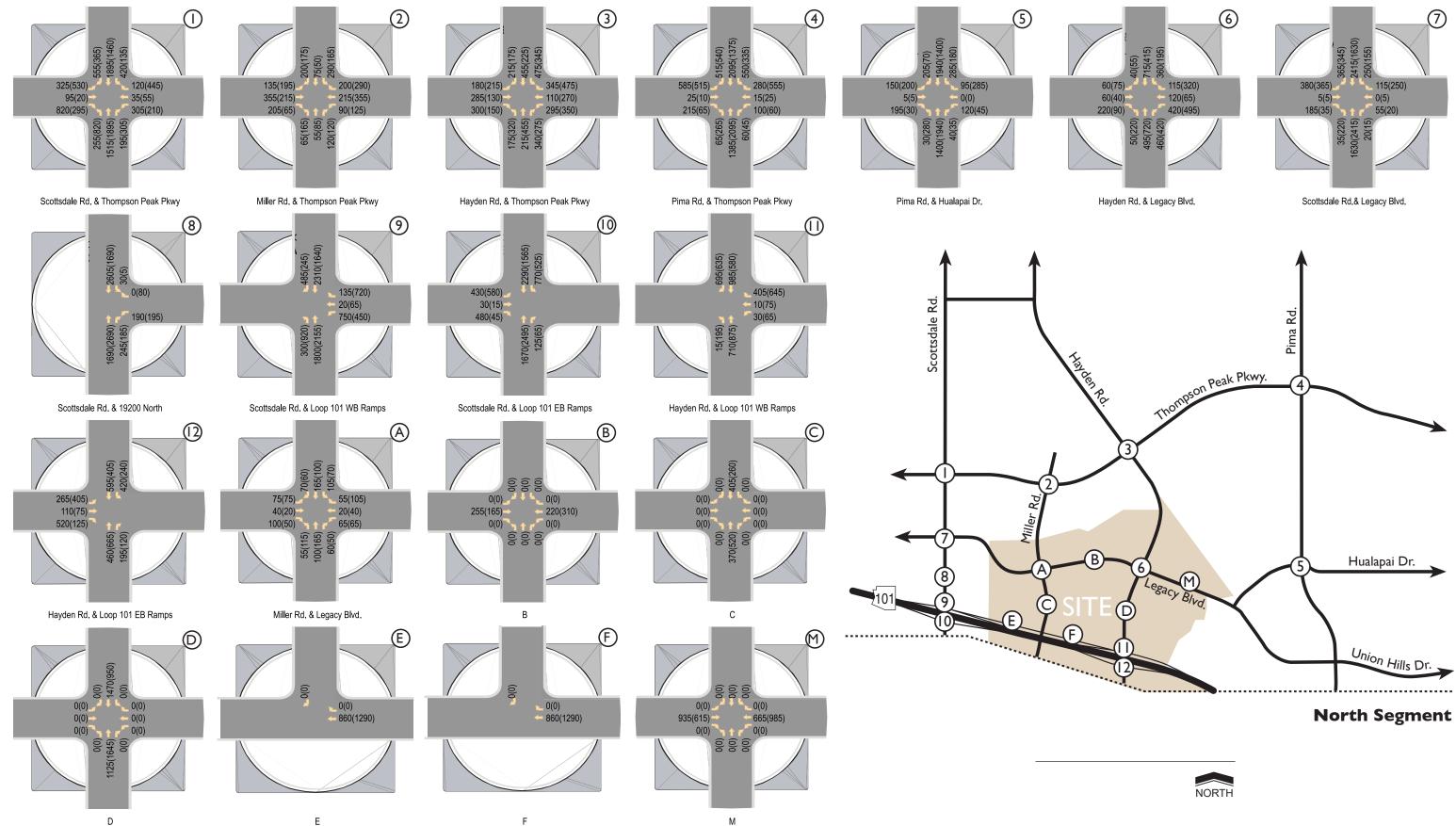
Int Delay, s/veh	3.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		- ††	1	۳	††
Traffic Vol, veh/h	3	237	819	5	32	352
Future Vol, veh/h	3	237	819	5	32	352
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	145	365	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	263	910	6	36	391

Major/Minor	Minor1	Μ	lajor1	Ν	1ajor2	
Conflicting Flow All	1178	455	0	0	916	0
Stage 1	910	-	-	-	-	-
Stage 2	268	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	184	552	-	-	740	-
Stage 1	353	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		552	-	-	740	-
Mov Cap-2 Maneuver	175	-	-	-	-	-
Stage 1	353	-	-	-	-	-
Stage 2	716	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	18.1	0	0.8
HCM LOS	С		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	- 538	740	-
HCM Lane V/C Ratio	-	- 0.496	0.048	-
HCM Control Delay (s)	-	- 18.1	10.1	-
HCM Lane LOS	-	- C	В	-
HCM 95th %tile Q(veh)	-	- 2.7	0.2	-

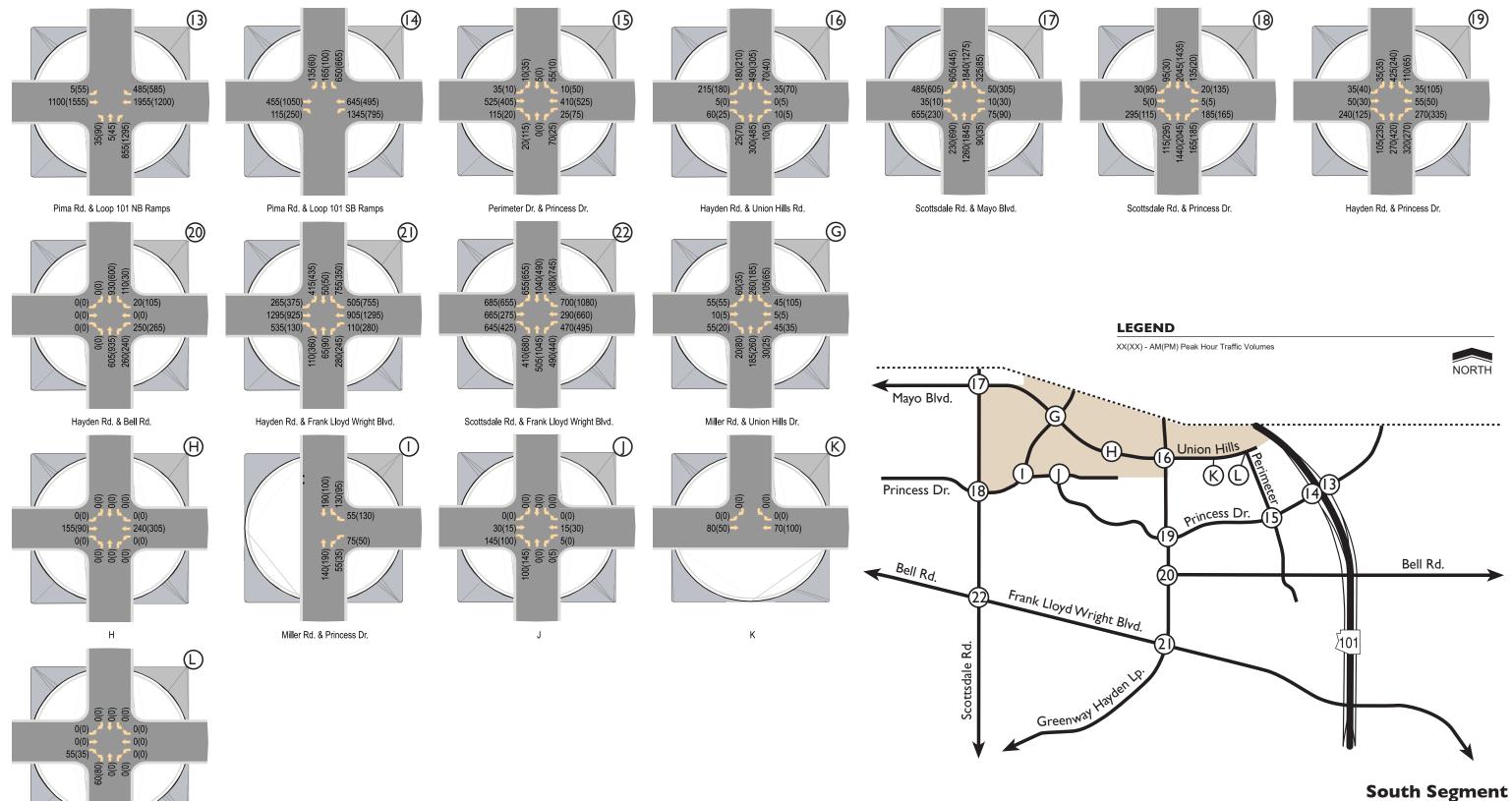
Location of counts: Hayden Road south of Loop 101


Source(s): <u>https://www.scottsdaleaz.gov/transportation/studies-reports/traffic-volume</u>

	Year	Volume
Start	2014	12,100
End	2016	12,600
AAGR		2.0%
Exp Factor		1.041

Growth Rate Used	2.1%
Per-Year Multiplier	1.021

	Expansion	
Year	Factor(s)	
2018	1.000	
2019	1.021	
2020	1.042	Opening
2021	1.064	
2022	1.087	
2023	1.110	
2024	1.133	
2025	1.157	
2026	1.181	
2027	1.206	
2028	1.231	
2029	1.257	
2030	1.283	
2031	1.310	
2032	1.338	
2033	1.366	
2034	1.394	
2035	1.424	
2036	1.454	
2037	1.484	
2038	1.515	
2039	1.547	
2040	1.580	
2041	1.613	
2042	1.647	
2043	1.681	
2044	1.717	
2045	1.753	
2046	1.789	
2047	1.827	
2048	1.865	
2049	1.905	
2050	1.945	



Crossroads East-

Figure 12: 2030 Peak Hour Background Traffic - North

Crossroads East-

L

Figure 13: 2030 Peak Hour Background Traffic - South

Background AM 1: Hayden Rd & Mayo Blvd

	۶	-	\mathbf{F}	•	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		<u> </u>	↑	1	ሻ	∱ î≽		<u>۲</u>	- ††	1
Traffic Volume (veh/h)	257	6	76	11	0	56	46	667	12	240	860	215
Future Volume (veh/h)	257	6	76	11	0	56	46	667	12	240	860	215
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	286	7	51	12	0	1	51	741	13	267	956	239
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	411	37	271	135	71	60	297	2025	36	474	2172	969
Arrive On Green	0.17	0.19	0.19	0.01	0.00	0.04	0.01	0.19	0.19	0.03	0.20	0.20
Sat Flow, veh/h	1781	195	1420	1781	1870	1585	1781	3573	63	1781	3554	1585
Grp Volume(v), veh/h	286	0	58	12	0	1	51	368	386	267	956	239
Grp Sat Flow(s),veh/h/ln	1781	0	1615	1781	1870	1585	1781	1777	1859	1781	1777	1585
Q Serve(g_s), s	17.9	0.0	3.6	0.8	0.0	0.1	1.4	21.7	21.7	6.8	28.3	15.2
Cycle Q Clear(g_c), s	17.9	0.0	3.6	0.8	0.0	0.1	1.4	21.7	21.7	6.8	28.3	15.2
Prop In Lane	1.00		0.88	1.00		1.00	1.00		0.03	1.00		1.00
Lane Grp Cap(c), veh/h	411	0	308	135	71	60	297	1007	1054	474	2172	969
V/C Ratio(X)	0.70	0.00	0.19	0.09	0.00	0.02	0.17	0.37	0.37	0.56	0.44	0.25
Avail Cap(c_a), veh/h	433	0	464	192	288	244	318	1007	1054	683	2172	969
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	0.33	0.33	0.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95
Uniform Delay (d), s/veh	43.4	0.0	40.7	54.3	0.0	55.6	12.6	30.0	30.0	12.6	29.9	24.7
Incr Delay (d2), s/veh	4.6	0.0	0.3	0.3	0.0	0.1	0.3	1.0	1.0	1.0	0.6	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.4	0.0	1.5	0.4	0.0	0.0	0.6	10.6	11.1	2.9	13.7	6.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	47.9	0.0	41.0	54.6	0.0	55.7	12.9	31.0	30.9	13.6	30.5	25.3
LnGrp LOS	D	A	D	D	A	E	В	С	С	В	С	<u> </u>
Approach Vol, veh/h		344			13			805			1462	
Approach Delay, s/veh		46.8			54.7			29.8			26.6	
Approach LOS		D			D			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.9	72.5	6.1	27.4	8.6	77.9	24.5	9.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	23.5	38.5	5.5	34.5	5.5	56.5	21.5	18.5				
Max Q Clear Time (g_c+I1), s	8.8	23.7	2.8	5.6	3.4	30.3	19.9	2.1				
Green Ext Time (p_c), s	0.7	4.2	0.0	0.3	0.0	8.8	0.2	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			30.3									
HCM 6th LOS			C									

Background PM 1: Hayden Rd & Mayo Blvd

	≯	-	\mathbf{F}	∢	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	ef 👘		<u>۲</u>	↑	1	- ሽ	∱ ⊅		<u>۲</u>	- ††	1
Traffic Volume (veh/h)	215	0	57	6	6	324	87	1287	7	44	672	271
Future Volume (veh/h)	215	0	57	6	6	324	87	1287	7	44	672	271
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	239	0	63	7	7	27	97	1430	8	49	747	301
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	341	0	255	129	75	117	380	2344	13	227	2276	1015
Arrive On Green	0.13	0.00	0.16	0.01	0.04	0.04	0.01	0.21	0.21	0.01	0.21	0.21
Sat Flow, veh/h	1781	0	1585	1781	1870	1585	1781	3623	20	1781	3554	1585
Grp Volume(v), veh/h	239	0	63	7	7	27	97	701	737	49	747	301
Grp Sat Flow(s),veh/h/ln	1781	0	1585	1781	1870	1585	1781	1777	1867	1781	1777	1585
Q Serve(g_s), s	15.1	0.0	4.2	0.5	0.4	1.9	2.2	42.8	42.8	1.1	21.4	19.2
Cycle Q Clear(g_c), s	15.1	0.0	4.2	0.5	0.4	1.9	2.2	42.8	42.8	1.1	21.4	19.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.01	1.00		1.00
Lane Grp Cap(c), veh/h	341	0	255	129	75	117	380	1150	1208	227	2276	1015
V/C Ratio(X)	0.70	0.00	0.25	0.05	0.09	0.23	0.26	0.61	0.61	0.22	0.33	0.30
Avail Cap(c_a), veh/h	341	0	297	344	351	350	420	1150	1208	413	2276	1015
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	0.33	0.33	0.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95
Uniform Delay (d), s/veh	45.9	0.0	44.0	54.5	55.5	52.4	9.1	33.5	33.5	15.4	25.4	24.6
Incr Delay (d2), s/veh	6.3	0.0	0.5	0.2	0.5	1.0	0.4	2.4	2.3	0.4	0.4	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	7.3	0.0	1.7	0.2	0.2	0.8	0.9	21.1	22.2	0.5	10.3	8.3
Unsig. Movement Delay, s/veh		0.0		F 4 C	50.0	50.0	0.4	25.0	25.0	45.0	05.0	05.0
LnGrp Delay(d),s/veh	52.2	0.0	44.5	54.6	56.0	53.3	9.4	35.9	35.8	15.9	25.8	25.3
LnGrp LOS	D	A	D	D	<u> </u>	D	A	D	D	В	C	<u> </u>
Approach Vol, veh/h		302			41			1535			1097	
Approach Delay, s/veh		50.6			54.0			34.2			25.2	_
Approach LOS		D			D			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	82.1	5.5	23.8	9.3	81.4	20.0	9.3				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	16.5	47.5	15.5	22.5	7.5	56.5	15.5	22.5				
Max Q Clear Time (g_c+l1), s	3.1	44.8	2.5	6.2	4.2	23.4	17.1	3.9				
Green Ext Time (p_c), s	0.1	2.1	0.0	0.2	0.1	7.3	0.0	0.1				
Intersection Summary												
HCM 6th Ctrl Delay			32.8									
HCM 6th LOS			С									
N 1												

Notes

User approved pedestrian interval to be less than phase max green.

Total AM w/Dual SB Lefts + 2 Lanes 1: Hayden Rd & Mayo Blvd

20-0940 AXON Scottsdale Headquarters 09/10/2020

	≯	-	\mathbf{F}	4	•	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦.	ef 👘		<u>۲</u>	↑	1		≜ ⊅		ካካ	<u></u>	1
Traffic Volume (veh/h)	257	118	76	32	19	104	46	667	140	529	860	215
Future Volume (veh/h)	257	118	76	32	19	104	46	667	140	529	860	215
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	286	131	73	36	21	88	51	741	112	588	956	183
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	371	192	107	184	116	407	309	1410	213	673	2190	977
Arrive On Green	0.14	0.17	0.17	0.03	0.06	0.06	0.01	0.15	0.15	0.06	0.20	0.20
Sat Flow, veh/h	1781	1128	629	1781	1870	1585	1781	3095	468	3456	3554	1585
Grp Volume(v), veh/h	286	0	204	36	21	88	51	425	428	588	956	183
Grp Sat Flow(s),veh/h/ln	1781	0	1757	1781	1870	1585	1781	1777	1786	1728	1777	1585
Q Serve(g_s), s	16.5	0.0	13.1	2.2	1.3	5.2	1.8	26.5	26.5	20.2	28.2	11.5
Cycle Q Clear(g_c), s	16.5	0.0	13.1	2.2	1.3	5.2	1.8	26.5	26.5	20.2	28.2	11.5
Prop In Lane	1.00		0.36	1.00		1.00	1.00		0.26	1.00		1.00
Lane Grp Cap(c), veh/h	371	0	300	184	116	407	309	809	814	673	2190	977
V/C Ratio(X)	0.77	0.00	0.68	0.20	0.18	0.22	0.17	0.53	0.53	0.87	0.44	0.19
Avail Cap(c_a), veh/h	371	0	432	208	282	548	328	809	814	792	2190	977
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	0.33	0.33	0.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	0.93	0.93	0.93	0.56	0.56	0.56
Uniform Delay (d), s/veh	44.3	0.0	46.7	50.6	53.4	35.1	16.9	39.0	39.0	54.7	29.6	22.9
Incr Delay (d2), s/veh	9.6	0.0	2.7	0.5	0.7	0.3	0.2	2.3	2.3	5.6	0.4	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.9	0.0	5.9	1.0	0.6	2.1	0.8	13.2	13.2	9.9	13.5	4.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	53.8	0.0	49.4	51.1	54.1	35.3	17.1	41.3	41.3	60.3	29.9	23.1
LnGrp LOS	D	А	D	D	D	D	В	D	D	E	С	C
Approach Vol, veh/h		490			145			904			1727	
Approach Delay, s/veh		52.0			42.0			39.9			39.5	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	27.9	59.2	8.0	25.0	8.6	78.5	21.0	12.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	27.5	39.9	5.1	29.5	5.4	62.0	16.5	18.1				
Max Q Clear Time (g_c+I1), s	22.2	28.5	4.2	15.1	3.8	30.2	18.5	7.2				
Green Ext Time (p_c), s	1.1	4.2	0.0	0.9	0.0	9.0	0.0	0.2				
Intersection Summary												
HCM 6th Ctrl Delay			41.6									
HCM 6th LOS			D									

Intersection						
Intersection Delay, s/veh	0.6					
Intersection LOS	А					
Approach		EB		WB		
Entry Lanes		1		1		
Conflicting Circle Lanes		2		2		
Adj Approach Flow, veh/h		874		0		
Demand Flow Rate, veh/h		891		0		
Vehicles Circulating, veh/h		0		175		
Vehicles Exiting, veh/h		175		0		
Ped Vol Crossing Leg, #/h		0		0		
Ped Cap Adj		1.000		1.000		1.00
Approach Delay, s/veh		0.0		0.0		3.6
Approach LOS		А		-		А
Lane	Left	Bypass	Left		Left	
Designated Moves	Т	R	LT		L	
Assumed Moves	T T	R R	LT LT		L	
	-				L	
Assumed Moves	T 1.000	R			L L 1.000	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	T	R	LT		L L 1.000 2.535	
Assumed Moves RT Channelized Lane Util	T 1.000	R	LT 1.000			
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	T 1.000 2.535 4.328 0	R Free	LT 1.000 2.535 4.328 0		2.535 4.328 175	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	T 1.000 2.535 4.328	R Free 891	LT 1.000 2.535 4.328		2.535 4.328 175 1420	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	T 1.000 2.535 4.328 0	R Free 891 1938	LT 1.000 2.535 4.328 0		2.535 4.328 175 1420 0.983	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	T 1.000 2.535 4.328 0 1420	R Free 891 1938 0.980	LT 1.000 2.535 4.328 0 1224 1.000 0		2.535 4.328 175 1420	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	T 1.000 2.535 4.328 0 1420 1.000	R Free 891 1938 0.980 874	LT 1.000 2.535 4.328 0 1224 1.000		2.535 4.328 175 1420 0.983 172 1396	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	T 1.000 2.535 4.328 0 1420 1.000 0	R Free 891 1938 0.980 874 1900	LT 1.000 2.535 4.328 0 1224 1.000 0		2.535 4.328 175 1420 0.983 172	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	T 1.000 2.535 4.328 0 1420 1.000 0 1420 0.000 2.5	R Free 891 1938 0.980 874 1900 0.460	LT 1.000 2.535 4.328 0 1224 1.000 0 1224 0.000 2.9		2.535 4.328 175 1420 0.983 172 1396 0.123 3.6	
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	T 1.000 2.535 4.328 0 1420 1.000 0 1420 0.000	R Free 891 1938 0.980 874 1900 0.460 0.0	LT 1.000 2.535 4.328 0 1224 1.000 0 1224 0.000		2.535 4.328 175 1420 0.983 172 1396 0.123	B

Intersection								
Intersection Delay, s/veh	7.2							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		2		1		1		1
Conflicting Circle Lanes		2		2		2		2
Adj Approach Flow, veh/h		873		57		88		78
Demand Flow Rate, veh/h		890		58		90		79
Vehicles Circulating, veh/h		19		415		747		40
Vehicles Exiting, veh/h		40		422		16		415
Ped Vol Crossing Leg, #/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		8.1		4.1		6.1		0.7
Approach LOS		A		А		A		А
Lane	Left	Bypass	Left	Bypass	Left	Bypass	Left	Bypass
Designated Moves	LT	R	LT	R	LT	R	LT	R
Designated Moves Assumed Moves	LT LT		LT LT		LT LT		LT LT	1
-		R		R		R		R
Assumed Moves		R		R		R		R
Assumed Moves RT Channelized	LT	R	LT	R	LT	R	LT	R
Assumed Moves RT Channelized Lane Util	LT 1.000	R	LT 1.000	R	LT 1.000	R	LT 1.000	R
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LT 1.000 2.667	R R Yield	LT 1.000 2.535	R R Yield	LT 1.000 2.535	R R Free	LT 1.000 2.535	R R Free
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LT 1.000 2.667 4.645	R R Yield 146	LT 1.000 2.535 4.328	R R Yield 18	LT 1.000 2.535 4.328	R R Free 0	LT 1.000 2.535 4.328	R R Free 60
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LT 1.000 2.667 4.645 744	R R Yield 146 1358	LT 1.000 2.535 4.328 40	R R Yield 18 904	LT 1.000 2.535 4.328 90	R R Free 0 1938	LT 1.000 2.535 4.328 19	R R Free 60 1938
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LT 1.000 2.667 4.645 744 1326	R R Yield 146 1358 0.980	LT 1.000 2.535 4.328 40 998	R R Yield 18 904 0.980	LT 1.000 2.535 4.328 90 753	R R Free 0 1938 0.980	LT 1.000 2.535 4.328 19 1373	R R Free 60 1938 0.980
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LT 1.000 2.667 4.645 744 1326 0.981	R R Yield 146 1358 0.980 143	LT 1.000 2.535 4.328 40 998 0.980	R R Yield 18 904 0.980 18	LT 1.000 2.535 4.328 90 753 0.980	R R Free 0 1938 0.980 0	LT 1.000 2.535 4.328 19 1373 0.983	R R Free 60 1938 0.980 59
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LT 1.000 2.667 4.645 744 1326 0.981 730	R R Yield 146 1358 0.980 143 1331	LT 1.000 2.535 4.328 40 998 0.980 39	R R Yield 18 904 0.980 18 886	LT 1.000 2.535 4.328 90 753 0.980 88	R R Free 0 1938 0.980 0 1900	LT 1.000 2.535 4.328 19 1373 0.983 19	R R Free 60 1938 0.980 59 1900
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	LT 1.000 2.667 4.645 744 1326 0.981 730 1301	R R Yield 146 1358 0.980 143 1331 0.107	LT 1.000 2.535 4.328 40 998 0.980 39 978	R R Yield 18 904 0.980 18 886 0.020	LT 1.000 2.535 4.328 90 753 0.980 88 738	R R Free 0 1938 0.980 0 1900 0.000	LT 1.000 2.535 4.328 19 1373 0.983 19 1350	R R Free 60 1938 0.980 59 1900 0.031
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LT 1.000 2.667 4.645 744 1326 0.981 730 1301 0.561	R R Yield 146 1358 0.980 143 1331 0.107 3.6	LT 1.000 2.535 4.328 40 998 0.980 39 978 0.040	R R Yield 18 904 0.980 18 886 0.020 4.2	LT 1.000 2.535 4.328 90 753 0.980 88 738 0.120	R R Free 0 1938 0.980 0 1900 0.000 0.00	LT 1.000 2.535 4.328 19 1373 0.983 19 1350 0.014	R R Free 60 1938 0.980 59 1900 0.031 0.0

Intersection				
Intersection Delay, s/veh	5.0			
Intersection LOS	5.0 A			
	A			
Approach	EB	NB	SB	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	415	87	50	
Demand Flow Rate, veh/h	423	88	51	
Vehicles Circulating, veh/h	11	273	18	
Vehicles Exiting, veh/h	58	161	343	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	5.4	4.2	3.0	
Approach LOS	A	А	А	
Lane	Left	Left	Left	
Designated Moves	LR	LT	TR	
Assumed Moves	LR	LT	TR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	423	88	51	
Cap Entry Lane, veh/h	1364	1045	1355	
Entry HV Adj Factor	0.981	0.984	0.976	
Flow Entry, veh/h	415	87	50	
Cap Entry, veh/h	1339	1028	1322	
V/C Ratio	0.310	0.084	0.038	
Control Delay, s/veh	5.4	4.2	3.0	
LOS	А	А	А	
95th %tile Queue, veh	1	0	0	

Total PM w/Dual SB Lefts + 2 Lanes 1: Hayden Rd & Mayo Blvd

20-0940 AXON Scottsdale Headquarters 09/10/2020

	≯	+	\mathbf{F}	4	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘		<u> </u>	↑	1	- ሽ	∱ ⊅		ካካ	- ††	1
Traffic Volume (veh/h)	215	23	57	137	121	615	87	1287	33	103	672	271
Future Volume (veh/h)	215	23	57	137	121	615	87	1287	33	103	672	271
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	239	26	52	152	134	461	97	1430	26	114	747	218
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	318	132	264	466	507	509	311	1726	31	173	1745	778
Arrive On Green	0.05	0.24	0.24	0.08	0.27	0.27	0.01	0.16	0.16	0.02	0.16	0.16
Sat Flow, veh/h	1781	557	1113	1781	1870	1585	1781	3571	65	3456	3554	1585
Grp Volume(v), veh/h	239	0	78	152	134	461	97	711	745	114	747	218
Grp Sat Flow(s),veh/h/ln	1781	0	1670	1781	1870	1585	1781	1777	1859	1728	1777	1585
Q Serve(g_s), s	5.5	0.0	4.5	7.5	6.8	32.5	3.2	46.5	46.6	3.9	22.7	14.5
Cycle Q Clear(g_c), s	5.5	0.0	4.5	7.5	6.8	32.5	3.2	46.5	46.6	3.9	22.7	14.5
Prop In Lane	1.00		0.67	1.00		1.00	1.00		0.03	1.00		1.00
Lane Grp Cap(c), veh/h	318	0	396	466	507	509	311	859	898	173	1745	778
V/C Ratio(X)	0.75	0.00	0.20	0.33	0.26	0.91	0.31	0.83	0.83	0.66	0.43	0.28
Avail Cap(c_a), veh/h	318	0	396	509	507	509	347	859	898	446	1745	778
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	0.33	0.33	0.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	0.70	0.70	0.70	0.89	0.89	0.89
Uniform Delay (d), s/veh	40.0	0.0	36.6	29.7	34.4	39.0	17.2	45.6	45.6	58.0	35.1	31.7
Incr Delay (d2), s/veh	9.6	0.0	0.2	0.4	0.3	19.9	0.4	6.5	6.3	3.8	0.7	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.9	0.0	1.9	3.3	3.1	15.6	1.4	23.7	24.8	1.8	11.0	6.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	49.6	0.0	36.9	30.1	34.6	58.9	17.5	52.1	51.9	61.8	35.8	32.5
LnGrp LOS	D	А	D	С	С	E	В	D	D	E	D	C
Approach Vol, veh/h		317			747			1553			1079	
Approach Delay, s/veh		46.5			48.7			49.9			37.9	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.5	62.5	14.0	33.0	9.6	63.4	10.0	37.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	15.5	48.5	12.5	25.5	7.5	56.5	5.5	32.5				
Max Q Clear Time (g_c+I1), s	5.9	48.6	9.5	6.5	5.2	24.7	7.5	34.5				
Green Ext Time (p_c), s	0.2	0.0	0.1	0.3	0.0	6.9	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			45.8									
HCM 6th LOS			D									

Intersection						
Intersection Delay, s/veh	9.9					
Intersection LOS	А					
Approach		EB		WB		
Entry Lanes		1		1		
Conflicting Circle Lanes		2		2		
Adj Approach Flow, veh/h		177		0		
Demand Flow Rate, veh/h		181		0		
Vehicles Circulating, veh/h		0		989		
Vehicles Exiting, veh/h		989		0		
Ped Vol Crossing Leg, #/h		0		0		
Ped Cap Adj		1.000		1.000		1.0
Approach Delay, s/veh		0.0		0.0		11.
Approach LOS		A		-		В
Lane	Left	Bypass	Left		Left	
Designated Moves	Т	R	LT		L	
Assumed Moves	Т	R	LT		L	
Assumed Moves RT Channelized	Т	R Free	LT		L	
RT Channelized Lane Util	1.000		1.000		L 1.000	
RT Channelized	-		1.000 2.535		2.535	
RT Channelized Lane Util	1.000	Free 181	1.000			
RT Channelized Lane Util Follow-Up Headway, s	1.000 2.535 4.328 0	Free	1.000 2.535 4.328 0		2.535 4.328 989	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.535 4.328 0 1420	Free 181	1.000 2.535 4.328 0 613		2.535 4.328 989 1420	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	1.000 2.535 4.328 0	Free 181 1938	1.000 2.535 4.328 0		2.535 4.328 989 1420 0.981	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.535 4.328 0 1420 1.000 0	Free 181 1938 0.980 177 1900	1.000 2.535 4.328 0 613 1.000 0		2.535 4.328 989 1420 0.981 970	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.535 4.328 0 1420 1.000 0 1420	Free 181 1938 0.980 177 1900 0.093	1.000 2.535 4.328 0 613 1.000 0 613		2.535 4.328 989 1420 0.981 970 1393	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.535 4.328 0 1420 1.000 0 1420 0.000	Free 181 1938 0.980 177 1900	1.000 2.535 4.328 0 613 1.000 0 613 0.000		2.535 4.328 989 1420 0.981 970 1393 0.696	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.535 4.328 0 1420 1.000 0 1420 0.000 2.5	Free 181 1938 0.980 177 1900 0.093 0.0 A	1.000 2.535 4.328 0 613 1.000 0 613 0.000 5.9		2.535 4.328 989 1420 0.981 970 1393 0.696 11.8	
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.535 4.328 0 1420 1.000 0 1420 0.000	Free 181 1938 0.980 177 1900 0.093 0.0	1.000 2.535 4.328 0 613 1.000 0 613 0.000		2.535 4.328 989 1420 0.981 970 1393 0.696	

Intersection					
Intersection Delay, s/veh	5.8				
Intersection LOS	А				
Approach		EB	WB	NB	SB
Entry Lanes		2	1	1	1
Conflicting Circle Lanes		2	2	2	2
Adj Approach Flow, veh/h		177	241	18	474
Demand Flow Rate, veh/h		181	246	18	483
Vehicles Circulating, veh/h		117	85	171	243
Vehicles Exiting, veh/h		609	104	127	88
Ped Vol Crossing Leg, #/h		0	0	0	0
Ped Cap Adj		1.000	1.000	1.000	1.000
Approach Delay, s/veh		3.5	4.3	3.1	7.5
Approach LOS		А	А	А	А
Lane	Left	Right	Left	Left	Left
Designated Moves	L	TR	LTR	LTR	LTR
Assumed Moves	L	TR	LTR	LTR	LTR
RT Channelized					
Lane Util	0.370	0.630	1.000	1.000	1.000
Follow-Up Headway, s	2.667	2.535	2.535	2.535	2.535
Critical Headway, s	4.645	4.328	4.328	4.328	4.328
Entry Flow, veh/h	67	114	246	18	483
Cap Entry Lane, veh/h	1212	1286	1321	1228	1155
Entry HV Adj Factor	0.985	0.977	0.981	0.980	0.982
Flow Entry, veh/h	66	111	241	18	474
Cap Entry, veh/h	1194	1256	1296	1204	1134
V/C Ratio	0.055	0.089	0.186	0.015	0.418
Control Delay, s/veh	3.5	3.6	4.3	3.1	7.5
LOS	А	А	А	А	А
95th %tile Queue, veh	0	0	1	0	2

Intersection				
Intersection Delay, s/veh	4.3			
Intersection LOS	4.5 A			
Approach	EB	NB	SB	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	102	17	309	
Demand Flow Rate, veh/h	104	17	315	
Vehicles Circulating, veh/h	72	55	3	
Vehicles Exiting, veh/h	246	121	69	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	3.5	2.9	4.6	
Approach LOS	А	А	A	
Lane	Left	Left	Left	
Designated Moves	LR	LT	TR	
Assumed Moves	LR	LT	TR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	104	17	315	
Cap Entry Lane, veh/h	1282	1305	1376	
Entry HV Adj Factor	0.981	0.984	0.980	
Flow Entry, veh/h	102	17	309	
Cap Entry, veh/h	1257	1284	1348	
V/C Ratio	0.081	0.013	0.229	
Control Delay, s/veh	3.5	2.9	4.6	
LOS	А	А	А	
95th %tile Queue, veh	0	0	1	

Cycles: 1.5

Signalized Intersection 2035

Average Vehicle Length (ft):25Intersection Cycle Length (sec):120

Equation Used: storage length = $1.5 \times (vehicles/hour)/(cycles/hour) \times average vehicle length$

Intersection	Approach	AM Peak	Midday	PM Peak	Max vehs per	Max trucks	Storage
Intersection	Approach	(veh/hr)	Peak	(veh/hr)	1.5 cycles	per 1.5 cycles	Length
	NB Left	18	0	9	1	0	25'
	SB Left	529	0	103	27	0	675'
Hayden Road & Mayo Boulevard	EB Left	18	0	16	1	0	25'
Taydell Road & Mayo Doulevard	WB Left	21	0	135	7	0	175'
	SB Right	15	0	41	3	0	75'
	WB Right	104	0	615	31	0	775'

