

SOUTHDALE Preliminary Drainage Report 3 engineering Job #: 1872 June 28, 2021 COS #: 5-ZN-2020

SOUTHDALE

7000 E. MCDOWELL ROAD, SCOTTSDALE, AZ 85257

PRELIMINARY DRAINAGE REPORT

Prepared for:

Hawkins Companies LLC 4700 S. McClintock Drive #160 Scottsdale, Arizona 85257 Contact: Mark Mitchell Phone: (480) 223-8239

Daniel G. Mann, P.E.

June 28, 2021

Submittal to:

City of Scottsdale 7447 E. Indian School Road, Suite 105 Scottsdale, AZ 85251

Prepared by:

3 engineering, LLC 6370 E. Thomas Road, Suite #200 Scottsdale, Arizona 85251 Contact: Dan G. Mann, P.E.

Job Number 1872

Table of Contents

Page

1.	Introduction	1
2.	Site Description	1
3.	Drainage Design – Offsite	1
4.	Drainage Design – Onsite	2
5.	Conclusions	4
6.	References	4

Appendix

Appendix A – Vicinity Map	A-1
Appendix B – FEMA FIRM Map	A-2
Appendix C – Warning and Disclaimer of Liability	A-3
Appendix D – Watershed Delineation and Topography Map	A-4
Appendix E – Offsite Drainage Calculations	A-5
Appendix F – Aerial Site Photographs	A-6
Appendix G – Offsite Aerial Photographs	A-7
Appendix H – Onsite Drainage Area Map	A-8
Appendix I – Inlet Area Exhibit	A-9
Appendix J – Onsite Drainage Calculations	A-10
Appendix K – Flo-2d Maps	A-11
Appendix L – Preliminary Grading and Drainage Plans	A-12

1. Introduction

The purpose of this report is to present the existing and proposed drainage plan for the project site, Southdale. It is our opinion the proposed grading and drainage concept is in accordance with the City of Scottsdale drainage requirements.

The project site, Southdale, is located in the southeast guarter of Section 34, Township 2 North, Range 4 East of the Gila and Salt River Meridian, Maricopa County, Arizona within the City of Scottsdale. The project is located at 7000 E. McDowell Road, Scottsdale, AZ 85257. The site is bounded on the north by an apartment complex, on the east by a commercial development, on the south by McDowell Road, and on the west by 70th Street. See Appendix A for a vicinity map and Appendix G for offsite aerial photographs.

The existing zoning is C-3. The land is currently used as a commercial development. The proposed zoning is PUD. The City of Scottsdale 2001 General Plan shows the site as a Mixed-Use Neighborhood. The proposed site is a 267-unit apartment complex with office and retail space. The site currently lies within the "Zone X" floodplain designation.

2. <u>Site Description</u>

Existing

The project site currently consists of a fully developed commercial development with landscaping, drive aisles, parking, and utilities. The existing topography of the site generally slopes from northwest to southeast at approximately 1.0 percent (1.0%). The site currently does not retain stormwater and discharges flows to McDowell Road at the site outfall located at the southeast corner of the site. The site does not show any signs of containing waters of the US (404 washes). See Appendix F for an aerial photograph of the site.

Federal Emergency Management Agency (FEMA) Designation

According to FEMA Flood Insurance Rate Map (FIRM) # 04013C2235L, dated October 16, 2013, the site is located within the "Zone X" floodplain designation.

"Zone X" is described as follows:

"Areas determined to be outside the 0.2% annual chance floodplain."

Refer to the updated Flood Insurance Rate Map information in Appendix B.

Proposed

The proposed project includes constructing a 267-unit multi-family apartment complex with office and retail space. The site also includes drive aisles, surface parking, a parking structure, and landscape. See the proposed improvements in the Onsite Drainage Area Map in Appendix Η.

3. Drainage Design - Offsite

The site is not considered to be affected by offsite flows. The Maricopa County Flood Control District Flo-2d maps from the Lower Indian bend Wash Study show offsite flows entering the site from the west. See Appendix K for Flo-2d maps. The physical conditions of the site differ from the assumptions in the Flo-2d analysis. The site is blocked from offsite flows and is discussed below.

Flows are generated within an offsite drainage area west of the site that travel east toward 70th Street through Coronado Road, Almeria Road and an alley south of Almeria Road. See Watershed Delineation and Topography Map in Appendix D. The peak discharge for the

drainage area was determined to be 34 cfs for the 100-year storm event using the FCDMC DDMSW HEC-1 Model, which is consistent with the flows shown in the Flo-2d map. The flow is conveyed to the west half of 70th Street which has a capacity of 21.53 cfs (cross section A). Therefore, 12.47 cfs breaks over to the east side of 70th Street. With a flow of 12.47 cfs, the water surface elevation in the east side of 70th street is at an elevation of 42.35 at the location of a 20-ft wide driveway to the apartment complex north of the site (cross section B). The back of the driveway has an elevation of 42.17. The breakover was modeled as a weir with a width of 20-ft and a depth of 0.18-ft, resulting in a flow of 4.58 cfs that enters the apartment complex (weir section B). The remaining 7.89 cfs travels south in the east half of 70th street, adjacent to the site, which has a capacity of 11.34 cfs (cross section C). There is a block wall/solid building walls that extend the entire property line between the project site and the apartment complex. There is an opening at a foot-gate along the wall, however it is 1.3-ft above the adjacent catch basin in the apartment complex drive aisle. Therefore, no offsite flows affect the site. There is a drywell in the alley behind the existing apartment complex to the northwest that dissipates any storm water in this area.

Refer to Appendix D for a Watershed Delineation and Topography map and Appendix E for Offsite Drainage Calculations including HEC-1 Results and Flowmaster Calculations. Cross section locations are shown in the Onsite Drainage Area Map, Appendix H.

Hydraulic Parameters

Bentley Flowmaster V8i was used to calculate the street capacity for sections in 70th Street for 100-year flows. The Flood Control District of Maricopa County Drainage Design Management System for Windows (DDMSW) was used to determine the flow for 100-year storm event . See results in Appendix E.

4. Drainage Design - Onsite

The City of Scottsdale Design Standards and Policies Manual and the Drainage Design Manual for Maricopa County, Volume 1 was followed in designing on-site drainage facilities for the site.

Refer to the Preliminary Grading and Drainage Plan in Appendix L, the Onsite Drainage Map in Appendix H and Inlet Area Exhibit in Appendix I for the following discussion. The proposed site is required to provide retention for the pre- vs. post-project runoff for the 100-year, 2-hour storm or the 0.5" First Flush Storm (with weighted runoff coefficient), whichever is greater. The c value for the proposed site is less than the existing site, so the pre- vs. post- runoff method results in no required volume. Therefore, the First Flush Storm is used. There is no retention provided for the "true rooftop" areas with no amenities, see Appendix H for areas. See Appendix J for Onsite Drainage Calculations.

The required retention volume for Drainage Area A is 2,706 c.f. There is 2,764 c.f. provided in 220-L.F. of 48" storm drain pipe. Flows generated within this drainage area are conveyed via roof drains and surface flow to five catch basins that connect directly into the underground retention pipe. In a storm event greater than the 0.5" first flush the retention pipe will fill and overflow through the southernmost catch basin to McDowell Road. The system is modeled in Bentley StormCAD using a tail water elevation of 6" above the highpoint breakover at the driveway. A proposed dry-well will provide a dry up time of 36 hours with an infiltration rate of 0.02 cfs. Additionally, the two courtyard areas have secondary overflow catch basins elevated 0.25-ft above the primary catch basin. The overflow catch basins will not receive flow until the

planning

civil engineering

underground retention is full or the primary catch basins are clogged. The overflow catch basin in the north courtyard, area A-4, is conveyed to a bubble-up outlet in the fire lane west of the building. The bubble-up structure is connected to the underground retention with a bleed off pipe and does not require an additional drywell. The overflow catch basin for the south courtyard, area A-5, outlets to the right of way in McDowell Road.

The required retention volume for Drainage Area B is 479 c.f. There is 528 c.f. provided in 42-L.F. of 48" storm drain pipe. Flows generated within this drainage area are conveyed via surface flow to two catch basins that connect directly into the underground retention pipe. In a storm event greater than the 0.5" first flush the retention pipe will fill and overflow through the north catch basin to 70th Street. The system is modeled in Bentley StormCAD using a tail water elevation of 0.13-ft above the highpoint breakover at the driveway. A proposed dry-well will provide a dry up time of 36 hours with an infiltration rate of 0.01 cfs.

The proposed finish floor of the new building is 1243.00, which is 12" above the highest adjacent catch basin inlet elevation of 1242.00. Therefore, the finish floor meets the requirement of 12" above the adjacent high-water elevation per the Maricopa County Drainage Standards. Additionally, the proposed finish floor elevations are greater than 14" above the site outfall of 1237.85, exceeding the Maricopa County Drainage Standard requirement.

Hydraulic Parameters

For onsite peak flows, the Rational Method will be used as follows:

Q=CiA

- where: C = Composite runoff coefficient = weighted by ground cover
 - i = Intensity corresponding to T_c
 - T_c = Time of concentration (10 minute minimum used)
 - A = Area in acres

The 100-year runoff coefficient for this development to be used is 0.95 for impervious areas and 0.45 for pervious areas per the Maricopa County Drainage Policies and Standards. The rainfall is based upon the NOAA Atlas 14, Volume 1, Version 5, dated 2011, 90% confidence interval, mean partial duration time series data.

Determination of Catch Basin capacity operating as a weir by using the following formula: $Q = C_w x P x d^{1.5} x (1-CF)$

where:

- C_w = Weir coefficient (3.0) Q = Discharge Capacity (cfs)
- *P* = Inlet Perimeter
- d = Flow depth

CF = Clogging Factor. 40% clogging (or 0.40) used

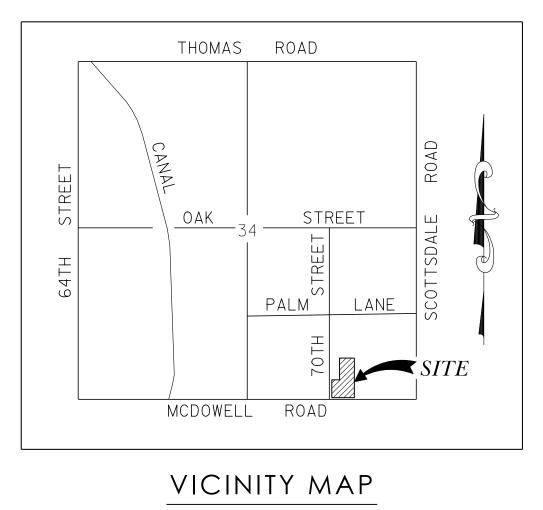
Please refer to APPENDIX J for catch basin computations.

The on-site storm drain pipes are designed to accommodate flows resulting from the 100year storm event. To calculate the capacity of the storm drain pipes, StormCAD V8i by Bentley Systems, Inc. was used, see results in Appendix J. The 100-year flow calculated for a given drainage area was assigned to the corresponding catch basin. Inlet areas are shown in the Inlet Area Exhibit in Appendix I. The tailwater for each outlet of the retention pipes were set above the adjacent driveway breakover elevations.

5. Conclusions

The following is a summary of the Southdale Preliminary Drainage Report.

- The site currently lies within the "Zone X" floodplain designation.
 - Retention is provided for the 0.5" first flush storm for the site.
 - No offsite flows affect the site.
 - The finish floors are safe from the 100-year storm event.

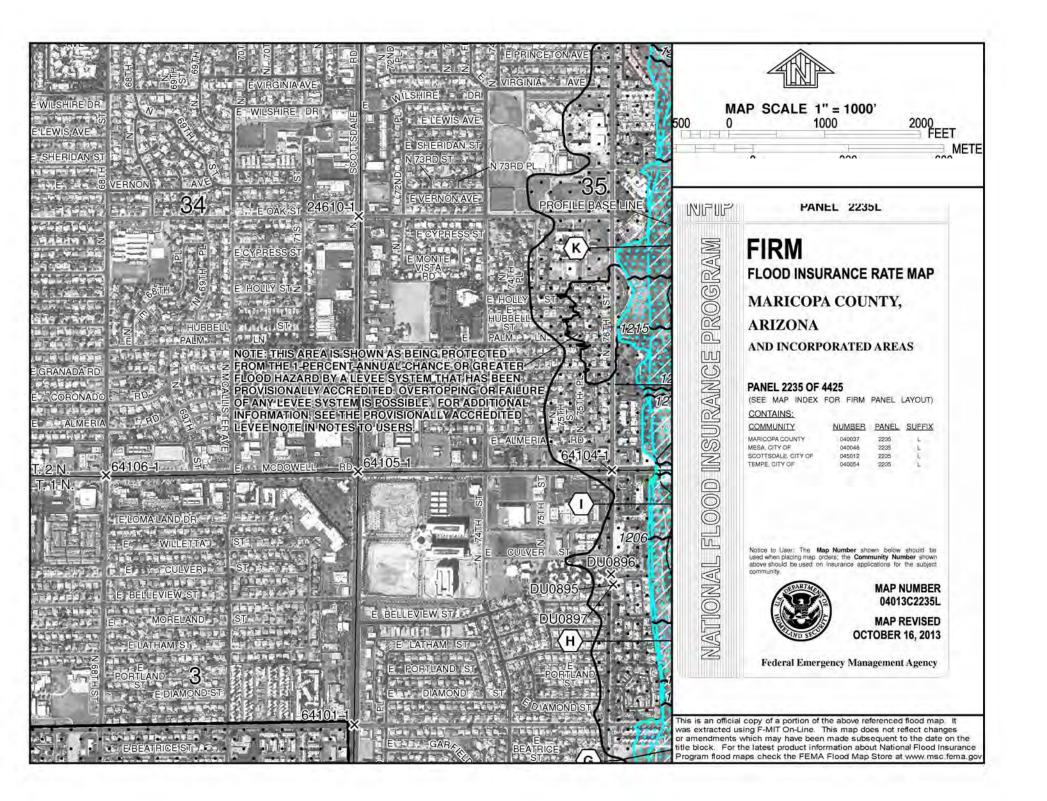

6. <u>References</u>

- 1. City of Scottsdale, Design Standards and Policies Manual, 2018.
- 2. Maricopa County, Drainage Policies and Standards, August 2018.
- 3. Maricopa County Flood Control District Flo-2d maps from the Lower Indian bend Wash Study

3 engineering surveying planning

APPENDIX A

Vicinity Map



N.T.S.

3 engineering surveying planning

APPENDIX B

FEMA FIRM Map

3

engineering civil engineering planning survevina

APPENDIX C

Warning and Disclaimer of Liability

GRADING & DRAINAGE GRADING & DRAINAGE LANGUAGE

WARNING AND DISCLAIMER OF LIABILITY

The City's Stormwater and Floodplain Management Ordinance is intended to minimize the occurrence of losses, hazards and conditions adversely affecting the public health, safety and general welfare which might result from flooding. The Stormwater and Floodplain Management Ordinance identifies floodplains, floodways, flood fringes and special flood hazard areas. However, a property outside these areas could be inundated by floods. Also, much of the city is a dynamic flood area; floodways, floodplains, flood fringes and special flood hazard areas may shift from one location to another, over time, due to natural processes.

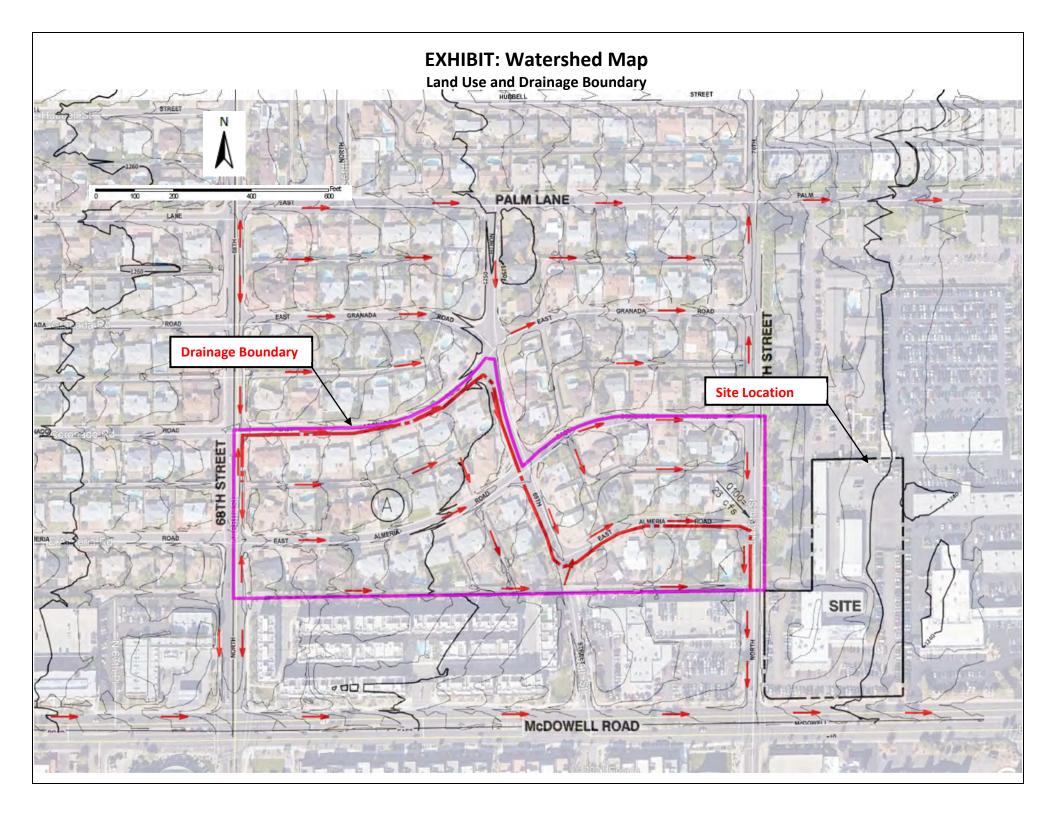
WARNING AND DISCLAIMER OF LIABILITY

The flood protection provided by the Stormwater and Floodplain Management Ordinance is considered reasonable for regulatory purposes and is based on scientific and engineering considerations. Floods larger than the base flood can and will occur on rare occasions. Floodwater heights may be increased by constructed or natural causes. The Stormwater and Floodplain Management Ordinance does not create liability on the part of the city, any officer or employee thereof, or the federal, state or county government for any flood damages that result from reliance on the Ordinance or any administrative decision lawfully made thereunder.

Compliance with the Stormwater and Floodplain Management Ordinance does not ensure complete protection from flooding. Flood-related problems such as natural erosion, streambed meander, or constructed obstructions and diversions may occur and have an adverse effect in the event of a flood. You are advised to consult your own engineer or other expert regarding these considerations. I have read and understand the above.

20	Rel	à	
Owner			Date

Plan Check #


Sengineering civil engineering planning survevina

APPENDIX D

Watershed Delineation and Topography Map

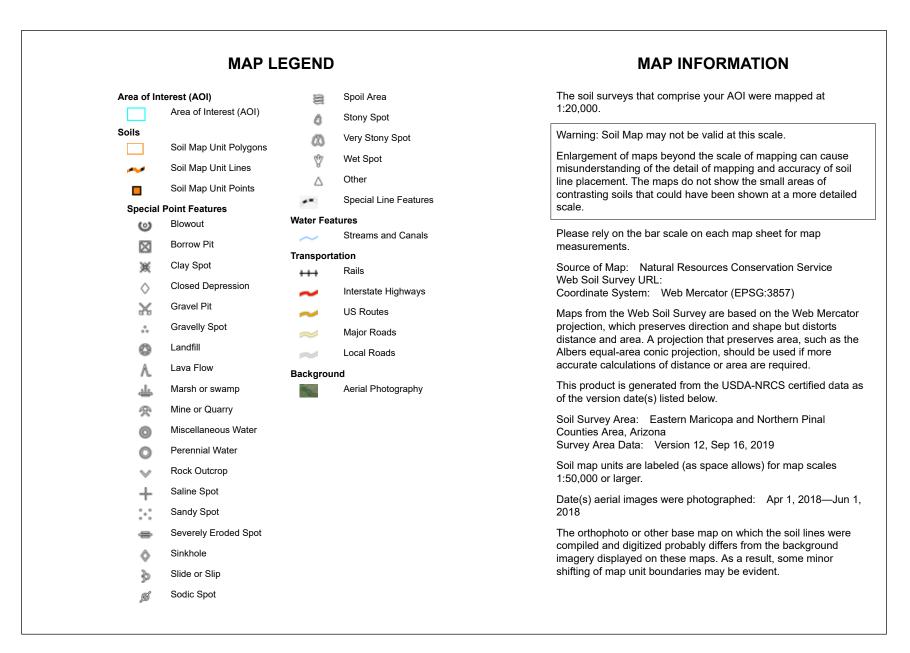
securiSync\Projects\1872_70th_St_McDowell_Apartments\Reports\Preliminary Drainage\1872exb_watershed_delineation.dg

3

engineering civil engineering planning survevina

APPENDIX E

Offsite Drainage Calculations


EXHIBIT: SOILS MAP

Source: Web Soil Survey

USDA Natural Resources Conservation Service

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
LaA	Laveen loam, 0 to 1 percent slopes	1.9	14.2%
RiA	Rillito gravelly loam, 0 to 1 percent slopes	11.7	85.8%
Totals for Area of Interest		13.7	100.0%

EXHIBIT: DDMSW HEC-1

Flood Control District of Maricopa County Drainage Design Management System

							ILS								
Page 1					Projec	t Reference:	70TH&M	CDOV	NEL						
Area ID	Book Number	Map Unit		D Area (sqmi)		XKSAT	Rock Percent (%)	Effe Rock		Commer	nts				
Major	Basin ID): 01													
A	855 855	LaA RiA	6554221; 6555437;			0.250 0.400	-		5 100						
age 1						Drainage I	rol District o Design Man LAND U eference: 70	agemen ISE	nt System						
ub asin	Land Use Co	ode	Area (sq mi)	Area (%)	Initial Loss (IA)	Percent Impervious (RTIMP)	Cov		DTHETA		КЪ	Descript	on		
ajo r Basiı	n ID: 01		13.4000	100.0	0.25	50	• El	0.0	NORMAL		.033				
	100		13.4000	100.0	0.25	50	- 00	1.0	NURMAL		.033				
ge 1					Draina	ontrol District of M ge Design Manag SUB BASI1 t Reference: 70T	ement System NS	m							6/28/2
_			arameters				I Losses						Period Pa		
ealD Are (sqm	-	Slope (ft/mi) \$	Adj Time-A Slope	rea Kb	IA DT (in)	HETA PSIF (in		RTIMP (%)	-	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100
ajo r Basin	ID: 01														
0.0	21 0.25	48.0	48.0 URB	AN 0.033	0.25	0.25 4.0	8 0.540	50	Tc (Hrs Vel (f/s	0.97	0.327	0.300 1.22 0.290	0.272* 1.35 0.261	0.257* 1.43 0.244	0.2 1. 0.2
									R (Hrs	0.376	0.320	0.200			
ge 1					Drainage D Hi	ol District of Design Mana EC-1 FLOW ference: 70T	gementS SUMMAR	ystem IY	ty	0.370	0.320	0.200			/28/20
-	ID	Ту			Drainage D Hi Project Re	esign Mana EC-1 FLOW	gementS SUMMAR H&MCDC	ystem Y WEL	ty	0.370	0.320				/28/20

Major Basin 01 A

Hydrograph 0.02

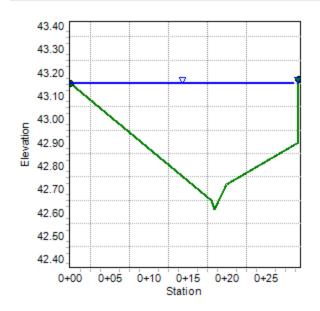
0.02

12 17 23 28 34

EXHIBIT: HEC-1 Output 100Yr

TNDUT	SCHEMATIC DI	AGRAM OF STR	AM NETWORK							
INPUT LINE	(V) ROUTING	(>) D	VERSION OR PUMP FL	DW						
NO.	(.) CONNECTOR	(<) RI	TURN OF DIVERTED O	R PUMPED FL	.OW					
19	А									
(***) RUNC	OFF ALSO COMPUTED A	T THIS LOCAT	ION							
	***************	**********					********	********	**************	****
	HYDROGRAPH PACKAGE							ARMY COF	RPS OF ENGINEERS	
8 8	JUN 1998 VERSION 4.1						* HYD *		NGINEERING CENTER	
*		:	•				*	DAVIS, CAU	LIFORNIA 95616	
* RUN DAT *	E 28JUN21 TIME	07:45:00					*	(916)	756-1104	:
*********	*****************	***********	:				*******	*********	****************	*****
			ntrol District of M WEL - 3 Engineers	aricopa Cou	inty					
		100 YEAR	-							
		6 Hour : Unit Hyd	rograph: Clark							
		Storm: M 06/28/20								
9 IO		ROL VARIABLE								
	IPRNT IPLOT		PRINT CONTROL PLOT CONTROL							
	QSCAL		HYDROGRAPH PLOT S	CALE						
IT	HYDROGRAPH									
	NMIN IDATE		MINUTES IN COMPUT STARTING DATE	ATION INTER	(VAL					
	ITIME	0000	STARTING TIME							
	NQ NDDATE	•	NUMBER OF HYDROGR. ENDING DATE	APH ORDINAT	ES					
	NDTIME		ENDING TIME							
	ICENT	19	CENTURY MARK							
		ON INTERVAL	.08 HOURS 166.58 HOURS							
	ENGLISH UNITS									
	DRAINAGE AREA PRECIPITATION									
	LENGTH, ELEVA									
	FLOW	CUB	IC FEET PER SECOND							
	STORAGE VOLUM		-FEET							
	SURFACE AREA TEMPERATURE		EES FAHRENHEIT							
11 JD	INDEX STORM	NO. 1								
	STRM		PRECIPITATION DEP							
40.07	TRDA		TRANSPOSITION DRA	INAGE AREA						
12 PI	PRECIPITA .00	TION PATTERN .00	.00 .00	.00	.00	.00	.00	.00	.00	
	.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
	.00	.00	.00. 00.	.00	.00	.00	.00	.00	.00	
	.00	.00	.00 .01 .05 .05	.01	.01	.01	.01	.01	.03 .03	
	.03	.03	.05 .05	.05	.15	.15	.00	.03	.00	
	.00	.00	.00 .00	.00	.00	.00	.00	.00	.00	
	.00	.00								

EXHIBIT: HEC-1 Output 100Yr


15	JD.	INDEX STORM NO STRM TRDA	2.50	PRECIPITAT	ION DEPTH ION DRAINAG						
		TRUA	.50	TRANSFUSIT	ION DRAINAG	IE AREA					
16	PI	PRECIPITATIO	N PATTERN								
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.01	.01	.01	.01	.01	.01	.03
		.03	.03	.05	.05	.05	.15	.15	.15	.03	.03
		.03	.01	.01	.01	.01	.01	.01	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00								
1											
					RUNOF	F SUMMARY					
					OW IN CUBIC						
				TIME	IN HOURS,	AREA IN SQ	UARE MILE	S			
			PEA	K TIME OF	AVERAG	E FLOW FOR	MAXTMUM	PERTOD	BASIN	MAXIMUM	TIME OF
	OPERAT	ION STATIO							AREA	STAGE	MAX STAGE
+					6-HOU	JR 24-H	OUR 7	2-HOUR			
	HYDROG	RAPH AT									
+			А 3	4. 4.08	4	۰.	1.	0.	.02		

*** NORMAL END OF HEC-1 ***

Cross Section for 70th Street West Section A

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.25	%
Normal Depth	0.54	ft
Discharge	21.53	ft³/s

Cross Section Image

Worksheet for 70th Street West Section A

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Channel Slope	0.25 %
Normal Depth	0.54 ft
Section Definitions	

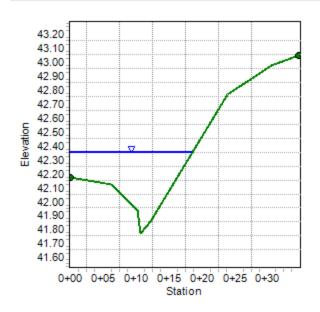
Station (ft)	Elevation (ft)
0.	29 43.17
0-	29 42.90
0-	20 42.72
0-	18 42.61
0-	18 42.65
0-	00 43.15

Roughness Segment Definitions

Start Station	E	Ending Station		Roughness Coefficient	
(0+29, -	43.17)	(0+0	0, 43.15)		0.013
Options					
Current Roughness Weighted Method	Pavlovskii's Methoo	i			
Open Channel Weighting Method	Pavlovskii's Method	1			
Closed Channel Weighting Method	Pavlovskii's Methoo	1			
Results					
Discharge		21.53	ft³/s		
Elevation Range	42.61 to 43.17 ft				
Flow Area		8.55	ft²		
Wetted Perimeter		29.26	ft		
Hydraulic Radius		0.29	ft		
Top Width		29.00	ft		
Normal Depth		0.54	ft		

Bentley Systems, Inc. Haestad Methods SoBditite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2


Worksheet for 70th Street West Section A

Results			
Critical Depth		0.50	ft
Critical Slope		0.00386	ft/ft
Velocity		2.52	ft/s
Velocity Head		0.10	ft
Specific Energy		0.64	ft
Froude Number		0.82	
Flow Туре	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.54	ft
Critical Depth		0.50	ft
Channel Slope		0.25	%
Critical Slope		0.00386	ft/ft

Cross Section for 70th Street East Section B

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Channel Slope	0.25	%
Normal Depth	0.58	ft
Discharge	12.47	ft³/s

Cross Section Image

Worksheet for 70th Street East Section B

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope	0	0.25	%
Discharge	12	2.47	ft³/s
Section Definitions			

Station (ft)	Elevation (ft)
0+00	42.17
0+06	42.12
0+10	41.93
0+11	41.77
0+12	41.85
0+24	42.76
0+31	42.97
0+35	43.04

Roughness Segment Definitions

Start Station	Ending Station	ı		Roughness Coefficient	
(0+00, 4	2.17)	(0+3	35, 43.04)		0.013
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.58	ft		
Elevation Range	41.77 to 43.04 ft				
Flow Area		5.17	ft²		
Wetted Perimeter	1	8.81	ft		
Hydraulic Radius		0.27	ft		

Bentley Systems, Inc. Haestad Methods SoBdittle CErterMaster V8i (SELECTseries 1) [08.11.01.03]

6/28/2021 10:06:46 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

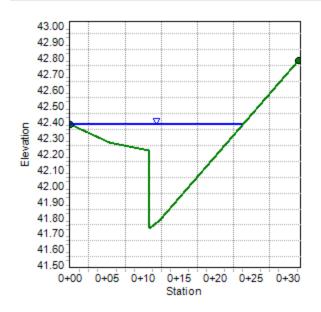
Worksheet for 70th Street East Section B

Results			
Top Width		18.58	ft
Normal Depth		0.58	ft
Critical Depth		0.54	ft
Critical Slope		0.00399	ft/ft
Velocity		2.41	ft/s
Velocity Head		0.09	ft
Specific Energy		0.67	ft
Froude Number		0.81	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.58	ft
Critical Depth		0.54	ft
Channel Slope		0.25	%
Critical Slope		0.00399	ft/ft

Cross Section for Section B Weir

Project Description			
Solve For	Discharge		
Input Data			
Discharge	4.5	58 ft³/s	
Headwater Elevation	0.1	18 ft	
Crest Elevation	0.0	00 ft	
Tailwater Elevation	0.0	00 ft	
Weir Coefficient	3.0	00 US	
Crest Length	20.0	00 ft	
Number Of Contractions	0		
Cross Section Image			
	T	0.1	8 ft

20.00 ft -


Worksheet for Section B Weir

Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		0.18	ft
Crest Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		20.00	ft
Number Of Contractions	0		
Results			
Discharge		4.58	ft³/s
Headwater Height Above Crest		0.18	ft
Tailwater Height Above Crest		0.00	ft
Flow Area		3.60	ft²
Velocity		1.27	ft/s
Wetted Perimeter		20.36	ft
Top Width		20.00	ft

Cross Section for 70th Street Section C

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Channel Slope	0.25	%
Normal Depth	0.65	ft
Discharge	11.34	ft³/s

Cross Section Image

Worksheet for 70th Street Section C

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
Input Data	
Channel Slope	0.25 %
Normal Depth	0.65 ft
Section Definitions	

Station (ft)	Elevat	tion (ft)
C)+00	42.38
C)+05	42.27
()+11	42.22
()+11	41.73
C)+12	41.78
C)+31	42.78

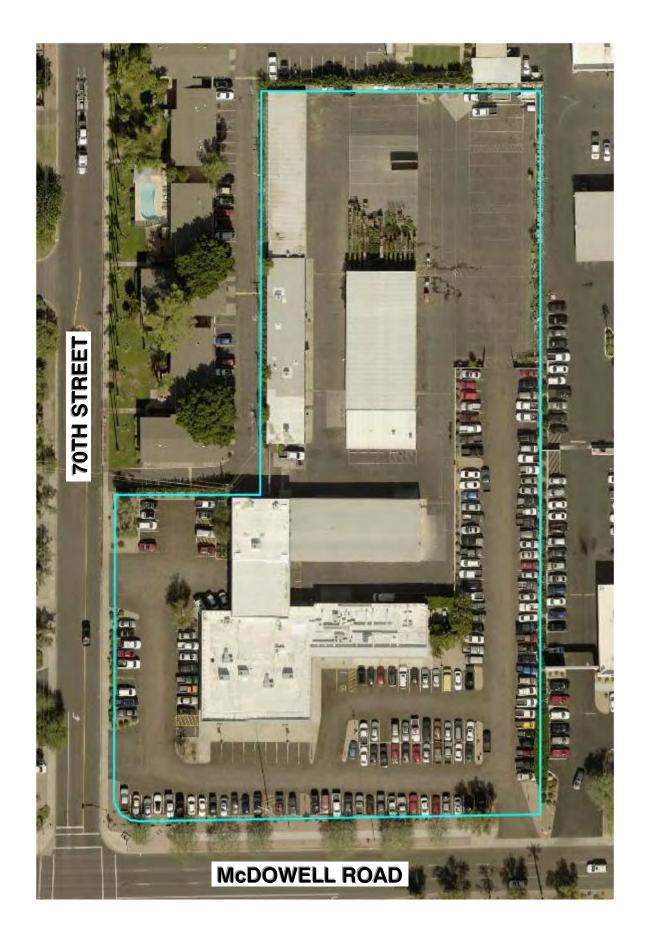
Roughness Segment Definitions

Start Station	I	Ending Station		Roughness Coefficient	
(0+00,	42.38)	(0+3	1, 42.78)		0.013
Options					
Current Roughness Weighted Method	Pavlovskii's Methoo	b			
Open Channel Weighting Method	Pavlovskii's Metho	b			
Closed Channel Weighting Method	Pavlovskii's Methoo	b			
Results					
Discharge		11.34	ft³/s		
Elevation Range	41.73 to 42.78 ft				
Flow Area		5.40	ft²		
Wetted Perimeter		24.27	ft		
Hydraulic Radius		0.22	ft		
Top Width		23.76	ft		
Normal Depth		0.65	ft		

Bentley Systems, Inc. Haestad Methods SoBditite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

6/28/2021 10:07:43 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2


Worksheet for 70th Street Section C

Critical Depth0.60ftCritical Slope0.00427ft/ftVelocity2.10ft/sVelocity Head0.07ftSpecific Energy0.72ftFroude Number0.78TFlow TypeSubcriticalTBownstream Depth0.00ftLength0.00ftNumber Of Steps0TDystream Depth0.00ftProfile DescriptionTProfile Headloss0.00ftDownstream VelocityInfinityft/sOwnstream VelocityInfinityft/sCritical Depth0.65ftCritical Slope0.25%Critical Slope0.00427ft/ft	Results			
Velocity2.10ft/sVelocity Head0.07ftSpecific Energy0.72ftFroude Number0.78TFlow TypeSubcriticalTGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0TOVER OUTPUT DataUpstream Depth0.00Torream Depth0.00ftNumber Of Steps0TProfile Description0ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Critical Depth		0.60	ft
Velocity Head0.07ftSpecific Energy0.72ftFroude Number0.780.78Flow TypeSubcriticalFormation of the state of the	Critical Slope		0.00427	ft/ft
Specific Energy0.72ftFroude Number0.780.78Flow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile DescriptionrrProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Velocity		2.10	ft/s
Froude Number0.78Froude Number0.78Flow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile Description0.00ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Velocity Head		0.07	ft
Flow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sChrmal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Specific Energy		0.72	ft
GVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Froude Number		0.78	
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile Description1Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Flow Type	Subcritical		
Length0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	GVF Input Data			
Number Of Steps0GVF Output DataUpstream Depth0.00ftProfile Description0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Downstream Depth		0.00	ft
GVF Output DataUpstream Depth0.00ftProfile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Length		0.00	ft
Upstream Depth0.00ftProfile Description0.00ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Number Of Steps		0	
Profile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	GVF Output Data			
Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Upstream Depth		0.00	ft
Downstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Profile Description			
Upstream VelocityInfinityft/sNormal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Profile Headloss		0.00	ft
Normal Depth0.65ftCritical Depth0.60ftChannel Slope0.25%	Downstream Velocity		Infinity	ft/s
Critical Depth0.60ftChannel Slope0.25%	Upstream Velocity		Infinity	ft/s
Channel Slope 0.25 %	Normal Depth		0.65	ft
	Critical Depth		0.60	ft
Critical Slope 0.00427 ft/ft	Channel Slope		0.25	%
	Critical Slope		0.00427	ft/ft

<u>3®engineering</u> civil engineering planning surveying

APPENDIX F

Aerial Site Photographs

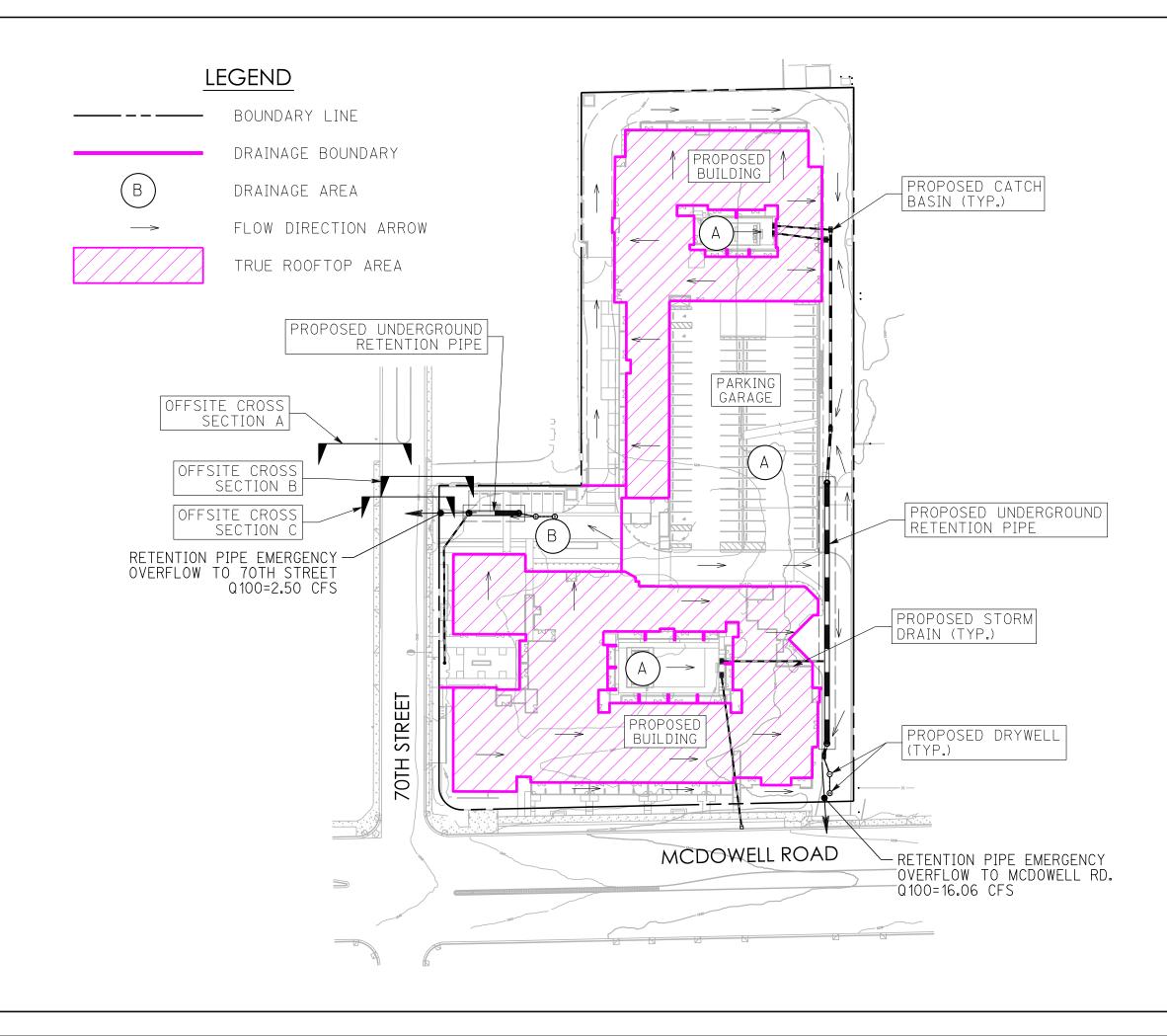
EC
ERING,
ENGINEEI
~
2020
GHT
OPYRI

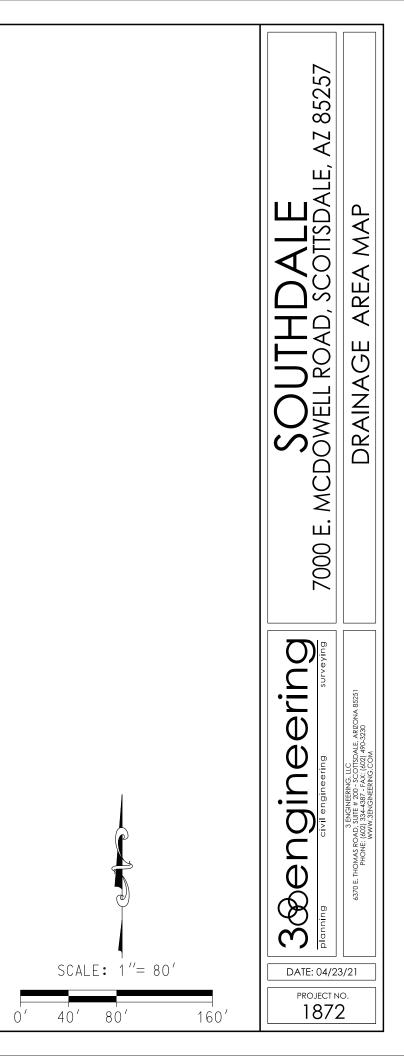
1"=80'

<u>3®engineering</u> planning civil engineering survevina

APPENDIX G

Offsite Aerial Photographs

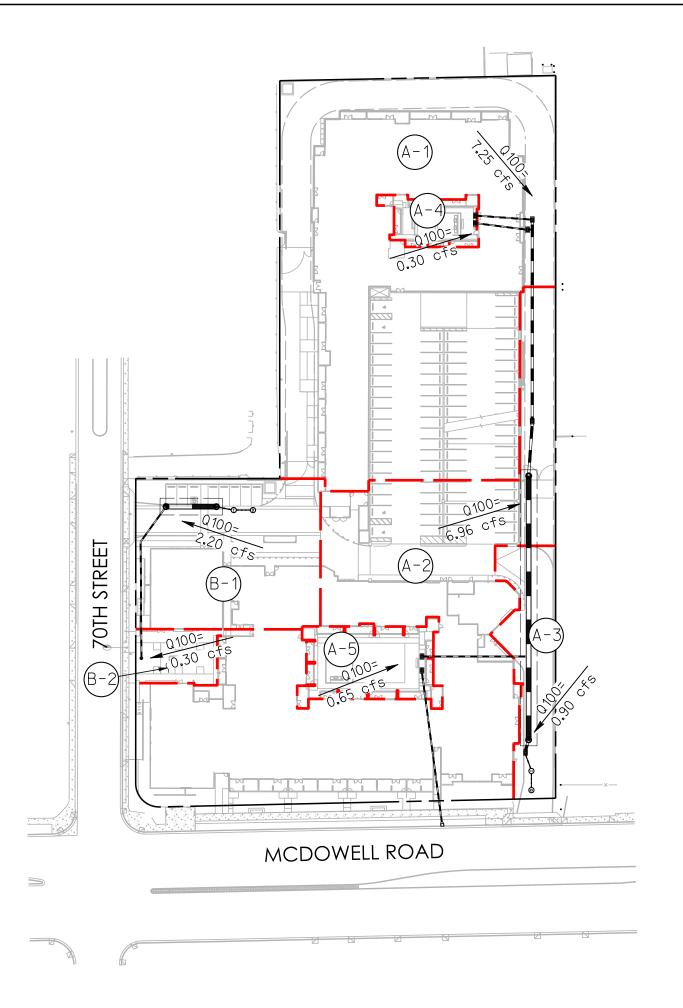



1"=600'

<u>3®engineering</u> civil engineering planning survevina

APPENDIX H

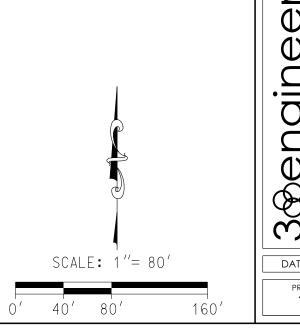
Onsite Drainage Area Map



3 engineering surveying planning

APPENDIX I

Inlet Area Exhibit



LEGEND

(B-1)

BOUNDARY LINE

- DRAINAGE BOUNDARY
- DRAINAGE SUB-BOUNDARY
- DRAINAGE INLET SUB-AREA

SOUTHDALE	7000 E. MCDOWELL ROAD, SCOTTSDALE, AZ 85257	INLET AREA EXHIBIT
3@engineering	planning civil engineering surveying	3 ENGINEERING, LLC 6370 E. THOMAS ROAD, SUITE # 200 - SCOTTSDALE, ARIZONA 85251 PHONE: (602) 334-4397 - FAX: (602) 490-3230 WWW.3ENGINEERING.COM
	JECT N	3/21 10. 2

3 engineering surveying planning

APPENDIX J

Onsite Drainage Calculations

3 engineering surveying

Post-Development Rational Method Calculations

Sub-Area	Area	C 10	C 100	Тс	İ 10	İ 100	Q 10	Q 100
	(acre)	(weighted)	(weighted)	(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
A-1	1.60	0.76	0.81	10	3.53	5.6	4.29	7.25
A-2	1.41	0.83	0.88	10	3.53	5.6	4.14	6.96
A-3	0.18	0.84	0.89	10	3.53	5.6	0.53	0.90
A-4	0.07	0.76	0.81	10	3.53	5.6	0.18	0.30
A-5	0.16	0.70	0.75	10	3.53	5.6	0.39	0.65
B-1	0.44	0.84	0.89	10	3.53	5.6	1.31	2.20
B-2	0.07	0.69	0.74	10	3.53	5.6	0.17	0.30

On-Site Retention for the First Flush Storm

						U.G.	
				Total	Surface	Retention	Total
Sub-Area	Area	C 100	Р	Vol. Req.	Vol. Prov.	Provided	Vol. Prov.
	(acre)		(in)	(cf)	(cf)	(cf)	(cf)
А	1.97	0.76	0.50	2,706	-	2,764	2,764
В	0.32	0.82	0.50	479	-	528	528

PRE V. POST RETENTION CALCULATIONS

C = 0.95 (IMPERVIOUS), C = 0.45 (PERVIOUS) P = 2.14 IN AREA OF LOT = 171,290 SF <u>PRE (EXISTING)</u> AREA OF IMPERVIOUS = 161,857 SF AREA OF PERVIOUS = 9,433 SF WEIGHTED C = $\left(\frac{(161,857 \times 0.95) + (9,433 \times 0.45)}{171,290}\right)$ WEIGHTED C = 0.92 <u>POST (PROPOSED)</u> AREA OF IMPERVIOUS = 134,825 SF AREA OF PERVIOUS = 36,465 SF WEIGHTED C = $\left(\frac{(134,825 \times 0.95) + (36,465 \times 0.45)}{171,290}\right)$ WEIGHTED C = 0.84 (0.84-0.92) $\left(\frac{2.14}{12}\right)$ (171,290) = <u>0 CF REQUIRED</u>

SOUTHDALE 4/26/2021

civil engineering

3

engineering surveying

Grated Inlet Capacity - Weir Condition

planning

			Inlet Capacity			
			w/ 40%			
Inlet Type	Inlet	Q 100	Clogging	d	Cw	Р
		(cfs)	(cfs)	(ft)		(ft)
M.A.G. type "F"	A-1	7.25	7.53	0.50	3	11.83
M.A.G. type "F"	A-2	6.96	7.53	0.50	3	11.83
M.A.G. type "F"	A-3	0.90	7.53	0.50	3	11.83
M.A.G. type "F"	A-4	0.30	2.66	0.25	3	11.83
M.A.G. type "F"	A-5	0.65	2.66	0.25	3	11.83
30" Grated Inlet	B-1	2.20	5.00	0.50	3	7.85
24" Grated Inlet	B-2	0.30	0.86	0.18	3	6.28

Q=Cw*P*d^1.5

Cw= 3.0 weir coefficient

Q = discharge capacity P = inlet perimeter d = flow depth

3

 engineering surveying planning

civil engineering

Weighted C Coefficient Calculations

		Building &				
	Overall	Parking Area	Landscape	Overall		
	Area (s.f.)	(s.f.)	Area (s.f.)	Area (Ac.)	C 10	C 100
A	85633	52,841	32,793	1.97	0.71	0.76
В	14091	10,312	3,779	0.32	0.77	0.82
A-1	69664	50,135	19,529	1.60	0.76	0.81
A-2	61567	52,908	8,658	1.41	0.83	0.88
A-3	7881	6,866	1,015	0.18	0.84	0.89
A-4	2912	2,122	790	0.07	0.76	0.81
A-5	6806	4,059	2,748	0.16	0.70	0.75
B-1	19342	16,883	2,459	0.44	0.84	0.89
B-2	3117	1,797	1,320	0.07	0.69	0.74

C=((Building & Hardscape Area x 0.95) + (Landscape Area x 0.45)) / Overall Area

C100 Landscape = 0.45

3 engineering surveying

planning

Drywell Percolation Rates

			# of	Drywell
	Total	Dry-Up	Drywells	Perc Rate
Sub-Area	Basin Vol.	Time	Provided	Required
	(cf)	(hr)		(cf/s)
A	2,764	36.00	1	0.021
В	528	36.00	1	0.004

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4662°, Longitude: -111.93° Elevation: 1237.91 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	Average recurrence interval (years) 1 2 5 10 25 50 100 200 500 1000													
Duration	1	2	2 5 10 25 50 100						500	1000				
5-min	0.180	0.235	0.321	0.386	0.475	0.544	0.613	0.684	0.780	0.853				
	(0.152-0.218)	(0.199-0.286)	(0.269-0.387)	(0.322-0.464)	(0.390-0.567)	(0.440-0.647)	(0.487-0.727)	(0.535-0.812)	(0.594-0.926)	(0.637-1.02				
10-min	0.274	0.359	0.488	0.588	0.722	0.827	0.933	1.04	1.19	1.30				
	(0.231-0.332)	(0.303-0.435)	(0.410-0.589)	(0.491-0.705)	(0.593-0.864)	(0.670-0.984)	(0.742-1.11)	(0.815-1.24)	(0.904-1.41)	(0.969-1.55				
15-min	0.340	0.444	0.606	0.729	0.895	1.02	1.16	1.29	1.47	1.61				
	(0.286-0.412)	(0.376-0.538)	(0.508-0.730)	(0.608-0.874)	(0.735-1.07)	(0.831-1.22)	(0.920-1.37)	(1.01-1.53)	(1.12-1.75)	(1.20-1.92				
30-min	0.457	0.598	0.815	0.982	1.21	1.38	1.56	1.74	1.98	2.17				
	(0.385-0.555)	(0.506-0.725)	(0.684-0.983)	(0.819-1.18)	(0.990-1.44)	(1.12-1.64)	(1.24-1.85)	(1.36-2.06)	(1.51-2.35)	(1.62-2.58				
60-min	0.566	0.740	1.01	1.22	1.49	1.71	1.93	2.15	2.45	2.68				
	(0.477-0.686)	(0.626-0.897)	(0.847-1.22)	(1.01-1.46)	(1.23-1.78)	(1.39-2.03)	(1.53-2.29)	(1.68-2.55)	(1.87-2.91)	(2.00-3.19				
2-hr	0.657 (0.563-0.781)	0.851 (0.728-1.01)	1.14 (0.974-1.35)	1.36 (1.15-1.61)	1.67 (1.39-1.95)	1.90 (1.56-2.22)	2.14 (1.73-2.50)	2.38 (1.89-2.78)	2.71 (2.10-3.17)	2.96 (2.25-3.49				
3-hr	0.712	0.912	1.20	1.43	1.75	2.00	2.27	2.55	2.94	3.25				
	(0.606-0.850)	(0.781-1.10)	(1.02-1.44)	(1.21-1.70)	(1.46-2.07)	(1.65-2.36)	(1.83-2.68)	(2.02-3.00)	(2.26-3.46)	(2.43-3.84				
6-hr	0.857	1.09	1.40	1.64	1.98	2.24	2.52	2.80	3.18	3.49				
	(0.745-1.00)	(0.949-1.27)	(1.21-1.63)	(1.42-1.91)	(1.68-2.29)	(1.88-2.58)	(2.07-2.90)	(2.26-3.23)	(2.51-3.68)	(2.68-4.05				
12-hr	0.961	1.22	1.54	1.80	2.15	2.41	2.69	2.96	3.34	3.63				
	(0.843-1.11)	(1.07-1.41)	(1.35-1.78)	(1.56-2.07)	(1.84-2.47)	(2.05-2.77)	(2.25-3.08)	(2.44-3.41)	(2.68-3.85)	(2.86-4.22				
24-hr	1.16 (1.04-1.30)	1.47 (1.32-1.65)	1.90 (1.70-2.13)	2.25 (2.00-2.51)	2.72 (2.41-3.04)	3.10 (2.73-3.45)	3.49 (3.05-3.89)	3.90 (3.38-4.34)	4.46 (3.82-4.97)	4.90 (4.16-5.47				
2-day	1.25	1.60	2.10	2.50	3.06	3.50	3.97	4.45	5.14	5.68				
	(1.12-1.40)	(1.44-1.79)	(1.88-2.35)	(2.23-2.79)	(2.71-3.41)	(3.08-3.91)	(3.48-4.44)	(3.87-4.98)	(4.41-5.76)	(4.83-6.40				
3-day	1.32 (1.19-1.48)	1.69 (1.52-1.90)	2.22 (1.99-2.49)	2.65 (2.37-2.96)	3.26 (2.89-3.63)	3.74 (3.30-4.17)	4.26 (3.73-4.75)	4.80 (4.17-5.36)	5.56 (4.77-6.21)	6.17 (5.24-6.92				
4-day	1.39 (1.25-1.56)	1.78 (1.60-2.00)	2.35 (2.10-2.62)	2.81 (2.50-3.13)	3.46 (3.07-3.85)	3.98 (3.51-4.43)	4.55 (3.98-5.06)	5.14 (4.46-5.73)	5.98 (5.12-6.67)	6.66 (5.65-7.45				
7-day	1.54	1.97	2.60	3.10	3.82	4.40	5.02	5.67	6.60	7.34				
	(1.38-1.73)	(1.77-2.20)	(2.32-2.90)	(2.77-3.47)	(3.39-4.27)	(3.88-4.91)	(4.39-5.60)	(4.92-6.33)	(5.65-7.36)	(6.22-8.21				
10-day	1.68 (1.50-1.87)	2.14 (1.92-2.40)	2.83 (2.53-3.15)	3.38 (3.01-3.76)	4.14 (3.68-4.61)	4.76 (4.20-5.30)	5.42 (4.75-6.03)	6.11 (5.31-6.80)	7.07 (6.07-7.88)	7.85 (6.67-8.76				
20-day	2.06	2.65	3.49	4.13	4.99	5.65	6.33	7.01	7.93	8.64				
	(1.85-2.29)	(2.38-2.94)	(3.13-3.88)	(3.70-4.58)	(4.45-5.54)	(5.02-6.27)	(5.59-7.03)	(6.16-7.79)	(6.91-8.84)	(7.47-9.64				
30-day	2.40 (2.15-2.67)	3.09 (2.78-3.44)	4.07 (3.65-4.51)	4.82 (4.31-5.33)	5.82 (5.18-6.44)	6.59 (5.84-7.28)	7.37 (6.51-8.15)	8.17 (7.18-9.04)	9.25 (8.07-10.2)	10.1 (8.71-11.2				
45-day	2.79 (2.51-3.10)	3.59 (3.24-3.99)	4.73 (4.26-5.25)	5.57 (5.00-6.18)	6.68 (5.98-7.41)	7.52 (6.70-8.33)	8.36 (7.42-9.27)	9.20 (8.13-10.2)	10.3 (9.04-11.5)	11.1 (9.72-12.4				
60-day	3.09 (2.79-3.42)	3.99 (3.60-4.42)	5.25 (4.73-5.81)	6.16 (5.54-6.81)	7.35 (6.59-8.13)	8.23 (7.35-9.11)	9.11 (8.11-10.1)	9.97 (8.84-11.0)	11.1 (9.78-12.3)	11.9 (10.5-13.3				

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4662°, Longitude: -111.93° Elevation: 1237.91 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

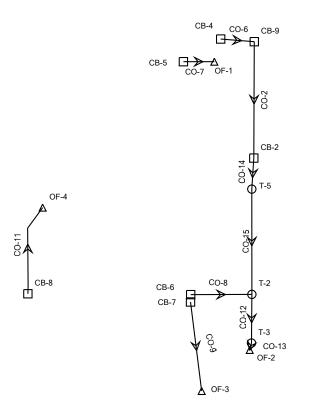
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

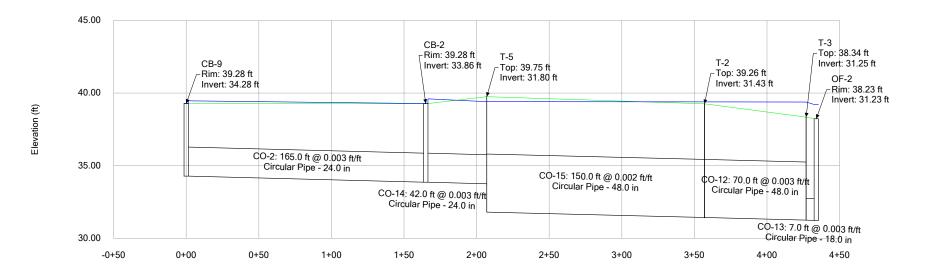
PF tabular

PDS-b	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹												
Duration	Average recurrence interval (years)												
Duration	1	2	5	10	25	50	100	200	500	1000			
5-min	2.16 (1.82-2.62)	2.82 (2.39-3.43)	3.85 (3.23-4.64)	4.63 (3.86-5.57)	5.70 (4.68-6.80)	6.53 (5.28-7.76)	7.36 (5.84-8.72)	8.21 (6.42-9.74)	9.36 (7.13-11.1)	10.2 (7.64-12.2)			
10-min	1.64 (1.39-1.99)	2.15 (1.82-2.61)	2.93 (2.46-3.53)	3.53 (2.95-4.23)	4.33 (3.56-5.18)	4.96 (4.02-5.90)	5.60 (4.45-6.64)	6.25 (4.89-7.41)	7.12 (5.42-8.46)	7.79 (5.81-9.28)			
15-min	1.36	1.78	2.42	2.92	3.58	4.10	4.63	5.16	5.88	6.44			
	(1.14-1.65)	(1.50-2.15)	(2.03-2.92)	(2.43-3.50)	(2.94-4.28)	(3.32-4.88)	(3.68-5.49)	(4.04-6.12)	(4.48-6.99)	(4.80-7.66)			
30-min	0.914	1.20	1.63	1.96	2.41	2.76	3.11	3.48	3.96	4.34			
	(0.770-1.11)	(1.01-1.45)	(1.37-1.97)	(1.64-2.36)	(1.98-2.88)	(2.24-3.29)	(2.48-3.70)	(2.72-4.12)	(3.02-4.71)	(3.24-5.16)			
60-min	0.566	0.740	1.01	1.22	1.49	1.71	1.93	2.15	2.45	2.68			
	(0.477-0.686)	(0.626-0.897)	(0.847-1.22)	(1.01-1.46)	(1.23-1.78)	(1.39-2.03)	(1.53-2.29)	(1.68-2.55)	(1.87-2.91)	(2.00-3.19)			
2-hr	0.328	0.426	0.571	0.682	0.832	0.949	1.07	1.19	1.35	1.48			
	(0.282-0.390)	(0.364-0.506)	(0.487-0.676)	(0.575-0.804)	(0.694-0.977)	(0.780-1.11)	(0.866-1.25)	(0.947-1.39)	(1.05-1.59)	(1.12-1.75)			
3-hr	0.237	0.304	0.400	0.476	0.582	0.667	0.757	0.849	0.978	1.08			
	(0.202-0.283)	(0.260-0.365)	(0.340-0.478)	(0.402-0.566)	(0.485-0.689)	(0.548-0.787)	(0.610-0.892)	(0.673-0.999)	(0.751-1.15)	(0.811-1.28)			
6-hr	0.143	0.181	0.233	0.274	0.330	0.374	0.420	0.467	0.532	0.582			
	(0.124-0.168)	(0.158-0.213)	(0.203-0.272)	(0.236-0.319)	(0.281-0.382)	(0.313-0.431)	(0.346-0.484)	(0.377-0.539)	(0.419-0.615)	(0.448-0.676)			
12-hr	0.080	0.101	0.128	0.150	0.178	0.200	0.223	0.246	0.277	0.301			
	(0.070-0.092)	(0.089-0.117)	(0.112-0.148)	(0.130-0.172)	(0.153-0.205)	(0.170-0.229)	(0.186-0.256)	(0.203-0.283)	(0.223-0.320)	(0.237-0.350)			
24-hr	0.048	0.061	0.079	0.094	0.113	0.129	0.145	0.162	0.186	0.204			
	(0.043-0.054)	(0.055-0.069)	(0.071-0.089)	(0.083-0.105)	(0.100-0.127)	(0.114-0.144)	(0.127-0.162)	(0.141-0.181)	(0.159-0.207)	(0.173-0.228)			
2-day	0.026	0.033	0.044	0.052	0.064	0.073	0.083	0.093	0.107	0.118			
	(0.023-0.029)	(0.030-0.037)	(0.039-0.049)	(0.046-0.058)	(0.056-0.071)	(0.064-0.081)	(0.072-0.092)	(0.081-0.104)	(0.092-0.120)	(0.101-0.133)			
3-day	0.018	0.023	0.031	0.037	0.045	0.052	0.059	0.067	0.077	0.086			
	(0.016-0.021)	(0.021-0.026)	(0.028-0.035)	(0.033-0.041)	(0.040-0.050)	(0.046-0.058)	(0.052-0.066)	(0.058-0.074)	(0.066-0.086)	(0.073-0.096)			
4-day	0.015	0.019	0.024	0.029	0.036	0.041	0.047	0.054	0.062	0.069			
	(0.013-0.016)	(0.017-0.021)	(0.022-0.027)	(0.026-0.033)	(0.032-0.040)	(0.037-0.046)	(0.041-0.053)	(0.046-0.060)	(0.053-0.069)	(0.059-0.078)			
7-day	0.009	0.012	0.015	0.018	0.023	0.026	0.030	0.034	0.039	0.044			
	(0.008-0.010)	(0.011-0.013)	(0.014-0.017)	(0.016-0.021)	(0.020-0.025)	(0.023-0.029)	(0.026-0.033)	(0.029-0.038)	(0.034-0.044)	(0.037-0.049)			
10-day	0.007	0.009	0.012	0.014	0.017	0.020	0.023	0.025	0.029	0.033			
	(0.006-0.008)	(0.008-0.010)	(0.011-0.013)	(0.013-0.016)	(0.015-0.019)	(0.018-0.022)	(0.020-0.025)	(0.022-0.028)	(0.025-0.033)	(0.028-0.036)			
20-day	0.004	0.006	0.007	0.009	0.010	0.012	0.013	0.015	0.017	0.018			
	(0.004-0.005)	(0.005-0.006)	(0.007-0.008)	(0.008-0.010)	(0.009-0.012)	(0.010-0.013)	(0.012-0.015)	(0.013-0.016)	(0.014-0.018)	(0.016-0.020)			
30-day	0.003	0.004	0.006	0.007	0.008	0.009	0.010	0.011	0.013	0.014			
	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.007-0.009)	(0.008-0.010)	(0.009-0.011)	(0.010-0.013)	(0.011-0.014)	(0.012-0.016)			
45-day	0.003	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.010			
	(0.002-0.003)	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.009)	(0.008-0.009)	(0.008-0.011)	(0.009-0.012)			
60-day	0.002	0.003	0.004	0.004	0.005	0.006	0.006	0.007	0.008	0.008			
	(0.002-0.002)	(0.002-0.003)	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.009)	(0.007-0.009)			

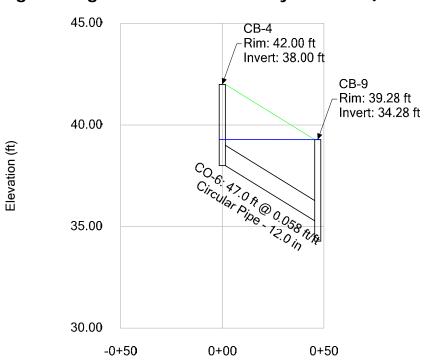

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

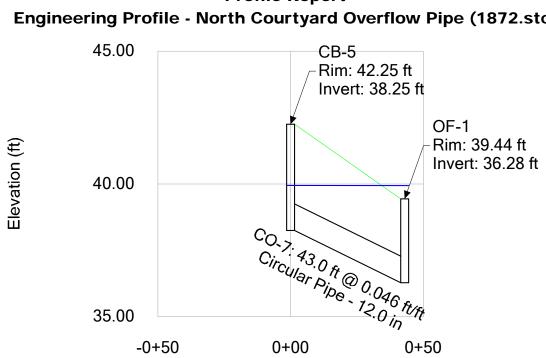

Back to Top

Scenario: Base


1872.stc 4/26/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

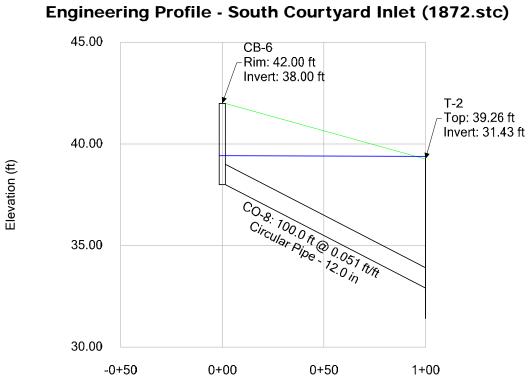
Profile Report Engineering Profile - East Retention Pipe (1872.stc)

Station (ft)


1872.stc 4/26/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Profile Report Engineering Profile - North Courtyard Inlet (1872.stc)

Station (ft)


1872.stc 4/26/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Profile Report Engineering Profile - North Courtyard Overflow Pipe (1872.stc)

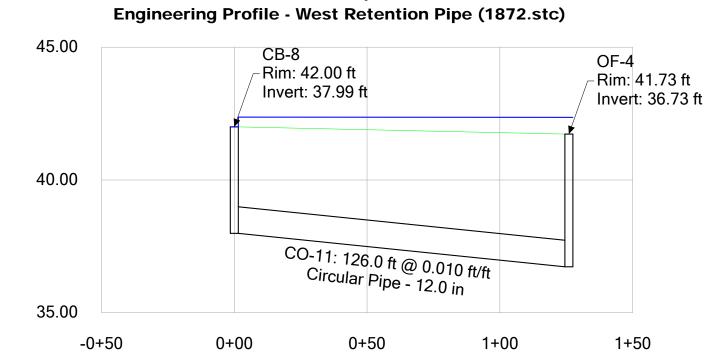
1872.stc 4/26/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Profile Report

Station (ft)

1872.stc 4/26/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Engineering Profile - South Courtyard Overflow Pipe (1872.stc) 45.00 CB-7 Rim: 42.25 ft Invert: 40.00 ft OF-3 Rim: 40.65 ft Invert: 38.25 ft 40.00 CO-9: 125.0 ft @ 0.014 ft/ft Circular Pipe - 12.0 in 35.00 0+00 0+50 1+00 1+50 -0+50


Profile Report

Station (ft)

1872.stc 4/26/2021

Elevation (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Profile Report

Station (ft)

1872.stc 4/26/2021

Elevation (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Start Node	Stop Node	Length (Unified) (ft)	Total Flow (ft³/s)	Rise (Unifie d) (in)	Capacity (Full Flow) (ft ³ /s)	Velocity (Average) (ft/s)	Invert (Upstr eam) (ft)	Invert (Downstr eam) (ft)	Slope (ft/ft)	Mannin g's n	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
CO-9	CB-7	OF-3	125.0	0.65	12.0	4.22	3.89	40.00	38.25	0.014	0.013	40.34	38.52
CO-11	CB-8	OF-4	126.0	0.30	12.0	3.56	0.38	37.99	36.73	0.010	0.013	42.37	42.36
CO-7	CB-5	OF-1	43.0	0.37	12.0	7.63	0.47	38.25	36.28	0.046	0.013	39.94	39.94
CO-8	CB-6	T-2	100.0	0.65	12.0	8.04	0.83	38.00	32.91	0.051	0.013	39.43	39.39
CO-6	CB-4	CB-9	47.0	0.30	12.0	8.57	0.38	38.00	35.28	0.058	0.013	39.28	39.28
CO-2	CB-9	CB-2	165.0	7.55	24.0	11.41	2.40	34.28	33.86	0.003	0.013	39.46	39.28
CO-14	CB-2	T-5	42.0	15.41	24.0	11.58	4.91	33.86	33.75	0.003	0.013	39.60	39.41
CO-15	T-5	T-2	150.0	15.41	48.0	71.58	1.23	31.80	31.43	0.002	0.013	39.41	39.39
CO-12	T-2	T-3	70.0	16.06	48.0	72.84	1.28	31.43	31.25	0.003	0.013	39.39	39.38
CO-13	T-3	OF-2	7.0	16.06	18.0	5.61	9.09	31.25	31.23	0.003	0.013	39.38	39.22

Conduit FlexTable: Combined Pipe/Node Report (1872.stc)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Station (Calculated) (ft)	Elevation (Ground) (ft)	Set Rim to Ground Elevation?	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Flow (Additional) (ft³/s)	Carryover Additional Flow (ft ³ /s)	Flow (Known) (ft³/s)	Inlet Type	Maximum Inflow (ft³/s)	Capture Efficiency (%)
CB-2	2+69	39.28	True	39.28	33.86	7.86	0.00	0.00	Percent Capture	0.00	100.0
CB-4	4+81	42.00	True	42.00	38.00	0.30	0.00	0.00	Percent Capture	0.00	100.0
CB-5	0+43	42.25	True	42.25	38.25	0.37	0.00	0.00	Percent Capture	0.00	100.0
CB-6	1+77	42.00	True	42.00	38.00	0.65	0.00	0.00	Percent Capture	0.00	100.0
CB-7	1+25	42.25	True	42.25	40.00	0.65	0.00	0.00	Percent Capture	0.00	100.0
CB-8	1+26	42.00	True	42.00	37.99	0.30	0.00	0.00	Percent Capture	0.00	100.0
CB-9	4+34	39.28	True	39.28	34.28	7.25	0.00	0.00	Percent Capture	0.00	100.0
Inlet	Desired	Depth (In)	Depth	Hydraulic	Hydraulic	System Fix	ed				
Location	Sump Depth (ft)	(ft)	(Out) (ft)	Grade Line (In) (ft)	Grade Line (Out) (ft)	Flow (ft³/s)					
On Grade	0.00	5.42	5.42	39.28	39.2	28 15	.41				
On Grade	0.00	1.28	1.28	39.28	39.2		.30				
On Grade	0.00	1.69	1.69	39.94	39.9		.37				
On Grade	0.00	1.43	1.43	39.43	39.4	13 0	.65				
On Grade	0.00	0.34	0.34	40.34	40.3	84 0	.65				
On Grade	0.00	4.01	4.01	42.00	42.0	0 0	.30				
On Grade	0.00	5.00	5.00	39.28	39.2	28 7	.55				

FlexTable: Catch Basin Table (1872.stc)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

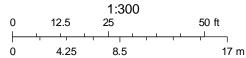
Label	Station (ft)	Elevation (Ground) (ft)	Set Rim to Ground Elevation	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (Tailwater) (ft)	Flow (Outfall) (ft³/s)
OF-1	0+00	39.44	True	36.28	User Defined Tailwater	39.94	0.37
OF-2	0+00	38.23	True	31.23	User Defined Tailwater	39.22	16.06
OF-3	0+00	40.65	True	38.25	Free Outfall	0.00	0.65
OF-4	0+00	41.73	True	36.73	User Defined Tailwater	42.36	0.30

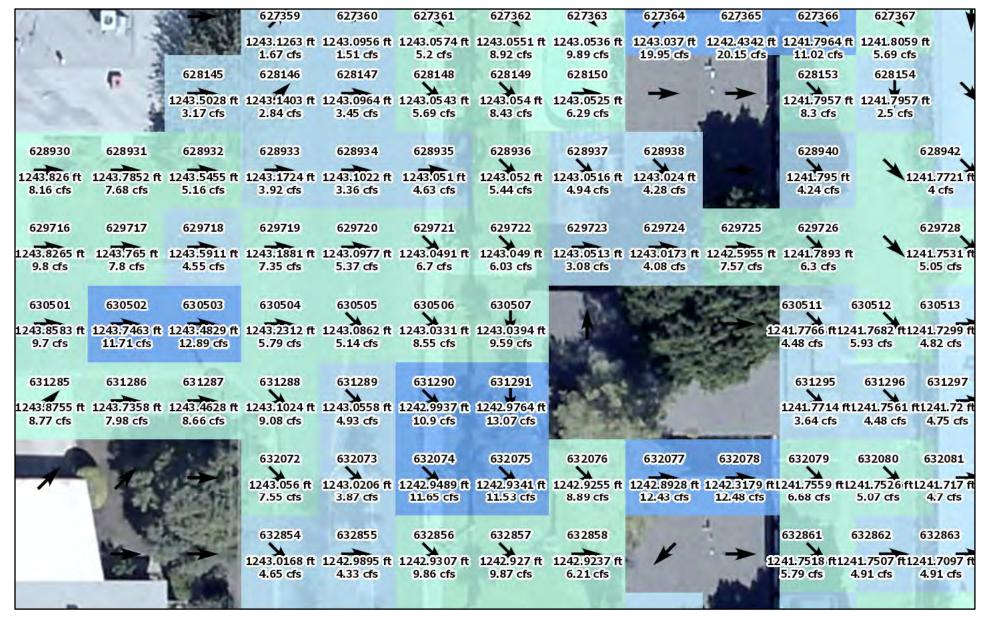
FlexTable: Outfall Table (1872.stc)

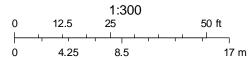
Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

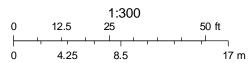
Label	Elevation (Ground) (ft)	Elevation (Top) (ft)	Elevation (Invert) (ft)	Transition Length (ft)	Headloss Method	Hydraulic Grade Line (Out) (ft)	System Fixed Flow (ft ³ /s)
T-2	39.26	39.26	31.43	0.0	Absolute	39.39	16.06
Т-3	38.34	38.34	31.25	0.0	Absolute	39.38	16.06
T-5	39.75	39.75	31.80	0.0	Absolute	39.41	15.41

FlexTable: Transition Table (1872.stc)

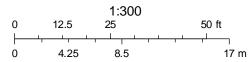

3 engineering surveying planning

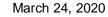

APPENDIX K

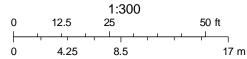

Flo-2d Maps



March 24, 2020







3

surveying planning civil engineering

APPENDIX L

Preliminary Grading and Drainage Plans

LEGAL DESCRIPTION:

THAT PORTION OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SECTION 34, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER BASE AND MERIDIAN, MARICOPA COUNTY, ARIZONA, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE NORTH LINE OF THE SOUTH HALF OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER, A DISTANCE OF 380.00 FEET EAST OF THE WEST LINE OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER:

THENCE WEST ALONG SAID NORTH LINE TO A POINT ON THE EAST LINE OF A NORTH-SOUTH ALLEY AS SHOWN ON THE PLAT OF WONDERLAND, ACCORDING TO BOOK 100 OF MAPS, PAGE 19, RECORDS OF MARICOPA COUNTY, ARIZONA;

THENCE SOUTH ALONG THE EAST LINE OF AFORESAID ALLEY TO AN ANGLE POINT THEREON:

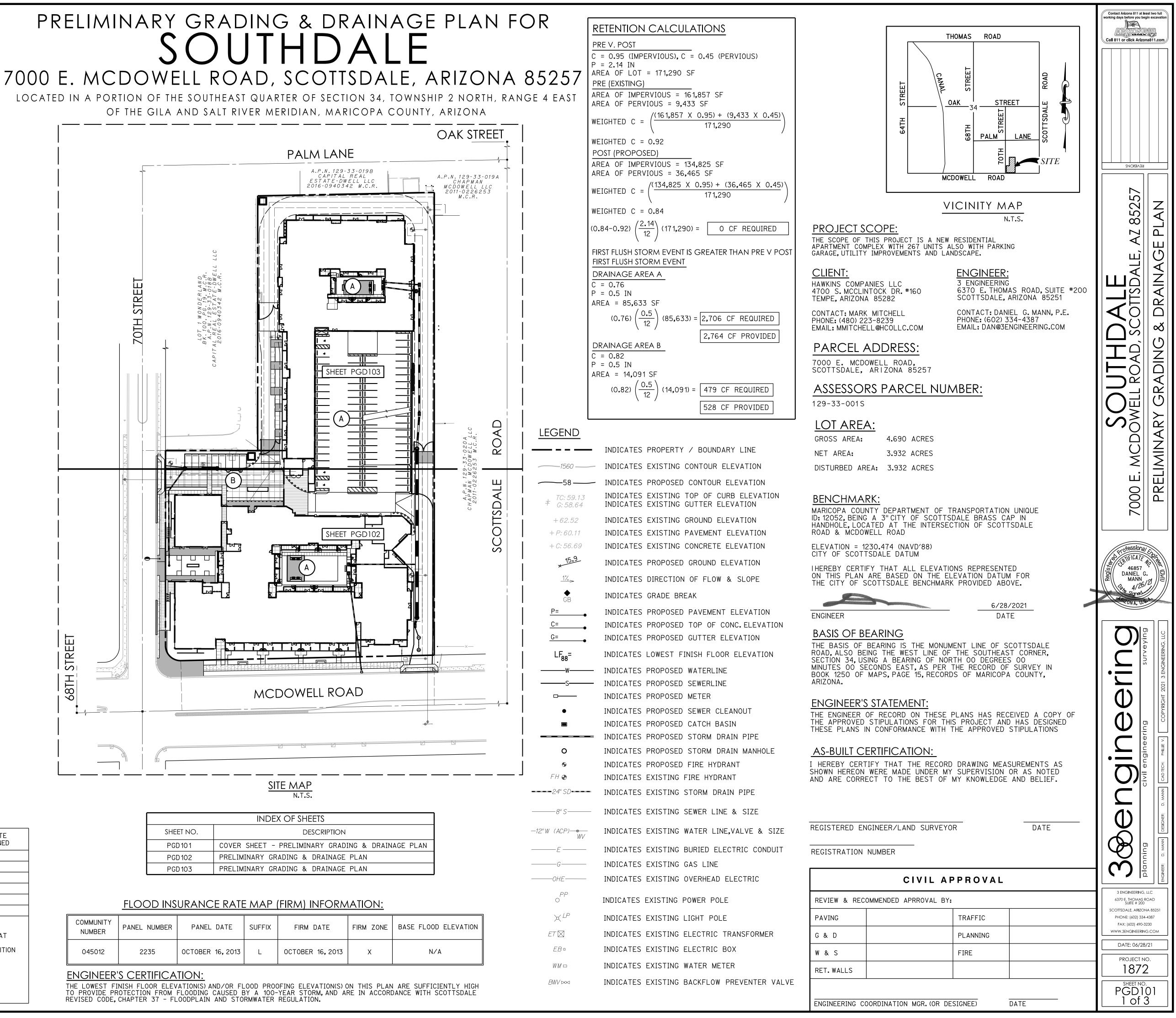
THENCE WEST ALONG THE SOUTH LINE OF AN EAST-WEST ALLEY AS SHOWN ON AFORESAID PLAT OF WONDERLAND, TO A POINT ON THE EAST LINE OF 70TH STREET AS SHOWN ON AFORESAID PLAT:

THENCE SOUTH ALONG SAID EAST LINE, A DISTANCE OF 253.88 FEET TO THE BEGINNING OF A CURVE TO THE LEFT HAVING A CENTRAL ANGLE OF 91 DEGREES 14 MINUTES 49 SECONDS AND A TANGENT OF 20.00 FEET;

THENCE SOUTHEASTERLY ALONG SAID CURVE TO THE LEFT, AN ARC DISTANCE OF 31.17 FEET;

THENCE SOUTH PARALLEL WITH THE WEST LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, A DISTANCE OF 65.00 FEET TO A POINT ON THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, FROM WHICH THE SOUTHWEST CORNER THEREOF BEARS WEST, A DISTANCE OF 52.42 FEET; THENCE EAST ALONG THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER OF SAID SECTION 34, TO A POINT 380.00 FEET EAST OF THE SOUTHWEST CORNER OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER:

THENCE NORTH ALONG A LINE PARALLEL TO AND 380.00 FEET EAST OF THE WEST LINE OF SAID SOUTHEAST QUARTER OF THE SOUTHEAST QUARTER TO THE POINT OF BEGINNING:

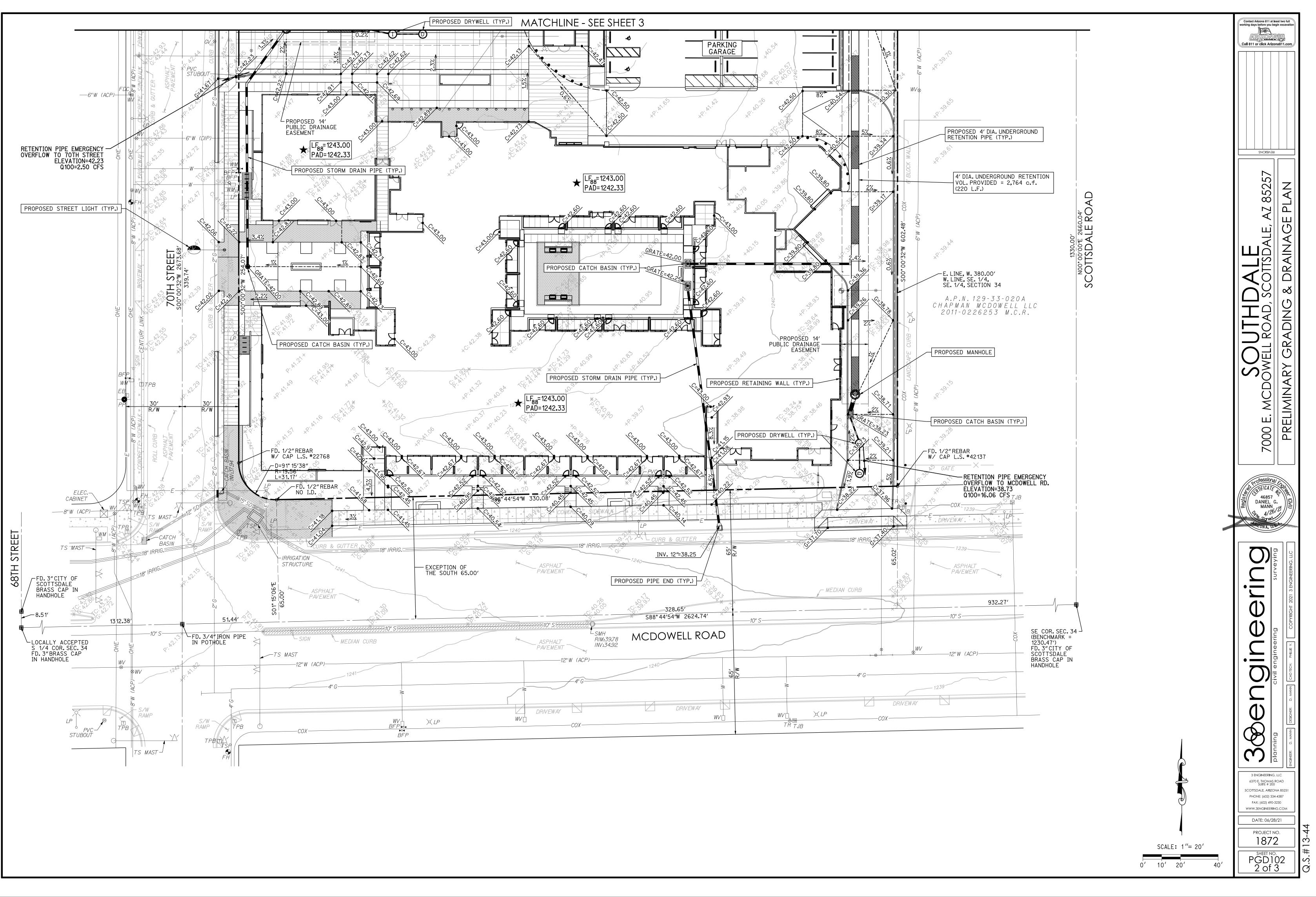

EXCEPT THE SOUTH 65.00 FEET THEREOF.

GENERAL NOTES FOR PUBLIC WORKS CONSTRUCTION:

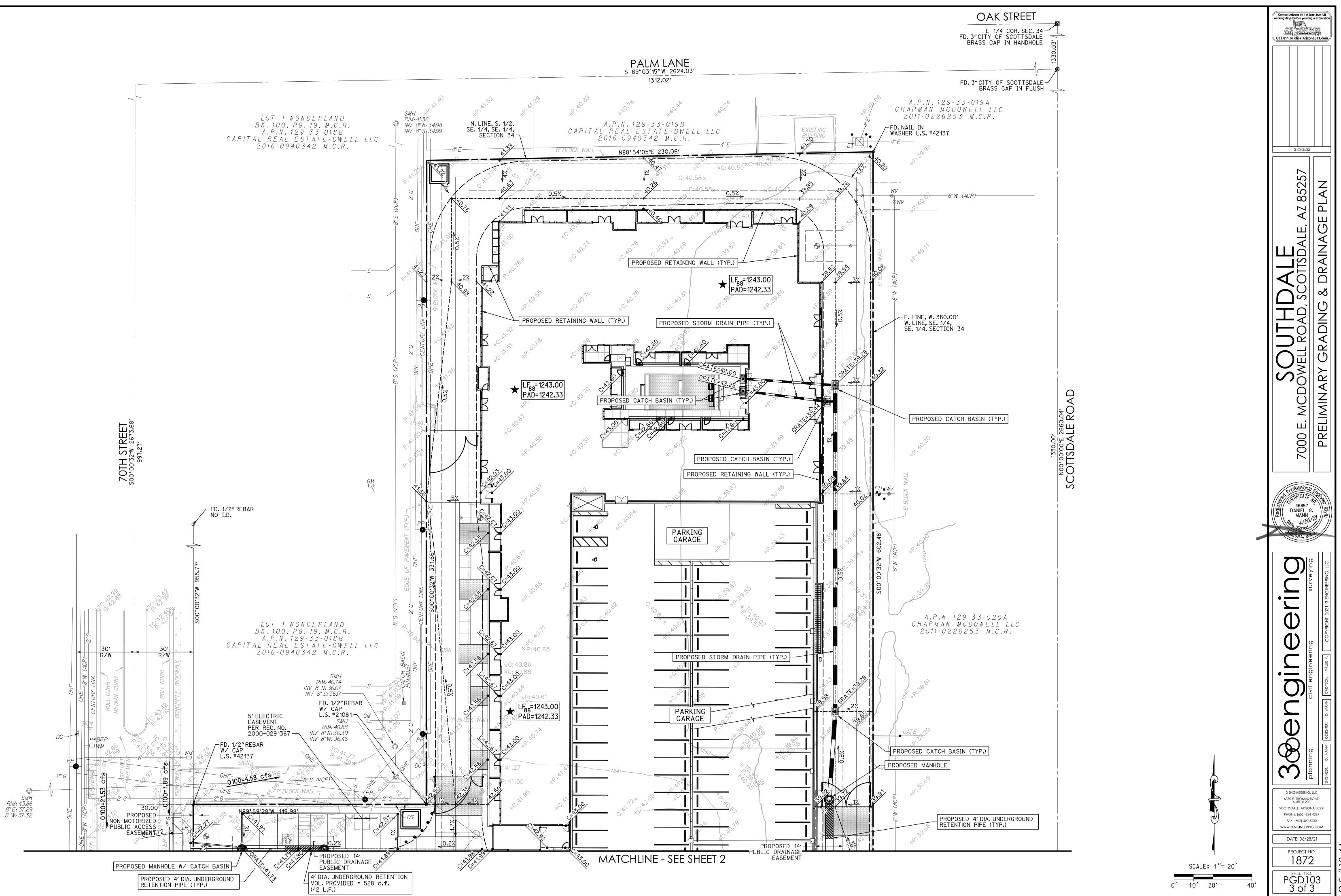
- ALL CONSTRUCTION IN THE PUBLIC RIGHTS-OF-WAY OR IN EASEMENTS GRANTED FOR PUBLIC USE MUST CONFORM TO THE LATEST MARICOPA ASSOCIATION OF GOVERNMENTS (MAG) UNIFORM STANDARD SPECIFICATIONS AND UNIFORM STANDARD DETAILS FOR PUBLIC WORKS CONSTRUCTION AS AMENDED BY THE LATEST VERSION OF THE CITY OF SCOTTSDALE STANDARD SPECIFICATIONS AND SUPPLEMENTAL STANDARD DETAILS. IF THERE IS A CONFLICT, THE CITY'S SUPPLEMENTAL STANDARD DETAILS WILL GOVERN.
- THE CITY ONLY APPROVES THE SCOPE, NOT THE DETAIL OF ENGINEERING DESIGNS; THEREFORE IF CONSTRUCTION QUANTITIES ARE SHOWN ON THESE PLANS, THEY ARE NOT VERIFIED BY THE CITY.
- THE APPROVAL OF PLANS IS VALID FOR SIX (6) MONTHS. IF ASSOCIATED PERMIT HAS NOT BEEN ISSUED WITHIN THIS TIME FRAME, THE PLANS MUST BE RESUBMITTED TO THE CITY FOR RE-APPROVAL.
- 4. A CITY INSPECTOR WILL INSPECT ALL WORKS WITHIN THE CITY OF SCOTTSDALE. NOTIFY INSPECTION SERVICES 72 HOURS BEFORE BEGINNING WORK.
- . WHENEVER EXCAVATION IS NECESSARY, CALL THE BLUE STAKE CENTER, 811, TWO WORKING DAYS BEFORE EXCAVATION BEGINS.
- PERMISSION TO WORK IN THE RIGHT-OF-WAY (PWR) PERMITS ARE REQUIRED FOR ALL WORKS WITHIN THE RIGHTS-OF-WAY AND EASEMENTS GRANTED FOR PUBLIC PURPOSES. COPIES OF ALL PERMITS MUST BE RETAINED ON-SITE AND BE AVAILABLE FOR INSPECTION AT ALL TIMES. FAILURE TO PRODUCE THE REQUIRED PERMITS WILL RESULT IN IMMEDIATE SUSPENSION OF ALL WORK UNTIL THE PROPER PERMIT DOCUMENTATION IS OBTAINED.

WEIGHTED C CALCULATIONS			
DRAINAGE AREA A			
AREA OF IMPERVIOUS = 52,841 SF AREA OF PERVIOUS = 32,793 SF			
WEIGHTED C = $\left(\frac{(52,841 \times 0.95) + (32,793 \times 0.45)}{85,633}\right)$			
WEIGHTED C = 0.76			
DRAINAGE AREA B			
AREA OF IMPERVIOUS = 10,312 SF AREA OF PERVIOUS = 3,779 SF			
WEIGHTED C = $\left(\frac{(10,312 \times 0.95) + (3,779 \times 0.45)}{14,091}\right)$			
WEIGHTED C = 0.82			

UTILITY	UTILITY COMPANY	NAME OF COMPANY REPRESENTATIVE	TELEPHONE NUMBER	DATE SIGNED	
ELECTRIC	APS				
TELEPHONE	CENTURY LINK				
NATURAL GAS	SOUTHWEST GAS				
CABLE TV	COX COMMUNICATIONS				
OTHER	A.T.&T.				
OTHER					
ENGINEER'S CERTIFICATION					
I <u>DANIEL G. MANN,</u> AS THE ENGINEER OF RECORD FOR THIS DEVELOPMENT, HEREBY CERTIFY THAT ALL UTILITY COMPANIES LISTED ABOVE HAVE BEEN PROVIDED FINAL IMPROVEMENT PLANS FOR REVIEW, AND THAT ALL CONFLICTS IDENTIFIED BY THE UTILITIES HAVE BEEN RESOLVED. IN ADDITION "NO CONFLICT" FORMS HAVE BEEN OBTAINED FROM EACH UTILITY COMPANY AND ARE INCLUDED IN THIS SUBMITTAL.					



1


COMMUNITY NUMBER	PANEL NUMBE			
045012	2235			

SIGNATURE

DATE

