

Megerdichian Assisted Senior Center

Traffic Impact Analysis 2nd Submittal

East of Loop 101 South of Cholla Street in Scottsdale, Arizona

September 2020 Project No. 18-0100

Prepared For:

AAK Architecture & Interiors, Inc. 7585 E. Redfield Rd. Suite 106 Scottsdale, Arizona 85260

For Submittal to: **City of Scottsdale**

Prepared By:

10605 North Hayden Road Suite 140 Scottsdale, Arizona 85260 480-659-4250

MEGERDICHIAN SENIOR CENTER TRAFFIC IMPACT AND MITIGATION ANALYSIS 2ND SUBMITTAL

East of the Loop 101 south of Cholla Street in Scottsdale, Arizona

Prepared for:

AAK Architecture & Interiors, Inc. 7585 E Redfield Rd, Suite 106 Scottsdale, Arizona 85260

> For Submittal to: City of Scottsdale

Prepared By:

CivTech

CivTech, Inc. 10605 North Hayden Road Suite 140 Scottsdale, Arizona 85260 (480) 659-4250

September 2020 CivTech Project No. 18-0100

TABLE OF CONTENTS

	ECUTIVE SUMMARY	
INT	RODUCTION	2
EXI	STING CONDITIONS	4
	LAND USE	4
	SURROUNDING LAND USE	4
	ROADWAY NETWORK	4
	INTERSECTION CONFIGURATIONS	5
	TRAFFIC VOLUMES	5
	LEVEL OF SERVICE ANALYSIS	5
	CRASH ANALYSIS	6
PRO	OPOSED DEVELOPMENT	10
	SITE DESCRIPTION	10
	SITE ACCESS	10
	TRIP GENERATION ESTIMATION AND COMPARISON	10
	TRIP DISTRIBUTION AND ASSIGNMENT	12
	FUTURE BACKGROUND TRAFFIC	12
	TOTAL TRAFFIC	12
TRA	AFFIC IMPROVEMENT AND MITIGATION ANALYSIS	17
	LEVEL OF SERVICE ANALYSIS	17
	LEFT TURN DECELERATION LANES	18
	RIGHT TURN DECELERATION LANES	18
	QUEUE STORAGE ANALYSIS	18
	SIGHT DISTANCE ANALYSIS	18
COI	NCLUSIONS AND RECOMMENDATIONS	20
LIS	T OF REFERENCES	
TFC	CHNICAL APPENDICES	

LIST OF TABLES

Table 1 – Intersection LOS Criteria	6
Table 2 – Existing (2018) Level-of-Service Summary	6
Table 3 – 2014-16 Crash Summary	9
Table 4 – Proposed Development Trip Generation	10
Table 5 – Trip Distribution	12
Table 6 – 2020 Opening Year Peak Hour Levels of Service	17
LIST OF FIGURES	
Figure 1 – Vicinity Map	3
Figure 2 – Existing Lane Configurations and Traffic Controls	7
Figure 3 – Existing Peak Hour Turning Movements	8
Figure 4 – Site Plan and Access	11
Figure 5 – Trip Distribution	13
Figure 6 – 2020 Site Generated Traffic Volumes	14
Figure 7 – 2020 Background Traffic Volumes	15
Figure 8 – 2020 Total Traffic Volumes	16

EXECUTIVE SUMMARY

The proposed Megerdichian Senior Center development includes a 48-dwelling unit minimal residential health care facility, and a 30-room, 38-bed specialized residential health care facility. The site is located east of the Loop 101 south of Cholla Street in Scottsdale, Arizona. There is one (1) existing access located on the north side of the site. A request is being made by the property owner to for a Conditional Use Permit and a rezoning from R1-35 (a large-lot residential zoning) to R-4, a residential zoning that would allow the construction of a residential senior center.

The following conclusions and recommendations have been documented in this study:

- ◆ The proposed development by the opening/buildout year 2020, is expected to generate 284 external daily trips with 15 total trips (7 in/8 out) occurring during the AM peak hour and 22 trips (11 in/11 out) occurring during the PM peak hour.
- These trips represent increases of 48 trips daily and 2 and 3 trips during the AM and PM peak hours, respectively, over those reported in the original submittal of this report, which was finalized on May 23, 2018 and on which the City made minor comments.
- ♦ From the review of crash data at the intersections of 90th Street and Cactus Road and 92nd Street and Cholla Street, it can be concluded that there are no obvious crash patterns that stand out and could be treated with any type of low-cost mitigation measures that could be implemented by the City.
- All study intersections currently operate at overall LOS D or better during the peak hours.
- No new left-turn or right-turn deceleration lanes are required by City of Scottsdale's Design Standards and Polices Manual Section 5-3.206 on 88th Place and Cholla Street approaching the site driveways.
- ♦ The results of the opening year 2020 HCM 6th Edition analyses indicate that all study intersections should operate with acceptable levels of service of LOS D or better. Based on these levels of service, no mitigation measures are recommended.
- Sight distance should be provided at the proposed access based on the standards provided in the City of Scottsdale Design Standards and Policies Manual, 2018 Update.

INTRODUCTION

The proposed Megerdichian Senior Center development includes a 48-dwelling unit minimal residential health care facility, and a 30-room, 38-bed specialized residential health care facility. The site is located east of the Loop 101 south of Cholla Street in Scottsdale, Arizona. There is one (1) existing access located on the north side of the site. The vicinity is shown in **Figure 1**.

CivTech Inc. was retained by AAK Architecture & Interiors, Inc. to perform a Traffic Impact and Mitigation Analysis (TIMA) as required by the City of Scottsdale for the proposed development. A request is being made by the property owner to for a Conditional Use Permit and a rezoning from R1-35 (a large-lot residential zoning) to R-4, a residential zoning that would allow the construction of a residential senior center.

Purpose of Report and Study Objectives

The purpose of this study is to address the traffic and transportation impacts of the proposed development on the surrounding streets and intersections. This TIMA was prepared for submittal to the City of Scottsdale in conformance to City guidelines. The specific objectives of the TIMA are:

- 1. To evaluate lane requirements on all existing roadways and at all existing intersections within the study area.
- 2. To determine future level of service for all proposed major intersections within the study area and recommend any capacity related improvements.
- 3. To determine necessary lane configurations at all major intersections within the proposed development to provide acceptable future levels of service.
- 4. To evaluate the need for future traffic control changes within the proposed development and at the major entry points.
- 5. To evaluate the need for auxiliary lanes at stop and signal controlled intersections.

This version of the TIMA represents a 2nd Submittal of CivTech's version finalized on May 23, 2018. Two staff review comments were received via email, a copy of which has been included in **Appendix A**. It has been revised to correct the switching of two appendices (F and G) and to include as new **Appendix I** CivTech's November 30, 2018 letter to the owner addressing concerns expressed by neighbors at an October 11, 2018 on-site open house. In addition, the floor plan and numbers and types of units have recently changed, impacting very slightly the number of trips generated by the project, changes documented herein.

Study Requirements

With the concurrence of City of Scottsdale staff, the study area for this TIMA will include the following intersections:

- Existing Drive and 88th Place/Cholla Street
- 89th Street and Cholla Street
- 92nd Street and Cholla Street
- 90th Street and Cactus Road

Weekday AM and PM peak hour levels of service for these study intersections will be analyzed under current conditions and under two opening year scenarios: without and with the proposed development. It is anticipated that the development will open in 2020. For purposes of this analysis, the development will be considered to be built-out upon opening.

Figure 1: Vicinity Map

EXISTING CONDITIONS

LAND USE

The existing land is vacant where the proposed site is located.

SURROUNDING LAND USE

There are three (3) existing buildings immediately surrounding the proposed site, including St. Apkar Armenian Apostolic Church, Melikian Community Center, and Megerdichian Senior Group Home. These surrounding buildings share the same single access as the proposed site. Directly west of the site, the Loop 101 runs parallel bordering the site. Bordering the site to the north, east, and west are single and multifamily developments. Further south and south east of the site are medical facilities, hotel, public storage, business/office park, retail, and gas stations.

ROADWAY NETWORK

The existing roadway network within the study area includes 88th Place, 89th Street, 90th Street, 92nd Street, Cholla Street, Jenan Drive, and Cactus Road.

88th **Place** is a north-south roadway that is discontinuous through developments. Within the vicinity of the site, the roadway consists of one lane in each travel direction. Within the vicinity of the proposed site, 88th Place has a 25 miles per hour (mph) speed limit with speed tables posted with 20 mph warning signs.

89th **Street** is the north-south curvilinear roadway that transitions into 90th street within the vicinity of the site. The roadway is discontinuous through developments consisting of one lane in each travel direction. Within the vicinity of the proposed site, 89th Place has a 25 miles per hour (mph) speed limit with speed tables posted with 20 mph warning signs.

90th **Street** is the north-south curvilinear roadway that transitions from 89th street within the vicinity of the site. The roadway is discontinuous through developments consisting of one lane in each travel direction. Within the vicinity of the proposed site, 90th Place has a 25 miles per hour (mph) speed limit with speed tables posted with 20 mph warning signs.

92nd **Street** is the north-south curvilinear roadway within the vicinity of the site. The roadway is discontinuous through developments, within the vicinity of the site it consists of two lanes in each travel direction with a center median. 92nd Street has a posted speed limit of 40 mph within the vicinity of the site.

Cholla Street is the east-west curvilinear roadway that, east of Loop 101, is discontinuous through developments. The roadway consisting of one lane in each travel direction within the vicinity of the site. Cholla Street has a posted speed limit of 25 mph and dips that are posted with 15 mph warning signs within the vicinity of the site.

Jenan Drive is the east-west curvilinear roadway that is discontinuous through developments. The roadway consisting of one lane in each travel direction within the vicinity of the site. Within the vicinity of the proposed site, Jenan Drive has a 25 miles per hour (mph) speed limit with speed tables posted with 20 mph warning signs.

Cactus Road is an east-west major collector roadway that transitions from Thunderbird Road into Cactus Road at Cave Creek Road and terminates east at Frank Lloyd Wright Boulevard. Within the vicinity of the site the roadway consists of two through lanes in each travel direction and a center median. Cactus Road has a posted speed limit of 40 mph.

INTERSECTION CONFIGURATIONS

The intersection of *90th Street and Cactus Road* is a signalized four-legged intersection with permitted left-turns northbound/southbound and permitted/protected left-turns eastbound/westbound. The northbound approach consists of an exclusive left-turn lane, a shared through/right-turn lane, and a bike lane. The southbound approach consists of an exclusive left-turn lane

The intersection of the **Existing Driveway and Cholla Street** is a three-legged, stop controlled intersection with free movements in the east and westbound directions. The northbound approach has one dedicated left turn lane and one dedicated right turn lane. The westbound approach has one shared left turn and through lane. The eastbound approach has one shared through and right turn lane.

The intersection of **89**th **Street and Cholla Street** is a three-legged, stop controlled intersection with free movements in the east and westbound directions. The southbound approach has one shared left and right turn lane. The westbound approach has one shared through and right turn lane. The eastbound approach has one shared left turn and through lane

The intersection of **92nd Street and Cholla Street** is a signalized four-legged intersection with permitted left turns at all approaches. The northbound and southbound approaches consist of one dedicated left turn lane, one through lane and one shared through and right turn lane. The eastbound and westbound approaches consist of one dedicated left turn lane and one shared through and right turn lane.

Figure 2 depicts existing lane configurations and traffic controls of the study intersections.

TRAFFIC VOLUMES

Field Data Services (FDS) conducted intersection turning movement counts at the study intersections on Thursday, April 26, 2018. The existing hourly traffic counts used for the time periods in this study are shown on **Figure 3**. The intersection turning movement counts for the recorded volumes are provided in **Appendix B**.

LEVEL OF SERVICE ANALYSIS

The concept of level of service (LOS) uses qualitative measures that characterize operational conditions within the traffic stream. The individual levels of service are described by factors that include speed, travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. Six levels of service are defined for each type of facility for which analysis procedures are available. They are given letter designations A through F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions. Levels of service for intersections are defined in terms of delay ranges. **Table 1** lists the level of service criteria for signalized and unsignalized intersections.

Peak hour capacity analyses were conducted for the study intersections based on existing configurations intersection and traffic volumes. All intersections have been analyzed using the methodologies presented in the Highway Capacity Manual (HCM), using Traffix software. The overall and approach levels of service are reported for signalized intersections. The resulting levels of service for the existing conditions are summarized in **Table 2**. The existing conditions analyses have been included in Appendix C.

Table 1 – Intersection LOS Criteria

Level of Service	Contro (seconds	
Service	Signalized	Unsignalized
A	≤ 10	≤ 10
В	> 10-20	> 10-15
С	> 20-35	> 15-25
D	> 35-55	> 25-35
Е	> 55-80	> 35-50
F	> 80	> 50

Source: Exhibit 18-4 and Exhibit 19-1, Highway Capacity Manual 2010

*In addition, any movement that operates with a volume-tocapacity ratio greater than 1 (V:C.1), is considered to be operating at LOS F, no matter the control delay.

Table 2 - Existing (2018) Level-of-Service Summary

	Table 2 - Existing (201	0) =010101	y	
		Stop		AM(PM) LOS
ID	Intersection	Control	Approach	Existing
			NB SB	C(C)
1	90 th Street and Cactus Road	Signal	EB WB	C(C) C(C)
			Overall	C(C)
2	Existing Drive and Cholla Street	1-Way Stop (NB)	NB Left NB Right WB Left	A(A) A(A) A(A)
3	Cholla Street and 89th Street	1-Way Stop (SB)	SB Left SB Right EB Left	A(A) A(A) A(A)
4	Cholla Street and 92 nd Street	Signal	NB SB EB WB Overall	A(A) A(A) D(D) D(D) B(A)

A review of the results of the Level of Service analysis of existing conditions summarized in **Table 2** reveals that all study intersections currently operate at overall LOS D or better during both peak hours.

CRASH ANALYSIS

CivTech excerpted from its statewide crash databases crash listings for the existing signalized study intersections for the three-year period 2014 through 2016. The listing shows that a total of 11 incidents were reported. None of the incidents resulted in fatal injuries. Eight (8) of the incidents were reported at the intersection of 90th Street and Cactus Road while three (3) of the incidents were reported at the intersection of 92nd Street and Cholla Street. The report listed the cross road as Cholla Drive, but a check of the included coordinates indicate that the cross road was actually Cholla St. The crash listings can be found in **Appendix D**. A summary of the crash data for each intersection is provided in **Table 3**.

Figure 2: Existing Lane Configurations and Traffic Controls

Figure 3: Existing Traffic

Table 3 – 2014-16 Crash Summary

^{*}Numbers represent crashes, not the numbers of vehicles involved or persons injured.

A review of the data presented in **Table 3** reveals that at the intersection of 90th Street and Cactus Road, rear end and angle collisions were the most common. At the intersection of 92nd Street and Cholla Street, the collisions were divided evenly between single-vehicle, left-turn, and rear end.

Half of the incidents (4 of 8) at the intersection of 90th Street and Cactus Road resulted in no reported injuries and property damage only. The other half of the incidents reported injuries and the rate is constant over time. None of the incidents at the intersection of 92nd Street and Cholla Street reported injuries, all reported property damage only. The trend is constant over time.

From the above review of crash data at these intersections, it can be concluded that there are no obvious crash patterns that stand out and could be treated with any type of low-cost mitigation measures that could be implemented by the City.

PROPOSED DEVELOPMENT

SITE DESCRIPTION

The proposed Megerdichian Senior Center development includes a 48-dwelling unit minimal residential health care facility, and a 30-room, 38-bed specialized residential health care facility. The site is located east of the Loop 101 south of Cholla Street in Scottsdale, Arizona. The layout of the proposed development is illustrated in **Figure 4**. It is expected to be opened and built out by the year 2020. Please note that 51 dwellings and 18 beds were studied by CivTech in May 2018.

SITE ACCESS

As shown in **Figure 4**, there is one existing site access approaching from the south where 88th Place and Cholla Street intersect. For the purpose of this analysis, 88th Place and Cholla Street were analyzed as a continuous east-west roadway and the existing driveway was analyzed as a north-south roadway at this intersection; therefore, it is analyzed as a one-way stop controlled "T" intersection with stop control northbound. The eastbound approach is a shared through/right-turn and the westbound approach is a shared left/through lane.

TRIP GENERATION ESTIMATION AND COMPARISON

The potential trip generation for the proposed development was estimated utilizing the Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 10th Edition and *Trip Generation Handbook*, 3rd Edition. The ITE *Trip Generation Manual* contains data collected by various transportation professionals for a wide range of different land uses. The data are summarized in the report and average rates and equations have been established that correlate the relationship between an independent variable that describes the development size and generated trips for each categorized land use. The report provides information for daily and peak hour trips.

Table 4 - Proposed Development Trip Generation

_		ıa	DIC	, -	oposeo	Devel	Орине	511L 111h	JOCI	ici atio	• •		
	ITE	Settin	g/				-		AM	Distribution	n	PM Dist	ribution
Land Use	LUC	Locati	on	ITE Lan	d Use Name	Quant	ity Units*		ln	0	ut	ln	Out
Assisted Senior Center	252	Genei	al		dult Housing tached	J ,	48 Dwelli	ng Units	35%	659	%	55%	45%
Specialized Residential Health Care Facility	620	Genei	al	Nurs	ing Home	,	38 Beds		72%	289	%	33%	67%
				AD	7		AM Pea	ak Hour			PM	Peak Hour	
Land	l Use		A۱	/g Rate	Total	Avg Rate	In	Out	Total	Avg Rate	In	Out	Total
Minimal Resid	dential acility			*3.49	168	*0.20	3	6	9	*0.29	8	6	14
Specialized Health Ca				3.06	116	0.17	4	2	6	0.22	3	5	8
Totals					284		7	8	15		11	11	22

DUs=Dwelling Units

*Note: Average rates were calculated by generating trips using equations for and dividing by total number of dwelling units. (See below.)

CALCUI	LATIONS (Equations shown only w	here available)	
Land Use	Daily	AM Peak Hour	PM Peak Hour
Minimal Residential Health Care Facility	T= 4.02(48)-25.37= 168	T= 0.20(48)-0.18= 9	T= 0.24(48)+2.26= 14
Specialized Residential Health Care Facility	Weighted Average	Weighted Average	Weighted Average

Figure 4: Site Plan and Access

The proposed development by the opening/buildout year 2020, is expected to generate 284 external daily trips with 15 total trips (7 in/8 out) occurring during the AM peak hour and 22 trips (11 in/11 out) occurring during the PM peak hour.

Under the prior mix of 51 dwelling units and 18 beds studied in May 2018, the project was expected to generate 236 external daily trips with 13 total trips (6 in/7 out) generated during the AM peak hour and 19 trips (9 in/10 out) generated during the PM peak hour when calculated using the same applicable formulae or average rates. Therefore, these trips represent increases of 48 trips daily and 2 and 3 trips during the AM and PM peak hours, respectively, over those reported in the original submittal of this report.

TRIP DISTRIBUTION AND ASSIGNMENT

A single trip distribution pattern was assumed for the proposed development. It is expected that the residential development will generate trips based on future population within a 7-mile radius of the site. Future total population within a 7-mile radius of the site, as predicted by the 2020 socio-economic data compiled by the Maricopa Association of Governments (MAG), was used as a basis to estimate trip distribution for the residential development. The resulting trip distribution percentages for the study area are shown in **Table 4**. The trip distribution calculations are included in **Appendix E**.

Figure 5 illustrates the trip distribution percentages shown in **Table 5** on the roadway network within the study area expected in 2020. The percentages presented in **Table 5** were applied to the site trips generated to determine the AM and PM peak hour site traffic at the intersections within the study area for 2020. The resulting site generated trip assignments for

Table 5 – Trip Distribution

Roadway	Trip Distribution
North on 90th Street (north of Cactus Road)	3%
North on 92 nd Street (north of Cholla Street)	5%
South on 92 nd Street (south of Cholla Street)	36%
East on Cactus Road (east of 90th Street)	5%
East on Cholla Street (east of 92nd Street)	5%
West on Cactus (west of 90th Street)	46%
Total	100%

the proposed development in 2020 are presented in Figure 6.

FUTURE BACKGROUND TRAFFIC

Historical daily traffic volumes were taken from the City of Scottsdale traffic count website to estimate an average annual growth rate. Average daily traffic volumes on 92nd Street between Cholla Street and Cactus Road, were considered. This location experienced an average annual increase of daily traffic of 2.0 percent from 2014 to 2016. Therefore, a 2.0 percent annual growth rate was applied to the volumes at the study intersections to obtain the future background traffic volumes. Growth rate calculations can be found in **Appendix F**. The opening/buildout year background traffic volumes are illustrated in **Figure 7**.

TOTAL TRAFFIC

Total traffic was determined by adding the site generated traffic to the projected background traffic for opening/buildout year 2020. Total AM and PM peak hour traffic for horizon year 2020 is shown in **Figure 8**.

Figure 5: Trip Distribution

Figure 6: Site Traffic

Figure 7: 2020 Background Traffic

Figure 8: 2020 Total Traffic

TRAFFIC IMPROVEMENT AND MITIGATION ANALYSIS

As documented above, the new mix of 48 dwelling units and 38 beds is expected to generate not more than 3 additional trips during either peak hour. CivTech reviewed the difference in trips and the level of service analysis below, with all of the intersections operating at overall levels of service of C or better and no movements operating at less than LOS D and did not judge these few (1 inbound/1 outbound AM; 2 inbound/1 outbound PM) additional trips enough to change the impacts on the surrounding roadway network or the recommendations within the TIA. Since the site is in an established neighborhood, the only two study intersections at which it is likely that there would have been noticeable increase in traffic since 2018—increased through volumes due to growth in regional traffic and not due to any significant site traffic—would be the intersections on 90th Street at Cactus Road and on 92nd Street at Cholla Street. Therefore, CivTech did not consider it necessary at this time to burden the church with the cost of redoing the several analyses with slightly revised numbers that would not likely change the previous reported results.

LEVEL OF SERVICE ANALYSIS

Peak hour capacity analyses were conducted for all the intersections within the study area. All intersections were analyzed using Synchro 10.0 analysis software and the methodologies previously presented. The overall intersection and approach levels of service are summarized in **Table 6** for the analysis year 2020. Detailed analysis worksheets can be found in **Appendix G** for 2020. No changes are required in lane configurations or stop control at any of the study intersections.

Table 6 – 2020 Opening Year Peak Hour Levels of Service

		Stop	Approach/	2020	LOS
ID	Intersection	Control/ Mitigated	Movement	No Build AM (PM)	Build AM (PM)
1	90 th Street and Cactus Road	Signal	NB SB EB WB Overall	C(C) C(C) C(C) C(C)	C(C) C(C) C(C)
2	Existing Drive and Cholla Street	1-Way Stop (NB)	NB Left NB Right WB Left	A(A) A(A) A(A)	A(A) A(A) A(A)
3	Cholla Street and 89th Street	1-Way Stop (SB)	SB Left SB Right EB Left	A(A) A(A) A(A)	A(A) A(A) A(A)
4	Cholla Street and 92 nd Street	Signal	NB SB EB WB Overall	A(A) A(A) D(D) D(D) B(A)	A(A) A(A) D(D) D(D) B(A)

The results of the opening year 2020 HCM 6th Edition analyses summarized in **Table 6** indicate that all study intersections should operate with acceptable levels of service of LOS D or better. Based on these levels of service, no mitigation measures are recommended.

LEFT TURN DECELERATION LANES

Currently, there is no left turn deceleration lane from Cholla Street to the existing driveway. Upon completion of the development, approximately 28 vehicles will be making left turns into the site in the AM peak hour and 18 in the PM peak hour, these volumes are shown in **Figure 8**. The opposing street volume is predicted to be very minor, approximately 1 vehicle in the AM peak hour and 3 in the PM peak hour, meaning that there should be very little conflict between vehicles turning left into the site and opposing street traffic. A left turn deceleration lane is not warranted at this intersection.

RIGHT TURN DECELERATION LANES

Cholla Street is currently classified as a minor collector road by the City of Scottsdale. In order to determine the need for a deceleration lane, the following criteria must be met

- At least 5,000 vehicles per day are expected to use the street.
- The 85th percentile traffic speed on the street is at least 35 mph.
- At least 30 vehicles will be making right turns into the driveway during a 1-hour period.

Based on the total traffic volumes, shown in **Figure 8**, there will be fewer than 5,000 vehicles per day using Cholla Street. The posted speed limit for Cholla Street is 25 mph and there will be approximately 20 right turns into the site in the AM peak hour and 5 right turns in the peak hour. Since none of the three criteria has been met, a right turn deceleration lane will not be required at the driveway.

QUEUE STORAGE ANALYSIS

Since no new deceleration lanes are being proposed for the site, a queue storage analysis is not required.

SIGHT DISTANCE ANALYSIS

Adequate sight distance must be provided at the intersections to allow safe turning movements into and out of the development. A sight triangle is the area encompassed by the line of sight from a stopped vehicle on the minor roadway to the approaching vehicle on the major roadway; there must be sufficient unobstructed sight distance along both approaches of a street or driveway intersection and across their included corners to allow operators of vehicles to see each other in time to prevent a collision. There must also be sufficient sight distance along the major street to allow a driver intending to turn left into the site to see an oncoming vehicle in the opposing direction.

Sight distance should be provided at the proposed access based on the standards provided in the *City of Scottsdale Design Standards and Policies Manual*, 2018 Update.

Adjacent to the site, 88th Place/Cholla Street was constructed with horizontal curvature at a relatively flat grade; therefore, the only impediments to the site distance would be existing structures and landscaping. The developer should ensure that adequate sight distance is provided at the intersections to allow safe left and right turning movements from the development and left turns into the development from Cholla Street.

Landscaping should be maintained at a maximum of three feet in height. To maintain sight distance, tree branches should be trimmed lower than seven feet and maintained to meet current acceptable landscape requirements.

Figures depicting the method and sight distance requirements are provided in the City of Scottsdale's *Design Standards and Policies Manual, 2018 Update.* Copies of the applicable standards are provided in **Appendix H** for reference.

NEIGHBOR CONCERNS

The Owner of Saint Apkar hosted a neighborhood meeting on October 11, 2018. The neighbors raised some concerns. In response, CivTech collected additional traffic data and responded to the owner in a letter dated November 30, 2018. A copy of this letter has been included as **Appendix I**.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations have been documented in this study:

- ♦ The proposed development by the opening/buildout year 2020, is expected to generate 284 external daily trips with 15 total trips (7 in/8 out) occurring during the AM peak hour and 22 trips (11 in/11 out) occurring during the PM peak hour.
- ◆ These trips represent increases of 48 trips daily and 2 and 3 trips during the AM and PM peak hours, respectively, over those reported in the original submittal of this report, which was finalized on May 23, 2018 and on which the City made minor comments.
- ♦ From the review of crash data at the intersections of 90th Street and Cactus Road and 92nd Street and Cholla Street, it can be concluded that there are no obvious crash patterns that stand out and could be treated with any type of low-cost mitigation measures that could be implemented by the City.
- All study intersections currently operate at overall LOS D or better during the peak hours.
- No new left-turn or right-turn deceleration lanes are required by City of Scottsdale's Design Standards and Polices Manual Section 5-3.206 on 88th Place and Cholla Street approaching the site driveways.
- ♦ The results of the opening year 2020 HCM 6th Edition analyses indicate that all study intersections should operate with acceptable levels of service of LOS D or better. Based on these levels of service, no mitigation measures are recommended.
- ♦ Sight distance should be provided at the proposed access based on the standards provided in the City of Scottsdale Design Standards and Policies Manual, 2018 Update.

LIST OF REFERENCES

- A Policy on Geometric Design of Highways and Streets, American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- Design and Safety of Pedestrian Facilities, Institute of Transportation Engineers, Washington, D.C., March 1998.
- Design Standards and Policies Manual, 2006 Update, City of Scottsdale
- Highway Capacity Manual. Transportation Research Board, National Research Council, Washington, D.C., 2016.
- Manual of Uniform Traffic Control Devices. U.S. Department of Transportation, Federal Highways Administration, Washington, D.C., 2009.
- Street Classification Map, City of Scottsdale website.
- *Transportation and Land Development*, Stover, V.G. and Koepke, F.J., Institute of Transportation Engineers, Washington, D.C, 1988.
- *Trip Generation Manual, 10th Edition*, Institute of Transportation Engineers, Washington, D.C, 2017.
- Design Standards & Policies Manual Section 5: Transportation Impact Studies, City of Scottsdale, Arizona, January 2010.

TECHNICAL APPENDICES

APPENDIX A: REVIEW COMMENTS

APPENDIX B: TURNING MOVEMENT COUNTS

APPENDIX C: EXISTING PEAK HOUR ANALYSIS

APPENDIX D: COLLISION DATA

APPENDIX E: TRIP DISTRIBUTION CALCULATIONS

APPENDIX F: BACKGROUND GROWTH RATE CALCULATIONS

APPENDIX G: 2020 PEAK HOUR ANALYSIS

APPENDIX H: CITY OF SCOTTSDALE DESIGN STANDARDS AND POLICIES

APPENDIX I: CIVTECH RESPONSES TO NEIGHBOR CONCERNS

APPENDIX A

REVIEW COMMENTS

From: Ricki Horowitz
To: Ed Bull

Subject: FW: 25-ZN-18/19-UP-18

Date: Wednesday, January 30, 2019 9:45:51 AM

Attachments: image002.ipg

Art and Ed -

Below are the Traffic Reviewer's comments. Thanks. Ricki

Ricki L. Horowitz

Paralegal

From: Bloemberg, Greg

Sent: Wednesday, January 30, 2019 9:39 AM

To: Ricki Horowitz

Cc: Ed Bull

Subject: 25-ZN-18/19-UP-18

Ricki,

Must've just missed you this morning. Just received the following comments from Transportation. Please note for the resubmittal. Thanks.

- 1. Traffic Report Review Comments:
 - a. Additional information contained within a letter dated November 30, 2018 from CivTech to AAK Architecture & Interiors, Inc., is useful in evaluating the anticipated impacts of the project. The letter addresses trip generation comparisons, speed reduction options, an all-way stop warrant and traffic safety. Please add a copy of the letter as an appendix to the traffic report.
 - b. Reviewer notes that Appendices F & G are mislabeled.

APPENDIX B

TURNING MOVEMENT COUNTS

Time			Northb	punoq			Southbound	punoc			Eastbound	puno			Westbound	puno		; (
F	Finish	left	through	right	speds	left	through	right	peds	left	through	right	sped	left	through	right	peds	IOIAL
7:1	7:15 AM	18	1	2	1	2	2	43	1	24	138	12	1	1	205	_	1	451
7:3	7:30 AM	24	_	_	•	က	က	84	1	80	146	15	1	•	251	4	1	540
7:4	7:45 AM	17	2	•	•	6	9	186	•	13	213	7	•	4	311	_	1	773
9:0	8:00 AM	21	2	_	•	7	4	09	•	16		24	•	7	264	∞	1	552
8:1	8:15 AM	27	_	•	•	က	2	47	•	35		17	•	_	212	က	•	538
8:5	8:30 AM	25	2	_	•	4	4	54	1	21		15	1	9	235	9	1	529
8:30 AM 8:4	8:45 AM	19	_	•	•	2	2	53	•	24		17	•	_	241	2	1	504
8:45 AM 9:0	9:00 AM	12	က	~	•	4	3	72	-	7	199	17	1	2	254	2	•	579
7:00 AM 9:00 AM	00 AM	163	16	9	•	37	26	599	•	148	148 1,324	128	•	16	1,973	30	•	4,466
7:15 AM 8:1	8:15 AM	80	g	2	•	22	15	377	•	72	692	67	•	7	1 038	46	•	2 403

0.7772
lour Factor (PHF)
eak F
_

TOT	7	552	413	542	575	551	602	299	477	4,311	2,327
	sped	•	•	•	•	•	•	•	1	•	•
puno	right	10	∞	7	2	80	_	80	2	47	22
Westbound	through	177	223	188	192	181	199	175	177	1,512	747
	left	4	က	2	2	က	4	9	-	78	18
	sped	1	•	•	1	•	•	1	•	•	•
punc	right	56	23	16	27	19	20	21	12	164	87
Eastbound	through	212	26	212	251	216	237	230	187	1,571	934
	left	34	24	44	26	48	09	22	32	358	191
	sped	•	•	•	•	•	•	•	•	•	•
puno	right	44	44	30	36	25	45	74	22	350	207
Southbound	through	8	9	6	2	4	∞	က	9	49	20
	left t	8	1	9	2	1	6	9	4	09	31
	sped	•	•	•	•	•	•	•	•	•	•
puno	right	2	_	٠	•	_	7	_	-	8	4
Northb	through	1	_	7	7	7	_	7	2	13	7
	left t	56	13	31	21	9	16	16	22	151	29
ne	Finish	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	4:00 PM 6:00 PM	5:45 PM
Time	Start	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	4:00 PM	4:45 PM

Peak Hour Factor (PHF) 0.9664

TRAFFIC COUNT DATA SHEET Megerdichican Senior Center TIMA

AM Peak Hour	onr																	
Ē	Time		North	punoq			Southbound	punoc			Eastbound	punc			Westbound	punc		- Y-C-F
Start	Finish	left	through	right	sped	left	through right	right	speds	left	through right	right	sped	left	through right	right	peds	I O I A L
7:00 AM	7:15 AM		•	•	•			•	•	•			٠	-			•	1
7:15 AM	7:30 AM	_	•	•	•	•	•	•	•	•	7	က	•	4	•	•	1	6
7:30 AM	7:45 AM	2	•	9	•	•	•	•	•	•	7	7	•	က	•	٠	•	15
7:45 AM	8:00 AM	က	•	က	•	•	•	•	•	•	_	က	•	7	4	٠	•	21
8:00 AM	8:15 AM	က	•	2	•	•	•	•	•	•	•	2	•	4	٠	٠	•	14
8:15 AM	8:30 AM	9	•	6	•	•	•	•	•	•	•	∞	•	∞	2	•	1	33
8:30 AM	8:45 AM	_	•	_	•	•	•	•	•	•	_	•	•	7		٠	•	4
8:45 AM	9:00 AM	'		4	•		•	'	•	'	•		•	2		•	•	9
7:00 AM	7:00 AM 9:00 AM	14		25	•						9	21		31	9			103
7:30 AM	7:30 AM 8:30 AM	14	•	20	•		•	•	•	•	3	18	•	22	9		•	83

0.6288 Peak Hour Factor (PHF)

Ξ	Time		Northb	punoc			Southbound	puno			Eastbound	punc			Westbound	puno		
Start	Finish	left	through	right	sped	left	through	right	beds	left	through	right	peds	left	through	right	peds	IOIAL
4:00 PM	4:15 PM	2		2					1					3	3		-	10
4:15 PM	4:30 PM	•	•	2	•	•	•	٠	•	•	•	٠	1	2	7	•	•	6
4:30 PM	4:45 PM	•	•	2	•	•	•	٠	•	•	_	_	1	4	7	•	•	10
4:45 PM	5:00 PM	•	•	4	•	•	•	•	•	•	•	7	1	2	•	•	•	80
5:00 PM	5:15 PM	•	٠	က	•	•	•	•	•	•	•	•	1	•	•	•	•	က
5:15 PM	5:30 PM	•	٠	2	•	•	•	٠	•	•	٠	٠	1	2	_	٠	•	80
5:30 PM	5:45 PM	_	•	4	•	•	•	•	1	•	•	7	1	•	•	•	•	7
5:45 PM	6:00 PM	3	'	'	-	'	'	1	-	'	_	1	•	2	•	•	1	9
PM	4:00 PM 6:00 PM	9		22					•		2	2	'	18	∞		•	61
PM	4:00 PM 5:00 PM	2	•	13	•		•		ľ		-	က	•	11	7		•	37

0.9250 Peak Hour Factor (PHF)

88th Pl. and Cholla St.

Megerdichican Senior Center TIMA

Tin	Time		Northb	punoc			Southbound	puno			Eastbound	puno			Westbound	punoc		- 4
Start	Finish	left	through	right	sped	left	through	right	peds	left	through right	right	sped	left	through right	right	sped	IOIAL
7:00 AM	7:15 AM				1	7	1	1	•	2			•	•	•	4		14
7:15 AM	7:30 AM	•	•	•	į	2	ı	က	•	•	2	ı	1	1	က	12	•	25
7:30 AM	7:45 AM	'	٠	1	•	13	•	_	•	4	4	•	•	'	က	9	•	31
7:45 AM	8:00 AM	'	٠	1	•	14	•	4	•	_	က	•	•	'	9	6	•	37
8:00 AM	8:15 AM		٠	•	•	80	٠	_	•	_	_	٠	•	٠	2	6	٠	22
8:15 AM	8:30 AM	•	•	ı	į	12	ı	_	-	_	4	ı	1	1	4	6	•	31
8:30 AM	8:45 AM	•	٠	•	1	80	•	2	•	2	2	٠	•	•	4	10	٠	31
8:45 AM	9:00 AM	'	•	•	1	8	•	7	-	2	2	•	1	•	2	10	•	29
7:00 AM	9:00 AM				•	75		15		13	24		•		24	69		220
7:30 AM	8:30 AM					47		7	•	7	12		•		15	33		121

0.8176
Peak Hour Factor (PHF)

TOT	- C - A-	41	30	27	32	27	32	28	23	240	130
	sped	1	•	•	•	•	•	•	•	•	
pund	right	13	7	4	13	13	1	7	7	62	37
Westbound	through	3	2	4	_	7	7	٠	3	20	13
	left t		٠	٠	•	٠	•	•	•	-	
	sped	1	•	•	•	•	•	•	•	•	•
punc	right	•	٠	٠	•	٠	٠	•	•	•	•
Eastbound	through	-	က	7	_	_	_	7	7	13	7
	left t	1	-	7	က	က	-	7	•	13	7
	sped	1	•	•	•	•	•	•	•	•	-
Southbound	right	3	٠	7	_	٠	က	1		6	y
	through		•	•	٠	•	•	•	•	•	
	left t	20	14	13	13	80	14	17	7	106	60
	sped	1	•	•	•	•	•	•	•	•	-
puno	right	1	٠	•	•	٠	•	•	•	-	
Northb	through		٠	٠	•	٠	٠	•			
	left t		٠	٠	٠	•	٠	•		-	
je e	Finish	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:00 PM	5.00 PM
Time	Start	1:00 PM	4:15 PM	:30 PM	4:45 PM	:00 PM	5:15 PM	5:30 PM	5:45 PM	4:00 PM 6:00 PM	M-00-5 M-00-M

Peak Hour Factor (PHF) 0.7927

Megerdichican Senior Center TIMA

IVIOI	peds IOIAL	- 157	- 202	- 279	- 324	- 250	- 264	- 289	- 282	- 2,047	1 1 3 7
		3	4	ဗ	2	7	0	2	3	35	22
Westbound	h right						-				
Wes	through	Z	•	•	(1)	•	•	_		9	
	left	2	9	6	80	6	10	7	6	29	c
	peds	-	•	•	•	•	•	•	•	•	
pun	right	16	16	59	23	19	27	20	18	168	8
Eastbound	through	2	_	7		7	_	_	4	13	,
	left th		-	က	_	က	-	က	က	12	,
	beds		•	1	1	•	1	1	•		
Southbound	right pe	2	7	_	4	_	က	_	2	16	,
		83	16	157	06	19	43	36	163	20	001
	through	1	4	1	3 1	3 1	-	3 1	1	19 1,107	,
	left									_	
	sped	•	•	•	•	•	•	•	'		
puno	right	2	7	_	2	9	9	7	2	26	ç
Northbo	rough	36	4	92	22	81	26	91	99	514	000
	left th	2	9	80	7	2	7	15	8	61	3
<u>e</u>	Finish	7:15 AM	7:30 AM	7:45 AM	8:00 AM	8:15 AM	8:30 AM	8:45 AM	9:00 AM	9:00 AM	
Time	Start	7:00 AM	7:15 AM	7:30 AM	7:45 AM	8:00 AM	8:15 AM	8:30 AM	8:45 AM	7:00 AM	7.45 484

9698.0
(PHF)
Factor
Hour
Peak

TV EC	101AL	343	389	371	354	380	417	329	262	2,875	1,522
	peds		•	•	•	•	•	•	•	•	•
punc	right	-	7	က	2	_	00	1	က	39	17
Westbound	through	2	٠	က	7	7	_	٠	-	1	8
	left	-	10	12	9	∞	2	1	4	22	31
	sped	1	•	•	1	•	ı	•	•	•	•
pun	right	15	17	18	24	6	25	22	6	142	92
Eastbound	through	3	-	က	_	_	•	4	-	14	5
	left t	9	9	7	_	4	2	2	4	30	12
Southbound	sped	•	•	•	•	•	•	•	•	Ī	•
	right	6	4	က	2	2	2	က	~	35	18
	through	108	123	115	06	125	140	107	73	881	470
	left	-	9	2	6	4	10	4	2	44	28
	speds	1	•	•	1	•	1	1	•	•	•
puno	right	7	9	10	6	∞	13	7	7	29	40
Northbou	through	171	189	180	170	193	173	160	139	1,375	716
	left	19	20	17	35	20	32	22	15	180	101
Je er	Finish	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:00 PM	5:30 PM
Time	Start	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	4:00 PM	4:30 PM

Peak Hour Factor (PHF) 0.9125

	WB			84			81			83			900		;	116			96			74			43		!	43		36			18		QF	772	Daily Totals WB Combined		PM
	EB			26			48			48		ç,	06		!	69			54			45			32		i	26		22			11		٧	465	SB	715	700 09
	SB	6	12	13	13	13	12	8 2	13	14	17	4 :	21	18	4 :	19	10	16	00	16	2 00	8	۲,	71	9	9 1	c = .	4 1	7 4	ω m	2 .	4 ω	2	7	0 -				
				28			33			32		c c	30		!	47			42			29			11		;	17		14			7		4	307	S S	228	30 00%
	NB	ю	15	7	7	7	80	_ ^	= =	13	9 01	10	, u	6	7	19	13	Ξ	7	6 ;	3 ⊆	7	4 1	o –	-	m =	י טו	ı n	დ 4	0 2	m •	- 0	3	e c	0 -			1	•
,	PM Period	12:00	12:15	12:45	13:00	13:15	13:45	14:00	14:30	14:45	15:00	15:30	16:00	16:15	16:30	16:45	17:00	17:30	17:45	18:00	18:30	18:45	19:00	19:30	19:45	20:00	20:30	20:45	21:00	21:30	22:00	22:30	22:45	23:00	23:30				
	Ь			4			3			4						ı,			11			40			83		;	91		22			86		7.7	501			70 407
O 1107 0 43 0000 0000 0000 0000	cortez st. & Kalil Dr. 3 EB WB			4			3			3			O			2			2			20			5 41			0 43		3 37		+ 01	3 50		43		33.591651,-111.887934		AM
1	ט Btwn כ SB	-	← ′	0	1	- 0		0 -	- 0		0 0		0 -	- 0	0		2 2	. –		- `	വ		7	- =		6 5			∞ ∞	8 23		12		9					
1	In St.	0	0 0	0 0	0		0 0		. 0	0	0 0			. –	0	3	- 2		2 6	ıc ı	υ 4	6 20	۲.	± =	10 42	= 5		11 48	13	9		<u> </u>	13 48	10	7 35	'	tes:		10.407
	Location: 89th AM Period NB	00:00	00:15			01:15		02:00			03:00		03:45				05:00				06:30			07:30		08:00				09:30		10:30		11:00		=	GPS Coordinates:		6

Cholla St. Ez	of 90th S	2			G					2		
NB	SB EB		WB			PM Period NB	SB	B		WB		
	0 0		- 0			12:00		12		ഗര		
	0 0	d	0	,	,	12:30		10	ć	e (č	ç
	0 +	>	0	-	_	13:00		5 5	26	2 ∘	07	φ.
	- 0		0			13:15		12		, =		
	0	,	0		,	13:30		12	9	ıcı	0	Ċ
		-	0	0	-	13:45		4 4	84	Ω <	30	8/
	- 0		0			14:15		- 6		1 4		
	0		0			14:30		12		10		
	0	-	0	0	-	14:45		14	39	14	32	71
	0		0			15:00		7		4 :		
			-			15:15		2 4		= 0		
	0	0	0	0		15:45		0 6	41	6	43	84
	-		0			16:00		12		15		
	0		0			16:15		16		œ		
		c	0	c	c	16:30		1 1	Č	° 2	ç	ä
	- 0	2	0	>	2	11.00		2 4		7 1	2	2
	-1		o -			17:15		0 21		- 7		
			- 0			17:30		17				
	0	2	3	4	9	17:45		7	42	6	40	82
	5		1			18:00		12		6		
	2		2			18:15		e		6		
	φ α	21	2 0	Ľ	9%	18:30		ro o	28	4 5	37	64
	9 40	7	0	0	70	19:00		0 00	70	Z 65	5	70
	0 00		9			19:15		00		4		
	16		9			19:30		9		4		
	16	46	13	27	73	19:45		10	32	4	12	47
	1 1					20:00		9 -		n n		
	14		, 11			20:30		- LO		۰ ۲		
	13	48	: œ	39	87	20:45		· -	13	· m	20	33
	12		10			21:00		22		22		
	6 17		ഗ			21:15		2 5		2		
	= =	43	, ,	30	73	21:45		3 6	12	o –	13	25
	10		e			22:00		0		2		
	9 9		13			22:15		2		7		
	16	44	6 1	32	76	22:45		7 0	4	4 W	14	18
	9		80			23:00		3		4		
	6		10			23:15		-		-		
	12	33	6 0	200	07	23:30		0 -	ц	7 0	_	12
		24.5	,	173	3 4	0.00		-	340		217	107
į		747		1/3	0			å	300		3 /	000
GP'S Coordinates:	33.589823,-111.885606	9099					NB	SB	Daily lotals EB	<u>s</u>	WB	Combined
		Σ							610 PZ		490	1100
		58.3%		41.7%	41.7% 37.7%				53.7%	,	46.3%	62.3%
		07:30		07:45	07:45				12:00		14:30	14:30
volume		23		44	95				25		49	101

226-004				7 18		7			13 28			8 21			7 18			5 18			10 14			1 3			2 4			1 2		4			0	65 150	WB Combined	43.3% 56.0%	
Project #: 18-1226-004	EB			5 11 2	2 0	0		2 u	15	9 9		2 13 1			11	2 1	6 2	13	0 0	1 0	2 4 2	0 0		2			1 2 0	0 0		0 1		0 0			0 0 0	85	Daily Totals	PIM 56.7%	
	NB																																				NB SB		
City: Scottsdale	PM Period	12:00	12:15	12:45	13:00	13:30		14:15	1 14:45	15:00	15:30	15:45	16:00	16:30	16:45	17:00	17:30	3 17:45	18:00	18:30	7 18:45	19:00	19:30	19 19:45	20:00	20:30	33 20:45	21:00		13 21:45	22:15	22:30		23:15	23:30 23:45	118		41.5% 44.0%	
	WB	0 0	0 0	0 0	- 0	1 0		0 0	0 1	0 0		0 0	0 0		0 0	0 0	0 0	0 0	0 0	o –	1 2	0 %	5 6	4 9	9 4		0 13	4 -	_	7 2	2	- 0		e (2 3 10	49		41.5%	
Volumes for: Thursday, April 26, 2018 City: Scottsdale Project #: 18-1226-00		0 0		0 0	00	0 0		0 0	0 0	0 (0 0	0 0		0 0	0 -		1 3	0 +		3 2	7 5	- m	4 10	-9 ц		1 20	0 66		2 6	· 60	6 1 12		ro c	3 1 13	69	33,593456,-111,888690	AM 58.5%	
Volumes for: Thurs	Location: Jenan Dr. East of 88th Pl. AM Period NB SB EB	00:00	00:30	00:45	01:00	01:30	02:00	02:15	02:45	03:00	03:30	03:45	04:00	04:30	04:45	05:00	05:30	05:45	06:00	06:30	06:45	07:00	07:30	07:45	08:00	08:30	08:45	09:00	09:30	10:00	10:15	10:30	11:00	11:15	11:30 11:45	Total Vol.	GPS Coordinates:	Split %	

AM Period NB	Volumes for: Thursday, April 26, 2018	m		City:	City: Scottsdale		Project #: 18-1226-003	: 18-12	26-003	
	SB EB	>	WB		PM Period NB	SB	EB	WB		
	0		0		12:00		0	2		
00:15 00:30	0 0				12:30		m ←	o -		
00:45	0	0	0 0		12:45		0 4	0	3	7
01:00	0 0		0 0		13:00		- 0	e -		
01:30	0 0	, ,			13:30		0 0	- 0		
01:45	0	0	0 0		13:45		2 3	2	9	6
02:00	0 0		0 0		14:00			7 5		
02:15 02:30	0				14:15		7 65	o m		
02:45	0	0	0 0		14:45		1 7	2	7	14
03:00	0		0		15:00		0	-		
03:15	0 (0 (15:15		7	0 -		
03:45	0	0	0		15:45		2 5	- 0	2	7
04:00	0		0		16:00		0	0		
04:15	0		0		16:15		0	-		
04:30	0		0		16:30			e		
04:45	0	0	0		16:45		-	-	2	9
05:00	0 0		0 0		17:00		7 7			
05:30	0 0				17:30			- ~		
05:45	1	1	1	2	17:45		4 8	2	9	14
00:90	1		1		18:00		1	3		
06:15	0		2 0		18:15		2			
06:30	0	-	2 5	9	18:45		2 1	- 2	7	14
07:00	1		4		19:00		-	2		
07:15	e	.,	8		19:15		-	-		
07:30	2 5	0	3	ç	19:30		0 0	0 0	c	ш
0 0	7 -			6	19:40			> <	n	n
08:15	- 0	. •	- 2		20:15		0 0	0		
08:30	1				20:30			-		
08:45	1	m	2 6	6	20:45		4	0	-	9
09:00	0 -		- 5		21:00		0 0	0 0		
09:30					21:30		2 0	- c		
09:45	4	, 9	1 5	11	21:45		1 3	1	2	2
10:00	2	.,	2		22:00		0	0		
10:15	0 +				22:15		0 0	0 +		
10:30	- 2	ro ,		10	22:45		- -	- 0	-	2
11:00	-	,	_		23:00		1	0		
11:15	-	Ŭ	0		23:15		0	0		
11:30	0 -	~	0 0	4	23:30		- 0	0 0	c	2
Total Vol				- 13					43	. 6
	2000 000 000 000 000	,	Ď	5			F F	4	o t	-
Gracogramates:	55,595447,-111,887424	3			NB	SB	Dally lotals EB	2	WB	Combined
	,						75		7.7	152
3	4	AM:		70.40			PM		00	200
Split %	7	44.3%	55.79				52.7%		17.3%	47.3% 59.9%
Peak Hour		00:00	06:45				17:45		17:15	17:45
Volume		. S	12	19			10		8	11

APPENDIX C

EXISTING PEAK HOUR ANALYSIS

18-100 - MASC Timing Report, Sorted By Phase

∤⊳

<\$

Existing AM 1: 90th St. & Cactus Rd WBTL

SBTL

EBTL

NBTL

EBT EBR WBL	WBT WBR		_		_	• 8
EBR		NDI	l			CD
רחוי	‡ ↓	INDL	NBT	NBR	SBL SBT	SBK
★	CC	k- c	م ع		4 − 50	F
70		50	7	+ <	31 20	
5		5	· c			
1.00 1.0	1,0	1.00	>			1.00
	1.00 1.00	1.00	1.00		1.00 1.00	
	No		9		N _o	
1870 18	18		1870	1870 1	18	1870
4		99	∞			
0.90 0.90 0.90	0.90 0.90	0.90	0.90	0.90	0.90 0.90	0.90
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	2 2	7.7	7.2		2 2	700
ľ		100	0.20	7007	1	ľ
1585	3527 102	1128	1176			•
47		99				
1585		1128	0 0			
		4.2	0.0	0.5	1.7 0.8	11.4
4.2		2.0	0.0			
1.00	Г	1.00				1.00
	814 849	551	0		674 826	
0.13	ľ	0.12	0.00		ľ	0.33
1629 726 176	814 849	551	0	6//	674 826	
1.00	ľ	1.00	1.00	1.00	ľ	(
1.00		1.00	0.00	1.00		
18.8	7	20.3	0.0			2
0.1		0.4	0.0	0.0		
0.0		0.0	0.0	0.0		
11.3 1.6 0.5	8.4 8.8	1.2	0.0	0.5	0.6 0.4	4.5
75 7 19 9 36 0	32 6 33 6	3 U C	0	18.0	10.6 10.0	22.1
0.0 B		20.0	0.0			
			70			
21.0	32.0		20 E		200	
) C	. C		C. C.		C C	
2 4	9		œ			
59.0 61.0	59.0		61.0			
	0.9		6.0			
	53.0		55.0			
	13.4		32.7			
0.3 0.0	1.0		0.9			
					ı	
27.8						
ပ						
27.8 C	6.0 53.0 13.4 1.0		6.0 55.0 32.7 6.0			

Movement EB1 EB1 MB1	``	•	†	~	\	ţ	4	•	•	•	٠	→	•
1,		BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
72 692 67 7 1038 16 89 6 2 22 0 <td< td=""><td>ane Configurations</td><td>r-</td><td>44</td><td>K.</td><td>je-</td><td>41</td><td></td><td>je-</td><td>¢</td><td></td><td>j-</td><td>+</td><td>K_</td></td<>	ane Configurations	r-	44	K.	je-	41		je-	¢		j-	+	K _
1.00	raffic Volume (veh/h)	72	692	29	7	1038	16	68	9	2	22	26	377
1.00	uture Volume (veh/h)	7.5	692	/9	_	1038	J 6	68	9	2	22	26	377
1.00		0 8	0	0	0	0	0	0	0	0	0	0	0 ;
1,00		8. 8	5	00.1	00.1	5	00.1	1.00	6	1.00	1.00	6	1.00
1870 1870		3.	00.1	30:	00.1	90.1	90:1	00.1	9.1	1.00	1.00	00.1	1.00
10,00 10,0	E C	02.0	OV OF OF	0701	07.01	ON OF OF	0701	07.01	NO OF OF	0501	0701	ON OF OF	0701
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90		0 0	0/9/	0/81	0/81	1152	10/01	0/81	16/0	0/91	0/91	0/91	18/0
151 1602 715 255 1615 25 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8 8	60/	44	000	000	200	66 0	000	7 000	74	67	419
151 1602 715 255 1615 25 475 628 180 688 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 80 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 80 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 80 0.45 0.45 0.45 0.45 0.45 0.45 0.45 195 182 3.2 1.0 31.3 31.3 31.3 31.3 195 182 3.2 1.0 31.3 31.3 31.3 7.9 0.0 0.3 1.2 100 1.00 1.00 1.00 0.03 0.01 0.03 151 1602 715 255 801 839 475 0 808 688 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 0.0 0.0 0.0 0.0 100 0.00 0.00 0.00 0.0 0.0 0.0 100 0.00 0.00 0.00 0.00 0.0 100 0.00 0.00 0.00 0.00 0.0 100 0.00 0.00 0.00 0.00 0.0 100 0.00 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 100 0		5 ~	00	0.00	0.00	00	0.70	0.70	0.70	0.70	0.70	00	0.0
0.45 0.45		121	1602	715	255	1615	25	475	628	180	889	840	712
479 3554 1585 653 3581 56 942 1399 400 1406 80 789 74 8 572 599 99 0 9 24 195 117 1586 653 171 1860 942 1798 1406 195 182 32 10 311 313 313 79 0 9 24 100 102 32 10 311 313 313 89 0 0 9 24 110 10 10 10 10 10 0 3 15 10 <		45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
80 769 74 8 572 599 99 0 9 24 479 1777 1858 653 1777 1860 942 0 1798 1406 19.5 18.2 3.2 1.0 31.3 31.3 7.9 0.0 0.3 1.2 56.8 18.2 3.2 19.2 31.3 31.3 89 0.0 0.3 1.2 1.00 1.00 1.00 1.00 0.03 1.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		179	3554	1585	653	3581	29	942	1399	400	1406	1870	1585
479 1777 1585 653 1777 1860 942 0 1798 1406 195 182 32 110 313 313 379 00 0.3 112 508 182 32 110 313 313 313 379 00 0.3 112 100 1.00	rp Volume(v), veh/h	8	691	74	8	572	599	66	0	6	24	29	419
19.5 18.2 3.2 10 31.3 31.3 7.9 0.0 0.3 1.2 1.0 1.00 1.00 1.00 1.00 1.00 0.3 1.5 1.5 1.00 1.00 1.00 1.00 1.00 1.00 1		179	1771	1585	653	1777	1860	942	0	1798	1406	1870	1585
508 182 32 192 313 313 89 00 0.3 1.5 1100 1.00 1.00 0.03 0.71 0.71 0.21 0.00 0.02 1.00 155 1629 7126 256 814 853 475 0 808 688 155 1629 726 260 814 853 475 0 808 688 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00		9.5	18.2	3.2	1.0	31.3	31.3	7.9	0.0	0.3	1.2	1.0	23.8
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		8.0	18.2	3.2	19.2	31.3	31.3	8.9	0.0	0.3	1.5	1.0	23.8
151 1602 715 255 801 839 475 0 808 688 688 653 048 0.10 0.03 0.71 0.71 0.71 0.01 0.003 0.53 0.48 0.10 0.003 0.71 0.71 0.71 0.01 0.00 0.01 0.003 0.71 0.72 0.20 0.01 0.003 0.71 0.70 0.00 0.00 0.00 0.00 0.00 0.00		8		1.00	1.00		0.03	1.00		0.22	1.00		1.00
053 0.48 0.10 0.03 0.71 0.21 0.00 0.01 0.03 1.00 1.00 1.00 1.00 1.0		151	1602	715	255	801	839	475	0	808	889	840	712
155 1629 726 266 814 853 475 0 808 688 1100 1.00 1.00 1.00 1.00 1.00 1.00 1.		.53	0.48	0.10	0.03	0.71	0.71	0.21	0.00	0.01	0.03	0.03	0.59
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		155	1629	726	260	814	853	475	0	808	889	840	712
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		8:	00.1	9.	00 !	9.5	9.	1:00	1.00	1.00	1.00	1.00	1.00
47.3 23.1 17.0 278 26.7 27.0 0.0 18.3 18.7 3.4 1.3 2.3 1.9 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		8 5	1.00	1.00	1.00	1.00	0.1	1.00	0.00	1.00	1.00	1.00	1.00
3.2 U.2 U.1 U.0 2.9 Z.8 U.1 U.0 U.0 U.0 U.1 U.1 U.2 U.2 I.3.6 I.4.3 I.9 U.0 U.0 U.0 U.0 U.1 U.1 U.2 U.2 I.3.6 I.4.3 I.9 U.0		5.7	73.1	19.0	29.8	7.07	7.07	7.0	0.0	2.3	8.7	0.0	7.4.7
sych Sych Co. 200 Co.		3.2	7.0	- 0	0.0	6.7	2.0	0.0	0.0	0.0	- 0	- 0	0.0
Substituting the following state of the follo	٤	0.0	0.0	0.0	0.0	12.6	14.2	0.0	0.0	0.0	0.0	0.0	0.0
505 233 190 299 296 29.5 220 0.0 18.3 18.8 D C B C C C A B B 923 1179 108 253 29.6 21.7 C C C C A B B 8 1179 108 8 59.9 60.1 59.9 60.1 8 60 60.1 8 60 60.1 9 52.8 53.0 55.0 9 52.8 25.8 33.3 1.3 1.8 8.5 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C A B B 8 B 8 C C C C A B 8 C C C C A B 8 B 8 C C C C A B 8 C C C C A B 8 B 8 C C C C A B 8 B 8 C C C C A B 8 C C C C A B 8 B 8 C C C C A B 8 C C C C A B 8 B 8 C C C C A B 8 C C C C A B 8 B 8 C C C C A B 8 C C C C C A B 8 B 8 C C C C C A B 8 C C C C C A B 8 C C C C C A B 8 C C C C C A B 8 C C C C C C A B 8 C C C C C C A B 8 C C C C C C C C C C C C C C C C C C C C C C C C C C C C	ile backoro(30/8),vervill Isin Movement Delay siyeh	4.7	0.7	7.1	7.0	13.0	7:5		0.0		4:0	0.0	0.7
D C B C C C A B B 923 1179 108 25.3 29.6 21.7 C C C C C C C C C C C C C C C C C C C		0.5	23.3	19.0	29.9	29.6	29.5	22.0	0.0	18.3	18.8	18.6	28.3
923 1179 108 25.3 29.6 21.7 2 4 6 8 2 2 4 60.1 5 59.9 60.1 59.9 60.1 6 0 6 0 6 0 6 0 6 0 7.5 53.0 55.0 55.0 1), s 10,9 52.8 33.3 27.4 27.4 27.4		۵	U	В	O	O	O	O	A	В	В	В	O
25.3 29.6 21.7 C C C C C C C S 6 6.1 59.9 60.1 6 0 6.0 6.0 6.0 6), s 53.0 55.0 53.0 55.0 1), s 10.9 52.8 25.8 33.3 C 27.4 C C C C C C C C C C C C C C C C C C C	proach Vol, veh/h		923			1179			108			472	
2 4 6 6 8 8 8 9 9 60.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	proach Delay, s/veh		25.3			29.6			21.7			27.2	
2 4 6 5 59.9 60.1 59.9 60 60.0 0, s 530 55.0 53.0 1), s 10.9 52.8 25.8 0.6 1.3 1.8	proach LOS		ပ			S			ပ			ပ	
s 59.9 60.1 59.9 6.0 6.0 6.0 6.0 6.0 6.0 1.5 10.9 52.8 25.8 1.3 1.8 27.4	mer - Assigned Phs		2		4		9		8			ı	
6.0 6.0 6.0 6.0 1), s 53.0 55.0 53.0 53.0 52.8 25.8 25.8 27.4 C	ns Duration (G+Y+Rc), s		59.9		60.1		59.9		60.1				
(Gmax), s 53.0 55.0 53.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	nange Period (Y+Rc), s		0.9		0.9		0.9		0.9				
g_c+I), s 10,9 52,8 25,8 c), s 0,6 1,3 1,8 cy 27,4	ax Green Setting (Gmax), s		53.0		22.0		53.0		22.0				
c), s 0.6 1.3 1.8 1.9 1.9 C C	ax Q Clear Time (g_c+I1), s		10.9		52.8		25.8		33.3				
N.	reen Ext Time (p_c), s		9.0		1.3		1.8		8.5				
	tersection Summary												
	CM 6th Ctrl Delay			27.4									
	CM 6th LOS			U									

18-100 - MASC HCM 6th TWSC	l								ı										ı		ı				Synchro 10 Report Page 3
	l								ı										ı		ı				
	ı		~ R_	13	0 &	D .	. 0	2 14	ı	3		.2		∞ -					ı		L WBT		7.2 0 A A		
	ı		NBL NBL	2 2	Stop S	00	0 %	2	Minor1	ш	32	- 6.42 6.22 E 42	- 5.42	- 3.518 3.318				- 1013 - 991	NB	8.4 A	EBT EBR WBL WBT	1618	7.		
اند	ı		EBR WBL WBT	= =	Free		' %	2 2 12 8	Major2	4		4.12		2.218		0	81.91		WB	4.4	_		8.4 A		
Cholla Si	ı		EBT EBR	 3	0 0 Free Free	- NOIN - #		2 2 1 1 3	Major1										EB	0	NBLn1NBLn2	971	8.7 A	0	
Existing PM 2: Existing Dr. & Cholla St	Intersection	Int Delay, s/veh	Movement Lane Configurations	Traffic Vol, veh/h Future Vol, veh/h	Conflicting Peds, #/hr Sign Control	Storage Length Veh in Median Storage, #	Grade, % Peak Hour Factor	Heavy Vehicles, % Mvmt Flow	Major/Minor N	-low All	Stage 2	Critical Hdwy	Critical Hdwy Stg 2	Follow-up Hdwy Pot Cap.1 Maneuwer	Stage 1	Platoon blocked, %	Mov Cap-1 Maneuver Mov Cap-2 Maneuver	Stage 1 Stage 2	Approach	HCM Control Delay, s HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h) HCM Lane V/C Ratio	HCM Control Delay (s) HCM Lane LOS	HCM 95th %tile Q(veh)	CivTech 05/10/2018

Intersection							
s/veh							
	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	æ,	ç	ć	₩.	,	* - 8	
Irallic vol, vervn	ν c	2 2	77	0 \	4 5	2 8	
Conflicting Dods #thr	o c	<u>o</u> c	77	0 0	± C	8	
		L C	200	L C	C C	7	
Zed		None		None		None	
Storage Length	ŀ		ľ		c	c	
Veh in Median Storage, #		٠	٠	0			
Grade, %	0	ŀ		0	0	ŀ	
Peak Hour Factor	06	8	06	06	06	06	
Heavy Vehicles, %	7	7	2	2	7	2	
Mvmt Flow	3	20	24	7	16	22	
Major/Minor Ma	Major1	Ž	Major2	Ž	Minor1		
low All	6	c	2	c	89	13	
Stage 1	, ,	, ,	3	, ,	73	2 '	
Stane 2	ŀ		ľ	ľ	2 2	ŀ	
Oritical Holav			412		6 47	6 22	
Critical Holay Sto 1			4.12		5 47	77.0	
Critical Holay Sta 2					5.42		
Follow-up How		ľ	2 218	ı,		3 3 1 8	
Pot Cap-1 Maneuver			1592			1067	
Stane 1	ŀ	ŀ	'	ŀ			
Stane 2					896		
Platoon blocked %	ŀ	ŀ		ľ	2		
May Cap 1 Maneuror			1502		003	10.67	
Mov Cap-1 Maneuver			7401		000	1001	
Stage 1					000		
Stage 1					070		
2 age 2		٠	•		20%	٠	
	6						
Approach	EB		WB		NB		
HCM Control Delay, s HCM LOS	0		2.7		9.8 A		
tono Major I Amot	Ž	27	2		0		TGW
Milhor Lane/Major Mvmt Capacity (veh/h)	ž	923 1067	1067	EBI.	- 1592		WBI
HCM Lane V/C Ratio	0	0.017	0.021	ŀ	ŀ	0.015	
HCM Control Delay (s)			8.4			7.3	0
HCM Lane LOS		⋖		١.	ŀ	⋖	•
HCM 95th %tile O(veh)		0.1	0.1	٠	٠	0	
		;	;			•	

18-100 - MASC HCM 6th TWSC			ı								ı	ı											ı	ı						Synchro 10 Report Page 4
18-10 H			ı								1	ı											ı	ı						Sync
			ı								1	ı											ı	ı						
			ı								1												ı	ı						
			ı								1												ı	ı						
			ı								1												ı	ı						
	Ш		ı								1												П	ı						
	Ш		SBR		9 9	ž ;			6		1	35		. 4 22				1038	•	1038			П		ā	SBLn1	0		0.3	
	Ш		SBL	} -9	09	Stop	' C	000	9	2 67	Minor	1	35	24	5 47	5.42	3.518	987	666	943	881	666	ć	9.4 A		EBI WBI WBR SBLNI	Ш			
	Ш		WBR	37	37	Free 0	None		- 06	41		0					1						П			WBI	ľ			
	Ш		WBT WBR	€ 2	5 55	Pree		0	0 %	14	Maior2	9012	•	•					•				9	0	Ė	EBI	٠ ،	> <	•	
	Ш		EBT	₩			None	0	0 %	8	Σ	0									٠		П			EBL 1660	0.005	ડે ⋖ .	0	
E Si	Ш	5.2	EBL	7		Pree .	_		. %	2 8	Major1	22		- 17	7.12		2.218	0661		220			£	3.7			0			
88	Ш		ı					rage, #		.0	ž					- 2				ver 1	Ner		П	y, s		Mvmt	atio	(e) ((veh)	
PM St.	Ш	veh	ı	guration	veh/h	Peds, #	lized	ian Sto	Factor	cles, %		Flow A	1	5 2	Sta	y Stg	ldwy	waneuv 3 1	5 5	Maner.	Maneu	2	П	ol Dela		(Major	V/C Rg	LOS	%tile O	
Existing PM 3: Cholla St. & 89th St.		Intersection Int Delay, s/veh	Movement	Lane Configurations	Future Vol, veh/h	Conflicting Peds, #/hr Sign Control	R1 Channelized	Veh in Median Storage, #	Grade, % Peak Hour Factor	Heavy Vehicles, % Mvmt Flow	Major/Minor	Conflicting Flow All	Stage 1	Stage 2	Critical Hdwy Str 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver Stage 1	Stage 2	Mov Cap-1 Maneuver 1550	Mov Cap-2 Maneuver	Stage 2	-	Approach HCM Control Delay, s HCM LOS		Minor Lane/Major Mvm	HCM Lane V/C Ratio	HCM Lane LOS	HCM 95th %tile Q(veh)	CivTech 05/10/2018
S EX		Inter Int D	Move	Lane	를 를 ,	Sign	2 t	Veh	Peak	Hear	Majo	S		į	3 8	5	음 음	207	i	Mov	Mov			H H H			오	를 을 !	E E E	CivT 05/10

Secondary Seco	4.6	
Sept. 46 58 58 58 58 58 58 58 5	Septembor 4.6 Septembor 4.6 Septembor 4.6 Septembor 4.6 Septembor 4.6 Septembor 4.7 Septembor	
Febr. Febr	EBL EBT WBR SBL SBL	
State Stat	State Stat	
vehhh 7 12 15 33 47 vehhh 7 12 15 33 47 vehhr 0 0 0 0 0 old 12 15 33 47 non - 0 0 0 0 dan Slorage, # - 0 0 0 9	veh/h 7 12 15 33 47 veh/h 7 12 15 33 47 veh/h 7 12 15 33 47 old 6 0<	
Amajor Mumil File Bit	Nedshift 12 15 33 47 I peds,#hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Free Free Free Free Stop Storage Free Free Stop Storage Free Free Free Stop Storage Free Free Free Stop Storage Free Stop Storage Free Free Free Stop Storage Free Free Free Free Free Free Free F	Free Free Free Free Stop Storage Free Free Stop Storage Free Free Free Stop Storage Free Free Free Stop Storage Free	
elized - None - None - None - Non- angin 0 dan Storage, # 0 0 licles, % 2 2 2 2 2 2 licles, % 2 2 2 2 2 2 licles, % 4 2 2 2 2 2 2 licles, % 4 1 2 2 2 2 2 licles, % 4 1 2 2 2 2 2 licles, % 5 1 2 2 2 2 2 licles, % 5 2 2 2 2 2 2 licles, % 5 2 2 2 2 2 2 licles, % 6 4 2 6 2 licles, % 5 2 2 2 2 2 2 licles, % 6 4 2 6 2 licles, % 7 10 9 3 licles, % 7 10 9 9 licles, % 7 10 9 9 licles, % 7 10 0 9 3 licles, % 7 10 0 9 9 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 0 0 0 0 0 licles, % 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	elized	
Analor Manner LEBI MBI WBR SBL NVC Ratio 0.000	angth	
dian Storage, # - 0 0 - 0 Factor 9 90 90 90 90 90 90 90 90 90 90 90 90 9	dian Storage, # 0 0 0 Factor 9 0 90 90 90 90 90 90 90 90 90 90 90 90	
Fector 90 90 90 90 90 90 90 90 90 90 90 90 90	Fector 90 90 90 90 90 90 90 90 90 90 90 90 90	
reactor 90 90 90 90 90 90 90 90 90 90 90 90 90	reactor 90 90 90 90 90 90 90 90 90 90 90 90 90	
Maneuver 1551 1562 1564 166	Indices, A. B.	
Major Major Major Minor	Prov All 54 0 0 65 3	
Major Major Major Minor Minor	Major Major Minor Mino	
Flow All 54 0	Flow All 54 0	
pe 1	pe 1	
Pe 2	10	
Wy Sig 1	wy 5tg 1 6.42 o.2 wy 5tg 2 6.42 o.2 wy 5tg 2 5.42 o.2 wy 1 103 wareuver 1551 994 o.3 wy 1 103 wareuver 1551 994 o.3 wy 1 103 wareuver 1551 994 wy 1 103 wareuver 1551	
My Sug 1 5.42 Hdwy 2.218 5.42 Hdwy 2.218 5.42 Hdwy 2.218 5.41 Maneuver 1851 994 Dded, % 994 Maneuver 1551	Wy Sug 1 5.42 Hdwy 2 . 2.218 5.42 Hdwy 2 . 2.218 5.41 Maneuver 1551 994 Maneuver 1551	
Maneuver 1551	Maneuver 1551	
Maneuver 1551 941 103 pe 1	Maneuver 1551 941 103 pe 1 986 pe 2 994 I Maneuver 1551 994 I Maneuver 1551 981 pe 2 991 pe 2 994 rol Delay, s 2.7 0 9.3 A A Amalor Mwnt EBL EBT WBT WBR SBLn ehh) 1551 899	
Pe 1	pe 1	
pe 2	pe 2	
Adheruver 1551 936 103 Maneuver 1551 936 103 Maneuver 1561 991 pe 2 994 pe 2 994 rol Delay, s 2.7 0 9.3 A A A 0.89 A A A 0.99 A A A 0.99 A A A 0.99 A A A 0.99	Docked, %	
Maneuver 1551 936 103 2 Maneuver 936 103 2 Maneuver 946 99 1 99 2 994 99 3 FID Delay, S 2.7 0 9.3 A A A A A A A A A A A A A A A	Maneuver 1551 936 103 2 Maneuver 936 103 2 Maneuver 981 2 994 EB WB SB SB rol Delay, s 2.7 0 9.3 Analor Mwnt EBL EBT WBT WBR SBLn ebh) 1551 89	
Maneuver	Maneuver	
Pe 2	Pe 2	
EB WB SB	EB	
EB WB SB	rol Delay, s 2.7 0 9.3 A A A A A A A A A A A A A A A A A A A	
rol Delay, s 2.7 0 9.3 Major Mvmt EBL EBT WBT WBR SB weh/h 1551 VIC Ratio 0.005 0.005 rol Delay (s) 7.3 0 0.005 Skilo Charls A A 0.005 Skilo Charls A A 0.005	rol Delay, s 2.7 0 9,3 A A A A A A A A A A A A A A A A A A	
EBL EBT WBT WBR SB 1551 - 0.005 - 0.005 - 0.006 - 0.000 - 0.00	EBL EBT WBT WBR SE	
EBL EBT WBT WBRSB 1551 - 0.005 - 0.005 7.3 0 - 0.005	EBL EBT WBT WBR SE	
1551 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 - 0.005	1551	
0.005 0. 7.3 0 0.		
7.3 0	0.005 0.	
A A C	7.3 0	
	A A	
	HCM 95th %tile Q(veh) 0 0.2	

18-100 - MASC Timing Report, Sorted By Phase

∤⊳

<₫

Existing AM 4: Cholla St. & 92nd St.

WBTL

SBTL

EBTL

NBTL

404

Cycle Length
Control Type
Control Type
Actuated-Coordinated
As
As
Offset 0 (0%), Referenced to phase 2/NBTL and 6:SBTL, Sart of Green

4: Cholla St. & 92nd St.

Splits and Phases:

Ø2 (R)

Lead'Lag
Lead'Lag
Lead-Lag Optimize
Recal Modifie
Maximum Spili (\$)
Maximum Spili (\$)
Minimum Spili (\$)
Minimum Initia (\$)
Minimum Initia (\$)
Wellow Time (\$)
Minimum Gap (\$)
Time Before Reduce (\$)
Time Before Reduce (\$)
Time Before Reduce (\$)
Time Botor Reduce (\$)
Time Botor Reduce (\$)
Time Solor Reduce (\$)
Time Color Reduce (\$)
Time Solor Time (\$)
Lead Time (\$)
Yeld/Force Off (\$)
Yeld/Force Off (\$)
Yeld/Force Off (\$)
Yeld/Force Off (\$)
Local Start Time (\$)
Local Yeld (\$)
Local Yeld (\$)

C-Max 59 49.2% 4.5 11.5 5 3 3

HCM 6th Signalized Intersection Summary	•	T SBR	↑ ₽	470 18			.00 1.00 No	18	20 20		00.80		5 277		4.2 4.2		6 1481			_		П	5	3.0 3.0	A C	3.1	A									Synchro 10 Report
section	→	SBT	*	47	F		1.00	1870	522	П	0.80		265	4.2	4	,	1426	1426	1.00	1.00	7 0	0 4		3	1	2 6										ynchro
ro- ed Inter	۶	SBL	# -8	28	0	1.00	1.00	1870	31	2	0.80	929	31	1.5	8.7	1.00	546	546	1.00	1.00	0.2	0.0	0.7	4.4	∢											
ı Signaliz	•	NBR	Ş	40	0	1.00	1.00	1870	0.90	2	152	189	427	7.2	7.2	0.10	1473	1473	1.00	1.00	0.5	0.0	7.3	3.6	∢											
HCM 6th	•	NBT	€	716	0		1.00 No	1870	967	2 5	0.80	3424	413	7.7	7.2		1426	1426	1.00	1.00	0.5	0.0	7:7	3.6	A CEO	3.6	A	8	17.7	0.0	11.5	0.2				
	•	NBL	1 - 5	10 10	0	1.00	1.00	1870	112	2 5 2	0.80	864	112	4.2	8.3	1.00	723	723	1.00	1.00	0.5	0.0	0.7	4.2	∢											
	4	WBR	7	1 =	0	1.00	1.00	1870	19	7	0.10	1131	28	1.9	1.9	89.0	163	764	1.00	1.00	0.5	0.0	0.8	50.2	ما			9	102.3	6.0	10.7	4.0				
	ļ	WBT	æ°	x	0		1.00 N	1870	6	7 5	0.10	536	0	0.0	0.0	4	0	00:00	1.00	0.00	0.0	0.0	0.0	0.0	A C7	54.3	Ω									
	>	WBL	# - 5	- F	50	1.00	1.00	1870	34	7 7	0.10	1307	34	3.1	6.5	1.00	117	589	1.00	1.00	7.3	0.0	=	57.7	ш			4	17.7	0.0	8.4	9.0				
	~	EBR	È	0 7	0	1.00	1.00	1870	84	7	0.10	1495	90	6.4	6.4	0.93	156	734	1.00	1.00	3.3	0.0	7.8	55.1	ш									8.4 A		
	†	EBT	۱ 🚓	വ	0		1.00 N	1870	9	7 7	0.10	107	0	0.0	0.0	4	0	00:00	1.00	0.00	0.0	0.0	0.0	0.0	A CO1	54.6	Ω	2	102.3	6.0	10.3	7.4				
St.	•	EBL	# _ 5	1 2	0	1.00	1.00	1870	13	2	0.10	1382	130	1.0	2.9	1.00	174	672	1.00	1.00	0.10	0.0	4:0	21	۵											
4: Cholla St. & 92nd St.		Movement	Lane Configurations	Franc Volume (veryn)	Initial Q (Qb), veh	Ped-Bike Adj(A_pbT)	Parking Bus, Adj	Adj Sat Flow, veh/h/ln	Adj Flow Rate, veh/h Peak Hour Factor	Percent Heavy Veh, %	Cap, veh/h Arrive On Green	Sat Flow, veh/h	Grp Volume(v), veh/h	O Serve(a.s), vervinin	Cycle Q Clear(g_c), s	Prop In Lane	Lane Grp Cap(c), veh/h	Avail Cap(c, a), veh/h	HCM Platoon Ratio	Upstream Filter(I)	Unionii Delay (u), siveri Incr Delay (d2), síveh	Initial Q Delay(d3),s/veh	wife backoro(30%), verying Unsig. Movement Delay, s/veh	LnGrp Delay(d),s/veh	LNGTP LUS	Approach Vol, ven/n Approach Delay, s/veh	Approach LOS	Timer - Assigned Phs	Phs Duration (G+Y+Rc), s	Change Period (Y+Rc), s May Green Setting (Gmay) s	Max Q Clear Time (g_c+I1), s	Green Ext Time (p_c), s	Intersection Summary	HCM 6th Ctrl Delay HCM 6th LOS		CivTech

9870 10 2 2 2 2 0.90 0.79 0.07 0.03 0.

21 21 22 22 20.00 2111 1832 2.8 2.8 2.18 2.18 2.18 3.0 0.11 1144 1.100 3.0 0.0 0.0 0.0 0.0

1870 24 0.90 0.90 0.11 1389 28 28 1.9 1.9 0.08 1.00 1.00 0.15 0.44 0.00 0.00 0.08

125 0.90 0.90 0.11 125 0.11 1.20 1.00 0.33 1.00 1.00 1.00 0.33 1.00 0.33 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.0

99 99 0.90 2 2 2 1172 1153 1159 174 0.06 0.58 73 1100 0.58 2.9 0.00 0.00 0.00 3.1 3.1

> Grp Volume(v), vervin Grp Sat Flow(s), vervin'n O Serve(g. s), s Cycle O Clear(g. c), s Prop In Lane Lane Grp Cap(c), vervin VIC Ratio(X) Avait Cap(c. a), vervin HCM Platoon Ratio

0.0 0.0

1400 0.23 1400 1.00 3.3 0.4 0.0

1400 0.13 1400 1.00 1.00 3.0 0.2 0.0

0.00 0.00 0.00 0.0 0.0 0.0

0.00 0.00 0.00 0.0 0.0 0.0

9 1382 0.7 2.6 1.00 1.00 1.00 1.00 1.00 0.1 0.1 A 673 3.7

3.2 A 3.3 3.3 A

0.0 A 70 70 53.9

0.0 A 112 53.2 D

> Approach Vol, veh/h Approach Delay, s/veh Approach LOS

19.4 6.0 55.0 13.2 0.3

6.0 6.0 7.7 4.7

19.4 6.0 55.0 9.4 0.7

6.0 6.0 53.0 9.3 2.6

> Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s

Phs Duration (G+Y+Rc), s

'imer - Assigned Phs

Change Period (Y+Rc), s

10.8 B

Intersection Summary
HCM 6th Ctrl Delay
HCM 6th LOS

3.2 A

4.4 A

53.5 D

49.4 D

Upstream Eller(1)
Uniform Delay (d), s/veh
Ind Delay (d3), s/veh
Initial Q Delay(d3), s/veh
Skile BackOTO(50/8), veh
Unsig, Movement Delay, s/veh
LnGrp Delay(d3), s/veh

1.00 No 1870 653 0.90 2 2823 0.79 3282 324 1777 5.7

1.00 No 1870 337 0.90 2 22678 0.79 176 1777 2.8 2.8

2 7 0.11 62

0.90 2 193 0.11

18-100 - MASC HCM 6th Signalized Intersection Summary

288

9 0 00.

00.00

.8 % o 8 %

2200:00

89 0 0.1 0 0.1 0 0.1

†

Existing AM 4: Cholla St. & 92nd St. 1.00 No 1870 4 0.90

Lane Configurations
Traffic Volume (vehfn)
Future Volume (vehfn)
Initial O (QD), veh
Ped-Bike Adj (A_pbT)
Parking Bus, Adj
Work Zone On Approach
Adj Sal Flow, vehfn
Peak Hour Factor
Percent Heavy Veh, %
Cap, vehfn
Arrive On Green
Sal Flow, vehfn
Arrive On Green

1.00

Synchro 10 Report Page 6	
CivTech 05/10/2018	

APPENDIX D

COLLISION DATA

90th St & Cactus Rd, Scottsdale

CRASH STATISTICS	Involvem	<u>enc</u>							90th St & Cactus Rd, Scottsdale
	t s	τη W							
	len	Motoris: Non- torists							
2014-2016	он В	N N N N N N N N N N N N N N N N N N N							
	nc	M N T O T O T O T O T O T O T O T O T O T							
	O t	O				Code	No.	Code No.	Additional Useful Information
<u>Incidents</u>	# H 8 15 Veh				First Harmful Event	coac	1101	Month	ANGEGRANGE OF THE STANGE OF TH
Fatal	0 0 Ppl		ircumsta	nces	OVERTURN ROLLOVER	1	0	January 1 1	<u>Vehicle Action Codes</u>
		<u> </u>		1	-	2	0	-	
Injury PDO	4 6 Ppl 4 7 Veh		& Run?	J	FIRE_EXPLOSION IMMERSION	3	0	2	1 GOING_STRAIGHT_AHEAD
			lated?	3		3	0		2 SLOWING_IN_TRAFFICWAY
<u>Peds/Bikes Summary</u>	7.0	<u>juries</u>			JACKKNIFE	4	0	April 4 0	3 STOPPED_IN_TRAFFICWAY
	lents son	г а Т			CARGO_EQUIPMENT_LOSS_SHIFT	5	0	May 5 3	4 MAKING_LEFT_TURN
	r r	д д Т	<u>Code</u>	No.	FELL_JUMPED_FROM_VEHICLE	6	0	June 6 0	5 MAKING_RIGHT_TURN
				_	THROWN_OR_FALLING_OBJECT	7	0	July 7 0	6 MAKING_U_TURN
Pedestrian:	0 0 0		0	5	OTHER_NON_COLLISION	8	0	August 8 0	7 OVERTAKING_PASSING
Bicycle:	0 0 0		1	2	EQUIPMENT_FAILURE_TIRES_BRAKES	9	0	September 9 0	8 CHANGING_LANES
		INTERSECTION_RELATED_NON_INTERCHANGE	2	0	SEPARATION_OF_UNITS	10	0	October 10 1	9 NEGOTIATING_A_CURVE
Coc	<u>de</u> No.	ENTRANCE_EXIT_RAMP_NON_INTERCHANGE	3	0	RAN_OFF_ROAD_RIGHT	11	0	November 11 2	10 BACKING
<u>LightCondition</u>		RAILWAY_GRADE_CROSSING	4	0	RAN_OFF_ROAD_LEFT	12	0	December 12 1	11 Avoiding_Vehicle_Object_Pedestrian
DAYLIGHT	1 5	CROSSOVER_RELATED	5	0	CROSS_MEDIAN	13	0	Total 8	12 ENTERING_PARKING_POSITION
DAWN	2 0	FRONTAGE_ROAD_NON_INTERCHANGE	6	0	CROSS_CENTERLINE	14	0		13 LEAVING_PARKING_POSITION
DUSK	3 1	DRIVEWAY	7	0	DOWNHILL RUNAWAY	15	0	(Unit) SurfaceCondition	14 PROPERLY_PARKED
DARK LIGHTED	4 2	ALLEY_ACCESS_RELATED	8	0	MOTOR_VEHICLE_IN_TRANSPORT	16	7	DRY 1 13	15 IMPROPERLY PARKED
DARK NOT LIGHTED	5 0	UNKNOWN_NON_INTERCHANGE	9	0	PEDESTRIAN	17	0	WET 2 2	16 DRIVERLESS_MOVING_VEHICLE
DARK_UNKNOWN_LIGHTING	6 0	THRU_ROADWAY	10	0	PEDALCYCLE	18	0	snow 3 0	17 CROSSING_ROAD
UNKNOWN	99 0	INTERSECTION_INTERCHANGE	11	0	RAILWAY_VEHICLE_TRAIN_ENGINE	19	0	SLUSH 4 0	18 WALKING_WITH_TRAFFIC
Check Total	8	INTERSECTION_RELATED_INTERCHANGE	12	1	LIGHT_RAILWAY_RAILCAR_VEHICLE	20	0	ICE_FROST 5 0	19 WALKING_AGAINST_TRAFFIC
		ENTRANCE_EXIT_RAMP_INTERCHANGE	13	0	ANIMAL_WILD_NON_GAME	21	0	WATER_STANDING_MOVING 6 0	20 STANDING
Weather		FRONTAGE_ROAD_INTERCHANGE	14	0	ANIMAL_WILD_GAME	22	0	SAND 7 0	21 LYING
CLEAR	1 7	OTHER_PART_OF_INTERCHANGE	15	0	ANIMAL PET	23	0	MUD DIRT GRAVEL 8 0	22 GETTING_ON_OR_OFF_VEHICLE
CLOUDY	2 0	<pre> < not defined></pre>	16	0	ANIMAL_LIVESTOCK	24	0	OIL 9 0	23 WORKING_ON_OR_PUSHING_VEHICLE
SLEET_HAIL_FREEZING_RAIN_OR_DRIZZLE	3 0	UNKNOWN_INTERCHANGE	17	0	PARKED_MOTOR_VEHICLE	25	0	OTHER 97 0	24 WORKING_ON_ROAD
RAIN	4 1	UNKNOWN_JUNCTION	18	0	WORK_ZONE_MAINTENANCE_EQUIPMENT	26	0	UNKNOWN 99 0	97 OTHER
SNOW	5 0	UNKNOWN	99	0	STRUCK_BY_FALLING_SHIFTING_CARGO_OR_OBJECT	27	0	Total 15	99 UNKNOWN
SEVERE CROSSWINDS	6 0	OTHER NON INTERCHANGE	109	0	OTHER_NON_FIXED_OBJECT	28	0		
BLOWING_SAND_SOIL_DIRT	7 0	Check Total		8	IMPACT_ATTENUATOR_CRASH_CUSHION	29	0		Body Styles
FOG_SMOG_SMOKE	8 0				BRIDGE_OVERHEAD_STRUCTURE	30	0		-1 NOT_REPORTED
BLOWING SNOW	9 0	<u>CollisionManner</u>			BRIDGE RAIL	31	0		1 \Passenger Vehicles, including RVs
OTHER S	-	SINGLE VEHICLE	1	1	CULVERT	32	0		53 /
	99 0	ANGLE (front to side)(other than left turn)	2	2	CURB	33	0		54 \TRUCKS
Check Total	8	LEFT_TURN	3	1	DITCH	34	0		88 /
check focal	O	REAR_END	Δ	2	EMBANKMENT	35	0		89 \MOBILEHOME (NOT RVS)
<u>TrafficWayType</u>		HEAD ON	5	1	GUARDRAIL_FACE	36	0		92 /
ONE_WAY_TRAFFICWAY	1 0	SIDESWIPE_SAME_DIRECTION	6	0	GUARDRAIL_END	37	0		93 \TRAILERS
TWO_WAY_NOT_DIVIDED	2 2	SIDESWIPE_OPPOSITE_DIRECTION	7	0	CONCRETE_TRAFFIC_BARRIER	38	0		120 /
	3 0		8	0	CABLE_TRAFFIC_BARRIER	39	0		121 \MOTORCYCLES
TWO_WAY_NOT_DIVIDED_WITH_CONTINUOUS_LEFT_TURN_LANE		REAR_TO_SIDE					0		128 /
TWO_WAY_DIVIDED_UNPROTECTED_PAINTED_4_FEET_MEDIAN	4 5	REAR_TO_REAR	9	0	OTHER_TRAFFIC_BARRIER	40	1		
TWO_WAY_DIVIDED_POSITIVE_MEDIAN_BARRIER	5 1	OTHER	97	Τ.	TREE_BUSH_STUMP_STANDING	41	ı		254 UNKNOWN
UNKNOWN 9		UNKNOWN	99	0	TRAFFIC_SIGN_SUPPORT	42	0		255 NOT REPORTED
Check Total	8	Check Total		8	TRAFFIC_SIGNAL_SUPPORT	43	0		
					UTILITY_POLE_LIGHT_SUPPORT	44	0		
<u>Weekday</u>	-	<u>TravelDirection</u> 1 NORTH			OTHER_POST_POLE_OR_SUPPORT	45	0		
Sunday	1 1	2 SOUTH			FENCE	46	0		
Monday	2 0	3 EAST	I		MAILBOX	47	0		
Tuesday	3 1	4 WEST	7		BUILDING	48	0		
Wednesday	4 2	5 NORTH		1M	OTHER_FIXED_OBJECT	49	0		
<u> </u>		6 NORTE		ΙE	UNKNOWN	99	0		
Friday	6 3	7 SOUTH		SW	Not Reported	255	0		
Saturday	7 1	8 SOUTH		SE	Check Total		8		
Check Total	8	99 UNKNO	WN 9	9					

Printed: 5/11/2018 90th St & Cactus Rd, Scottsdale

<	LOCATION	> <-DATE & TIME->< UNITS GENERAL>
	OFF- D DIS- INTERSECT	OFCR D TO- SRFCND ALGMT GRADE DFCTS BSTYLE TRDR UACT TTL TTL TYP INJR VLTN PHSCND NON INCIDENTS INJURIESFATALITIES H LT WE JCT TRF HE M
INCIDNT ON STREET	MP SET R TANCE STREET	NCIC NCIC YYMMDD HH:MM W TAL U1 U2 1 2 1 2 U1 U2 U1 U2 1 2 U1 U2 U1 U2 1 2 U1 U2 MOT NON 1 2 1 2 D1 D2 D1 D2 LOC PDO INJFATTILMOTNON TILMOTNON R CN CN REL CWY CD C
2823783 Cactus Rd	P 57 90th St	725 725 140122 15:01 4 2 1 1 1 1 1 1 0 0 47 47 E E 1 3 2 0 1 1 1 1 1 2 0 0 255 1 0 N 1 1 0 4 16 4
2853743 Cactus Rd	P 165 90th St	725 725 140523 14:34 6 2 1 1 1 1 1 1 0 0 41 47 W W 1 3 2 0 1 1 1 1 2 1 0 0 255 1 0 0 N 1 1 0 5 16 4
2915335 Cactus Rd	M 125 90th St	725 725 141126 14:57 4 2 1 1 1 1 1 1 99 99 44 44 E W 8 1 2 0 1 1 3 3 1 8 0 0 255 1 2 2 0 0 N 1 1 0 4 16 5
2965388 Cactus Rd	M 80 90th St	725 725 150526 09:34 3 2 1 1 1 1 1 1 0 0 44 76E W 3 10 3 0 1 4 1 1 1 -1 0 0 255 1 0 0 N 1 1 12 4 16 97
3024255 Cactus Rd	M 215 90th St	1 1 97 0 725 725 151113 17:04 6 2 1 1 1 1 1 1 0 0 44 126 W E 1 1 2 0 1 1 3 1 2 1 0 0 255 1 1 1 1 0 0 N 3 1 0 4 16 2
3099952 90th St	P 223 Cactus Rd	725 725 160521 21:38 7 1 1
3142989 90th St	P 0 Cactus Rd	725 725 161002 08:40 1 2 2 2 1 1 1 1 0 0 47 47 E N 1 4 6 0 1 4 3 1 6 -1 0 0 255 1 2 2 0 0 N 1 4 1 2 16 2
		$egin{array}{cccccccccccccccccccccccccccccccccccc$
3175311 90th St	P 0 Cactus Rd	725 725 161216 19:49 6 2 1 1 1 1 1 1 0 0 44 50 E W 1 4 4 0 1 4 1 1 20 -1 0 0 255 1 1 1 1 0 0 N 4 1 1 4 16 3
		4 1 99 3 -1 1 0 0 255

<u>92nd St & Cholla St, Scottsdale</u>

CRASH STATISTICS	<u>I</u>	Involveme	<u>ent</u>								<u>92nd St & </u>
	t s		th S								
0015 0016	nciden		# Motorist # Non- Motorists								
2015-2016	ij	als	0 1 1								
	Inc	[a]	Mor								
	#	Tot	# 1 T T T T T T T T T T T T T T T T T T					<u>Code</u>	No.	Code No.	A
<u>Incidents</u>	3	5 Veh	9 0				First Harmful Event			Month Month	_
Fatal	0	0 Ppl		Ci	rcumsta	nces	OVERTURN ROLLOVER	1	0	January 1 0	V
	0	0 Ppl			Run?	2	FIRE EXPLOSION	2	0	February 2 0	<u>y v</u>
Injury PDO	3	5 Veh		ntersection Rel		2	IMMERSION	3	0	March 3 1	
Peds/Bikes Summary	J			itersection ker	ateu:	2	JACKKNIFE	4	0	April 4 0	•
	S	;	<u>juries</u>						0		
	len	s ci	ا م		a	37-	CARGO_EQUIPMENT_LOSS_SHIFT	5	0	_	•
	Incidents	Persons Fatal	Non- Fatal Dung		<u>Code</u>	No.	FELL_JUMPED_FROM_VEHICLE	6			
				ctionRelation	0	1	THROWN_OR_FALLING_OBJECT	/	0	July 7 0	
Pedestrian:	0	0 0	_	CTION_RELATED	0	1	OTHER_NON_COLLISION	8	0	August 8 0	
Bicycle:	0	0 0	_		1	1	EQUIPMENT_FAILURE_TIRES_BRAKES	9	0	September 9 0	i
			INTERSECTION_RELATED_NON		2	1	SEPARATION_OF_UNITS	10	0	October 10 0	
Co	<u>de</u>	No.	ENTRANCE_EXIT_RAMP_NON	_INTERCHANGE	3	0	RAN_OFF_ROAD_RIGHT	11	0	November 11 1	1
<u>LightCondition</u>			RAILWAY_GF	RADE_CROSSING	4	0	RAN_OFF_ROAD_LEFT	12	0	December 12 0	1:
DAYLIGHT	1	2		SOVER_RELATED	5	0	CROSS_MEDIAN	13	0	Total 3	1:
DAWN	2	0	FRONTAGE_ROAD_NON	I INTERCHANGE	6	0	CROSS_CENTERLINE	14	0		1
DUSK	3	0		DRIVEWAY	7	0	DOWNHILL_RUNAWAY	15	0	(Unit) SurfaceCondition	1
DARK LIGHTED	4	1	ALLEY AC	CCESS_RELATED	8	0	MOTOR_VEHICLE_IN_TRANSPORT	16	2	DRY 1 5	1.
DARK_NOT_LIGHTED	5	0		INTERCHANGE	9	0	PEDESTRIAN	17	0	WET 2 0	1
DARK_UNKNOWN_LIGHTING	6	0		THRU_ROADWAY	10	0	PEDALCYCLE	18	0	snow 3 0	1
UNKNOWN		0		_ N_INTERCHANGE	11	0	RAILWAY_VEHICLE_TRAIN_ENGINE	19	0	SLUSH 4 0	1
Check Total		3	INTERSECTION_RELATED		12	0	LIGHT_RAILWAY_RAILCAR_VEHICLE	20	0	ICE FROST 5 0	1
			ENTRANCE_EXIT_RAMP		13	0	ANIMAL WILD NON GAME	21	0	WATER_STANDING_MOVING 6 0	2
Weather			FRONTAGE_ROAD		14	0	ANIMAL_WILD_GAME	22	0	SAND 7 0	2
CLEAR	1	3	OTHER_PART_OF		15	0	ANIMAL_PET	23	0	MUD_DIRT_GRAVEL 8 0	2:
CLOUDY	2	0		- <not defined=""></not>	16	0	ANIMAL_LIVESTOCK	24	0	OIL 9 0	2:
SLEET_HAIL_FREEZING_RAIN_OR_DRIZZLE	3	0		N INTERCHANGE	17	0	PARKED_MOTOR_VEHICLE	25	0	OTHER 97 0	2.
RAIN	4	0		OWN_JUNCTION	18	0	WORK_ZONE_MAINTENANCE_EQUIPMENT	26	0	UNKNOWN 99 0	9'
SNOW	5	0		UNKNOWN	99	0	STRUCK_BY_FALLING_SHIFTING_CARGO_OR_OBJECT	27	0	Total 5	9
SEVERE_CROSSWINDS	6	0	OTHER NON	N INTERCHANGE	109	0	OTHER_NON_FIXED_OBJECT	28	0	10001	
BLOWING_SAND_SOIL_DIRT	7	0		Check Total		3	IMPACT_ATTENUATOR_CRASH_CUSHION	29	0		Bo
FOG_SMOG_SMOKE	8	0				_	BRIDGE_OVERHEAD_STRUCTURE	30	0		
		0	Col	lliai an Mannan					0		
BLOWING_SNOW OTHER	9 97	0		llisionManner	1	1	BRIDGE_RAIL CULVERT	31 32	0		
			ANGLE (front to side)(ot	INGLE_VEHICLE	1				1		J.
	99	0	ANGLE (HOIR to side)(or		2	0	CURB	33	1		J.
Check Total		3		LEFT_TURN	3	1	DITCH	34	0		8
m 66' W m				REAR_END	4	1	EMBANKMENT	35	0		8:
TrafficWayType	1	0	CIDECMIDE CA	HEAD_ON	5	0	GUARDRAIL_FACE	36	0 0		9.
	1	0	SIDESWIPE_SA		6	0	GUARDRAIL_END	37			9.
TWO_WAY_NOT_DIVIDED	2	0	SIDESWIPE_OPPOSI	_	7	0	CONCRETE_TRAFFIC_BARRIER	38	0		12
	3	0		REAR_TO_SIDE	8	0	CABLE_TRAFFIC_BARRIER	39	0		12
	4	0		REAR_TO_REAR	9	0	OTHER_TRAFFIC_BARRIER	40	0		12
TWO_WAY_DIVIDED_POSITIVE_MEDIAN_BARRIER	5	3		OTHER	97	0	TREE_BUSH_STUMP_STANDING	41	0		25
UNKNOWN	99	0		UNKNOWN	99	0	TRAFFIC_SIGN_SUPPORT	42	0		25
Check Total		3		Check Total		3	TRAFFIC_SIGNAL_SUPPORT	43	0		
							UTILITY_POLE_LIGHT_SUPPORT	44	0		
<u>Weekday</u>			TravelDirecti	ion 1 NORTH	N	I	OTHER_POST_POLE_OR_SUPPORT	45	0		
Sunday	1	0		2 SOUTH	S	5	FENCE	46	0		
Monday	2	0		3 EAST	E		MAILBOX	47	0		
Tuesday	3	1		4 WEST	M	I	BUILDING	48	0		
Wednesday	4	0		5 NORTHW	EST N	IM	OTHER_FIXED_OBJECT	49	0		
Thursday	5	1		6 NORTHE	AST N	ΙE	UNKNOWN	99	0		
	6	1		7 SOUTHW	EST S	SW	Not Reported	255	0		
Saturday		0		8 SOUTHE		EΕ	Check Total		3		
Check Total		3		99 UNKNOW		9					
Check focal		9		22 2111110W		_					

Additional Useful Information

1	GOING STRAIGHT AHEAD
	SLOWING IN TRAFFICWAY
	STOPPED IN TRAFFICWAY
	MAKING_LEFT_TURN
	MAKING_RIGHT_TURN
	MAKING U TURN
7	OVERTAKING PASSING
8	CHANGING LANES
9	NEGOTIATING A CURVE
	BACKING
11	Avoiding_Vehicle_Object_Pedestrian
	ENTERING PARKING POSITION
	LEAVING PARKING POSITION
	PROPERLY PARKED
	IMPROPERLY PARKED
	DRIVERLESS MOVING VEHICLE
	CROSSING ROAD
18	WALKING WITH TRAFFIC
19	WALKING AGAINST TRAFFIC
	STANDING
21	LYING
22	GETTING_ON_OR_OFF_VEHICLE
23	WORKING_ON_OR_PUSHING_VEHICLE
24	WORKING_ON_ROAD
97	OTHER
99	UNKNOWN
Вос	<u>ly Styles</u>
-1	NOT_REPORTED
1	\Passenger Vehicles, including RVs
53	
	\TRUCKS
54 88	
54 88	/ \MOBILEHOME (NOT RVS)
54 88 89 92	/ \MOBILEHOME (NOT RVS)
54 88 89 92	/ \MOBILEHOME (NOT RVS) / \TRAILERS
54 88 89 92 93 120	/ \MOBILEHOME (NOT RVS) / \TRAILERS
54 88 89 92 93 120	/ \MOBILEHOME (NOT RVS) / \TRAILERS / \MOTORCYCLES
54 88 89 92 93 120 121 128	/ \MOBILEHOME (NOT RVS) / \TRAILERS / \MOTORCYCLES

<	LOCATION	> <-DATE & TIME->< SEVERITY><	- GENERAL>
	OFF- D DIS- INTERSECT	OFCR D TO- SRFCND ALGMT GRADE DFCTS BSTYLE TRDR UACT TTLTTLTYP INJR VLTN PHSCND NON INCIDENTS INJURIESFATALITIES H LT V	WE JCT TRF HE M
INCIDNT ON STREET	MP SET R TANCE STREET	NCIC NCIC YYMMDD HH:MM W TAL U1 U2 1 2 1 2 U1 U2 U1 U2 1 2 U1 U2 D1 D2 D1 D2 LOC PDOINJFATTTLMOTNONTTLMOTNON R CN 0	CN REL CWY CD C
3033201 92nd St	P 50 Cholla Dr	725 725 151126 04:37 5 1 1 2 1 99 44 S 1 2 0 4 1 99 99 -1 13 0 0 255 1 0 0 Y 4	1 0 5 33 1
3061849 92nd St	P 0 Cholla Dr	725 725 160301 14:48 3 2 1 1 1 1 1 1 0 0 84 44 S N 1 4 4 0 1 4 1 1 20 -1 0 0 255 1 0 N 1	1 1 5 16 3
		4 1 1 1 1 1 0 0 255	
3105672 92nd St	M 20 Cholla Dr	725 725 160617 15:11 6 2 1 1 1 1 1 99 0 255 50 N N 1 3 3 0 1 1 1 99 1 99 0 0 255 1 0 0 Y 1	1 2 5 16 4
		4 1 -1 0	

Printed: 5/11/2018 92nd St & Cholla St, Scottsdale

APPENDIX E

TRIP DISTRIBUTION CALCULATIONS

		2020		2030
Quadrant	Population	Percent	Population	Percent
North Northwest	23,106	7.9%	31,318	%8.6
North Northeast	39,400	13.5%	44,108	13.8%
North	62,506	21.4%	75,427	23.6%
East Northeast	29,846	10.2%	32,605	10.2%
East Southeast	15,327	5.3%	16,045	2.0%
East	45,172	15.5%	48,650	15.2%
South Southeast	2,898	1.0%	3,016	0.9%
South Southwest	70,481	24.2%	75,901	23.8%
South	73,379	25.2%	78,918	24.7%
West Southwest	36,969	12.7%	38,713	12.1%
West Northwest	73,288	25.2%	77,479	24.3%
West	110,258	37.9%	116,192	36.4%
Totals	291,315	100.0%	319,186	%6.66

Select Analysis Year (2020, 2030, 2040,2050) 2020

10 miles

Population radius:

Trip Distribution - Summaries

Appendix E

ClvTech

Page 1 April 2018

0-mile	radiu	s 2020	2030	% of	2020	2030			2020	2030	% of	2020	2030	Appendix E
RAZ	MPA		Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population			Adjusted	Adjusted	₹
ENE							ESE							
248	SC	37,661	39,019	20%	7,532	7,804	248	SC	37,661	39,019	15%	5,649	5,853	
230 249	SC SC	33,607 21,657	41,394 22,818	20% 60%	6,721 12,994	8,279 13,691	249 264	SC SR	21,657 6,766	22,818 7,102	40% 15%	8,663 1,015	9,127 1,065	1
250	FH	25,977	28,315	10%	2,598	2,832	204	SIX	0,700	7,102	1376	1,013	1,005	
		-	-		-	-			-	-		-	-	
		-	-		-	-			-	-		-	-	
		-	-		-	-			-	-		-	-	
		-	-		-	-				-		-	-	
		-	-		-	-			-	-		-	-	1
		-	-		-	-			-	-		-	-	
		-	-		-	-			-	-		-	-	
		-	-		-	-			-	-		-	-	
		_	_		-	_			_	-		-	-	
		-	-		-	-			-	-		-	-	'
		-	-		-	-			-	-		-	-	
		-	-		-	-			-	-		-	-	
		-	-		-	-						-	-	East
		-	-		-	-			-	-		-	-	Ë
		-	-		-	-			-	-		-	-	from
		-	-		-	-			-	-		-	-	Ę.
		-	-		-	-			-	•		-	-	엹
		-	-		-	-			-	-		-	-	풀
		-	-		-	-			-	-		-	-	Population
		-	-		-	-			-	-		-	-	ے
		-	-		-	-			-	-		-	-	엹
Fron	n ENE		-		29,846	32,605	From	n ESE		-		15,327	16,045	Distribution -
	n East				23,040	32,003	1101	II LOL				45,172	48,650	ist

0-mile	e radiu	s 2020	2030	% of	2020	2030			2020	2030	% of	2020	2030	Appendix E	
RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted	٩	
wsw							WNW							ł	
245	PH	57,570	59,845	20%	11,514	11,969	227	PH	56,483	67,265	5%	2,824	3,363	i	
246 247	PH SC	60,062 13,321	62,330 13,647	5% 10%	3,003 1,332	3,117 1,365	228 245	PH PH	17,962 57,570	39,116 59,845	5% 20%	898 11,514	1,956 11,969	i	
261	PH	35,232	38,363	15%	5,285	5,754	243	PH	60,062	62,330	90%	54,056	56,097	i	
262	PV	14,198	14,871	70%	9,939	10,410	247	SC	13,321	13,647	30%	3,996	4,094	i	
263	SC	36,704	37,882	15%	5,506	5,682			-	-		-	-	i	
349	MC	391	416	100%	391	416			-	-		-	-	i	
		-	-		-	-			-	-		-	-	i	
		-	-		-	-			-	-		-	-	i	
		-	-		-	-			-	-		-	-	i	
		-	-		-	-			-	-		-	-	l	
		_	-		-	-			-	-		-	-	i	
		-	-		-	-			-	-		-	-	i	e 5
		-	-		-	-			-	-		-	-	i	Page
		-	-		-	-			-	-		-	-	i	_
		-	-		-	-			-	-		-	-	l	
		-	-		-	-			-	-		-	-	i	
		-	-		-	-			-	-		_	-	est	
		-	-		-	-			-	-		-	-	≥	
		-	-		-	-			-	-		-	-	ᄩ	
		-	-		-	-			-	-		-	-	<u>ٿ</u>	
		-	-		-	-			-	-		-	-	흕	
		-	-		-	-			-	-		-	-	пa	
		-	-		-	-			-	-		-	-	ွ	
		-	-		-	_			-	-		-	-	Ü	등
		-	-		-	-			-	-		-	-	i.	⊢.ŏ
		-	-			<u>-</u>			-	-			-	ğ	CivTech
	WSW				36,969	38,713	From	WNW			_	73,288	77,479	Distribution - Population from West	į
From	West											110,258	116,192	ĕ	-01FP

SSE 248 \$	SC SR	37,661 6,766 - -	39,019 7,102	5% 15%	Adjusted 1,883	Adjusted	RAZ	MPA	Population	Population	TAZ	Adjusted	Adjusted
248					1 883								, iajaoioa
					1 883		SSW						
264	SR	6,766 - - -	7,102	15%		1,951	263	SC	36,704	37,882	85%	31,198	32,200
		-	-		1,015	1,065	262	PV	14,198	14,871	25%	3,550	3,718
		-			-	-	271 272	PH SC	67,978	72,784	10%	6,798	7,278
		-	-		-	-	212	SC	72,339	81,764	40%	28,936	32,706
			-		-	-			-	-		-	-
		-	-			-			-	-		-	
		_	_		_	_			_	_		_	_
		_	_		_	_			_	_		_	_
		-	-			-			-	-		-	
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
						-						-	
		_	_		_	_			_	_		_	_
		_	-		_	_			-	-		_	_
		-	-		-	-			-	-		-	_
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
		-	-		-	-			-	-		-	-
	SSE		-		2,898	3,016	From		-	-		-	-

APPENDIX F

BACKGROUND GROWTH RATE CALCULATIONS

Location of counts: 92nd St

btwn Cholla St & Cactus

Rd

Source(s): City of Scottsdale 2014 and 2016 Average Daily Traffic Volumes Segment

	Year	Volume
Start	2014	12,100
End	2016	12,600
AAGR		2.0%
Exp Factor		1.041

Growth Rate Used 2.0% Per-Year Multiplier 1.020

	Expansion	
Year	Factor(s)	
2018	1.000	
2019	1.020	
2020	1.040	Opening
2021	1.061	
2022	1.082	
2023	1.104	
2024	1.126	
2025	1.149	
2026	1.172	
2027	1.195	
2028	1.219	
2029	1.243	
2030	1.268	
2031	1.294	
2032	1.319	
2033	1.346	
2034	1.373	
2035	1.400	
2036	1.428	
2037	1.457	
2038	1.486	
2039	1.516	
2040	1.546	
2041	1.577	
2042	1.608	
2043	1.641	
2044	1.673	
2045	1.707	
2046	1.741	
2047	1.776	
2048	1.811	
2049	1.848	
2050	1.885	

APPENDIX G

2020 PEAK HOUR ANALYSIS

05/11/2018 CivTech

19_UP_2018_V3

h Signalized Intersection Summary	•	SBR	*-	215	215	100	1.00		1870	0.90	2	700	1585	239	1585	110	1.00	700	0.34	700	1.08	22.0	1.3	4.7	23.4	S			ı									Report Page 2
ection Su	→	SBT	*	7.7	7	0	1.00	8	1870	06.0	2	826	1870	23	1870	8.0 8.0	9	826	0.03	826	1.8	18.9	0.0	0.4	19.0	<u>B</u>	298	22.6 C									-	Synchro 10 Report Page 2
ed Inters	٠	SBL	<u>-</u>	32	32	100	1.00		1870	30	2	674	1402	36	1402	2.8	1.00	674	0.05	100	1.00	19.5	0.0	9.0	19.6	В			ı								(Š.
HCM 6th Signalized Intersection Summary	•	NBR		4 -	4 0	100	1.00		1870	0.90	2	260	588	12	1764	0.5	0.33	6//	0.02	100	1.00	18.8	0.0	0.2	18.9	В			ı									
HCM 6th	•	NBT	£		_ <	>	1.00	8	1870	06.0	2	520	1176	0	0	0.0	0.0	0	0.00	0 0	0.00	0.0	0.0	0.0	0.0	ď	80	20.6 C	000	61.0	0.9	55.0	6.1					
	•	NBL	<u>-</u>	61	19	100	1.00		1870	060	2	546	1117	89	1117	4.4	1.00	546	0.12	246	1.00	20.4	0.5	1.2	20.9	S			ı									
	4	WBR		23	73	100	1.00		1870	060	2	46	106	454	1851	21.1	90:0	848	0.53	848	1.00	23.3	0.0	9.3	24.0	S			9	59.0	0.9	53.0	1.1					
	ļ	WBT	*	111		>	1.00	8	1870	0.90	2	1614	3522	435	1777	21.1	1.12	814	0.53	814	1.00	23.3	0.0	8.9	24.0	S	910	24.3 C										
	\	WBL	<u>, -</u>	61	6	1.00	1.00		1870	06:0	2	165	0.46 475	21	475	4.3	1.00	165	0.13	100	1.00	38.0	0.0	0.5	38.4	۵			4	61.0	0.9	55.0	0.0					
	>	EBR	¥_	16	- 6	1.00	1.00		1870	06:0	2	726	0.46	101	1585	4. A	1.00	726	0.14	1.00	1.00	18.8	0.0	1.7	18.9	B			ı						29.8	ပ		
	†	EBT	‡	97.2	912	>	1.00	8	1870	080	2	1629	3554	1080	1777	28.4	4.02	1629	99.0	1629	1.00	25.3	0.0	12.0	26.3	S	1402	35.4 D	2	59.0	0.9	53.0	0.3					
	•	EBI	<u>-</u>	199	661	1.00	1.00		1870	06.0	2	237	0.46	221	625	33.9	1.00	237	0.93	237	1.00	46.4	40.7	9.4	87.1	<u>.</u>			ı									
Background PM		Movement	Lane Configurations	Iraffic Volume (veh/h)	Future Volume (veh/h)	Ped-Bike Adi(A. pbT)	Parking Bus, Adj	Work Zone On Approach	Adj Sat Flow, veh/h/ln	Adj Flow Kate, venin Peak Hour Factor	Percent Heavy Veh, %	Cap, veh/h	Arrive Un Green Sat Flow, veh/h	Grp Volume(v), veh/h	Grp Sat Flow(s),veh/h/ln	U Serve(g_s), s Ovcle O Clear(g_c) s	Cycle of Clear(9_c), 3 Prop In Lane	Lane Grp Cap(c), veh/h	V/C Ratio(X)	Avail Cap(c_a), veh/h	Upstream Filter(I)	Uniform Delay (d), s/veh	Incr Delay (d2), s/veh	%ile BackOfQ(50%),veh/lin	Unsig. Movement Delay, s/veh LnGrp Delav(d) s/veh	LnGrp LOS	Approach Vol, veh/h	Approach Delay, s/veh Approach LOS	Timer - Assigned Phs	Phs Duration (G+Y+Rc), s	Change Period (Y+Rc), s	Max Green Setting (Gmax), s	Green Ext Time (p_c), s	Intersection Summary	HCM 6th Ctrl Delay	HCM 6th LOS	3	05/11/2018 CivTech

EBI			١,				-	-	`
EBL EBT 7	\	ţ	1	•	—	•	٠	→	*
75 720 75 720 1.20 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.90 0.90 0.90 0.90 2 2 2 2 2 2 2 1.629 0.46 0.46 458 3554 83 800 83 800 1.23 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
75 720 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 2 1.45 1629 0.46 0.46 458 3554 83 800 83 800 458 1777 21.7 189	*	₹		- 8	ę t √	c	<u>ب</u> د	← [* _ 00
100 0 100 100 100 100 100 100 100 100 1	7 07	1080	11	5 6 63	9 4	7 0	23	77	302
1.00 1.00 1.00 1.00 1.00 83 800 0.90 0.90 0.46 0.46 0.46 0.46 0.46 1.29 0.46 0.46 0.45 2.2 1.42 1.62 0.46 0.46 0.46 0.45 1.83 8.00 0.45 0.45 1.83 8.00 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46	0	0	<u>-</u>	20	0	1 C	0	0	0
1.00 1.00 No 1.00 No 1.00 83 800 0.90 0.90 0.46 0.46 0.46 458 3554 358 800 458 177 18.9	10.	,	1.00	1.00	,	1.00	1.00	,	1.00
NO 1870 1870 1870 1870 1870 1870 1870 1870		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870 1870 1870 1870 1870 1870 1870		No			No			No	
83 800 0.90 0.90 2 2 2 145 1629 0.46 0.46 458 3554 88 1777 21.7 18.9 54.4 18.9	187	1870	1870	1870	1870	1870	1870	1870	1870
0.90 0.90 0.90 0.90 0.90 0.46 0.46 0.46 0.46 458 3554 21.7 18.9 21.7 18.9		1200	16	103	_	7	26	30	436
2 2 2 145 1629 0.46 0.46 458 3554 777 21.7 18.9 54.4 18.9	0.9	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.90
145 1629 0.46 0.46 0.46 458 3554 7 83 8777 7 21.7 18.9 54.4 18.9		2	2	2	2	2	2	7	7
0.46 0.46 458 3554 7 83 800 458 1777 7 21.7 18.9 54.4 18.9		1641	79	461	618	177	219	826	700
458 3554 7 83 800 458 1777 7 21.7 18.9 54.4 18.9		0.46	0.46	0.44	0.44	0.44	0.44	0.44	0.44
83 800 458 1777 7 21.7 18.9 54.4 18.9	1585 632	3580	22	927	1399	400	1406	1870	1585
458 1777 2 21.7 18.9 54.4 18.9	78 8	269	624	103	0	6	26	30	436
21.7 18.9 54.4 18.9	1585 632	1777	1860	927	0	1798	1406	1870	1585
54.4 18.9		32.8	32.8	8.5	0.0	0.3	1.3	1.	25.4
	3.4 20.0	32.8	32.8	9.6	0.0	0.3	1.6		25.4
1.00			0.03	1.00		0.22	1.00		1.00
-ane Grp Cap(c), veh/h 145 1629	726 250	814	853	461	0	794	119	826	700
0.57 0.49	ľ	0.73	0.73	0.22	0.00	0.01	0.04	0.04	0.62
Avail Cap(c_a), veh/h 145 1629 7	726 250	814	853	461	0	794	119	826	700
		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00 1.00 1		1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh 48.7 22.7 1	18.5 29.7	26.5	26.5	21.7	0.0	18.8	19.2	19.0	25.8
ncr Delay (d2), s/veh 5.4 0.2	0.1 0.1	3.4	3.2	1.	0.0	0.0	0.1	0.1	4.1
0:0 0:0 He		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
/ln 2.7 7.9		14.3	15.0	2.0	0.0	0.1	0.4	0.5	10.3
veh									
54.0 22.9	18.6 29.7	29.9	29.7	22.9	0.0	18.8	19.4	19.1	29.9
0		ပ	ပ	U	⋖	В	В	В	0
Approach Vol. veh/h		1227			112			492	
5		29.8			22.5			28.7	
		ပ			ပ			ပ	
imer - Assigned Phs 2	4		9		00				
2 2	610	ı	200	ı	610	ı	ı	ı	ı
	0.10		0.40		0.10				
٥	0.0		0.0		0.0				
	56.4		27.4		34.8				
	0.0		10		9.8				
ı		ı		ı		ı	ı	ı	П
ry									
HCM 6th Ctrl Delay 2	27.8								
	ပ								

05/11/2018 CivTech

2: Existing Dr. & Cholla St. HCM 6th TWSC												I																			Sunchro 10 Renort	
												ı														WBT	,	- 0	Α '			
			Z	* - ~	ľ		亨	0 0		2 2	2 14	_	35 3	33	12 6.22		2 3 3 1 8		0. 1.		971 1081			NB	8.4 A	FBT FBR WBI WBT	- 1618	- 0.008		•		
			WBT NBL	← -	, _	0 0				2 3		Minor1	0		- 6.42	- 5.42	- 5.42	978 -	- 1020		- 971	-	- 991	2	∞i	FRT FR						
				=======================================	= =	0 6			' 8	g ~	12	Major2	4		4.12		2 2 1 8	1618			1618			WB	4.4			8.4	A 0	•		
			EBR WBL		n	0 2				2 %																NRI n1 NRI n2	971	0.002 0.013 8.7 8.4	4 0	•		
္ဌ ፮		5.5	EBT	<u>*</u>		0 	-			2 8		Major1	0	ĺ						ľ				ш	o S	vmt		(s)	eh)	<u>.</u>		
18-100 - MASC Background PM	Intersection	Int Delay, s/veh	Movement	Lane Configurations	Future Vol, verifit	Conflicting Peds, #/hr	RT Channelized	Storage Length Veh in Median Storage, #	Grade, %	Peak Hour Factor Heavy Vehicles, %	Mvmt Flow	Major/Minor	Conflicting Flow All	Stage 1	Critical Hdwy	Critical Hdwy Stg 1	Critical Hdwy Stg 2	Pot Cap-1 Maneuver	Stage 1	Platoon blocked, %	Mov Cap-1 Maneuver Mov Cap-2 Maneuver	Stage 1	Stage 2	Approach	HCM LOS	Minor Lane/Maior Mvmt	Capacity (veh/h)	HCM Control Delay (s)	HCM Lane LOS HCM 95th %tile Q(veh)		05/11/2018	CivTech

ntersection								
Int Delay, s/veh	5.4							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	æ			÷	-	*-		
Traffic Vol, veh/h	_د د	19	23	9 .	14	200		
Future Vol, ven/n	ro e	6	23	9	14	2		
Conflicting Peds, #/hr	0 2	0 6		0 6	0 6	0 10		
Sign Colling PT Channelized	100	No ee	100	N P	olop dolo	None		
Storage Length		201		100				
Veh in Median Storage.	**			0	0	٠		
Grade. %	0	ľ	ľ	0	0	ľ		
Peak Hour Factor	06	8	06	06	06	8		
Heavy Vehicles. %	2	2	2	2	2	2		
Mvmt Flow	ري ا	21	26	7	16	22		
Major/Minor N	Major1	_	Major2	2	Minor1			
low All	0	0	24	0	73	4		
Stage 1					7			
Stage 2	ľ		ľ	ľ	26	ľ		
Critical Hdwy	•		4.12	٠	6.42	6.22		
Critical Hdwy Stg 1					5.42			
Critical Hdwy Stg 2	•	•	•	•		•		
Follow-up Hdwy			2.218			3.318		
Pot Cap-1 Maneuver	•		1591		931	1066		
Stage 1	1	1		1	1009	1		
Stage 2	•		•	•	964	•		
Platoon blocked, %	1	1	0	1	3	, , ,		
Mov Cap-1 Maneuver	•	•	1591	•	916	9901		
Mov Cap-2 Maneuver	1	1		٠	916	1		
Stage 1			•		993			
Stage 2			1	1	964			
Annroach	H		WB		R			
Obt Control Dolon o	3		2 0		2			
HCM LOS	>		0.0		0.0 A			
to Major	ш	2	2	FOL	C	_		
Minor Lane/Major Mvmt		NBLn1 NBLn2	VBLn2	EBT	EBR WBL	_	WBT	
Capacity (veh/h)		916	1066	•	•	1591		
HCM Lane V/C Ratio		0.01	0.021		•	- 0.016		
HCM Control Delay (s)		5.	9 8.4		•	7.3	0	
HCM Lane LOS		⋖	⋖	•		⋖	A	
HCM 95th %tile O(veh)		0	0	٠		C		

05/11/2018 CivTech

3: Cholla St. & 89th St. HCM 6th TWSC	I											ı													ı	Н	ı					Synchro 10 Report	
3: Chol	I											ı													ı	П	ı						
	П											ı													ı	Ш	ı						
	П											ı													I	Ш	ı						
	П											ı													ı	Ш	ı						
	ш		SBR	7	9	O o	None			8 ~	7	1	37	•	6.22	'	٠	3.318	32	•		940 1035			ш		Bln1	891	- 0.085	A 0	0.5		
	ш		SBL	} -\$	62	0 0		0 0	0	8 ~	69	Minor2	61	37	6.42	5.42			985	666	:	940	086	666	87	9.4 A	WBR			1			
	ш		WBR	C	38	P. 0	None	٠.		2 90	42	2	0	•		ľ	٠	1		•	1	٠.			ш		WBT			ľ			
	ш		WBT	.	1 4	Prop 0		. 0	0	8 ~	16	Major2	ŀ			ŀ	٠	٠		٠	•		٠		WR	0	FBT WBT WBR SBI n1		. 0	⋖			
	ш		EBT	÷۲	7	Prop 0		. 0	0	2 9	00	Ž	0	٠		ŀ	٠	٠		٠	٠				ш		EBI		0.005	< <	>		
	ш	5.2	EBL	٢	7	Prop 0			•	8 ~	- ∞	Major1	28		4.12			2.218	1540			1546			H	3.7	П		0				
SC PM	ш			SU				Storage Length Veh in Median Storage, #	6			M	ш									wer 1			Ш	Jy, S	Mvmt		atio	(40r)	(veil)		
18-100 - MASC Background PM		,veh		Lane Configurations	Future Vol, veh/h	Conflicting Peds, #/hr	elized	ngth Ilan Str		Peak Hour Factor Heavv Vehicles. %		_	Conflicting Flow All	e1	e Z	wy Sta	Critical Hdwy Stg 2	Hdwy	Pot cap-1 Maneuver Stane 1	e 2	Platoon blocked, %	Mov Cap-1 Maneuver	e 1	e 2	ш	HCM Control Delay, s HCM LOS	Minor Lane/Maior Mymt	(eh/h)	HCM Lane V/C Ratio HCM Control Delay (s)	HCM Lane LOS			
-100 ckgr	Intersection	Int Delay, s/veh	Movement	Lane Configuratio	ure Vol	Conflicting Pa	RT Channelized	Storage Length Veh in Median S	Grade, %	ik Hour	Mvmt Flow	Major/Minor	flicting	Stage 1	Stage 2 Critical Hdwv	ical Hd	ical Hd	Follow-up Hdwy	Stane 1	Stage 2	ld noo	Cap-1	Stage 1	Stage 2	Annroach	M Cont	or Lan	acity (M Lane M Cont	HCM Lane LOS	IIIC 4 IA	05/11/2018 CivTech	3

WBT WBR SBL SBR
SBR 7 7 7 8 0 Stop None - 90 2 8 8 - 90 2 - 90 2 - 90 2 - 1035

05/11/2018 CivTech

19 UP 2018 V3 12/15/2020

Movement EBL Lane Configurations 12 Traffic Volume (velvh) 12												•
E C		ŧ	<u> </u>	\	Ļ	4	•	-	•	٠	→	•
G		EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	,	æ		-	æ		y -	₩		F	₩	
	12	2	79	32	∞	18	105	745	42	29	489	19
(h/h)	2 5	ഹ	79	32	∞ (9	105	745	42	29	489	19
	0 9	0	0 9	0 9	0	0 9	0 0	0	0 9	0 9	0	0
(100		9	1.00	1.00	0	1.00	1.00		1.00	0.1	5	00.1
Parking Bus, Adj		00.1	1.00	1.00	00.1	1.00	1.00	00.1	1.00	1.00	8.	30.1
e e		NO OF	0107	0101	No	0101	0107	No	0107	0107	No	0101
8		0/81	0/81	0/81	0/81	18/0	18/0	0/81	18/0	0/81	18/0	18/0
u/u		9 0	88 8	36	6	70	113	878	/ 4 /	32	543	7
Peak Hour Factor 0.90		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.9C	0.9
Percell Reavy Ven, 76 2	7	7 01	757	710	7	7117	7	7	755	7	7070	400
Arrivo On Groon		010	2010	010	010	10	000	000	000	000	00 0	8 6
Ì		102	1498	1302	516	1147	847	3418	194	634	3488	135
/heh/h			94	3,6		20	117	430	445	33	376	288
/ln 13	, -	0	1601	1302	0 0	1664	847	1777	1835	77	1777	1846
		000	67	3 3	0	1001	4.6	7.7	7.7	17	4.5	4.5
\$ (3	0	0.0	6.7	10.0	0.0	10	0.1	7.7	7.7	9.4	4.5	4.5
	ç	5	0.94	1.00	5	0.69	1.00		0.11	100	2	0.07
n(r) yeh/h	0	0	143	110	C	169	704	1418	1465	525	1418	1474
ľ		000	0.58	0.30	000	0.17	0.17	030	030	0.06	0 10	02.0
a) youth		000	72.7	20.00	00.0	74.2	70.	1/10	1465	505	1/10	1474
		0 0	100	100	100	100	100	100	1 00	1 00	1 10	101
		000	100	100	000	100	100	100	100	100	8.6	8.6
Libiform Delay (d) styleh 50.6		000	51.4	56.7	00:0	40.2	00.1	3.2	2 2 2	7 2	0 0	0 0
		0.0	2.7	3.00°	0.0	7.7) H	2.0	3.5 D.F.	0.5	2.7	0.2
q	۱ (0.0	2.0	- 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
/lu	4	0.0	2.9	-	0.0	80	0.8	2.4	2.5	0.0	1.4	1.4
veh.		2	ì	•	5	5	2	i	i	5	-	
LnGrp Delav(d).s/veh 50.8	00	0.0	54.7	57.6	0.0	49.8	4.5	3.8	3.8	4.7	3.2	3.2
		A	٥	ш	⋖	Q	A	A	A	⋖	⋖	A
ol. veh/h		107			99			666			296	
Approach Delay skeh	ľ	54.2			541			3 8			33	
Approach LOS		7:E						Q 4			9 ×	
limer - Assigned Phs		2		V		4		α				
ilei - Assigned Filis	1	7 0 1		4 07		0 0		700				
Pris Duration (G+Y+RC), S	=	8.101		18.2		8.101		18.2				
Change Period (Y+RC), S	Ì	0.0		0.0		0.0		0.0				
Max Green Setting (Gmax), s	,	53.0		0.00		11.4		22.0				
viax of creat filtre (g_c+ff), s Green Ext Time (p_c), s		7.8		0.7		4.7		0.3				
		2		5		1		5				ı
Intersection Summary			7 0									
HCM 6th Cuil Delay			0.0 V									
CIVI OIL: ECC			:									
05/11/2018										Ġ.	Synchro 10 Report	Report

Movement EBL EBL WEI	18-100 - MASC Background AM								HCM 6t	4: Cho	4: Cholla St. & 9Znd St. HCM 6th Signalized Intersection Summary	& 92n ection Su	d St mmar
FBL FBT FBR WBL WBT WBR NBL NBT NBR SBL		4	†	<i>></i>	>	ţ	4	•	•	•	۶	→	•
Mathematical Part	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
8	Lane Configurations	*	£\$		*	2		*	*		*	*	
8	Traffic Volume (veh/h)	· ω	4	93	40	4	23	32	315	20	6	612	
100	Future Volume (veh/h)	8	4	93	40	4	23	32	315	20	6	612	
1,00	Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
1.00	Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
No N	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1870 1870	Work Zone On Approach		2			2			2			8	
9 4 103 44 4 26 350 22 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Adj Sat Flow, veh/h/In	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Adj Flow Rate, veh/h	6	4	103	44	4	56	36	320	22	10	089	-
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor	0.00	0.00	0.90	0.90	0.90	0.90	0.00	0.00	0.00	0.00	0.00	0.90
197 7 7 778 128 25 163 612 2662 167 827 2 183 60 153 128 25 163 612 2662 167 827 2 183 60 153 128 25 163 612 2662 167 827 2 138 0 0 153 128 25 128 1402 753 3396 273 1010 3 183 0 0 1594 128 7 0 168 753 3396 273 1010 3 1 138 0 0 1594 128 7 0 168 753 3396 273 1010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	
1310 0.12 0.12 0.12 0.12 0.12 0.13 0.048 0.078 0.019 0.018 0	Cap, veh/h	197	7	178	128	22	163	612	2662	167	827	2810	41
1380 60 1535 1287 216 1402 753 3396 213 1010 3 9 0 107 4 0 30 39 182 190 101 3 0.7 0.0 76 44 0 0 20 177 1832 1010 1 0.7 0.0 76 117 0.0 2.0 1.7 30 33 183 100 1 1.0 0 0.0 158 128 0 188 612 1393 1436 827 1 1.0 0 0.0 158 0.34 0.00 0.16 0.06 0.13 0.01 0 0.0 0.0 0.0 100 1.00 1.00 1.00	Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.78	0.78	0.78	0.78	0.78	0.78
138 0 107 44 0 30 39 182 190 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sat Flow, veh/h	1380	09	1535	1287	216	1402	753	3396	213	1010	3585	53
1380 0 1594 1287 0 1618 753 1777 1832 1010 1 0.7 0.0 7.6 4.0 0.0 2.0 1.7 3.0 3.0 3.3 2.7 0.0 7.6 1.17 0.0 2.0 7.8 3.0 3.0 3.3 1.00 0.0 7.6 1.00 0.87 1.00 0.12 1.00 1.97 0 185 128 0 188 612 1393 1436 827 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Grp Volume(v), veh/h	6	0	107	44	0	30	39	182	190	10	337	353
0.7 0.0 7.6 4.0 0.0 2.0 1.7 3.0 3.3 0.3 1.00 1.00 1.00 2.0 1.7 3.0 3.0 3.3 1.00 1.00 1.00 1.00 1.00 1.	Grp Sat Flow(s),veh/h/ln	1380	0	1594	1287	0	1618	753	1777	1832	1010	1777	1861
27 0.0 7.6 11.7 0.0 2.0 7.8 3.0 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Q Serve(g_s), s	0.7	0.0	7.6	4.0	0.0	2.0	1.7	3.0	3.0	0.3	6.1	6.1
100 0.96 1.00 0.87 1.00 0.87 1.00 0.05 0.00 0.98 1.00 0.88 1.00 0.05 0.00 0.58 0.34 0.00 0.16 0.06 0.13 0.13 0.13 0.13 0.10 0.05 0.00 0.58 0.34 0.00 0.16 0.06 0.13 0.13 0.13 0.11 0.10 0.10 0.10 0.10	Cycle Q Clear(g_c), s	2.7	0.0	7.6	11.7	0.0	2.0	7.8	3.0	3.0	3.3	6.1	6.1
197 0 188 128 0 188 612 1393 1436 827 1 669 00 058 4 0.00 0.168 0.12 1393 1436 827 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Prop In Lane	90.	•	96.0	1.00	•	0.87	1:00	0	0.12	1.00	9	0.03
6.05 0.00 0.58 0.34 0.00 0.16 0.06 0.13 0.01 0.1 0.00 0.00 0.13 0.13 0.10 0.1 0.00 0.00	Lane Grp Cap(c), ven/h	161	0 0	185	128	0	88 3	612	1393	1436	827	1393	1459
000 100 100 100 100 100 100 100 100 100	V/C Katio(X)	0.05	0.00	0.58	0.34	00:0	0.10	0.06	1303	0.13	0.0	1303	145
1.00 1.00	Avail Cap(c_a), ven/n	400	2 6	131	200	0 6	747	710	1393	1430	178	1393	1459
1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00	HCM Platoon Kallo	9.5	9.6	9.5	0.1	00.1	0.1	9.1	00.1	00.1	00.1	1.00	1.00
490 0.00 50.3 55.8 0.00 47.8 45.5 3.1 3.5 5.0 0.1 0.00 2.8 1.6 0.00 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Upstream Filter(I)	00.	0.00	90.	9.1	0.00	3.5	3.	9.7	00.1	00.1	00.1	1.00
lety size the control of the control	Uniform Delay (d), s/veh	49.0	0.0	50.3	22.8	0:0	4/.8	4.5	3.1	3.1	3.5	3.5	3.5
veryinn 0.0	Incr Delay (d2), s/veh	0.1	0.0	7.8	9.1	0.0	0.4	7.0	7.0	0.7	0.0	0.4	0.4
lay sylven by 3 0.0 3.2 1.4 0.0 0.8 0.3 1.0 1.0 0.1 lay sylven by 2 0.0 53.1 57.4 0.0 48.2 4.7 3.3 3.3 3.5 lay sylven by 2 0.0 53.1 57.4 0.0 48.2 4.7 3.3 3.3 3.5 lay sylven by 2 0.0 52.8 53.6 lay sylven by 2 0.0 5.0 5.0 lay sylven by 3 0.0 5.0 lay sylven by 5 0.0 0.3 lay sylven by 5 0.0 lay sy	Initial O Delay(d3),s/veh	0.0	0.0	0:0	0:0	0:0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
lab, siven 1 00 53.1 57.4 0.0 482 4.7 33 3.3 3.5 1	%ile BackOfQ(50%),veh/ln	0.3	0.0	3.2	1.4	0:0	8:0	0.3	1.0	1.0	0.1	5.0	7.
h 528	Unsig. Movement Delay, siven	40.4	c	12.1	A 73	c	40.7	7.4	c	cc	L C	c	c
sh 52.8 53.6 3.4 411 sh 52.8 53.6 3.4 411 s 2 4 6 8 Re), s 100.1 19.9 100.1 19.9 c), s 60 60 60 c), s 60 550 550 c), s 98 96 81 13.7 c), s 2.7 0.8 5.0 0.3	Lingip Delay(u), siveri	- 4	0.0		ŧ. Ц	0.0	7.04	÷ <	5. Q	C: O	C: \	⊲	. o
s 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Approach Vol veh/h		116			74			411			700	
dPhs 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Approach Delay slyeh		52.8			53.6			3.4			3.0	
dPhs 2 4 6 8 (Y+RC), s 100.1 19.9 100.1 19.9 (Y+RC), s 6 6 6 6 6 (R-RC), s 6 6 6 6 6 6 (R-RC), s 6 <t< td=""><td>Approach LOS</td><td></td><td>D</td><td></td><td></td><td>D</td><td></td><td></td><td>V</td><td></td><td></td><td>A</td><td></td></t<>	Approach LOS		D			D			V			A	
100.1 19.9 100.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Timor Accioned Dhe		c				7	I	0			ı	П
100.1 19.9 100.1 10.1 10.0 10.1 10.1 10.	IIIIe - Assigned Fits		7		± 0,0		0		0 9				ı
60 60 60 530 550 530 6 98 96 81 2.7 08 5.0	Phs Duration (G+Y+Rc), s		100.1		19.9		100.1		19.9				
53.0 55.0 53.0 9.8 9.6 8.1 2.7 0.8 5.0	Change Period (Y+Rc), s		0.0		0.9		0.9		0.0				
9.8 9.6 8.1 2.7 0.8 5.0	Max Green Setting (Gmax), s		53.0		55.0		53.0		55.0				
0.0 0.0	Max Q Clear Time (g_c+11), s		9.6		0.6		- C		13.7				
	סופפון בער ווווופ (מ־כז'י א		7.7		0.0		0.0		0.0				
	mersection community												

05/11/2018 CivTech

19 UP 2018 V3 12/15/2020

18-100 - IMASC HCM 6th Signalized Intersection Summary	•	SBR	*-	215	215	0		1.00		230				15.05		1505					ľ		9.1.8				4.7	23.4														Cunchro 10 Donort	Page 2
OO - I	→	SBT	*	21	71	0	,	9.1	NO 25	1870	0.90	2	826	0.44	18/0	10701	0/0	0.0	5	826	0.03	826	9.1	18.0	0.1	0.0	0.4	19.0	В	298	22.6	ر										r chro	
18-1 ed Inters	٠	SBL	_	32	32	0	0.0	1.00	0701	16/0	06:0	2	672	1400	1400	1400	18	23.5	1 00	672	0.05	672	9 5	10.1	0.2	0.0	9.0	19.7	В													Ď	,
Signaliz	•	NBR		2	2	0	1.00	1.00	0701	0/91	06:0	2	329	0.44	144	1726	0.5	0.5	0.43	797	0.02	167	1.00	18.0	0.0	0.0	0.2	18.9	В														
HCM 6th	•	NBT	\$	7	7	0		1.00	NO 1020	0/91	0.90	2	438	0.44	766	0 0	0	0.0	5	0	00.00	0	1.00	0.00	0.0	0.0	0.0	00	A	87	20.7	ر	8	0.10	0.0	34.7	6.1						
	•	NBL	r	99	99	0	1.00	1.00	0701	73	06.0	2	546	0.44	/	1117	47	2 2	100	546	0.13	546	1.00	20.5	0.5	0.0	1.3	210	O														
	4	WBR		23	23	0	1.00	1.00	0701	0/91	06:0	2	46	0.46	100	1051	21.1	21.1	0.06	848	0.53	848	1.00	73.3	0.7	0.0	9.3	240	O				9	59.0	0.0	13.9	=======================================						
	ţ	WBT	₩	111	777	0	9	1.00	No OZO	0/91	0.90	2	1614	0.46	3252	455	21.1	21.1	-	814	0.53	814	1.00	1.00	0.7	0.0	8.9	24.0	O	910	24.3	ر											
	\	WBL	r	19	19	0	1.00	1.00	0701	0/0	0.90	2	165	0.46	4/2	17	4/2	32.7	100	165	0.13	165	1.00	38.0	0.3	0.0	0.5	38.4	D				4	0.19	0.0	57.0	0.0						
	>	EBR	*	95	95	0	1.00	1.00	0701	106	0.90	2	726	0.46	1007	1505	4.7	4.7	100	726	0.15	726	0.0	18 0	0.1	0.0	1.7	19.0	<u>a</u>										29.7	ر			
	†	EBT	ŧ	972	972	0	9	1.00	No OF of	1080	0.90	2	1629	0.46	3554	1777	28.4	28.4		1629	99.0	1629	1:00	1.00 25.3	1.0	0.0	12.0	26.3	O	1407	35.3	۵	2	59.0	0.0	7.6	0.4						
ρ	4	EBL	F	199	199	0	1.00	1.00	0701	221	0.90	2	237	0.46	070	177	33.0	55.0	100	237	0.93	237	0.0	00.1	40.7	0.0	9.4	87.1	<u>.</u>														
otal PM 1: 90th St. & Cactus Rd		Movement	Lane Configurations	Traffic Volume (veh/h)	Future Volume (veh/h)	Initial Q (Qb), veh	Ped-Bike Adj(A_pbT)	Parking Bus, Adj	Work Zone On Approach	Adj Flow Pate veh/h	Peak Hour Factor	Percent Heavy Veh, %	Cap, veh/h	Arrive On Green	Sat Flow, veryn	Grp Volume(v), veryn Crp Cat Elow(c) veb/blb	Olp 3dt Flow(s), verwinin	Ovele O Clear(a, c), s	Pron In I ane	Lane Grp Cap(c), veh/h	V/C Ratio(X)	Avail Cap(c_a), veh/h	HCM Platoon Ratio	Upstream Filter (I)	Incr Delay (d2), siven	Initial Q Delay(d3),s/veh	%ile BackOfQ(50%),veh/ln	Unsig. Movement Delay, sven InGro Delav(d) s/veh	LnGrp LOS	Approach Vol, veh/h	Approach Delay, s/veh	Approacri	Timer - Assigned Phs	Phs Duration (G+Y+Rc), s	Citalige Pellou (1+RC), S May Green Soffing (Gmay) s	Max Q Clear Time (g_c+I1), s	Green Ext Time (p_c), s	Intersection Summary	HCM 6th Ctrl Delay	HCM BILL LOS		4ocT.iO	O5/10/2018

1870 2 2 2 2 177 177 179 9 9 9 9 9 9 1798 0.3 0.3 0.3 0.3 0.3 1700 1.

2 2 2 8.9 927 1.00 0.23 8.9 927 1.00 0.23 21.8 2.1 2.2

11870 81 00.90 2 2 2 726 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.13 11.00 11.10

Grp Volume(v), vervin Grp Sat Flow(s), vervin'n O Serve(g. s), s Cycle O Clear(g. c), s Prop In Lane Lane Grp Cap(c), vervin VIC Ratio(X) Avait Cap(c. a), vervin HCM Platoon Ratio

826 3.04 1.00 1.00 1.00 19.0 0.1 0.0

814 0.73 814 1.00 1.00 26.5 3.4 0.0

1629 0.49 1629 11.00 11.00 22.7 0.2 0.0 7.9

8 6430 1.11 220.0 220 0.03 250 1.00 0.11 0.10 0.00 0.00 B 492

19.4 B

18.8 B

23.0 C

29.7

29.7

22.9 C C 964 25.3 C

54.0

Upstream Filler(1)
Uniform Delay (d), s/veh
Ind Delay (d3), s/veh
Initial Q Delay(d3), s/veh
Skile BackOTO(50/8), veh
Unsig, Movement Delay, s/veh
LnGrp Delay(d3), s/veh

-nGrp LOS

Approach Vol, veh/h Approach Delay, s/veh Approach LOS

0.0 A 116 22.7 C

29.9 C 1227 29.8 C 61.0 6.0 55.0 34.8 8.6

59.0 6.0 53.0 27.4 1.9

61.0 6.0 55.0 56.4 0.0

59.0 6.0 53.0 12.0 0.6

> Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s

Intersection Summary
HCM 6th Ctrl Delay
HCM 6th LOS

Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s

imer - Assigned Phs

1.00 No 30 30 0.90 2 2 2 826 0.44 1870 1.1

1.00 No No 7 0.90 2 618 0.44 1399 0 0 0 0 0 0.00

1.00 No 1870 1200 0.90 2 2 2 1641 0.46 3580 595 1777 777 32.8

1.00 No 1870 800 0.90 2 1629 0.46 3554 800 118.9

> 1870 83 0.90

Lane Configurations
Traffic Volume (vehfn)
Future Volume (vehfn)
Initial O (QD), veh
Ped-Bike Adj (A_pbT)
Parking Bus, Adj
Work Zone On Approach
Adj Sal Flow, vehfn
Peak Hour Factor
Percent Heavy Veh, %
Cap, vehfn
Arrive On Green
Sal Flow, vehfn
Arrive On Green

1870 8 0.90 2 250 250 0.46 630

18-100 - MASC HCM 6th Signalized Intersection Summary 392 392 0 1.00

23 23 00.1

2 0 0 0.

% 0 0.1

1.00 0.1

0 0.0

73 73 1.00 1.00

L₹ 5 0 8 1

VBT1080

080

080

120 720 0

t

& Cactus Rd

Total AM 1: 90th St. 8 Synchro 10 Report Page 2

CivTech 05/10/2018

JS-100 - NMAS HCM 6th TWSC			BL WBT NBL NBR	¥- €v	18 7 4 21	0 0	Free Free Stop Stop	0 -	. 0 0 .	06	2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24	or2 Minor1	ľ	. 4 .	. 48	- 6.42 6.2	- 5.42	2.218 - 3.518 3.318	- 957	- 1019	- +/4			- 974	W W	П	C TANN I WAT	3 .		.0220.012 8.47.3 0
Cholla St.	I	6.1	EBT EBR WBL		 v		Free Free Fr	1			2 2		Major1 Major2	ľ					22	- 16			•			FR	П	Ca IdN1a IdN	946 1080		8.8 8.4
rotal Plvi 2: Existing Dr. & Cholla St.	1	Intersection Int Delay, s/veh		igurations	Traffic Vol, veh/h	#/hr		Storage Length	Veh in Median Storage, #	Peak Hour Factor	Heavy Vehicles, %	MVMt Flow	Major/Minor Maj	-low All	Stage 1	Stage 2	Critical Hdwy	Critical Hdwy Stg 1	Gillical Hawy Sig 2 Follow-up Hdwy	Pot Cap-1 Maneuver	Stage 1	Staye 2 Platoon blocked: %	Mov Cap-1 Maneuver	Mov Cap-2 Maneuver	Stage 2	Approach	HCM Control Delay, s HCM LOS	Minor Lano/Major Mumt	Capacity (veh/h)	HCM Control Delay (s)	

18-100 - MASC HCM 6th TWSC

Total AM 2: Existing Dr. & Cholla St.

16 25 16 25

Lane Configurations 13
Traffic Vol, vehh 3
Conflicting Peds, #hr 0
Sign Control Free Fr
Sign Control Free Fr
Sign Strage Length - No Veh in Medan Storage, # 0
Grade, % 0
Peak Hour Factor 90
Heavy Vehicles, % 2
Mwmt Flow 3

. 0 0 0 7 7

90 2 31

8

EBT EBR WBL WBT NBL NBR

Intersection Int Delay, s/veh

Minor1
0 83 14
- 14 - 642
- 642 6.22
- 5.42 - 5.42
- 5.42 - 3.518
- 3.518 3.318
- 1009
- 1009

Major2 0 25 - - - 4.12 - - 2.218

Major/Minor Mk
Conflicting Flow All
Stage 1
Stage 2
Critical Hokey
Critical Hokey Sig 2
Follow-up Hokey Sig 2
Follow-up Hokey
Sigge 1
Sigge 1
Sigge 1
Sigge 1

Major1

901 1066 901 -989 -954 -

- 1589

8.7 A

WB

EB 0

Approach HCM Control Delay, s HCM LOS

NBLninblaz EBI EBR WBL WBT 901 1066 . . . 1589 . . . 0.02 0.020, 0.026 . . . 7.3 0 9.1 8.5 . . . 7.3 0 A A A A O II 0.1 0.1 . . 0.1 .

Minor LaneMajor Mvmt Capadiy (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Lane LOS

o 10 Report Page 3

HCM 6th TWSC	Ш																								ı			П						Synchro 10 Report Page 4	
18-100 - MASC HCM 6th TWSC	Ш																								П			П						Synchro	
=	Ш																								П			П							
	Ш																								П			П							
	Ш																								П			П							
	Ш																								П			П							
	Ш																								П			П							
	Ш																								П			П							
	ш		SBR	C	6	0 0	None			2 2 9	2		41	•	6.22		•		1030			1030			П			SBLn1	884	- 0.089	6	0.3			
	ш		SBL	> -9	62	0	dolc '	0 0	0	8 ~ \$	69	Minor2	76	41	6.47	5.42	5.42	3.518	17/	987		921	974	987	ć	201	9.5 A	EBT WBT WBR SBLn1		1	•				
	ш		WBR	20	38 8	0	None			2 7 8	47	_	0	•		ľ						•		ľ	П	ı		WBT		1					
	ш		WBT	€ 2 0	9 2	0 9	E '	. 0	0	8 ~ 8	92	Major2		•			•	•			•	•		Ľ	5	WB	0	EBT		٠,	0 <	τ'			
نير	ш		EBT WBT WBR	₩	12	0	None	. 0	0	3 2 3	22	≥	0				•				•	•		·		ı		EBL	1541	0.007	7.4	Y 0			
9th S	ш	2	EBL	10	2 2	0				2 2 3	=	Major1	62	•	4.12	1 '	•	2.218	1541			1541					33								
t. & 8	ш			ions	ے ۔	, #/hr		torage.		~ %		2	ш			1	g 2		inver				enve		П		lay, s	or Mvmt		Ratio	ay (s)	O(veh)			
oM S	3	s/veh)t	ifigurat	n, venin	g Peds	nelized	ength edian S		ır Facto shicles,	≥	JOL	g Flow	Stage 1	Stage 2	dwv St	dwy St	Hdwy	I Mane	Stage 2	locked	-1 Man	Stane 1	Stage 2	П	_	offrol De	ne/Majo	(veh/h)	e V/C	of Trol De	n %tile		8	
Total PM 3: Cholla St. & 89th St.		Intersection Int Delay, s/veh	Movement	Lane Configurations	Future Vol, veh/h	Conflicting Peds, #/hr	RT Channelized	Storage Length Veh in Median Storage. # -	Grade, %	Peak Hour Factor Heavy Vehicles, %	MVMT F IOW	Major/Minor	Conflicting Flow All	SS S	Stage 2 Critical Hdwv	Critical Hdwy Sta 1	Critical Hdwy Stg 2	Follow-up Hdwy	Pot Cap-1 Maneuver	Sta	Platoon blocked, %	Mov Cap-1 Maneuver	VIOV CAP	Sta		Approach	HCM LOS	Minor Lane/Major Mvmt	Capacity (veh/h)	HCM Lane V/C Ratio	TCM Cor	HCM 95th %tile Q(veh)		CivTech 05/10/2018	

Minor2
0 77 40
- 40 - 3
37 - 542 - 542 - 542 - 3518 3.318
926 1031
985 - 985 - 985

 Major/Minor
 Major I

 Conflicting Flow All
 59

 Stage 1

 Stage 2

 Stage 2

 Critical Hdwy
 4.12

 Critical Hdwy Sig 1

 Critical Hdwy Sig 2

 Follow-up Hdwy
 2.218

 Pot Cap-1 Maneuver
 1545

 Stage 1

 Stage 2

 Platroon Blocked, %
 Mov Cap-1 Maneuver

 Mov Cap-1 Maneuver

 Stage 1

 Stage 1

 Stage 1

 Stage 2

90 - 10

0 0 0 0 2 2 54

8 0 0 2 21

Major2

920 1031 865 -975 -

9.4 A

WB

EB 2.8

Approach HCM Control Delay, s HCM LOS

18-100 - MASC HCM 6th TWSC

Total AM 3: Cholla St. & 89th St.

SBL SBR

EBL EBT WBT WBR

Intersection Int Delay, s/veh

≯ 64 0

- None

Lane Configurations
Traffic Vol, vehh
Future Vol, vehh
9
Conflicting Peds, #hr 0
Sign Control
Sign Control
Storage Length
Veh in Medan Storage, # Grade, % Peak Hour Factor 90
Heavy Vehicles, % 2
Mwmt Flow

EBL EBT WBR WBRSBLn1
1545 887
0.006 . . . 0.073
7.3 0 . . . 9.4
0 . . . 0.0

Minor LaneMajor Mvmt Capadiy (vehh) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM Lane LOS

Synchro 10 Report Page 4

NBL NBT NBL NBT NBC NBT 108 745 0 0 0 0 1.00 1.00 1.00 1.00 1.00 2 2 2 2 2 701 2718 847 1777 4.8 7.9	17 NBR 42 42 100 100 100 100 100 100 100 100 100 10	SBL 29 29 29 0 1.00 1.00 1.870 32 0.90	SBT	SBR 19 0 1.00
		29 29 29 0 1.00 1.00 1.00 32 0.90	489 489 0 0 0.1 No	21.00
		29 29 0 0 1.00 1.00 1870 32 0.90	489 489 0 0 1.00 No	25 2 20 20 20 20 20 20 20 20 20 20 20 20 2
		1.00 1.00 1.00 1.00 1.00 32 0.90	0 0 1.00 NO	2.00.0
		1.00 1.00 1.00 1870 32 0.90	0 1.00 o	2.0
	, i	1.00 1.00 1870 32 0.90	1.00 N	1.00
		1.00 1870 32 0.90	0. N	7
	·	1870 32 0.90	2	3.
		32 0.90	20107	25.01
3 6 1		0.90	18/0	18/0
		2	0.40	0 00
		2	2	
		522	2774	107
,		0.80	0.80	0.80
,	8 194	634	3488	135
Ì		32	276	288
	7 1835	634	17771	1846
			4.5	4.5
		9.6	4.5	4.5
		00.1	1410	1470
017 020	3 1460	275	0.00	1408
		522	1413	1469
		1.00	1.00	1.00
	_	1.00	1.00	1.00
		4.6	3.0	3.0
		0.2	0.3	0.3
		0.0	0.0	0.0
		7.0	+	-
		4.8	3.3	3.3
		A	A	
i66	2		269	
4.0	0		3.4	
1	А		A	
~	8			
18.0	9			
9.0	0			
22.0	0			
15.	3			
0.0	cc			
				ļ
	- 6-	2.5 3.9 3.9 4.0 4.0 4.0 A A A A A A A A A A A A A A A A A A A	25 25 25 39 39 39 40 40 40 8 8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9	25 25 02 39 39 48 A A A A 995 A A 10 A 123 03

11.00 11.00 12.00 10.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00

1870 44 44 0.90 0.12 1282 40 1.20 1.100 0.35 563 1.00

Grp Volume(v), vervin Grp Sat Flow(s), vervin'n Groed Flow(s), s Cycle O Clear(g_c, s Prop In Lane Lane Grp Cap(c), vervin VIC Ratio(x) Avait Cap(c_a), vervin HCM Platoon Ratio

0.0

0.24 1.388 1.00 1.00 3.5 0.4 0.0 2.0

0.13 1.388 1.00 1.00 3.2 0.2 0.0

0.00 0.00 0.00 0.0 0.0 0.0

0.00 0.00 0.00 0.0 0.0 0.0

1380 0.7 2.7 201 0.04 6669 1.00 1.00 1.00 0.1 0.0

4.0 A 700 3.9 A

3.4 A 413 A A

0.0 A 74 53.5 D

0.0 A 120 52.7 D

Approach Vol, veh/h Approach Delay, s/veh Approach LOS

Phs Duration (G+Y+Rc), s

'imer - Assigned Phs

Change Period (Y+Rc), s

3.6 A

4.8 A

47.9 D

53.0 D

48.8 D

Upstream Eller(1)
Uniform Delay (d), s/veh
And Delay (d3), s/veh
Initial Q Delay(d3), s/veh
Skile BackOTO(50/8), veh
Unsig, Movement Delay, s/veh
LnGrp Delay(d3), s/veh
4

1.00 No 1870 680 680 0.90 2 2801 0.78 33.7 33.7 6.11 6.11

1.00 No 1870 350 0.90 0.78 0.78 182 182 1777 3.0

2 7 0.12 57

201 0.12 1380

1.00

6 6 0 00.00

20 00:00:

37 0 0 0.00

23 20 0.100

£ 8 8 0 0.0 0.0

% 0 0.1 0.00 1.00

t

Total AM 4: Cholla St. & 92nd St.

1.00 No 1870 0.90

Lane Configurations
Traffic Volume (vehfn)
Future Volume (vehfn)
Initial O (QD), veh
Ped-Bike Adj (A_pbT)
Parking Bus, Adj
Work Zone On Approach
Adj Sal Flow, vehfn
Peak Hour Factor
Percent Heavy Veh, %
Cap, vehfn
Arrive On Green
Sal Flow, vehfn
Arrive On Green

06.0

1.00

18-100 - MASC HCM 6th Signalized Intersection Summary

APPENDIX H

DESIGN STANDARDS AND POLICIES

B. Angle of Intersection

A right-angle intersection provides the shortest crossing distance for intersecting traffic streams. It also provides the most favorable condition for drivers to judge the relative position and speed of intersecting vehicles. Where special conditions exist, intersection angles may diverge from a right-angle by a maximum of 2 degrees (up to 4 degrees with approval of the Transportation Department) on arterial streets and major collector streets; and by a maximum of 4 degrees (up to 15 degrees with approval of the Transportation Department) on minor and local collector streets, couplets and local streets.

C. Alignment and Profile

Intersections occurring on horizontal or crest vertical curves are undesirable. When there is latitude in the selection of intersection locations, vertical or horizontal curvature should be avoided. A line or grade change is frequently warranted when major intersections are involved. If a curve is unavoidable, it should be as flat as site conditions permit. Where the grade of the through roadway is steep, flattening through the intersection is desirable as a safety measure.

The maximum profile grade through an intersection is 6 percent for arterials and collector streets and 8 percent for local streets. The intersecting streets' profiles and cross slopes need to be coordinated with one another to ensure a safe and comfortable driving surface. Typically this may mean extending grades through the intersection for approximately 75 feet to 150 feet. Short vertical curves may be necessary in lieu of grade breaks.

D. Intersection and Driveway Sight Distance

In order to provide the opportunity for vehicles at an intersection to safely cross or make left or right turns onto a through street, adequate sight distance must be provided. Sight distance must also be provided for left turning traffic turning from the main street as described in AASHTO Intersection Sight Distance Case F. If opposing left turn lanes are present, the opposing left turns must be off-set in a positive way to allow for sight distance when opposing vehicles are present. See Figure 5.3-29 and Figure 5.3-29 for options. Sight distance should be based on the design speed for the roadway. Design speeds for new roadways should conform to those identified in Section 5-3.100 and Appendix 5-3A and Appendix 5-3B. Typically design speeds are 10 m.p.h. higher than the anticipated posted speed limit. The sight distance requirements outlined below are required for all private and public street intersections and at all intersections of driveways onto public or private streets. Internal driveway intersections on private property are excluded from these requirements.

Figure 5.3-26 depicts the technique used to determine the driver's eye location and an approaching vehicle; a line is then drawn to connect these 2 points. Continuous unobstructed line of sight must be provided along this line and throughout the approach to the intersection, providing an unobstructed sight triangle to the side street driver. Sight lines are to be drawn on roadway and landscaping plans to represent the areas that must be free of all objects and topography in excess of 18 inches above the roadway surface, however, certain vegetation will be allowed. Vegetation placed within the sight triangle will be of a low variety that remains below 18 inches when mature. Trees can be considered within the triangle as long as the canopies are above 8 feet, they are a single trunk variety, and they are not spaced in a configuration that creates a "picket fence" effect.

Section 5-3 GEOMETRICS

(Applies to stop controlled side street or all approaches to a signalized intersection for right-on-red traffic.

S = Intersection sight distance in feet on drivers left and right for right turns, left turns and through traffic. (See 2004 AASHTO Geometric Design of Highways and Streets for additional sight distance requirements.)

(See Appendix 5-3A, Appendix 5-3B and Appendix 5-3C for distance S.)

FIGURE 5.3-26 INTERSECTION & DRIVEWAY DEPARTURE SIGHT DISTANCE REQUIREMENTS

1. Right-Angle Intersections

Right-angle intersections are those whose legs meet at an angle of 88 to 90 degrees. For these right-angle intersections the sight distances shown in Appendix 5-3A, Appendix 5-3C are to be used with Figure 5.3-26 to calculate the sight triangle. Appendices 5-3A and 5-3B present the intersection sight distances for all street classifications which were determined assuming passenger car traffic. Appendix 5-3C presents the sight distance requirements for varying roadway widths and design speeds for passenger cars, single unit trucks and combination trucks. If high volumes of truck traffic are anticipated, sight distances given in Appendix 5-3C will be used. Sight distances for vehicles turning left from the main street should also be considered and calculated based on the AASHTO Geometric Design of Highways and Streets.

2. Skewed Intersections

For skewed intersections where the intersection angles are less than 88 degrees, sight distances must be calculated in accordance with the procedures described in *AASHTO's Geometric Design of Highways and Streets*. Skewed intersection design must include appropriate design for pedestrian crossings and the location of curb ramps.

3. Intersections Within or Near a Curve

Sight distance measurements, identified as S in <u>Figure 5.3-26</u>, need to follow the curved street alignment when the intersection is within or near a horizontal curve.

4. Traffic Safety Triangles

Traffic Safety Triangles should be used as a means to limit the height of structures, vegetation and other improvements on corner properties immediately adjacent to intersections. **Safety triangles are not to be used as a substitute for intersection sight distance!** Safety triangles provide additional visibility around corners for all intersection approaches and should be applied to the design of perimeter walls and

^{* 5} feet measured to nearest lane line or centerline.

^{**15} feet measured from face-of-curb or edge-of-travelway.

landscape features. Items within the safety triangle cannot be higher than 18" measured from the roadway surface. <u>Figure 5.3-27</u> depicts the method used to determine the safety triangle location. The sight distance requirements contained in both <u>Figure 5.3-26</u> and <u>Figure 5.3-27</u> are applied at all corner lots.

5. Right-of-Way at Corners

A minimum of 25-foot radius rights-of-way shall be dedicated at street intersections to provide room for traffic control and sight distance.

Major Street Classification	X (in feet)			
Parkway, Expressway, Arterials, Major Collector	25			
Minor Collector	35			
* Local Streets	35 / 60 / 70			

^{*} If the standard right-of-way (46 ft. local residential, 60 ft. local collector) is not available, the safety triangle (X) shall measure 60 ft. on local residential streets and 70 ft. on local collector streets from the centerlines of the streets.

FIGURE 5.3-27 TRAFFIC SAFETY TRIANGLE ON CORNER PROPERTY

E. Auxiliary Lanes

An exclusive turning lane permits separation of conflicting traffic movements and removes turning vehicles from the flow of through traffic. Figure 5.3-28 and Figure 5.3-29 depict the

APPENDIX I

CIVTECH RESPONSES TO NEIGHBOR CONCERNS

November 30, 2018

Mr. Artin Knadjian, AIA, LEED AP AAK Architecture & Interiors, Inc. 7585 East Redfield Rd, Suite 106 Scottsdale, Arizona 85260-6937

RE: Response to Neighborhood Meeting Questions: Megerdichian Senior Center – Scottsdale

Dear Mr. Knadjian:

This memorandum has been prepared to address four (4) topics requested of the administration of Saint Apkar Armenian Apostolic Church of Arizona. The first topic is a comparison of trips generated by different land uses. The second topic is a discussion of the different speed reduction/mitigation and enforcement options allowed by the City. The third topic is a request for 90th Street and Cholla Street to be converted into an all-way stop controlled intersection. The fourth topic is a request to research and document information on senior housing relating to traffic safety. This memorandum will discuss the requested topics in detail and the recommendations for each.

TOPIC 1 – TRIP GENERATION COMPARISON

Neighbors were concerned about the number of trips that would be added to the roadway network within their residential development. A trip generation comparison was requested to determine how many trips would be generated if another potential land use allowed under neighboring R1-7 zoning (S-F homes) or under existing zoning (public charter school) were provided instead of the current proposed senior center.

To estimate the trips generated by each land use, CivTech used information found in the latest (10th) edition of the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*. The proposed Megerdichian Senior Center development is composed of a 51-dwelling unit minimal residential health care facility, and an 18-bed specialized residential health care facility.¹ The descriptions of the age ranges that will be residents at this location are described below:

- The minimal residential health care facility was categorized under the ITE land use 252 Attached Senior Adult Housing. This land use is described as an independent living active senior community for individuals with limited amenities such as social, recreational, centralized dinning, or medical amenities. These individuals may or may not own vehicles or operate vehicles.
- The residential health care facility was categorized under the ITE land use 620 Nursing Home.
 This land use is described as providing care to individuals who are unable to care for themselves. These individuals will not own or operate a vehicle.

¹ The concept is for residents to "age in place." That is, residents will not have to move to another room or elsewhere in the facility as their need for medical attention increases. Thus, by assuming that more than seventy percent of the residents require minimal supervision and live almost independently, the trip generation may be somewhat conservative in that it may overestimate the number of trips that will actually be generated.

Table 1 is a trip generation that shows the trips expected from the proposed Megerdichian Senior Center and two other land uses: a 24-dwelling unit R1-7 Single Family Homes and a 170-student Charter Elementary School.

Weekday Generated Trips Size AM Peak Hour **PM Peak Hour** ITE Daily **Land Use** Code **Quantity Units** Total Enter Exit Total Enter Exit Total **Proposed Megerdichian Senior Center** Senior Adult Housing -252 51 Dwelling Units 180 4 6 10 8 7 15 Attached Specialized Residential Health 620 56 2 1 3 1 3 4 18 Beds Care Facility 7 10 Total Proposed Trips 236 6 13 9 19 Comparison R1-7 Single Family Homes 210 280 16 22 16 10 26 24 Dwelling Units 6 **Additional Trips When Compared to Total Proposed Trips** 44 0 9 9 7 0 7 Charter Elementary School 537 170 Students 314 87 77 164 8 16 24 Additional Trips When Compared to Total Proposed Trips 78 70 151 -1 6 5

Table 1 – Trip Generation Comparison Summary

The trip generation summarized in **Table 1** also compares the differences in trips between the Megerdichian Senior Center and the 24-dwelling unit R1-7 Single Family Homes and 170-student Charter Elementary School. A review of the results of the trip generation comparison reveals that:

- A 24-dwelling unit R1-7 Single Family Home development could generate 44 more daily trips, with 9 more trips during the AM peak hour and 7 more trips during the PM peak hour compared to the Megerdichian Senior Center.
- A 170 student Charter Elementary School could generate 78 more daily trips, with 151 more trips during the AM peak hour and 5 more trips during the PM peak hour compared to the Megerdichian Senior Center.

From these results, it could be concluded that the Megerdichian Senior Center would generate fewer trips than a 24-dwelling unit R1-7 Single Family Homes development or a 170-student Charter Elementary School.

TOPIC 2 - SPEED REDUCTION/MITIGATION AND ENFORCEMENT OPTIONS

Neighbors also requested that research be conducted for speed reduction/mitigation and enforcement options that would be acceptable to the City of Scottsdale. The research included a review of the City of Scottsdale's Speed Awareness Program and Neighborhood Traffic Management Program.

Speed Awareness Program

The Speed Awareness Program is a three-step program designed to reduce speed of traffic within a neighborhood by increasing awareness. The program may be initiated when vehicles are traveling faster than the speed limit through a neighborhood, there are a high number of vehicle-related crashes within the neighborhood, or if there are pedestrian safety concerns. The Speed Awareness Program is for two-lane residential streets only and is deployed in three steps.

Step 1 – Education

The first step is education, to raise motorist awareness of their speeds and speeding concerns in the neighborhood.

- Neighborhood speed-awareness trailers will be placed in neighborhoods where there is a speeding concern.
- If speed-awareness trailers fail to reduce or prevent speeding, residents from the neighborhood may obtain a hand-held radar unit to monitor traffic and record vehicle information. Speeding vehicles will then be sent a letter (not a ticket) from the city, informing them of the violation and requesting they obey neighborhood posted speed limits.
- Signs provided by the city can be placed by the residents in their yard outside the city right-ofway (typically 10' back from the edge of the pavement) for up to 30 days. This notifies drivers that the speeding concerns are those of the residents, not just the city.

Step 2 – Enforcement

While heightened awareness may be all that is needed for most Scottsdale neighborhoods, some areas may require police to monitor traffic and issue tickets to traffic speeding.

Step 3 – Engineering

After completing the Speed Awareness education and enforcement steps, if residents still feel their quality of life is impacted by traffic, they can request that their street be evaluated for engineering solutions based on the City of Scottsdale's Neighborhood Traffic Management Program.

- The Neighborhood Traffic Management Interest Form must be completed and signed by at least ten different residents along the same street.
- Once the request is placed on a list for traffic evaluation, speed and volume data is collected by the Transportation Department and compared to the city's approved criteria for traffic calming. Provided that there is support in the neighborhood.
- If the data collected meets the city's criteria and the street qualifies for possible installation of traffic calming devices, neighborhood support for the project must be established. In most cases, the city pays for the devices.
- A public meeting will be held to provide information about the projects to residents of the surrounding area. The public meeting will then be followed by a petition process requiring 70 percent of the residents, within the affected area of the project, to sign in favor of the project. Once these signatures have been received and verified, the project will be presented to the City of Scottsdale Transportation Commission for funding approval.

Speed Data and Recommendation

CivTech recorded traffic volumes, speeds, and vehicle classifications from Thursday, November 8 through Sunday, November 11 at two locations on Cholla Street: between 88th Place and 90th Street (i.e., immediately east of the project site) and between 90th and 91st Streets. North- and eastbound approach counts to the intersection of 90th and Cholla Streets were recorded on Thursday, November 15. **Table 2** summarizes the data recorded. Since they total 55 sheets, the summary data sheets on which **Table 2** is based are attached. CivTech can provide the other sheets electronically upon request.

Table 2 - Summary of Volume and Speed Data

				Volume			Speeds				Vehicle Classifications (#)			
Count	Travel	Count	Day of		High	Hi Hour	85th %ile	%>25	%>30mp	%>35mp			Other 2	
Location	Direction	Date	Week	Daily	Hour	Starts	Speed	mph	h	h	Bikes	Cars	axles	>2 axles
Cholla	East-	11/08/18	Thursday	150	29	7:45 AM		12.6%	1.3%	0.0%	0	129	21	0
Street	bound	11/09/18	Friday	123	16	7:45 AM		21.9%	2.4%	0.0%	0	108	14	1
from		11/10/18	Saturday	66	9	11:15 AM		21.2%	3.0%	0.0%	0	58	8	0
88th Place		11/11/18	Sunday	68	12	10:15 AM		19.1%	2.9%	0.0%	0	62	6	0
to		Averages/Totals		102			25 mph	17.9%	2.2%	0.0%	0	357	49	1
89th Street	West-	11/08/18	Thursday	168	34	7:45 AM		27.4%	5.4%	1.2%	0	139	29	0
	bound	11/09/18	Friday	146	17	3:15 PM		28.7%	3.4%	0.0%	1	115	29	1
				86	11	9:30 AM		18.6%	0.0%	0.0%	0	72	14	0
		11/11/18	Sunday	64	12	10:00 AM		25.1%	6.3%	1.6%	0	55	9	0
			ges/Totals	116			27 mph	25.8%	3.8%	0.6%	1	381	81	1
	EB+WB	11/08/18	Thursday	318				20.4%	3.4%	0.6%	0	268	50	0
		11/09/18	Friday	269				25.7%	3.0%	0.0%	1	223	43	2
		11/10/18	Saturday	152				19.7%	1.3%	0.0%	0	130	22	0
		11/11/18	Sunday	132				22.0%	4.6%	0.8%	0	117	15	0
		Averaç	ges/Totals	218	25	7:45 AM	26 mph	22.2%	2.8%	0.3%	1	738	130	2
Cholla	East-	11/08/18	Thursday	633	67	7:30 AM		79.7%	37.8%	7.2%	1	542	88	2
Street	bound	11/09/18	Friday	656	61	7:30 AM		82.7%	37.3%	6.5%	0	573	83	0
from		11/10/18	Saturday	510	58	10:00 AM		82.6%	34.0%	8.1%	1	443	65	1
90th Street		11/11/18	Sunday	381	44	10:00 AM		80.8%	37.8%	8.4%	0	344	37	0
to		Avera	ges/Totals	545			33 mph	81.5%	36.8%	7.4%	2	1,902	273	3
91st Street	West-	11/08/18	Thursday	477	50	7:45 AM		88.1%	57.3%	14.3%	1	412	63	1
	bound	11/09/18	Friday	497	47	3:15 PM		90.5%	54.7%	16.9%	1	434	61	1
		11/10/18	Saturday	404	43	9:30 AM		90.2%	56.3%	15.5%	1	360	42	1
		11/11/18	Sunday	325	35	2:15 PM		88.0%	54.2%	12.0%	0	290	35	0
			ges/Totals	426			34 mph	89.3%	55.7%	14.9%	3	1,496	201	3
	EB+WB	11/08/18	Thursday	1,110				83.3%	46.2%	10.3%	2	954	151	3
		11/09/18	Friday	1,153				75.1%	44.9%	11.1%	1	1,007	144	1
		11/10/18	Saturday	914				85.9%	43.8%	11.3%	2	803	107	2
		11/11/18	Sunday	706				84.1%	45.3%	10.0%	0	634	72	0
			ges/Totals	971	80	12:15 PM	34 mph	85.0%	45.2%	10.8%	5	3,398	474	6
90th St @	NB	11/15/18	Thursday	758	86	4:45 PM								
Cholla St	EB	11/15/18	Thursday	478	50	11:45 AM								

A review of the traffic volumes and speed data summarized in **Table 2** reveals that the segment of Cholla Street east of the project site, that is, west of 89th Street, experiences much lighter traffic volumes and much slower speeds that the segment east of 90th Street. While approximately one-fourth of drivers exceed the posted speed of 25 mph west of 89th Street, that percentage is between 80% and 90% east of 90th Street, with eastbound speeds lower than westbound speeds on both segments. The 85th percentile speed averages 26 mph west of 89th Street, just 1 mph over the speed limit (which indicates the speed limit is appropriate for prevailing traffic conditions), the 85th percentile speed east of 90th Street is 34 mph. As a residential street, the posted speed limit is appropriate; however, the majority of drivers seem to be ignoring it. Over the course of the four days on which data was recorded, a total of 27 vehicles exceeded 30 mph west of 89th Street while 1,752 vehicles exceeded 30 mph east of 90th Street, with 45 vehicles exceeding 45 mph, including 1 recorded at between 55 and 60 mph. A final point regarding **Table 2** is that Cholla Street carries few vehicles with more than two axles. The overwhelming majority of trips are by personal vehicles.

The data suggests that, while neighbors' concerns about speeding on Cholla Street are valid, the speeding is not occurring along the segment west of 89th Street near the Church. It is occurring farther east, east of 90th Street.

With respect to the additional traffic added to Cholla Street from 88th Place east to 92nd Street, the maximum daily volume recorded was approximately 1,150 vehicles per day (vpd) on Friday, November 9. If all² of the nearly 240 trips expected from the subject development were added to this, the total would be approximately 1,400 vpd. Scottsdale's *Design Standards & Policies Manual* indicates that a residential street with a suburban character, such as Cholla Street, would have a maximum capacity of 1,500 vpd. Therefore, the trips generated by the proposed development in this conservative scenario are not expected to create capacity issues on Cholla Street.

TOPIC 3 – ALL-WAY STOP WARRANT

A request for 90th Street and Cholla Street to be converted to an all-way stop controlled intersection is considered here. The existing intersection lane configuration and control, an all-way stop control warrant analysis, and the results of that warrant analysis are discussed below.

Existing Lane Configuration and Control

The intersection of 90th Street and Cholla Street operates as a three-legged intersection with a single stop control in the northbound approach. The northbound approach consists of a single, shared left-turn/right-turn lane. The eastbound approach consists of a single, shared through/right-turn lane. The westbound approach consists of a single, shared left-turn/through lane.

All-Way Stop Control Warrant

A methodology described in the Federal Highway Administration's *Manual on Uniform Traffic Control Devices 2009* (MUTCD) was used to evaluate if all-way stop control is warranted at 90th Street and Cholla Street. The criteria that should be considered when evaluating an all-way stop control warrant and the *results* are provided below:

A. Where traffic control signals are justified, the multi-way stop is an interim measure that can be installed quickly to control traffic while arrangements are being made for the installation of the traffic control signal.

There are no traffic control signals planned to be installed at this intersection, therefore this criterion is not met for the all-way stop control warrant.

B. Five or more reported crashes in a 12-month period that are susceptible to correction by a multi-way stop installation. Such crashes include right-turn and left-turn collisions as well as right-angle collisions.

CivTech reviewed the Statewide crash data for 2015 through 2017 purchased from the Arizona Department of Transportation. There were no crashes reported as having occurred either on 90th Street at Cholla Street or on Cholla Street at 90th Street. Thus, this criterion is not met for the all-way stop control warrant.

² The majority, but not all, of the site trips were assigned to Cholla Street. Church attendees will be encouraged to use 88th Place so traffic is distributed more evenly between Cholla Street and 88th Place. Therefore, the scenario described is a conservative, "worst-case" scenario.

C. Minimum volumes:

- 1. The vehicular volume entering the intersection from the major street approaches (total of both approaches) averages at least 300 vehicles per hour (vph) for any 8 hours of an average day; and
- 2. The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) averages at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular traffic of at least 30 seconds per vehicle during the highest hour; but
- 3. If the 85th-percentile approach speed of the major-street traffic exceeds 40 mph, the minimum vehicular volume warrants are 70 percent of the values provided in Items 1 and 2.

The volumes used to determine if these criteria are met were recorded by Field Data Services of Arizona, Inc. for CivTech the purposes of this analysis. The projected peak hour total volumes in the Megerdichian Senior Center TIA were used to perform this warrant analysis.

Regarding Item 1, the maximum number of vehicles recorded approaching the "Tee" intersection of 90th and Cholla Streets from three directions (eastbound, westbound, and northbound) was 152 vehicles in an hour, calculated by combining the highest single-day recorded on Cholla Street westbound (Day 2, Friday November 9) east of 90th Street with the north- and eastbound daily approach counts recorded on November 15. Therefore, since this is substantially below the criterion of 300 vehicles per hour for eight hours, this item would not be satisfied. Since this item is inextricably linked by the word "and" with the second item regarding the units of traffic approaching from the minor street and the delays to these units, an analysis of the intersection under this second item is not required since the first is not satisfied. However, just to make this assessment more complete, as noted above, the 85th percentile speed on Cholla Street was found to be a maximum of 34 mph, less than the 40 mph in Item 3 that could have allowed the criteria in Items 1 and 2 to be reduced to 70% of the original values (to 210 vph and 140 units per hour, respectively).

D. Where no single criterion is satisfied, but where Criteria B, C.1, and C.2 are all satisfied to 80 percent of the minimum values. Criterion C.3 is excluded from this condition.

Criteria D is not met due to Criteria B, C.1, and C.2 not being met.

Based on the above, an all-way stop warrant is not satisfied for the intersection of 90th Street and Cholla Street.

TOPIC 4 - SENIOR HOUSING RELATING TO TRAFFIC SAFETY

Finally, neighbors requested that research be conducted on how senior housing impacts traffic safety questions from the neighborhood meeting. There were three major questions of concern that will be addressed through public documentation online. The questions of concern and *results* are provided below:

- Whether seniors are likely to drive in excess of the speed limit on Cholla Street?
- Whether seniors are likely (or more likely than other age drivers) to run over kids playing in the road on Cholla Street?
- Whether seniors are typically better, worse or the same "quality" driver as compared to "young" and "middle-aged" drivers.

These questions cannot be answered definitively. All are dependent on individual drivers. A search of the internet reveals opinions and studies that fall on both sides of the issue. And there is a limit to how much effort can be spent here in conducting research into these issues.

Here are some quotes that may shed some light on the subject posted in January 2009 on Insurance.com:

Less than one percent of people over 65 die as a result of motor vehicle accidents. On the other hand, car crashes are the major cause of death for the age group 15–20. Males in this group are twice as likely as females to die in a car crash.

The young and the lead-footed are truly scary. Their risk of crash per mile is 4 times higher than in older age groups. As the Insurance Institute for Highway Safety puts it, "teenage drivers represent a major hazard." Although young drivers make up about 6 percent of the total licensed driving population, almost 13 percent (6,982) of all drivers involved in fatal crashes in 2007 were young drivers 15 to 20 years old, according to [a] National Highway Traffic Safety Administration report.

And while older drivers do have problems that can sometimes affect their ability to be the drivers they once were, studies show they also tend to be aware of their limitations and restrict their driving as their abilities diminish. As a result, car accidents involving drivers who are seniors are generally not serious. The spike in per mile fatality with older drivers is due to the fact that a driver over 65 is twice as likely to die from the same accident as a driver over 55, and a driver above 75 has four times the risk.

Older, retired drivers drive fewer miles each year than younger drivers if only for the fact that they do not commute to work each day. (Therefore, most of the facility residents will not be on Cholla Street at the same time as local residents.) Thus, seniors have less overall exposure to other traffic than younger drivers, so they have less chance of being involved in a crash. In addition, most tend to avoid travel during the morning and afternoon rush hours. At the same time, older drivers are frailer; therefore, their survivability decreases as they age, which explains the last sentence quoted above.

CONCLUSIONS AND RECOMMENDATIONS

From the above, the following can be concluded:

- The Megerdichian Senior Center would generate fewer trips than a 24-dwelling unit R1-7 Single Family Homes development or a 170-student Charter Elementary School.
- The data recorded for CivTech suggests that, while neighbors' concerns about speeding on Cholla Street is valid, the speeding is not occurring along the segment west of 89th Street near the Church. It is occurring farther east, east of 90th Street.
- The trips generated by the proposed development are not expected to create capacity issues on Cholla Street.
- An all-way stop warrant is not satisfied for the intersection of 90th Street and Cholla Street.
- Older, retired drivers drive fewer miles each year than younger drivers if only for the fact that
 they do not commute to work each day. Thus, seniors have less overall exposure to other traffic
 than younger drivers, so they have less chance of being involved in a crash. In addition, most
 tend to avoid travel during the morning and afternoon rush hours. At the same time, older
 drivers are frailer; therefore, their survivability decreases as they age.

Thank you for allowing CivTech to assist you on this project. Please contact me with any questions you may have on these responses.

Sincerely,

CivTech

Joseph F. Spadafino, P.E., PTOE, PTP Project Manager/Senior Traffic Engineer

Attachment (1, 6 sheets)

 $X IS-0100\ A4KAII\ Meger dichian\ Senior\ Center\ TIMA, Scottsdale \ Submittals\ Statement\ 2018112\ Meger dichian\ Senior\ Center\ Statement\ V\ 1_4-ecb\ rvw.docx$

