September 1st, 2023

Plan #: 32-DR-2022

Review Cycle: 4

Reviewed By: GA

Date: 03/22/2024

Status: Accepted

PRELIMINARY DRAINAGE STUDY

for

AutoNation Scottsdale Ford

8555 E Frank Lloyd Wright Boulevard Scottsdale, AZ 85260 APN: 215-51-009-V

Prepared for:

LOU GRUBB FORD, INC.

8555 E Frank Lloyd Wright Blvd Scottsdale, AZ 95260 Contact: Cliff Powell

Tel: (954) 769-6000

Prepared by:

Today's Ideas. Tomorrow's Reality.

695 Town Center Drive, Suite 110

Costa Mesa, CA 92626 Tel: (949) 610-8997 Royce Eklund

Engineer of Work: Royce Eklund, PE R.C.E. 76742, Exp. 09/30/2025

SECTION

TABLE OF CONTENTS

<u>CECTION</u>	
I. INTRODUCTION	1
II. EXISTING DRAINAGE CONDITINOS AND PROPOSED DRAINAGE	
MANAGEMENT PLAN	2
III. DESIGN CRITERIA AND ASSUMPTIONS	4
IV. ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY REQUIREMENTS	S5
V. CONCLUSION	6
VI. REFERENCES	7
<u>ATTACHMENTS</u>	
ATTACHMENT 1 – Vicinity Map, Precipitation Data, NRCS Soil Group Map, FIRM	I Мар
ATTACHMENT 2 – Drainage Area Map	

ATTACHMENT 3 – Hydrology Calculations & Retention System Details

ATTACHMENT 4 – Storm Drain Hydraulic Calculations

ATTACHMENT 5 - Referenced Storm Drain Plans

I. INTRODUCTION

a. Background/Purpose

The purpose of this study is to determine storm water runoff and site drainage for the proposed re-construction of an auto dealership in the city of Scottsdale, Arizona. The development is being completed by AutoNation, Inc. The project site is located at 8555 E Frank Lloyd Wright Boulevard and consists of approximately 2.729 acres within a 5.77-acre parcel. The subject property is located in SE ¼ S1-T3N-R4E and is bounded by E Frank Lloyd Wright Boulevard to the north, existing Chevrolet auto dealership to the east, and N Northsight Boulevard to the south and west. Site elevations range from approximately 1504 to 1513 feet above mean sea level (MSL). See Vicinity Map in Attachment 1.

The project site property was developed as an auto dealership and service center with four buildings, AC pavement drive aisles and parking, concrete hardscape, commercial landscaping, and an onsite private storm drain system.

The project proposes to demolish three existing buildings and construct a new dealership building with rooftop parking, covered service bays, and a new detached car wash building. The project also proposes to revise the parking layout, revise existing landscape areas along the western property line, and install new storm drain system with underground retention to accommodate onsite stormwater storage. The existing dealership showroom in the northern portion of the property will be protected in place.

Per FEMA Flood Insurance Rate Map Panel 1320, effective date of October 16, 2013, the project site is in FEMA Flood Zone X. Zone X areas are determined to be outside of the 0.2% annual chance floodplain (see Attachment 1).

The Environmentally Sensitive Lands Overlay (ESL) is a set of zoning regulations to guide development throughout Scottsdale. The environmentally sensitive lands are located north and east of the Central Arizona Project. The subject property is located south of the Central Arizona Project thus subject property is not located in an Environmentally Sensitive Lands Ordinance (ESLO) area.

II. EXISTING DRAINAGE CONDITIONS AND PROPOSED DRAINAGE MANAGEMENT PLAN

a. Existing Drainage Condition

In the existing condition, onsite runoff generally sheet flows south across the lot to two existing concrete ribbon gutters then shallow concentrated flow in the gutters takes onsite flows to two existing catch basin inlets at localized low points. Runoff is then conveyed via 6"-10" PVC storm drains to the existing public storm drain manhole outside the southeast property corner (see detail A, Proposed Drainage Map). This public storm drain system is owned by the City of Scottsdale. A city quarter section map showing existing stormwater system in the project vicinity of the project site is included in Attachment 5. A drainage map is provided in Attachment 2.

The subject property does not receive runoff from the adjacent public right-of-way or neighboring developments.

Runoff in the public right-of-way on E Frank Lloyd Wright Boulevard and N Northsight Boulevard flows to existing curb inlets and discharges to the existing City-owned public storm drain system.

b. Proposed Drainage Management Plan

Existing drainage patterns shall remain similar to the existing condition. A portion of our private storm drain that conveys private flow to an offsite public manhole is being abandoned due to the existing pipe being undersized for existing & proposed flows. An encroachment permit shall be required for any work within the public ROW. Runoff from the proposed building roof area on the west side of the site will be captured via roof inlets and discharge to adjacent AC pavement, and sheet flow to onsite v-gutter towards onsite storm drain inlets. The storm drainpipe from the inlets will route the stormwater to the proposed underground retention system. Runoff from the proposed building roof area on the east side of the site will be captured via roof inlets and discharge directly to the proposed storm drain and eventually discharge to the proposed underground retention system. Three additional catch basin inlets and an underground retention system, which are discussed in the following section, are proposed. The basin will be constructed within the southern parking lot to capture and retain runoff as required for the proposed re-development. If the retention system overflows from excess retention requirements, the runoff will flow to the public storm drain system south of the property conveyed via newly installed storm drain that is sized appropriately.

Existing private storm drain on the west side of the project site are not adequately sized to convey 100-year storm runoff flows. New storm drain line will replace this existing line to meet these requirements. Analysis of the storm drain system and catch basins for adequacy will be provided during the preparation of finals plans.

A map of the proposed drainage patterns is included in Attachment 2

c. Stormwater Storage Requirements

Due to the existing and proposed conditions both being similar in impervious area, the first flush runoff storage requirements do not apply for this project. Because the project site has been previously developed with minimal landscaped area, the proposed development does not increase runoff volume significantly. The increase in required retention volume will be retained onsite via a proposed perforated 4'-diameter CMP underground retention systems by Contech. A total of 488 cu-ft of runoff will be captured and retained onsite from a tributary onsite drainage area. The retained volume will be drained in time not to exceed 36 hours through supported tested percolation rate or other supported rate acceptable to the city, or alternatively, through the use of dry wells. Adequate calculations and supporting documents will be provided during final plans.

Table 1 – Project Site Area and Runoff Volume Summary

PROJECT SITE	Area (ac)	% Imp.	С	V ₁₀₀ (cf)
Existing Condition	2.729	96%	0.928	25,087
Proposed Condition	2.729	99%	0.944	25,535
DIFFERENCE		+3%	0.015	+488

The proposed underground stormwater storage tanks (USST) must meet the City's USSTT policy in Section 4-1.202 of the City's Design Standards & Policies Manual (DSPM), which includes but is not limited to the following:

- a) The owner must dedicate a public drainage easement over the USST, with no major vegetation such as trees within the easement. At a minimum, the easement should extend at a projected slope of 1:1 from the bottom of the pipe.
- b) The USST must have at least a 75-year life, including the lining and coating.
- c) The USST must drain by gravity.
- d) Specify MAG supplemental standard detail 2554 for corrugated metal pipes.
- e) A minimum of two access points must be provided for each USST.
- f) An Operations and Maintenance (O & M) Manual must be prepared for the system prior to approval of final plans.
- g) Final plans must include signs at each end of the USST.
- h) A signed and notarized Ownership and Responsibility Statement must be provided prior to approval of final plans.
- i) Add the required warning signs.

III. DESIGN CRITERIA AND ASSUMPTIONS

a. Methodology

The required retention volumes were calculated per City's standard formula for runoff volumes for a 100-year, 2-hour storm event. Hydrologic calculations were performed to determine the 100-year peak flow discharges using the Rational Method per City of Scottsdale Design Standards and Policies Manual Chapter 4 Section 1.504 for watersheds of less than 160 acres. A technical description of the Rational Method is provided in the City's design manual. The results of the hydrologic calculations are included in Attachment 3.

b. <u>Hydrologic Parameters/Assumptions</u>

Soil Type: Hydrologic soil ratings are based on a scale of A through D, where A is the most pervious, providing the least runoff. Per the map from NRCS (see Attachment 1), the studied area consists mostly of Group C soils with a small amount of Group A soils.

Runoff Coefficient (C): Runoff coefficients are per City of Scottsdale Design Standards and Policies Manual 2018, Figure 4-1.5. The weighted runoff coefficient is calculated and used for each drainage subarea.

Rainfall Precipitation: Per NOAA Atlas 14, Volume 1, Version 5 (see Attachment 1).

Time of Concentration (Tc): The time of concentration is assumed to be 10 minutes for all drainage subareas.

Rainfall Intensity (I): Per NOAA precipitation values based on storm event (100-year) and time of concentration.

c. Lowest Floor Elevations

Per the Scottsdale Revised Code, Chapter 37 – Floodplain and Stormwater Regulation, if a new structure is in Flood Hazard Zone X, the lowest floor shall be at least (14) inches above the highest adjacent grade. The basis for the lowest floor elevation is that the project site is located within FEMA Flood Zone X which is determined to be outside of a floodplain.

IV. ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY REQUIREMENTS

a. <u>ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY (ADEQ)</u> <u>REQUIREMENTS</u>

The proposed project exceeds the requirement of more than one acre of disturbed area and will submit a Stormwater Pollution Prevention Plan (SWPPP) for review by the Arizona Department of Environmental Quality (ADEQ) Water Quality Division (ADWQ). The Notice of Intent (NOI) and the case level requirements for the Arizona Department of Environmental Quality (ADEQ) will be provided when the final plans are submitted for review.

V. CONCLUSION

The project's new storm drain inlets, pipe network, and underground retention system are sized per city requirements. Storm drain hydraulic sizing calculations will be included during final plans. Project discharge locations will remain unchanged with overflow runoff entering the public storm drain system on North Northsight Boulevard. With the implementation of a new underground retention system, downstream drainage conveyance system will not have an adverse impact due to the proposed project site developments.

VI. REFERENCES

- 1. City of Scottsdale. Design Standards & Policies Manual (2018).
- 2. Flood Control District of Maricopa County. Drainage Policies and Standards (2018).
- **3.** Flood Control District of Maricopa County. Drainage Design Manual: Vol. I Hydrology (2018).
- 4. NOAA Atlas 14, Volume 1, Version 5 (2022).
- **5.** Web Soil Survey, Aguila-Carefree Area, Arizona, Parts of Maricopa and Pinal Counties. United States Natural Resource Conservation Service

Vicinity Map NOAA Precipitation Data NRCS Soil Map FIRM Map

VICINITY MAP: AutoNation Scottsdale Ford 8555 E Frank Lloyd Wright Scottsdale, AZ 85260

(NOT TO SCALE)

1

NOAA Atlas 14, Volume 1, Version 5 Location name: Scottsdale, Arizona, USA* Latitude: 33.6306°, Longitude: -111.8967° Elevation: 1506.76 ft**

3306°, Longitude: -111.8967°
vation: 1506.76 ft**
*source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

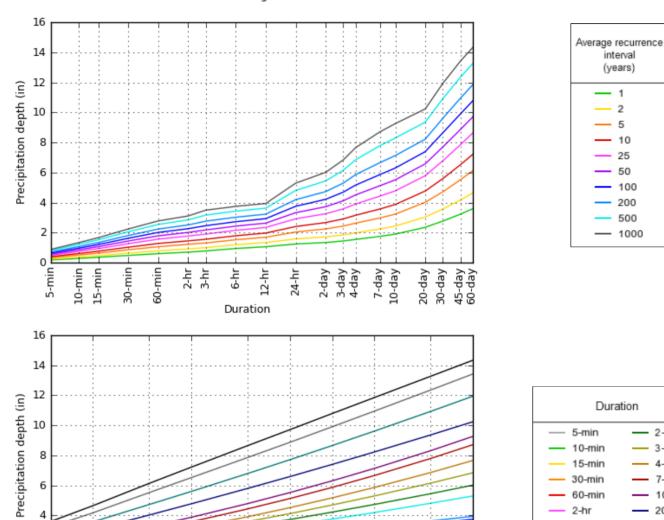
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PD	S-based p	oint preci	ipitation fr	requency	estimates	with 90%	confiden	ce interva	ls (in inch	es) ¹
Duration				Avera	ge recurrenc	e interval (y	rears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.194 (0.161-0.237)	0.253 (0.212-0.310)	0.341 (0.283-0.416)	0.409 (0.338-0.498)	0.501 (0.406-0.607)	0.570 (0.458-0.686)	0.643 (0.506-0.772)	0.714 (0.554-0.856)	0.812 (0.613-0.974)	0.886 (0.656-1.06)
10-min	0.295 (0.245-0.361)	0.385 (0.322-0.472)	0.520 (0.430-0.634)	0.623 (0.514-0.758)	0.762 (0.619-0.924)	0.869 (0.697-1.04)	0.979 (0.771-1.18)	1.09 (0.843-1.30)	1.24 (0.933-1.48)	1.35 (0.998-1.62)
15-min	0.366 (0.304-0.448)	0.478 (0.399-0.585)	0.645 (0.534-0.786)	0.772 (0.637-0.940)	0.945 (0.767-1.15)	1.08 (0.864-1.30)	1.21 (0.956-1.46)	1.35 (1.04-1.62)	1.53 (1.16-1.84)	1.67 (1.24-2.01)
30-min	0.493 (0.409-0.603)	0.643 (0.538-0.788)	0.868 (0.719-1.06)	1.04 (0.858-1.27)	1.27 (1.03-1.54)	1.45 (1.16-1.74)	1.63 (1.29-1.96)	1.82 (1.41-2.17)	2.06 (1.56-2.48)	2.25 (1.67-2.70)
60-min	0.610 (0.506-0.746)	0.796 (0.666-0.975)	1.07 (0.890-1.31)	1.29 (1.06-1.57)	1.58 (1.28-1.91)	1.80 (1.44-2.16)	2.02 (1.59-2.43)	2.25 (1.74-2.69)	2.55 (1.93-3.06)	2.79 (2.06-3.35)
2-hr	0.713 (0.600-0.853)	0.923 (0.780-1.11)	1.23 (1.03-1.46)	1.46 (1.21-1.74)	1.78 (1.47-2.11)	2.02 (1.64-2.39)	2.27 (1.81-2.67)	2.52 (1.98-2.96)	2.86 (2.19-3.36)	3.12 (2.34-3.68)
3-hr	0.791 (0.667-0.968)	1.01 (0.857-1.25)	1.32 (1.11-1.62)	1.57 (1.30-1.91)	1.91 (1.57-2.31)	2.19 (1.77-2.62)	2.47 (1.96-2.96)	2.77 (2.16-3.31)	3.18 (2.40-3.80)	3.50 (2.59-4.19)
6-hr	0.953 (0.819-1.13)	1.20 (1.03-1.43)	1.53 (1.31-1.81)	1.80 (1.52-2.12)	2.16 (1.80-2.53)	2.44 (2.00-2.85)	2.73 (2.21-3.18)	3.03 (2.41-3.54)	3.44 (2.66-4.01)	3.75 (2.84-4.38)
12-hr	1.07 (0.923-1.26)	1.35 (1.16-1.59)	1.70 (1.46-2.00)	1.98 (1.69-2.32)	2.35 (1.98-2.75)	2.64 (2.20-3.07)	2.94 (2.41-3.41)	3.24 (2.62-3.76)	3.63 (2.87-4.24)	3.94 (3.06-4.63)
24-hr	1.25 (1.10-1.45)	1.59 (1.40-1.84)	2.05 (1.79-2.37)	2.42 (2.10-2.79)	2.93 (2.53-3.38)	3.34 (2.85-3.84)	3.76 (3.19-4.33)	4.20 (3.52-4.83)	4.81 (3.96-5.55)	5.30 (4.30-6.14)
2-day	1.35 (1.18-1.56)	1.72 (1.50-1.99)	2.25 (1.96-2.60)	2.68 (2.31-3.08)	3.27 (2.80-3.76)	3.73 (3.17-4.29)	4.22 (3.56-4.87)	4.74 (3.95-5.48)	5.45 (4.47-6.32)	6.02 (4.86-7.01)
3-day	1.45 (1.27-1.67)	1.86 (1.63-2.13)	2.45 (2.14-2.80)	2.92 (2.54-3.34)	3.59 (3.10-4.10)	4.12 (3.54-4.71)	4.70 (4.00-5.38)	5.30 (4.47-6.09)	6.15 (5.10-7.08)	6.84 (5.60-7.91)
4-day	1.56 (1.37-1.78)	1.99 (1.76-2.27)	2.64 (2.32-3.00)	3.16 (2.77-3.60)	3.91 (3.41-4.45)	4.52 (3.91-5.14)	5.17 (4.44-5.89)	5.87 (4.98-6.71)	6.85 (5.74-7.85)	7.66 (6.33-8.82)
7-day	1.76 (1.54-2.02)	2.25 (1.97-2.58)	2.98 (2.61-3.41)	3.58 (3.13-4.09)	4.43 (3.84-5.06)	5.13 (4.41-5.85)	5.87 (5.01-6.71)	6.66 (5.63-7.65)	7.79 (6.49-8.97)	8.71 (7.16-10.1)
10-day	1.91 (1.68-2.18)	2.44 (2.15-2.79)	3.24 (2.84-3.69)	3.88 (3.39-4.41)	4.79 (4.16-5.44)	5.52 (4.76-6.27)	6.30 (5.39-7.18)	7.13 (6.05-8.14)	8.31 (6.94-9.51)	9.26 (7.64-10.7)
20-day	2.36 (2.09-2.69)	3.05 (2.69-3.46)	4.03 (3.55-4.57)	4.78 (4.19-5.42)	5.80 (5.06-6.57)	6.58 (5.73-7.47)	7.39 (6.39-8.41)	8.23 (7.06-9.39)	9.35 (7.95-10.7)	10.2 (8.61-11.8)
30-day	2.78 (2.44-3.16)	3.58 (3.15-4.06)	4.72 (4.16-5.35)	5.60 (4.92-6.34)	6.79 (5.92-7.68)	7.70 (6.70-8.72)	8.65 (7.48-9.79)	9.61 (8.25-10.9)	10.9 (9.29-12.4)	11.9 (10.1-13.6)
45-day	3.24 (2.87-3.67)	4.18 (3.70-4.73)	5.52 (4.88-6.23)	6.52 (5.75-7.37)	7.85 (6.89-8.87)	8.86 (7.74-10.0)	9.90 (8.59-11.2)	10.9 (9.44-12.4)	12.3 (10.5-14.1)	13.4 (11.4-15.4)
60-day	3.60 (3.19-4.06)	4.65 (4.13-5.25)	6.13 (5.43-6.91)	7.21 (6.38-8.13)	8.64 (7.61-9.74)	9.70 (8.50-10.9)	10.8 (9.39-12.2)	11.8 (10.3-13.4)	13.3 (11.4-15.1)	14.3 (12.2-16.4)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.6306°, Longitude: -111.8967°

NOAA Atlas 14, Volume 1, Version 5

10

2

0

Created (GMT): Wed May 11 00:59:33 2022

500

1000

Back to Top

100

50

Average recurrence interval (years)

200

Maps & aerials

Small scale terrain

1 2

10 25

50 100

200 500

2-day

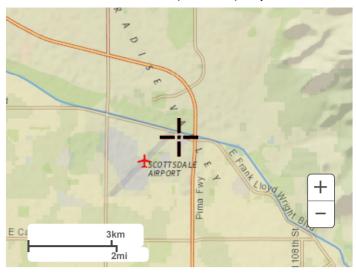
3-day

4-day

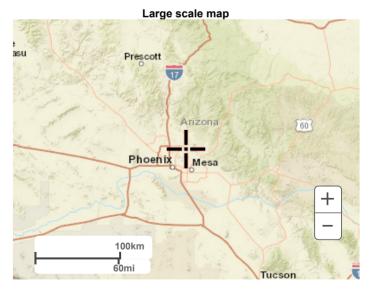
7-day

10-day 20-day

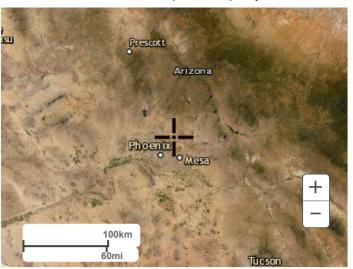
30-day 45-day


60-day

3-hr


6-hr

12-hr


24-hr

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

Disclaimer

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Aguila-Carefree Area, Arizona, Parts of Maricopa and Pinal Counties Survey Area Data: Version 16, Sep 16, 2021 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: May 15, 2020—May **Soil Rating Points** 22, 2020 The orthophoto or other base map on which the soil lines were A/D compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2	Antho gravelly sandy loams	А	2.0	31.2%
55	Gilman loams	С	4.5	68.8%
Totals for Area of Intere	est		6.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

Coastal Base Flood Elevations shown on this map apply only landward of our North American Vertical Datum of 1989 (NAVD 88). Users of this FFRM should be aware that coast face delevations are also provided in the Summary of Stittwell Elevations (abo in the Flood Inswince Study report for this jurisdiction. Elevations shown in the Summary of Stittward Elevations table should be used for construction and/or Rodphian management purposes, when they are higher than the clearly and should be sufficient to the FRVI.

Soundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertnerfl floodway data are provided in the Flood Insurance perport for this justication.

junestication used in the properation of this map was Arizona Statio Plant Central cone (FPSZONE 0202). The horizontal datum was MAD 83 HARN cone (FPSZONE 0202). The horizontal datum was MAD 83 HARN cones used in the production of FRIBM for adjacent juniciotions may result in high postional differences in map features across jurisdiction boundaries. These differences do not offer the accuracy of this FRIM.

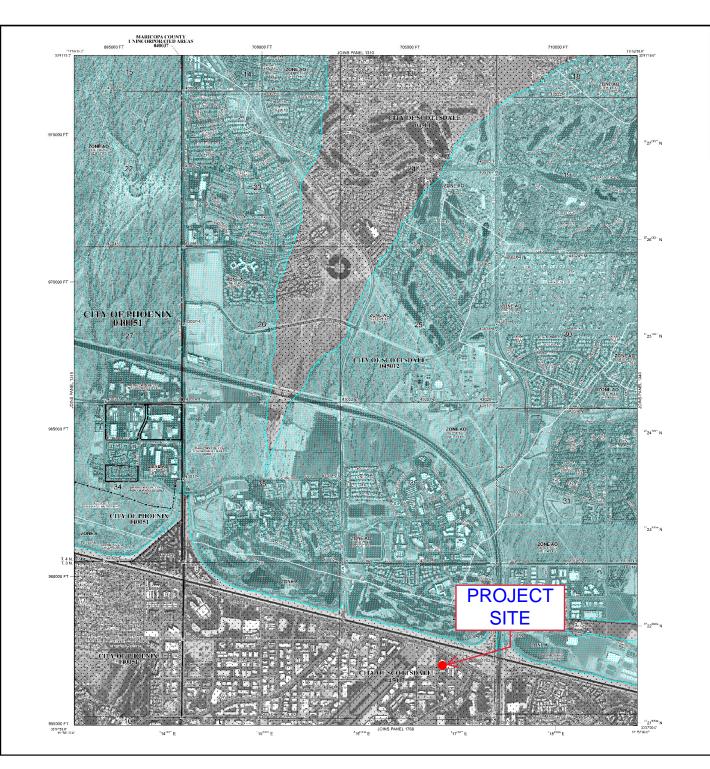
deferences do not offect the accuracy of the F-RM. Flood elevations on this map are enferenced to the North American Vertical Defund of 1968 (NAVD 89). These flood elevations must be compared to enroute and of 1968 (NAVD 89). The second of the National Closelatic Vertical Datum of 1968 (NAVD 99) and the National Closelatic Vertical Datum of 1928 (NAVD 99) may use the following Maricopa County website application for the National Policy (NAVD 99) and the National Closelation for the National Policy (NAVD 99) and the National Closelation for the National Policy (NAVD 99) and the National Closelation for the National Policy (NAVD 99) and the National Policy (NAVD 99) and NAVD 99) and the National Policy (NAVD 99) and NAVD 99) a

This web tool allows users to obtain point-specific datum conversion values by zooming in and hovering over a VERTCON checkbox on the layers menu on the left side of the screen. The VERTCON grid referenced in this web application was also used to convert existing flood elevations from NGVD 29 to NAVD 88.

also used to convert existing food elevatore from NOVD 20 to NAVO 88. To Oddan current develoris, description, and/or location information for National Geodetic Sizimey bench marks shown on this map, please contact the Information Geodetic Sizimey at 1001; 173.242, or wind fix Reviews Earnach of the Information Chemical Sizimed (1994), and the Information Chemical Sizimed (1994), and the Information and Codestral Sizimey bench marks produced by the Misropa Court y Department of Transportation, present with the Food Control Sizimed of Misropa County vectors of a sizimed for the Information County Sizimed (1994), and the

Implementation of the Conference of the Conferen

The profile base line depicted on this map represents the hydraulic modelin


Corporate limits shown on this map are based on the best data available at the me of publication. Because changes due to annexations or de-annexations may aver accurred after this map was published, map users should contact appropriate ommunity officials to verify current concrete limit locations.

Please refer to the separately printed Rep Index for an overview map of the country showing the layout of map panets; community may repository addresses, and a Listing of Communities made confirmation table. The community may reposit to a community, as well as a listing of the panets on which each community is community, as well as a listing of the panets on which each community is community to some community.

For Information on available products associated with this FIRM, wist the FEMM Map Service Center (MSC) wabile at http://mscfmangov. Available product may include previously issued Letters of Map Change, a Flood insurance Study Report, or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products, or the NSC website.

If you have questions about this map, how to order products, or the NSC program operated, please call the FEMA Map Information eXchange (FMM), at 1-87-7-FEMA MAP (1-977-339-5927) or visit he FEMA weakle at 18th private fema sport.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

is the water-surface elseviation of the 1% annual chance flood.

No Base Roos Deswitzins determined.

Base Flood Elevations determined.

Flood digiths of 1 to 3 feet (usually cross of ponding); Base Flood Resenters determined.

ZONE AD

ZONE A99

FLOODWAY AREAS IN ZONE AE

ZONE X

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodylein. Areas in which flood hexards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs) 55.53

1% annual chance floodalain boundary 0.2% annual chance floodalain boundary Floodary boundary Zone D boundary CBRS and OPA boundary

Roundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet? ~~~~ 513 ~~~~

(EL 907) Dase Flood Develors value where uniform within elevation in feet*

——(A) 23--

PROGRAM

FLOOD

NATIONAL

970730', 522233" 427500mN 6000 foot grid tides: Arizona Statt: Plant coordinate system, central zone (FIPSZONE 6002), Transverse 60000000 M

MAP REPOSITOR ES Refer o Map Repositores list on Map Index

FFFAC TOF DATE OF COME TYMBS
FF COD PRESENCE RATE MAR
FF CAD PRESENCE RATE MAR
EFFECTIVE DATES; OF REVISION TO THE DATE.
DECEMBER 3, 1588
FF CAD PRESENCE AND TO THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE OF THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE DATE.
DECEMBER 3, 1589
FF CAD PRESENCE AND THE Obtable 16, 2013 - to add base flood classifiers, to add special filed internationals, to incorporate proviously issued letters of experiencies for both reads and read names to update consolute films, it change floodway, to advance suffic, to change base flood elevations, and to add industrials.

For community map revision history prior to countywide mapping, refer to the Comm Map History lable located in the Fixed Insurance Study report for this jurisdiction.

To determine Y flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-900-638-6629.

4 METERS

PANEL 1320L

FIRM FLOOD INSURANCE RATE MAP

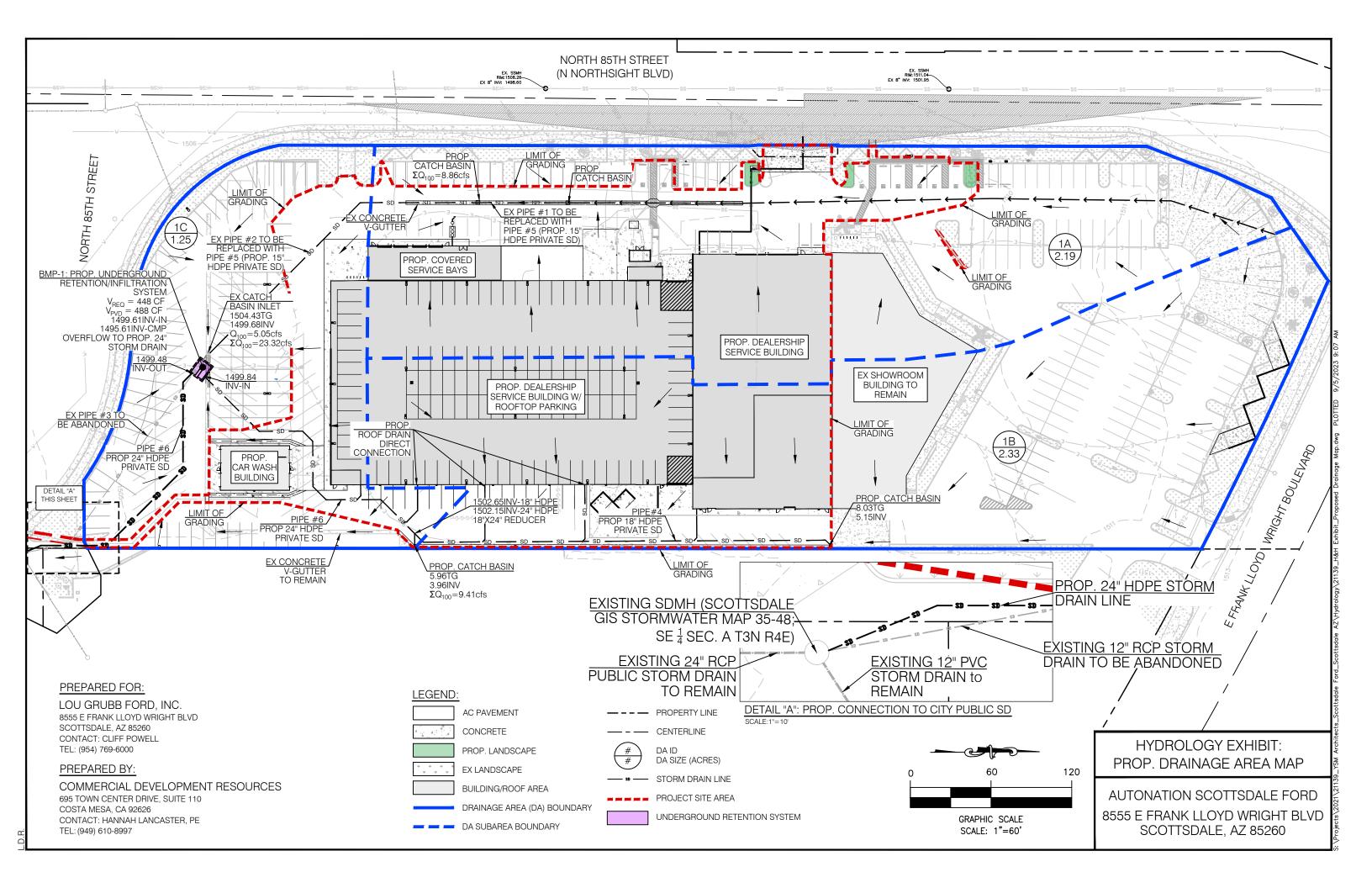
MARICOPA COUNTY,

ARIZONA

AND INCORPORATED AREAS

PANEL 1320 OF 4425

CONTAINS COMMUNITY 64025 1323 64025 1323 6490 5 1323



l'ederal Emergency Management Agency

ATTACHMENT 2 Drainage Area Map

ATTACHMENT 3 Hydrology Calculations & Retention System Details

HYDROLOGY CALCULATIONS - STORAGE VOLUME

City of Scottsdale Design Standards & Policies Manual (2018) Chapter 4-1.201 Flood Control District of Maricopa County (FCDMC) Drainage Policies and Standards (2018) FCDMC Drainage Design Manual: Volume I - Hydrology (2018) PROJECT: Scottsdale Ford
DATE: 07/18/2023
CALCS BY: LDR

PROJECT SITE DATA/NOTES:

- 1. Located in Lower Desert Area (not in ESLO area)
- 2. FEMA Flood Zone X
- 3. NRCS Hydrologic Soil Group A/C

- 4. Use Rational Method for projects < 160 acres
- 5. Rainfall data per NOAA Atlas 14, Volume 1, Version 5
- 6. Time of concentration (Tc) assumed to be standard value per City/County codes. Time of concentration minimum, per City of Scottsdale, is 5.0 minutes.

Runoff Coefficient (C) Values:

Land Use / Surface Cover	C _x
Paved streets, parking lots, roofs, driveways, etc.	0.95
Undisturbed natural desert or desert landscaping (no impervious week barrier)	0.45

Per Figure 4-1.5 Runoff Coefficients for Rational Method of City of Scottsdale Design Standards & Policies Manual (2018)

REQUIRED STORAGE VOLUME:

Storage Volume Req. = max[Design Volume, First Flush Volume]

1. Design Volume (for sites that have been previously developed):

 $V_R = \Delta C(R/12)A$

V_R = Required storage volume (cf)

 $\Delta C = C_{POST} - C_{PRE} =$ change in weighted avg runoff coefficient for disturbed area

R = Precipitation amount for 100-year, 2-hour storm event per NOAA (in)

A = Drainage area (sf)

Project	Project <u>Total Area</u>		Impervio	Impervious Area		Pervious Area		R	V_R
Site	(sf)	(ac)	(sf)	(%)	(sf)	(%)	ΣA _X	(in)	(cf)
EXISTING	118,884	2.729	113,545	96%	5,339	4%	0.928	2.73	25,087
PROPOSED	118,884	2.729	117,485	99%	1,399	1%	0.944	2.73	25,535
						ΔC =	0.017	ΔV =	448

STORAGE VOLUME PROVIDED:

BMP STORAGE: Perforated CMP by C	BMP STORAGE: Perforated CMP by Contech							
CMP Storage								
Diameter	4	ft						
Pipe Area	12.57	sf						
No. of Rows	2	ea.						
Row Length	8	ft						
No. of Headers	1	ea						
Header Length	10	ft						
Total Pipe Length	26	ft						
Pipe Storage	327	cf						
Gravel Pit Storage								
System Length	14.00	ft						
System Width	12.00	ft						
System Depth	4.34	ft						
Stone Porosity	0.40							
Gravel Pit Storage	161	cf						
Total BMP Storage	488	cf						

HYDROLOGY CALCULATIONS - RUNOFF PEAK FLOWS

Per Drainage Design Manual for Maricopa County (2018)

PROJECT: Scottsdale Ford

DATE: 07/18/2023

0.10 miles

0.5 in/hr

0.0352

S = 49.173341 ft/mile

CALCS BY: LDR

L =

Kb =

| =

Per the City of Scottsdale Hydrology Design Manual:

Q = CXiXA

Q = Peak discharge from a given area (cfs)

 $C = Adjusted runoff factor (unitless) = (\sum C_x A_x / \sum A_x)$

A = Tributary area to BMP (ac)

i = Rainfall intensity = 0.979 in/hr (100-yr, 10-min)

 $Tc = 11.1 \times L^{0.5} \times K_b^{0.52} \times S^{-0.31} \times i^{-0.38}$

Tc = time of concentration, in hours

S = Watershed slope, in ft/mile

L = length of longest flow path, in miles *i* = rainfall intensity, in inches/hour

 K_b = watershed resistance coefficient

EXISTING CONDITION - PROJECT SITE:

MODIFIED RATIONAL METHOD: 100-YEAR, 6-HOUR STORM EVENT

	<u>Drainage Area</u> <u>Impervious Area</u>		Pervious Area		$\sum C_X A_X$	T _c	P ₁₀₀	ı	Peak Flow:		
ID	SF	AC	(sf)	(%)	(sf)	(%)	$C = \frac{\sum A_X}{\sum A_X}$	(min)	(in)	(in/hr)	Q (cfs)
1A	118,884	2.729	113,545	96%	5,339	4%	0.85	15.3	1.21	4.74	10.99
TOTAL	118,884	2.729	113,545	96%	5,339	4%	0.85		1.21		10.99

EXISTING CONDITION - PROPERTY LIMITS

MODIFIED RATIONAL METHOD: 100-YEAR, 6-HOUR STORM EVENT

	Drainage Area	<u>1</u>	Impervio	us Area	Pervious	Area	$C = \frac{\sum C_X A_X}{\sum C_X A_X}$	T _c	P ₁₀₀	I	Peak Flow:
ID	SF	AC	(sf)	(%)	(sf)	(%)	ΣA _X	(min)	(in)	(in/hr)	Q (cfs)
1A	84,446	1.939	77,196	91%	7,250	9%	0.85	15	1.21	4.75	7.82
1B	167,459	3.844	159,240	95%	8,219	5%	0.85	15	1.21	4.75	15.51
TOTAL	251,905	5.783	236,436	94%	15,469	6%	0.85				23.32

PROPOSED CONDITION - PROJECT SITE:

MODIFIED RATIONAL METHOD: 100-YEAR, 6-HOUR STORM EVENT

	Drainage Area	<u>1</u>	<u>Impervio</u>	us Area	Pervious	Area	$\sum C_X A_X$	T _C	P ₁₀₀	I	Peak Flow:
ID	SF	AC	(sf)	(%)	(sf)	(%)	$C = \frac{\sum A_X}{\sum A_X}$	(min)	(in)	(in/hr)	Q (cfs)
1A	118,884	2.729	117,485	99%	1,399	1%	0.85	15	1.21	4.75	11.01
TOTAL	118,884	2.729	117,485	99%	1,399	1%	0.85		1.21		11.01

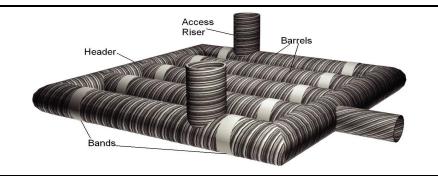
PROPOSED CONDITION - PROPERTY LIMITS

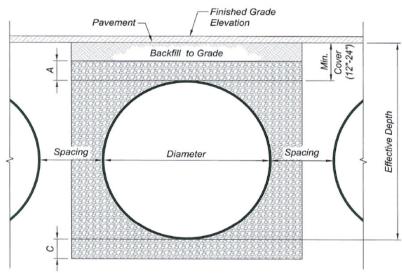
MODIFIED RATIONAL METHOD: 100-YEAR, 6-HOUR STORM EVENT

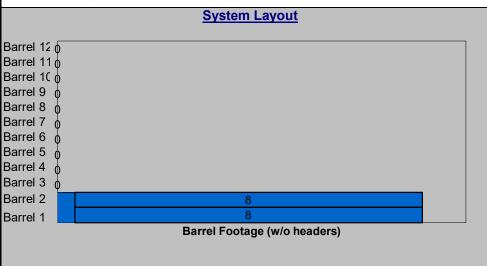
	Drainage Area	<u>a</u>	Impervio	us Area	Pervious	<u>Area</u>	$\Sigma = \frac{\sum C_X A_X}{\sum C_X A_X}$	T _c	P ₁₀₀	I	Peak Flow:
ID	SF	AC	(sf)	(%)	(sf)	(%)	$C = \frac{\sum A_x}{\sum A_x}$	(min)	(in)	(in/hr)	Q (cfs)
1A	95,724	2.198	88,395	92%	7,329	8%	0.85	15	1.21	4.75	8.86
1B	101,615	2.333	93,397	92%	8,219	8%	0.85	15	1.21	4.75	9.41
1C	54,566	1.253	54,566	100%	0	0%	0.85	15	1.21	4.75	5.05
TOTAL	251,905	5.783	236,357	94%	15,548	6%	0.85				23.32

DYODS™

Design Your Own Detention System




For design assistance, drawings, and pricing send completed worksheet to: dyods@contech-cpi.com


Project Summary	•			
Date:	7/18/2023			
Project Name:	AutoNation Ford	Scottsdale		
City / County:	Scottsdale			
State:	AZ			
Designed By:	LDR			
Company:	CDR			Enter Information in
Telephone:	(949) 610-8997			Blue Cells
Corrugated Metal	Pipe Calculator			
Storage Volume R	equired (cf):		449	
Limiting Width (ft)			15.00	
Invert Depth Belov	v Asphalt (ft):		10.00	
Solid or Perforated	d Pipe:		Perforated	
Shape Or Diamete	er (in):		48	12.57 ft ² Pipe Area
Number Of Heade	rs:		1	·
Spacing between I	Barrels (ft):		2.00	
Stone Width Arou	nd Perimeter of Syst	em (ft):	1	
Depth A: Porous S	Stone Above Pipe (in):	0	
	Stone Below Pipe (in):	4	
Stone Porosity (0	to 40%):		40	
System Sizing				
Pipe Storage:		327	cf	
Porous Stone Stor	age:	161	cf	
Total Storage Prov		488	cf	108.6% Of Required Storage
Number of Barrels	:	2	barrels	
Length per Barrel:		8.0	ft	
Length Per Heade		10.0	ft	
Rectangular Footp		2. ft x 14. ft		
CONTECH Materi				
Total CMP Footag		26		
Approximate Total			pcs	
Approximate Coup		_	bands	
Approximate Trucl		1	trucks	
Construction Qua	antities**			
Total Excavation:		63	су	
Porous Stone Bac	kfill For Storage:	15	cy stone	
	-		-	

36 cy fill

**Construction quantities are approximate and should be verified upon final design

Backfill to Grade Excluding Stone:

April 25, 2023

Royce Eklund, P.E. Commercial Development Resources 3117 Whiting Avenue Charlotte, NC 28205

RE: Scottsdale Ford Service Center 8555 East Frank Lloyd Wright Boulevard Scottsdale, Arizona Project No. 220662SA Storm Water Retention

Mr. Eklund:

This letter presents provides recommendations for the proposed underground storm water retention system.

Given the existing facilities and time constraints it is not feasible to conduct a typical double ring percolation testing at this time for the proposed underground retention system. We have reviewed our testing results from various sites within an a mile radius of the site. Percolation rates generally range from 35 to 60 minutes per inch. Typically, the percolation rate is de-rated or a factor of safety (0.5) applied for future working conditions. Therefore, a preliminary design rate of **120 minutes per inch** should be used for designing the system.

Once construction begins and a test pit can be excavated within the proposed system, contact our office to perform a percolation test to verify the working conditions of the system. It is also recommended to include a contingency to install a drywell for higher capacity if the percolation testing is not favorable.

If there are any further questions, please call.

Respectfully submitted,

Keith R. Gravel, P.E.

SPEEDIE & ASSOCIATES, LLC.

ATTACHMENT 4 Storm Drain Hydraulic Calculations

A. MIN. SD PIPE CALCULATIONS

*These are preliminary pipe capacity calculations.

PROJECT: Scottsdale Ford
LOCATION: Scottsdale, AZ
DATE: 07/18/2023

For minimum circular pipe size required:

 $D_r = [2.16*(n)*(Q)/(S_0^{1/2})]^{3/8}$

Where D_r = minimum size pipe required (ft)

n = Manning's roughness factor

Q = flow rate (cfs)

S₀ = longitudinal slope (ft/ft)

For full flow in a circular storm drain: $Q_f = 1.49*(n^{-1})*(A_f)*(R_f^{2/3})*(S_0^{1/2})$

Where $\mathbf{Q}_{\mathbf{f}}$ = full flow rate (cfs)

n = Manning's roughness factor

 $A_f = (\pi^* D^2/4) = \text{flow area at full flow (ft}^2)$

 \mathbf{R}_{f} = (D/4) = hydraulic radius at full flow (ft)

S₀ = longitudinal slope (ft/ft)

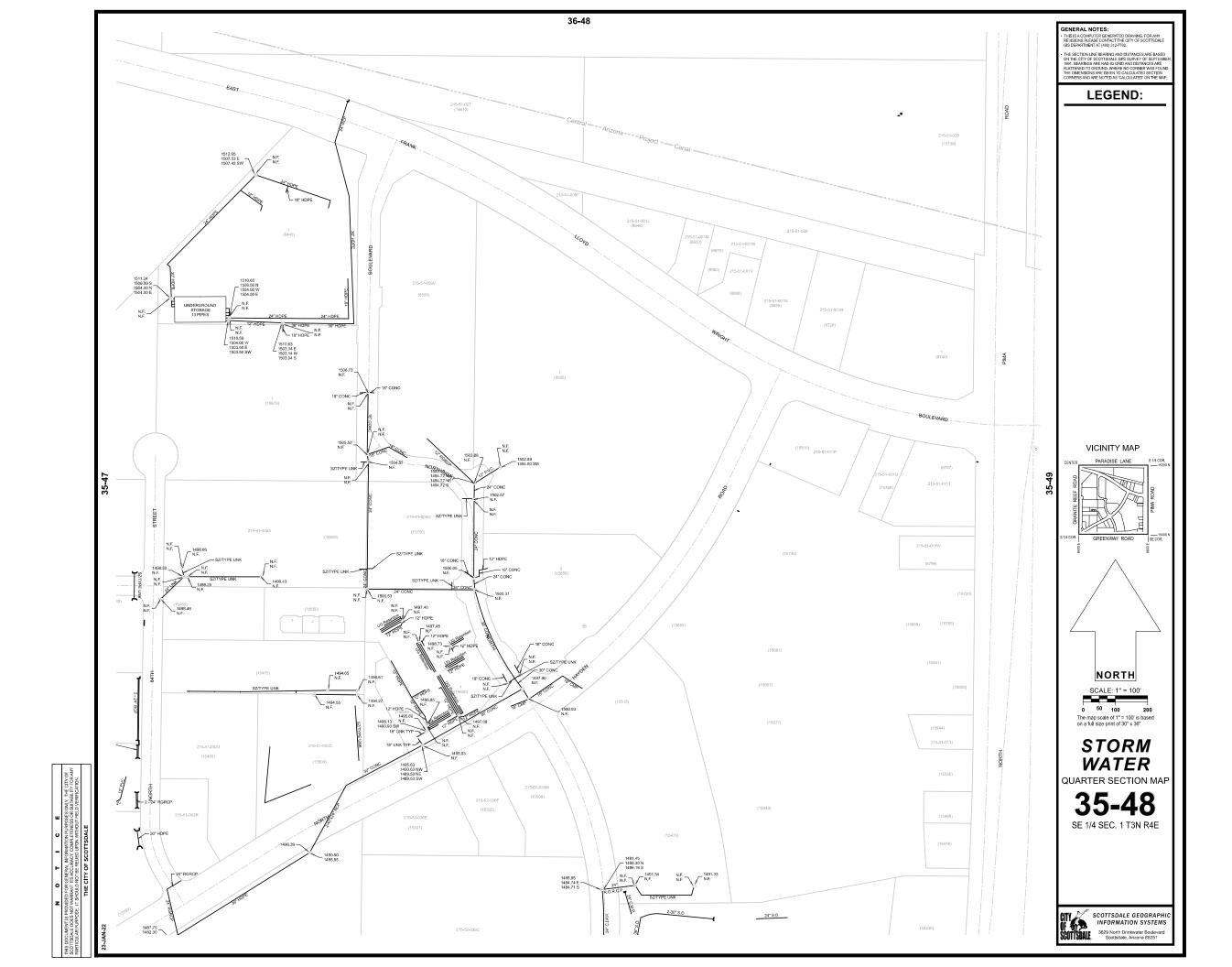
SD DATA TABLE:

SIZE	D (ft)	A _f (ft ²)	R _f (ft)	$Q_f * n/(S_0)^{1/2}$	
3" PIPE	0.25	0.049	0.063	0.012	
4" PIPE	0.33	0.087	0.083	0.025	
6" PIPE	0.50	0.196	0.125	0.073	
8" PIPE	0.67	0.349	0.167	0.158	
10" PIPE	0.83	0.545	0.208	0.286	
12" PIPE	1.00	0.785	0.250	0.464	
15" PIPE	1.25	1.227	0.313	0.842	
18" PIPE	1.50	1.767	0.375	1.369	
24" PIPE	2.00	3.142	0.500	2.949	

Avg. Manning Roughness Coefficients for Closed Conduits:

Pipe Material	PVC	HDPE	RCP	CONC	
"n" Value (per SDCHM Table A-2)	0.011	0.012	0.013	0.014	

Existing Pipe Size Check								EXISTING	
PIPE NO.	Q ₁₀₀ (cfs)	S ₀ (ft/ft)	Material	n	D _r (ft)	d _r (in)	SIZE	PIPE SIZE	REPLACE
1	8.86	0.010	PVC	0.011	1.32	15.86	18" PIPE	6" PIPE	YES
2	8.86	0.010	PVC	0.011	1.32	15.86	18" PIPE	6" PIPE	YES
3	23.32	0.014	PVC	0.011	1.78	21.41	24" PIPE	12" PIPE	YES


Proposed Pipe Size - Project Area

PIPE NO.	Q ₁₀₀ (cfs)	S ₀ (ft/ft)	Material	n	D _r (ft)	d _r (in)	USE	Q _{Full} (cfs)	CHECK: Q _{Full} > Q ₁₀₀	
4	9.41	0.008	HDPE	0.012	1.46	17.48	18" PIPE	10.21	YES	108%
5	9.41	0.019	HDPE	0.012	1.24	14.86	15" PIPE	9.67	YES	103%
6	23.32	0.014	HDPE	0.012	1.84	22.12	24" PIPE	29.08	YES	125%

^{**}Final pipe capacity calculations will be included in Final Hydrology Report

ATTACHMENT 5 Referenced Storm Drain Plans

