

Disclaimer: If approved; the approval is granted under the condition that the final construction documents submitted for city review will match the information herein. Any subsequent changes in the water or sewer design that materially impact design criteria or standards will require re-analysis, re-submittal, and approval of a revised basis of design report prior to the plan review submission.; this approval is not a guarantee of construction document acceptance. For questions or clarifications contact the Water Resources Planning and Engineering Department at 480-312-5685.

BY Idillon

DATE 6/1/2021

Address the following comments below and herein for plan submittal:

1.) **Stipulation**: Pool Backwash flow equalization required. Refer to guidance in accepted sewer BOD under 5-ZN-2020. As proposed herein: *The pool backwash will be captured by an equalization tank that is to be sized for up to four consecutive backwashes. The tank will have a metered flow of 5 gpm that outlets to the proposed sewer system.*

2.) **Stipulation**: Offsite sewer system modifications required. Add one additional manhole and 8" pipeline section as shown on figure 1 utility plan. Reroute and plug sewer as shown in figure 1.

3.) **Stipulation**: No wastewater flows permitted to McDowell Rd sewer.

4.)All sewer shown within the development property shall be private sewer. Designate private on submitted plans.

5.) Connection service line to public sewer shall be 8" w/ no clean outs or 6" per MAG 440-3 (currently shown 8" service with one additional new on-site receiving manhole) 6.) Address comments on utility plan

3 Dengineering

planning civil engineering

surveying

SOUTHDALE Final Wastewater Basis of Design Report

3 engineering Job #: 1872 April 23, 2021

> 17-DR-2021 5/6/2021

SOUTHDALE

FINAL WASTEWATER BASIS OF DESIGN REPORT

Prepared for:

Hawkins Companies LLC 4700 S. McClintock Drive #160 Scottsdale, Arizona 85257 Contact: Mark Mitchell Phone: (480) 223-8239

Daniel G. Mann, P.E.

April 23, 2021

Submittal to:

City of Scottsdale 7447 E. Indian School Road, Suite 105 Scottsdale, AZ 85251

Prepared by:

3 engineering, L.L.C. 6370 E. Thomas Road, Suite #200 Scottsdale, Arizona 85251 Contact: Dan G. Mann, P.E.

Job Number 1872

Table of Contents

1.	Introduction	1
2.	Design Documentation	1
3.	Existing Conditions	1
4.	Proposed Conditions	1
5.	Design Documentation/ Computations/ Hydraulic Modeling 5.1. Proposed Site Demand Calculations 5.2. Existing System Flows 5.3. Sewer System Analysis	2 2 3 3
6.	Summary	5

<u>Tables</u>

TABLE 1: On-Site Sewer	Demands	2

Figures

Figure 1: Overall Sewer Layout	Map Pocket 1
--------------------------------	--------------

Appendices

Vicinity Map	A
Flow Test Results	B
System Leg Exhibit	C
Apartment Segment FlowMaster Data	D
Existing Sewer FlowMaster Data	E
Proposed Sewer FlowMaster Data	F
Preliminary Onsite Utility Plans	G

Page

1. Introduction

The project site, Southdale, is located in the southeast guarter of Section 34, Township 2 North, Range 4 East of the Gila and Salt River Meridian, Maricopa County, Arizona within the City of Scottsdale. The project is located on the northeast corner of 70th Street and McDowell Road. The site is bounded on the north by an apartment complex, on the east by a commercial development, on the south by McDowell Road, and on the west by 70th Street. See Appendix A for a vicinity map.

The existing zoning is C-3. The land is currently used as a commercial development. The General Plan shows the site as a Mixed-Use Neighborhood. The proposed zoning is PUD. The site is a proposed 267-unit apartment complex with office and retail space.

2. Design Documentation

The purpose of this Wastewater Basis of Design Report is to verify that the existing City of Scottsdale sewer system is able to accommodate demands generated by the proposed project, Southdale. FlowMaster V8i by Bentley Systems was used to model and analyze the existing sewer system downstream of the site to verify it has capacity for the existing flow plus the flows generated from the proposed site, Southdale. Modeling was performed in compliance with the City of Scottsdale design requirements.

The existing flow in the system was tested at two manholes in Palm Lane, downstream of the site. The tests were performed by RDH Environmental Services on 1/25/2020 through 2/2/2020. See results in Appendix B.

Demands for the proposed site were calculated using Section 7-1.403A of the City of Scottsdale 2018 Design Standards and Policies Manual. It is our opinion that this report is in accordance with the 2018 City of Scottsdale Design Standards and Policies Manual.

3. Existing Conditions

The existing zoning is C-3. The existing land is a commercial development. See Appendix A for a vicinity map. The site is surrounded by existing multi-family residential development and commercial development. There is an existing 8" V.C.P. sewer line in the apartment complex north of the site that will be utilized by the proposed development. This sewer line flows north to an 8" V.C.P. sewer line in Palm Lane at City of Scottsdale Manhole #31. This manhole has an overflow pipe that is conveyed to Manhole #48, which outlets to a 10" sewer line in Palm Lane. The 8" sewer line in Palm Lane flows to an 8" V.C.P. sewer line in Scottsdale Road, that flows south. The 10" sewer line in Palm lane flows to an 18" V.C.P. sewer line in Scottsdale Road, that flows south. The 8" sewer line running through the apartment north of the site, the 8" and 10" sewer lines in Palm Lane and the 8" sewer line in Scottsdale Road will be analyzed to determine if they have capacity for the additional flow generated from the proposed project. See Figure 1 for existing sewer layout.

4. Proposed Conditions

The project consists of a 267-unit apartment complex with 3,300 s.f. of office space and 2,200 s.f. of retail space on 3.83 acres. It is proposed that this project will tie into the existing 8" V.C.P. sewer line in the apartment complex north of the site. See Preliminary Onsite Utility Plans in Appendix G.

> Page | 1 17-DR-2021 5/6/2021

planning

civil engineering

The proposed site includes one pool. The assumed instantaneous backwash rate of the pool is 100 gpm. The pool backwash will be captured by an equalization tank that is to be sized for up to four consecutive backwashes. The tank will have a metered flow of 5 gpm that outlets to the proposed sewer system.

5. Computations

5.1. Proposed Site Demand Calculations

The following demand criteria from the City of Scottsdale 2018 Design Standards and Policies Manual (DSPM) were used in determining the system demands for the proposed site.

- 1. 267 proposed units
- 3.83 acre site (70 du/ac) 2.
- 1.7 persons per unit (Per DSPM, multifamily density exceeding 22 du/ac) 3.
- 100 gallons per person per day (Per DSPM, residential) 4.
- Peaking factor = 4 (Per DSPM, residential) 5.
- 3,300 s.f. proposed Office Space 6.
- 0.4 gpd/s.f. (Per DPSM, Office) 7.
- 8. 2,200 s.f. proposed Retail Space
- 9. 0.5 gpd/s.f. (Per DSPM, Commercial/Retail)
- Peaking factor = 3 (Per DSPM, Commercial/Retail, Office) 10.
- 11. 5 gallons per minute per pool for backwash (assume 1 pool)

TABLE 1: ON-SITE SEWER DEMANDS					
Pool Backwash	5 gpm				
Avg. daily demand w/ pool backwash	38.20 gpm				
Design Flow Rate w/ pool backwash	136.12 gpm				

Residentail

Average daily demand: 267 units x 1.7 persons per unit x 100 gpd per person = 45,390 gpd = 45,390 gpd/1440 mpd = 31.52 gpm

Peak flow rate = 4.0 x 45,390 gpd = 181,560 gpd = 181,560 gpd/1440 mpd = 126.08 gpm

Office

Average daily demand: 3,300 s.f. x 0.4 gpd per s.f. = 1,320 gpd = 1,320 gpd/1440 mpd = 0.92 gpm

Peak flow rate = $3.0 \times 1,320 \text{ gpd} = 3,960 \text{ gpd}$ = 3,960 gpd/1440 mpd = 2.75 gpm

Retail

Average daily demand: 2,200 s.f. x 0.5 gpd per s.f. = 1,100 gpd = 1,100 gpd/1440 mpd = 0.76 gpm

Peak flow rate = $3.0 \times 1,100 \text{ gpd} = 3,300 \text{ gpd}$ = 3,300 gpd/1440 mpd = 2.29 gpm

Total

Average daily demand = 33.20 gpm Peak flow rate = 131.12 gpm

5.2. Existing System Flows

The existing maximum flows for the sewer lines in Palm Lane were determined by the flow test performed 1/25/2020 through 2/2/2020. There is a maximum of 13.172 gpm exiting manhole #48 east to the 10" sewer line in Palm Lane and a maximum of 218.699 gpm exiting manhole #31 east to the 8" sewer line in Palm Lane. The data was logged in 5-minute intervals over 9 days, including two weekends. See Appendix B for flow test data.

Two legs contribute to manhole #31. The leg flowing from the south has 114 single family homes, 101 multi-family units, the Aire Townhome development and ultimately the proposed site. The leg flowing from the west has 349 single family homes, 114 multi-family units, and Tonalea elementary school with 500 students. The flows from the two legs are calculated below per the City of Scottsdale DSPM. See Appendix C for a map of the legs.

South Leg (Orange)

114 Single-family x 2.5 persons per unit x 100 gpd per person x 4.0 P.F. / 1440 = 79.16 gpm Aire townhomes: 80 units x 2.5 persons per unit x 100 gpd per person x 4.0 P.F. / 1440 = 55 gpm Aire townhomes pool backwash: 100 gpm 101 multi-family x 2.5 persons per unit x 100 gpd per person x 4.0 P.F. / 1440 = 70.12 gpm Total Peak flow = 304.28 gpm

<u>West Leg (Green)</u>

349 Single-family x 2.5 persons per unit x 100 gpd per person x 4.0 P.F. / 1440 = 242.36 gpm 114 multi-family x 2.5 persons per unit x 100 gpd per person x 4.0 P.F. / 1440 = 79.16 gpm Tonalea elementary: 50 gpd per student x 500 students x 6.0 P.F. / 1440 = 104.17 gpm Total Peak flow = 425.69 gpm

The total calculated flow for this manhole is 729.97 gpm. The south leg accounts for 41.68% of the total flow and the west leg accounts for 58.32% of the total flow.

The proportion of the total flow for each leg is applied to the tested flow through manhole #31. From the observed test results, the south leg has a proportional flow of 91.15 gpm, and the west leg has a proportional flow of 127.54 gpm. The total flow is 218.69 gpm.

Analysis of the 8" V.C.P. sewer line in Scottsdale Road requires adding the peak flows from four downstream buildings that include: a chiropractor's office, Ace Hardware, Post Office, and Comerica Bank. The flows for the sites are calculated below per the City of Scottsdale DSPM.

Chiropractic: 2,135 sf x 0.4 gpd per sf x 3.0 P.F. / 1440 = 1.78 gpm Ace Hardware: 20,175 sf x 0.5 gpd per sf x 3.0 P.F. / 1440 = 21.02 gpm Post Office: 84,225 sf x 0.1 gpd per sf x 3.0 P.F. / 1440 = 17.55 gpm Bank: 3,950 sf x 0.5 gpd per sf x 3.0 P.F. / 1440 = 4.11 gpm Total Peak Flow = 44.46 gpm

5.3. Sewer System Analysis

FlowMaster V8i by Bentley Systems was used to model and analyze the existing sewer system for compliance with the C.O.S. design requirements. The sewer lines were modeled with a Manning's n coefficient of 0.013. The sewer rims and inverts were surveyed by 3 engineering on

Page | 3 **17-DR-2021 5/6/2021**

planning

civil engineering

02/13/20 and 03/16/20. See Figure 1 for an overall system layout. In addition to analyzing the 8" sewer running through the apartment site, the system downstream will be analyzed to address the 8" sewer line in Scottsdale Road which does not have sufficient capacity for the additional flows from the proposed site in the existing configuration. The maximum allowable d/D for all pipes discussed is 0.75.

Existing Sewer Line in Apartment

The existing 8" sewer line running through the apartment complex north of the site was analyzed at the minimum surveyed slope of 0.27%. The existing flow in this segment is the 91.15 gpm from the south leg. The existing d/D is 0.39. See Appendix D for FlowMaster results of this pipe.

Existing Sewer Line in Apartment with Proposed Site

The existing 8" sewer line running through the apartment complex north of the site was analyzed at the minimum surveyed slope of 0.27%. The new flow includes the the 91.15 gpm from the south leg, plus the additional 136.12 gpm of flow from the proposed site for a total of 227.27 gpm. The proposed d/D is 0.68 in the existing line. See Appendix D for FlowMaster results of this pipe.

Existing Sewer System in Palm Lane and Scottsdale Road

In the existing condition, Manhole #31 in Palm lane, receives the 91.15 gpm from the south leg and the 127.54 gpm from the west leg. There is an existing overflow pipe elevated 3" above the downstream pipe in manhole #31 that flows into manhole #48. The overflow pipe was modeled as a weir using the resulting elevation when the total flow of 218.69 gpm enters the 8" pipe in Palm Lane. The overflow pipe conveys a flow of 48.74 gpm to the 10" line in Palm Lane. The results of the existing system analysis are discussed below and FlowMaster Data is included in Appendix E.

- The existing 10" sewer line in Palm Lane was analyzed at a minimum surveyed slope of 0.43%. The existing flow includes the 13.17 gpm from the flow test of manhole #48 plus the 48.74 gpm from the overflow pipe in manhole #31 for a total flow of 61.91 gpm. The existing d/D is 0.21.
- The existing 8" sewer line in Palm Lane was analyzed at a minimum surveyed slope of 0.27%. The existing flow includes the 169.95 gpm that bypasses the overflow pipe in manhole #31. The existing d/D is 0.56.
- The existing 8" sewer line in Scottsdale Road was analyzed at a minimum surveyed slope of 0.19%. The existing flow includes the 169.95 gpm from the 8" line in Palm Lane plus the 44.46 gpm from the buildings along Scottsdale Road for a total flow of 214.41 gpm. The existing d/D is 0.75.

<u>Proposed Sewer System in Palm Lane and Scottsdale Road with Proposed Site</u> The proposed project, Southdale, generates 136.12 gpm of peak wastewater flow that is conveyed to manhole #31. In the existing configuration, the capacity of the 8" line in Scottsdale Road will be exceeded as the d/D is already 0.75 before the additional flows. The proposed plan is to divert more flow into the 10" line in Palm lane, which has excess capacity.

This will be achieved by adding a manhole in the west leg (green) and connecting the leg directly into manhole #48. The 10" line in Palm Lane will then receive the entire 127.54 gpm from the West leg. Manhole #31 in Palm lane will receive the existing 91.15 gpm from the South leg plus the additional 136.12 gpm from the proposed site for a total flow of 227.27 gpm. There is an existing overflow pipe elevated 3" above the downstream pipe in manhole #31 that flows into manhole #48. The overflow pipe will remain unchanged. With this flow, the overflow pipe conveys 54.90 gpm of the 227.27 gpm to manhole #48.

Page | 4

17-DR-2021 5/6/2021

The results are discussed below. FlowMaster Data is included in Appendix F and shown in Figure 1 on the following page.

- The 10" sewer line in Palm Lane was analyzed at a minimum surveyed slope of 0.43%. The proposed flow includes the 127.54 gpm from the west leg plus the 13.17 gpm from the flow test of manhole #48 plus the 54.90 gpm from the overflow pipe in manhole #31 for a total flow of 195.61 gpm. The proposed d/D is 0.38.
- The 8" sewer line in Palm Lane was analyzed at a minimum surveyed slope of 0.27%. The proposed flow includes the 172.37 gpm from the south leg and proposed site that bypasses the overflow pipe. The proposed d/D is 0.57.
- The 8" sewer line in Scottsdale Road was analyzed at a minimum surveyed slope of 0.19%. The proposed flow includes the 172.37 gpm from the 8" line in Palm Lane plus 44.46 gpm from the buildings along Scottsdale Road for a total flow of 216.83 gpm. The proposed d/D is 0.75.

6. Summary

The Peak Flow for the proposed site is 136.12 gpm. The site ties into an existing 8" sewer line, in the apartment complex north of the site, that has an existing flow of 91.15 gpm. The pipe has a proposed d/D of 0.68 with the additional flow from the proposed site. In the existing configuration, the 8" sewer line in Scottsdale Road is at capacity and cannot handle additional flow from the proposed site, Southdale. The proposed improvements address the capacity issue for the 8" sewer line in Scottsdale Road. It is proposed to re-route the west leg of the sewer to the 10" line in Palm Lane via a new manhole and leave the overflow pipe in place. The maximum d/D of 0.75 in the 8" line in Scottsdale Road will remain.

17-DR-2021 5/6/2021

<u>3@engineering</u> civil engineering planning surveying

APPENDIX A

Vicinity Map

Page | A1

17-DR-2021 5/6/2021

N.T.S.

<u>3@engineering</u> civil engineering planning surveying

APPENDIX B

Flow Test Results

Page | A2 **17-DR-2021 5/6/2021**

Dan Man 3 Engineering 9379 E. San Salvador Dr. Scottsdale, Arizona • 85258

SL727 RDH Flow Study, 2 sites in Scottsdale, AZ Friday, 1-25-20 to Sunday 2-2-20.

Equipment for Both Sites: Hach 901 Logger with Flo-Dar sensor.

The equipment was installed on 1-24-20 with confined space entry, pipe size confirmed, sensor calibrated and level depth confirmed to the flow level at that time. Duration of monitoring: 9 days over 2 weekends. Monitor: Flow (gpm), Level (in), and Velocity (fps) Data logging: 5 minutes intervals (No averaged intervals)

Site 1: Manhole on Palm Lane just East of 71st Street and West of Scottsdale Rd.

Quarter section: 13-44 Manhole: #31 8" VCP

Flo-Dar sensor installed downstream on the 8" line (due to collecting data from 3 flows) There was no buildup in the pipe.

All data is good with no sensor interference from debris.

Attached is the excel sheet showing all Level, Velocity and Flow using the Manning equation within the loggers. Below are the data summaries for Site 1:

3 Engineering MH31 Level (in.)					3 Engineering MH31 Velocity (fps)			
Date	Maximum	Minimum	Average		Date	Maximum	Minimum	Average
1/25/2020	4.516	1.670	2.968		1/25/2020	2.048	1.024	1.623
1/26/2020	4.467	1.670	3.077		1/26/2020	2.236	0.969	1.652
1/27/2020	4.101	1.609	2.919		1/27/2020	2.242	0.968	1.663
1/28/2020	4.346	1.664	2.973		1/28/2020	2.225	0.950	1.721
1/29/2020	4.161	1.556	2.942		1/29/2020	2.206	0.991	1.663
1/30/2020	4.448	1.822	3.107		1/30/2020	2.360	1.110	1.713
1/31/2020	4.645	2.279	3.455		1/31/2020	2.466	1.344	1.920
2/1/2020	4.650	2.459	3.585		2/1/2020	2.315	1.181	1.896
2/2/2020	4.860	2.312	3.610		2/2/2020	2.340	1.194	1.869

3 Engineering MH31 Flow (gpm)							
Date	Maximum	Minimum	Average				
1/25/2020	166.794	26.290	90.416				
1/26/2020	185.594	23.660	97.869				
1/27/2020	181.243	22.000	91.283				
1/28/2020	177.327	22.400	96.150				
1/29/2020	164.073	22.067	91.924				
1/30/2020	186.510	30.502	101.115				
1/31/2020	200.695	50.721	126.505				
2/1/2020	218.699	52.181	130.384				
2/2/2020	206.784	46.251	131.618				

Period Summary						
Measures	Value	Unit				
Max. Total Flow	314,900	gpd				
Min. Total Flow	31,700	gpd				
Avg. Total Flow	153,200	gpd				
Total Flow	1,378,461.1	gal				

RDH Environmental Services Theresa Hayes General Manager gm@rdh-env.com

Dan Man 3 Engineering 9379 E. San Salvador Dr. Scottsdale, Arizona • 85258

SL727 RDH Flow Study, 2 sites in Scottsdale, AZ Friday, 1-25-20 to Sunday 2-2-20.

Equipment for Both Sites: Hach 901 Logger with Flo-Dar sensor.

The equipment was installed on 1-24-20 with confined space entry, pipe size confirmed, sensor calibrated and level depth confirmed to the flow level at that time. Duration of monitoring: 9 days over 2 weekends. Monitor: Flow (gpm), Level (in), and Velocity (fps) Data logging: 5 minutes intervals (No averaged intervals)

Site 2: Manhole on Palm Lane between 71st Street and Scottsdale Rd.

Quarter section: 13-44 Manhole: #48 10" VCP Flo-Dar sensor installed upstream on the 10" line There was no buildup in the pipe. All data is good with no sensor interference from debris.

Attached is the excel sheet showing all Level, Velocity and Flow using the Manning equation within the loggers. Below are the data summaries for Site 2:

3 Engineering MH48 Level (in.)					3 Engineering MH48 Velocity (fps)			
Date	Maximum	Minimum	Average		Date	Maximum	Minimum	Average
1/25/2020	0.559	0.156	0.317		1/25/2020	1.420	0.765	1.063
1/26/2020	0.583	0.134	0.322		1/26/2020	1.554	0.697	1.058
1/27/2020	0.505	0.199	0.340		1/27/2020	1.521	0.730	1.063
1/28/2020	0.541	0.157	0.330		1/28/2020	1.521	0.659	1.087
1/29/2020	0.524	0.151	0.310		1/29/2020	1.390	0.795	1.070
1/30/2020	0.639	0.178	0.385		1/30/2020	1.506	0.813	1.118
1/31/2020	0.681	0.257	0.392		1/31/2020	1.497	0.835	1.138
2/1/2020	0.759	0.156	0.392		2/1/2020	1.641	0.780	1.169
2/2/2020	0.718	0.168	0.419		2/2/2020	1.556	0.826	1.183

3 Engineering MH48 Flow (gpm)							
Date	Maximum	Minimum	Average				
1/25/2020	6.251	0.759	2.591				
1/26/2020	7.116	0.522	2.718				
1/27/2020	6.533	0.860	2.831				
1/28/2020	6.934	0.706	2.814				
1/29/2020	6.403	0.655	2.557				
1/30/2020	9.435	0.800	3.708				
1/31/2020	10.650	1.475	3.765				
2/1/2020	13.172	0.819	4.152				
2/2/2020	11.721	0.774	4.619				

Period Summary					
Measures	Value	Unit			
Max. Total Flow	19,000	gpd			
Min. Total Flow	800	gpd			
Avg. Total Flow	4,800	gpd			
Total Flow	42,833.1	gal			

RDH Environmental Services Theresa Hayes, General Manager gm@rdh-env.com

<u>3®engineering</u> civil engineering planning surveying

APPENDIX C

System Leg Exhibit

Page | A3 **17-DR-2021 5/6/2021**

<u>3@engineering</u> civil engineering surveying planning

APPENDIX D

Apartment Segment FlowMaster Data

Page | A4 **17-DR-2021 5/6/2021**

Cross Section for Existing Apartment Segment: 8" Sewer min slope

Project Description

Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient	0.013			
Channel Slope	0.27000	%		
Normal Depth	3.126	in		
Diameter	8.00	in		
Discharge	91.15	gpm		

Cross Section Image

V:1 1

 Bentley Systems, Inc. Haestad Methods SoBdititie@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]

 4/8/2020 4:05:44 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Worksheet for Existing Apartment Segment: 8" Sewer min slope

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Diameter	8.00	in
Discharge	91.15	gpm
Results		
Normal Depth	3.126	in
Flow Area	18.20	in²
Wetted Perimeter	0.90	ft
Hydraulic Radius	1.684	in
Top Width	0.65	ft
Critical Depth	0.21	ft
Percent Full	39.1	%
Critical Slope	0.00640	ft/ft
Velocity	1.61	ft/s
Velocity Head	0.04	ft
Specific Energy	0.30	ft
Froude Number	0.64	
Maximum Discharge	0.68	ft³/s
Discharge Full	0.63	ft³/s
Slope Full	0.00028	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	39.08	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBdititle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

4/8/2020 4:06:08 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Existing Apartment Segment: 8" Sewer min slope

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	3.126	in
Critical Depth	0.21	ft
Channel Slope	0.27000	%
Critical Slope	0.00640	ft/ft

Cross Section for Apartment Segment: 8" Sewer min slope w/ Prop.

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Normal Depth	5.448	in
Diameter	8.00	in
Discharge	227.27	gpm
Cross Section Image		

V:1 N

Bentley Systems, Inc. Haestad Methods SoBdititie@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]6/26/2020 10:58:49 AM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 1 of 1

17-DR-2021 5/6/2021

Worksheet for Apartment Segment: 8" Sewer min slope w/ Prop. Flow

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
input Duta		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Diameter	8.00	in
Discharge	227.27	gpm
Results		
Normal Depth	5.448	in
Flow Area	36.46	in²
Wetted Perimeter	1.29	ft
Hydraulic Radius	2.348	in
Top Width	0.62	ft
Critical Depth	0.33	ft
Percent Full	68.1	%
Critical Slope	0.00702	ft/ft
Velocity	2.00	ft/s
Velocity Head	0.06	ft
Specific Energy	0.52	ft
Froude Number	0.55	
Maximum Discharge	0.68	ft³/s
Discharge Full	0.63	ft³/s
Slope Full	0.00176	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unstream Depth	0.000	in
	0.000	
Profile Headless	0.00	1
Average End Denth Over Rise	0.00	n. %
Normal Depth Over Piso	6.00 68 10	% %
Downstream Velocity	Infinity	/o ft/s

Bentley Systems, Inc. Haestad Methods SoBatitile CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

6/26/2020 10:57:21 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Apartment Segment: 8" Sewer min slope w/ Prop. Flow

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	5.448	in
Critical Depth	0.33	ft
Channel Slope	0.27000	%
Critical Slope	0.00702	ft/ft

<u>3@engineering</u> surveying planning civil engineering

APPENDIX E

Existing Sewer FlowMaster Data

Page | A5 **17-DR-2021 5/6/2021**

Cross Section for Existing: 8" Sewer Palm Lane Overflow to Weir

Project Description

Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient	0.0	13	
Channel Slope	0.270	00	%
Normal Depth	5.2	96	in
Diameter	8.	00	in
Discharge	218.0	69	gpm

Cross Section Image

V:1 N

Bentley Systems, Inc. Haestad Methods SoBdtittle@EttlerMaster V8i (SELECTseries 1) [08.11.01.03]4/8/2020 4:11:20 PM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 1 of 1

Worksheet for I	Existing: 8"	Sewer Paln	n Lane	Overflow	to Weir
Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data					
Roughness Coefficient Channel Slope Diameter Discharge		0.013 0.27000 8.00 218.69	% in gpm		
Results					
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full Flow Type	SubCritical	5.296 35.32 1.27 2.323 0.63 0.33 66.2 0.00697 1.99 0.06 0.50 0.56 0.68 0.63 0.00163	in in ² ft in ft ft ft ft/ft ft/s ft ft ft ft ft ft ft ft ft ³ /s ft/ft		
GVF Input Data					
Downstream Depth Length Number Of Steps		0.000 0.00 0	in ft		
GVF Output Data					
Upstream Depth Profile Description		0.000	in		
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise		0.00 0.00 66.20	ft % %		
Downstream Velocity		infinity	Tt/S		

Bentley Systems, Inc. Haestad Methods SoBdittle CEnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

4/8/2020 4:11:53 PM

Worksheet for Existing: 8" Sewer Palm Lane Overflow to Weir

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	5.296	in
Critical Depth	0.33	ft
Channel Slope	0.27000	%
Critical Slope	0.00697	ft/ft

Cross Section for Existing: Rectangular Weir Overflow NW

Project Description

Solve For	Discharge	
Input Data		
Discharge	48.74	gpm
Headwater Elevation	2.296	in
Crest Elevation	0.00	in
Tailwater Elevation	0.00	in
Weir Coefficient	3.00	US
Crest Length	5.19	in
Number Of Contractions	0	

Cross Section Image

Bentley Systems, Inc. Haestad Methods SoBdtittle@EttlerMaster V8i (SELECTseries 1) [08.11.01.03]4/8/2020 4:20:17 PM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 1 of 1

H: 1

Worksheet for Existing: Rectangular Weir Overflow NW

Project Description		
Solve For	Discharge	
Input Data		
Headwater Elevation	2.296	in
Crest Elevation	0.00	in
Tailwater Elevation	0.00	in
Weir Coefficient	3.00	US
Crest Length	5.19	in
Number Of Contractions	0	
Results		
Discharge	48.74	gpm
Headwater Height Above Crest	0.19	ft
Tailwater Height Above Crest	0.00	ft
Flow Area	11.92	in²
Velocity	1.31	ft/s
Wetted Perimeter	0.82	ft
Top Width	0.43	ft

Cross Section for Existing: 8" Sewer Palm Lane

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Normal Depth	4.480	in
Diameter	8.00	in
Discharge	169.95	gpm
Cross Section Image		

V:1 N

 Bentley Systems, Inc. Haestad Methods SoBdititie@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]

 4/8/2020 4:13:22 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Worksheet for Existing: 8" Sewer Palm Lane

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data	•	
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Diameter	8.00	in
Discharge	169.95	gpm
Results		
Normal Depth	4.480	in
Flow Area	28.97	in²
Wetted Perimeter	1.13	ft
Hydraulic Radius	2.141	in
Top Width	0.66	ft
Critical Depth	0.29	ft
Percent Full	56.0	%
Critical Slope	0.00669	ft/ft
Velocity	1.88	ft/s
Velocity Head	0.06	ft
Specific Energy	0.43	ft
Froude Number	0.60	
Maximum Discharge	0.68	ft³/s
Discharge Full	0.63	ft³/s
Slope Full	0.00098	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unstream Denth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	·- %
Normal Depth Over Rise	56.01	%
Downstream Velocity	Infinity	ft/s
,	, ,	

Bentley Systems, Inc. Haestad Methods SoBditide CEnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 2

Worksheet for Existing: 8" Sewer Palm Lane

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	4.480	in
Critical Depth	0.29	ft
Channel Slope	0.27000	%
Critical Slope	0.00669	ft/ft

Cross Section for Existing: 10" Sewer Palm

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.43000	%
Normal Depth	2.093	in
Diameter	10.00	in
Discharge	61.91	gpm
Cross Section Image		

V:1 L

Worksheet for Existing: 10" Sewer Palm

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data	•	
Roughness Coefficient	0.013	
Channel Slope	0.43000	%
Diameter	10.00	in
Discharge	61.91	gpm
Results		
Normal Depth	2.093	in
Flow Area	11.93	in²
Wetted Perimeter	0.79	ft
Hydraulic Radius	1.256	in
Top Width	0.68	ft
Critical Depth	0.16	ft
Percent Full	20.9	%
Critical Slope	0.00621	ft/ft
Velocity	1.66	ft/s
Velocity Head	0.04	ft
Specific Energy	0.22	ft
Froude Number	0.84	
Maximum Discharge	1.55	ft³/s
Discharge Full	1.44	ft³/s
Slope Full	0.00004	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Linstream Denth	0.000	in
	0.000	
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Denth Over Rise	20.93	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBatitite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

4/8/2020 4:18:54 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Existing: 10" Sewer Palm

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	2.093	in
Critical Depth	0.16	ft
Channel Slope	0.43000	%
Critical Slope	0.00621	ft/ft

Cross Section for Existing: 8" Sewer Scottsdale Road

Project Description

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.19000	%
Normal Depth	5.974	in
Diameter	8.00	in
Discharge	214.41	gpm

Cross Section Image

V: 1 1

Worksheet for Existing: 8" Sewer Scottsdale Road

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Innut Data		
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.19000	%
Diameter	8.00	in
Discharge	214.41	gpm
Results		
Normal Depth	5.974	in
Flow Area	40.26	in²
Wetted Perimeter	1.39	ft
Hydraulic Radius	2.411	in
Top Width	0.58	ft
Critical Depth	0.32	ft
Percent Full	74.7	%
Critical Slope	0.00694	ft/ft
Velocity	1.71	ft/s
Velocity Head	0.05	ft
Specific Energy	0.54	ft
Froude Number	0.43	
Maximum Discharge	0.57	ft³/s
Discharge Full	0.53	ft³/s
Slope Full	0.00156	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	74.67	%
Downstream Velocity	Infinity	ft/s
	-	

Bentley Systems, Inc. Haestad Methods SoBditute Center Master V8i (SELECTseries 1) [08.11.01.03]

4/8/2020 4:16:13 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Existing: 8" Sewer Scottsdale Road

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	5.974	in
Critical Depth	0.32	ft
Channel Slope	0.19000	%
Critical Slope	0.00694	ft/ft

<u>3@engineering</u> surveying planning civil engineering

APPENDIX F

Proposed Sewer FlowMaster Data

Page | A6 **17-DR-2021 5/6/2021**

Cross Section for Proposed: 8" Sewer Palm Lane Overflow to Weir

Project Description

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Normal Depth	5.448	in
Diameter	8.00	in
Discharge	227.27	gpm

Cross Section Image

V: 1 1

Bentley Systems, Inc. Haestad Methods SoBdititie@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]6/26/2020 11:36:55 AM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 1 of 1

Worksheet	for Proposed: 8"	Sewer Pal	m Lane	Overflow to We	eir
Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data	•				
input Dutu					
Roughness Coefficient		0.013			
Channel Slope		0.27000	%		
Diameter		8.00	in		
Discharge		227.27	gpm		
Results					
Normal Depth		5.448	in		
Flow Area		36.46	in²		
Wetted Perimeter		1.29	ft		
Hydraulic Radius		2.348	in		
Top Width		0.62	ft		
Critical Depth		0.33	ft		
Percent Full		68.1	%		
Critical Slope		0.00702	ft/ft		
Velocity		2.00	ft/s		
Velocity Head		0.06	ft		
Specific Energy		0.52	ft		
Froude Number		0.55			
Maximum Discharge		0.68	ft³/s		
Discharge Full		0.63	ft³/s		
Slope Full		0.00176	ft/ft		
Flow Type	SubCritical				
GVF Input Data					
Downstream Depth		0.000	in		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Linstroam Donth		0.000	in		
Profile Description		0.000			
Profile Headloss		0.00	ft		
Average End Depth Over Di	°0	0.00	۰۲ %		
Normal Denth Over Riss	30	68 10	%		
		Infinity	/u ft/s		
Downstream velocity		ninity	10.5		

Bentley Systems, Inc. Haestad Methods SoBdititle GEnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

6/26/2020 11:37:33 AM

Page 1 of 2

Worksheet for Proposed: 8" Sewer Palm Lane Overflow to Weir

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	5.448	in
Critical Depth	0.33	ft
Channel Slope	0.27000	%
Critical Slope	0.00702	ft/ft

Cross Section for Proposed: Rectangular Weir Overflow NW

Project Description		
Solve For	Discharge	
Input Data		
Discharge	54.90	0 gpm
Headwater Elevation	2.448	8 in
Crest Elevation	0.00	0 in
Tailwater Elevation	0.00	0 in
Weir Coefficient	3.00	0 US
Crest Length	5.31	1 in
Number Of Contractions	0	

Cross Section Image

V: 1

H: 1

Worksheet for Proposed: Rectangular Weir Overflow NW

Project Description		
Solve For	Discharge	
Input Data		
Headwater Elevation	2.448	in
Crest Elevation	0.00	in
Tailwater Elevation	0.00	in
Weir Coefficient	3.00	US
Crest Length	5.31	in
Number Of Contractions	0	
Results		
Discharge	54.90	gpm
Headwater Height Above Crest	0.20	ft
Tailwater Height Above Crest	0.00	ft
Flow Area	13.00	in²
Velocity	1.35	ft/s
Wetted Perimeter	0.85	ft
Top Width	0.44	ft

Cross Section for Proposed: 8" Sewer Palm Lane

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Normal Depth	4.520	in
Diameter	8.00	in
Discharge	172.37	gpm
Cross Section Image		

V:1 N

 Bentley Systems, Inc. Haestad Methods SoBdititie@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]

 6/26/2020 11:48:06 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

17-DR-2021 5/6/2021

Worksheet for Proposed: 8" Sewer Palm Lane

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.27000	%
Diameter	8.00	in
Discharge	172.37	gpm
Results		
Normal Depth	4.520	in
Flow Area	29.28	in²
Wetted Perimeter	1.13	ft
Hydraulic Radius	2.152	in
Top Width	0.66	ft
Critical Depth	0.29	ft
Percent Full	56.5	%
Critical Slope	0.00670	ft/ft
Velocity	1.89	ft/s
Velocity Head	0.06	ft
Specific Energy	0.43	ft
Froude Number	0.60	
Maximum Discharge	0.68	ft³/s
Discharge Full	0.63	ft³/s
Slope Full	0.00101	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	56.50	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBdittle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

6/26/2020 11:48:38 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Proposed: 8" Sewer Palm Lane

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	4.520	in
Critical Depth	0.29	ft
Channel Slope	0.27000	%
Critical Slope	0.00670	ft/ft

Cross Section for Proposed: 10" Sewer Palm

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.43000	%
Normal Depth	3.777	in
Diameter	10.00	in
Discharge	195.61	gpm
Cross Section Image		

V:1 N:1

 Bentley Systems, Inc. Haestad Methods SoBdititle@Efitier/Master V8i (SELECTseries 1) [08.11.01.03]

 6/26/2020 11:44:35 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

17-DR-2021 5/6/2021

Worksheet for Proposed: 10" Sewer Palm

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.43000	%
Diameter	10.00	in
Discharge	195.61	gpm
Results		
Normal Depth	3.777	in
Flow Area	27.17	in ²
Wetted Perimeter	1.10	ft
Hydraulic Radius	2.052	in
Top Width	0.81	ft
Critical Depth	0.29	ft
Percent Full	37.8	%
Critical Slope	0.00600	ft/ft
Velocity	2.31	ft/s
Velocity Head	0.08	ft
Specific Energy	0.40	ft
Froude Number	0.84	
Maximum Discharge	1.55	ft³/s
Discharge Full	1.44	ft³/s
Slope Full	0.00040	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	37.77	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBatitite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

6/26/2020 11:45:00 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Proposed: 10" Sewer Palm

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	3.777	in
Critical Depth	0.29	ft
Channel Slope	0.43000	%
Critical Slope	0.00600	ft/ft

Cross Section for Prposed: 8" Sewer Scottsdale Road

Project Description

Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.19000	%
Normal Depth	6.032	in
Diameter	8.00	in
Discharge	216.83	gpm

Cross Section Image

V:1 1

Worksheet for Prposed: 8" Sewer Scottsdale Road

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
	0.040	
	0.013	N
Channel Slope	0.19000	%
Diameter	8.00	in
Discharge	210.03	gpm
Results		
Normal Depth	6.032	in
Flow Area	40.66	in²
Wetted Perimeter	1.40	ft
Hydraulic Radius	2.416	in
Top Width	0.57	ft
Critical Depth	0.33	ft
Percent Full	75.4	%
Critical Slope	0.00696	ft/ft
Velocity	1.71	ft/s
Velocity Head	0.05	ft
Specific Energy	0.55	ft
Froude Number	0.43	
Maximum Discharge	0.57	ft³/s
Discharge Full	0.53	ft³/s
Slope Full	0.00160	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.000	in
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.000	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	75.40	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBatitile Center Master V8i (SELECTseries 1) [08.11.01.03]

6/26/2020 11:51:27 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Prposed: 8" Sewer Scottsdale Road

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	6.032	in
Critical Depth	0.33	ft
Channel Slope	0.19000	%
Critical Slope	0.00696	ft/ft

<u>3@engineering</u> civil engineering planning surveying

APPENDIX G

Preliminary Onsite Utility Plans

Page | A7 **17-DR-2021** 5/6/2021

LEGAL DESCRIPTION:

THAT PORTION OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SECTION 34, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER BASE AND MERIDIAN, MARICOPA COUNTY, ARIZONA, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE NORTH LINE OF THE SOUTH HALF OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER, A DISTANCE OF 380.00 FEET EAST OF THE WEST LINE OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER:

THENCE WEST ALONG SAID NORTH LINE TO A POINT ON THE EAST LINE OF A NORTH-SOUTH ALLEY AS SHOWN ON THE PLAT OF WONDERLAND, ACCORDING TO BOOK 100 OF MAPS, PAGE 19, RECORDS OF MARICOPA COUNTY. ARIZONA:

THENCE SOUTH ALONG THE EAST LINE OF AFORESAID ALLEY TO AN ANGLE POINT THEREON;

THENCE WEST ALONG THE SOUTH LINE OF AN EAST-WEST ALLEY AS SHOWN ON AFORESAID PLAT OF WONDERLAND, TO A POINT ON THE EAST LINE OF 70TH STREET AS SHOWN ON AFORESAID PLAT:

THENCE SOUTH ALONG SAID EAST LINE, A DISTANCE OF 253.88 FEET TO THE BEGINNING OF A CURVE TO THE LEFT HAVING A CENTRAL ANGLE OF 91 DEGREES 14 MINUTES 49 SECONDS AND A TANGENT OF 20.00 FEET;

THENCE SOUTHEASTERLY ALONG SAID CURVE TO THE LEFT, AN ARC DISTANCE OF 31.17 FEET;

THENCE SOUTH PARALLEL WITH THE WEST LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, A DISTANCE OF 65.00 FEET TO A POINT ON THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, FROM WHICH THE SOUTHWEST CORNER THEREOF BEARS WEST, A DISTANCE OF 52.42 FEET; THENCE EAST ALONG THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, TO A POINT 380.00 FEET EAST OF THE SOUTHWEST CORNER OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER;

THENCE NORTH ALONG A LINE PARALLEL TO AND 380.00 FEET EAST OF THE WEST LINE OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER TO THE POINT OF BEGINNING;

EXCEPT THE SOUTH 65.00 FEET THEREOF.

GENERAL NOTES FOR PUBLIC WORKS CONSTRUCTION:

- 1. ALL CONSTRUCTION IN THE PUBLIC RIGHTS-OF-WAY OR IN EASEMENTS GRANTED FOR PUBLIC USE MUST CONFORM TO THE LATEST MARICOPA ASSOCIATION OF GOVERNMENTS (MAG) UNIFORM STANDARD SPECIFICATIONS AND UNIFORM STANDARD DETAILS FOR PUBLIC WORKS CONSTRUCTION AS AMENDED BY THE LATEST VERSION OF THE CITY OF SCOTTSDALE STANDARD SPECIFICATIONS AND SUPPLEMENTAL STANDARD DETAILS. IF THERE IS A CONFLICT, THE CITY'S SUPPLEMENTAL STANDARD DETAILS WILL GOVFRN.
- 2. THE CITY ONLY APPROVES THE SCOPE, NOT THE DETAIL OF ENGINEERING DESIGNS; THEREFORE IF CONSTRUCTION QUANTITIES ARE SHOWN ON THESE PLANS, THEY ARE NOT VERIFIED BY THE CITY.
- 3. THE APPROVAL OF PLANS IS VALID FOR SIX (6) MONTHS. IF ASSOCIATED PERMIT HAS NOT BEEN ISSUED WITHIN THIS TIME FRAME, THE PLANS MUST BE RESUBMITTED TO THE CITY FOR RE-APPROVAL.
- 4. A CITY INSPECTOR WILL INSPECT ALL WORKS WITHIN THE CITY OF SCOTTSDALE. NOTIFY INSPECTION SERVICES 72 HOURS BEFORE BEGINNING WORK.
- 5. WHENEVER EXCAVATION IS NECESSARY, CALL THE BLUE STAKE CENTER, 811. TWO WORKING DAYS BEFORE EXCAVATION BEGINS.
- 6. PERMISSION TO WORK IN THE RIGHT-OF-WAY (PWR) PERMITS ARE REQUIRED FOR ALL WORKS WITHIN THE RIGHTS-OF-WAY AND EASEMENTS GRANTED FOR PUBLIC PURPOSES. COPIES OF ALL PERMITS MUST BE RETAINED ON-SITE AND BE AVAILABLE FOR INSPECTION AT ALL TIMES. FAILURE TO PRODUCE THE REQUIRED PERMITS WILL RESULT IN IMMEDIATE SUSPENSION OF ALL WORK UNTIL THE PROPER PERMIT DOCUMENTATION IS OBTAINED.

UTILITY	UTILITY COMPANY	NAME OF COMPANY REPRESENTATIVE	TELEPHONE NUMBER	DATE SIGNED
ELECTRIC	APS			
TELEPHONE	CENTURY LINK			
NATURAL GAS	SOUTHWEST GAS			
CABLE TV	COX COMMUNICATIONS			
OTHER	A.T.&T.			
OTHER				
ENGINEER'S CE	RTIFICATION			
I <u>DANIEL G. MANN,</u> AS THE ENGINEER OF RECORD FOR THIS DEVELOPMENT, HEREBY CERTIFY THAT ALL UTILITY COMPANIES LISTED ABOVE HAVE BEEN PROVIDED FINAL IMPROVEMENT PLANS FOR REVIEW, AND THAT ALL CONFLICTS IDENTIFIED BY THE UTILITIES HAVE BEEN RESOLVED. IN ADDITION "NO CONFLICT" FORMS HAVE BEEN OBTAINED FROM EACH UTILITY COMPANY AND ARE INCLUDED IN THIS SUBMITTAL.				

ENGINEER'S CERTIFICATION: THE LOWEST FINISH FLOOR ELEVATION(S) AND/OR FLOOD PROOFING ELEVATION(S) ON THIS PLAN ARE SUFFICIENTLY HIGH TO PROVIDE PROTECTION FROM FLOODING CAUSED BY A 100-YEAR STORM, AND ARE IN ACCORDANCE WITH SCOTTSDALE REVISED CODE, CHAPTER 37 - FLOODPLAIN AND STORMWATER REGULATION.

SIGNATURE

DATE

PRELIMINARY UTILITY PLAN FOR SOUTHDALE 7000 E. MCDOWELL ROAD, SCOTTSDALE, ARIZONA 85257 LOCATED IN A PORTION OF THE SOUTHEAST QUARTER OF SECTION 34, TOWNSHIP 2 NORTH, RANGE 4 EAST

OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA

	INDEX OF SHEETS
SHEET NO.	DESCRIPTION
PUTL101	COVER SHEET - PRELIMINARY UTILITY PLAN
PUTL102	PRELIMINARY UTILITY PLAN
PUTL103	PRELIMINARY UTILITY PLAN

FLOOD INSURANCE RATE MAP (FIRM) INFORMATION:

BER	PANEL DATE	SUFFIX	FIRM DATE	FIRM ZONE	BASE FLOOD ELEVATION
	OCTOBER 16,2013	L	OCTOBER 16,2013	х	NZA

LEGEND

58	
<i>TC: 59.13</i>	
G: 50.64	
+62.52	•
+ C: 56.69	
15.9	

<u> </u>	
GB	
<u> </u>	
<u>C=</u>	
<u>G</u> =]
LF ₈₈ =]
W]
S]
]
•]
	1
0	1
•]
FH 🕒]
 24" SD]
<i>8"</i> S	1
0.0	1
—12"₩ (ACP)— » ₩V]
——————————————————————————————————————]
G]
OHE]
PP O	Ι
\times ^{LP}	I
ET 🖂	Ι
EB□	Ι
WM 🗆	Ι

INDICATES	PROPERTY	/ / BOU
INDICATES	EXISTING	CONTOU
INDICATES	PROPOSED	CONTO
INDICATES	EXISTING	TOP OF
INDICATES	EXISTING	GUITER
INDICATES	EXISTING	GROUND
	PROPUSEL	
INDICATES	DIRECTION	N OF FL
INDICATES	GRADE BF	REAK
INDICATES	PROPOSED) PAVEM
INDICATES	PROPOSED) TOP O
INDICATES	PROPOSED) GUTTE
INDICATES	LOWEST F	INISH FL
INDICATES	PROPOSED	WATERI
INDICATES	PROPOSED	SEWERL
INDICATES	PROPOSED	METER
INDICATES	PROPOSED	SEWER
INDICATES	PROPOSED	САТСН
INDICATES	PROPOSED	STORM
INDICATES	PROPOSED	STORM
INDICATES	PROPOSED	FIRE H
INDICATES	EXISTING	FIRE HY
INDICATES	EXISTING	STORM
INDICATES	EXISTING	SEWER I
INDICATES	EXISTING	WATER
INDICATES	EXISTING	BURIED
INDICATES	EXISTING	GAS LIN
INDICATES	EXISTING	OVERHE
NDICATES	EXISTING	POWER F
INDICATES	EXISTING	LIGHT P
INDICATES	EXISTING	ELECTRI
INDICATES	EXISTING	ELECTRI
INDICATES	EXISTING	WATER
INDICATES	EXISTING	BACKFLO

5/6/2021

Ay SecuriSync\Projects\1872_70th_St_McDowell_Apartments\1872putl02.dgn

