FINAL DRAINAGE REPORT

Senior Living Scottsdale + Osborn 3380 N Scottsdale Road, Scottsdale AZ 85251

Plan #			
Case #	15-DR-20	023	
Q-S#_ X Accord	ections		
N.Ba Reviewe	ronas d By	11/16/2023 Date	

Prepared For:

6617 N. Scottsdale Road, Suite 101 Scottsdale AZ. 85250

SEG

Prepared by:

Sustainability Engineering Group 5240 N. 16TH, Suite 105 Phoenix, AZ 85016 480.588.7226 <u>www.azSEG.com</u>

Project Number: 210126 Submittal Date: November 2, 2023 (DRB)

Case No.: 15-DR-2023

Plan Check No.: TBD

TABLE OF CONTENTS

1.	INTR	ODUCTION	1
2.	LOCA	TION AND PROJECT DESCRIPTION	1
	2.1.	LOCATION:	1
	2.2.	EXISTING AND PROPOSED DEVELOPMENTS SURROUNDING THE SITE:	1
	2.3.	EXISTING SITE DESCRIPTION:	2
	2.4.	PROPOSED SITE DEVELOPMENT:	2
	2.5.	FLOOD HAZARD ZONE:	2
3.	EXIST	ING DRAINAGE CONDITIONS	2
	3.1.	OFF-SITE DRAINAGE PATTERNS	2
	3.2.	ON-SITE DRAINAGE	3
4.	PROF	POSED STORM WATER MANAGEMENT	4
	4.1.	DESIGN INTENT:	4
	4.2.	DESIGN STORM REQUIREMENTS:	4
	4.3.	LAND CHARACTERISTICS:	4
	4.4.	STORMWATER RETENTION:	5
	4.5.	STORMWATER DISCHARGE	7
	4.6.	INLET CALCULATIONS	8
	4.7.	PIPE CAPACITY CALCULATIONS	8
	4.8.	ADEQ WATER QUALITY REQUIREMENTS	9
5.	FLOC	D SAFETY FOR DWELLINGS	9
	5.1.	FINISHED FLOOR ELEVATIONS	9
6.	CON	CLUSIONS	9
	6.1.	OVERALL PROJECT:	9
	6.2.	PROJECT PHASING:	9
7.	WAR	NING AND DISCLAIMER OF LIABILITY	10
8.	REFE	RENCES	10

LIST OF FIGURES:

FIGURE 1 - V	vicinity Map
--------------	--------------

- FIGURE 2 Aerial
- FIGURE 3 FIRM
- FIGURE 4 Flo-2D Map

LIST OF TABLES:

- TABLE 1. EXISTING SITE DISCHARGES
- TABLE 2. PROPOSED SITE DISCHARGES
- TABLE 3. PRE VS POST FLOWS
- TABLE 4. INLET CALCULATION SUMMARY

APPENDIX:

APPENDIX I	-	Rainfall Data
APPENDIX II	-	Calculations
APPENDIX III	-	Grading and Drainage Plan
APPENDIX IV	-	Inlet Capacity Chart
APPENDIX V	-	Plan C1.4 "Stormdrain Plan" – Hilgart Wilson
APPENDIX V	-	Storm Water Operation & Maintenance Plan

1. INTRODUCTION

This Final Drainage Report represents the storm water analysis for a multi-family residential development proposed in Scottsdale, Arizona. The purpose of this report is to provide the hydrologic and hydraulic analysis, required by the City of Scottsdale, to support the proposed development. This report includes discussions and calculations defining the storm water management concepts for the collection and conveyance necessary to comply with the drainage requirements of the City of Scottsdale and Maricopa County. Preparation of this report has been done in accordance with the requirements of the City of Scottsdale Design Standards & Policies Manual (DS&PM) 2018¹, and the Drainage Design Manuals for Maricopa County, Arizona, Volumes I² and Volume II³.

2. LOCATION AND PROJECT DESCRIPTION

2.1. LOCATION:

The subject property consists of land located in a portion of the Southeast Quarter of Section 27, Township 2 North, Range 4 East of the Gila and Salt River Base and Meridian, Maricopa County Arizona:

- Parcel ID: Parcel 130-16-114; Zoning is D/DMU-2 (Downtown Multiple Use)
- Address: 3380 N. Scottsdale Road, Scottsdale 85251

Refer to **FIGURE 1** - **Vicinity Map** for the project's location with respect to major cross streets.

2.2. EXISTING AND PROPOSED DEVELOPMENTS SURROUNDING THE SITE:

• South:

The site is bound to the south by the following properties:

- Parcel 130-16-115; The Carter (apartment complex); Zoning is C-3
- North: Across Osborn Road
 - $\circ~$ Parcel 130-13-316; Ten Wife Lofts (apartments/condominiums); Zoning is D/OC-2.
 - Parcel 130-13-046 and 130-13-044A; Walgreens Drug Store; Zoning is C-3.
- West: Across 71st Street
 - Parcel 130-16-087; First Baptist Church of Scottsdale; Zoning is R-5
- East: Across Scottsdale Road
 - Parcel 130-21-001U; Gasoline Service Station and a convenience market; Zoning is C-3.

2.3. EXISTING SITE DESCRIPTION:

The project area includes approximately 2.57 acres of land and is designated with zoning D/DMU-2. The site is currently developed as an Olive Garden restaurant with associated parking lot, driveways, and landscape areas.

Per Topographic Survey prepared by AW Land Surveying, LLC., the site slopes from north to south at approximately less than 1%. The site drains south into existing catch basins along the property line.

Refer to **FIGURE 2** attached for an aerial of the site.

2.4. PROPOSED SITE DEVELOPMENT:

Site development includes the demolition of existing structures and designated parking lots for the construction of a new high density multifamily project. The development will include two access points proposed at Osborn Road and 71st Street.

Refer to Appendix III – Grading and Drainage Plan for site layout.

2.5. FLOOD HAZARD ZONE:

FIRM Map Number 04013C2235M dated September 18, 2020, indicates the site is designated as Zone "X". As such, it is defined as areas determined to be outside the 0.2% annual chance floodplain and therefore is not in a special flood hazard area.

Refer to **FIGURE 3** for the FIRM.

3. EXISTING DRAINAGE CONDITIONS

3.1. OFF-SITE DRAINAGE PATTERNS

The topographic survey and FLO2D Map provide the following information for offsite drainage:

- *North*: Half of the runoff from Osborn Road flows towards the site, where it is conveyed through curb and gutter into an existing catch basin, EX-CB-7, located northeast of the site at the SWC of Osborn Road and Scottsdale Road. No offsite flows from the north affect the site.
- *East*: Half of the runoff from Scottsdale Road flows towards the site, where it is conveyed through curb and gutter and flows southerly away from the site. No offsite flows from the east affect the site.
- *West*: Half of the runoff from N. 71st flows towards the site and is also conveyed via existing curb and gutter. And per the FLOW2D MAP, a portion of the drainage flows north into Osborn Road. The remainder flows south and is collected by an existing catch basin, EX-CB-6, located near the southwestern corner of the property. No offsite flows from the west affect the site.
- *South*: Runoff from the apartment complex south of the site is captured by existing catch basins inside the apartment complex's property. No offsite flows from the south affect the site.

Refer to FIGURE 4, FLO2D MAP for drainage patterns.

3.2. ON-SITE DRAINAGE.

Based on the topographic information, the historical outfalls are as follows:

- Flows from drainage areas EX-A1 through EX-A4 are collected by existing catch basins located in the curb and gutter along the south property line and retained in existing underground basin (Ex-Basin 1). Flows from drainage area EX-A5 is collected by existing catch basin EX-CB-5 and retained by existing underground retention basin (Ex-Basin 2). According to Plan C1.4 "Stormdrain Plan" by Hilgart Wilson, Ex-Basin 1 and Ex-Basin 2 provide a volume of 4,516 cf and 4,123 cf respectively and are connected. Refer to Appendix V for Plan C1.4 "Stormdrain Plan" by Hilgart Wilson.
- Drainage area EX-B1 is self-retaining.
- Runoff from drainage area EX-C1 flows into Osborn Road, where it is ultimately collected by EX-CB-7.
- All flows draining into existing on-site catch basins are stored in two underground storage tanks located south of the property (Ex-Basin 1 and Ex-Basin 2).

Refer to Appendix II for Existing Conditions Drainage Area Map.

Table 1 below is a summary of existing conditions runoff calculations:

			-	EXISTING	SITE DISC	CHARGES		-	-
	TOTAL AREA	Cwt	Intensity 10 yr 5-min	Q 10	Intensity 100 yr 5-min	Q 100	Control Point	Total flows Q10	Total flows Q100
	(ac)	(-)	<u>(in/hr)</u>	(cfs)	<u>(in/hr)</u>	(cfs)	CP#	(cfs)	(cfs)
	3.59	0.86	4.68	-	7.43	-	-	14.50	23.01
EX-A1	0.32	0.87	4.68	1.30	7.43	2.06			
EX-A2	0.33	0.90	4.68	1.40	7.43	2.22	EX Basin A	5.56	8.83
EX-A3	0.36	0.88	4.68	1.50	7.43	2.38	EA DASIII A	5.50	0.05
EX-A4	0.33	0.89	4.68	1.37	7.43	2.17			
EX-A5	0.93	0.87	4.68	3.77	7.43	5.99	EX Basin B	3.77	5.99
EX-B1	0.04	0.45	4.68	0.09	7.43	0.14	EX-B1	0.09	0.14
EX-C1	0.26	0.61	4.68	0.75	7.43	1.19	EX CB-7	3.77	5.99
OFF-2	0.70	0.92	4.68	3.02	7.43	4.79		5.77	5.55
OFF-1	0.12	0.87	4.68	0.49	7.43	0.77	EX CB-6	0.49	0.77
OFF-3	0.20	0.88	4.68	0.82	7.43	1.30	CP-1	0.82	1.30

TABLE 1. EXISTING SITE DISCHARGES

On-site project area includes **2.57 Acres at C**_{wt} = **0.84** (Existing conditions)

Refer to the Existing Cwt Exhibit and Existing Conditions Drainage Area Map in Appendix II.

4. PROPOSED STORM WATER MANAGEMENT

4.1. DESIGN INTENT:

Given that the site has been previously developed, on-site retention shall be calculated per City of Scottsdale DSPM 4-1.201. In order to preserve existing drainage patterns, most of the on-site drainage will discharge to the historical outlets, a portion of the site run-off will also be stored in a proposed underground retention basin to fulfill stormwater retention and first flush requirements. The majority of the building's roof run-off will be directed to the underground retention via roof drains. The underground retention basin will store the minimum pre-vs-post associated volume of the site. Excess runoff will overflow the proposed basin via cmp riser R-1 and discharge into existing catch basin EX-CB-3. Landscape and sidewalk areas around the project building will discharge minor flows to the right of way. Flows will be conveyed via roof drains, storm pipes and overland flow.

4.2. DESIGN STORM REQUIREMENTS:

In accordance with City of Scottsdale requirements for lots that are already developed, stormwater storage for the 100-year 2-hour storm event is required based on maintaining existing retention volume plus the difference between the pre vs. post development runoff from the 100-year 2-hour storm event if increased or first flush, whichever is greater. For this site, the pre vs. post analysis is governing. Refer to section 4.4 for pre vs. post and first flush volumes comparison.

4.3. LAND CHARACTERISTICS:

The proposed project site consists of a multi-family residential building with a restaurant and landscape areas along the perimeter of the structure. Based on the DS&PM, runoff coefficients for the 100-year storm event used are as follows:

- C=0.95 for building or concrete
- C=0.95 for paved surface
- C=0.45 for undisturbed natural desert or desert landscape

HYDROLOGIC ANALYSIS: The hydrologic analysis is determined using the procedures in the City of Scottsdale Design Standards & Policies Manual and the Drainage Design Manual for Maricopa County, Arizona, Volume I.

Table 2 below is a summary of proposed conditions runoff calculations:

	PROPOSED SITE DISCHARGES														
	TOTAL AREA	Cwt	Intensity 10 yr 5-min	Q 10	Intensity 100 yr 5-min	Q 100	Control Point	Total flows Q10	Total flows Q100						
	(ac) 3.60	(-) 0.92	<u>(in/hr)</u> 4.68	(cfs) -	<u>(in/hr)</u> 7.43	(cfs) -	CP# -	(cfs) 15.63	(cfs) 24.82						
DA-A1 DA-A2 DA-A3 DA-A4 DA-A5 DA-A6 DA-A6 DA-A7 DA-A8 DA-A9 DA-A10 DA-A11	0.23 0.30 0.29 0.27 0.45 0.45 0.06 0.03 0.04 0.08 0.10	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	4.68 4.68 4.68 4.68 4.68 4.68 4.68 4.68	1.01 1.35 1.31 1.21 1.98 1.99 0.28 0.14 0.19 0.35 0.43	7.43 7.43 7.43 7.43 7.43 7.43 7.43 7.43	1.61 2.14 2.07 1.92 3.15 3.17 0.44 0.23 0.31 0.56 0.68	EX-BASIN 1 & 2/PROPOSED BASIN A	10.25	16.27						
DA-B1 OFF-1	0.05 0.12	0.72 0.91	4.68 4.68	0.18 0.51	7.43 7.43	0.29 0.81	EX CB-6	0.69	1.10						
DA-C1 OFF-2	0.20 0.71	0.87 0.90	4.68 4.68	0.83 2.99	7.43 7.43	1.31 4.75	EX-CB-7	3.82	6.07						
DA-D1 OFF-3	0.01 0.20	0.95 0.88	4.68 4.68	0.05 0.82	7.43 7.43	0.08 1.30	CP-1	0.87	1.38						

TABLE 2.	PROPOSED SITE DISCHARGES

On-site project area includes 2.57 Acres at C_{wt} = 0.93 (Proposed conditions)

Refer to the Proposed Cwt Exhibit and Proposed Conditions Drainage Area Map in Appendix II.

4.4. STORMWATER RETENTION:

100-YR, 2-HR STORM: Per City of Scottsdale DSPM 4-1.201, development storage requirements for the 100-yr, 2-hr storm event are calculated as follows:

$$V_r = \Delta C \ \left(\frac{R}{12}\right) A$$

where:

 V_r = Required storage (cf)

R = Precipitation amount =2.16 in per NOAA Atlas 14 Precipitation Frequency Estimates

A =Total area of site (sf)

 $\Delta C = C_{post} - C_{pre}$

$$V_r = (0.93 - 0.84) \left(\frac{2.16}{12}\right) (112,097) = 1,816 \ cf$$

Since the difference of the weighted coefficients is positive, stormwater flows in the project area will increase, generating additional flow contributions to existing drainage patterns. Therefore, stormwater retention is required for the development following the pre vs. post analysis.

FIRST FLUSH: First Flush storage required is calculated in accordance with City of Scottsdale DSPM 4-1.201. Only the areas where runoff could be affected by vehicular contact are considered in the first flush calculation. The roof drainage is considered to be free of heavy traffic pollutants, therefore, on-site driveway areas and sidewalks will be considered for the calculation. First flush area is calculated as the total project area (112,097 sf) minus roof area (86,749 sf) and landscape areas (4,440 sf), equating to 22,891 sf.

$$FF_r = C\left(\frac{P}{12}\right)A$$

where:

 FF_r = First Flush required storage volume (cf)

P = Precipitation amount = 0.5 in per C.O.S. DSPM

A = Area of site excluding roofs and landscape (sf)

C = The weighted average runoff coefficient =0.95

$$FF_r = (0.95) \left(\frac{0.5}{12}\right) 20,\!908 = 827 cf$$

The above assessment indicates that the required First Flush storage is 827 cf.

Retention shall be provided for the greater of Pre vs Post or First Flush volumes, therefore on-site retention will be designed to store the Pre vs. Post volume. (**1,816 cf**). The provided storage volume will also fulfill the First Flush requirement. The proposed on-site retention will store flows from drainage area DA-A1 through DA-A5 comply with Pre vs Post and First Flush volumes. Excess runoff will overflow via cmp riser R-1 and discharge to existing catch basin EX-CB-3.

Refer to Appendix II for calculations.

Provided storage of *Basin A*: Basin A will consist of a 6' diameter corrugated metal pipe and will have a length of 75 lf. $V_P = \pi^*$ Pipe radius² * Pipe length $V_P = (\pi * 3^2)^*(75) = 2,120$ cf > Vr = 1,816 CF

The proposed basin has enough capacity to store the required additional volume generated from the Pre vs. Post analysis.

Refer to Appendix VI for Storm Water Operation and Maintenance Plan

4.5. STORMWATER DISCHARGE

For Basins with no direct bleed-off available, Drywells are proposed in the on-site storage facilities to dispose of the stormwater within thirty-six (36) hours. The calculation is as follows:

- Minimum percolating rate of a drywell (for planning purposes) = 0.1 cfs
- Volume to be drained in 36 hours = 0.1 cfs * 36 hours * 3600 sec/hour = 12,960 cf = 0.298 acre-feet.
- The number of drywells will be reduced if geotechnical testing for percolation rates determine adequate infiltration is available in the native soils at lower depths. If the percolation rate of the drywells is less than 0.1 cfs the number of drywells may have to be increased.

Basin 1: Total provided storage = **2,120** CF **2,120 CF** / 12,960 CF per drywell = 0.16 = 1 drywell required.

Pre vs post discharges

Proposed conditions will ultimately increase site flow contributions to the existing public storm drain system.

Table 3 below summarizes the project discharges per outfall for the 10-year and 100-year storm events, providing the differences between existing and proposed peak flows for each case. The overall site contributions to the existing public drain system are also shown for the drainage areas that will ultimately discharge to it either through catch basins or the proposed manhole connection.

					Ultimate f	lows to publ	lic storm dra	iin system									
		Q10 (cfs)			Q100 (cfs)		Q10	(cfs)	Q100 (cfs)								
Outfall	Existing	Proposed	Δ	Existing	Proposed	Δ	Existing	Proposed	Existing	Proposed							
EX-CB-6	0.49	0.69	0.21	0.77	0.44	-0.34											
EX-CB-7	3.77	3.85	0.08	5.99	6.12	0.13											
CP-1	0.82	0.87	0.05	1.30	1.38	0.08											
EX-CB-1	1.30	0.28	-1.02	2.06	0.44	-1.62	14.41	8.81	22.88	13.32							
EX-CB-2	1.40	0.14	-1.25	2.22	0.23	-1.99		0.01	22.00	15.52							
EX-CB-3	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	0.19	-1.31	2.38	0.31	-2.08				
EX-CB-4	1.37	0.35	-1.02	2.17	0.56	-1.62											
EX-CB-5	3.77	2.42	-1.35	5.99	3.85	-2.14											
						Δ	-5	.61	-9.	56							

TABLE 3. PRE VS POST FLOWS

During the 100-year storm event, discharges to the overall public storm drain system will be decreased. EX-CB-5 is now "on grade" situation in the hydraulic analysis shows that 0.02 cfs will be bypassing, increasing flow to CP-1 by 0.10 cfs.

Since the Pre vs Post volume will be retained and the new underground storage will be equalized within the existing retention system, the outfalls where flows are increased will be mitigated and also since around 300 cf are provided above the Pre vs Post requirement, will help to reduce the impact of the 0.04 increase of the overall volume.

Refer to Existing Conditions Drainage Area Map and Proposed Conditions Drainage Area Map in Appendix II.

4.6. INLET CALCULATIONS

Existing catch basins MAG 534 Type 'E' will be used to capture on-site runoff which will be conveyed into the city's public storm network system. The existing catch basin inlet can adequately convey runoff for the maximum 100-year, 5-min event.

 The MAG 534 Type 'E' Nyloplast can adequately convey a flow of 6.25 cfs. The prosed catch basin can adequately coney runoff for the maximum 100-year, 5-min event Q₁₀₀= 3.85 cfs. (DA-6 & DA-A11)

Refer to **Appendix IV** for DA-6 & DA-A11 Q₁₀₀ street capacity analysis.

Table below is a summary of inlet calculations:

	Inlet Calculation Summary													
					P-100 v	r 5min - 742 in								
	P=100-yr, 5min = 7.43 in.													
Drainage	Area	C _w	Intensity	Q	Capacity	Pongind deep for design	Max ponding deep to overflow	Control Point	Catch Basin	Size				
Area ID	(acres)	<u>(-)</u>	<u>(in/hr)</u>	<u>(cfs)</u>	(cfs)	<u>ft</u>	<u>ft</u>	1 Onit	Type	<u>ft</u>				
N-SITE														
DA-A1	0.23	0.95	7.43	1.61	N/A	N/A	N/A	ST-1	Roof Drain	N/A				
DA-A2	0.30	0.95	7.43	2.14	N/A	N/A	N/A	ST-2	Roof Drain	N/A				
DA-A3	0.29	0.95	7.43	2.07	N/A	N/A	N/A	ST-3	Roof Drain	N/A				
DA-A4	0.27	0.95	7.43	1.92	N/A	N/A	N/A	ST-4	Roof Drain	N/A				
DA-A5	0.45	0.95	7.43	3.15	N/A	N/A	N/A	ST-5	Roof Drain	N/A				
DA-B1	0.45	0.95	7.43	3.17	N/A	N/A	N/A	ST-6	Roof Drain	N/A				
DA-B2	0.06	0.95	7.43	0.44	6.25	0.50'	0.56	EX-CB-1	MAG 534	3.0' x 1.5				
DA-B3	0.03	0.95	7.43	0.23	6.25	0.50'	0.48	EX-CB-2	MAG 534	3.0' x 1.5				
DA-B4	0.04	0.95	7.43	0.31	6.25	0.50'	0.73	EX-CB-3	MAG 534	3.0' x 1.5				
DA-B5	0.08	0.95	7.43	0.56	6.25	0.50'	0.71	EX-CB-4	MAG 534	3.0' x 1.5				
DA-B6	0.10	0.95	7.43	0.68	6.25	0.33	Bypass	EX-CB-5	MAG 534	3.0' x 1.5				
DA-C1	0.05	0.72	7.43	0.29	N/A	0.50'	N/A	EX-CB-6	N/A	20' x 0.5				
DA-D1	0.20	0.76	7.43	1.14	N/A	0.50'	N/A	EX-CB-7	N/A	13.5' x 0.				
DA-E1	0.01	0.95	7.43	0.08	N/A	0.50'	N/A	CP-1	N/A	N/A				
OFF-1	0.12	0.91	7.43	0.81	N/A	0.50'	N/A	EX-CB-6	N/A	20' x 0.5				
OFF-2	0.71	0.94	7.43	4.97	N/A	0.50'	N/A	EX-CB-7	N/A	13.5' x 0.				
OFF-3	0.20	0.88	7.43	1.30	N/A	0.50'	N/A	CP-1	N/A	N/A				

TABLE 4. INLET CALCULATION SUMMARY

4.7. PIPE CAPACITY CALCULATIONS

The proposed drainage system consists of 18" and 12" HDPE pipes conveying runoff flows from proposed roof drains to the underground storage tanks. The system was evaluated for the 100-yr event scenario using Autodesk Civil 3D Gravity Network Analysis, verifying that the hydraulic grade lines

do not exceed six-inch depth in the parking lot. The critical storm pipes have the capacity to convey the total runoff of the Drainage Areas.

Refer to Appendix II for FlowMaster® Calculation and the HGL Results.

4.8. ADEQ WATER QUALITY REQUIREMENTS

The total disturbed area of this site is approximately 2.57 acres. The Arizona Department of Environmental Quality requires that any site disturbance over an acre is required to submit an NOI. A NOI will be submitted to ADEQ for this site after the first submittal of the construction documents as this site disturbance is over 1 acre.

5. FLOOD SAFETY FOR DWELLINGS

5.1. FINISHED FLOOR ELEVATIONS

This project lies in an "X" Flood Zone. Therefore, the proposed building finished floor elevation will be set a minimum of 14 inches above the lot ultimate outfall, located at the southeast corner of the site at an elevation of 1246.88'.

6. CONCLUSIONS

6.1. OVERALL PROJECT:

- 1. The finish floor elevations will be designed a minimum of 14 inches above the low top of curb of the lot with a difference between the outfall and the Finish Floor Elevation of 2.89 feet.
- 2. Historical outfalls will be affected at proposed conditions and overall discharge to the public storm drain system will be decreased.
- 3. On-site storage facilities will be provided to account for the Pre vs. Post volume and First Flush volumes.

6.2. PROJECT PHASING:

This project will be constructed in a single phase.

7. WARNING AND DISCLAIMER OF LIABILITY

RE: following page.

8. REFERENCES

- 1. Design Standards & Policies Manual, City of Scottsdale January 2018
- 2. Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology, Flood Control District of Maricopa County, Fourth Edition, December 14, 2018
- 3. Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics, Flood Control District of Maricopa County, December 14, 2018

GRADING & DRAINAGE GRADING & DRAINAGE LANGUAGE

WARNING AND DISCLAIMER OF LIABILITY

The City's Stormwater and Floodplain Management Ordinance is intended to minimize the occurrence of losses, hazards and conditions adversely affecting the public health, safety and general welfare which might result from flooding. The Stormwater and Floodplain Management Ordinance identifies floodplains, floodways, flood fringes and special flood hazard areas. However, a property outside these areas could be inundated by floods. Also, much of the city is a dynamic flood area; floodways, floodplains, flood fringes and special flood hazard areas may shift from one location to another, over time, due to natural processes.

WARNING AND DISCLAIMER OF LIABILITY

The flood protection provided by the Stormwater and Floodplain Management Ordinance is considered reasonable for regulatory purposes and is based on scientific and engineering considerations. Floods larger than the base flood can and will occur on rare occasions. Floodwater heights may be increased by constructed or natural causes. The Stormwater and Floodplain Management Ordinance does not create liability on the part of the city, any officer or employee thereof, or the federal, state or county government for any flood damages that result from reliance on the Ordinance or any administrative decision lawfully made thereunder.

Compliance with the Stormwater and Floodplain Management Ordinance does not ensure complete protection from flooding. Flood-related problems such as natural erosion, streambed meander, or constructed obstructions and diversions may occur and have an adverse effect in the event of a flood. You are advised to consult your own engineer or other expert regarding these considerations.

I have read and understand the above.

Plan Check #

Owner

Date

FIGURES

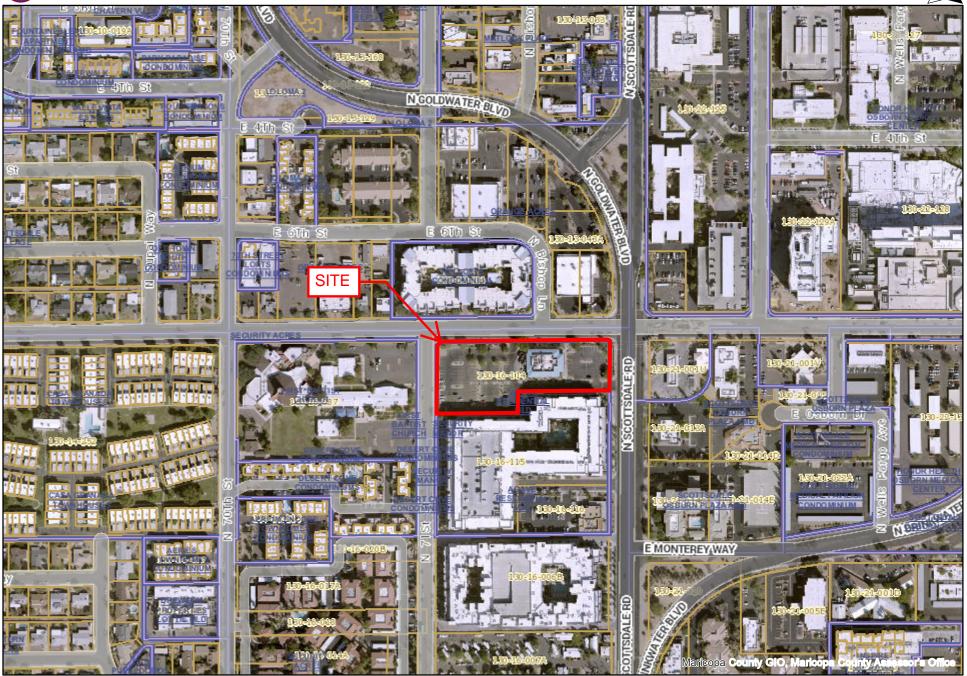
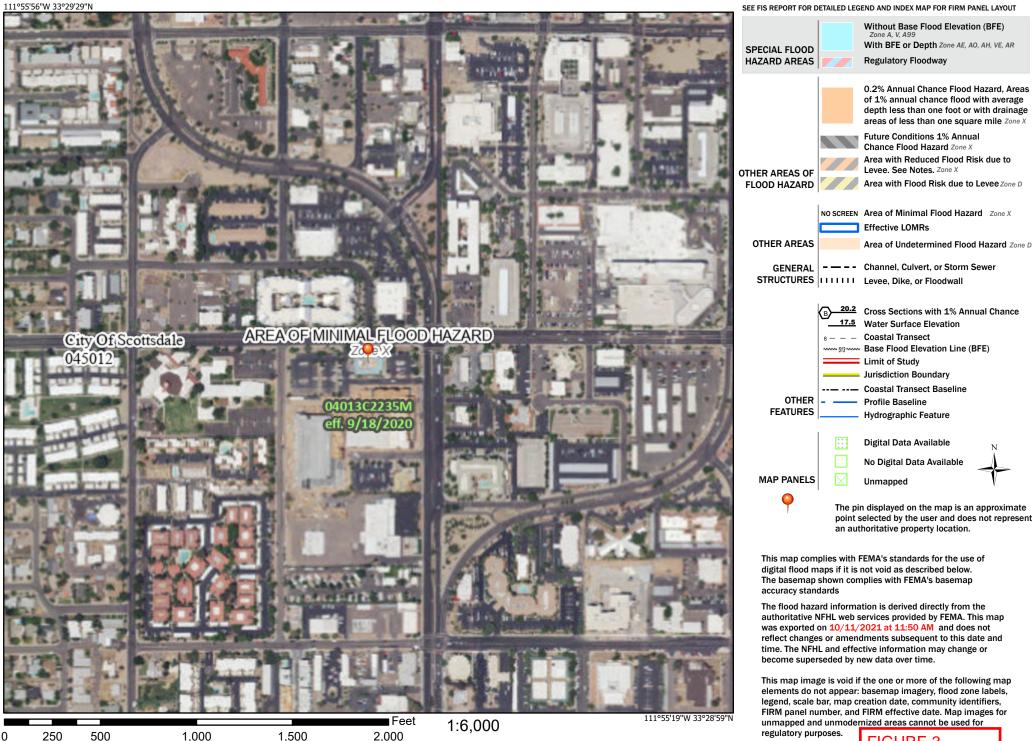


FIGURE 1. VICINITY MAP

10/7/2021 2:26:08 PM

N

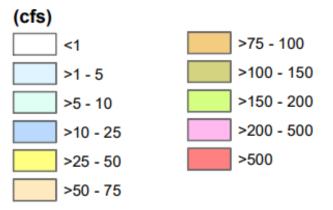

FIGURE 2. AERIAL

10/7/2021 2:21:50 PM

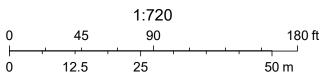
National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020


FIGURE 3

679_LIBW - South 100YR6HR


		-	1		1	3.6	85 Pr 2		100.70	-	A SUP CA	S. Con	A CONTRACT		and the second	1		NU.S.	14				1.66	MAR	and a second	No.				1	- 1	•		A.C.	-	a
	×	×	*	+	450	-	×	A CONTRACTOR		1×	ALL ALL	*	+	¥	×	*	A	1	14		194° -		mat	+	•	¥	×	+	*	*	×	×	1×	X	×	+
	+	+		*	×	+	+	¥	¥	¥	×	*	×	*	×	×	×	+	×	×	*	*	×	*	×	×	×	+	×	×	+	×	×	×) →	-
	+	+	1	*	×	+	×	×	+	+	×	×	×	×		*	+	+	-	+	+	+	×	×	×	×	+	+	+	+	+	*	+	+	+	+
-	+	+	+	+	×	×	*	-	1	1	-	+	+	+	-	-	-	-	+	1	1	*	+	+	+	+	+	*	-	+	+	+	-	+	+	+
r	1	1	1	1	-	+	+	1	1	14:	1			+				1		X	+	1			-	-	. * :	-	- 2	-	1	1	1	1	1	1
	+	+		30	+	1	1	+	1	1	×	+	+			4	×	-	-			4								1	+	1-	*	×	*	
,	1	1	+	+	*	+	+	×		×	×	×	-	*		*	×	×	+.		-	K	A			-	4				14	×	**	×	*	1
100	1	*	1	+	+	-	*	+		+	*	1	*	-				*	18 4 S	T	- 1	-		×			1		Y.	-		+			+	-
1	+	*	+	.+	+	*	1	+	ROL	+	+	+		+	+			×	×	. *	*	1					-		5	the state		+		+	+	
21.	*	+	+	1	1	+	*		2	+	ţ	+	+	*	74	1		*	*		-	4				+	-		4			+	1	-	+	
	+	1	1		-	-	*	1		100		-	+	*	-	-	*				-	+	-		· Chan	- The second		Marken -	and a second		1111	*	-	00		
			-	*			-	1		6		1		1	-	1.					1	-	Salar Salar		-	-	-	4	1							
	T	T	41	CONTRACT OF			E	1	1	T.		K	*	-	×		-						R.M.	5.5												
~	1	1	-		AND I	and a			1	-	•	-	-			-					Y	100									+		-			
	1	1		+		*	E		A Rech	88	-	-	-	*		1		*	Sec. 1		5 *		and the second s	ing pr			j.					•				
-	*	* -	A TRAN	+			*	-		1	*	-		*	-Aller	*		*			*					-			1	1.00.00	1 0.00200	- 859	+	+	-	
			50 M.		Antre-	>	-		200	1	*	*	*	*	*	*	*	*	+	*	×	*			-	100	69 66	+	- Kui	6.6.6	010000	200 S		and the	-	1
					1	+	+	-1	*	À.	*	1	1	*	-		+	+	1	+	*	+	*		*	and a	+		+	+	+	-	*	100	*	Ň
	*	+	+	1	+	>		1		×	*	*	1	ľ.	*	*	`	*	×	+	+	*	*		* 1	0000	*	X	1	4	No.		1	S STOR	*	+
	+	*	*	+	+	+	×		×	+	¥	*	-	- Al	10.10	-	1	Sadar	+	-	*	+			4	4	, †	THE S	Ja -	R			*	25	*	M
•	+	+	*	+	-	1	*	1	¥	S.X	*	1	*	+	40	+	*	×	00000	+	×	*	Y's	W2	AL.	×	+	+	+	+	×	×	→	×	×	*
	*	×	*	+	1	+	×	×	*	*	¥	+	inte	*	*	*	*	*	×	+	×	¥			and the	1	1	1	1	1	n.t.	F.	×	10	×	¥
	¥	ł	+	+	+	+	*	×	*	¥	¥	×	1000	+	*		-	*	*	a a a a a	×	+	1	*		1	4		17	1		ł	*	語	× 1	+
-	at a	+	*	+	+	+	×	×	N.	*	¥	*	of the la	+	*	T	+	*			×	¥	1	*	+	ł	ł	1	ŧ	+	+	÷	×	DOG	1	¥

October 15, 2021

Peak Discharge

APPENDIX I RAINFALL DATA

5240 N. 16th Street., Suite 105

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4873°, Longitude: -111.9271° Elevation: 1246.83 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PD	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹													
Duration				Averag	ge recurrenc	e interval (y	vears)							
Duration	1	2	5	10	25	50	100	200	500	1000				
5-min	0.183 (0.153-0.222)	0.239 (0.202-0.290)	0.324 (0.272-0.394)	0.390 (0.325-0.471)	0.480 (0.393-0.576)	0.549 (0.444-0.656)	0.619 (0.491-0.738)	0.691 (0.539-0.822)	0.787 (0.598-0.938)	0.860 (0.641-1.03)				
10-min	0.278 (0.233-0.338)	0.363 (0.307-0.442)	0.494 (0.414-0.599)	0.594 (0.495-0.717)	0.730 (0.598-0.876)	0.835 (0.675-0.998)	0.941 (0.747-1.12)	1.05 (0.820-1.25)	1.20 (0.909-1.43)	1.31 (0.975-1.56)				
15-min	0.344 (0.289-0.419)	0.450 (0.380-0.548)	0.612 (0.513-0.742)	0.737 (0.613-0.889)	0.905 (0.741-1.09)	1.03 (0.837-1.24)	1.17 (0.926-1.39)	1.30 (1.02-1.55)	1.48 (1.13-1.77)	1.62 (1.21-1.94)				
30-min	0.464 (0.389-0.564)	0.607 (0.512-0.738)	0.825 (0.691-1.00)	0.992 (0.826-1.20)	1.22 (0.998-1.46)	1.39 (1.13-1.67)	1.57 (1.25-1.87)	1.75 (1.37-2.09)	2.00 (1.52-2.38)	2.19 (1.63-2.61)				
60-min	0.574 (0.481-0.698)	0.751 (0.633-0.913)	1.02 (0.855-1.24)	1.23 (1.02-1.48)	1.51 (1.24-1.81)	1.73 (1.39-2.06)	1.95 (1.54-2.32)	2.17 (1.69-2.59)	2.47 (1.88-2.95)	2.71 (2.01-3.23)				
2-hr	0.664 (0.567-0.792)	0.861 (0.735-1.03)	1.15 (0.981-1.37)	1.38 (1.16-1.63)	1.68 (1.40-1.98)	1.92 (1.57-2.25)	2.16 (1.74-2.53)	2.40 (1.90-2.82)	2.73 (2.11-3.21)	2.99 (2.26-3.53)				
3-hr	0.722 (0.613-0.867)	0.926 (0.790-1.12)	1.22 (1.03-1.46)	1.45 (1.22-1.73)	1.77 (1.47-2.10)	2.03 (1.66-2.40)	2.30 (1.85-2.72)	2.58 (2.04-3.05)	2.97 (2.27-3.51)	3.29 (2.45-3.90)				
6-hr	0.869 (0.754-1.02)	1.10 (0.959-1.30)	1.41 (1.23-1.66)	1.66 (1.43-1.94)	2.00 (1.70-2.32)	2.27 (1.89-2.62)	2.55 (2.09-2.94)	2.83 (2.28-3.27)	3.22 (2.53-3.73)	3.52 (2.70-4.10)				
12-hr	0.972 (0.851-1.13)	1.23 (1.08-1.43)	1.56 (1.36-1.80)	1.82 (1.58-2.10)	2.17 (1.86-2.49)	2.43 (2.06-2.79)	2.71 (2.26-3.11)	2.99 (2.46-3.44)	3.36 (2.70-3.89)	3.66 (2.88-4.26)				
24-hr	1.16 (1.04-1.31)	1.48 (1.32-1.67)	1.92 (1.71-2.15)	2.26 (2.01-2.54)	2.74 (2.42-3.07)	3.12 (2.74-3.49)	3.52 (3.06-3.93)	3.93 (3.39-4.39)	4.49 (3.84-5.03)	4.94 (4.18-5.54)				
2-day	1.26 (1.12-1.42)	1.61 (1.44-1.81)	2.11 (1.88-2.37)	2.51 (2.23-2.82)	3.07 (2.72-3.44)	3.52 (3.09-3.94)	3.99 (3.48-4.48)	4.48 (3.88-5.03)	5.17 (4.43-5.81)	5.72 (4.85-6.45)				
3-day	1.33 (1.19-1.50)	1.70 (1.52-1.91)	2.24 (1.99-2.51)	2.67 (2.37-2.99)	3.28 (2.90-3.67)	3.77 (3.30-4.21)	4.28 (3.73-4.80)	4.83 (4.17-5.41)	5.60 (4.78-6.28)	6.21 (5.25-6.99)				
4-day	1.40 (1.25-1.58)	1.79 (1.60-2.02)	2.36 (2.10-2.65)	2.83 (2.51-3.17)	3.48 (3.07-3.90)	4.01 (3.52-4.49)	4.58 (3.98-5.12)	5.18 (4.47-5.80)	6.02 (5.13-6.74)	6.71 (5.66-7.53)				
7-day	1.55 (1.38-1.75)	1.98 (1.77-2.24)	2.62 (2.33-2.94)	3.13 (2.78-3.52)	3.86 (3.41-4.33)	4.44 (3.90-4.98)	5.07 (4.41-5.68)	5.73 (4.95-6.43)	6.66 (5.68-7.48)	7.42 (6.25-8.34)				
10-day	1.69 (1.51-1.90)	2.16 (1.93-2.43)	2.85 (2.54-3.20)	3.41 (3.02-3.81)	4.18 (3.69-4.67)	4.81 (4.22-5.37)	5.47 (4.76-6.11)	6.16 (5.33-6.89)	7.14 (6.10-7.99)	7.92 (6.70-8.88)				
20-day	2.07 (1.86-2.32)	2.67 (2.39-2.98)	3.52 (3.15-3.93)	4.17 (3.71-4.64)	5.04 (4.47-5.61)	5.71 (5.05-6.35)	6.39 (5.62-7.12)	7.08 (6.20-7.89)	8.01 (6.95-8.95)	8.72 (7.51-9.76)				
30-day	2.42 (2.16-2.71)	3.12 (2.79-3.48)	4.11 (3.66-4.57)	4.86 (4.33-5.40)	5.87 (5.20-6.52)	6.64 (5.86-7.38)	7.44 (6.54-8.26)	8.25 (7.21-9.16)	9.34 (8.10-10.4)	10.2 (8.75-11.3)				
45-day	2.81 (2.52-3.13)	3.62 (3.25-4.03)	4.76 (4.27-5.31)	5.61 (5.02-6.25)	6.73 (6.00-7.49)	7.57 (6.73-8.43)	8.42 (7.45-9.38)	9.27 (8.16-10.3)	10.4 (9.08-11.6)	11.2 (9.76-12.6)				
60-day	3.11 (2.80-3.46)	4.01 (3.61-4.46)	5.28 (4.74-5.86)	6.20 (5.55-6.88)	7.39 (6.61-8.21)	8.28 (7.37-9.19)	9.17 (8.13-10.2)	10.0 (8.87-11.2)	11.2 (9.81-12.5)	12.0 (10.5-13.4)				

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.4873°, Longitude: -111.9271° Elevation: 1246.83 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

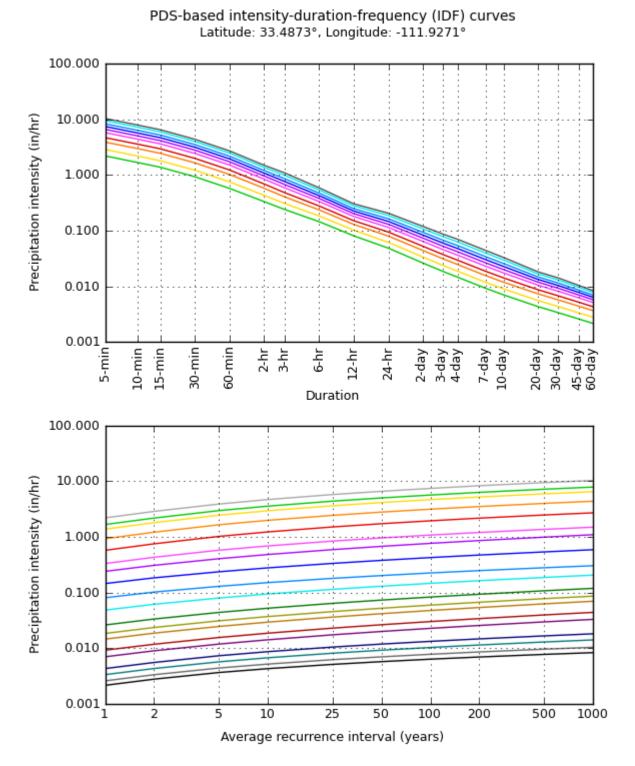
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

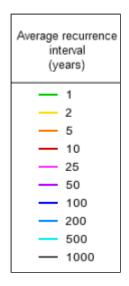
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹													
Duration				Avera	ge recurren	ce interval (y	/ears)							
Duration	1	2	5	10	25	50	100	200	500	1000				
5-min	2.20 (1.84-2.66)	2.87 (2.42-3.48)	3.89 (3.26-4.73)	4.68 (3.90-5.65)	5.76 (4.72-6.91)	6.59 (5.33-7.87)	7.43 (5.89-8.86)	8.29 (6.47-9.86)	9.44 (7.18-11.3)	10.3 (7.69-12.3)				
10-min	1.67 (1.40-2.03)	2.18 (1.84-2.65)	2.96 (2.48-3.59)	3.56 (2.97-4.30)	4.38 (3.59-5.26)	5.01 (4.05-5.99)	5.65 (4.48-6.73)	6.31 (4.92-7.51)	7.18 (5.45-8.57)	7.85 (5.85-9.38)				
15-min	1.38	1.80	2.45	2.95	3.62	4.14	4.67	5.21	5.94	6.49				
	(1.16-1.68)	(1.52-2.19)	(2.05-2.97)	(2.45-3.56)	(2.96-4.34)	(3.35-4.95)	(3.70-5.56)	(4.07-6.20)	(4.51-7.08)	(4.84-7.76)				
30-min	0.928 (0.778-1.13)	1.21 (1.02-1.48)	1.65 (1.38-2.00)	1.98 (1.65-2.39)	2.44 (2.00-2.93)	2.79 (2.25-3.33)	3.14 (2.49-3.75)	3.51 (2.74-4.18)	4.00 (3.04-4.77)	4.37 (3.26-5.22)				
60-min	0.574 (0.481-0.698)	0.751 (0.633-0.913)	1.02 (0.855-1.24)	1.23 (1.02-1.48)	1.51 (1.24-1.81)	1.73 (1.39-2.06)	1.95 (1.54-2.32)	2.17 (1.69-2.59)	2.47 (1.88-2.95)	2.71 (2.01-3.23)				
2-hr	0.332	0.430	0.576	0.688	0.840	0.958	1.08	1.20	1.37	1.49				
	(0.284-0.396)	(0.368-0.514)	(0.490-0.685)	(0.578-0.816)	(0.698-0.990)	(0.785-1.13)	(0.870-1.27)	(0.952-1.41)	(1.06-1.60)	(1.13-1.76)				
3-hr	0.240	0.308	0.406	0.483	0.590	0.676	0.766	0.859	0.989	1.09				
	(0.204-0.289)	(0.263-0.372)	(0.344-0.487)	(0.405-0.576)	(0.489-0.701)	(0.552-0.800)	(0.615-0.906)	(0.678-1.01)	(0.757-1.17)	(0.816-1.30)				
6-hr	0.145	0.184	0.236	0.278	0.334	0.379	0.425	0.472	0.537	0.588				
	(0.126-0.171)	(0.160-0.216)	(0.205-0.277)	(0.238-0.324)	(0.283-0.387)	(0.316-0.437)	(0.349-0.491)	(0.380-0.547)	(0.422-0.623)	(0.451-0.684)				
12-hr	0.081	0.102	0.129	0.151	0.180	0.202	0.225	0.248	0.279	0.304				
	(0.071-0.094)	(0.089-0.119)	(0.113-0.150)	(0.131-0.174)	(0.154-0.207)	(0.171-0.232)	(0.188-0.258)	(0.204-0.285)	(0.224-0.323)	(0.239-0.353)				
24-hr	0.048	0.062	0.080	0.094	0.114	0.130	0.147	0.164	0.187	0.206				
	(0.043-0.055)	(0.055-0.069)	(0.071-0.090)	(0.084-0.106)	(0.101-0.128)	(0.114-0.145)	(0.128-0.164)	(0.141-0.183)	(0.160-0.209)	(0.174-0.231)				
2-day	0.026	0.033	0.044	0.052	0.064	0.073	0.083	0.093	0.108	0.119				
	(0.023-0.029)	(0.030-0.038)	(0.039-0.049)	(0.047-0.059)	(0.057-0.072)	(0.064-0.082)	(0.073-0.093)	(0.081-0.105)	(0.092-0.121)	(0.101-0.134)				
3-day	0.018	0.024	0.031	0.037	0.046	0.052	0.060	0.067	0.078	0.086				
	(0.016-0.021)	(0.021-0.027)	(0.028-0.035)	(0.033-0.042)	(0.040-0.051)	(0.046-0.059)	(0.052-0.067)	(0.058-0.075)	(0.066-0.087)	(0.073-0.097)				
4-day	0.015	0.019	0.025	0.029	0.036	0.042	0.048	0.054	0.063	0.070				
	(0.013-0.016)	(0.017-0.021)	(0.022-0.028)	(0.026-0.033)	(0.032-0.041)	(0.037-0.047)	(0.041-0.053)	(0.047-0.060)	(0.053-0.070)	(0.059-0.078)				
7-day	0.009	0.012	0.016	0.019	0.023	0.026	0.030	0.034	0.040	0.044				
	(0.008-0.010)	(0.011-0.013)	(0.014-0.018)	(0.017-0.021)	(0.020-0.026)	(0.023-0.030)	(0.026-0.034)	(0.029-0.038)	(0.034-0.045)	(0.037-0.050)				
10-day	0.007	0.009	0.012	0.014	0.017	0.020	0.023	0.026	0.030	0.033				
	(0.006-0.008)	(0.008-0.010)	(0.011-0.013)	(0.013-0.016)	(0.015-0.019)	(0.018-0.022)	(0.020-0.025)	(0.022-0.029)	(0.025-0.033)	(0.028-0.037)				
20-day	0.004	0.006	0.007	0.009	0.010	0.012	0.013	0.015	0.017	0.018				
	(0.004-0.005)	(0.005-0.006)	(0.007-0.008)	(0.008-0.010)	(0.009-0.012)	(0.011-0.013)	(0.012-0.015)	(0.013-0.016)	(0.014-0.019)	(0.016-0.020)				
30-day	0.003	0.004	0.006	0.007	0.008	0.009	0.010	0.011	0.013	0.014				
	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.007-0.009)	(0.008-0.010)	(0.009-0.011)	(0.010-0.013)	(0.011-0.014)	(0.012-0.016)				
45-day	0.003	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.010				
	(0.002-0.003)	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.009)	(0.008-0.010)	(0.008-0.011)	(0.009-0.012)				
60-day	0.002	0.003	0.004	0.004	0.005	0.006	0.006	0.007	0.008	0.008				
	(0.002-0.002)	(0.003-0.003)	(0.003-0.004)	(0.004-0.005)	(0.005-0.006)	(0.005-0.006)	(0.006-0.007)	(0.006-0.008)	(0.007-0.009)	(0.007-0.009)				

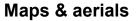

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

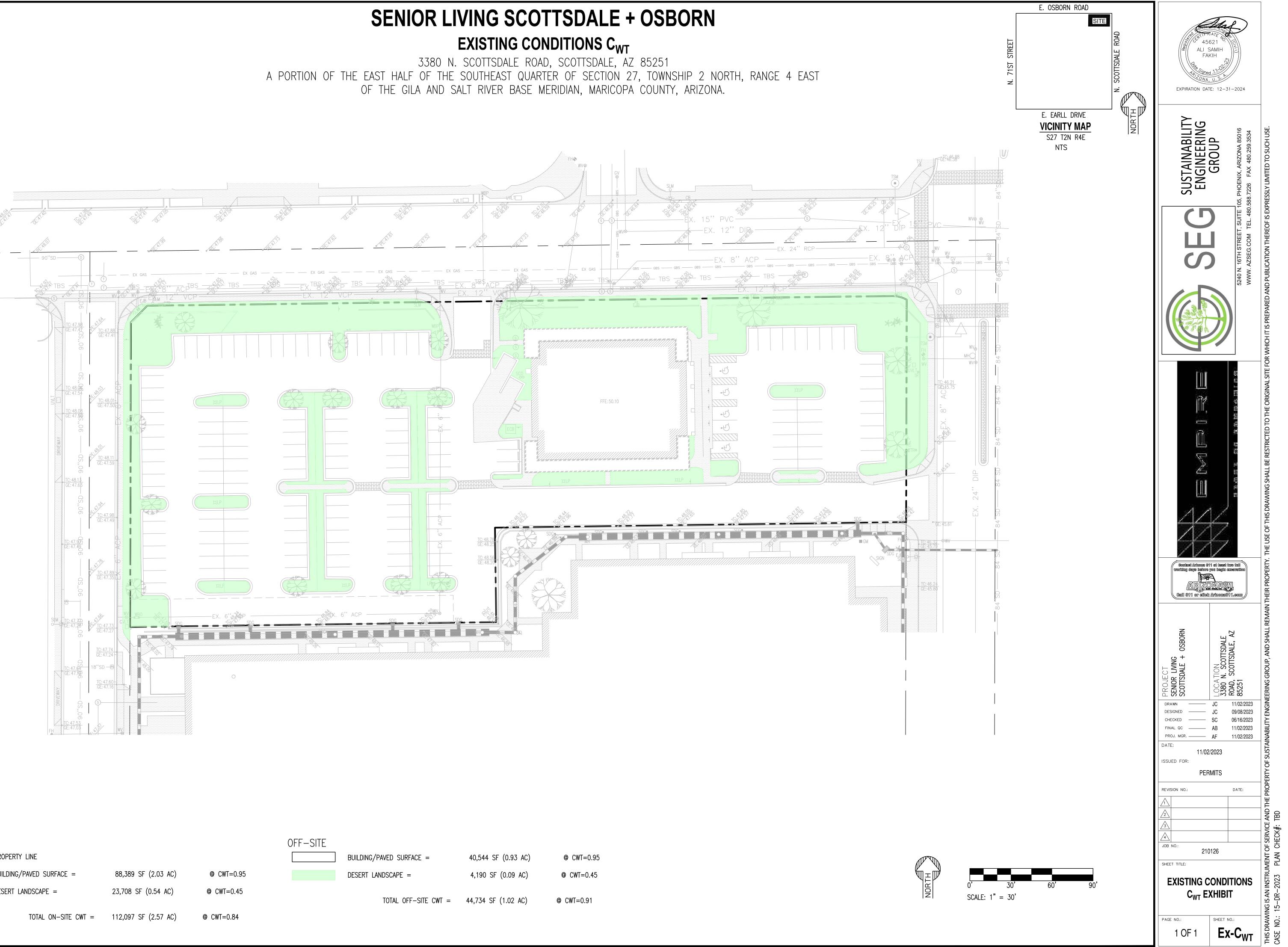


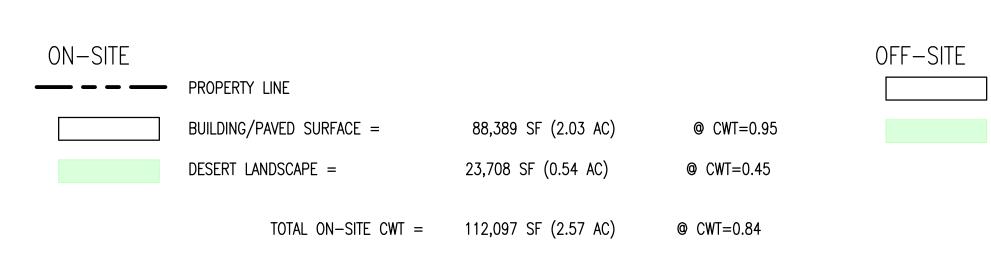
Dura	ation
5-min	2-day
10-min	— 3-day
15-min	- 4-day
30-min	- 7-day
- 60-min	— 10-day
- 2-hr	- 20-day
— 3-hr	— 30-day
— 6-hr	— 45-day
- 12-hr	- 60-day
24-hr	

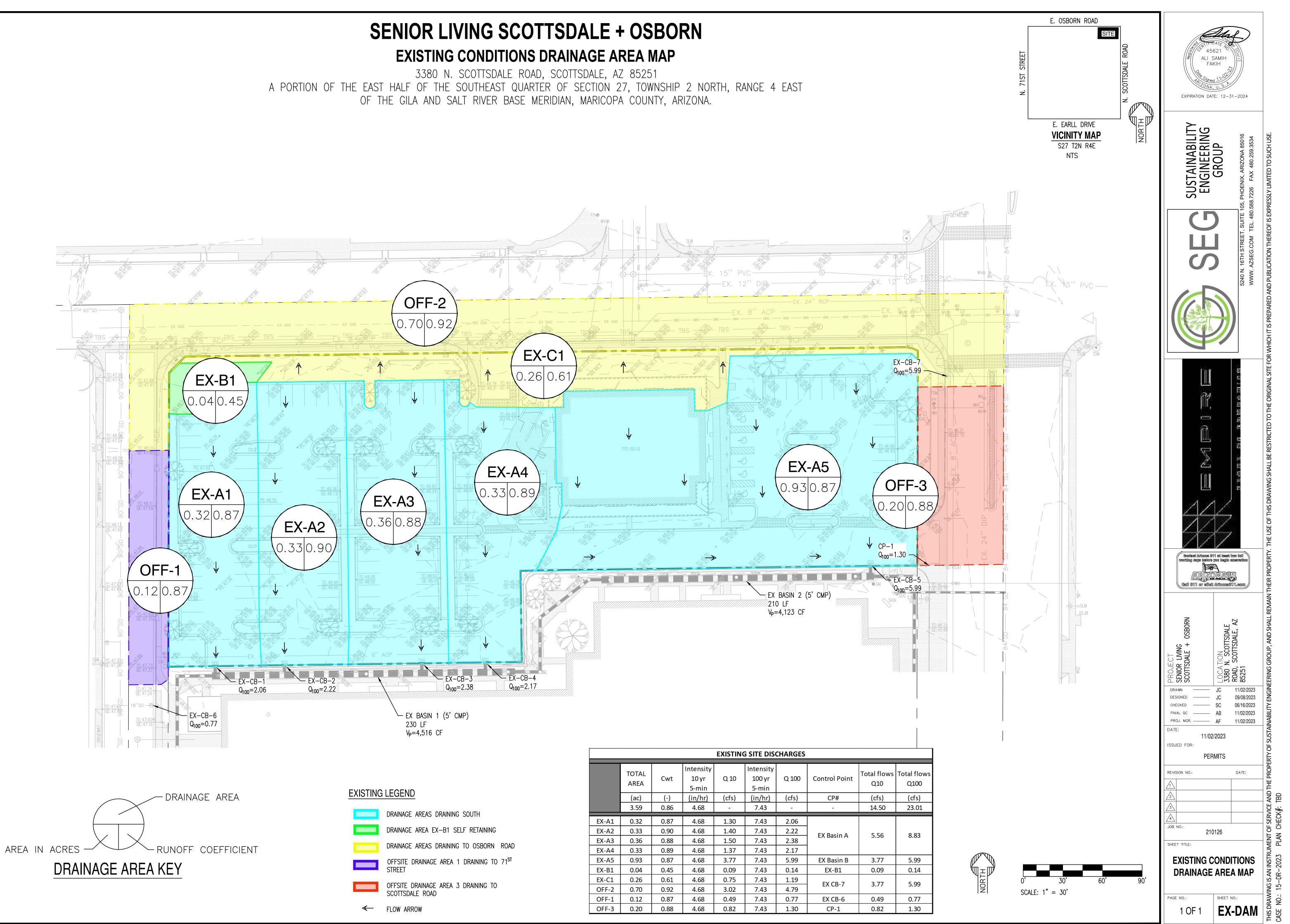
NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Mon Oct 11 17:37:50 2021

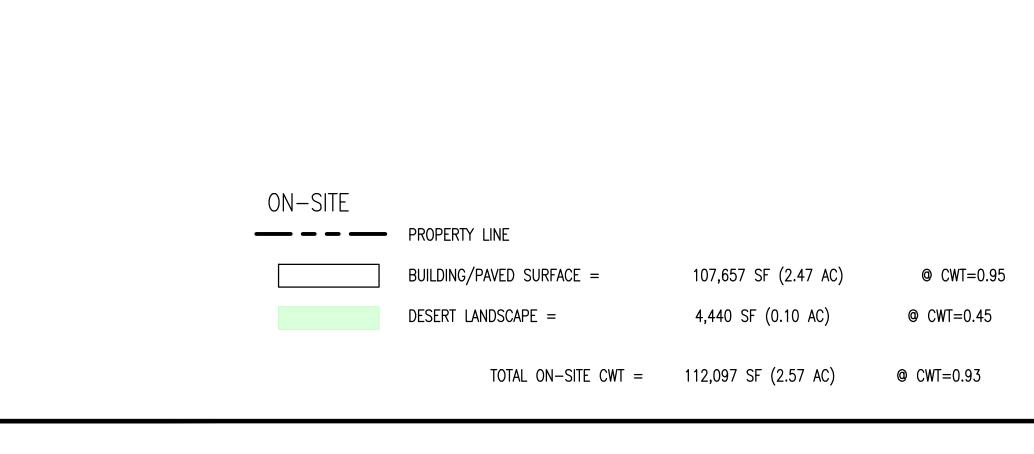
Back to Top

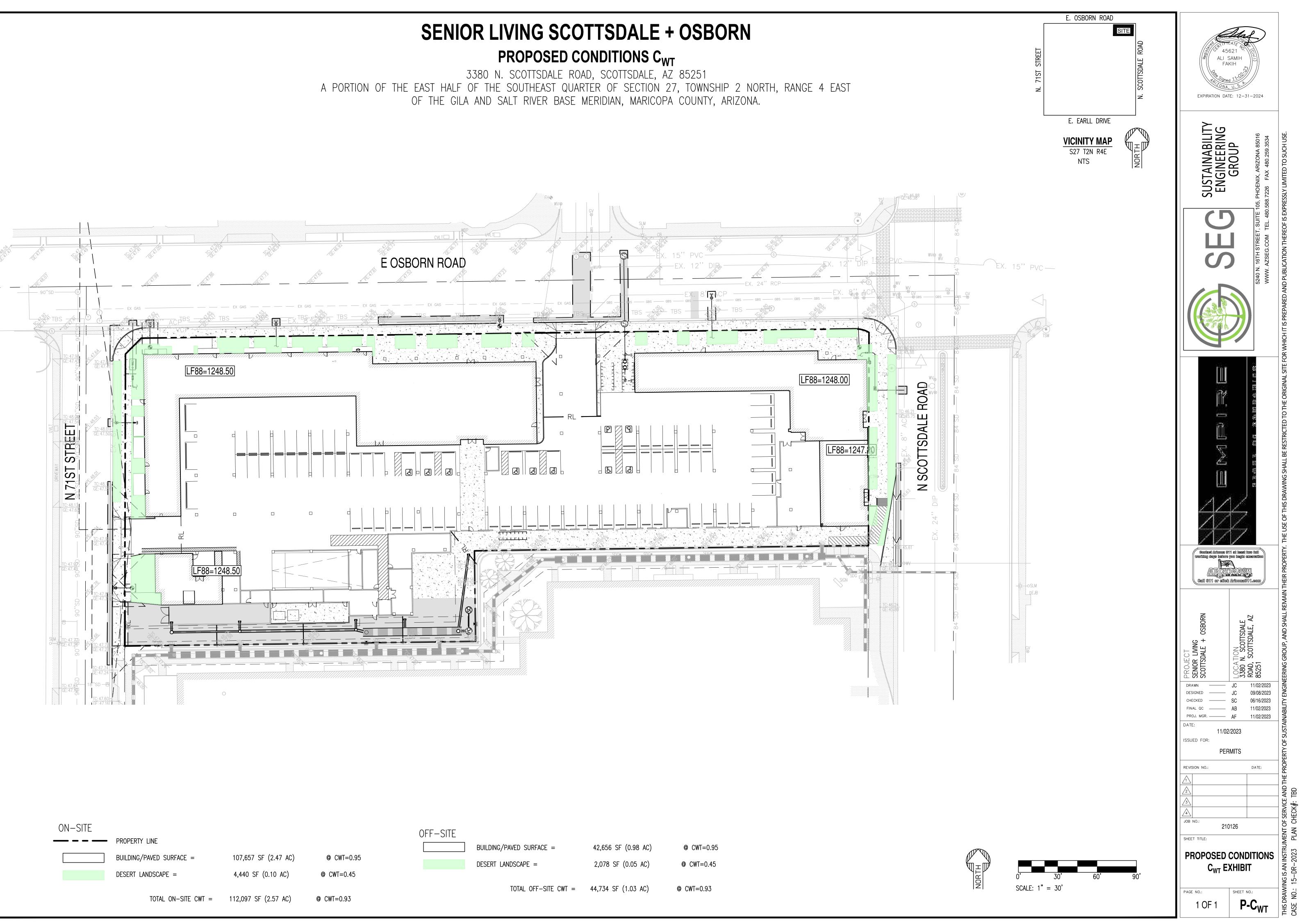


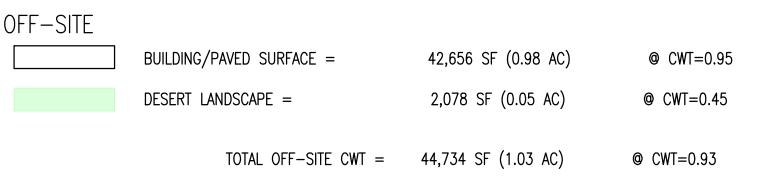


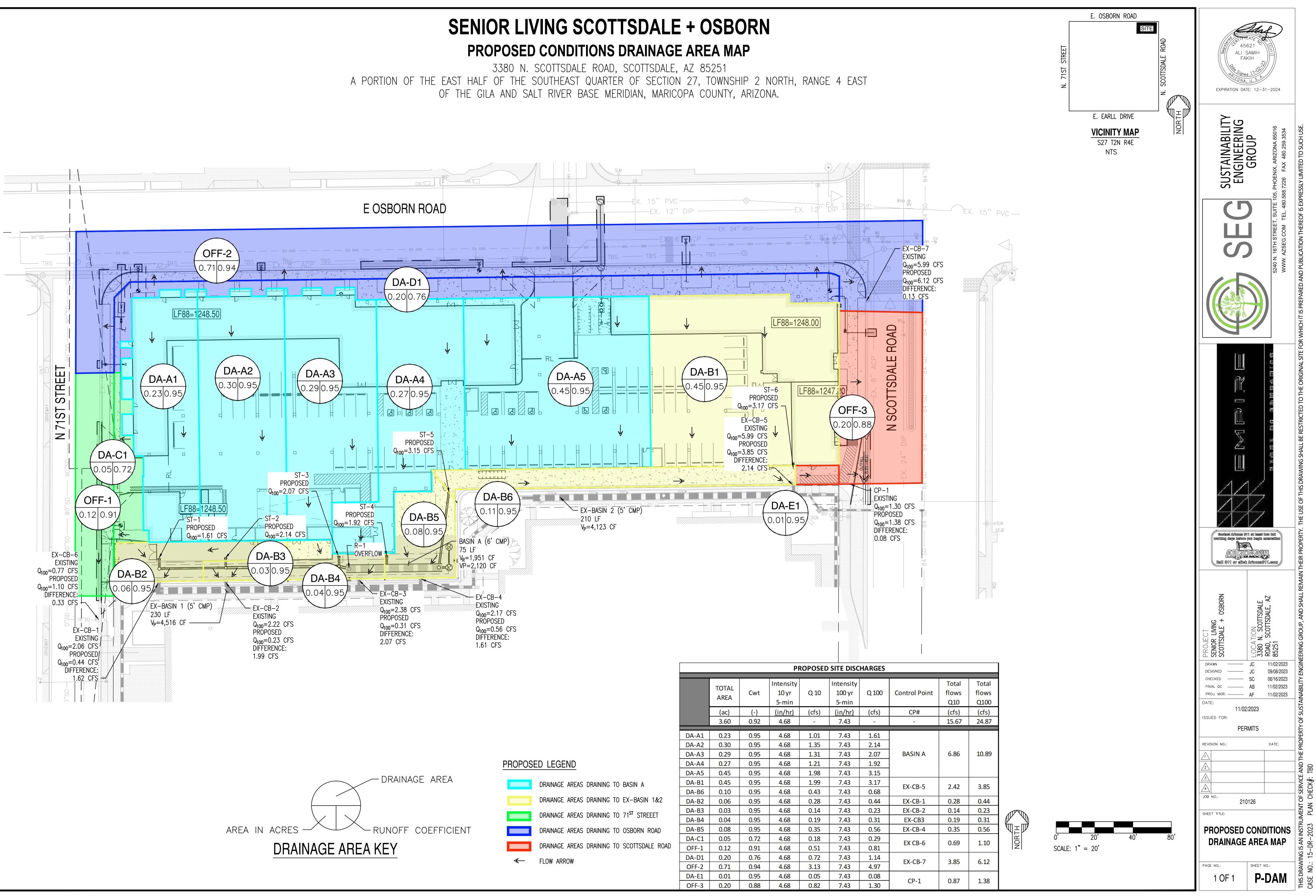

APPENDIX II CALCULATIONS

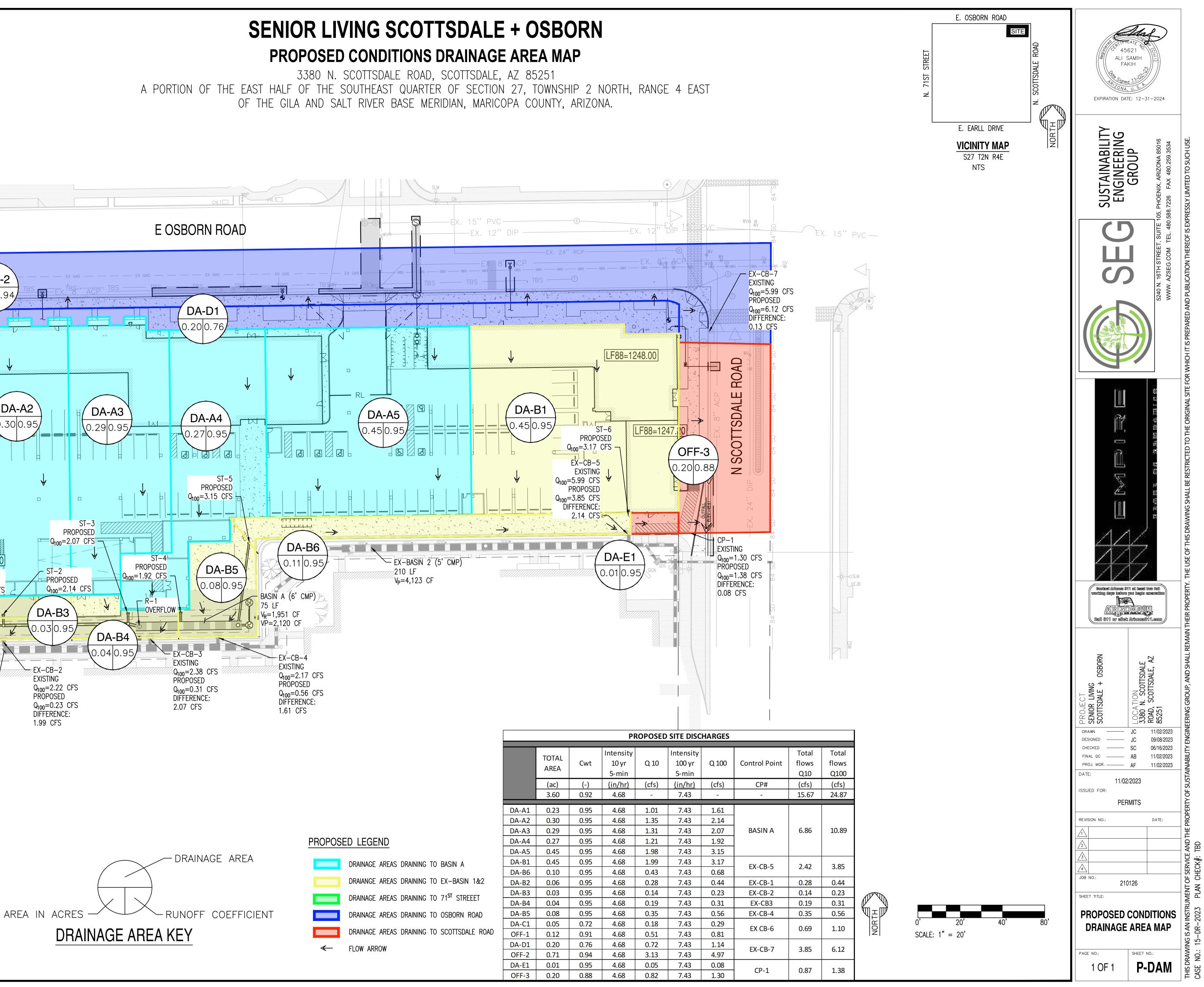
5240 N. 16th Street., Suite 105




3380 N. SCOTTSDALE ROAD, SCOTTSDALE, AZ 85251 OF THE GILA AND SALT RIVER BASE MERIDIAN, MARICOPA COUNTY, ARIZONA.




						EXISTIN	G SITE DISC	CHARGES		
			TOTAL AREA	Cwt	Intensity 10 yr 5-min	Q 10	Intensity 100 yr 5-min	Q 100	Control Point	Tot
VC	<u>A LEGEND</u>		(ac)	(-)	(in/hr)	(cfs)	(in/hr)	(cfs)	CP#	
			3.59	0.86	4.68	-	7.43	-	-	
	DRAINAGE AREAS DRAINING SOUTH	EX-A1	0.32	0.87	4.68	1.30	7.43	2.06		
	DRAINAGE AREA EX–B1 SELF RETAINING	EX-A2	0.33	0.90	4.68	1.40	7.43	2.22		
		EX-A3	0.36	0.88	4.68	1.50	7.43	2.38	EX Basin A	
	DRAINAGE AREAS DRAINING TO OSBORN ROAD	EX-A4	0.33	0.89	4.68	1.37	7.43	2.17		
	OFFSITE DRAINAGE AREA 1 DRAINING TO 71 ST	EX-A5	0.93	0.87	4.68	3.77	7.43	5.99	EX Basin B	
	STREET	EX-B1	0.04	0.45	4.68	0.09	7.43	0.14	EX-B1	
		EX-C1	0.26	0.61	4.68	0.75	7.43	1.19	EX CB-7	
	OFFSITE DRAINAGE AREA 3 DRAINING TO SCOTTSDALE ROAD	OFF-2	0.70	0.92	4.68	3.02	7.43	4.79		
	SCOTTSDALL NOND	OFF-1	0.12	0.87	4.68	0.49	7.43	0.77	EX CB-6	
	FLOW ARROW	OFF-3	0.20	0.88	4.68	0.82	7.43	1.30	CP-1	


CK#:

-	EXISTI	NG OVERALL SI	TE C _w	
	BUILDING/	DESERT	TOTAL AREA	Curt
	PAVEMENT	LANDSCAPE	TOTAL AREA	Cwt
C-VALUE	0.95	0.45		
AREA (ac)	2.03	0.54	2.57	0.84
EX-A1	0.27	0.05	0.32	0.87
EX-A2	0.30	0.03	0.33	0.90
EX-A3	0.31	0.05	0.36	0.88
EX-A4	0.29	0.04	0.33	0.89
EX-A5	0.78	0.15	0.93	0.87
EX-B1	0.00	0.04	0.04	0.45
EX-C1	0.09	0.18	0.26	0.61

	EXISTI	NG OFFSITE SIT	ΈC _w	
	BUILDING/	DESERT	TOTAL AREA	Cwt
	PAVEMENT	LANDSCAPE	TOTAL AREA	CWI
C-VALUE	0.95	0.45		
AREA (ac)	0.93	0.09	1.02	0.91
OFF-1	0.10	0.02	0.12	0.87
OFF-2	0.66	0.04	0.70	0.92
OFF-3	0.17	0.03	0.20	0.88

	PROPOS	SED OVERALL S	ITE C _w	
	BUILDING/ PAVEMENT	DESERT LANDSCAPE	TOTAL AREA	Cwt
C-VALUE	0.95	0.45		
AREA (ac)	2.47	0.10	2.57	0.93
DA-A1	0.23	0.00	0.23	0.95
DA-A2	0.30	0.00	0.30	0.95
DA-A3	0.29	0.00	0.29	0.95
DA-A4	0.27	0.00	0.27	0.95
DA-A5	0.45	0.00	0.45	0.95
DA-B1	0.45	0.00	0.45	0.95
DA-B2	0.06	0.00	0.06	0.95
DA-B3	0.03	0.00	0.03	0.95
DA-B4	0.04	0.00	0.04	0.95
DA-B5	0.08	0.00	0.08	0.95
DA-B6	0.10	0.00	0.10	0.95
DA-C1	0.03	0.02	0.05	0.72
DA-D1	0.13	0.08	0.20	0.76
DA-E1	0.01	0.00	0.01	0.95

	PROPO	SED OFFSITE SI	TE C _w	
	BUILDING/ PAVEMENT	DESERT LANDSCAPE	TOTAL AREA	Cwt
C-VALUE	0.95	0.45		
AREA (ac)	0.98	0.05	1.03	0.93
OFF-1	0.11	0.01	0.12	0.91
OFF-2	0.70	0.01	0.71	0.94
OFF-3	0.17	0.03	0.20	0.88

ST-1 TO BASIN A PIPES HYDRAULIC CALCULATIONS

#Line	Pipe	From	То	3D Length - Center to Center	Drainage Area Inc	Drainage Area Total	Runoff Coeff "C"	Area X "C" Inc	Area X "C" Total	Time of Concentra tion Inlet		Rain "I"	Runoff "Q"	Known Q	Total Q	Pipe Dia.	Full Q	Velocity Full	Velocity Design	Sec Time	Invert Elevation U/S	Invert Elevation D/S	Crown Drop	Slope
				(ft)	(sq. ft)	(sq. ft)		(sq. ft)	(sq. ft)	(min)	(min)	(inch/hr)	(cu. ft/sec)	(cu. ft/sec)	(cu. ft/sec)	(ft)	(cu. ft/sec)	(ft/s)	(ft/s)	(min)	(ft)	(ft)	(ft)	
1	Pipe - (29)	MH-1	UGC-1	5.65	0	0	0	0	0	0	0	0	0	0	5.82	1.5	7.435	4.207	4.652	0.02	1242.828	1242.8	N/A	0.50%
2	Pipe - (7)	ST-3	MH-1	7.922	0	0	0	0	0	0	0	0	0	2.07	2.07	1	5.043	6.421	6.101	0.022	1242.986	1242.828	N/A	2.00%
3	8 Pipe - (8)	MH-2	MH-1	88.544	0	0	0	0	0	0	0	0	0	0	3.75	1.5	7.435	4.207	4.213	0.35	1243.271	1242.828	N/A	0.50%
4	Pipe - (5)	ST-2	MH-2	7.922	0	0	0	0	0	0	0	0	0	2.14	2.14	1	5.043	6.421	6.154	0.021	1243.429	1243.271	N/A	2.00%
5	6 Pipe - (27)	MH-3	MH-2	51.948	0	0	0	0	0	0	0	0	0	0	1.61	1	2.522	3.211	3.402	0.255	1243.531	1243.271	N/A	0.50%
6	6 Pipe - (2)	ST-1	MH-3	7.983	0	0	0	0	0	0	0	0	0	1.61	1.61	1	5.043	6.421	5.705	0.023	1243.691	1243.531	N/A	2.00%
#Line	Struct. ID	D	Q	L	v	d	dc	v^2/2g	EGLo	HGLo	Sf	Total Pipe Loss	EGLi	HGLi	Ea	EGLa	U/S TOC	Surface Elev.	Step4*	Step7*	Step14*			
		(ft)	(cu. ft/sec)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)						
C	UGC-1								1244.37	1244.37							1244.3	1244.444						
1	MH-1	1.5	5.82	5.65	3.293	1.5	n/a	0.169	1244.539	1244.37	0.003	0.017	1244.556	1244.387	1.809	1244.637	1243.828	1247.784	Case A	N/A	Case A			
2	стр	1	2.07	7 0 2 2	2 6 2 6	1	n/2	0 100	1244 60	1244 572	0.002	0.027	1244 707	1244 500	1 742	1244 720		1244 001	Caco P	NI/A	Caco A			

I WITT	1.5	5.02	5.05	5.255	1.5	ny u	0.105	1244.333	1244.57	0.005	0.017	1244.550	1244.307	1.005	1244.057	1245.020	1247.704	Lease H		Cuse A
2 ST-3	1	2.07	7.922	2.636	1	n/a	0.108	1244.68	1244.572	0.003	0.027	1244.707	1244.599	1.742	1244.728		1244.091	Case B	N/A	Case A
3 MH-2	1.5	3.75	88.544	2.122	0.754	0.74	0.07	1244.665	1244.595	0.001	0.113	1244.778	1244.708	1.548	1244.819	1244.271	1247.935	Case B	N/A	Case B
4 ST-2	1	2.14	7.922	2.725	1	n/a	0.115	1244.865	1244.75	0.004	0.029	1244.894	1244.778	1.487	1244.917		1244.534	Case B	N/A	Case A
5 MH-3	1	1.61	51.948	2.05	1	n/a	0.065	1244.845	1244.78	0.002	0.106	1244.951	1244.886	1.475	1245.006	1244.531	1247.265	Case B	N/A	Case A
6 ST-1	1	1.61	7.983	2.05	1	n/a	0.065	1245.032	1244.967	0.002	0.016	1245.048	1244.983	1.371	1245.061		1244.796	Case B	N/A	Case A
*URBAN DRAINAGE DES	SIGN MAN	IUAL - Hydrau	lic Engineer	ing Circular	No.22 Thir	d Edition														

#Line	Struct. ID	Exit Ho	Hf	Hb	Hc	He	Hj	Total	Ei	y+(P/gam ma)	DI	Eai	СВ	C-theta	Ср	На	Ea
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)				(ft)	(ft)
0	UGC-1																
1	MH-1	0.169	0.017	0	0	0	0	0.017	1.728	1.559	0.474	1.761	0	1.397	0	0.047	1.809
2	ST-3	0.043	0.027	0	0	0	0	0.027	1.72	1.612	0.465	1.742	0	0	0	0	1.742
3	MH-2	0.028	0.113	0	0	0	0	0.113	1.507	1.437	0.306	1.521	0	1.951	0	0.027	1.548
4	ST-2	0.046	0.029	0	0	0	0	0.029	1.464	1.349	0.48	1.487	0	0	0	0	1.487
5	MH-3	0.026	0.106	0	0	0	0	0.106	1.42	1.355	0.361	1.434	0	3.186	0	0.042	1.475
6	ST-1	0.026	0.016	0	0	0	0	0.016	1.358	1.292	0.361	1.371	0	0	0	0	1.371

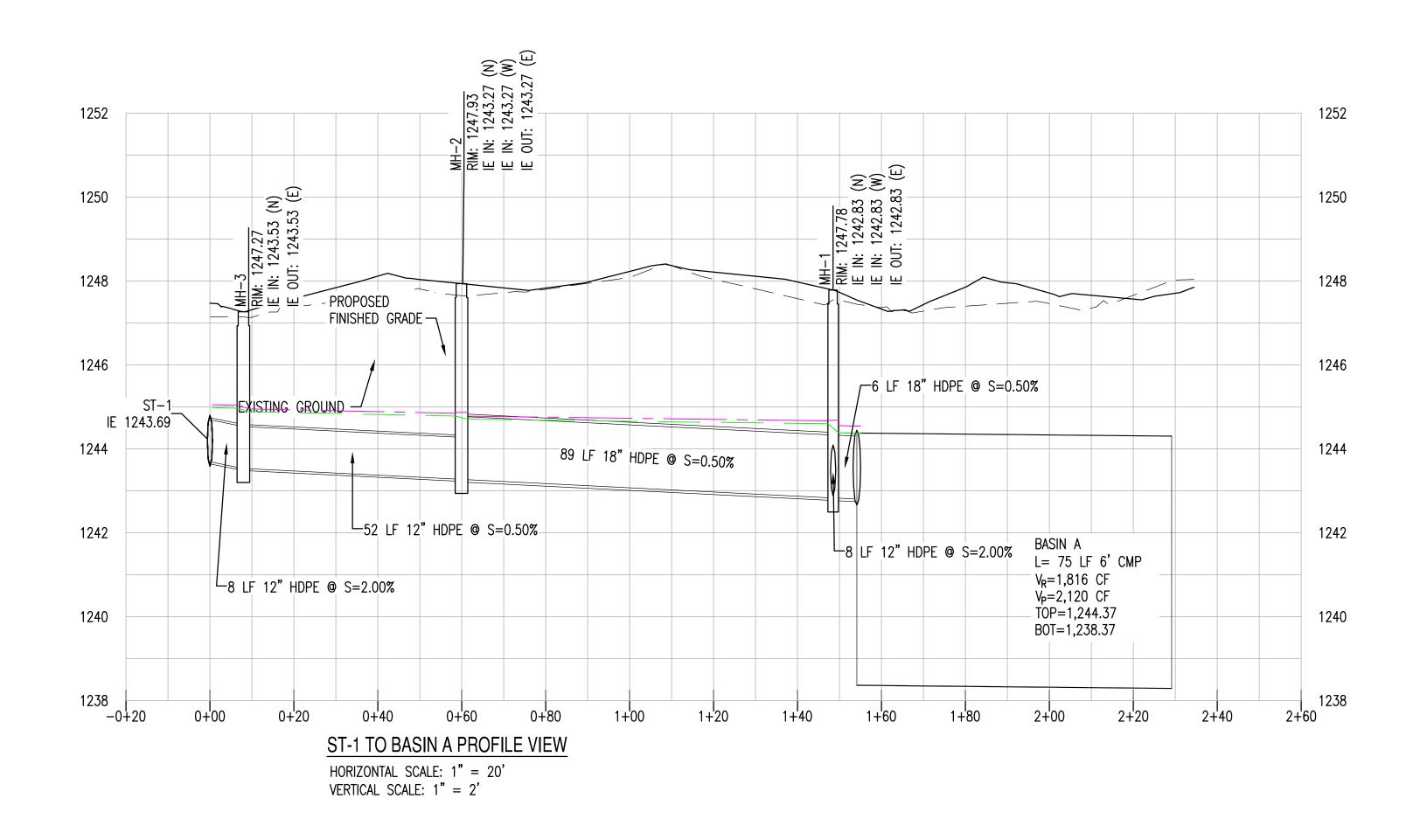
ST-4 TO BASIN A PIPES HYDRAULIC CALCULATIONS

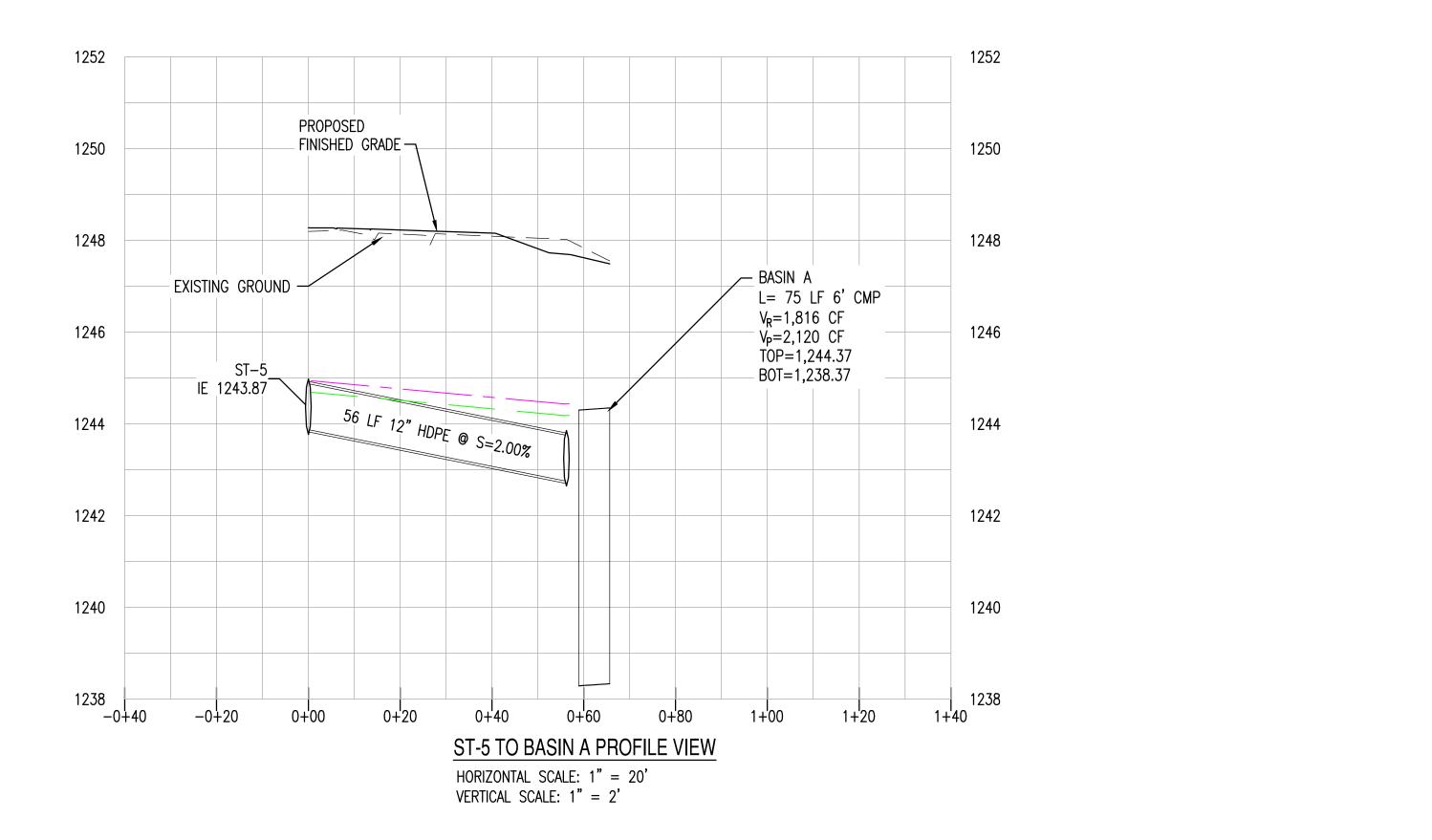
#Li	ne	Pipe	From	То	3D Length - Center to Center	Drainage Area Inc	Drainage Area Total	Runoff Coeff "C"	Area X "C" Inc	Total	Time of Concentra tion Inlet	tion	Rain "I"	Runoff "Q"	Known Q	Total Q	Pipe Dia.	Full Q	Velocity Full	Velocity Design	Sec Time	Invert Elevation U/S	Invert Elevation D/S	Crown Drop	Slope
					(ft)	(sq. ft)	(sq. ft)		(sq. ft)	(sq. ft)	(min)	(min)	(inch/hr)	(cu. ft/sec)	(cu. ft/sec)	(cu. ft/sec)	(ft)	(cu. ft/sec)	(ft/s)	(ft/s)	(min)	(ft)	(ft)	(ft)	
	1	Pipe - (10)	ST-4	UCG-3	6.856	0	0	0	0	0	0	0	0	0	1.92	1.92	1	5.043	6.421	5.981	0.019	1242.932	1242.795	N/A	2.00%

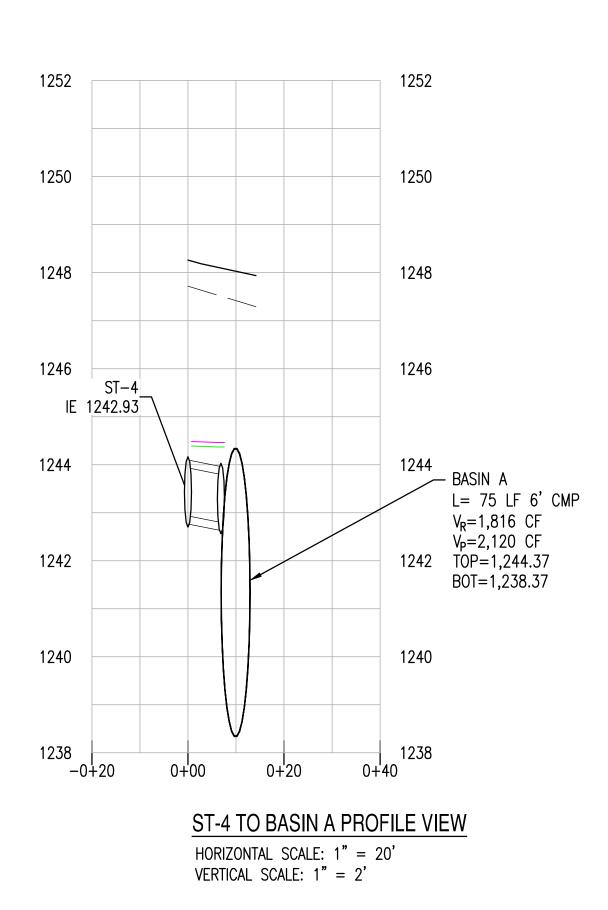
#Line	Struct. ID	D	Q	L	V	d	dc	v^2/2g	EGLo	HGLo	Sf	Total Pipe Loss	EGLi	HGLi	Ea	EGLa	U/S TOC	Surface Elev.	Step4*	Step7*	Step14*
		(ft)	(cu. ft/sec)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
0	UCG-3								1244.37	1244.37							1243.795	1244.028			
1	ST-4	1	1.92	6.856	2.445	1	n/a	0.093	1244.463	1244.37	0.003	0.02	1244.483	1244.39	1.569	1244.501		1244.165	Case A	N/A	Case A

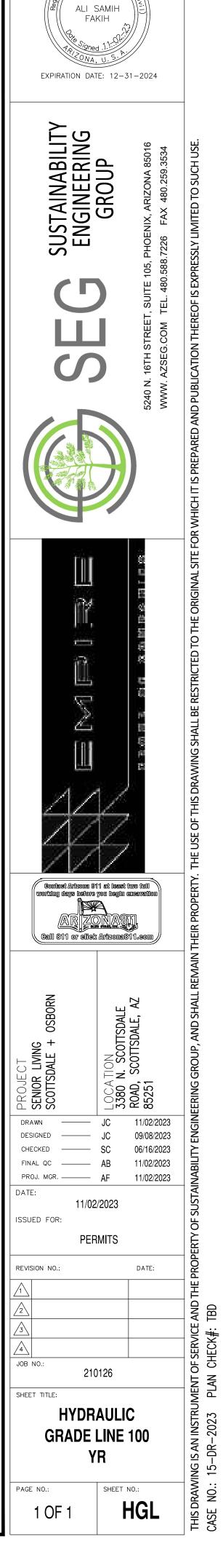
*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition

#Line	Struct. ID	Exit Ho	Hf	Hb	Hc	He	Hj	Total	Ei	y+(P/gam ma)	DI	Eai	СВ	C-theta	Ср	На	Ea
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)				(ft)	(ft)
0	UCG-3																
1	ST-4	0.093	0.02	0	0	0	0	0.02	1.551	1.458	0.431	1.569	0	0	0	0	1.569


ST-5 TO BASIN A PIPES HYDRAULIC CALCULATIONS


#Lin	e	Pipe	From	То	3D Length - Center to Center		Drainage Area Total		Area X "C" Inc	Area X "C" Total	Time of Concentra tion Inlet	l tion	Rain "I"	Runoff "Q"	Known Q	Total Q	Pipe Dia.	Full Q	Velocity Full	Velocity Design	Sec Time	Invert Elevation U/S	Invert Elevation D/S	Crown Drop	Slope
					(ft)	(sq. ft)	(sq. ft)		(sq. ft)	(sq. ft)	(min)	(min)	(inch/hr)	(cu. ft/sec)	(cu. ft/sec)	(cu. ft/sec)	(ft)	(cu. ft/sec)	(ft/s)	(ft/s)	(min)	(ft)	(ft)	(ft)	
	1	Pipe - (20)	ST-5	UCG-2	56.238	0	0	0	0	0	0	0	0	0	3.15	3.15	1	5.043	6.421	6.77	0.138	1243.875	1242.75	N/A	2.00%

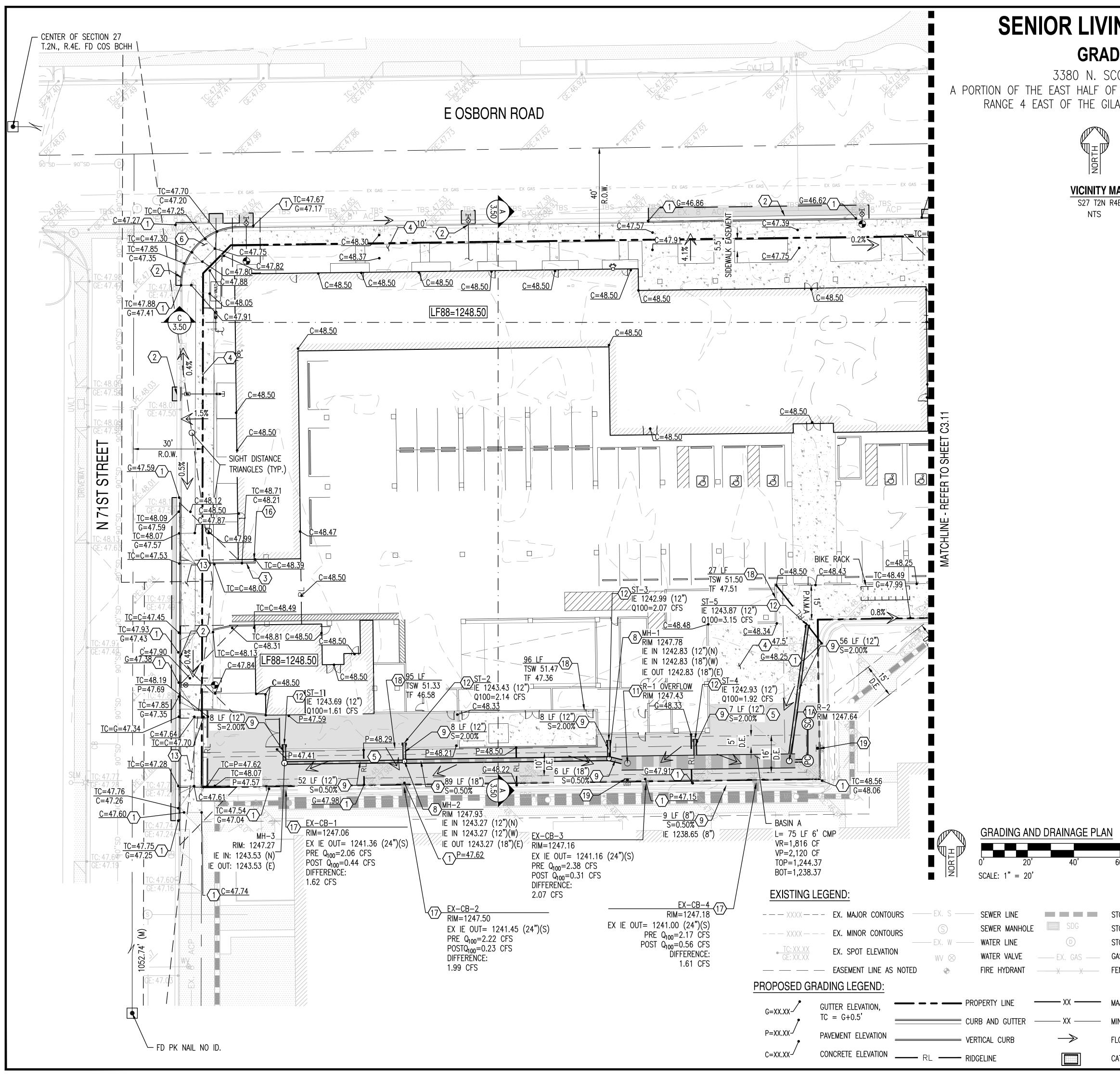

#Line	Struct. ID	D	Q	L	v	d	dc	v^2/2g	EGLo	HGLo	Sf	Total Pipe Loss	EGLi	HGLi	Ea	EGLa	U/S TOC	Surface Elev.	Step4*	Step7*	Step14*
		(ft)	(cu. ft/sec)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
0	UCG-2								0	0							1243.75	1243.855			
1	ST-5	1	3.15	56.238	6.77	0.573	0.761	0.712	1244.035	1243.323	0	0	1245.16	1244.447	1.285	1245.16		1244.98	N/A	Case A	N/A


*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition

#Line	Struct. ID	Exit Ho	Hf	Hb	Hc	He	Hj	Total	Ei	y+(P/gam ma)	DI	Eai	СВ	C-theta	Ср	На	Ea
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(ft)				(ft)	(ft)
0	UCG-2																
1	ST-5	0	0	0	0	0	0	0	1.285	0.573	0.707	1.269	0	0	0	0	1.285

45621

ENERGY GRADE LINE


HYDRAULIC GRADE LINE

CK#: ₩

APPENDIX III

Grading & Drainage Plans

SENIOR LIVING SCOTTSDALE + OSBORN GRADING AND DRAINAGE PLAN

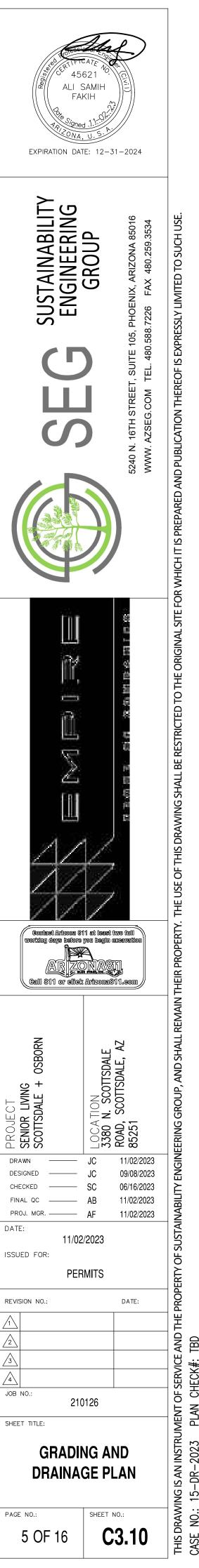
3380 N. SCOTTSDALE ROAD, SCOTTSDALE AZ 85251 A PORTION OF THE EAST HALF OF THE SOUTHEAST QUARTER OF SECTION 27, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA.

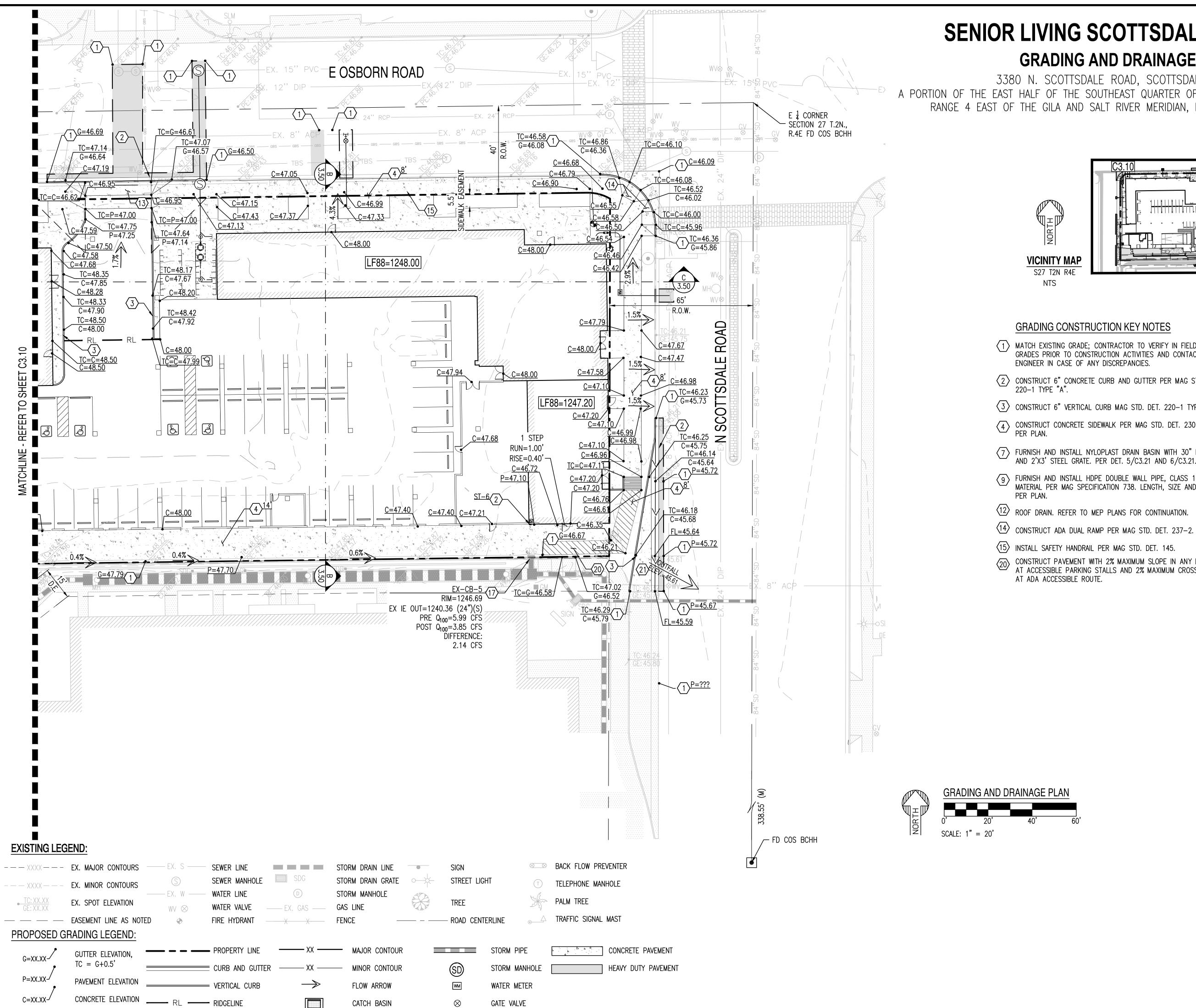
 $\Pi \pm \Pi$

VICINITY MAP S27 T2N R4E NTS

40′

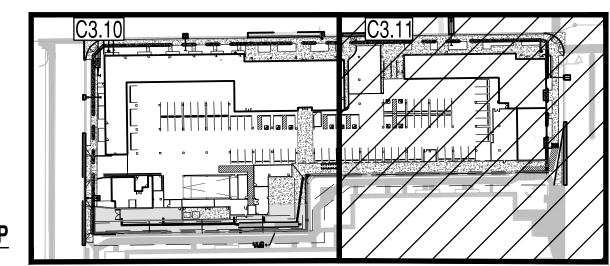
 (D)


 \rightarrow



GRADING CONSTRUCTION KEY NOTES

- 1 MATCH EXISTING GRADE; CONTRACTOR TO VERIFY IN FIELD ALL GRADES PRIOR TO CONSTRUCTION ACTIVITIES AND CONTACT ENGINEER IN CASE OF ANY DISCREPANCIES.
- 2 CONSTRUCT 6" CONCRETE CURB AND GUTTER PER MAG STD. DET. 220–1 TYPE "A".
- $\overline{\langle 3 \rangle}$ CONSTRUCT 6" VERTICAL CURB MAG STD. DET. 220–1 TYPE "A".
- (4) CONSTRUCT CONCRETE SIDEWALK PER MAG STD. DET. 230. WIDTH PER PLAN.
- 5 CONSTRUCT HEAVY DUTY PAVEMENT. PER DET. 7/C3.21. GEOTECHNICAL REPORT TO BE PROVIDED.
- (6) CONSTRUCT ADA RAMP PER C.O.S. STD. DET. 2234.
- 8 FURNISH AND INSTALL 24" NYLOPLAST DRAIN BASIN WITH STANDARD SOLID LID, INCLUDING CONCRETE COLLAR. PER DET. 4/C3.21
- 9 FURNISH AND INSTALL HDPE DOUBLE WALL PIPE, CLASS 100; PIPE MATERIAL PER MAG SPECIFICATION 738. LENGTH, SIZE AND SLOPE PER PLAN.
- (10) FURNISH AND INSTALL 12 GAGE ALUMINIZED COATED 72" CMP DRMWATER STORAGE SYSTEM. PIPE MATERIAL PER MAG SPECIFICATION 621. LENGTH AND SLOPE PER PLAN. INVERT OF PIPE TO BE PAVED PER C.O.S. STD. DET. 2554. CONTRACTOR TO PROVIDE SIGNED AND SEALED SHOP DRAWINGS TO ENGINEER FOI APPROVAL PRIOR TO MANUFACTURING. TRENCHING PER DET. 2/C3.20. PROVIDE FIXED LADDER PER DET. 3/C3.20.
- $\langle 11 \rangle$ FURNISH AND INSTALL 30" CMP RISER WITH VENTED SOLID LID, INCLUDING CONCRETE COLLAR, PER DETAIL 1/C3.20.
- (12) ROOF DRAIN. REFER TO MEP PLANS FOR CONTINUATION.
- (13) CONSTRUCT DRIVE ENTRANCE PER C.O.S. STD. DET. 2251–2 TYP.
- (16) CONSTRUCT 2'-6" CURB END TERMINATION PER MAG STD. DET. 222.
- CORE EXISTING CATCH BASIN AND PROVIDE WATERTIGHT (17) CORE EXISTING CATCH DAGING THE CONNECTION FOR NEW STORM DRAIN.
- $\langle 18 \rangle$ 3' SCREEN WALL. REFER TO ARCHITECTURAL PLANS FOR DETAILS.
- Image: FURNISH AND INSTALL (2) UNDERGROUND STORMWATER STORAGEImage: Tank (USST) SIGNS READING "NOTICE-UNDERGROUND STORMWATER STORAGE TANK".
- CONSTRUCT PAVEMENT WITH 2% MAXIMUM SLOPE IN ANY DIRECTION AT ACCESSIBLE PARKING STALLS AND 2% MAXIMUM CROSS SLOPE AT ADA ACCESSIBLE ROUTE.
- FURNISH AND INSTALL MAXWELL PLUS DRYWELL. REFER TO SHEET C3.22 FOR DETAIL. NOTE: CONTRACTOR TO HAVE A PERCOLATION TEST DONE ON FIRST CONSTRUCTED DRYWELL AND PROVIDE RESULTS TO ENGINEER FOR DETERMINATION OF ULTIMATE NUMBER OF REQUIRED DRYWELLS.


STORM DRAIN LINE		SIGN	\otimes	BACK FLOW	PREVENTER	
STORM DRAIN GRATE	$\sim +$	STREET LIGHT	T	TELEPHONE	MANHOLE	
STORM MANHOLE	and the second		4 F			
GAS LINE		TREE	J. K.	PALM TREE		
FENCE —		ROAD CENTERLI	NE o	TRAFFIC SIG	SNAL MAST	
MAJOR CONTOUR	_	STORM	PIPE	<u>۵</u> ۵ ۵ ۵	CONCRETE PA	VEMENT
MINOR CONTOUR	SD	STORM	MANHOLE		HEAVY DUTY F	PAVEMENT
FLOW ARROW	WM	WATER	METER			
CATCH BASIN	\otimes	GATE V	ALVE			

SENIOR LIVING SCOTTSDALE + OSBORN GRADING AND DRAINAGE PLAN

3380 N. SCOTTSDALE ROAD, SCOTTSDALE AZ 85251 A PORTION OF THE EAST HALF OF THE SOUTHEAST QUARTER OF SECTION 27, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA.

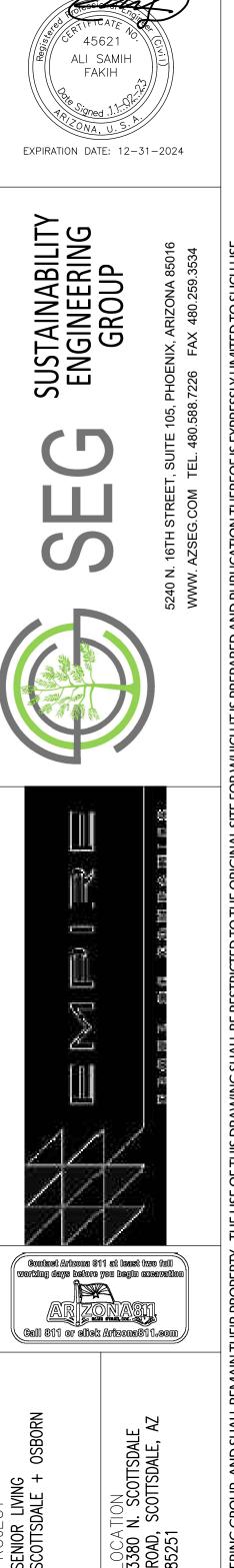
GRADING CONSTRUCTION KEY NOTES

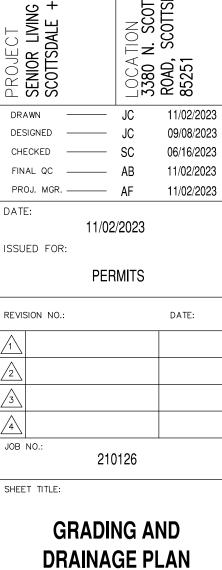
1 MATCH EXISTING GRADE; CONTRACTOR TO VERIFY IN FIELD ALL GRADES PRIOR TO CONSTRUCTION ACTIVITIES AND CONTACT ENGINEER IN CASE OF ANY DISCREPANCIES.

 $\langle 2 \rangle$ CONSTRUCT 6" CONCRETE CURB AND GUTTER PER MAG STD. DET. 220–1 TYPE "A".

 $\overline{3}$ construct 6" vertical curb mag std. det. 220–1 type "A".

CONSTRUCT CONCRETE SIDEWALK PER MAG STD. DET. 230. WIDTH PER PLAN.

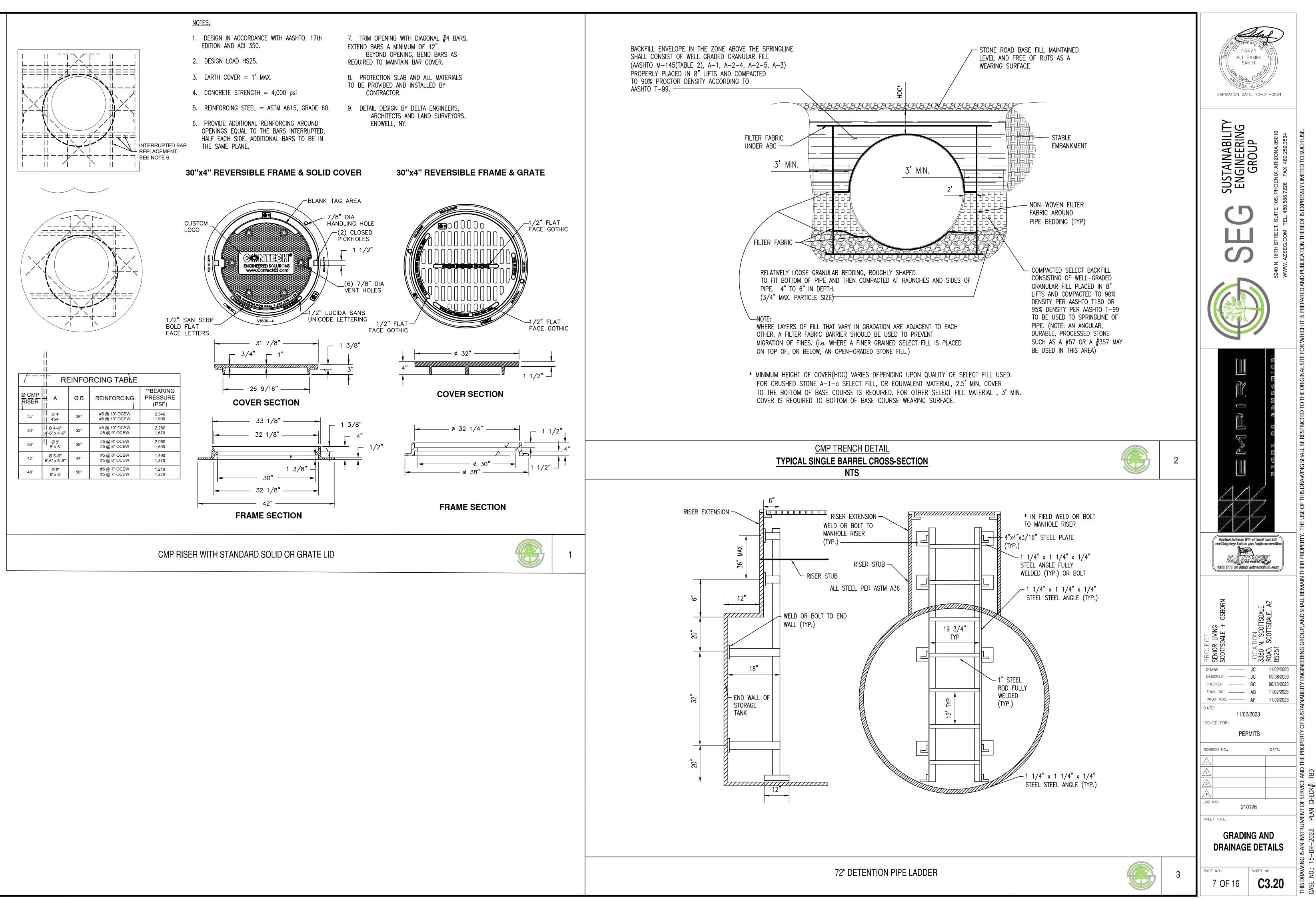

 $\langle 7 \rangle$ FURNISH AND INSTALL NYLOPLAST DRAIN BASIN WITH 30" RISER AND 2'X3' STEEL GRATE. PER DET. 5/C3.21 AND 6/C3.21.

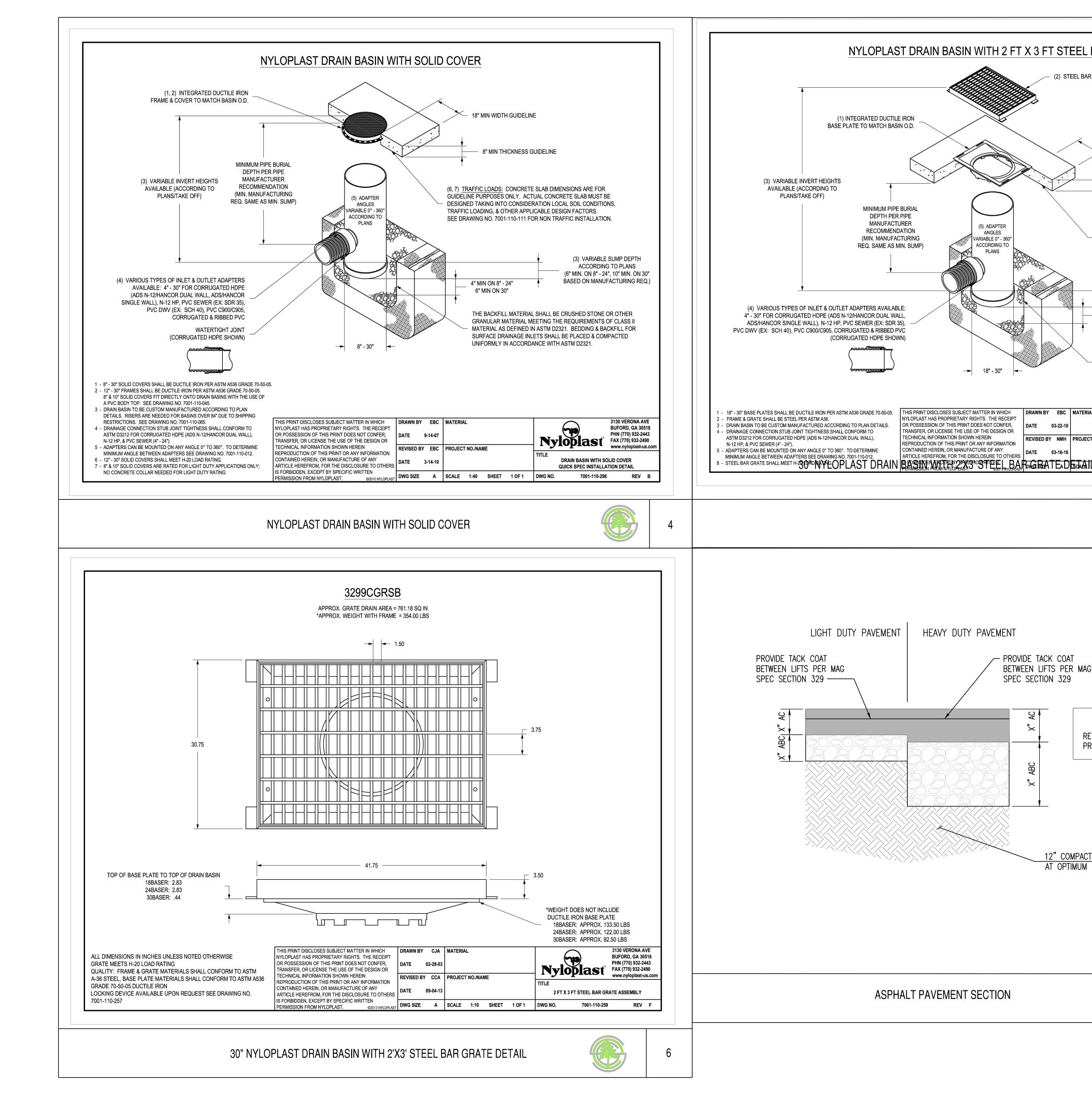

9 FURNISH AND INSTALL HDPE DOUBLE WALL PIPE, CLASS 100; PIPE MATERIAL PER MAG SPECIFICATION 738. LENGTH, SIZE AND SLOPE

(12) ROOF DRAIN. REFER TO MEP PLANS FOR CONTINUATION.

 $\langle 15 \rangle$ INSTALL SAFETY HANDRAIL PER MAG STD. DET. 145.

CONSTRUCT PAVEMENT WITH 2% MAXIMUM SLOPE IN ANY DIRECTION AT ACCESSIBLE PARKING STALLS AND 2% MAXIMUM CROSS SLOPE

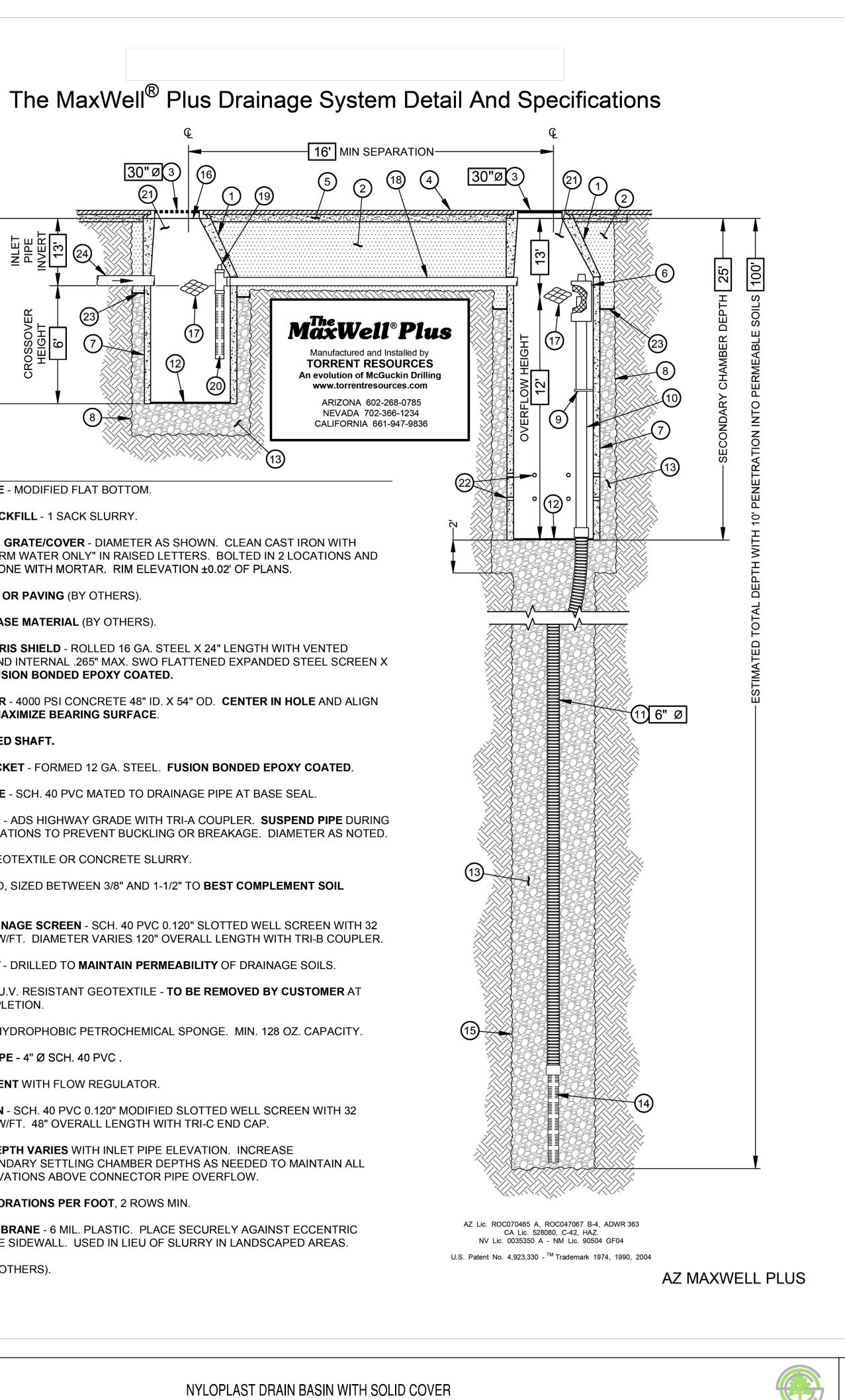

SHEET NO .:

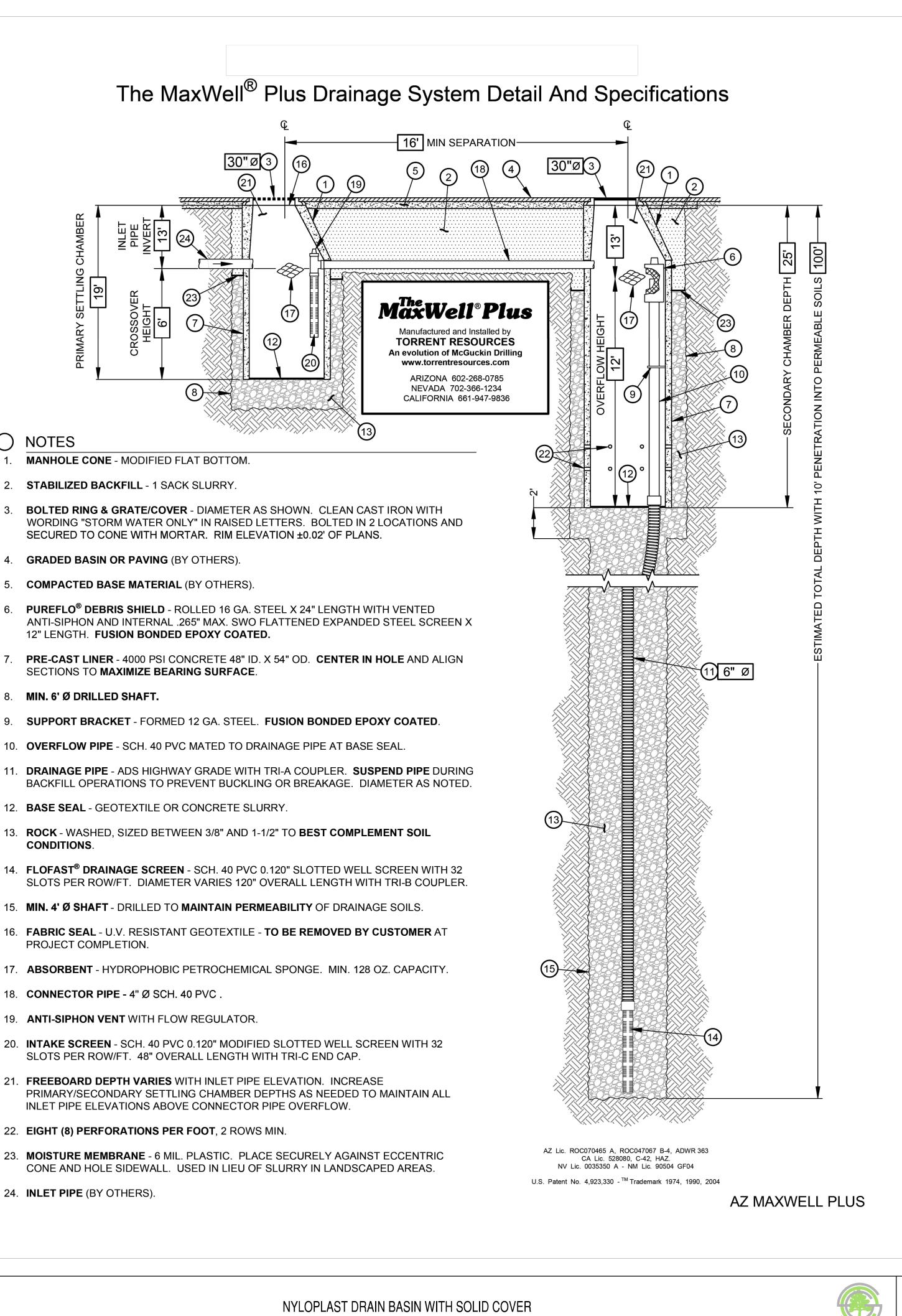

C3.1

PAGE NO.:

6 OF 16

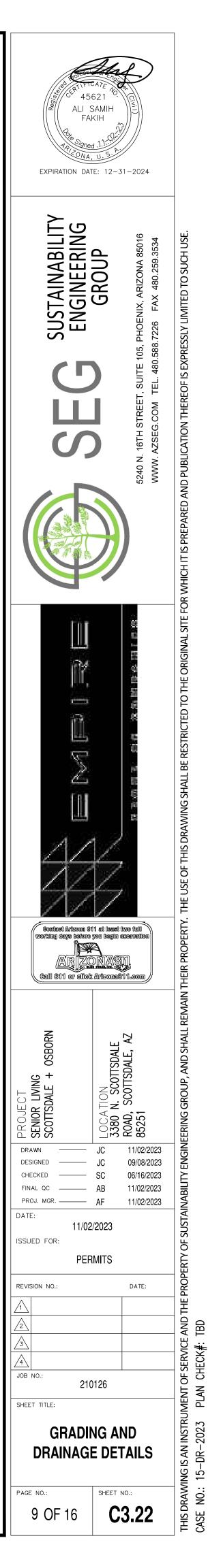
ASE ASE

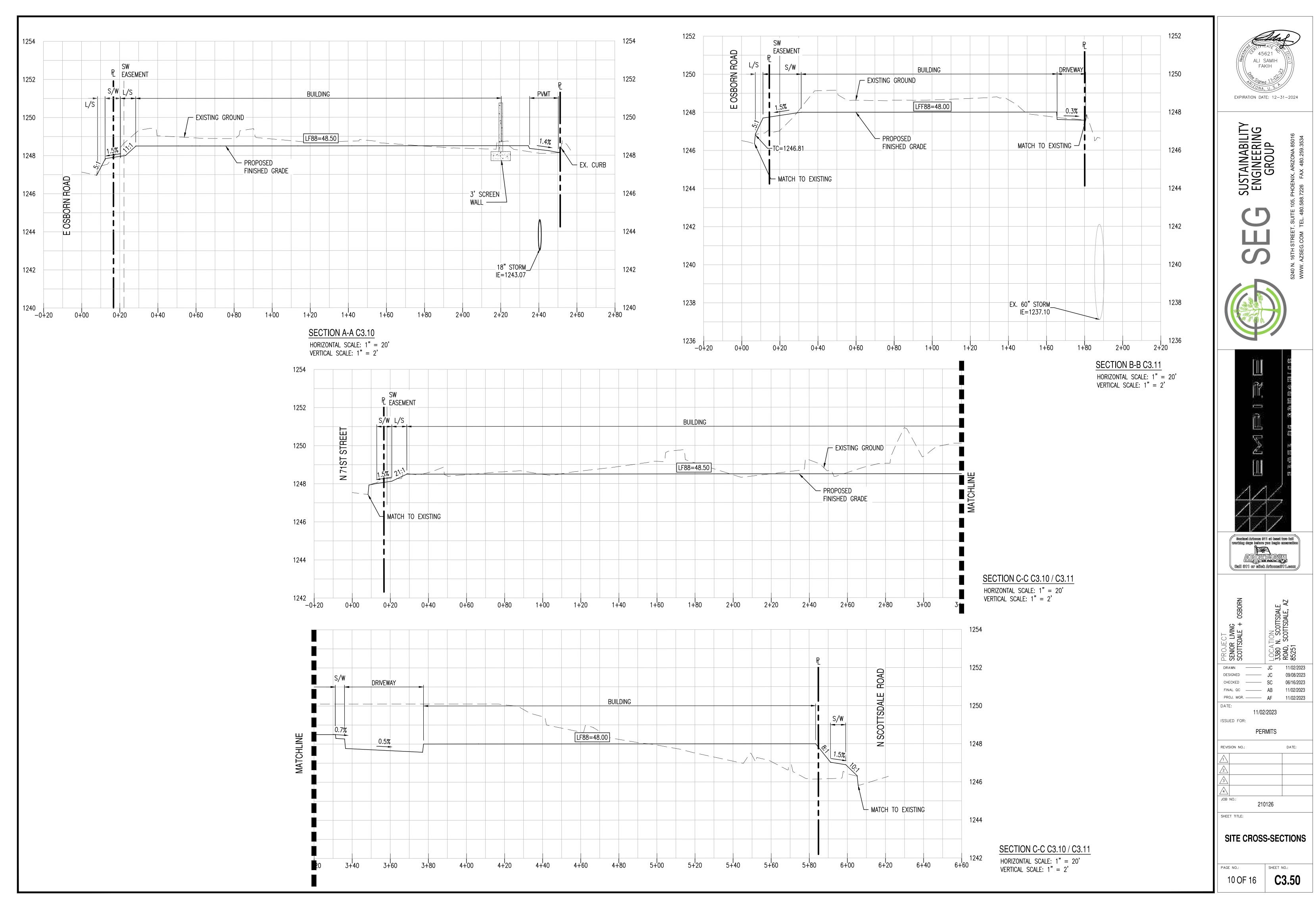




EL BAR GRATE	ALI SAMIH FAKIH FA
Image: Second	<image/> SededSustainability Bugineering Bugineering Buging BugingStatestSustainability Buging Buging BugingStatestSustainability Buging BugingStatestSustainability Buging BugingStatestSustainability Buging BugingStatestSustainability Buging BugingStatestSustainability Buging
DURCT DIFCIENCE BUFCROB 30358 FMR (770) 332:443 FXR (770) 532:443 FXR (770) 532:4	Contrast Artizona 611 at least tree full contrast at least tre
RE: GEOTECHNICAL REPORT TO BE PROVIDED	NUCLECT NUCLECT NUCLECT NOT
7	ISSUED FOR: PERMITS REVISION NO.: DATE: A A A JOB NO.: 210126 SHEET TITLE: CRADING AND DRAINAGE DETAILS PAGE NO.: 8 OF 16 SHEET NO.: C3.21

 $\overline{\mathbf{S}}$


SAN-DR-



O NOTES

- MANHOLE CONE MODIFIED FLAT BOTTOM.
- 2. STABILIZED BACKFILL 1 SACK SLURRY.
- BOLTED RING & GRATE/COVER DIAMETER AS SHOWN. CLEAN CAST IRON WITH WORDING "STORM WATER ONLY" IN RAISED LETTERS. BOLTED IN 2 LOCATIONS AND SECURED TO CONE WITH MORTAR. RIM ELEVATION ±0.02' OF PLANS.
- 4. GRADED BASIN OR PAVING (BY OTHERS).
- COMPACTED BASE MATERIAL (BY OTHERS). 5.
- ANTI-SIPHON AND INTERNAL .265" MAX. SWO FLATTENED EXPANDED STEEL SCREEN X 12" LENGTH. FUSION BONDED EPOXY COATED.
- 7. PRE-CAST LINER 4000 PSI CONCRETE 48" ID. X 54" OD. CENTER IN HOLE AND ALIGN SECTIONS TO MAXIMIZE BEARING SURFACE.
- 8. MIN. 6' Ø DRILLED SHAFT.
- 9. SUPPORT BRACKET FORMED 12 GA. STEEL. FUSION BONDED EPOXY COATED.
- 10. OVERFLOW PIPE SCH. 40 PVC MATED TO DRAINAGE PIPE AT BASE SEAL.
- 11. DRAINAGE PIPE ADS HIGHWAY GRADE WITH TRI-A COUPLER. SUSPEND PIPE DURING BACKFILL OPERATIONS TO PREVENT BUCKLING OR BREAKAGE. DIAMETER AS NOTED.
- 12. BASE SEAL GEOTEXTILE OR CONCRETE SLURRY.
- 13. ROCK WASHED, SIZED BETWEEN 3/8" AND 1-1/2" TO BEST COMPLEMENT SOIL CONDITIONS.
- 14. FLOFAST[®] DRAINAGE SCREEN SCH. 40 PVC 0.120" SLOTTED WELL SCREEN WITH 32 SLOTS PER ROW/FT. DIAMETER VARIES 120" OVERALL LENGTH WITH TRI-B COUPLER.
- 15. MIN. 4' Ø SHAFT DRILLED TO MAINTAIN PERMEABILITY OF DRAINAGE SOILS.
- 16. FABRIC SEAL U.V. RESISTANT GEOTEXTILE TO BE REMOVED BY CUSTOMER AT PROJECT COMPLETION.
- 17. **ABSORBENT** HYDROPHOBIC PETROCHEMICAL SPONGE. MIN. 128 OZ. CAPACITY.
- 18. CONNECTOR PIPE 4" Ø SCH. 40 PVC .
- 19. ANTI-SIPHON VENT WITH FLOW REGULATOR.
- 20. INTAKE SCREEN SCH. 40 PVC 0.120" MODIFIED SLOTTED WELL SCREEN WITH 32 SLOTS PER ROW/FT. 48" OVERALL LENGTH WITH TRI-C END CAP.
- 21. FREEBOARD DEPTH VARIES WITH INLET PIPE ELEVATION. INCREASE PRIMARY/SECONDARY SETTLING CHAMBER DEPTHS AS NEEDED TO MAINTAIN ALL INLET PIPE ELEVATIONS ABOVE CONNECTOR PIPE OVERFLOW.
- 22. EIGHT (8) PERFORATIONS PER FOOT, 2 ROWS MIN.
- 23. MOISTURE MEMBRANE 6 MIL. PLASTIC. PLACE SECURELY AGAINST ECCENTRIC CONE AND HOLE SIDEWALL. USED IN LIEU OF SLURRY IN LANDSCAPED AREAS.
- 24. **INLET PIPE** (BY OTHERS).

AND TBD RVICE CK#: БС ப்ப THIS D CASE

N N

APPENDIX IV

Inlet Capacity Chart

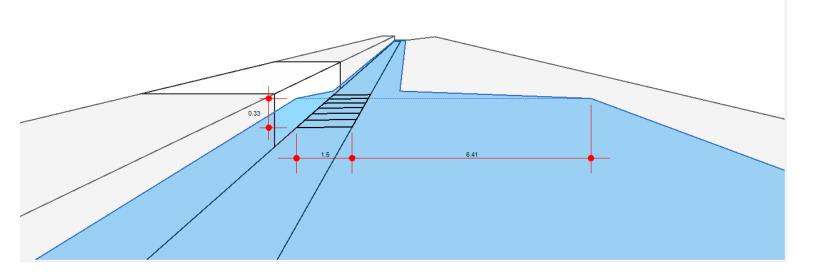
Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Known Q = 0.68

= 0.68 = 0.66 = 0.02 = 3.96 = 97 = 7.91 = 0.45

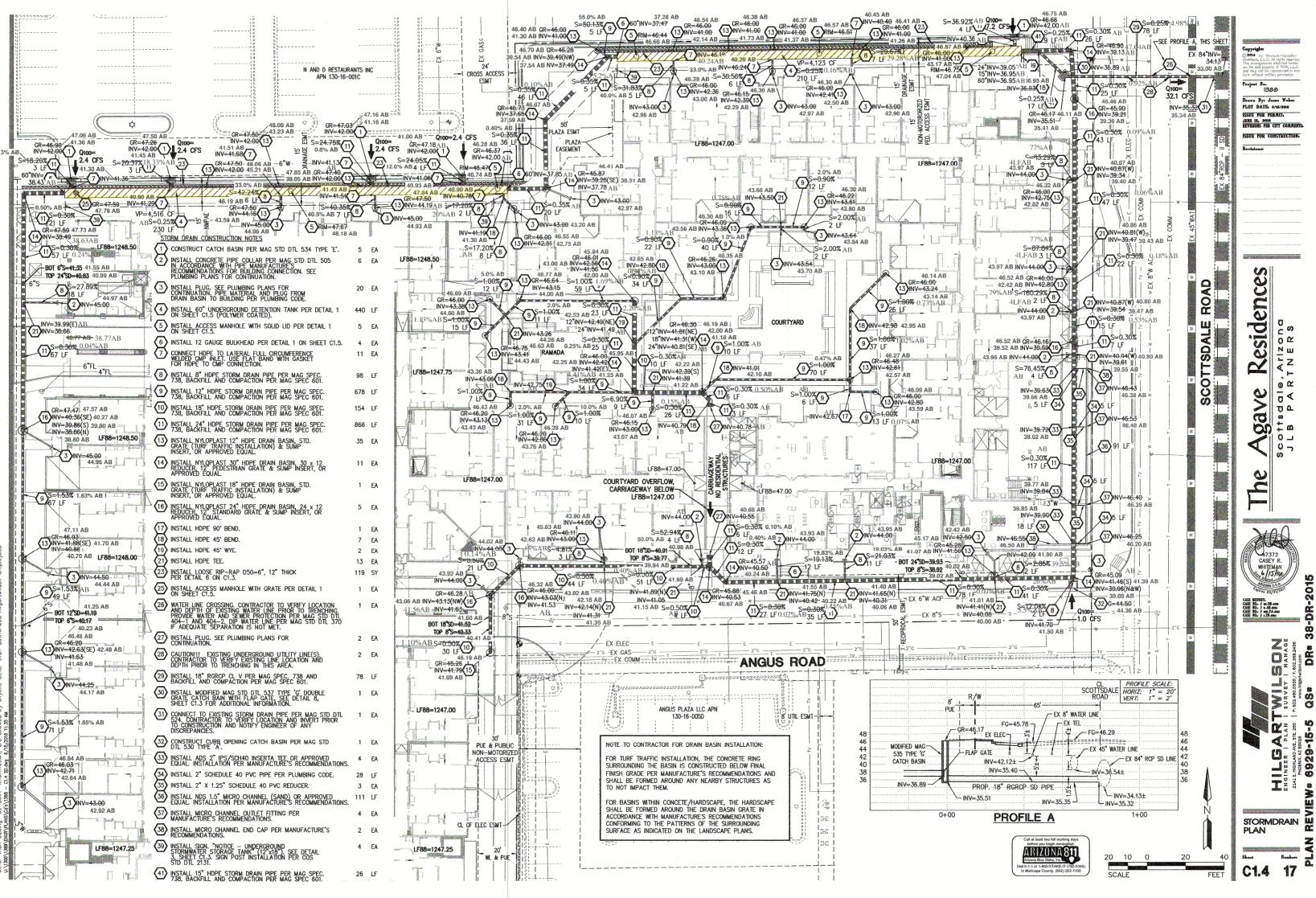
= 2.69 = 0.82


Calculations

EX-CB-5

Grate Inlet

= On grade	Compute by:
= -0-	Q (cfs)
= -0-	
= -0-	Highlighted
= 1.50	Q Total (cfs)
= 3.00	Q Capt (cfs)
	Q Bypass (cfs)
	Depth at Inlet (in)
= 0.006	Efficiency (%)
= 0.050	Gutter Spread (ft)
= -0-	Gutter Vel (ft/s)
= 1.50	Bypass Spread (ft)
= 0.01	Bypass Depth (in)
= 0.013	
	= -0- = -0- = -0- = 1.50 = 3.00 = 0.006 = 0.050 = -0- = 1.50 = 0.01


All dimensions in feet

APPENDIX V

Plan C1.4 "Stormdrain Plan" – Hilgart Wilson

APPENDIX VI

Storm Water Operation and Maintenance Plan

STORM WATER OPERATION & MAINTENANCE PLAN

For:

Senior Living Scottsdale + Osborn

6617 N. Scottsdale Road, Suite 105 Scottsdale, AZ 85250 Maricopa County

July 18, 2023

STORM WATER OPERATIONS & MAINTENANCE PLAN For Senior Living Scottsdale + Osborn

1.0 INTRODUCTION

- 1.1 This Stormwater Operations & Maintenance Plan (the "Plan") has been developed to assist the Senior Living Scottsdale + Osborn facility personnel to operate and maintain the stormwater system.
- 1.2 The responsibility for performing and funding the stormwater system maintenance work is directed by the Declaration of Covenants, Conditions, Restrictions and Easements ("CC&Rs") as mutually agreed by the Development property and summarized in Section 3.0 of this Plan.

2.0 KROGER FOOD 4 LESS KEY CONTACTS

2.1 Facility Name and Address:	Senior Living Scottsdale + Osborn 3380 N. Scottsdale Road Scottsdale, AZ 85250
2.2 Facility Ownership:	Empire Group. 6617 N. Scottsdale Road, Suite 101 Scottsdale, AZ 85250
2.3 Key Contacts:	Empire Group 480-546-7900

3.0 SITE SUMMARY & MAINTENANCE RESPONSIBILITY

- 3.1. The Association shall be solely responsible for operations, maintenance and liability for all drainage channels, drainage structures and underground storm water retention systems (collectively, the "Drainage Facilities").
- 3.2. City of Scottsdale staff may periodically inspect the Drainage Facilities to verify that scheduled and unscheduled maintenance activities are being performed adequately. The Association shall reimburse The City of Scottsdale for any and all costs associated with maintenance of the Drainage Facilities should the City find the Association deficient in its obligation to adequately operate and maintain the Drainage Facilities.
- 3.3. Empire Group shall maintain the stormwater lines, retention basins and underground storage for the Development. The other property owners will pay a set fee to Empire Group each year. The other property owners will pay a prorate share of the actual cost of the needed repairs or capital improvements when invoiced each year.
- 3.4. The Development has common and shared Development access areas and street frontage. The maintenance for the common and shared areas is done by:

a. Maintenance Party TBD shall maintain and repair the major drive lanes and access ways. The other property owners will pay a set maintenance fee to Maintenance Party TBD, for their share.

4.0 STORM WATER DRAINAGE SYSTEM

4.1 **Rooftop Drains**

The canopy drains collect rooftop stormwater which will convey to the proposed below-ground stormwater collection system.

4.2 Catch Basins

The stormwater basins with grated steel covers in the parking lot and drive aisles do not have inverted traps on the outlets which capture sediment and floating debris/petroleum products within the basin. Regular maintenance of the underground storage system is required.

4.3 Underground Conveyance Pipe

The conveyance pipes from the building roof drains and catch basins vary in size and can be inspected and cleaned through the provided catch basins, or storm manholes. The outlet pipes and valves, if provided, shall be inspected to ensure they are operating properly as well.

4.4 Underground Retention - CMP

- 4.4.1 Inspect a minimum of every 12 months or when ponding is occurring indicating the system is not functioning properly. Annual inspection / maintenance should be scheduled during dry weather if possible.
- 4.4.2 When the inspection reveals accumulated sediment or trash near the discharge orifices, evacuate the system through the manhole near the outlet orifice.
- 4.4.3 Should it be necessary to get inside the system to perform maintenance activities, all appropriate precautions regarding confined space entry and OSHA regulations should be followed.
- 4.4.4 Securely seat the access riser cover following cleaning activities.

5.0 STORMWATER MAINTENANCE REPORTING

The Association shall have a California registered professional civil engineer prepare a certified inspection report for the Drainage Facilities at least once every six (6) months, and these regular inspection reports will be on file with the Association for review by Cathedral City staff, upon written request.

Empire Group will keep records internally of inspections and maintenance.