

LOCATED NEAR THE NORTHWEST CORNER OF NORTH HAYDEN ROAD AND LOOP 101 FRONTAGE ROAD INTERSECTION

PRELIMINARY DRAINAGE REPORT- TOLL AT CAVASSON Basis of Design

October 4, 2024

Project No.: 18114-750

PREPARED FOR: TOLL BROTHERS 8767 E VIA DE VENTURA, SUITE 390 SCOTTSDALE, AZ 85258 (480) 596-5815

81616 TEAGUN S. WOLF

> PREPARED BY: MUBBARD ENGINEERING 1201 S. ALMA SCHOOL ROAD, SUITE 12000 MESA, AZ 85210 (480) 892-3313 TEAGUN S. WOLF, PE

TABLE OF CONTENTS

1.	INTRODUCTION	ł
1	1 PROJECT SCOPE	í
1	2 SITE DESCRIPTION	l
1	3 PROJECT TYPE	3
1	4 SPECIAL CONDITIONS- 404 WASHES	3
1	5 REGULATORY CRITERIA	3
2.	EXISTING DRAINAGE CONDITIONS	1
2	1 EXISTING OFF-SITE CONDITIONS CHARACTERISTICS	4
2	2 ON-SITE DRAINAGE	1
	2.2.1 HEC-1 Analysis	5
2	3 FLOOD ZONE INFORMATION	5
3.	PROPOSED DRAINAGE PLAN)
3. 3	PROPOSED DRAINAGE PLAN))
3. 3 3	PROPOSED DRAINAGE PLAN	€ €
3. 3 3 3	PROPOSED DRAINAGE PLAN 9 1 OFF-SITE FLOWS 2 ON-SITE DRAINAGE CONFIGURATION 3 MAINTENANCE RESPONSIBILITY	9 9) !
3. 3 3 3 3	PROPOSED DRAINAGE PLAN 9 1 OFF-SITE FLOWS 9 2 On-SITE DRAINAGE CONFIGURATION 10 3 MAINTENANCE RESPONSIBILITY 12 4 STORM WATER STORAGE 12	9 9) 23
3. 3 3 3 3	PROPOSED DRAINAGE PLAN 9 1 OFF-SITE FLOWS 9 2 ON-SITE DRAINAGE CONFIGURATION 10 3 MAINTENANCE RESPONSIBILITY 12 4 STORM WATER STORAGE 12 3.4.1 Time to Drain 12	990233
3. 3 3 3 3 4.	PROPOSED DRAINAGE PLAN 9 1 OFF-SITE FLOWS 9 2 ON-SITE DRAINAGE CONFIGURATION 10 3 MAINTENANCE RESPONSIBILITY 11 4 STORM WATER STORAGE 11 3.4.1 Time to Drain 11 SUMMARY AND CONCLUSION 14	990233
 3. 3 3 3 4. 5. 	PROPOSED DRAINAGE PLAN 9 1 OFF-SITE FLOWS 9 2 ON-SITE DRAINAGE CONFIGURATION 10 3 MAINTENANCE RESPONSIBILITY 12 4 STORM WATER STORAGE 12 3.4.1 Time to Drain 11 SUMMARY AND CONCLUSION 14 REFERENCES 14	9 9 0 2 3 3 4 5

FIGURES

Figure 1.1	Site Vicinity Map
Figure 2.1	Flood Insurance Rate Map
APPENDICES	CHER SHE HEALT HEALT
Appendix A	TY Lin HEC-1 Existing
Appendix B	TY Lin HEC-1 Proposed WOLF
Appendix C	Cavasson HEC-1 Data
Appendix D	Cavasson HEC-1 Ultimate
Appendix E	Onsite Hydrology Calculations of the state o
Appendix F	Hydraulic Calculations
Appendix G	Retention Dissipation Calculations
Appendix H	404 Permit

EXHIBITS

Exhibit 1	Offsite HEC-1 Basins
Exhibit 2	Onsite Drainage Exhibit
Exhibit 3	HAG/LAG Exhibit
Exhibit 4	Catch Basin Ponding Exhibit
Exhibit 5	Emergency Overflow with Post Development Offsite Flow

1. INTRODUCTION

1.1 Project Scope

This report presents the results of a *Preliminary Drainage Study* conducted by Hubbard Engineering at the request of Toll Brothers ("client"), for the Toll at Cavasson development ("site"). The purpose of this report is to provide a hydrologic evaluation for the site as required by the City of Scottsdale per Ordinances 4346 and 4347. This report addresses off-site and on-site conditions. Drainage calculations and methodologies conform to the City of Scottsdale requirements and standards and to Hubbard Engineering's submitted *Master Drainage Report* for the Cavasson development.

This report is focused on providing practical design information, evaluation, and calculations for statistical flood events up to and including the 100-year frequency flood. The procedures used herein are derived from and performed with currently accepted engineering methodologies and practices. Additionally, the criteria for this evaluation are designed to conform to currently applicable ordinances, regulations and policies affected by the appropriate jurisdictional regulatory authorities for the site.

The analysis presented herein focuses on developing design estimates of storm water runoff resulting from a statistical evaluation of storm events of a particular duration and frequency, up to and including a 100-year frequency event. A storm event exceeding the 100-year frequency event may cause or create the risk of greater flood impact than is addressed and presented herein. The scope of this assessment does not include evaluation of storm water runoff resulting from storm events exceeding the 100-year frequency event. Hubbard assumes no responsibility for actual flood damage, increased risks of flood damage, or increased construction or development costs resulting from or related to any such events. Nor shall Hubbard be responsible for any changes in, or additions to, regulatory requirements which may result from, or be related to, any such events or changes in hydrologic or hydraulic conditions within the watershed.

1.2 Site Description

The project site is located in the southeast quarter of Section 26, Township 4N, Range 4E of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. The site is currently undeveloped, and prior to Nationwide Realty Investor's acquisition, was held in trust by the Arizona State Land Department (ASLD) as a portion of the overall Crossroads East development, which encompasses approximately 883 gross acres. The land naturally falls from northeast to southwest.

Toll at Cavasson is specifically located in the northwest portion of the Cavasson Development and is bounded by Cavasson Boulevard to the south, Claret Drive to the east, Miller Road to the west, and undeveloped desert to the north. The site location is shown in Figure 1.1 - Vicinity Map.

Figure 1.1 – Vicinity Map

1.3 Project Type

The Cavasson development is being developed by Nationwide Reality Investors as a master planned mixed use development with office, retail, hotels, and multifamily residential parcels with public and private roadways that run adjacent and through the development.

Toll at Cavasson is proposing a 136-dwelling unit, townhouse style single family development located on Lot 1 of Cavasson Phase 3. Improvements will include private streets throughout the development, multiple amenity spaces throughout the development, as well as proposed public water main and private sewer located within the proposed private streets.

The analyses of pre-development and post-development peak discharges were addressed in Hubbard's *Master Drainage Report Phase 3C update* and will be referenced and further discussed as it applies to Toll at Cavasson.

1.4 Special Conditions- 404 Washes

Located throughout the project site are waters of the United States 404 washes. The handling of the 404 washes has been coordinated with engineering consultants and the City of Scottsdale. The Section 404 Certification form has been completed by consultants. As discussed in the *Master Drainage Report*, Hubbard has met with the Army Corps of Engineer (USACE) and worked with consultants and the Corps to complete a mitigation plan. Approval of the 404 permit was granted on April 2, 2019. That permit number is SPL-2018-00704. ADEQ has issued the 401 permit. This permit has been attached for reference in **Appendix G**.

1.5 Regulatory Criteria

The criterion used in the drainage design and analysis of the site was established using the guidelines as described in the following:

- > City of Scottsdale, *Design Standards & Policies Manual*, January 18, 2018.
- > City of Scottsdale, *Ordinance No. 4346*, June 17, 2018.
- > Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology.
- > Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics.

2. EXISTING DRAINAGE CONDITIONS

2.1 Existing Off-Site Conditions Characteristics

Development in the surrounding area has increased in the last decade and many of the surrounding properties which sit in the Reata Pass basin, part of the Pinnacle Peak South Area, have installed infrastructure to route the offsite flows through their developments. As-built plans for the developments show that channels and culverts have been constructed to divert and route off-site flows. Historical runoff for the areas on and surrounding the project site flow south towards collections points (i.e. existing culverts) where the off-site storm runoff is ultimately conveyed to the TPC golf course just north of the Central Arizona Project canal. Existing culverts located at the edges of Hayden Road are currently utilized to route off-site runoff. Off-site routing for the developed surrounding areas has been verified with their corresponding as-builts, including Hayden Road Improvement Plans, 76th Street & Infrastructure Design, Center Drive (now Legacy Boulevard) Improvements, and One Scottsdale Civic Center Improvement Plans.

Hubbard Engineering completed a *Master Drainage Report* which included an extensive analysis of the off-site flow conditions affecting the entire Crossroads East area, including Cavasson and Hayden Road, for the existing site and proposed development. Results from the study indicate that the storm event affecting the Toll at Cavasson development is a 100-year, 6-hour storm event. Since the submittal of the *Master Drainage Report*, Hubbard has met with the City of Scottsdale and the developers south of the Cavasson development. It was determined in the meeting that the HEC-1 models be adjusted to reflect a time interval of 15 minutes rather than 3 minutes, as was originally modeled in TY Lin's report. The flows affecting the site will be discussed in section 3.1. Details on Hubbard's HEC-1 methodology and analyses, in addition to the modeling results, can be referenced in the approved *Cavasson Master Drainage Report Phase 3C Update* dated August 1, 2023.

The Toll at Cavasson site specifically is being impacted by the undeveloped desert to the north in the existing condition. Prior to construction of the Offsite Storm Drain, there were additionally two culverts impacting the project site. These culverts are conveying flow from basins SB01-B and SB01-C north of Legacy Boulevard. The runoff is now conveyed into underground storage tanks that function as sediment traps for the Cavasson Offsite Storm Drain.

2.2 **On-site Drainage**

As the Cavasson project site was undeveloped prior to Phase 1, there were no on-site drainage structures. The project site was included in two previous studies, Bob Ward's *Core North/ Core South Drainage Study* and TY Lin's *Pinnacle Peak South Area Drainage Master Study*. The TY Lin report analyzed the Crossroads East area and included FLO2d models combined with HEC-1 analyses on localized basins. The TY Lin report provided a basis on which Hubbard completed its hydrologic studies for the Cavasson project development.

The project site naturally falls from north to south at approximately 1.2% and approximately 0.7% east to west. The site outfall for the Toll at Cavasson development occurs at the southern boundary of the project at the intersection of Cavasson Boulevard and Miller Road at an elevation of 1621.5'.

2.2.1 HEC-1 Analysis

The TY-Lin *Pinnacle Peak South Area Drainage Master Study* report provides an analysis of the entire Pinnacle Peak South Area, which covers an approximate area of 40 square miles. According to the report, the project site is located within the Dobson Wash Watershed, which includes inflow from the southwestern flow split of the Reata Pass Wash. TY Lin's existing and proposed exhibits and results can be found in Appendices A and B, respectively. Hubbard replicated TY-Lin's model in application to the approximate nine square miles including and surrounding the project site, shown in Exhibit 1, and included the inflow hydrographs from TY Lin's Master Drainage study to account for run-off affecting the project site from the 76th Street Channel and the Powerline for both the 100-year, 6-hour and 100-year, 24-hour storm events. Data collected for the model includes the precipitation, soil, and land use for the existing site conditions in application to the delineated sub-basins. All data Hubbard obtained and used in the model was compared to the existing TY Lin model for accuracy and adjusted accordingly based on current site conditions at maximum densities per approved zoning cases. Precipitation data was obtained from the NOAA Atlas 14 precipitation database. The map index used in DDMSW is 64, cells 687-689. Existing soil data was obtained from the United States Department of Agriculture's Natural Resources Conservation Service. Additionally, land use data was determined based on current zoning of the project site. Data for the HEC-1 analysis are in Appendix C. The results of the ultimate condition at full build out (after the powerline channel is constructed) are included in Appendix D.

Hubbard has met with the City of Scottsdale and the developers south of the Cavasson development in order to coordinate the analyses for the Crossroads East development. It was determined in the meeting that the HEC-1 models be adjusted to reflect a time interval of 15 minutes rather than 3 minutes, as was originally modeled in TY Lin's report. Thus, the inflow hydrographs provided by TY Lin were convoluted to accurately represent this change in time interval resulting in more accurate time to peak values. In addition, it was also decided in the meeting that Hubbard's analysis for the existing, proposed, and ultimate conditions will be used by developers south of Hayden Road. Hubbard's sub-basin delineation, shown in **Exhibit 1**, deviates from TY Lin's analysis in that Hubbard added collection points at existing culverts along Legacy Boulevard and Hayden road to model the peak flows coming through each infrastructure for utilization in routing design. Additionally, detailed analysis of the existing topography and asbuilts along Hayden road and Legacy Boulevard revealed that the basins were not segmented by Hayden Road or Legacy Boulevard, in the TY Lin Report. These larger basins were subdivided in the Hubbard analysis and a similar naming convention was used to compare baseline flows.

Hubbard's analysis split the original TY Lin sub-basins 7 and 8 into east and west components to more accurately model the conveyance of the flows on either side of Hayden Road. An additional basin, SB09N was also added per the city's request as this was not included in the TY Lin analysis. In Hubbard's routing, flows from SB07E and SB08E are routed east, following the topography. Since the TY-Lin model does not delineate a SB-08W, the TY-Lin model shows the flow from SB08 flowing from the southwest corner of the basin east across Hayden Road. This analysis is not correct considering that the eastern elevation is approximately 20 feet higher than the western elevation (CP-08 in TY-Lin's exhibit). This routing also neglects the flow from SB07W and SB08W to the existing ADOT culvert along Frontage road and across the Loop 101,

thus affecting the developments south of the Loop 101, a condition not represented in the TY-Lin report.

In TY-Lin's analysis, the 100-year, 24-hour storm event controlled for the entire area, with the 100-year, 6-hour storm event controlling the localized flows. TY-Lin recommended the creation of the Powerline Channel to intercept and route the 100-year, 24-hour flows to Basin 53R. Since it was determined in meetings with the City of Scottsdale that the channel will be built during construction of the Cavasson development, Hubbard's existing model includes this channel and results for the 100-year, 24-hour, 100-year, 6-hour, and 10-year, 6-hour storm events are shown in **Appendix D.** The Existing 100-year, 6-hour flows prior to the offsite channel being constructed were 196 cfs entering the site and an Existing condition 100-Year, 6-hour discharge exiting the site at the Loop 101 of 740 cfs. With the addition of the channel and routing to Basin 53R, a significant amount of flow is being diverted from the affected study area to Basin 53R. The addition of the channel results in higher peak flows for the Crossroads East development from the 100-year, 6-hour storm event rather than the 100-year, 24-hour storm.

In addition to the existing model post-channel and proposed model, Hubbard completed an ultimate condition model considering the surrounding lots will be developed. In the model, this was represented by increasing the imperviousness of SB01-B, SB01-C, and SB07W to reflect maximum assumed densities per the zoning stipulations pertinent to the Cavasson development and Cross Roads East approved zoning cases. To model the effect of stormwater retention on the basin, the required first flush retention was diverted out of the model for each of the onsite subbasins as well as subbasins SB01-B, SB01-C, and SB07W since these three basins will directly impact the Cavasson development. While diverting out the first flush retention does not do anything to the timing of the storm event or reduce the peak discharges in HEC-1, it does properly remove the volume of water from the overall system to help verify the water balance of the watershed.

As part of the Phase 3 Update for Cavasson Phase 3C, subbasin SB02E has been split into SB02E1 and SB02E2 to more accurately model discharge across State Route 101. SB02E2 is the west split while SB02E1 is the east split. CP08W is now routed across State Route 101 to CP-4N where it combines with the discharge from SB02E1. The routing for R8W-4N is stage storage discharge to more accurately model the detention basin that was constructed adjacent to the ADOT culverts as part of Phase 1 and the Claret Monument Sign development.

2.3 Flood Zone Information

The Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (F.I.R.M.) number 04013C1320L, Panel number 1320 of 4425, dated July 21, 2021 indicates that the Toll at Cavasson development falls within Zone AO (Depth 1 foot) on the west side of the project with the remainder classified as Zone X.

Zone AO is defined as:

"Areas subject to inundation by 1-percent-annual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between one and three feet. Average flood depths derived from detailed hydraulic analyses are shown in this zone. Mandatory flood insurance purchase requirements and floodplain management standards apply."

Zone X is defined as:

"Areas of 0.2% annual chance flood; areas of 1.0% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood."

Refer to FEMA Firmette in Figure 2.1.

Figure 2.1 – FIRM 04013C1320L

It should be noted that FEMA has approved a LOMR that removes the Zone AO area from the west portion of the property. This LOMR will become effective on November 22, 2024 when the comment period has ended. This revised FIRM is shown below in Figure 2.2.

Figure 2.2 – FIRM 04013C1320L Effective November 22, 2024

3. PROPOSED DRAINAGE PLAN

3.1 Off-Site Flows

Off-site flows for the site were analyzed and addressed in Hubbard's Master Drainage Report Phase 3C Update. Results from the analysis show that after the powerline Channel is constructed 19 cfs is currently being conveyed across Legacy from the existing elliptical culvert located north of the Toll at Cavasson development within Legacy Boulevard. When the parcel north of Legacy is developed, these flows are anticipated to increase to 50 cfs. These flows are now, however, being captured in the Offsite Storm Drain Network (Plan Check #1838-21) designed by Hubbard Engineering, construction concluded in December of 2023, that routes all of these offsite flows around the outside perimeter of the site prior to crossing Cavasson Boulevard. This allows the offsite flows to maintain their existing flow patterns without impacting the Toll at Cavasson development. In the event that the Offsite Storm Drain System infrastructure fails, the offsite flow from north of Legacy would be contained within an existing swale to the north of Legacy Boulevard before entering an existing 10'x3' curved box culvert that discharges the flow to the south of Legacy Boulevard and west of Miller Road. This flow would then continue along the west side of Miller Road before joining its historic flow pattern just south of Cavasson Boulevard. It should be noted that due to sedimentation within the existing culverts crossing Legacy Boulevard, this overflow route is already being used in this manner for some of the flow. This Offsite Storm Drain System was discussed in further detail within Hubbard's Master Drainage Report Phase 3C Update.

The Toll at Cavasson development is additionally impacted by offsite runoff from the undeveloped desert immediately north of the project site. This runoff generally enters the Toll at Cavasson development site through 5 minor washes crossing the north property line in the existing condition where it flows to the existing sediment basin along the south property line adjacent to Cavasson Boulevard. It then exits the site through the existing 42-inch culvert that crosses under Cavasson Boulevard before resuming its historical flow pattern just south of Cavasson Boulevard. This offsite flow will be blocked by site walls proposed to be constructed as part of the Toll at Cavasson development. As a result, a swale will be graded within a proposed drainage easement on the lot north of Toll at Cavasson, currently being negotiated with the property to the north, which will reroute the runoff to flow west along the north property line towards Miller Road. This swale will terminate in a small sedimentation basin once it reaches the proposed drive entrance. At this point, a negligible portion will be captured in the onsite drainage system within the drive entrance, an additional portion will be captured by the Cavasson Offsite Storm Drain by a proposed temporary inlet within the sedimentation basin, and the remainder will discharge to Miller Road. The runoff will then resume its existing flow pattern after crossing Cavasson Boulevard. The hydraulic calculation for this swale is included in Appendix F.

A portion of the runoff from the undeveloped desert to the north enters the site as concentrated flow on the northeast corner of the site as documented in the Phase 3 Roads Drainage Report written by Hubbard Engineering as DA-OFFA. This runoff is then routed through a small channel to the existing sediment basin adjacent to Cavasson Boulevard. Once the site is developed, this runoff will enter the Toll at Cavasson developments proposed storm drain system and in small storm events will be captured in the proposed retention tanks. In the event of back-to-back storm events or events that exceed the first flush, this runoff will be surcharged through the tank rims to the site ultimate outfall and cross Cavasson Boulevard as sheet flow to resume its historic flow pattern. Once the site to the north is developed, that site will retain its first flush runoff volume

and will route the excess flows to the provided emergency overflow stub within the Cavasson Offsite Storm Drain.

The offsite flow from the adjacent Claret Drive will be conveyed to the site through an existing catch basin that will be tied directly into the onsite storm drain system. This offsite flow was calculated as part of the Phase 3 Roads Drainage Report written by Hubbard Engineering. The offsite runoff from the adjacent Cavasson Boulevard will be partially conveyed to the site through existing catch basin CB-07 that will be tied directly into the onsite storm drain system. The offsite flow from Cavasson CB-08 however will be rerouted to directly discharge to the existing culvert through a proposed storm drain manhole that will be constructed when the existing inlet headwall is removed. This offsite flow was calculated as part of the Final Drainage Report -Cavasson Boulevard written by Hubbard Engineering. Offsite flows from the adjacent half street of Miller Road will not impact the site because Miller Road was designed to convey all of its flow to two curb openings south of Cavasson Boulevard. The Toll at Cavasson development will still however retain the appropriate volume for the 100 year 2-hour storm event for the adjacent half street to remove those flows from the system. A summary of the offsite flows impacting the Toll at Cavasson development can be found in Table 1 below. See Exhibit 2 for the offsite drainage areas impacting the site and Exhibit 5 for the emergency overflow locations and routes for the site.

Table 1: Offsite Flow Summary Table										
Contributing Area	Pre-Development Q100 (cfs)	Post Development Q100 (cfs)								
SB01-B	19	0								
SB01-C	19	0								
DA-OFF-1	9.36	0								
DA-OFF-2	7.22	0								
DA-OFF-3	7.05	0								
DA-OFF-4	8.52	0								
DA-OFF-5	7.07	0								
Claret Drive DA-OFFA	3.38	3.38								
Claret Drive CB-A	3.05	3.05								
Cavasson CB-08	2.70	2.7								
Cavasson CB-07	3.55	3.55								

3.2 On-Site Drainage Configuration

The storm event affecting the site was determined to be a 100-year, 6-hour storm, as discussed in Hubbard's *Master Drainage Report Phase 3 Update*. The Toll at Cavasson development will include 135 single family townhouses with private streets and amenity areas throughout the site. Additionally, the Offsite Storm Drain System runs along the west boundaries of the site within an existing drainage easement.

See Exhibit 2 for the drainage map. The majority of the site is designed with inverted crowns and valley gutters that serve as the primary method of conveyance. These valley gutters generally flow south and west to grated inlets located on the proposed underground retention system or on the proposed storm drain system in order to follow the natural topography of the site. The proposed gutters for the building roofs will discharge in various locations around the proposed buildings

with the majority discharging to either the side or front of the units. Isolated roofs will discharge to backyard areas but these roofs have been minimized as much as possible. Every roof drain downspout discharges to either a proposed concrete/paver walk or to a riprap splash block that directs the discharge to the proposed valley gutters. The backyards are proposed to drain via vditch swales directing runoff south and west, crossing between backyards through turned block wall openings. Secondary turned block openings will be provided wherever feasible in the backyards and side yard walls to minimize the risk of ponding in the backyards. There will additionally be blanket drainage easements covering the site as part of the CC&Rs of the association to allow for lot to lot drainage and to stipulate that drainage patterns in the backyards must be maintained at all times. The onsite storm drain system consists of six equalized underground storage tanks located on the southwest corner of the site and extending along the south most private street. These underground retention tanks have flow by grated inlets located periodically within the valley gutter in order to maximize the capture of the storm runoff while minimizing ponding throughout the site. From the underground retention tanks, there are three separate storm drain runs that capture runoff through the remainder of the site.

The first storm drain run will extend north from the north side of UGST-3 for approximately 200 linear feet before reaching a proposed catch basin with a 2'x3' steel bar grate located in a sump condition. This inlet will pond for a maximum 0.45 feet before breaking over to the south. From this catch basin, the storm drain will continue north for approximately 37 linear feet before reaching a maintenance catch basin to allow the storm drain to realign roughly northwest. The storm drain will then continue northwest for approximately 16 linear feet before reaching a proposed combination curb inlet catch basin. This inlet will pond for a maximum of 0.50 feet before breaking over to the south. From this catch basin the storm drain will turn west and run for approximately 87 linear feet to the termination of this storm drain run in a proposed combination curb inlet will pond for a maximum of 0.30 feet before breaking over to the south.

The second storm drain run will extend south from the south side of UGST-6 for approximately 61 linear feet before reaching a proposed combination curb inlet catch basin. This inlet will pond for a maximum of 0.5 feet before breaking over the adjacent curb to the south. From this catch basin, the storm drain will continue south for approximately 10 linear feet before reaching a maintenance catch basin to allow the storm drain to realign to head west. The storm drain will then head west for approximately 28 linear feet to a maintenance catch basin where the runoff from Cavasson Boulevard CB-07 will enter the proposed storm drain system. From this catch basin, the storm drain will then run for approximately 243 linear feet to a proposed catch basin with an open grate. This catch basin will include a connection to the existing 42-inch culvert crossing under Cavasson Boulevard and this culvert will serve as a primary emergency overflow for the proposed storm drain system. This storm drain run in a proposed maintenance catch basin. This final maintenance catch basin is where the runoff from Cavasson Boulevard CB-08 will enter the proposed storm drain system.

The third and final storm drain run for the Toll at Cavasson development will extend north from the north side of UGST-6 for approximately 119 linear feet before reaching a proposed maintenance catch basin. From this catch basin, the storm drain will turn and run east for approximately 155 linear feet to a proposed catch basin with a 2'x3' steel bar grate in a flow-by condition. From this catch basin, the storm drain will turn and head south for approximately 124 linear feet before reaching a proposed catch basin with a 2'x3' steel bar grate in a flow-by

condition. This catch basin will accept flow from two different storm drain runs. The first will be a lateral that is proposed to run south from this proposed catch basin for approximately 70 linear feet before reaching a proposed combination curb inlet catch basin. This inlet will pond for a maximum of 0.5 feet before breaking over the adjacent curb to the south. The second storm drain run will run east for approximately 86 linear feet to a proposed catch basin with a 2'x3' steel bar grate assembly in a flow-by condition. From this catch basin, the storm drain will head northeast for approximately 214 linear feet to a proposed catch basin with a 2'x3' steel bar grate assembly in a flow-by condition. This catch basin will also accept flow from two different storm drain runs. The first will be a lateral extension on the northeast alignment for approximately 18 linear feet to a proposed catch basin with a 2'x3' steel bar grate assembly in a flow-by condition. The second will extend southeast to a proposed maintenance catch basin approximately 25 linear feet away. The storm drain will then slightly change direction to east south east and run for approximately 78 linear feet to an additional proposed maintenance catch basin. The storm drain will then head north for approximately 19 linear feet to a proposed maintenance catch basin where the runoff from Claret Drive CB-A will enter the proposed storm drain system. The storm drain will then run north for approximately 180 linear feet with one additional maintenance catch basin along that length to allow for a slight realignment in the storm drain to follow the curvature of Claret Drive to a proposed maintenance catch basin. From this maintenance catch basin, the storm drain will run for approximately 20 linear feet to a proposed combination curb inlet catch basin. This inlet will pond for a maximum of 0.3 feet before breaking over to the east into Claret Drive. The storm drain will then run for approximately 48 linear feet to terminate in a proposed combination curb inlet catch basin. This inlet will pond for a maximum of 0.3 feet before breaking over to the east into Claret Drive.

Due to the preliminary nature of this report, no hydraulic analysis has been performed on the proposed storm drain systems, nor has sizing been conducted at this time. When the hydraulic analysis is performed, the tailwater starting HGL will be set at the top of the highest equalized tank. Head loss for the pipes will be calculated using Manning's Equation and head loss through the structures will be calculated the equation $k(\frac{v^2}{2g})$ where k is the junction loss coefficient, v is the velocity exiting the junction and g is the acceleration of gravity. See Appendix E for hydrologic calculations. The surface overflow location for the proposed equalized underground retention tanks will be the grated access ports for UGST-1, which will be designed to pond for less than 0.5 feet prior to breaking over to the south towards Cavasson Boulevard and the site ultimate surface overflow location. The maximum ponding depth for any inlet has been designed at 0.50 feet and is shown for all sump condition inlets in Exhibit 4 along with breakover location and elevation. Inlet capacity calculations can be found in **Appendix F** for significant sump and flow-by condition catch basins. Inlet capacity has not been checked for flow-by inlets on the tanks at this time. Street Capacity calculations can also be found in Appendix F to demonstrate that adequate street capacity exists for runoff that is not captured in the flow-by inlets without inundating any of the building garages.

3.3 Maintenance Responsibility

The project development will be responsible for maintenance of all onsite storm drainage systems within the property. Since all onsite storm drainage structures are located within common areas, the subdivision association will be responsible for this maintenance. The City of Scottsdale will be responsible for maintenance of drainage structures within its right-of-way. At the two

locations where the offsite, publicly owned storm drains within the right of way, connect to the onsite, privately owned and maintained storm drain system, a catch basin is proposed immediately adjacent to the PUE that will be maintained by the subdivision association and marks the end of the City of Scottsdale's maintenance responsibility.

3.4 Storm Water Storage

The project development is required to provide retention for the first flush storm event for onsite and the 100 year 2-hour storm event for the adjacent half streets. The required first flush volume determined for each drainage area site will be designed per City of Scottsdale *Drainage Policies and Standards for Maricopa County, Arizona* (Reference 1). The first flush retention required for the site will be 18,899 cubic feet. The required retention for the adjacent half streets for the site is 18,166 cubic feet. This results in a total required retention of 37,064 cubic feet which will be retained in 475 lf of 10' diameter underground retention tanks. These tanks provide a total of 37,306 cubic feet of retention which meets the requirement. The required and provided retention calculations can be found in **Appendix G**.

3.4.1 Time to Drain

Each site will be required to dewater the required storm water retention through natural percolation and/or drywells. The City of Scottsdale requires all retention facilities be completely drained within a 36-hour time frame. For design purposes, it was assumed that each drywell will have a percolation rate of 0.1 cfs. During construction, the first drywell constructed will be tested to verify this percolation rate. In the event that the tested percolation rate plus a clogging factor exceed 0.1 cfs, the number of drywells may be reduced while ensuring all retention facilities fully drain within 36 hours. Using this drywell discharge rate, it was determined that 3 separate drywells will be provided to drain the total volume of the underground retention tanks. This will allow the retention tanks to fully dewater in a total time of 34.5 hours. See **Appendix G** for drywell calculations. It should be noted that a static head percolation test was performed on the existing drywell located on the west property line of the site, constructed as part of the Cavasson Offsite Storm Drain, which found a raw percolation rate of 0.5 cfs so it is expected that the proposed drywells will perform similarly which will allow for the elimination of at least one drywell once derating factors are applied.

4. SUMMARY AND CONCLUSION

- The site is located in Section 26 of Township 4N, Range 4E of the Gila and Salt River Base and Meridian, Maricopa County, Arizona.
- The site is partially located in the Flood Plain Zone AO-1 on the west side and in Flood Plain Zone X on the remainder based on the current effective FIRM Map.
- There is an approved LOMR that will become effective on November 22, 2024 that will remove the Zone AO-1 Floodplain from the property.
- The Finish Floor Elevations, Garage Lips, and Electromechanical equipment of the proposed buildings meet the requirement of 2 feet higher than the natural grade (HAG) within the Zone AO-1 flood zone.
- The storm event affecting the site was modeled as a 100-yr, 6-hour event in Hubbard's *Master Drainage Report* due to being more conservative.
- The Offsite Storm Drain System mitigates the offsite flows from north of Legacy Boulevard. The sites onsite storm drain system is directly accepting the offsite flows from Claret Drive and Cavasson Boulevard.
- The site will be required to provide retention for the first flush storm event for onsite and provide retention for the 100-year 2-hour storm event for the adjacent half street roads.
- 475 lf of 10' diameter underground storage tanks will provide 37,306 cf of retention, for the required retention of 37,064 cf.

5. REFERENCES

- 1) City of Scottsdale. Drainage Policies & Standards for Maricopa County, Arizona. January 18, 2018.
- 2) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology*. November 2003.
- 3) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics*. November 2003.
- 4) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume III, Erosion.* July 2018.
- 5) City of Scottsdale. Ordinance No. 4346. June 17, 2018.
- 6) TY Lin, Pinnacle Peak South Area Drainage Master Study, 2014.
- 7) City of Scottsdale, Ordinance No. 4346, June 17, 2018.
- 8) Hubbard Engineering, Master Drainage Report. December 23, 2018
- 9) Hubbard Engineering, Master Drainage Report Phase 3 Update, August 19, 2021
- 10) Hubbard Engineering, Master Drainage Report Phase 3C Update, August 1, 2023
- 11) Hubbard Engineering, Final Drainage Report Cavasson Boulevard, August 6, 2019
- 12) Hubbard Engineering, Phase 3A Roadways Final Drainage Report, March 9, 2022

6. LIMITATIONS

This report is focused on providing practical design information, evaluation, and calculations for statistical flood events up to and including the 100-year frequency flood. The procedures used herein are derived from, and performed with, currently accepted engineering methodologies and practices. Additionally, the criteria for this evaluation is designed to conform to currently applicable ordinances, regulations and policies effected by the appropriate jurisdictional regulatory authorities for the site.

The analysis presented herein focuses on developing design estimates of storm water runoff resulting from a statistical evaluation of storm events of particular duration and frequency up to and including a 100-year frequency event. A storm event exceeding the 100-year frequency event may cause or create the risk of greater flood impact than is addressed and presented herein. However, the scope of this assessment does not include evaluation of storm water runoff resulting from storm events exceeding the 100-year frequency event. Hubbard Engineering assumes no responsibility for actual flood damage, increased risks of flood damage, or increased construction or development cost resulting from or related to any such events.

Nor shall Hubbard Engineering be responsible for any changes in, or additions to, regulatory requirements which may result from, or be related to, any such events or changes in hydrologic or hydraulic conditions within the watershed.

In performing the services contained herein, Hubbard Engineering has received or will receive information prepared or compiled by others. Hubbard Engineering, as engineering professionals, are not required to verify the information, but may rely on the information unless actual knowledge concerning the validity of the information is known or is obvious to the professional. Therefore, Hubbard Engineering is entitled to rely upon the accuracy and completeness of this information without independent evaluation or verification.

Appendix A TY Lin HEC-1 Existing *Toll at Cavasson*

いたいないの	Drainage Sub-Basin ID	Area	Longest Flow Path	Upstream Ground Elev.	Downstream Ground Elev.	Slope
5		(sq. m1.)	(mı.)	(ft)	(ft)	(ft/mi)
0	SB01	0.112	0.641	1678	1637	64.0
1	SB02	0.157	0.728	1651	1605	63.2
1	SB03	0.048	0.352	1600	1594	17.1
1	SB04	0.144	0.695	1592	1546	66.2
1	SB05	0.130	0.699	1650	1613	52.9
1	SB06	0.136	0.575	1584	1557	47.0
-	SB07	0.074	0.601	1602	1567	58.3
200	SB08	0.224	0.321	1683	1653	93.5
alla a	SB09	0.052	0.450	1654	1618	80.0
10	SB10	0.040	0.271	1603	1590	48.1
and a	SB11	0.071	0.457	1606	1583	50.4

Appendix B TY Lin HEC-1 Proposed *Toll at Cavasson*

		PhaseI_Basin.out		
1**************************************	* * *			

*	*		*	
* FLOOD HYDROGRAPH PACKAGE (HEC-1)	*		*	U.S. ARMY CORPS OF ENGINEERS
* JUN 1998 *	*		*	HYDROLOGIC ENGINEERING CENTER
* VERSION 4.1	*		*	609 SECOND STREET
*	*		*	DAVIS, CALIFORNIA 95616
* RUN DATE 12SEP14 TIME 11:45:27 *	*		*	(916) 756-1104
*	*		*	
* * * * * * * * * * * * * * * * * * * *	* * *			
* * * * * * * * * * * * * * * * * * * *				

Х	Х	XXXXXXX	XX	XXX		Х
Х	Х	Х	Х	Х		XX
Х	Х	Х	Х			Х
XXXXXXX		XXXX	Х		XXXXX	Х
Х	Х	Х	Х			Х
Х	Х	Х	Х	Х		Х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

1

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	L
LINE	ID.	1.	2		4.	5.	6.	7.	8.	9.	10		
1 2 3 4 5	ID ID ID ID	CROSS ROADS EAST DRAINAGE INFRASTRUCTURE RESERVOIR ROUTING OF BASIN N OF SRIO1 & E OF HAYDEN RD, SCOTTSDALE, AZ INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL: 100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND PIMA ROAD FLOWS)											
6	ID												
7	ID	P	REPARED B	BY: T.Y.I	LIN INTER	RNATIONAI	; LAST I	MODIFIED	: 09/14				
8	ID	MO	DELERS: F	RK, MW									
9 10 11 12	ID IT IN IO	3 3 5	0	0	1000								
	*DI *	AGRAM											
13	JD	3.849	0.0001										
14	PC	0.000	0.002	0.005	0.008	0.011	0.014	0.017	0.020	0.023	0.026		
15	PC	0.029	0.032	0.035	0.038	0.041	0.044	0.048	0.052	0.056	0.060		
16	PC	0.064	0.068	0.072	0.076	0.080	0.085	0.090	0.095	0.100	0.105		
17	PC	0.110	0.115	0.120	0.126	0.133	0.140	0.147	0.155	0.163	0.172		
18	PC	0.181	0.191	0.203	0.218	0.236	0.257	0.283	0.387	0.663	0.707		
19	PC	0.735	0.758	0.776	0.791	0.804	0.815	0.825	0.834	0.842	0.849		
20	PC	0.856	0.863	0.869	0.875	0.881	0.887	0.893	0.898	0.903	0.908		
21	PC	0.913	0.918	0.922	0.926	0.930	0.934	0.938	0.942	0.946	0.950		
22	PC	0.955	0.950	0.959	0.902	0.905	0.900	1 000	0.974	0.977	0.960		
23	.TD	3 657	10 0	0.989	0.992	0.995	0.998	1.000					
25		3.037	20.0										
25	*	5.555	20.0										
26	KK	76THST	(mu om ou										
27	K.M	/	OTH ST CH	IANNEL H	DROGRAPI	H FROM P.	INNACLE I	PEAK SOU	TH ADMS				
28	K.M DA	0.24	00-1R, 6-	-HR FLO-2	2D MODEL	(AS 98)							
30	DA	0.24	0	0	0	0	0	0	0	0	0		
31	OT OT	0	0	0	0	0	0	0	0	0	0		
32	OT OT	Ő	0	Ő	0	0	Ő	Ő	Ő	ő	0		
33	ÕI	Ő	0	Ő	Ő	Ő	Ő	Ő	Ő	0	Ő		
34	ÕI	0	0	0	0	0	0	0	0	0	0		
35	ÕI	0	0	0	0	0	0	0	0	0	0		
36	ÕI	0	0	0	0	0	0	0	0	0	0		
37	QI	0	0	0	0	0	0	0	0	0	0		
38	QI	0	0	0	0	0	0	0	0	0	0		
39	QI	0	0	0	0	0	0	0	0	0	0		
40	QI	0	0	0.01	0	0	0	0	0	0	0		
41	QI	0	0	0	0	0	0	0	0	0	0		
42	QI	0	0	0	0	0	0	0	0	0	0		
43	QI	0	0	0	0	0	0	0	0	0	0		

44 QI 45 QI 46 QI 47 QI 48 QI 49 QI 50 QI 51 QI	$\begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0.01 & 0 \\ 0.01 \\ 0.03 & 0.04 \\ 0.09 & 0.09 \\ 0.14 & 0.15 \\ \end{array}$	0 0 0.01 0.04 0.1 0.16	Phase 0 0 0.01 0.02 0.05 0.1 0.18 HEC-1	[_Basin.(0.01 0 0 0.02 0.05 0.11 0.19 INPUT	Dut 0.01 0 0 0.02 0.05 0.11 0.21	0 0 0.02 0.06 0.12 0.23	0 0 0.02 0.06 0.12 0.25	0 0 0.01 0.03 0.07 0.13 0.27	0 0 0.01 0.03 0.08 0.14 0.3	PAGE	2
LINE ID.	12		4	5.		7	8	9.	10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4 1.61 35.75 65.05 38.91 31.31 24.53 18.62 15.37 12.99 10.88 9.33 8.93 8.93 8.93 8.93 8.93 8.26 7.57 7.22 6.89 6.235 5.95 5.429 4.62 4.43 4.63 4.63 2.38 2.37 2.53 2.14 1.88 1.67 1.21 1.12 1.13 1.04 0.84 0.761 0.661 0.562 0.451 0.52 0.481 0.51 0.52 0.484 0.761 0.661 0.562 0.485 0.51 0.52 0.481 0.52 0.481 0.52 0.48 0.552 0.485 0.552 0.485 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.652 0.652 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552 0.485 0.552	0.44 1.73 41.23 61.38 37.61 30.73 23.95 18.3 15.07 13.09 11.53 10.42 9.23 8.81 8.17 7.66 7.25 6.85 6.85 6.48 6.22 5.32 4.82 4.61 4.39 4.07 3.55 2.44 2.47 2.12 1.85 1.57 1.14 1.18 1.02 0.91 0.83 0.76 0.56 0.52 0.48 0.42 0.55 2.44 2.47 1.157 1.14 1.18 1.02 0.65 0.65 0.52 0.48 0.44 0.	0.47 1.95 44.49 530.02 23.37 14.74 12.94 11.85 10.1 9.1 8.73 8.14 7.74 7.2 6.81 6.16 5.9 5.36 4.84 4.81 4.63 4.37 4.03 3.52 2.46 2.41 2.09 1.3 1.26 0.75 0.65 0.65 0.52 0.48 0.47 0.52 0.75 0.65 0.54 0.54 0.54 0.52 0.54 0.54 0.54 0.54 0.54 0.52 0.54 0.54 0.54 0.54 0.55 0.65 0.54 0.54 0.52 0.54 0.54 0.54 0.54 0.55 0.65 0.54 0	0.51 3.7 47.79 54.61 35.61 29.25 22.83 11.4.54 12.53 11.4.54 9.09 8.71 8.05 7.75 7.08 6.74 6.12 5.84 5.44 4.81 4.78 4.36 2.36 2.36 2.36 2.365 3.655 0.551 0.477 0.444 0.77 0.444 0.77 0.444	0.56 4.26 51.13 52.38 34.75 28.51 22.17 17.52 14.51 12.53 11.16 9.72 9.48 8.57 7.91 7.02 6.75 6.44 6.08 5.48 4.81 4.77 4.33 3.96 3.45 2.35 3.59 2.32 2.04 1.63 1.49 1.23 1.10 0.988 0.88 0.73 0.640 0.55 0.51 0.47 0.43 0.43 0.43 0.51 0.51 0.447 0.43 0.43 0.43 0.43 0.51 0.51 0.447 0.43 0.43 0.43 0.51 0.51 0.447 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.59 0.551 0.47 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.59 0.551 0.447 0.433 0.43 0.43 0.43 0.43 0.43 0.43 0.447 0.43 0.43 0.43 0.43 0.43 0.447 0.433 0.447 0.433 0.447 0.433 0.447 0.433 0.47 0.47 0.433 0.47 0.433 0.47 0.433 0.47 0.433 0.47 0.47 0.433 0.47 0.433 0.47 0.433 0.47 0.433 0.47 0.433	$\begin{array}{c} 0.6\\ 6.53\\ 56.33\\ 50.75\\ 34.25\\ 28.42\\ 21.48\\ 17.1\\ 14.24\\ 12.38\\ 17.1\\ 14.24\\ 12.38\\ 17.1\\ 6.47\\ 6.05\\ 5.76\\ 4.83\\ 7.01\\ 6.47\\ 6.05\\ 5.76\\ 4.83\\ 4.75\\ 4.33\\ 3.92\\ 3.42\\ 2.4\\ 3.59\\ 2.28\\ 2.02\\ 1.56\\ 1.5\\ 1.56\\$	0.66 8.52 62.34 48.4 33.52 27.67 20.81 16.7 14.07 12.22 11.21 9.78 9.02 8.55 7.62 6.99 6.67 6.99 6.67 6.02 5.72 4.58 5.67 4.82 4.73 4.28 3.86 3.39 2.46 3.61 2.25 1.58 1.58 1.58 1.13 1.06 0.96 0.72 0.63 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	0.71 10.41 66.18 44.37 32.65 26.83 20.94 16.5 13.65 12.18 10.82 9.55 9.07 8.43 7.55 6.96 6.62 6.37 5.98 5.64 5.32 4.68 4.64 4.26 3.82 2.22 1.97 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 1.57 1.65 0.986 0.72 0.62 0.588 0.72 0.53 0.460 0.42 0.460 0.42 0.58 0.460 0.42 0.58 0.460 0.53 0.460 0.540 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.58 0.55 0.460 0.580 0.55 0.460 0.580 0.550 0.460 0.580 0.550 0.460 0.580 0.550 0.460 0.580 0.550 0.460 0.580 0.550 0.460 0.580 0.550 0.550 0.460 0.580 0.550 0.5		
101 QI 102 QI *	0.42 0.42 0.39 0.39	0.41	0.41	0.41	0.4	0.4	0.4	0.4	0.39		
			HEC-1	INPUT						PAGE	3
LINE ID.	2		4	5.	6.	7	8	9.	10		
103 KK 104 BA 105 LG 106 UC 107 UA 108 UA	SB01 BASIN 0.112 0.25 0.25 0.318 0.253 0 5.0 100 100 100 100	4.10 16.0	0.55 30.0	45 65.0	77.0	84.0	90.0	94.0	97.0		
109 KK 110 KM 111 HC *	CP-1 COMBINE LEGACY BLV 2	VD AND 76	5th st (M	ILLER RI	O CHANNEI	.)					
112 KK 113 KM 114 RK *	R1-2 ROUTE MILLER RD 2104 0.0015	CHANNEL 0.03	FROM LEG	ACY BLVI TRAP) TO SR 1 66	LO1L FREE 4	EWAY				
115 KK 116 BA 117 LG 118 UC 119 UA 120 UA	SB02 BASIN 0.157 0.25 0.328 0.240 0 5.0 100 100	4.15 16.0	0.58 30.0	56 65.0	77.0	84.0	90.0	94.0	97.0		

121 122 123	КК КМ НС *	CP-2 COMBINI SR 101L 2	E FREEWAY A	ND 76TH S	ST (MILLE	r rd Ch4	ANNEL)					
124 125 126	KK KM RK *	R2-3 ROUTH MILLER H 1260 0.001	E RD CHANNEL 5 0.03	FROM SR	101L FRE TRAP	EWAY TO 92	MAYO BLV 4	D				
127 128 129 130 131 132	KK BA LG UC UA UA *	SB03 BASI 0.048 0.15 0.29 0.364 0.29 0 5.0 100	4.50 4 0 16.0	0.47 30.0	55 65.0	77.0	84.0	90.0	94.0	97.0		
133 134 135	КК КМ НС *	CP-3 COMBIN MAYO BLY 2	E /D AND 76T	H ST (MII	LLER RD C	HANNEL)						
				HEC-1	INPUT						PAGE	4
LINE	ID.	1	23.	4	5	6	7	8	9	10		
136 137 138	KK KM RK *	R3-5 ROUTI MILLER I 2396 0.001	E RD CHANNEL 5 0.03	FROM MAY	YO BLVD T TRAP	O PRINCE 98	SS BLVD 4					
139	KK	SB04 BASI	1									
140	BA LG	0.144 0.2	5 4.60	0.44	61							
142 143	UC	0.305 0.199) 160	30 0	65 0	77 0	84 0	90 0	94 0	97 0		
144	UA *	100	2010	5010	0010		0110	2010	5110	2710		
145	KK	R4-5 ROUTI	2									
146 147	KM RK *	PRINCES: 2005 0.001	5 BLVD CHA 3 0.03	NNEL FROM	4 77TH ST TRAP	TO 76TH 39	I ST 4					
148	KK	SB05 BASI	1									
149	BA	0.126	5 4 5 0	0 44	10							
151	UC	0.327 0.22	5 4.50	0.11	40							
152 153	UA UA *	0 5.0 100) 16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
154 155 156	КК КМ НС *	CP-5 COMBINI PRINCES: 3	5 BLVD AND	9 76TH ST	(PRINCES	S BLVD (CHANNEL)					
157 158 159	KK KM RK *	R5-6 ROUTI PRINCES: 1550 0.001	5 BLVD CHA 5 0.03	NNEL FROM	M 76TH ST TRAP	TO SCO1 188	TSDALE R 4	D				
160	KK	SB06 BASI	1									
162	LG	0.16 0.2	5 4.55	0.45	53							
163 164 165	UC UA UA *	0.321 0.240 0 5.0 100	5) 16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
166 167 168	КК КМ НС *	CP-6 COMBINI PRINCESS 2	5 BLVD AND	SCOTTSD	ALE RD (P	RINCESS	BLVD CHA	NNEL)				
				HEC-1	INPUT						PAGE	5
LINE	ID.	1	23.	4	5	6	7	8	9	10		
169 170 171	KK BA LG	SB07 BASI 0.074 0.21 0.2	۹ 5 4.00	0.58	49							
172	UC	0.206 0.11	3	0.00								
173 174	UA UA *	0 5.0 100) 16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
175 176 177	KK KM RK *	R7-8 ROUTI HAYDEN H 2778 0.0014	E ROAD NORTH 4 0.03	CHANNEL	FROM LEG TRAP	ACY BLVI 46) TO SR 1 4	01L FREE	WAY			

1

1

PhaseI_Basin.out

					Phase	I_Basin.c	out					
178 179 180 181 182	KI BJ L(U(U)	K SB08 A 0.224 G 0.14 C 0.338 A 0	BASIN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.10 16.0	0.59 30.0	59 65.0	77.0	84.0	90.0	94.0	97.0	
183 184 185	UZ * KI	A 100 K CP-8) 3 COMBINE SP 1011. FE	FFWAY AN	ם אאעסדי	רגסק וו	AVDEN DO	NORTH	CHANNEL)			
186	HO *	2 2	2	GEWAT AT		N ROAD (II	AIDEN RO	AD NORTH				
187 188 189	KI KI RI *	K R8-9 M K 1250	P ROUTE HAYDEN ROA 0 0.0013	AD NORTH 0.03	CHANNEL	FROM HAY TRAP	DEN ROAD 67	TO BASI	IN 53R			
190 191	KI BA	K SB09 A 0.052	BASIN	4	0.61							
192 193 194 195	U U U U 2 X X	0.15 0.254 A (A 100	0.25 0.230 5.0	4.00 16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
196 197 198	KI KI HO *	K CP-9 M C 2	9 COMBINE SR 101L FF 2	EEWAY AN	ID BASIN	53R (HAY	DEN ROAD) NORTH C	HANNEL)			
199 200 201	KI KI KI	K PWRCH M M	I POWERLINE FROM PINNA	CHANNEL CLE PEAK	(XS 107 SOUTH 2) & 50% P ADMS 100-	YIMA ROAD YR, 24-H	CHANNEL R FLO-2D) (XS 183) MODEL	HYDROG	RAPHS	
202	Q	I () 0	0	0	0	0	0	0	0	0	
204 205	Q: Q:) ()	0	0	0	0	0	0	0	0	
206 207	Q:	I C I C	0 0	0	0	0	0	0	0	0	0	
208	Q	I C) 0	0	0 HEC-1	0 INPUT	0	0	0	0	0	PAGE 6
LINE	II	D1	L2	3	4.	5	б	7	8	9	10	
209 210	Q:	I C I C	0 0	0	0	0	0	0	0	0	0	
211	Q	E C	0	0	0	0	0	0	0	0	0	
212	Q	I (0	0	0	0	0	0	0	0	0	
213	Q: Q:	I C) 0	0	0	0	0	0	0	0	0	
215	Q	I (0 0	0	0	0	0	0	0	0	0	
216 217	Q1	I (I (0	0	0	0	0	0	0	0	
218	Q	E C	0	0	0	0	0	0	0	0	0	
219	Q:	I C	0	0	0	0	0	0	0	0	0	
221	Q: Q:	I C) 0	0	0	0	0	0	0	0	0	
222	Q	I (0 0	0	0	0	0	0	0	0	0	
223	Q. 01) 0	0	0	0	0	0	0	0	0	
225	Q:	I () 0	1	1	1	1	1	1	1	1	
226 227	Q:	I] T 43	L 2 3 50	2 65	2 87	3 194	3 495	5 872	9 967	18 1051	28 1095	
228	Q	I 1099	1091	1093	1100	1117	1198	1243	1370	1495	1777	
229 230	Q:	I 2055 I 3658	5 2422 3 3562	2906 3456	3246 3370	3546 3270	3747 3175	3874 3085	3884 3024	3837 2955	3741 2888	
231	Q	I 2822	2 2744	2640	2543	2461	2378	2309	2239	2183	2132	
232	Q:	I 2084	1 2045 1659	2005	1973 1576	1933 1544	1898	1860 1461	1821	1779	1740 1364	
234	Q	I 1331	L 1298	1268	1237	1206	1179	1152	1126	1100	1074	
235	Q:	I 1047	7 1023	1000	979	959	940	918 759	901 744	882	867	
237	Q	I 705	5 693	683	670	657	645	635	627	617	608	
238	Q	I 597	588	581	573	566	559	553	545	537	529	
239 240	Q: Q:	L 521 L 460) 456	450	444	495	488	482	476	419	405	
241	Q	I 410	404	400	396	393	387	385	381	377	375	
242	Q1	I 370 I 330) 367	364	362	360	356	352	349	346 318	343	
244	Q	I 317	7 313	308	306	305	303	300	298	295	294	
245	Q:	I 293	3 291	288	285	286	281	278	276	275	276	
247	Q. Q:	L 258	3 251	251	253	245	248	247	242	235	239	
248	Q	I 240	241	236	238	232	237	231	231	228	231	
∠49 250	Q: 0.	⊥ 223 I 214	s 227 1 215	223 211	223 215	221 211	220	219	215	219 207	215 208	
251	Q	1 205	201	207	200	200	201	201	199	197	193	
252	Q:	I 192 I 197	2 190) 179	190 180	191 173	189 173	188 179	187 169	185 172	186 164	184 169	
254	Q	I 164	165	163	161	156	158	155	158	153	158	
255 256	Q:	I 149 I 125	9 153 7 142	146	144	146	142	149	139	136	138	
257	Q. Q.	I 120) 119	124	117	116	117	114	111	113	109	

1

					Phase	T Basin	out						
258	QI	107	109	105	106	104	102	104	100	99	103		
259 260	QI	97 86	96 90	100 84	94 85	93 87	99 83	91 83	90 85	97 80	88 79		
261	QI	82	78	75	82	74	74	82	72	71	76		
262	QI	70	71	70	68	72	66	67	65	64	69		
203	QI	02	05	01	HEC-1	INPUT	59	05	50	20	60	PAGE	7
LINE	ID.	1.	2.	3.	4	5.	6.	7.	8.	9.	10		
264	QI	57	63	56	55	58	55	58	54	52	58		
265	QI	52	52	53	50	57	50	50	55	48	48		
266	QI QI	42	46	47	4/ 41	44	48	45	43	49	43 38		
268	QI	40	40	38	37	40	37	36	42	36	36		
269	QI OI	35 36	41 33	35 32	34 32	34 33	40 32	34 31	33 31	33 30	33		
271	QI	31	30	29	29	31	30	28	29	28	29		
272	QI	31 31	28 26	28 25	27 25	27 25	30 30	27 26	26 25	26 25	26 24		
274	QI	24	28	23	23	24	23	24	25	24	23		
275	QI	23	22										
	*												
276	кк	BINFLO											
277	KM	DINI DO	TOTAL IN	FLOW INTO	O BASIN 5	53R.							
278	HC *	2											
279	KK	BASIN		TOPACE EI	POM DPOD	ONT CONT	NIDS BF	PWFFN					
281	KM	ELEV	1594 AND	1615; B	ASIN SIDE	SLOPES	STEEPENH	ED TO 3:1	L				
282	KM	C	UTFLOW RA	ATING CU	RVE FROM	CULVERT	MASTER FO	OR 2-60"	PIPES				
283	RS	1	STOR	I PIPES A	AKE INLEI	CONTROL	JLED.						
285	SV	0	44.9	76.8	108.7	140.6	171.5	202.5	233.5	264.5	295.5		
286 287	SV	328.7	362.0 1597	395.2 1598	428.5 1599	461.7	497.2	532.7 1602	568.3 1603	603.8 1604	639.3 1605		
288	SE	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615		
289 290	SQ	0 353 0	94.6 368 5	153.4 383 5	209.8 398 0	244.2 412 0	264.5 425 7	284.0 438 9	302.5 451 9	320.1 464 5	336.9 476 8		
200	*	555.0	500.5	505.5	350.0	112.0	123.7	130.9	151.5	101.5	1/0.0		
291	кк	BSNRT1											
292	KM	2	2-60" CMP	OULFLOW	PIPES FO	OR BASIN	53R UNDE	ER SR 103	ll FREEWA	AY.			
293	KM	I	OWNSTREAM	M CONNEC	FING PIPE	ES ARE 60)-INCH RO	CP AND WI	ILL HAVE				
295	RK	550	0.0052	0.024		CIRC	7.0						
	*												
296	KK	BSNRT2											
297	KM	1000	2-60" RCP	PIPES FI	ROM SR 10)1L FREEN	VAY TO UN	NION HILI	LS DR (BA	ASIN 53R	OUTFAL		
290	*	1200	0.0077	0.013		CIRC	7.0						
200	W IZ	CD10	DACIN										
300	BA	0.040	DASIN										
301	LG	0.15	0.25	4.25	0.55	55							
302	UC UA	0.233	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
304	UA	100											
	^				HEC-1	INPUT						PAGE	8
TIME	TD	1	2	2	4	-	c	7	0	0	1.0		
LINE	10.							••••			10		
205	K K	CD 10	COMPTNE										
305	KM	CP-10 U	JNION HILI	LS DR ANI	D 82ND ST	C (UNION	HILLS DE	R CHANNEI	_)				
307	HC *	2											
	~												
308	KK	R10-11	ROUTE					TOTAL DOM	_				
310	RK	1277	0.0014	0.03	ANNEL FRO	TRAP	220	IDEN KOAI					
	*												
311	КК	SB11	BASIN										
312	BA	0.071	0.05	4 35	0 50								
313 314	LG UC	0.15	0.25	4.15	0.58	55							
315	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
316	UA *	100											
317 319	KK KM	CP-11	COMBINE	ייאג קרן צן	D HAVDEN	ROAD (11	ים משתא	SOUTH CT	ANNEL				
319	HC	2						200111 01					
200	* 77												
520	2,2,												
	SCHEMATIC DI	AGRAM OF	STREAM 1	NETWORK									

INPUT

1

1

1

LINE	(V) ROUTING	(>)	DIVERSION	Pha OR PUMP F	aseI_Basi FLOW	n.out
NO.	(.) CONNECTOR	(<)	RETURN OF	DIVERTED	OR PUMPE	D FLOW
26	76THST					
103	. SB01					
109	CP-1 V					
112	V Rl-2					
115	. SB02	1				
1.01	· · ·					
121	CP-2 V V					
124	R2-3					
127	. SB03	1				
133						
100	V V					
136	R3-5					
139	. SB04	- -				
145	. V . R4-5	r i				
140						
140	· · ·	51				
154	CP-5 V		•••			
157	V R5-6					
160	. SB06	i				
166	CP-6					
169	. SB07 . V	- -				
175	. V . R7-8					
178	· · ·	SF	30.8			
110	· · ·	51				
184	. CP-8 . V	· · · · · · · · · · · · · · ·	•••			
187	. R8-9					
190	· · ·	SE	309			
196						
190						
199		PWF	·			
276	. BINFLO)				
279	. V BASIN	r I				
201	. V . V	T T				
291	. BSNRTI . V . V	, ,				
296	BSNRT2	1				
299	: :	SE	310			
			•			

				Phas	eI_Basin.o	ut					
305	. CP-10.										
	. V										
308	. R10-11										
	· ·										
311		SB11									
317	. CP-11.										
(***) RIINOFI	י דע תדדדוא מיייי	THIS LOCATI	ON								
1********	****	*****	011								
**********	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *						*			
*											
* FLOOD H	DROGRAPH PACKAGE	(HEC-1) *						* U.	S. ARMY CO	RPS OF ENGIN	IEERS
*	JUN 1998	*						* нү	DROLOGIC E	NGINEERING C	ENTER
*									600 6 7		
*	VERSION 4.1	*						×	609 SE	COND STREET	
*		*						*	DAVIS, CA	LIFORNIA 956	16
* * RIIN DATE	12SED14 TIME 1	1:45:27 *						*	(916)	756-1104	
*	1000111 11100 1	10 27							()10)	,50 1101	
*		*						*			
* * * * * * * * * * * *	*****	* * * * * * * * * * *									
* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *									
		CROSS ROA	DS EAST D	RAINAGE I	NFRASTRUCT	URE					
		RESERVOIR	ROUTING	OF BASIN	N OF SR101	& E OF HA	YDEN RD, S	COTTSDALE,	AZ		
		100-YR,	24-HR BA	SE W/WALL	S (W/ MODI	FICATIONS	TO CONTAIN	POWERLINE	AND		
		PIMA R	OAD FLOWS)							
		PREPARED	BY: T.Y.L	IN INTERN	ATIONAL; L	AST MODIFI	ED: 09/14				
		MODELER	S: RK, MW								
12 IO	OUTPUT CONTRO	L VARIABLES									
	IPRNT IPLOT	5	PRINT CO	NTROL TROL							
	QSCAL	ο.	HYDROGRA	PH PLOT S	CALE						
TT											
11	NMIN	ME DATA 3	MINUTES	IN COMPUT	ATION INTE	RVAL					
	IDATE	1 0	STARTING	DATE							
	NQ	1000	NUMBER O	F HYDROGR	APH ORDINA	TES					
	NDDATE	3 0	ENDING D	ATE							
	NDTIME ICENT	0157	ENDING T CENTURY	IME MARK							
	COMPUTATION TOTAL	INTERVAL TIME BASE	0.05 HO	URS							
	1011112		19199 110	0110							
EI	IGLISH UNITS	SUIUS	PF MTLES								
	PRECIPITATION D	EPTH INCH	ES								
	LENGTH, ELEVATI	ON FEET	0 PPPT DP	DECOND							
	STORAGE VOLUME	ACRE	-FEET	K SECOND							
	SURFACE AREA	ACRE	S								
	IEMPERATURE	DEGR	EES FAHRE	NHEII							
13 JD	INDEX STORM N	0.1									
	STRM TRDA	3.85	TRANSPOS	ATION DEP TTION DRA	TH TNAGE AREA						
14 PI	PRECIPITATI 0 00	ON PATTERN 0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.01	
	0.01	0.01	0.02	0.02	0.02	0.03	0.10	0.28	0.01	0.03	
	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	0.00	0.00	υ.υΟ	υ.υΟ					
24 JD	INDEX STORM N	0.2									
	STRM TRDA	3.66 10.00	PRECIPIT	ATION DEP ITION DRA	TH INAGE AREA						
-	110211										
0 PI	PRECIPITATI	ON PATTERN 0.00	0.00	0.00	0 00	0 00	0 00	0 00	0 00	0.00	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

0.00 Page 7

								P	has	eI_Basin.c	out				
				0.00 0.01 0.02 0.01 0.00 0.00 0.00		0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00	0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.00	0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.00		0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00	0.01 0.01 0.03 0.01 0.01 0.00 0.00 0.00	0.00 0.01 0.10 0.01 0.00 0.00 0.00	0.01 0.01 0.28 0.01 0.00 0.00 0.00	0.00 0.01 0.04 0.01 0.00 0.00 0.00	0.01 0.03 0.01 0.00 0.00 0.00 0.00
25	JD		IN	DEX STOR STR TRD	M NO. M A	3 3 20	.53 PRECIPI .00 TRANSPO	FATION I SITION I	DEP: DRA:	TH INAGE AREA					
0	ΡI		:	PRECIPIT. 0.00 0.00 0.01 0.01 0.02 0.01 0.00 0.00	ATION	PATT: 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00	ERN 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.01\\ 0.02\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$		0.00 0.01 0.01 0.02 0.01 0.01 0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.01\\ 0.03\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.00 0.00 0.01 0.10 0.01 0.00 0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.01\\ 0.28\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	0.00 0.00 0.01 0.04 0.01 0.00 0.00 0.00	0.00 0.01 0.01 0.03 0.01 0.00 0.00 0.00
		***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		* * *	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 9

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 11

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 13

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 17

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 21

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 23

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

Page 25

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FOKRIT WARNING TIME STEP CALCULATION FAILED TO CONVERGE STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

1

+

+

+

ODEDATION	OTATION	PEAK	TIME OF	AVERAGE FI	JOW FOR MAXIM	NUM PERIOD	BASIN	MAXIMUM	TIME OF
OPERATION	STATION	FLOW	PLAK	6-HOUR	24-HOUR	72-HOUR	AREA	SIAGE	MAA SIAGE
HYDROGRAPH AT		60	10 50	0.2	2		0.04		
	76THST	69.	12.50	23.	8.	4.	0.24		
HYDROGRAPH AT									
	SB01	278.	2.55	30.	8.	4.	0.11		
2 COMBINED AT									

					PhaseI Basin c	011 +		
+		CP-1	276.	2.55	30.	15.	8.	0.35
+	ROUTED TO	R1-2	273.	2.70	30.	15.	8.	0.35
+	HYDROGRAPH AT	SB02	410.	2.55	46.	12.	б.	0.16
+	2 COMBINED AT	CP-2	627.	2.65	76.	26.	13.	0.51
+	ROUTED TO	R2-3	618.	2.70	76.	26.	13.	0.51
+	HYDROGRAPH AT	SB03	111.	2.60	14.	4.	2.	0.05
+	2 COMBINED AT	CP-3	720.	2.70	90.	30.	15.	0.56
+	ROUTED TO	R3-5	713.	2.80	90.	30.	15.	0.56
+	HYDROGRAPH AT	SB04	440.	2.55	45.	11.	5.	0.14
+	ROUTED TO	R4-5	432.	2.65	45.	11.	5.	0.14
+	HYDROGRAPH AT	SB05	340.	2.55	36.	9.	4.	0.13
+	3 COMBINED AT	CP-5	1265.	2.75	170.	50.	25.	0.83
+	ROUTED TO	R5-6	1242.	2.80	169.	50.	25.	0.83
+	HYDROGRAPH AT	SB06	355.	2.55	40.	10.	5.	0.14
+	2 COMBINED AT	CP-6	1466.	2.80	208.	60.	29.	0.96
+	HYDROGRAPH AT	SB07	322.	2.50	21.	5.	2.	0.07
+	ROUTED TO	R7-8	310.	2.65	21.	5.	3.	0.07
+	HYDROGRAPH AT	SB08	660.	2.55	68.	17.	8.	0.22
+	2 COMBINED AT	CP-8	903	2 65	89	22	11	0 30
+	ROUTED TO	R8-9	880.	2.70	89.	22.	11.	0.30
	HYDROGRAPH AT	SBU8	147	2.55	15	4	2	0.05
т	2 COMBINED AT		117.	2.35	104	ч. Эб	10	0.05
+	HYDROGRAPH AT	CP-9	985.	2.70	104.	20.	12.	0.35
+	2 COMBINED AT	PWRCH	3004.	13.35	1547.	503.	248.	7.00
+	ROUTED TO	BINFLO	3884.	13.35	1547.	503.	260.	7.35
+	ROUTED TO	BASIN	463.	18.45	458.	399.	251.	7.35
+	ROUTED TO	BSNRT1	463.	18.50	458.	399.	251.	7.35
+	HYDROGRAPH AT	BSNRT2	463.	18.50	458.	399.	251.	7.35
+	2 COMBINED AT	SB10	141.	2.50	12.	3.	1.	0.04
+	POITED TO	CP-10	463.	18.50	458.	399.	252.	7.39
+	KOUTED IO	R10-11	463.	18.55	458.	399.	252.	7.39
+	HYDROGRAPH AT	SB11	195.	2.55	21.	5.	3.	0.07
+	2 COMBINED AT	CP-11	463.	18.55	458.	399.	254.	7.46
					Page 28			

				SUMMARY	Y OF KINEMAT	'IC WAVE - 1	MUSKINGUM	I-CUNGE ROUI	ING		
				(F1	LOW IS DIREC	T RUNOFF W	ITHOUT BA	SE FLOW)			
								INTERPOI	ATED TO		
								COMPUTATION	I INTERVAL		
	ISTAQ	ELEMENT	DT	PEAK	TIME TO	VOLUME	DT	PEAK	TIME TO	VOLUME	
					PEAK				PEAK		
			(MTN)	(CES)	(MTN)	(TN)	(MIN)	(CES)	(MTN)	(TN)	
			(11114)	(010)	(11114)	(11)	(1111)	(010)	(1111)	(11)	
	FOR STORM	1 = 1 STORM	1 AREA (SQ	MI) =	0.00						
	R1-2	MANE	3.00	287.35	160.24	1.72	3.00	284.38	162.00	1.72	
CONTINUT	TY SIIMMARY	(AC-FT) - 1	NFLOW=0 33	222E+02 E	CESS=0 0000	E+00 OUTEL	NW=0 3226	E+02 BASIN	STORAGE=0	5145E-01 PERCENT	EBBOB=
-0.3	iii bonnaiti	(10 11) 1	100-0.57		10000-0.0000	1.00 00111	54-0.5220	DIGIN	biolaidi-0.	STISE OF TERCERT	
	FOR STORM	1 = 2 STORN	1 AREA (SQ	MI) =	10.00						
	R1-2	MANE	3.00	270.30	162.31	1.67	3.00	267.71	162.00	1.67	
CONTINUI	TY SUMMARY	(AC-FT) - 1	INFLOW=0.31	132E+02 E2	KCESS=0.0000	E+00 OUTFL	OW=0.3135	E+02 BASIN	STORAGE=0.	5145E-01 PERCENT	ERROR=
-0.3											
	FOR STORM	1 - 2 CTODA	ADEN (CO	MT) -	20 00						
	FOR SIORM	1 = 5 510RM	I AREA (SQ	M1) =	20.00	1 64	2 22	050 40	1.60.00		
	R1-2	MANE	3.00	259.93	162.15	1.64	3.00	259.40	162.00	1.64	
CONTINUI	TY SUMMARY	(AC-FT) - 1	INFLOW=0.30	073E+02 E2	KCESS=0.0000	E+00 OUTFL	O806.0=WC	E+02 BASIN	STORAGE=0.	5496E-01 PERCENT	ERROR=
0.1											
	FOR STORM	1 = 1 STORM	1 AREA (SQ	MI) =	0.00						
	R2-3	MANE	1.51	651.07	161.96	2.07	3.00	651.05	162.00	2.07	
CONTINUI -0.1	TY SUMMARY	(AC-FT) - 1	INFLOW=0.56	509E+02 E2	KCESS=0.0000	E+00 OUTFL	OW=0.5610	E+02 BASIN	STORAGE=0.	3635E-01 PERCENT	ERROR=
	FOR STORM	1 = 2 STORM	1 AREA (SQ	MI) =	10.00						
	R2-3	MANE	1.68	617.22	162.52	1.98	3.00	607.09	162.00	1.98	
CONTRANT	TY CIIMMADY	(እር - ምጥ \ _ ፣	NFLOW-0 F	289F±00 m	(CESS-0 0000			E+02 BACTM	STOPACE-0	36358-01 0500500	EBBUD-
0.0	II JUMMARI	(AC-FI) =]	LIVE LIOW = 0 . 53	JUJETUZ EZ	xc≞cc−0.0000	Eroo OuifLi		DICUZ DAGIN	DIONAGE=U.	JUJJE-UI PERCENI	ERROR=

FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R2-3 MANE 1.57 606.67 162.84 1.93 3.00 594.12 162.00 1.94

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5252E+02 EXCESS=0.0000E+00 OUTFLOW=0.5252E+02 BASIN STORAGE=0.3881E-01 PERCENT ERROR= -0.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R3-5 MANE 2.90 746.61 169.74 2.14 3.00 740.89 168.00 2.14 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6349E+02 EXCESS=0.0000E+00 OUTFLOW=0.6368E+02 BASIN STORAGE=0.7132E-01 PERCENT ERROR= -0.4FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R3-5 MANE 2.99 705.69 168.12 2.05 3.00 703.45 168.00 2.05 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6077E+02 EXCESS=0.0000E+00 OUTFLOW=0.6099E+02 BASIN STORAGE=0.7609E-01 PERCENT ERROR= -0.5 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R3-5 MANE 2.97 683.83 168.92 2.00 3.00 669 67 168.00 2.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5920E+02 EXCESS=0.0000E+00 OUTFLOW=0.5943E+02 BASIN STORAGE=0.7619E-01 PERCENT ERROR= -0.5 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R4-5 MANE 2.44 447.26 159.45 3.02 3.00 444.07 159.00 3.02 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2308E+02 EXCESS=0.0000E+00 OUTFLOW=0.2320E+02 BASIN STORAGE=0.4656E-04 PERCENT ERROR= -0.5 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 158.16 R4-5 MANE 2.59 429.78 2.87 3.00 425.33 159.00 2.86 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2182E+02 EXCESS=0.0000E+00 OUTFLOW=0.2203E+02 BASIN STORAGE=0.4483E-04 PERCENT ERROR= -1.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R4-5 MANE 2.60 410.95 158.84 2.76 3.00 410.03 159.00 2.76

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2100E+02 EXCESS=0.0000E+00 OUTFLOW=0.2116E+02 BASIN STORAGE=0.3691E-04 PERCENT ERROR=-0.8

	FOR STORM	I = 1 STORM	AREA (SO	MT) =	PhaseI	_Basin.out				
	POR STORM	MANE	1 77	1201 05	160 17	0.00	2 00	1216 26	160.00	2 20
	R5-6	MANE	1.//	1321.25	168.17	2.39	3.00	1316.26	168.00	2.39
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.1	051E+03 EX	CESS=0.0000E	+00 OUTFLO	W=0.1053	BE+03 BASIN	STORAGE=0.632	8E-01 PERCENT ERROR=
0.5										
	FOR STORM	= 2 STORM	AREA (SQ	MI) =	10.00					
	R5-6	MANE	1 94	1236 19	169 97	2 28	3 00	1225 73	171 00	2 28
	105 0	11111	1.91	1250.15	105.57	2.20	5.00	1225.75	1/1.00	2.20
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.1	002E+03 EX	CESS=0.0000E	+00 OUTFLO	W=0.1004	E+03 BASIN	STORAGE=0.675	3E-01 PERCENT ERROR=
0.2										
	FOR STORM	= 3 STORM	AREA (SQ	MI) =	20.00					
	R5-6	MANE	1 82	1180 28	168 70	2 20	3 00	1169 55	171 00	2 20
	105 0	11111	1.02	1100.20	100.70	2.20	5.00	1109.55	1/1.00	2.20
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.9	721E+02 EX	CESS=0.0000E	+00 OUTFLO	W=0.9718	BE+02 BASIN	STORAGE=0.675	7E-01 PERCENT ERROR=
0.0										
	FOR STORM	= 1 STORM	AREA (SO	MI) =	0.00					
	P7-8	MANE	2 98	320 52	158 47	2 78	3 00	316 88	159 00	2 78
	K7-0	MAINE	2.90	520.52	130.47	2.70	3.00	510.00	139.00	2.70
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.1	062E+02 EX	CESS=0.0000E	+00 OUTFLO	W=0.1097	E+02 BASIN	STORAGE=0.143	2E-03 PERCENT ERROR=
5.5										
	FOR STORM	= 2 STORM	AREA (SO	MI) =	10.00					
	P7-8	MANE	2 87	305 35	159 01	2 61	3 00	304 85	159 00	2 62
	107 0	PIANE	2.07	505.55	139.01	2.01	5.00	504.05	155.00	2.02
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.1	001E+02 EX	CESS=0.0000E	+00 OUTFLO	W=0.1032	2E+02 BASIN	STORAGE=0.156	8E-03 PERCENT ERROR=
5.0										
	FOR STORM	I = 3 STORM	AREA (SO	MI) =	20.00					
	P7-8	MANE	3 00	287 36	160 28	2 59	3 00	278 18	159 00	2 59
	107 0	111111	5.00	207.50	100.20	2.39	5.00	270.10	100.00	2.39
CONTINUIT	Y SUMMARY	(AC-FT) - I	NFLOW=0.9	623E+01 EX	CESS=0.0000E	+00 OUTFLO	W=0.1023	BE+02 BASIN	STORAGE=0.138	6E-03 PERCENT ERROR=
0.5										
	FOR STORM	= 1 STORM	AREA (SO	MI) =	0.00					
		MANE	1 10	014 50	162.20	2 00	2 00	Q11 F4	162 00	2 00
	K8-9	MAINE	1.40	914.DU	102.20	2.00	5.00	911.94	102.00	2.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4580E+02 EXCESS=0.0000E+00 OUTFLOW=0.4583E+02 BASIN STORAGE=0.2113E-03 PERCENT ERROR=-0.1

	FOR STORM	= 2 STORM A	AREA (SQ	MI) =	10.00					
	R8-9	MANE	1.32	877.55	161.38	2.73	3.00	866.18	162.00	2.73
CONTINUIT	Y SUMMARY	(AC-FT) - INE	FLOW=0.43	26E+02 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.4337E	+02 BASIN	STORAGE=0.2285	E-03 PERCENT ERROR=
	EOD CTODM	- 2 CTODM 7	NDEN (CO	MT) -	20.00					
	FOR STORM	MANE	1 49	824 02	161 14	2 64	3 00	818 74	162 00	2 64
	100 9	THE INC.	1.19	021.02	101.11	2.01	5.00	010.71	102.00	2.01
CONTINUIT	Y SUMMARY	(AC-FT) - INE	FLOW=0.41	90E+02 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.4192E	+02 BASIN	STORAGE=0.2053	E-03 PERCENT ERROR=
0.0										
	FOR STORM	= 1 STORM A	AREA (SQ	MI) =	0.00					
	BSNRT1	MANE	0.33	462.77	1107.64	2.65	3.00	462.77	1110.00	2.65
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INE	FLOW=0.10	38E+04 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.1037E	+04 BASIN	STORAGE=0.9252	E-01 PERCENT ERROR=
				MT)	10.00					
	FOR SIORM	MANE	0 33	MI) =	1107 74	2 64	3 00	462 63	1110 00	2 64
	BSNRII	MANE	0.33	402.05	1107.74	2.04	5.00	402.03	1110.00	2.04
CONTINUII	Y SUMMARY	(AC-FT) - INE	FLOW=0.10	35E+04 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.1035E	+04 BASIN	STORAGE=0.9241	E-01 PERCENT ERROR=
0.0										
	FOR STORM	= 3 STORM A	AREA (SQ	MI) =	20.00					
	BSNRT1	MANE	0.34	462.54	1107.73	2.64	3.00	462.54	1110.00	2.64
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INE	FLOW=0.10	33E+04 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.1033E	+04 BASIN	STORAGE=0.9237	E-01 PERCENT ERROR=
		1 (2000)			0.00					
	FOR STORM	= 1 STORM A	AREA (SQ	M1) =	0.00	2 65	2 00	460 77	1110 00	2 65
	BSNRIZ	MANE	0.48	462.77	1110.07	2.65	3.00	402.77	1110.00	2.05
CONTINUIT	Y SUMMARY	(AC-FT) - INF	FLOW=0.10	38E+04 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.1037E	+04 BASIN	STORAGE=0.1054	E+00 PERCENT ERROR=
0.0		·								
	FOR STORM	= 2 STORM A	AREA (SQ	MI) =	10.00					
	BSNRT2	MANE	0.37	462.63	1110.22	2.64	3.00	462.63	1110.00	2.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1035E+04 EXCESS=0.0000E+00 OUTFLOW=0.1035E+04 BASIN STORAGE=0.1056E+00 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 0.33 462.54 1110.65 2.64 3.00 462.54 1110.00 BSNRT2 MANE 2.63 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1033E+04 EXCESS=0.0000E+00 OUTFLOW=0.1033E+04 BASIN STORAGE=0.1056E+00 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 2.40 462.77 1113.47 2.64 3.00 462.77 1113.00 R10-11 MANE 2.64 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1043E+04 EXCESS=0.0000E+00 OUTFLOW=0.1042E+04 BASIN STORAGE=0.1560E+01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R10-11 MANE 2.40 462.63 1113.70 2.64 3.00 462.62 1116.00 2.64 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1040E+04 EXCESS=0.0000E+00 OUTFLOW=0.1039E+04 BASIN STORAGE=0.1557E+01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R10-11 MANE 2.47 462.54 1114.58 2.63 3.00 462.54 1113.00 2.63

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1038E+04 EXCESS=0.0000E+00 OUTFLOW=0.1037E+04 BASIN STORAGE=0.1559E+01 PERCENT ERROR= 0.0

*** NORMAL END OF HEC-1 ***

Path: Q:\Latest Crossroads East Files from San Diego\GIS\Mathew's Figures for Report\HEC1 Schematics\HEC1 Schematic Phase 1.mxd

Date Saved: 9/10/2014 5:34:14 PM

Х	Х	XXXXXXX	XX	XXX		Х
Х	Х	Х	Х	Х		XX
Х	Х	Х	Х			Х
XXXX	XXX	XXXX	Х		XXXXX	Х
Х	Х	Х	Х			Х
Х	Х	Х	Х	Х		Х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

1

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	1
LINE	ID.	1.	2.	3.	4 .	5.	6.	7.	8 .	9.	10		
1	ID	C	CROSS ROA	DS EAST	DRAINAGE	ALTERNA	FIVES						
2	ID	R	RESERVOIR	ROUTING	OF BASI	N N OF SI	R101 & E	OF HAYD	EN RD, S	COTTSDAL	E, AZ		
3	ID	I	NFLOW HY	DROGRAPH	S FROM T	HE PPSADI	MS DRAFT	FLO-2D N	MODEL				
4	ID	10	0-YR, 6-	HR BASE	W/WALLS	(W/ MODI	FICATIONS	S TO CON	TAIN POW	ERLINE A	ND		
5	ID		PIMA R	OAD FLOW	S)								
6	ID	F	PHASE 2 B	ASIN - S	IDESLOPE	S STEEPEI	NED FROM	~5:1 то	3:1				
7	ID												
8	ID	F	REPARED	BY: T.Y.	LIN INTE	RNATIONA	L; LAST N	MODIFIED	: 09/14				
9	ID	MC	DELERS:	RK, MW									
10	ID												
11	IT	3	0	0	1000								
12	IO	3											
	*DI	AGRAM											
	*												
13	JD	2.755	0.0001										
14	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
15	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
16	PC	0.962	0.972	0.983	0.991	1.000							
17	JD	2.738	0.5000										
18	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
19	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
20	PC	0.962	0.972	0.983	0.991	1.000							
21	JD	2.686	2.8										
22	PC	0.000	0.009	0.016	0.025	0.034	0.042	0.051	0.059	0.068	0.077		
23	PC	0.088	0.101	0.121	0.164	0.253	0.451	0.694	0.836	0.900	0.938		
24	PC	0.950	0.963	0.975	0.988	1.000							
25	JD	2.540	16.0										
26	PC	0.000	0.015	0.020	0.030	0.048	0.063	0.076	0.090	0.105	0.119		
27	PC	0.135	0.152	0.175	0.222	0.304	0.472	0.670	0.796	0.868	0.912		
28	PC	0.946	0.960	0.973	0.987	1.000							
29	JD	2.232	90.0										
30	PC	0.000	0.021	0.035	0.051	0.071	0.087	0.105	0.125	0.143	0.160		
31	PC	0.179	0.201	0.232	0.281	0.364	0.500	0.658	0.773	0.841	0.888		
32	PC *	0.927	0.945	0.964	0.982	1.000							
33	KK	76THST											
34	KM	7	6TH STRE	ET CHANN	EL HYDRO	GRAPH FRO	OM PINNA	CLE PEAK	SOUTH A	DMS			
35	KM	1	100-YR, 6	-HR FLO-	2D MODEL	(XS 98)							
36	BA	0.24				- /							
37	QI	0	0	0	0	0	0	0	0	0	0		
38	QI	0	0	0	0	0	0	0	0	0	0		
39	QI	0	0	0	0	0	0	0	0	0	0		
40	QI	0	0	0	0	0	0	0	0	0	0		
41	QI	0	0	0	0	0	0	0	0	0	0		
42	QI	0	0	0.01	0	0	0	0	0	0	0		
43	QI	0.01	0	0	0.01	0.01	0.01	0.02	0.03	0.05	0.07		

					Onsi	te_6hr.o	ut					
44 45	QI QI	0.09 12.7	0.16 14.07	0.27 17.67	0.42 27.43	0.63 38.25	0.9 42.26	2.34 42.56	3.89 42.35	7.48 43.77	10.26 48.39	
46 47	QI	49.92 34 49	51.19 32.83	50.98 31 02	50.52 29 6	49.38 28.15	48.6 26.72	44.64 25.66	42.62 24 48	39.72 23.53	36.96 22 56	
48	QI	21.55	20.83	19.46	20.34	18.32	17.51	16.55	16.22	15.59	15.15	
49 50	QI QI	14.81 11.63	14.23 11.31	13.72	13.18 11.23	13.21 11.13	12.84 10.56	12.36	12.34	9.98	12 9.86	
51	QI	9.58	9.02	9.34	8.67 HEC-1	8.51 INPUT	8.32	8.08	7.75	7.43	7.37	PAGE 2
LINE	ID	1.	2 .		4.		6.	7.	8 .	9	10	
52	ОТ	7.29	7.19	7.08	7	6.89	6.73	6.55	6.4	6.23	6.02	
53	QI	5.83	5.66	5.06	4.57	4.75	4.76	4.65	4.55	4.44	4.32	
55	QI	3.4	2.42	2.38	3.4	3.61	3.55	3.49	2.89	2.36	2.36	
50	QI QI	2.30	2.37	2.44 2.26	2.23	2.44 2.19	2.51	2.49	2.47 2.1	2.42	2.37	
58 59	QI OI	2.02 1.58	1.99 1.65	1.96 1.69	1.91 1.67	1.86 1.59	1.83 1.5	1.78 1.36	1.69 1.41	1.58 1.51	1.54 1.54	
60 61	QI	1.52	1.35	1.43	1.37	1.25	1.21	1.2	1.2	1.23	1.28	
62	QI	1.09	1.11	1.16	1.22	1.06	1.07	1.15	1.06	1.05	1.05	
63 64	QI QI	1.04 0.91	1.02 0.9	1.01 0.89	1 0.88	0.98 0.87	0.97	0.96 0.85	0.95	0.94 0.84	0.92 0.84	
65 66	QI OI	0.83 0.76	0.82 0.75	0.81 0.74	0.8 0.74	0.79 0.73	0.79 0.72	0.78 0.71	0.77 0.71	0.77	0.76 0.69	
67	QI	0.69	0.68	0.68	0.67	0.67	0.67	0.66	0.66	0.65	0.65	
69	QI QI	0.65	0.64	0.64	0.63	0.63	0.62	0.62	0.62	0.56	0.81	
70 71	QI QI	0.55 0.51	0.55 0.51	0.54 0.5	0.54 0.5	0.54 0.5	0.53 0.49	0.53 0.49	0.52 0.48	0.52 0.48	0.52 0.48	
72	QI	0.47	0.47	0.46	0.46	0.46	0.45	0.45	0.45	0.44	0.44	
	*	0.11										
74	КК	SB01	BASIN									
75 76	BA LG	0.112 0.25	0.25	4.10	0.55	45						
77 78	UC	0.317	0.252	16 0	30 0	65 0	77 0	84 0	90 0	94 0	97 0	
79	UA *	100	510	10.0	50.0	00.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	2010	5110	5710	
0.0	1212	(D. 1.										
80 81	KM	LI LI	EGACY BL	VD AND 76	5TH ST (1	MILLER RI	CHANNE	С)				
82	HC *	2										
83	кк	R1-2	ROUTE									
84 85	KM RK	M 2104	ILLER RD 0.0015	CHANNEL 0.03	FROM LEG	GACY BLVI TRAP	O TO SR 1 66	101L FRE: 4	EWAY			
	*											
86	KK	SB02	BASIN									
88	LG	0.15	0.25	4.15	0.58	56						
89 90	UC UA	0.324 0	0.237 5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
91	UA *	100										
					HEC-1	INPUT						PAGE 3
LINE	ID	1.	2.		4.	5.	6.	7.	8.	9	10	
92	кк	CP-2 (COMBINE									
93	KM	SI	R 101L FI	REEWAY AN	ND 76TH S	ST (MILLE	ER RD CHA	ANNEL)				
94	HC *	2										
95	кк	R2-3	ROUTE									
96 97	KM RK	M: 1260	ILLER RD	CHANNEL 0.03	FROM SR	101L FRE TRAP	EEWAY TO 92	MAYO BL' 4	VD			
21	*	1200	0.0015	0.05			22	-				
98	кк	SB03	BASIN									
100	ba LG	0.048	0.25	4.50	0.47	55						
101 102	UC UA	0.360	0.290	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
103	UA *	100									~ =	
104	κv	יניםי)	ਾ∩ਅ₽⊺ਆਦ									
105	KM	Mi	AYO BLVD	AND 76TH	H ST (MII	LLER RD (CHANNEL)					
106	HC *	2										
107	КК	R3-5	ROUTE									
108 109	KM	M 2396	ILLER RD	CHANNEL 0 03	FROM MAY	YO BLVD I TRAP	FO PRINCI	ESS BLVD 4				
702	*	2370	2.0010	0.00			20	-				

					Onsit	ce_6hr.ou	ıt						
110	KK	SB04	BASIN										
112	BA	0.144	0 25	4 60	0 44	61							
113	UC	0.301	0.196	4.00	0.11	01							
114	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
115	UA	100											
116	KK	R4-5	ROUTE										
117	KM	2005 E	PRINCESS	BLVD CHAN	INEL FROM	I 77TH SI	TO 76TH	I ST					
118	KK *	2005	0.0013	0.03		IRAP	39	4					
119	KK DA	SB05	BASIN										
121	LG	0.22	0.25	4.50	0.44	48							
122	UC	0.326	0.224										
123	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
124	*	100											
					HEC-1	INPUT						PAGE	4
TINE	TD	1	2	3	4	5	6	7	8	۹	10		
DIND	10												
105		an 5											
125	KK. KM	CP-5	COMBINE	BLVD AND	76тн ст	(PRINCES	S BLVD C	HANNEL)					
127	HC	3		2212 1202		(11111020	.5 2212 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	*												
128	кк	R5-6	ROUTE										
129	КM	F	RINCESS	BLVD CHAN	INEL FROM	I 76TH SI	TO SCOI	TSDALE R	D				
130	RK	1550	0.0015	0.03		TRAP	188	4					
	^												
131	кк	SB06	BASIN										
132	BA	0.136	0 05	4 55	0.45								
133 134	LG	0.16	0.25	4.55	0.45	53							
135	UA	0.010	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
136	UA	100											
	×												
137	КК	CP-6	COMBINE										
138	KM	F	PRINCESS	BLVD AND	SCOTTSDA	LE RD (F	RINCESS	BLVD CHA	NNEL)				
139	HC *	2											
140	KK	SB07	BASIN										
141	БА LG	0.074	0.25	4.00	0.58	49							
143	UC	0.204	0.113										
144	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
145	*	100											
146 147	KK KM	R'/-8	ROUTE	NORTH	CHANNEL.	FROM LEG	ACY BLVD	TO SR 1	011. FREE	WAY			
148	RK	2778	0.0014	0.03	0111111122	TRAP	46	4					
	*												
149	кк	SB08	BASTN										
150	BA	0.224											
151	LG	0.14	0.25	4.10	0.59	59							
152		0.333	0.193	16 0	30 0	65 0	77 0	84 0	90 0	94 0	97 0		
154	UA	100	5.0	2010	50.0	00.0		0110	50.0	5110	57.0		
	*												
155	кк	CP-8	COMBINE										
156	КM	S	SR 101L H	FREEWAY AN	ID HAYDEN	I ROAD (H	AYDEN RC	DAD NORTH	CHANNEI	.)			
157	HC *	2											
					HEC-1	INPUT						PAGE	5
						_							
LINE	ID	1.	2	3	4	5	6	7	8	9	10		
158	КK	R8-9	ROUTE										
159	KM RK	1250	HAYDEN RO	DAD NORTH	CHANNEL	FROM HAY	DEN ROAD) TO BASI 4	N 53R				
100	*	1200	0.0015	0.05		INAL	07	T					
1.63		0-00											
161 162	КК ВД	5B09 0 052	BASIN										
163	LG	0.15	0.25	4.00	0.61	55							
164	UC	0.251	0.227			-					a –		
165 166	UA TIA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
100	*	100											
165	17.17	GD 0	CONTRACTO										
167 168	K.K. K.M	CP-9	COMBINE	REEWAY AN	ID BASTN	53R (HAV	DEN ROAT	NORTH C	HANNET.				
169	HC	2	1			(11171	_ DI, 104L						

Page 3

*

171 171	KK KM	PIMACH	I PTMA ROAT	CHANNEL	HYDROGE	APH FROM	PINNACI	E PEAK	SOUTH AD	1S		
172	KM		100-YR, 6	5-HR FLO-	-2D MODEL	(XS 183)		500111 11D1	10		
173	BA	12.3	0	0	0	0	0	0	0	0	0	
175	QI	0	0	0	0	0	0	0	0	0	0	
176	QI	0	0	0	0	0	0	0	0	0	0	
177	QI	0	0	0	0	0	0	0	0	0	0	
179	0I	0	0	0	0	0	0	0	0	0	0	
180	Qī	0	0	0	0	0	0	0.01	0.01	0.01	0.01	
181	QI	0.02	0.06	0.12	0.19	0.29	0.43	1.62	3.73	6.28	13.12	
183	QI	795.73	792.08	20.23	23.44	37.1 826.86	835.79	839.66	856.83	890.85	1074.56	
184	Qī	1522.8	1924.46	2612.09	2761.62	3125.86	3450.94	3565.35	3786.18	3953.42	4005.23	
185	QI	4017.2	3956.42	3828.66	3704.96	3584.74	3457.47	3327.91	3209.52	3068.2	2902.83	
187	0I	1473.2	1392.42	1326.33	1253.44	1190.18	1121.44	1068.33	1012.4	961.04	907.15	
188	Qī	859	817.16	777.05	741.05	708.67	676.64	650.15	620	595.68	569.46	
189	QI	552.9	528.08	508.87	488.92	471.15	456.27	440.43	424.35	410.65	396.26	
191	QI	291.96	282.64	276.3	270.44	264.03	257.52	251.57	244.49	238.62	232.96	
192	QI	227.38	223.46	217.91	210.73	207.24	202.22	197.15	192.34	189.04	184.57	
193	QI	178.93	173.7	170.95	166.9 136 38	162.57	158.97	155.56	151.97	149.46	146.92	
195	QI	113.28	110.56	108.01	104.98	103.24	100.82	98.69	97.77	95.8	93.56	
196	QI	92.8	91.19	88.35	86.44	84.49	82.18	80.7	78.31	76.07	74.85	
197	QI	73.81	60 29	71.94	70.66	69.66 56.97	69.54 56.22	67.38	67.61	65.17 52.01	62.74 52.22	
199	QI	52.11	50.68	50.15	49.6	48.36	47.6	46.82	46.4	45.54	44.69	
200	QI	43.67	43.34	42.77	41.9	41.04	40.86	40.39	39.72	38.49	38.26	
201	QI	37.01	36.83	36.64	35.35	35.64	34.94	35.17	33.9	33.7	33.71	
203	QI	29.61	29.27	28.72	28.17	27.62	27.26	26.95	26.26	25.93	25.66	
204	QI	25.7	25.62	25.7	25.39	24.94	24.57	24.28	23.92	23.55	22.97	
205	QI	22.1	22.19	22.23	21.94 HEC-1	21.8/ INPUT	21.6	21.3	21.18	21.05	20.75	PAGE
LINE	ID.	1	2.	3	4 .		6.		8	9 .	10	
206	OT	20 64	20.4	20 19	19 93	19 9	19 01	18 72	18 7	18 37	18 27	
207	QI	18.1	18.05	17.3	17.39	17.27	17.09	16.86	16.81	16.73	16.6	
208	QI	16.55	16.33	16.05	15.82	15.63	15.43	15.38	15.42	15.17	14.98	
209	QI QI	12.6	14.70	14.70	14.57	11.21	14.01	13.05	13.94	13.77	13.77	
	*											
211 212	KK KM	PIMAIN BYPA	I SS ALONG	SE SIDE	OF BASIN	1 53R TO	ADOT CUI	JVERT NEA	AR UNION	HILLS DF	ર	
213	DT	PIMABY	1000	10000								
214	DI	0	1000	10000								
	*	0	1000	1000								
216	* *	U PWRCH	1000	1000								
216 217	* КК КМ	0 PWRCH	POWERLINE	E CHANNEI	HYDROGE	APH FROM	I FLO-2D					
216 217 218 219	* KK KM RA	U PWRCH	POWERLINE 100-YR, 6	E CHANNEI 5-HR FLO-	L HYDROGR -2D MODEL	APH FROM (XS 107	[FLO-2D					
216 217 218 219 220	* КК КМ ВА QI	0 PWRCH 7.0 0	POWERLINE 100-YR, 6	E CHANNEI 5-HR FLO- 0	L HYDROGR -2D MODEI 0	APH FROM (XS 107	[FLO-2D ') 0	0	0	0	0	
216 217 218 219 220 221	* KM KM BA QI QI	0 PWRCH 7.0 0 0	I POWERLINE 100-YR, 6 0	E CHANNEI 5-HR FLO- 0 0	L HYDROGR -2D MODEL 0 0	APH FROM (XS 107 0 0	(FLO-2D) 0 0	0	0	0	0	
216 217 218 219 220 221 222 223	* KK KM BA QI QI QI QI OI	0 PWRCH 7.0 0 0 0	1000 POWERLINE 100-YR, 6 0 0	E CHANNEI 5-HR FLO- 0 0 0 0	L HYDROGR -2D MODEI 0 0 0 0	APH FROM (XS 107 0 0 0 0	[FLO-2D) 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
216 217 218 219 220 221 222 223 224	* KM KM QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 0 0 0 0 0	1000 POWERLINE 100-YR, 6 0 0 0 0 0	E CHANNEI 5-HR FLO- 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0	[FLO-2D) 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
216 217 218 219 220 221 222 223 224 225	* KM BA QI QI QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 0 0	1000 POWERLINE 100-YR, 6 0 0 0 0 0	E CHANNEI 5-HR FLO- 0 0 0 0 0 0	L HYDROGF 2D MODEI 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0	[FLO-2D) 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
216 217 218 219 220 221 222 223 224 225 226 227	* KK KM BA QI QI QI QI QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 0 0 0 0	[POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGR 2D MODEI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(FLO-2D) 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 58	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 2 35	
216 217 218 219 220 221 222 223 224 225 226 227 228	* KK KM BA QI QI QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 32.43	L HYDROGR -2D MODEI 0 0 0 0 0 0 0 0 0 0 0 0 0 1.05 41.1	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 46	(FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 50.91	0 0 0 0 0 0 0 0 0 58 131.64	0 0 0 0 0 0 1.13 355.54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 2.35 422.85	
216 217 218 219 220 221 222 223 224 225 226 227 228 229	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 58 131.64 388.91	0 0 0 0 1.13 355.54 381.3 400.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2.35 422.85 361.84	
216 217 218 220 221 222 223 224 225 226 227 228 229 230 231	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	0 PWRCH 7.0 0 0 0 0 0 17.74 433.53 359.13 616.52	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 397.71 398.98 3727.81	(FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 58 131.64 388.91 390.01 739.81	0 0 0 0 1.13 355.54 381.3 419.65 733.87	0 0 0 0 1.62 399.7 371.02 505.31 725.12	0 0 0 0 2.35 422.85 361.84 577.51 714.86	
216 217 218 220 221 222 223 224 225 226 227 228 229 230 231 232	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI	PWRCH 7.0 0 0 0 0 0 17.74 433.53 359.13 3616.52 699.64	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>(FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 11 50.91 391.08 391.64 737.85 645.41</pre>	0 0 0 0 0 0.58 131.64 388.91 390.01 739.81 637.05	0 0 0 0 1.13 355.54 381.3 419.65 733.87 633.81	0 0 0 0 1.62 399.7 371.02 505.31 725.12 630.71	0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88	
216 217 218 229 220 221 222 223 224 225 226 227 228 229 230 231 232 232 233	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	PWRCH 7.0 0 0 0 0 0 17.74 433.53 359.13 616.52 699.64 621.52	POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 6690.12	E CHANNEI 5-HR FLO- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>(FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1.13 355.54 381.3 419.65 733.87 633.81 597.46	0 0 0 0 1.62 399.7 371.02 505.31 725.12 630.71 596.17	0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28	
216 217 218 229 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.58 131.64 388.91 390.01 739.81 739.81 637.05 598.68 564.08 564.21	0 0 0 0 1.13 355.54 381.3 419.65 733.87 633.81 597.46 555.83 451.31	0 0 0 0 0 1.62 399.7 371.02 505.31 725.12 630.71 596.17 596.17 546.74 441.83	0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28 537.07 429.35	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 50.91 391.64 737.85 645.41 599.48 570.84 472.45 375.56</pre>	0 0 0 0 0 0.58 131.64 388.91 390.01 739.81 637.05 598.68 564.08 564.08 462.13 366.51	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.54\\ 381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 596.17\\ 546.74\\ 441.83\\ 350.24 \end{array}$	0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28 595.28 537.07 429.35 342.9	
216 217 218 229 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 228	* KK KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGH 2D MODEI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.58 131.64 388.91 390.01 739.81 637.05 598.68 564.08 564.08 564.23 366.51 294.88 226.00	0 0 0 0 1.13 355.54 381.3 419.65 733.87 633.81 597.46 555.83 451.31 358.68 279.13	0 0 0 0 1.62 399.7 371.02 505.31 725.12 630.71 596.17 596.17 596.17 546.74 441.83 350.24 274.41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
216 217 218 229 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1.13 355.54 381.3 419.65 733.87 633.81 597.46 555.83 451.31 358.68 279.13 358.68 279.13	0 0 0 0 1.62 399.7 371.02 505.31 725.12 630.71 596.17 546.74 441.83 350.24 274.41 221.44 274.41 221.44	0 0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28 595.28 537.07 429.35 342.9 272.37 220.04 181.39	
216 217 218 229 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 556.15 516.15 516.15 516.15 258.49 213.73 170.18	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.54\\ 381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 154.42 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 148.45 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
216 217 218 229 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 240 242	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 556.15 516.15 516.15 516.15 258.49 213.73 170.18 140.33 117.47	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE 2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1.13 355.54 381.3 419.65 733.81 597.46 555.83 451.31 358.68 279.13 26.97 154.42 154.42 122.64 105.7	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 274.41\\ 1221.44\\ 178.11\\ 148.45\\ 121.61\\ 109.02\\ \end{array}$	0 0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28 595.28 595.28 595.27 429.35 342.9 272.37 220.04 181.39 145.47 121.05	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 236 237 238 239 240 241 242 243	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 616.56 590.26 516.15 258.49 213.73 170.18 140.33 117.47 9.7.86	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	0 0 0 0 1.13 355.54 381.3 419.65 733.81 597.46 555.83 451.31 358.68 279.13 226.97 154.42 122.64 105.71 87.83	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 148.45\\ 121.61\\ 109.02\\ 91.59\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 516.15 258.49 213.73 170.18 140.33 117.47 97.86 81.6	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGE -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.58 131.64 388.91 390.01 739.81 637.05 598.68 564.08 462.13 366.51 294.88 236.09 183.61 153.79 135.24 105.24 105.24 105.24	0 0 0 0 0 1.13 355.54 381.3 419.65 733.81 597.46 555.83 451.31 358.68 279.13 226.97 188.47 154.42 122.64 105.71 87.83 74.44	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 1221.44\\ 178.11\\ 148.45\\ 121.61\\ 109.02\\ 91.59\\ 74.51\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 590.26 6590.26 516.15 258.49 213.73 170.18 140.33 117.47 97.86 81.6 70.93 62 82	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.5\\ 381.3\\ 419.65\\ 733.87\\ 533.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 122.64\\ 105.71\\ 187.83\\ 74.44\\ 72.25\\ 59.06\\ 5$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 148.45\\ 121.61\\ 109.02\\ 91.59\\ 74.51\\ 65.21\\ 58.49\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2.35\\ 422.85\\ 361.84\\ 577.51\\ 714.86\\ 627.88\\ 595.28\\ 537.07\\ 429.35\\ 342.9\\ 272.37\\ 220.04\\ 181.39\\ 145.47\\ 121.05\\ 101.22\\ 84.19\\ 72.29\\ 64.67\\ 55.87\end{array}$	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 516.15 258.49 213.73 170.18 140.33 117.47 97.86 81.6 70.93 62.83 55.72	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$egin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.5\\ 3381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 87.83\\ 74.44\\ 72.25\\ 59.05\\ 50.75\\ \end{array}$	$egin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 148.45\\ 121.61\\ 109.02\\ 91.59\\ 74.51\\ 65.21\\ 58.48\\ 49.83\\ \end{array}$	0 0 0 0 0 2.35 422.85 361.84 577.51 714.86 627.88 595.28 537.07 429.35 342.9 272.37 220.04 181.39 145.47 121.05 101.22 84.19 72.29 64.67 5.87 49.2	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 247 248	* KK KM KM BA QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CAPH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.5\\ 3381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 87.83\\ 74.44\\ 72.25\\ 59.05\\ 50.75\\ 43.28\\ 50.75\\ 43.28\\ 27.62\\ 50.75\\ 43.28\\ 50.75\\ 50$	$egin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2.35\\ 422.85\\ 361.84\\ 577.51\\ 714.86\\ 627.88\\ 595.28\\ 537.07\\ 429.35\\ 342.9\\ 272.37\\ 220.04\\ 181.39\\ 145.47\\ 121.05\\ 101.22\\ 84.19\\ 72.29\\ 64.67\\ 55.87\\ 49.2\\ 42.31\\ 49.2\\ 42.31\\ 42$	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 243 244 245 244 245 246 247 248 249 250	* KK KM BA GI QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 516.15 258.49 213.73 3170.18 140.33 1170.48 140.33 1170.48 140.33 1170.48 55.258.49 213.73 255.49 213.73 255.49 213.73 255.49 213.73 255.49 213.73 255.49 213.73 255.49 213.73 27.86 81.66 70.93 62.83 55.72 46.82 41.65 27.44	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.4\\ 381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 154.42\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 87.83\\ 74.44\\ 72.25\\ 59.05\\ 50.75\\ 43.28\\ 39.53\\ 35.28\\ 39.53\\ 35.28\\ 35.28\\ 39.53\\ 35.28\\ 39.53\\ 35.28\\ 39.53\\ 35.28\\ 3$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.62\\ 399.7\\ 371.02\\ 505.31\\ 725.12\\ 630.71\\ 596.17\\ 546.74\\ 441.83\\ 350.24\\ 274.41\\ 221.44\\ 178.11\\ 109.02\\ 91.59\\ 74.51\\ 65.21\\ 58.48\\ 49.83\\ 42.64\\ 42.18\\ 34\ 71\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2.35\\ 422.85\\ 361.84\\ 577.51\\ 714.86\\ 627.88\\ 537.07\\ 429.35\\ 342.9\\ 272.37\\ 220.04\\ 181.39\\ 145.47\\ 121.05\\ 101.22\\ 84.19\\ 72.29\\ 84.19\\ 72.29\\ 84.19\\ 72.29\\ 64.67\\ 55.87\\ 49.2\\ 42.31\\ 38.64\\ 33.9\end{array}$	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 246 247 248 246 247 248 246 247 248 245 246 247 248 249 250 241 245 246 247 248 249 250 241 255 256 257 258 259 257 258 259 257 258 259 257 258 259 256 257 258 259 257 258 259 257 258 259 257 258 259 257 258 259 256 257 258 259 256 257 258 259 256 257 258 259 250 257 258 259 256 257 258 259 250 257 258 259 250 257 258 259 250 257 258 259 250 257 258 259 259 250 257 258 259 250 257 258 259 259 250 257 258 259 250 257 259 250 257 259 250 257 259 250 257 259 250 257 259 250 257 259 250 257 259 250 250 250 250 250 250 250 250 250 250	* KK KM BA GI QI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE 100-YR, 6 0 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 6590.26 516.15 258.49 213.73 170.18 140.33 117.47 97.86 81.6 70.93 62.83 55.72 46.82 41.65 27.44 33.14	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$egin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.5\\ 381.3\\ 419.65\\ 733.87\\ 633.81\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 154.42\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 87.83\\ 74.44\\ 72.25\\ 59.05\\ 50.75\\ 43.28\\ 39.53\\ 35.28\\ 30.66\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252	* KK KM BA GI	PWRCH 7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POWERLINE POWERLINE 100-YR, 6 0 0 0 0 24.61 433.73 372.83 654.6 690.12 616.56 590.26 6590.26 516.15 258.49 213.73 170.18 140.33 117.47 97.86 81.6 70.93 62.83 55.72 46.82 41.65 27.44 33.14	E CHANNEI 5-HR FLO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L HYDROGF -2D MODEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	APH FROM (XS 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 FLO-2D) 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1.13\\ 355.5\\ 3381.3\\ 419.65\\ 733.87\\ 597.46\\ 555.83\\ 451.31\\ 597.46\\ 555.83\\ 451.31\\ 358.68\\ 279.13\\ 226.97\\ 188.47\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 154.42\\ 122.64\\ 105.71\\ 59.05\\ 50.75\\ 43.28\\ 39.53\\ 35.28\\ 30.66\\ 28.22\\ 25.26\\ $	$egin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	

6

1

254 255 256	QI QI QI	24.31 22.09 20.95	24.43 21.91	24.27 21.94	23.35 21.84	3.93 21.71	23.1 21.66	22.66 21.87	22.71 21.85	22.57 21.36	22.79 21.06	
	^				HEC-1	INPUT						PAGE
LINE	ID.	1.	2	3.	4.	5.	6.	7.	8.	9.	10	
257	кк	BINFLO										
258 259	KM HC *	3	TOTAL INF	LOM INJ	'O BASIN	53R.						
260	кк	BASIN										
261 262	KM KM	BASIN ELEV	1594 AND	1615; E	ROM PROP BASIN SID	E SLOPES	STEEPEN	IWEEN ED TO 3:	1			
263 264	KM KM	О Т	UTFLOW RA	TING CU PIPES	JRVE FROM ARE INLE	CULVERT	MASTER FO	OR 2-60"	PIPES			
265	RS	1	STOR	0	100 5	140 6		000 F	000 5	064 5	005 5	
266 267	SV SV	0 328.7	44.9 362.0	76.8 395.2	108.7 428.5	140.6 461.7	171.5 497.2	202.5 532.7	233.5 568.3	264.5 603.8	295.5 639.3	
268	SE	1594	1597	1598	1599	1600	1601	1602	1603	1604	1605	
269	SE	1606	1607 94.6	153.4	209.8	244.2	264.5	284.0	1613 302.5	1614 320.1	336.9	
271	SQ *	353.0	368.5	383.5	398.0	412.0	425.7	438.9	451.9	464.5	476.8	
272	КК	BSNRT1					500	10				
274	KM	2 D	2-60" CMP DOWNSTREAM	CONNEC	TING PIPES F	ES ARE 6)-INCH R	ER SR IU CP AND W	IL FREEW. ILL HAVE	AY.		
275	KM	E	IXCESS CAP	ACITY.		GTDG	7 0					
270	*	550	0.0052	0.024		CIRC	7.0					
277	KK	BSNRT2							/			
278 279	KM RK *	2 1200	2-60" RCP 0.0077	DIPES F 0.013	'ROM SR 1	OIL FREEV CIRC	VAY TO UI 7.0	NION HIL	LS DR (B	ASIN 53R	OUTFAL	
280	KK	PIMABY										
281 282	KM DR	RETRI PIMABY	IEVE PIMA	BYPASS	CHANNEL	HYDROGRAI	PH					
	*											
283 284	KK KM	PMB-RT	INTON HILL	SDRCH	ANNEL FR	OM SR 10	IL FREEW	AY TO 82	ND ST			
285	RK *	3157	0.0082	0.013	0	TRAP	24	4				
286	кк	SB10	BASIN									
287 288	BA	0.040	0 25	4 25	0 55	55						
289	UC	0.230	0.159		0.55							
290 291	UA UA *	100	5.0	16.0	30.0	65.0	.77.0	84.0	90.0	94.0	97.0	
					HEC-1	INPUT						PAG
LINE	ID.	1.	2	3.	4.	5.	б.	7.	8.	9.	10	
292 293	КК КМ	CP-10	COMBINE	S DR AN	JD 82ND S	T (UNTON	HILLS D	R CHANNE	[,)			
294	HC *	3										
295	кк	R10-11	ROUTE						_			
296 297	KM RK	1277	0.0014	0.03	IANNEL FR	OM 82ND S TRAP	ST TO HA 220	yden roa 4	D			
	кк	SB11	BASIN									
298	BA	0.071	0.05	4 3 5	0 50							
298 299		0.15	0.25	4.15	0.58	55						
298 299 300 301	LG UC	0.292		16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
298 299 300 301 302	LG UC UA	0.292	5.0									
298 299 300 301 302 303	LG UC UA UA *	0.292 0 100	5.0									
298 299 300 301 302 303 304 305	LG UC UA * KK KK	0.292 0 100 CP-11 U	COMBINE INION HILI	S DR AN	ID HAYDEN	ROAD (HA	AYDEN RD	SOUTH C	HANNEL)			
298 299 300 301 302 303 304 305 306	LG UC UA VA KK KK KM HC	0.292 0 100 CP-11 2	COMBINE JNION HILL	S DR AN	ID HAYDEN	ROAD (HA	AYDEN RD	SOUTH C	HANNEL)			
298 299 300 301 302 303 303 304 305 306 307	LG UC UA KK KK KK HC * ZZ	0.292 0 100 CP-11 2	5.0 COMBINE JNION HILL	S DR AN	ID HAYDEN	ROAD (H	AYDEN RD	SOUTH C	HANNEL)			
298 299 300 301 302 303 303 305 306 307 SCHEMA	LG UC UA * KK KM HC ZZ FIC DI	0.292 0 100 CP-11 U 2 AGRAM OF	COMBINE JNION HILI	S DR AN IETWORK	ID HAYDEN	ROAD (Hi	AYDEN RD	SOUTH C	HANNEL)			
298 299 300 301 302 303 305 305 306 307 \$CHEMA' (V) ROUTING	LG UC UA WA * KK KM HC * ZZ FIC DI	0.292 0 100 CP-11 2 AGRAM OF (5.0 COMBINE JNION HILI ? STREAM N ->) DIVERS	S DR AN ETWORK SION OR	ID HAYDEN PUMP FLO	FROAD (Hi	AYDEN RD	SOUTH C	HANNEL)			

33

1

INPUT LINE NO.

1

1

*			
*	JUN 1998	*	* HYDROLOGIC ENG
*	VERSION 4.1	*	* 609 SECC
*		*	* DAVIS, CALI
* * RIIN D	ATE 12SEP14 TIME 11:47:04	*	* (916) 7
*		*	*
*			•
********	* * * * * * * * * * * * * * * * * * *	**	
	CROSS F RESERVO INFLOW 100-Y PIMA PHASE 2	DADS EAST DRAINAGE ALTERNATIVES IR ROUTING OF BASIN N OF SR101 & E OF HAYDEN RD, SCO' HYDROGRAPHS FROM THE PESADMS DRAFT FLO-2D MODEL: R, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN PO' ROAD FLOWS) BASIN - SIDESLOPES STEEPENED FROM ~5:1 TO 3:1	TTSDALE, AZ WERLINE AND
	PREPARE MODEL	D BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14 ERS: RK, MW	
12 IO	OUTPUT CONTROL VARIABI IPRNT IPLOT QSCAL 0	ES 3 PRINT CONTROL 0 PLOT CONTROL . HYDROGRAPH PLOT SCALE	
IT	HYDROGRAPH TIME DATA NMIN IDATE 1 ITIME 000 NO NDDATE 3 NDTIME 015 ICENT 1	 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK 	
	COMPUTATION INTERVAL TOTAL TIME BASE	0.05 HOURS 49.95 HOURS	
	ENGLISH UNITS DRAINAGE AREA SC PRECIPITATION DEPTH IN LENGTH, ELEVATION FE FLOW CU STORAGE VOLUME AC SURFACE AREA AC TEMPERATURE DE	UARE MILES CHES ET BIC FEET PER SECOND RE-FEET RES GREES FAHRENHEIT	
13 JD	INDEX STORM NO. 1 STRM 2.7 TRDA 0.0	6 PRECIPITATION DEPTH 0 TRANSPOSITION DRAINAGE AREA	
14 PI	PRECIPITATION PATTER 0.01 0.01 0.01 0.02 0.01 0.01	N 0.01 0.01 0.01 0.01 0.01 0.02 0.08 0.16 0.46 0.08 0.01 0.01	0.01 0.01 0.02 0.02
17 JD	INDEX STORM NO. 2 STRM 2.7 TRDA 0.5	4 PRECIPITATION DEPTH 0 TRANSPOSITION DRAINAGE AREA	

FLOOD HYDROGRAPH PACKAGE (HEC-1) *

				V	
283			PM	B-RT	
	•	•		•	
	•				
286	•				SB10
	•				•
292		CP-10.			
		v			
		v			
295		R10-11			
	•				
		•			
298				SB11	
	•	•		•	
	•	•		•	
304	•	CP-11.			

•

•

*

* *

*

18 PI

PRECIPITATION PATTERN

V V

*

* U.S. ARMY CORPS OF ENGINEERS

*

HYDROLOGIC ENGINEERING CENTER

DAVIS, CALIFORNIA 95616

(916) 756-1104

0.01

- * 609 SECOND STREET

- *

		0.01 0.01 0.01	0.01 0.02 0.01	0.01 0.02 0.01	On 0.01 0.08 0.01	nsite_6hr.c 0.01 0.16	ut 0.01 0.46	0.01 0.08	0.01 0.02	0.01 0.02	0.01 0.01	
21 JD	INDEX	STORM NO. STRM TRDA	3 2.69 2.80	PRECIPI TRANSPO	TATION DE DSITION DR	PTH AINAGE ARE	A					
22 PI	PREC C C	CIPITATION 0.01 0.01 0.01	PATTERN 0.01 0.02 0.01	0.01 0.04 0.01	0.01 0.09 0.01	0.01 0.20	0.01 0.24	0.01 0.14	0.01 0.06	0.01 0.04	0.01 0.01	
25 JD	INDEX	STORM NO. STRM TRDA	4 2.54 16.00	PRECIPI TRANSPO	TATION DE SITION DR	PTH AINAGE ARE	A					
26 PI	PREC (((CIPITATION 0.01 0.02 0.01	PATTERN 0.00 0.02 0.01	0.01 0.05 0.01	0.02 0.08 0.01	0.02 0.17	0.01 0.20	0.01 0.13	0.01 0.07	0.01 0.04	0.02 0.03	
29 JD	INDEX	STORM NO. STRM TRDA	5 2.23 90.00	PRECIPI TRANSPO	TATION DE SITION DR	PTH AINAGE ARE	A					
30 PI	PREC C C C	CIPITATION 0.02 0.02 0.02	PATTERN 0.01 0.03 0.02	0.02 0.05 0.02	0.02 0.08 0.02	0.02 0.14	0.02 0.16	0.02 0.12	0.02 0.07	0.02 0.05	0.02 0.04	
*** *** *** ***	*** *** ***	* *** ***	*** *** *	** *** *	** *** **	* *** ***	*** *** ***	*** *** *	** *** ***	*** *** *	** *** *** ***	* * *
33 KK	*********** * 76THST * *********	**** * [* *	76TH STRE	ET CHANN	IEL HYDROG	RAPH FROM	PINNACLE PE	ak south a	DMS			
	SUBBASIN	N RUNOFF D.	ATA	Int T Do		(10.50)						
36 BA	SUBBAS	SIN CHARAC' TAREA	TERISTICS 0.24	SUBBASI	N AREA							

* * *	ł	HYDROGR.	*** APH AT ST TION AREA	ATION 0	*** 76THST 0 SO MI		* * *					
PEAK FLOW	TIME			MAXI	MUM AVERA	GE FLOW						
+ (CFS)	(HR)		6-HR	2	4-HR	72-HR	49.95-HR					
+ 51.	4.55	(CFS)	15. 0.582	0	4. 0.664	2. 0.728	2. 0.728					
		(AC-FT)	7. VE AREA =	0.24	9. So MT	9.	9.					
					~ 2							
* * *	ł	+ * * HYDROGR. TRANSPOST	*** APH AT ST TION AREA	ATION 0	*** 76THST 5 SO MT		* * *					
PEAK FLOW	TIME	1101101-001		MAXT	MUM AVERA	GE FLOW						
+ (CFS)	(HR)		6-HR	2	4-HR	72-HR	49.95-HR					
+ 51.	4.55	(CFS)	15. 0.582	0	4. .664	2. 0.728	2. 0.728					
		(AC-FT) CUMULATI	7. VE AREA =	0.24	9. SQ MI	9.	9.					
* * *	*	HYDROGR. TRANSPOSI	APH AT ST. TION AREA	ATION 2.	76THST 8 SQ MI							
PEAK FLOW	TIME			MAXI	MUM AVERA	GE FLOW						
+ (CFS)	()		6-HR	2	4-HR	72-HR	49 95-HR					
	(HR)					, <u>D</u>	19199 111					

		(INCHES) (AC-FT)	0.582 7.	0.664 9.	0.728 9.	.out 0.728 9.				
		CUMULATIV	VE AREA =	0.24 SQ MI	ſ					
* * *		* * *	* * *	*	* * *	* * *				
		HYDROGRA TRANSPOSIT	APH AT ST TION AREA	ATION 76THST 16.0 SQ M	r MI					
PEAK FLOW	TIME		6-HR	MAXIMUM AV 24-HR	VERAGE FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS)	1 6	1	2	2				
+ J1.	4.55	(INCHES) (AC-FT)	0.582	0.664 9.	0.728 9.	0.728 9.				
		CUMULATIV	VE AREA =	0.24 SQ MI	Ľ					
* * *		* * *	* * *	*	* * *	* * *				
		HYDROGR# TRANSPOSIT	APH AT ST SION AREA	ATION 76THST 90.0 SQ M	Г ИІ					
PEAK FLOW	TIME		C IID	MAXIMUM AV	VERAGE FLOW	40.05.100				
+ (CFS)	(HR)		0-HK	24-HR	/2-HR	49.95-HR				
+ 51.	4.55	(INCHES) (AC-FT)	15. 0.582 7.	4. 0.664 9.	2. 0.728 9.	2. 0.728 9.				
		CUMULATIV	/E AREA =	0.24 SQ MI	Ľ					
* * *		* * *	* * *	*	* * *	* * *				
		INTERPOL	ATED HYDR	OGRAPH AT 76	5THST					
PEAK FLOW	TIME		6_UP	MAXIMUM AV	VERAGE FLOW	10 05 UD				
+ (CFS)	(HR)	(CES)	0-nk	24-11	/2-HK	49.95-HK				
+ 51.	4.55	(INCHES) (AC-FT)	15. 0.582 7.	4. 0.664 9.	2. 0.728 9.	2. 0.728 9.				
		CUMULATIV	/E AREA =	0.24 SQ MI	Ľ					
*** *** ***	* *** ***	*** *** *** *	*** *** *	** *** *** ***	* *** *** **	* *** ***	· *** *** *	** *** ***	· *** *** *	*** *** *** *** ***
* * *										
	* * * * * * * * * *	* * * * * *								
74 KK	* SI * *******	301 * *	BASIN							
	SUBBAS	SIN RUNOFF DA	ATA							
75 BA	SUBI	BASIN CHARACI TAREA	CERISTICS 0.11	SUBBASIN AREA	Ą					
76 LG	GREI	EN AND AMPT I STRTL DTH PSIF XKSAT BTIMD	LOSS RATE 0.25 0.25 4.10 0.55	STARTING LOSS MOISTURE DEFI WETTING FRONT HYDRAULIC CON DEDCENT IMPER	S ICIT F SUCTION NDUCTIVITY PUIOUS AREA					
77 UC	CLAF	RK UNITGRAPH TC	0.32	TIME OF CONCE	ENTRATION					
TO		R	0.25	STORAGE COEFF	CIENT					
78 UA	ACCI	JMULATED-AREA 0.0 100.0	A VS. TIM 5.0	E, 11 ORDINAT 16.0 30.	res .0 65.0	77.0	84.0	90.0	94.0	97.0
					* * :	*				
				UN	NIT HYDROGRAN	PH PARAMETERS	3			

CLARK TC= 0.32 HR, R= 0.25 HR SNYDER TP= 0.19 HR, CP= 0.47

UNIT HYDROGRAPH 30 END-OF-PERIOD ORDINATES

				0	nsite_6hr.c	out		
	15. 61.	58. 50.	129. 41.	172. 16 34. 28	7. 153 3. 23	. 134. . 19.	112. 15.	91. 12.
* * *	8.	·/.	6. ***	5. ***	4. 3	***	2.	2.
		HYDROGRA TRANSPOSIT	PH AT STAT	ION SB01 0.0 SO MI				
TOTAL RAI	NFALL =	2.76, TOT	AL LOSS =	0.59, TOTAL	EXCESS =	2.17		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW			
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR		
+ 326.	0.95	(CFS)	26.	7.	3.	3.		
		(INCHES) (AC-FT)	2.159 13.	2.159 13.	2.159 13.	2.159 13.		
		CUMULATIV	'E AREA =	0.11 SQ MI				
* * *		* * *	* * *	* * *		* * *		
		HYDROGRA TRANSPOSIT	PH AT STAT: ION AREA	ION SB01 0.5 SQ MI				
TOTAL RAI	NFALL =	2.74, TOT	AL LOSS =	0.59, TOTAL	EXCESS =	2.15		
PEAK FLOW	TIME		6 IID	MAXIMUM AVER	AGE FLOW	40 05 110		
+ (CFS)	(HR)		0-HK	24-nK	/ Z-HK	47.70-HK		
+ 323.	0.95	(CFS)	26.	б. Э 142	3.	3.		
		(AC-FT)	13.	13.	13.	13.		
		CUMULATIV	'E AREA =	0.11 SQ MI				
* * *		* * *	* * *	* * *		* * *		
		HYDROGRA TRANSPOSIT	PH AT STAT: ION AREA	ION SB01 2.8 SQ MI				
TOTAL RAI	NFALL =	2.69, TOT	AL LOSS =	0.63, TOTAL	EXCESS =	2.05		
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA	AGE FLOW 72-HR	49.95-HR		
+ (CFS)	(HR)	(CFS)						
+ 287.	1.00	(INCHES)	25. 2.044	6. 2.044	3. 2.044	3. 2.044		
		(AC-FT)	12.	12.	12.	12.		
		CUMULATIV	'E AREA =	0.11 SQ MI				
* * *		* * *	* * *	* * *		* * *		
		HYDROGRA TRANSPOSIT	PH AT STAT	ION SB01 16.0 SQ MI				
TOTAL RAI	NFALL =	2.54, TOT	AL LOSS =	0.68, TOTAL	EXCESS =	1.86		
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR	AGE FLOW 72-HR	49.95-HR		
+ (CFS)	(HR)	(CFS)						
+ 241.	1.00	(INCHES) (AC-FT)	22. 1.850 11.	6. 1.850 11.	3. 1.850 11.	3. 1.850 11.		
		CUMULATIV	'E AREA =	0.11 SQ MI				
* * *		* * *	* * *	* * *		* * *		
		HYDROGRA TRANSPOSIT	PH AT STAT: ION AREA	ION SB01 90.0 SQ MI				
TOTAL RAI	NFALL =	2.23, TOT	AL LOSS =	0.72, TOTAL	EXCESS =	1.52		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW 72-HP	49.95-HR		
+ (CFS)	(HR)	(CFS)	0 1110	21 111	, 2 me	19.99 mc		
+ 182.	1.00	(INCHES) (AC-FT)	18. 1.510 9.	5. 1.510 9.	2. 1.510 9.	2. 1.510 9.		
		CUMULATIV	E AREA =	0.11 SQ MI				
* * *		* * *	* * *	* * *		* * *		

75. 10. 1.

Onsite_6hr.out

		INTERPOLA	TED HYDROG	GRAPH AT SB	01	
PEAK FLOW	TIME		<i>c</i>	MAXIMUM AVER	AGE FLOW	40.05.5
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 324.	0.95	(CFS)	26.	б.	3.	3.
		(INCHES) (AC-FT)	2.146 13.	2.146 13.	2.146 13.	2.146 13.
		CUMULATIV	'E AREA =	0.11 SQ MI		
*** *** ***	*** *** *	** *** *** *	** *** ***	* * * * * * * * * *	** *** ***	*** *** ***
	* * * * * * * * * *	* * * * *				
80 KK	* CP-	-1 * C	OMBINE			
	* *******	* ****				
		L	EGACY BLVD	AND 76TH ST (MILLER RD (CHANNEL)
82 HC	HYDRO	OGRAPH COMBI	NATION		מפאסטפ ייס י	°OMB T NTE
		TCOMP	2 N	UMDER OF HIDRO	GRAPES IU (UMDINE
					* * *	
* * *		***	* * *	* * *		* * *
		HYDROGRA	PH AT STAT	TION CP-1		
מישט	TT T 16TT	TIGMOLODII	TON HILEA	MAVIMIN DO		
PLAK FLOW	TTME		6-HR	MAAIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 326.	0.95	(INCHES)	37. 0.987	11. 1.133	5. 1.183	5. 1.183
		(AC-FT)	19.	21.	22.	22.
		CUMULATIV	'E AREA =	0.35 SQ MI		
* * *		***	* * *	***		* * *
		HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	CION CP-1 0.5 SQ MI		
PEAK FLOW	ጥፐΜም			~ Maximim avfr	AGE FI.OW	
T (QEC)	(110)		6-HR	24-HR	72-HR	49.95-HR
+ (CFS)	(HK)	(CFS)	-			
+ 323.	0.95	(INCHES)	37. 0.982	11. 1.128	5. 1.178	5. 1.178
		(AC-FT)	18.	21.	22.	22.
		CUMULATIV	'E AREA =	0.35 SQ MI		
1. I. I.		* * *	بد بد	at an an		***
* * *		- ^ ^	* * *	***		~ ~ *
		HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	CION CP-1 2.8 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CEC)	(UD)		6-HR	24-HR	72-HR	49.95-HR
- (CFS)	(HK)	(CFS)			-	_
+ 287.	1.00	(INCHES)	36. 0.951	10. 1.096	5. 1.147	5. 1.147
		(AC-FT)	18.	21.	22.	22.
		CUMULATIV	'E AREA =	0.35 SQ MI		
* * *		* * *	* * *	* * *		* * *
* * *			~ * *	***		
		HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	CION CP-1 16.0 SQ MI		
PEAK FI.OW	TTME			MAXIMUM AVER	AGE FI.OW	
- (OPC)	(110)		6-HR	24-HR	72-HR	49.95-HR
+ (CFS)	(HK)	(CFS)			_	_
+ 241.	1.00	(INCHES)	34. 0.886	10. 1.035	5. 1.085	5. 1.085
		(AC-FT)	17.	19.	20.	20.

0.35 SQ MI

CUMULATIVE AREA =

* * *	* * *	* * *		* * *	* * *								
	HYD. TRANS	ROGRAPH AT STA POSITION AREA	ATION CP- 90.0 SQ	-1 MI									
PEAK FLOW	TIME		MAXIMUM A	AVERAGE FLOW									
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR								
+ 182.	(C 1.00 (INCH (AC-	FS) 29. ES) 0.776 FT) 15.	9. 0.927 17.	4. 0.977 18.	4. 0.977 18.								
	CUMU	LATIVE AREA =	0.35 SQ 1	1I									
* * *	* * *	* * *		* * *	* * *								
INTERPOLATED HYDROGRAPH AT CP-1													
PEAK FLOW TIME MAXIMUM AVERAGE FLOW													
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR								
. 202	(IIIC) (C	FS)	11	F	F								
+ 323.	(INCH (AC-	ES) 0.982 FT) 18.	1.128 21.	1.178 22.	1.178 22.								
	CUMU	LATIVE AREA =	0.35 SQ 1	1I									
*** *** *** ***	*** *** *** ***	*** *** *** *	** *** *** **	** *** *** *	** *** *** ***	* *** *** **	* *** ***	*** *** *** ***	*** *** ***				
0.2 777	* *	DOTIME											
83 KK	* R1-2 *	ROULE											
	* * * * * * * * * * * * * * * *	MILLER RD	CHANNEL FROM	I LEGACY BLV	D TO SR 101L F	REEWAY							
	HYDROGRAPH RO	UTING DATA											
85 RK	KINEMATIC W. L S N CA SHAPE WD Z NDXMIN	AVE STREAM ROU 2104. 0.0015 0.030 0.00 TRAP 66.00 4.00 2	UTING CHANNEL LENG SLOPE CHANNEL ROUG CONTRIBUTING CHANNEL SHAI BOTTOM WIDTH SIDE SLOPE MINIMUM NUMH	STH SHNESS COEFF S AREA PE H OR DIAMETE BER OF DX IN	ICIENT R TERVALS								
		CO	MPUTED KINEMA VARIABLE (DT SHOWN I	* ATIC PARAMET TIME STEP IS A MINIMUM	** ERS								
	ELEMENT	ALPHA	M I	DT DX	PEAK	TIME TO	VOLUME	MAXIMUM					
			(M	IN) (FT) (CFS)	(MIN)	(IN)	(FPS)					
	MAIN	0.17	1.56	3.00 701	.33 324.42	63.63	1.19	3.89					
CONTINUITY -0.8	SUMMARY (AC-FT) -	INFLOW=0.222	1E+02 EXCESS	S=0.0000E+00	OUTFLOW=0.223	34E+02 BASIN	I STORAGE=0	.5560E-01 PERCE	NT ERROR=				
			INTERPOLATEI) TO SPECIFI	ED COMPUTATION	N INTERVAL							
	ΜΑΤΝ	0.17	1.56	3.00	317.42	66.00	1.19						
* * *	***	***		***	***								
	HVD	ROGRAPH AT ST	ATTON R1.	- 2									

TRANSPOSITION AREA 0.0 SQ MI MAXIMUM AVERAGE FLOW 24-HR 72-HR PEAK FLOW TIME 6-HR 49.95-HR + (CFS) (HR) (CFS) 317. 1.10

+

5. 1.189 22. 38. 0.995 19. 11. 1.140 21. 5. 1.189 22. (INCHES) (AC-FT)

Page 12

CUMULATIVE AREA = 0.35 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.17	1.56	3.00	701.33	321.94	63.70	1.18	3.88

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2212E+02 EXCESS=0.0000E+00 OUTFLOW=0.2223E+02 BASIN STORAGE=0.5936E-01 PERCENT ERROR=-0.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.17	1.56	3.00		314.95	66.00	1.18
	* * *		* * *	* * *		* * *		* * *		
			HYDRO TRANSPO	GRAPH AT STA SITION AREA	ATION 0.5	R1-2 SQ MI				
I	PEAK FLOW	TIME			MAXIM	JM AVERA	GE FLOW			
				6-HR	24	-HR	72-HR	49.95-HR		
+	(CFS)	(HR)								
			(CFS)						
+	315.	1.10		37.		11.	5.	5.		
			(INCHES) 0.988	1.	134	1.184	1.184		
			(AC-FT) 19.		21.	22.	22.		
			CUMULA	TIVE AREA =	0.35	SQ MI				
				COM	IPUTED KI	NEMATIC	PARAMETERS			
					(DT SHO	WN IS A	MINIMUM)			
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						PEAK		CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.17	1.56	3.00	701.33	281.88	67.46	1.15	3.72

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2153E+02 EXCESS=0.0000E+00 OUTFLOW=0.2160E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.17	1.56	3.00	280.31	66.00	1.15
	* * *		* * *	* * *		* * *	* * *		
			HYDROGRA TRANSPOSI	APH AT STA FION AREA	ATION R 2.8 S	1-2 Q MI			
1	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-HI	r 72-hr	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	280.	1.10		36.	10	. 5.	5.		
			(INCHES)	0.955	1.10	0 1.149	1.149		
			(AC-FT)	18.	21	. 22.	22.		

CUMULATIVE AREA = 0.35 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.17	1.56	3.00	701.33	239.43	66.99	1.09	3.49

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2036E+02 EXCESS=0.0000E+00 OUTFLOW=0.2044E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.7

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.17	1.56	3.00	234.05	69.00	1.09
***	* * *	* * *		* * *	* * *		

			HYDRO TRANSPO	GRAPH AT STA SITION AREA	TION 16.0	R1-2 SQ MI					
I	PEAK FLOW	TIME			MAXIM	IUM AVERAG	E FLOW				
				6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(
+	234.	1.15	(CFS	34.		10.	5.	5.			
			(INCHES) 0.887	1.	038	1.087	1.087			
			(AC-FT) 17.		19.	20.	20.			
			CUMULA	FIVE AREA =	0.35	SQ MI					
COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)											
		EI	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAI	IN	0.17	1.56	2.91	526.00	179.26	70.19	0.98	3.16

Onsite_6hr.out

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1834E+02 EXCESS=0.0000E+00 OUTFLOW=0.1842E+02 BASIN STORAGE=0.6416E-01 PERCENT ERROR=-0.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.17	1.56 3.	.00	178.38	69.00	0.98	
* * *	* * *	* * *	* :	* *	* * *			
	HV	DROGRADH AT ST	עדדרא ד1-2					
	TRAN	SPOSITION AREA	90.0 SQ M	Ľ				
PEAK FLOW	TIME	6 UD	MAXIMUM AVI	ERAGE FLOW	40 05 UD			
+ (CFS)	(HR)	0-HK	24-nk	/2-nk	49.95-nk			
+ 178.	1.15	30.	9.	4.	4.			
	(INC) (AC	HES) 0.780 -FT) 15.	0.932 17.	0.981 18.	0.981 18.			
	CUM	ULATIVE AREA =	0.35 SQ MI					
* * *	* * *	* * *	* :	* *	* * *			
	INT	ERPOLATED HYDR	OGRAPH AT H	R1-2				
PEAK FLOW	TIME		MAXIMUM AVI	ERAGE FLOW				
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR			
+ 315.	1.10	CFS) 37.	11.	5.	5.			
	(INC	HES) 0.989	1.134	1.184	1.184			
	CIIM	II.ATIVE AREA =	0 35 SO MT	22.	22.			
	0011		0100 50 111					
*** *** *** ***	*** *** *** ***	*** *** *** *	** *** *** ***	*** *** ***	*** *** *** *	*** *** ***	: *** *** ***	*** ***
	* * * * * * * * * * * * * * * * * * *							
86 KK	* SB02 *	BASIN						

	SUBBASIN RUN	OFF DATA						
87 BA	SUBBASIN C	HARACTERISTICS						
	TARE.	A 0.16	SUBBASIN AREA					
88 LG	GREEN AND . STRT	AMPT LOSS RATE L 0.15	STARTING LOSS					
	DT	н 0.25	MOISTURE DEFIC	CIT				
	PSI	F 4.15	WETTING FRONT	SUCTION				
	RTIM	P 56.00	PERCENT IMPERV	VIOUS AREA				
89 UC	CLARK UNIT	GRAPH						
	T	C 0.32	TIME OF CONCEN	NTRATION				
	1	R 0.24	STORAGE COEFFI	ICIENT				

*** *** *** ***

0.0 113	N COL		MO DIME	On	site_6hr.o	ut				
90 UA	ACCU	0.0 !	5.0 1	6.0 30.0	65.0	77.0	84.0	90.0	94.0	97.0
		100.0			***					
				UNIT	HYDROGRAPH	PARAMETERS				
				CLARK TC= SNYDER TP=	0.32 HR, 0.19 HR,	R= 0 CP= 0	.24 HR .49			
				28 EN	UNIT HYDROG D-OF-PERIOI	GRAPH O ORDINATES				
	21. 85. 10.	81. 68. 8.	185. 55. 7.	250. 242 45. 36 5. 4	. 220. . 29.	. 192. . 24. . 3.	160. 19. 2.	129. 16.	104. 13.	
* * *		* * *	* * *	* * *		* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB02 0.0 SQ MI						
TOTAL RA	INFALL =	2.76, TOTA	AL LOSS =	0.45, TOTAL	EXCESS =	2.30				
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS)								
+ 492.	0.95	(INCHES) (AC-FT)	39. 2.292 19.	10. 2.292 19.	5. 2.292 19.	5. 2.292 19.				
		CUMULATIV	E AREA =	0.16 SQ MI						
***		* * *	* * *	***		* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB02 0.5 SQ MI						
TOTAL RA	INFALL =	2.74, TOTA	AL LOSS =	0.45, TOTAL	EXCESS =	2.29				
PEAK FLOW	TIME		C IID	MAXIMUM AVERA	GE FLOW	40.05.00				
+ (CFS)	(HR)	(0770)	6-HR	24-HR	/2-HR	49.95-HR				
+ 488.	0.95	(INCHES)	38. 2.276	10. 2.276	5. 2.276	5. 2.276				
		(AC-FI)	E AREA =	0.16 SQ MI	19.	19.				
* * *		* * *	* * *	* * *		* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB02 2.8 SQ MI						
TOTAL RA	INFALL =	2.69, TOTA	AL LOSS =	0.49, TOTAL	EXCESS =	2.19				
PEAK FLOW	TIME			MAXIMUM AVERA	GE FLOW					
+ (CFS)	(HR)	(777 7)	6-HR	24-HR	72-HR	49.95-HR				
+ 433.	1.00	(CFS)	37.	9. 2 1 8 2	4.	4.				
		(AC-FT)	18.	18.	18.	18.				
		CUMULATIV	E AREA =	0.16 SQ MI						
* * *		* * *	* * *	* * *		* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB02 16.0 SQ MI						
TOTAL RA	INFALL =	2.54, TOTA	AL LOSS =	0.54, TOTAL	EXCESS =	2.00				
PEAK FLOW	TIME		6 UD	MAXIMUM AVERA	GE FLOW	40.05 UD				
+ (CFS)	(HR)		0-HK	24-nk	/2-nk	49.95-nk				
+ 365.	1.00	(INCHES)	34. 1.994 17	8. 1.994 17	4. 1.994 17	4. 1.994 17				
		CUMULATIV	E AREA =	0.16 SQ MI	± / •	±/•				
* * *		* * *	* * *	* * *		* * *				
		HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB02 90.0 SQ MI						
TOTAL RA	INFALL =	2.23, TOTA	AL LOSS =	0.56, TOTAL	EXCESS =	1.67				

Onsite_6hr.out

PEAK FI	LOW TIME		<	MAXIMUM AVER	AGE FLOW	40.05			
+ (CFS)) (HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 278	8. 1.00	(CFS)	28.	7.	3.	3.			
		(INCHES) (AC-FT)	1.660 14.	1.660 14.	1.660 14.	1.660 14.			
		CUMULATIV	E AREA =	0.16 SQ MI					
* :	* *	* * *	* * *	***		* * *			
					<u></u>				
		INTERPOLA	TED HYDROG	RAPH AT SB	02				
PEAK FI	LOW TIME		6-HR	MAXIMUM AVER. 24-HR	AGE FLOW 72-HR	49.95-HR			
+ (CFS)) (HR)	(CFS)							
+ 489	9. 0.95	(INCHES)	38. 2.278	10. 2.278	5. 2.278	5. 2.278			
		(AC-FT)	19. E AREA =	19. 0.16 so mi	19.	19.			
		COMOLATIV	E AREA -	0.10 SQ MI					
*** *** ***	*** *** ***	*** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** *	** *** *** *** ***
	* * * * * * * *	* * * * * *							
90 rr	*	* • - 2 * • • •	OMBINE						
92 N.N.	ب. د د د د د پ	*	01-112 1112						
	******	S	R 101L FRE	EWAY AND 76TH	ST (MILLER	RD CHANNEL)			
94 HC	HYD	ROGRAPH COMBI	NATION						
		ICOMP	2 N	UMBER OF HYDRO	GRAPHS TO (COMBINE			
					* * *				
**	* *	* * *	* * *	* * *		* * *			
		HYDROGRA: TRANSPOSIT	PH AT STAI ION AREA	'ION CP-2 0.0 SQ MI					
PEAK FI	LOW TIME			MAXIMUM AVER	AGE FLOW				
+ (CFS)) (HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 740	0 1.05	(CFS)	75	20	1.0	1.0			
+ /40	0. 1.05	(INCHES) (AC-FT)	1.372 37.	1.495 41.	1.529 42.	1.529 42.			
		CUMULATIV	E AREA =	0.51 SQ MI					
**	* *	* * *	* * *	* * *		* * *			
		HYDROGRA	PH AT STAT	ION CP-2					
		IKANSPUSIT.	TON AKFU	LM VG C.U	ACE ELON				
peak Fi	LOW TIME		6-HR	MAAIMUM AVER. 24-HR	AGE FLOW 72-HR	49.95-HR			
+ (CFS)) (HR)	(CFS)							
+ 732	2. 1.05	(INCHES)	75. 1 363	20.	10. 1 521	10. 1 521			
		(AC-FT)	37.	40.	41.	41.			
		CUMULATIV	E AREA =	0.51 SQ MI					
* :	* *	* * *	* * *	***		* * *			
		HYDROGRA: TRANSPOSIT	PH AT STAT ION AREA	ION CP-2 2.8 SO MI					
PEAK FI	LOW TIME			MAXIMUM AVER	AGE FLOW				
+ (070) (UD)		6-HR	24-HR	72-HR	49.95-HR			
+ (CFS	, (HK)	(CFS)				. -			
+ 654	4. 1.05	(INCHES) (AC-FT)	72. 1.311 36.	20. 1.433 39.	10. 1.468 40.	10. 1.468 40.			
		CUMULATIV	E AREA =	0.51 SO MT					
		CONCLATIV		2.27 DX HIT					

* * *		* * *	***		Onsite_6h ***	r.out ***				
		HYDROG TRANSPOS	RAPH AT STA	ATION CP- 16.0 SQ 1	2 MI					
PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 556.	1.10	(CFS) (INCHES) (AC-FT)	66. 1.207 33.	18. 1.332 36.	9. 1.367 37.	9. 1.367 37.				
		CUMULAI	IVE AREA =	0.51 SQ M	I					
* * *		* * *	* * *		* * *	* * *				
		HYDROG TRANSPOS	RAPH AT STA	ATION CP- 90.0 SQ 1	2 MI					
PEAK FLOW	TIME			MAXIMUM A	VERAGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 422.	1.10	(CFS)	56.	16.	8.	8.				
		(INCHES) (AC-FT)	1.028 28.	1.156 31.	1.190 32.	1.190 32.				
		CUMULAT	IVE AREA =	0.51 SQ M	I					
* * *		* * *	* * *		* * *	* * *				
		TNTERPO	LATED HYDR	GRAPH AT	CP-2					
DEAK ELOW	TIME			MAXTMIM A	VERAGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 731.	1.05	(CFS)	75.	20.	10.	10.				
		(INCHES) (AC-FT)	1.362 37.	1.485 40.	1.520 41.	1.520 41.				
		CUMULAT	IVE AREA =	0.51 SQ M	I					
*** *** ***	*** *** *:	** *** ***	*** *** **	* * * * * * * * * * *	* *** *** *	* * * * * * * * * * * * *	* *** *** *	** *** ***	*** *** *** *	** *** *** ***

	* * * * * * * * * *	* * * * *								
95 KK	* R2·	-3 *	ROUTE							
	*******	* * * * *	MILLER RD	CHANNEL FROM	SR 1011. FR	EEWAY TO MAYO	BLVD			
	UVDBOCI	ודיווסם נוסגם	NC DATA		DR IVID IR					
07 DV	RIDROGI	MATTC WAVE	CTDEAM DOI	TTINO						
57 KK	KINE	L S N CA SHAPE WD Z NDXMIN	1260. 0.0015 0.030 0.00 TRAP 92.00 4.00 2	CHANNEL LENG SLOPE CHANNEL ROUG CONTRIBUTING CHANNEL SHAP BOTTOM WIDTH SIDE SLOPE MINIMUM NUMB	TH HNESS COEFF AREA E OR DIAMETE ER OF DX IN	ICIENT R FERVALS				
					*	* *				
			COM	IPUTED KINEMA VARIABLE ' (DT SHOWN I	FIC PARAMET FIME STEP S A MINIMUM	ERS				
	El	LEMENT	ALPHA	M D'	r dx	PEAK	TIME TO	VOLUME	MAXIMUM	
				(MI	N) (FT) (CFS)	(MIN)	(IN)	(FPS)	
	MA	IN	0.13	1.58	1.61 420	.00 726.00	65.69	1.53	4.85	
CONTINUITY -0.1	SUMMARY (AG	C-FT) - IN	IFLOW=0.4152	E+02 EXCESS	=0.0000E+00	OUTFLOW=0.41	52E+02 BASI	N STORAGE=().4192E-01 PER	CENT ERROR=

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN	0.13	1.58	3.00	725.57	66.00	1.53					
------	------	------	------	--------	-------	------					
	* * *	*	* *	* * *		* * *		* * *			
---	-----------	------	----------------------	-------------------------	-------------	-----------------	-----------	----------	-----------------	--------	---------
			HYDROGR TRANSPOSI	APH AT STA TION AREA	TION 0.0	R2-3) SQ MI					
]	PEAK FLOW	TIME			MAXIN	IUM AVERAGI	E FLOW				
				6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)									
			(CFS)								
+	726.	1.10		75.		20.	10.	10.			
			(INCHES)	1.373	1.	495	1.529	1.529			
			(AC-FT)	37.		41.	42.	42.			
			CUMULATI	VE AREA =	0.51	SQ MI					
				COM	PUTED KI	NEMATIC PA	ARAMETERS				
					VARIA	ABLE TIME :	STEP				
					(DT SHO	OWN IS A M	INIMUM)				
		ELE	MENT A	LPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN		0.13	1.58	1.61	420.00	719.73	65.75	1.52	4.83

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4128E+02 EXCESS=0.0000E+00 OUTFLOW=0.4128E+02 BASIN STORAGE=0.4197E-01 PERCENT ERROR=-0.1

Onsite_6hr.out

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.13	1.58	3.00		719.25	66.00	1.52	
* * *	* * *	* * *		* * *		* * *			
	HYD TRANS	ROGRAPH AT STA POSITION AREA	ATION 0.5	R2-3 SQ MI					
PEAK FLOW	TIME		MAXIMU	JM AVERAGI	E FLOW				
+ (CES)	(HP)	6-HR	24-	-HR	72-HR	49.95-HR			
(CFD)	(IIIC) (C	FS)							
+ 719.	1.10	75.	2	20.	10.	10.			
	(AC-	FT) 37.	4.4	10.	41.	41.			
	CUMU	LATIVE AREA =	0.51 \$	SQ MI					
		COI	MPUTED KIN VARIAE (DT SHOW	NEMATIC PA BLE TIME S NN IS A M	ARAMETERS STEP INIMUM)				
	ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
				(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
	MAIN	0.13	1.58	1.65	420.00	650.44	66.16	1.47	4.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3985E+02 EXCESS=0.0000E+00 OUTFLOW=0.3986E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.1

		MA	IN	0.13	1.58	3.00		647.31	66.00	1.47	
	* * *		* * *	* * *		* * *		* * *			
			HYDRO TRANSPO	OGRAPH AT ST DSITION AREA	ATION 2.8	R2-3 SQ MI					
1	PEAK FLOW	TIME		_	MAXIM	UM AVERA	GE FLOW				
+	(CFS)	(HR)		6-HR	24	-HR	72-HR	49.95-HR			
			(CF	3)							
+	647.	1.10	(INCHE)	72. 3) 1313	1	20. 435	10.	10. 1 469			
			(AC-F	r) 36.	1.	39.	40.	40.			
			CUMUL	ATIVE AREA =	0.51	SQ MI					
				CO	MPUTED KI VARIA (DT SHO	NEMATIC BLE TIME WN IS A	PARAMETERS STEP MINIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	0.13	1.58	1.61	420.00	553.64	68.36	1.37	4.37

Onsite_6hr.out

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3711E+02 EXCESS=0.0000E+00 OUTFLOW=0.3710E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAII	N	0.13	1.58	3.00		550.82	69.00	1.37	
	* * *		* * *	* * *		* * *		* * *			
			HYDROG TRANSPOS	RAPH AT STA ITION AREA	TION 16.0	R2-3 SQ MI					
	PEAK FLOW	TIME		6-HR	MAXIM 24	IUM AVERAG	E FLOW 72-HR	49.95-HR			
+	(CFS)	(HR)	(CEC)								
+	551.	1.15	(INCHES) (AC-FT) CUMULAT	66. 1.206 33.	1. 0.51	18. 332 36. SO MI	9. 1.366 37.	9. 1.366 37.			
				COM	IPUTED KI VARIA (DT SHC	NEMATIC F ABLE TIME OWN IS A M	PARAMETERS STEP MINIMUM)				
		ELI	EMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAII	N	0.13	1.58	1.77	420.00	421.93	69.46	1.19	3.95

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3232E+02 EXCESS=0.0000E+00 OUTFLOW=0.3234E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.13	1.58	3.00		418.11	69.00	1.19
	* * *		* * *	* * *		* * *		* * *		
			HYDROGE TRANSPOSI	APH AT STA TION AREA	ATION 90.0	R2-3 SQ MI				
	PEAK FLOW	TIME			MAXIMU	M AVERAGE	FLOW			
				6-HR	24-	HR	72-HR	49.95-HR		
+	(CFS)	(HR)								
			(CFS)							
+	418.	1.15		56.	1	б.	8.	8.		
			(INCHES)	1.029	1.1	57	1.192	1.192		
			(AC-FT)	28.	3	1.	32.	32.		
			CUMULATI	VE AREA =	0.51 S	Q MI				
	* * *		* * *	* * *		* * *		* * *		

INTERPOLATED HYDROGRAPH AT R2-3

	RAGE FLOW			
	6-HR	24-HR	72-HR	49.95-HR
(CFS)				
	75.	20.	10.	10.
(INCHES)	1.363	1.486	1.520	1.520
(AC-FT)	37.	40.	41.	41.
	(CFS) (INCHES) (AC-FT)	6-HR (CFS) (INCHES) 1.363 (AC-FT) 37.	MAXIMUM AVER 6-HR 24-HR (CFS) 75. 20. (INCHES) 1.363 1.486 (AC-FT) 37. 40.	MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR (CFS) (INCHES) 1.363 1.486 1.520 (AC-FT) 37. 40. 41.

CUMULATIVE AREA = 0.51 SQ MI

*** ***

SUBBASIN RUNOFF DATA

99 BA SUBBASIN CHARACTERISTICS TAREA 0.05 SUBBASIN AREA Onsite_6hr.out

	100 LG	GREE	N AND AMPT LO STRTL DTH PSIF XKSAT RTIMP	OSS RATE 0.15 0.25 4.50 0.47 55.00	STARTING LOSS MOISTURE DEFIC WETTING FRONT HYDRAULIC COND PERCENT IMPERV	IT SUCTION UCTIVITY IOUS AREA						
	101 UC	CLAR	K UNITGRAPH TC R	0.36 0.29	TIME OF CONCEN STORAGE COEFFI	TRATION CIENT						
	102 UA	ACCU	MULATED-AREA 0.0 5 100.0	VS. TIME 5.0	, 11 ORDINATE 16.0 30.0	S 65.	0	77.0	84.0	90.0	94.0	97.0
						*	* *					
					UNI CLARK T SNYDER T	T HYDROGR C= 0.36 P= 0.21	APH P HR, HR,	ARAMETERS R= 0 CP= 0	.29 HR .43			
					24	UNIT HY	DROGR	APH				
		5.	17.	43.	62.	64.	61.	56.	49.	42.	35.	
		30. 5.	25. 4.	21. 4.	18. 3.	15. 3.	2.	10.	9. 2.	7.	6. 1.	
		1.	1.	1.	1.							
	* * *		* * *	***	**	*		* * *				
			TRANSPOSITI	ION AREA	0.0 SQ MI							
	TOTAL	RAINFALL =	2.76, TOT#	AL LOSS =	0.44, TOTA	L EXCESS	=	2.31				
	PEAK FLOW	TIME		C HD	MAXIMUM AVE	RAGE FLOW		40.05 MD				
+	(CFS)	(HR)	(777)	6-HR	24-HR	/2-HR		49.95-HR				
+	130.	1.00	(INCHES) (AC-FT)	12. 2.302 6.	3. 2.302 6.	1. 2.302 6.		1. 2.302 6.				
			CUMULATIVE	E AREA =	0.05 SQ MI							
	* * *		* * *	* * *	**	*		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STA ION AREA	TION SB03 0.5 SQ MI							
	TOTAL	RAINFALL =	2.74, TOTA	AL LOSS =	0.44, TOTA	L EXCESS	=	2.30				
	PEAK FLOW	TIME		C HD	MAXIMUM AVE	RAGE FLOW		40.05 HD				
+	(CFS)	(HR)		0-HR	24-HR	/2-HR		49.95-HR				
+	129.	1.00	(CFS)	12.	3.	1.		1.				
			(INCHES) (AC-FT)	2.286 6.	2.286 6.	2.286 6.		2.286 6.				
			CUMULATIVE	E AREA =	0.05 SQ MI							
	* * *		* * *	* * *	* *	*		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STA ION AREA	TION SB03 2.8 SQ MI							
	TOTAL	RAINFALL =	2.69, TOT#	AL LOSS =	0.48, TOTA	L EXCESS	=	2.21				
	PEAK FLOW	TIME		6-HP	MAXIMUM AVE	RAGE FLOW		49 95_HP				
+	(CFS)	(HR)	(CEC)	0-HK	24-n(/2-11		49.95-nk				
+	117.	1.00	(UFS)	11.	3.	1.		1.				
			(AC-FT)	6.	6.	6.		6.				
			CUMULATIVE	E AREA =	0.05 SQ MI							
	* * *		* * *	* * *	* *	*		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STA ION AREA	TION SB03 16.0 SQ MI							
	TOTAL	RAINFALL =	2.54, TOTA	AL LOSS =	0.52, TOTA	L EXCESS	=	2.02				
	PEAK FLOW	TIME		6 IID	MAXIMUM AVE	RAGE FLOW		10 OF 110				
+	(CFS)	(HR)		o-HR	∠4-HK	/2-HR		49.90-HK				
			(CFS)									

					C	nsite_6hr.	out				
+	99.	1.05	(INCHES) (AC-FT)	10. 2.014 5.	3. 2.014 5.	1. 2.014 5.	1. 2.014 5.				
			CUMULATIV	E AREA =	0.05 SQ MI						
	***		* * *	* * *	* * *		* * *				
			HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION SB03 90.0 SQ MI						
	TOTAL F	RAINFALL =	2.23, TOT.	AL LOSS =	0.54, TOTAL	EXCESS =	1.69				
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR				
+	(CFS)	(HR)	(CFS)								
+	77.	1.05	(INCHES) (AC-FT)	9. 1.679 4.	2. 1.679 4.	1. 1.679 4.	1. 1.679 4.				
			CUMULATIV	E AREA =	0.05 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			INTERPOLA	TED HYDROG	RAPH AT SB	03					
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR				
+	(CFS)	(HR)	(CES)								
+	129.	1.00	(INCHES)	12. 2.290	3. 2.290	1. 2.290	1. 2.290				
			(AC-FT)	б.	б.	6.	б.				
			CUMULATIV	E AREA =	0.05 SQ MI						
*	** *** ***	* *** *** *	** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** **	* *** *** **:	* *** *** ***	* * * * * * * * * *	*** ***
* *	*										
		* * * * * * * * *	* * * * *								
	104 22	*	*	OMDINE							
	TO4 VV	* *	-s ~ C	OMBTINE							
		* * * * * * * * *	* * * * *								

MAYO BLVD AND 76TH ST (MILLER RD CHANNEL) 106 HC HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

* * *

* * *	* * *	***	* *	*	* * *
	HYDRO	OGRAPH AT STA	TION CP-3		
	TRANSPO	OSITION AREA	0.0 SQ M1	<u>[</u>	
PEAK FLOW	T.TWE	6-HP	MAXIMUM AVE	T2_HP	49 95_HP
+ (CFS)	(HR)	0 1110	24 111	/2 1110	49.95 III
	(CFS	5)			
+ 840.	1.10	87.	23.	11.	11.
	(INCHES	5) 1.449	1.564	1.596	1.596
	(AC-F	r) 43.	46.	47.	47.
	CUMULA	ATTVE AREA =	0.56 SO MT		
***	* * *	* * *	* *	*	* * *
	HYDRO	OGRAPH AT STA	TION CP-3		
	TRANSPO	OSITION AREA	0.5 SQ M1	<u>.</u>	
PEAK FLOW	TIME	6 UD	MAXIMUM AVE	CRAGE FLOW	40 05 110
+ (CFS)	(HR)	0-nk	24-nk	/2-nk	49.95-HK
()	(CFS	3)			
+ 833.	1.10	86.	23.	11.	11.
	(INCHES	5) 1.439	1.555	1.587	1.587
	(AC-F	г) 43.	46.	47.	47.
	CUMUL	ATTVE AREA =	0 56 SO MT		
	CONOLI	IIIVD INCOA -	0.00 DQ MI		
* * *	* * *	* * *	* *	* *	* * *
	HYDRO	OGRAPH AT STA	TION CP-3		

		TRANSPOSI	TION AREA	0 2.8 SQ MI	nsite_6hr.	out				
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 755	1 10	(CFS)	83	22	11	11				
· /55.	1.10	(INCHES) (AC-FT)	1.385 41.	1.500 45.	1.532 46.	1.532 46.				
		CUMULATI	VE AREA =	0.56 SQ MI						
***		* * *	***	***		* * *				
		HYDROGR TRANSPOSI	APH AT STA TION AREA	TION CP-3 16.0 SQ MI						
PEAK FLOW	TIME		6 III)	MAXIMUM AVER	AGE FLOW	40.05.100				
+ (CFS)	(HR)	(777 7)	6-HR	24-HR	/2-HR	49.95-HR				
+ 638.	1.15	(CFS)	76.	21.	10.	10.				
		(INCHES) (AC-FT)	1.271 38.	1.390 41.	1.422 42.	1.422 42.				
		CUMULATI	VE AREA =	0.56 SQ MI						
* * *		* * *	* * *	***		* * *				
		HYDROGR TRANSPOSI	APH AT STA TION AREA	TION CP-3 90.0 SQ MI						
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW 72-HR	49 95-HR				
+ (CFS)	(HR)	(CEC)	0 1110		72 m	19199 Int				
+ 487.	1.15	(CFS)	65.	18.	9.	9.				
		(AC-FT)	32.	36.	37.	37.				
		CUMULATI	VE AREA =	0.56 SQ MI						
***		* * *	***	***		* * *				
		INTERPOL	ATED HYDRO	GRAPH AT CP	-3					
PEAK FLOW	TIME		6 III)	MAXIMUM AVER	AGE FLOW	40.05.00				
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 828.	1.10	(CFS)	86.	23.	11.	11.				
		(INCHES) (AC-FT)	1.435 43.	1.552 46.	1.583 47.	1.583 47.				
		CUMULATI	VE AREA =	0.56 SQ MI						
*** *** *** ***	* *** *** :	*** *** ***	*** *** **	* *** *** *** *	** *** ***	*** *** ***	*** *** *	** *** ***	*** *** *** **	* *** *** ***
	* * * * * * * * *	* * * * * *								
107 KK	* * R	* 3-5 *	ROUTE							
	*	*								
			MILLER RD	CHANNEL FROM MA	YO BLVD TO	PRINCESS BL	VD			
	HYDROG	GRAPH ROUTIN	IG DATA							
109 RK	KINH	EMATIC WAVE	STREAM ROU	TING						
		S	2396.	SLOPE						
		N CA	0.030 0.00	CHANNEL ROUGHNE: CONTRIBUTING AR	SS COEFFIC: EA	IENT				
		SHAPE WD	TRAP 98.00	CHANNEL SHAPE BOTTOM WIDTH OR	DIAMETER					
		Z	4.00	SIDE SLOPE	OF DX INTE	RVALS				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		***					
			COM	PUTED KINEMATIC VARIABLE TIM (DT SHOWN TS A	PARAMETER: E STEP MINIMUM)	5				
	т	T.EMENT »	Т.РНА	M DT	יייי	PFAK	TIME TO	VOLUME	ΜΑΧΤΜΙΙΜ	
	1	F		/MTN)	/ ምጥ ነ	(CEC)	PEAK	(TN)	CELERITY	
				(MITIN)	Page 22	(CFS)	(11111)	(111)	(FFG)	

MAIN 0.12 1.58 2.78 798.67 817.36 73.14 1.60 5.01

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4741E+02 EXCESS=0.0000E+00 OUTFLOW=0.4763E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAI	N	0.12	1.58	3.00		816.94	72.00	1.60	
	* * *		* * *	* * *		* * *		* * *			
			HYDRO TRANSPO)GRAPH AT ST.)SITION AREA	ATION 0.	R3-5 O SQ MI					
	PEAK FLOW	TIME			MAXI	MUM AVERAG	E FLOW				
+	(CFS)	(HR)		6-HR	2	4-HR	72-HR	49.95-HR			
	(010)	(1111)	(CFS	3)							
+	817.	1.20	(= = = = = = = =	87.	-	24.	12.	12.			
			(INCHES (AC-F)	C) 1.450	T	47.	48.	48.			
			CUMULA	ATIVE AREA =	0.56	SQ MI					
		со				INEMATIC P ABLE TIME OWN IS A M	ARAMETERS STEP INIMUM)				
		EL	EMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)
		MAI	N	0.12	1.58	2.79	798.67	810.60	70.45	1.59	4.99

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4713E+02 EXCESS=0.0000E+00 OUTFLOW=0.4736E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.7

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAI	N	0.12	1.58	3.00		810.54	72.00	1.59	
	* * *		* * *	* * *		* * *		* * *			
			HYDROGI TRANSPOS	RAPH AT STA ITION AREA	TION 0.9	R3-5 5 SQ MI					
	PEAK FLOW	TIME			MAXI	MUM AVERAG	E FLOW				
				6-HR	24	4-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(OFC)								
+	811.	1.20	(CFS)	86.		23.	11.	11.			
			(INCHES)	1.440	1	.562	1.593	1.593			
			(AC-FT)	43.		46.	47.	47.			
			CUMULAT	IVE AREA =	0.56	SQ MI					
				COM	PUTED K VARIA (DT SHO	INEMATIC F ABLE TIME OWN IS A M	PARAMETERS STEP MINIMUM)				
		EL	EMENT A	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAI	N	0.12	1.58	2.90	798.67	742.52	73.90	1.54	4.81

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4551E+02 EXCESS=0.0000E+00 OUTFLOW=0.4571E+02 BASIN STORAGE=0.8226E-01 PERCENT ERROR=-0.6

	MA	IN	0.12	1.58 3	3.00	740.16	72.00	1.54
* * *		* * *	* * *	*	* * *	* * *		
		HYDROGRA TRANSPOSI	APH AT STA TION AREA	ATION R3-5 2.8 SQ M	5 1I			
PEAK FLOW	TIME			MAXIMUM AV	VERAGE FLOW			
			6-HR	24-HR	72-HR	49.95-HR		
+ (CFS)	(HR)							
		(CFS)						
+ 740.	1.20		83.	23.	11.	11.		
		(INCHES)	1.385	1.506	1.537	1.537		

Onsite_6hr.out (AC-FT) 41. 45. 46. 46.

CUMULATIVE AREA = 0.56 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.12	1.58	3.00	798.67	634.55	73.70	1.43	4.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4224E+02 EXCESS=0.0000E+00 OUTFLOW=0.4240E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.12	1.58	3.00	626.49	9 75.00	1.43
	* * *		* * *	* * *		* * *	* * *		
			HYDROGR. TRANSPOSI	APH AT STA TION AREA	TION R3 16.0 SQ	-5 MI			
1	PEAK FLOW	TIME			MAXIMUM	AVERAGE F	LOW		
				6-HR	24-HF	72	-HR 49.95-HI	ર	
+	(CFS)	(HR)							
			(CFS)						
+	626.	1.25		76.	21.		10. 10		
			(INCHES)	1.271	1.396	1.	427 1.42	7	
			(AC-FT)	38.	41.		42. 42		
			CUMULATI	VE AREA =	0.56 SQ	MI			
				COM	PUTED KINEM	ATIC PARA	METERS		
					VARIABLE	TIME STE	P		
					(DT SHOWN	IS A MINI	MUM)		
		_							

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)
MAIN	0.12	1.58	3.00	798.67	478.66	74.64	1.24	4.10

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3665E+02 EXCESS=0.0000E+00 OUTFLOW=0.3688E+02 BASIN STORAGE=0.8233E-01 PERCENT ERROR=-0.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.12	1.58	3.00	478.05	75.00	1.24
	* * *		* * *	* * *		* * *	* * *		
			HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION R3 90.0 SQ	-5 MI			
	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	478.	1.25		65.	18.	9.	9.		
			(INCHES)	1.082	1.210	1.242	1.242		
			(AC-FT)	32.	36.	37.	37.		
			CUMULATI	VE AREA =	0.56 SQ	MI			
	* * *		* * *	* * *		* * *	* * *		

			INTERPOLA	FED HYDROG	RAPH AT R3	3-5	
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49 95-HR
+	(CFS)	(HR)	(CFS)	0 1110	21 111	72 IIIC	19.95 mc
+	806.	1.20	(INCHES) (AC-FT)	86. 1.437 43.	23. 1.558 46.	11. 1.589 47.	11. 1.589 47.
			CUMULATIV	E AREA =	0.56 SQ MI		

*** ***

		* * * * * * * * * *	****								
	110 KK	* SB	04 *	BASIN							
		* * * * * * * * * *	* * * * *								
		SUBBAS	IN RUNOFF D	DATA							
	111 BA	SUBB	ASIN CHARAC TAREA	CTERISTICS 0.14	SUBBASIN AREA						
	112 LG	GREE	N AND AMPT STRTL DTH PSIF XKSAT RTIMP	LOSS RATE 0.14 0.25 4.60 0.44 61.00	STARTING LOSS MOISTURE DEFICIT WETTING FRONT SUC HYDRAULIC CONDUCT PERCENT IMPERVIOU	CTION TIVITY JS AREA					
	113 UC	CLAR	K UNITGRAPH TC R	I 0.30 0.20	TIME OF CONCENTRA STORAGE COEFFICIE	ATION ENT					
	114 UA	ACCU	MULATED-ARE 0.0 100.0	CA VS. TIME 5.0	2, 11 ORDINATES 16.0 30.0	65.0	77.0	84.0	90.0	94.0	97.0
						* * *					
					UNIT H CLARK TC= SNYDER TP=	HYDROGRAPH 0.30 HR, 0.18 HR,	PARAMETERS R= 0 CP= 0	.20 HR .54			
		26. 63. 5.	107. 49. 4.	218. 38. 3.	t 24 ENI 267. 245. 29. 23. 2.	NIT HYDROG D-OF-PERIOD . 215. . 18.	RAPH ORDINATES 177. 14.	137. 11.	106. 8.	82. 6.	
	**	*	* * *	* * *	* * *		* * *				
			HYDROGR TRANSPOSI	APH AT STA	TION SB04 0.0 SQ MI						
	TOTAL	L RAINFALL =	2.76, то)TAL LOSS =	0.38, TOTAL H	EXCESS =	2.38				
	PEAK FL	OW TIME			MAXIMUM AVERAC	JE FLOW					
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+	528	. 0.95	(INCHES)	37. 2.369	9. 2.369	4. 2.369	4. 2.369				
			CUMULATI	VE AREA =	0.14 SO MT	10.	10.				
			001102011		0.11 02						
	:	*	* * *	* * *	*		* * *				
			HYDROGR TRANSPOSI	RAPH AT STA TION AREA	TION SB04 0.5 SQ MI						
	TOTA	L RAINFALL =	2.74, TC)TAL LOSS =	0.37, TOTAL H	EXCESS =	2.36				
	PEAK FLO	OW TIME		6_UP	MAXIMUM AVERAC	JE FLOW	10 05-UD				
+	(CFS)	(HR)	(CEC)	0-nk	24-110	/Z-HK	49.95-nk				
+	524	. 0.95	(INCHES) (AC-FT)	36. 2.353 18.	9. 2.353 18.	4. 2.353 18.	4. 2.353 18.				
			CUMULATI	VE AREA =	0.14 SQ MI						
	**:	*	* * *	* * *	* * *		* * *				
			HYDROGR TRANSPOSI	RAPH AT STA TION AREA	TION SB04 2.8 SQ MI						
	TOTAL	L RAINFALL =	2.69, TC)TAL LOSS =	0.40, TOTAL H	EXCESS =	2.28				
	PEAK FLO	OW TIME		6-HR	MAXIMUM AVERAC 24-HR	E FLOW 72-HR	49.95-HR				
+	(CFS)	(HR)	(CFS)								
+	452	. 0.95	(INCHES) (AC-FT)	35. 2.272 17.	9. 2.272 17.	4. 2.272 17.	4. 2.272 17.				

					Onsite_6h	.out				
* * *		* * *	* * *	*	* * *	* * *				
		HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION SB04 16.0 SQ M	L II					
TOTAL R	AINFALL =	2.54, TO	TAL LOSS =	= 0.44, TOI	AL EXCESS =	2.10				
PEAK FLOW	TIME		6_UP	MAXIMUM AV	VERAGE FLOW	10 05-UD				
+ (CFS)	(HR)	(CEC)	0-nk	24-nk	/2-nk	49.93-HK				
+ 382.	1.00	(INCHES)	32. 2.095	8. 2.095	4. 2.095	4. 2.095				
		(AC-FT)	16. VE AREA =	16. 0 14 SO MT	16.	16.				
		COMODATE	VE AIGEA -	0.14 50 11	-					
* * *		* * *	***	*	***	* * *				
		HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION SB04 90.0 SQ M	L 1I					
TOTAL R	AINFALL =	2.23, TO	TAL LOSS =	= 0.46, TOT	TAL EXCESS =	1.77				
PEAK FLOW	TIME		6-HR	MAXIMUM AV 24-HR	VERAGE FLOW	49 95-HR				
+ (CFS)	(HR)	(CES)	0 1110		, <u>2</u> me	19199 1110				
+ 293.	1.00	(INCHES)	27. 1.763	7. 1.763	3. 1.763	3. 1.763				
		CUMULATT	VE AREA =	0.14 SO MT		17.				
* * *		***	***	*	- * * *	* * *				
		INTERPOL	ATED HYDRO	OGRAPH AT	SB04					
PEAK FLOW	TIME			MAXIMUM AV	VERAGE FLOW					
+ (CFS)	(HR)	(27.2)	6-HR	24-HR	72-HR	49.95-HR				
+ 525.	0.95	(CFS)	36. 2.356	9. 2.356	4. 2.356	4. 2.356				
		(AC-FT)	18. VE ADEA -	18. 0.14.00 MT	. 18.	18.				
		COMOLATI	VE AREA =	0.14 SQ M1	-					
*** *** *** ***	· *** *** *	** *** ***	*** *** *	** *** *** ***	* * * * * * * *	* *** *** **	* *** *** *	** *** ***	*** *** *** **	* *** *** ***
	* * * * * * * * * *	* * * * *								
116 KK	* R4 *	-5 * *	ROUTE							
	*******	****	PRINCESS H	BLVD CHANNEL F	ROM 77TH SI	TO 76TH ST				
	HYDROG	RAPH ROUTIN	g data							
118 RK	KINE	MATIC WAVE	STREAM ROU	JTING						
		L S CA SHAPE WD Z NDXMIN	2005. 0.0013 0.030 0.00 TRAP 39.00 4.00 2	CHANNEL LENGT SLOPE CHANNEL ROUGH CONTRIBUTING CHANNEL SHAPE BOTTOM WIDTH SIDE SLOPE MINIMUM NUMBE	CH INESS COEFFI AREA OR DIAMETEF OR DIAMETEF	CIENT				
			00		**	*				
			COP	VARIABLE I (DT SHOWN IS	S A MINIMUM)	GAI				
	E	LEMENT A	LPHA	M DI	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
				(MIN	1) (FT)	(CFS)	(MIN)	(IN)	(FPS)	

MAIN 0.23 1.51 2.41 668.33 520.58 62.34 2.39 4.81

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1819E+02 EXCESS=0.0000E+00 OUTFLOW=0.1838E+02 BASIN STORAGE=0.3179E-04 PERCENT ERROR=-1.0

Onsite_6hr.out INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	0.23	1.51	3.00		513.38	63.00	2.40	
	* * *	* * *	* * *		* * *		* * *			
		HYDRO TRANSPO	GRAPH AT STA SITION AREA	TION 0.0	R4-5 SQ MI					
PEAK	FLOW TI	ME		MAXIMU	M AVERAGI	E FLOW				
			6-HR	24-	HR	72-HR	49.95-HR			
+ (CF	S) (H	R) (CES)							
+ 5	13. 1.	05	, 37.		9.	4.	4.			
		(INCHES) 2.401	2.4	02	2.402	2.402			
		(AC-FT) 18.	1	8.	18.	18.			
		CUMULA	TIVE AREA =	0.14 S	Q MI					
			COM	PUTED KIN VARIAB (DT SHOW	EMATIC PA LE TIME S N IS A M	ARAMETERS STEP INIMUM)				
		ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
					(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	0.23	1.51	2.42	668.33	516.56	62.40	2.38	4.79

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1807E+02 EXCESS=0.0000E+00 OUTFLOW=0.1825E+02 BASIN STORAGE=0.4744E-04 PERCENT ERROR= -1.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MA	IN	0.23	1.51	3.00	510.06	63.00	2.39
* * *		* * *	* * *		* * *	* * *		
		HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION R4 0.5 S	4-5 2 MI			
PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
			6-HR	24-HI	R 72-HR	49.95-HR		
+ (CFS)	(HR)							
		(CFS)						
+ 510.	1.05		37.	9	. 4.	4.		
		(INCHES)	2.386	2.38	5 2.386	2.386		
		(AC-FT)	18.	18	. 18.	18.		

CUMULATIVE AREA = 0.14 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.23	1.51	2.55	668.33	451.64	62.77	2.29	4.56

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1745E+02 EXCESS=0.0000E+00 OUTFLOW=0.1762E+02 BASIN STORAGE=0.4583E-04 PERCENT ERROR=-1.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.23	1.51	3.00		451.16	63.00	2.30
	* * *		* * *	* * *		* * *		* * *		
			HYDROGR. TRANSPOSI	APH AT STA TION AREA	ATION 2.8	R4-5 SQ MI				
	PEAK FLOW	TIME		6-HP	MAXIMU	M AVERAGE	FLOW	49 95_HP		
+	(CFS)	(HR)	(CFS)	0 1110	21	inc i	2 1110	49.95 III		
+	451.	1.05	(INCHES) (AC-FT)	36. 2.301 18.	2.3 1	9. 02 2 8.	4. 2.302 18.	4. 2.302 18.		

CUMULATIVE AREA = 0.14 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

			Ons	ite_6hr.ou	t			
ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.23	1.51	2.73	668.33	379.50	64.90	2.12	4.31

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1609E+02 EXCESS=0.0000E+00 OUTFLOW=0.1629E+02 BASIN STORAGE=0.4132E-04 PERCENT ERROR=-1.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.23	1.51	3.00		374.76	63.00	2.12	
	* * *		* * *	*	* *	* * *		* * *			
			HYDRC TRANSPC	GRAPH AT S SITION AR	STATION EA 16.	R4-5 .0 SQ MI					
	PEAK FLOW	TIME			MAXI	IMUM AVERAG	FLOW				
+	(CFS)	(HR)		6-1	HR 2	24-HR	72-HR	49.95-HR			
+	375.	1.05	(CFS (INCHES (AC-FT	3) 3) 2.11 7) 10	3. 15 2 5.	8. 2.116 16.	4. 2.116 16.	4. 2.116 16.			
			CUMULA	TIVE AREA	= 0.14	4 SQ MI					
				(COMPUTED H VARI (DT SH	KINEMATIC E LABLE TIME HOWN IS A M	PARAMETERS STEP MINIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	0.23	1.51	2.87	668.33	291.80	65.24	1.78	3.94

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1354E+02 EXCESS=0.0000E+00 OUTFLOW=0.1370E+02 BASIN STORAGE=0.4337E-04 PERCENT ERROR=-1.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.23	1.51	3.00	288.81	66.00	1.78
	* * *		* * *	* * *		* * *	* * *		
			HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION R4 90.0 SQ	-5 MI			
	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	289.	1.10		28.	7.	3.	3.		
			(INCHES)	1.782	1.782	1.782	1.782		
			(AC-FT)	14.	14.	14.	14.		
			CUMULATI	VE AREA =	0.14 SQ 1	IM			
	* * *		* * *	* * *		* * *	* * *		
						54 5			
			INIERPOL	AIED HIDRC	GRAPH AI	R4-5			
	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)							
	/		(CFS)						
+	511.	1.05	,	37.	9.	4.	4.		
			(INCHES)	2.388	2.388	2.388	2.388		
			(AC-FT)	18.	18.	18.	18.		

CUMULATIVE AREA = 0.14 SQ MI

SUBBASIN RUNOFF DATA

120 BA	SUBB	ASIN CHARACTI TAREA	ERISTICS 0.13 S	UBBASIN AREA						
121 LG	GREE	N AND AMPT LO STRTL DTH PSIF XKSAT RTIMP	DSS RATE 0.22 S 0.25 M 4.50 W 0.44 H 48.00 P	TARTING LOSS OISTURE DEFIC ETTING FRONT YDRAULIC COND ERCENT IMPERV	IT SUCTION UCTIVITY IOUS AREA					
122 UC	CLARI	K UNITGRAPH TC R	0.33 T 0.22 S	IME OF CONCEN TORAGE COEFFI	TRATION CIENT					
123 UA	ACCUI	MULATED-AREA 0.0 100.0	VS. TIME, 5.0 1	11 ORDINATE 6.0 30.0	S 65.0	77.0	84.0	90.0	94.0	97.0
					* * *	ŧ				
				UNI CLARK T SNYDER T	T HYDROGRAN C= 0.33 HH P= 0.19 HH	PH PARAMETERS R, R= 0 R, CP= 0	.22 HR .50			
				27	UNIT HYDE	ROGRAPH				
	18. 66. 7.	67. 53. 6.	154. 42. 4.	208. 2 34. 4.	27. 2 3.	B1. 156. 21. 17. 2. 2.	129. 14.	103. 11.	82. 9.	
* * *		* * *	* * *	* *	*	* * *				
		HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB05 0.0 SQ MI						
TOTAL R	AINFALL =	2.76, TOT	AL LOSS =	0.52, TOTA	L EXCESS =	2.23				
PEAK FLOW	TIME		6-HR	MAXIMUM AVE 24-HR	RAGE FLOW 72-HR	49 95-HR				
+ (CFS)	(HR)	(CFS)	0	21	,2	19199 111				
+ 402.	0.95	(INCHES) (AC-FT)	30. 2.223 15.	8. 2.223 15.	4. 2.223 15.	4. 2.223 15.				
		CUMULATIV	E AREA =	0.13 SQ MI						
* * *		* * *	* * *	* *	*	* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB05 0.5 SQ MI						
TOTAL R	AINFALL =	2.74, TOT2	AL LOSS =	0.52, TOTA	L EXCESS =	2.22				
PEAK FLOW	TIME		6-HR	MAXIMUM AVE 24-HR	RAGE FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS)								
+ 399.	0.95	(INCHES) (AC-FT)	30. 2.208 15.	7. 2.208 15.	4. 2.208 15.	4. 2.208 15.				
		CUMULATIV	E AREA =	0.13 SQ MI						
* * *		* * *	* * *	* *	*	* * *				
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB05 2.8 SQ MI						
TOTAL R	AINFALL =	2.69, TOTA	AL LOSS =	0.56, TOTA	L EXCESS =	2.13				
PEAK FLOW	TIME		6-HR	MAXIMUM AVE 24-HR	RAGE FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS)								
+ 352.	1.00	(INCHES) (AC-FT)	29. 2.118 14.	7. 2.118 14.	3. 2.118 14.	3. 2.118 14.				
		CUMULATIV	E AREA =	0.13 SQ MI						
* * *		* * *	* * *	* *	*	* * *				
		HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB05 16.0 SQ MI						
TOTAL R	AINFALL =	2.54, TOTA	AL LOSS =	0.60, TOTA	L EXCESS =	1.94				

				(Onsite_6hr.	out	
PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR)	(CFS)					
+ 296.	1.00	(INCHES) (AC-FT)	26. 1.930 13.	7. 1.930 13.	3. 1.930 13.	3. 1.930 13.	
		CUMULATIV	E AREA =	0.13 SQ MI			
***		* * *	* * *	* * *		* * *	
		HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB05 90.0 SQ MI			
TOTAL RA	AINFALL =	2.23, TOTA	AL LOSS =	0.63, TOTAL	EXCESS =	1.60	
PEAK FLOW	TIME		6_UD	MAXIMUM AVER	AGE FLOW	49 95 UD	
+ (CFS)	(HR)	(CEC)	0-nk	24-IK	/2-nk	49.95-nk	
+ 225.	1.00	(INCHES) (AC-FT)	22. 1.593 11.	5. 1.593 11.	3. 1.593 11.	3. 1.593 11.	
		CUMULATIV	E AREA =	0.13 SQ MI			
***		* * *	* * *	***		* * *	
		INTERPOLA	TED HYDROG	RAPH AT SE	805		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR)	(CFS)					
+ 399.	0.95	(INCHES) (AC-FT)	30. 2.210 15.	7. 2.210 15.	4. 2.210 15.	4. 2.210 15.	
		CUMULATIV	E AREA =	0.13 SO MI			
125 KK	******** * * CD	***** * _5 * 00	OMBINE				
100 MM	رب * * * * * * * * * *	*					
		PI	RINCESS BL	VD AND 76TH SI	C (PRINCESS	BLVD CHANNEL)	
127 HC	HYDR	OGRAPH COMBII ICOMP	NATION 3 N	JMBER OF HYDRC	GRAPHS TO (COMBINE	
					* * *		
***		* * *	***	* * *		* * *	
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION CP-5 0.0 SQ MI			
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	10 05 UD	
+ (CFS)	(HR)	(CES)	6-HP	24-88	/ 2 = 115	47.71-66	
+ 1452.	1.15		6-HR	24-HR	/2-nk	49.95-nk	
		(INCHES) (AC-FT)	6-HR 153. 1.715 76.	40. 1.814 80.	20. 1.836 81.	20. 1.836 81.	
* * *		(INCHES) (AC-FT) CUMULATIVI	6-HR 153. 1.715 76. E AREA =	24-HR 40. 1.814 80. 0.83 SQ MI	20. 1.836 81.	20. 1.836 81.	
		(INCHES) (AC-FT) CUMULATIVI	6-HR 153. 1.715 76. E AREA = ***	24-HR 40. 1.814 80. 0.83 SQ MI ***	20. 1.836 81.	20. 1.836 81.	
		(IICHES) (AC-FT) CUMULATIVI *** HYDROGRAI TRANSPOSIT:	6-HR 153. 1.715 76. E AREA = *** PH AT STAT. ION AREA	24-HR 40. 1.814 80. 0.83 SQ MI *** ION CP-5 0.5 SQ MI	20. 1.836 81.	20. 1.836 81.	
PEAK FLOW	TIME	(IICHES) (AC-FT) CUMULATIVI *** HYDROGRAI TRANSPOSIT	6-HR 153. 1.715 76. E AREA = *** PH AT STAT ION AREA	24-HR 40. 1.814 80. 0.83 SQ MI *** ION CP-5 0.5 SQ MI MAXIMUM AVEF	20. 1.836 81. AGE FLOW	20. 1.836 81.	
PEAK FLOW + (CFS)	TIME (HR)	(IICHES) (AC-FT) CUMULATIVI *** HYDROGRAJ TRANSPOSIT:	6-HR 153. 1.715 76. E AREA = *** PH AT STAT. ION AREA 6-HR	24-HR 40. 1.814 80. 0.83 SQ MI *** ION CP-5 0.5 SQ MI MAXIMUM AVEF 24-HR	20. 1.836 81. RAGE FLOW 72-HR	20. 1.836 81. ***	
PEAK FLOW + (CFS) + 1440.	TIME (HR) 1.15	(CES) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT: (CFS)	6-HR 153. 1.715 76. E AREA = *** PH AT STAT. ION AREA 6-HR 152.	24-HR 40. 1.814 80. 0.83 SQ MI *** ION CP-5 0.5 SQ MI MAXIMUM AVER 24-HR 40.	20. 1.836 81. AGE FLOW 72-HR 19.	20. 1.836 81. *** 49.95-HR 19.	
PEAK FLOW + (CFS) + 1440.	TIME (HR) 1.15	(CFS) (INCHES) (AC-FT) CUMULATIVI *** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT)	6-HR 153. 1.715 76. E AREA = *** PH AT STAT ION AREA 6-HR 152. 1.703 75.	24-HR 40. 1.814 80. 0.83 SQ MI *** ION CP-5 0.5 SQ MI MAXIMUM AVEF 24-HR 40. 1.803 80.	20. 1.836 81. RAGE FLOW 72-HR 19. 1.824 80.	20. 1.836 81. *** 49.95-HR 1.824 80.	

* * *		* * *	* * *	* * *		* * *				
		HYDROGR TRANSPOSI	APH AT STAT TION AREA	TION CP-5 2.8 SQ MI						
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 1335.	1.15	(CFS)	146.	39.	19.	19.				
		(INCHES) (AC-FT)	1.638 72.	1.737 77.	1.759 78.	1.759 78.				
		CUMULATI	VE AREA =	0.83 SQ MI						
* * *		* * *	* * *	* * *		* * *				
		HYDROGR TRANSPOSI	APH AT STAT TION AREA	TION CP-5 16.0 SQ MI						
PEAK FLOW	TIME		6 IID	MAXIMUM AVER	AGE FLOW	40.05 UD				
+ (CFS)	(HR)	()	0-HK	24-HR	/2-HR	49.95-HK				
+ 1121.	1.15	(CFS)	133.	36.	17.	17.				
		(INCHES) (AC-FT)	1.499 66.	1.602 71.	1.623 72.	1.623 72.				
		CUMULATI	VE AREA =	0.83 SQ MI						
* * *		* * *	* * *	* * *		* * *				
		HYDROGR TRANSPOSI	APH AT STAT TION AREA	TION CP-5 90.0 SQ MI						
PEAK FLOW	TIME		C IID	MAXIMUM AVER	AGE FLOW	40.05 HD				
+ (CFS)	(HR)	()	0-nk	24-nk	/2-nk	49.95-nk				
+ 844.	1.20	(CFS)	112.	30.	15.	15.				
		(INCHES) (AC-FT)	1.262 56.	1.368 60.	1.389 61.	1.389 61.				
		CUMULATI	VE AREA =	0.83 SQ MI						
* * *		* * *	* * *	* * *		* * *				
		INTERPOL	ATED HYDROG	ЗRАРН АТ СР	-5					
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 1/10	1 15	(CFS)	150	10	10	1.0				
+ 1410.	1.15	(INCHES) (AC-FT)	1.684 74.	1.784 79.	1.805 80.	1.805 80.				
		CUMULATI	VE AREA =	0.83 SQ MI						
*** *** *** ***	*** *** *	** *** ***	*** *** ***	* *** *** *** *	** *** ***	* * * * * * * * * *	** *** ***	*** *** ***	* *** *** **	* *** *** ***
	* * * * * * * * *	* * * * *								
128 KK	* * R5	* -6 *	ROUTE							
	* *******	*								
		1	PRINCESS BI	LVD CHANNEL FRO	м 76тн ѕт	TO SCOTTSDALE	RD			
	HYDROG	RAPH ROUTIN	g data							
130 RK	KINE	MATIC WAVE :	STREAM ROUT	LING						
		S	0.0015	SLOPE						
		CA	0.030 0	CONTRIBUTING AR	SS COEFFIC EA	TEN.I.				
		SHAPE WD	TRAP (188.00 H	CHANNEL SHAPE BOTTOM WIDTH OR	DIAMETER					
		Z	4.00	SIDE SLOPE	0 דייזאד אח	RVALS				
			2 1		++++					
			COMI	PUTED KINEMATIC VARIABLE TIM (DT SHOWN IS A	PARAMETER E STEP MINIMUM)	2.S				

Onsite_6hr.out												
ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY				
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)				
MAIN	0.07	1.62	1.71	516.67	1430.15	73.26	1.84	5.13				

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8096E+02 EXCESS=0.0000E+00 OUTFLOW=0.8101E+02 BASIN STORAGE=0.7278E-01 PERCENT ERROR=-0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MZ	AIN	0.07	1	.62	3.00		1428.13	72.00	1.84	
	* * *		* * *		* * *		* * *		* * *			
			HYDR(TRANSP(OGRAPH AT DSITION A	STATI REA	ON F 0.0 S	85-6 SQ MI					
	PEAK FLOW	TIME		6	-HR	MAXIMUN 24-F	I AVERAG	E FLOW	49 95-HR			
+	(CFS)	(HR)	(CF	3)	IIIC	211	iit.	/2 III	19.95 m			
+	1428.	1.20	(INCHE) (AC-F	1 3) 1. r)	53. 715 76.	40 1.81 80). _5).	20. 1.836 81.	20. 1.836 81.			
			CUMUL	ATIVE ARE	A =	0.83 SÇ) MI					
					COMPU (TED KINE VARIABI DT SHOWN	EMATIC F LE TIME I IS A M	PARAMETERS STEP MINIMUM)				
		E	LEMENT	ALPHA	М		DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	AIN	0.07	1	.62	1.72	516.67	1417.75	71.63	1.82	5.12

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8047E+02 EXCESS=0.0000E+00 OUTFLOW=0.8049E+02 BASIN STORAGE=0.7282E-01 PERCENT ERROR=-0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.07	1.62	3.00		1417.68	72.00	1.82	
* * *	* * *	* * *		* * *		* * *			
	HY TRAN	NDROGRAPH AT ST NSPOSITION AREA	ATION 0.5	R5-6 SQ MI					
PEAK FLOW	TIME		MAXIMU	M AVERAG	E FLOW				
+ (CFS)	(HR)	6-HR	24-	HR	72-HR	49.95-HR			
+ 1418.	1.20 (INC (AC	151. 151. 1.703 1.703 C-FT) 75.	4 1.8 8	0. 03 0.	19. 1.824 80.	19. 1.824 80.			
	CUM	MULATIVE AREA =	0.83 S	Q MI					
		CO	MPUTED KIN VARIAB (DT SHOW	EMATIC P LE TIME N IS A M	ARAMETERS STEP INIMUM)				
	ELEMENT	C ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
				(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
	MAIN	0.07	1.62	1.83	516.67	1320.58	72.30	1.76	4.97

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7757E+02 EXCESS=0.0000E+00 OUTFLOW=0.7762E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR=-0.2

	MAIN	0.07	1.62	3.00	1310.29	72.00	1.76
* * *	* * *	**	*	* * *	* * *		
	HYD TRANS	ROGRAPH AT S POSITION ARE	TATION A 2.8	R5-6 SQ MI			
DEAK ELOW	TTME		MAYTM	TM AVEDACE ET). M		

PEAK	FLOW	TIME		MAXIMUM A	AVERAGE FLOW	
			6-HR	24-HR	72-HR	49.95-HR

	((Onsit	e_6hr.out				
+	(CFS)	(HR)	(CFS)								
+	1310.	1.20	(INCHES) (AC-FT)	146. 1.639 72.	1.	39. 739 1 77.	19. .760 78.	19. 1.760 78.			
			CUMULAT	IVE AREA =	0.83 \$	SQ MI					
				COM	IPUTED KIN VARIAN (DT SHOW	NEMATIC PAR BLE TIME ST WN IS A MIN	AMETERS EP IMUM)				
		ELE	EMENT 2	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	N	0.07	1.62	1.92	516.67	1120.07	73.97	1.62	4.65

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7160E+02 EXCESS=0.0000E+00 OUTFLOW=0.7164E+02 BASIN STORAGE=0.7274E-01 PERCENT ERROR=-0.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN		0.07	1.62	3.00		1117.54	75.00	1.62	
	* * *	*	* *	* * *		* * *		* * *			
			HYDROGRA TRANSPOSI	APH AT STA TION AREA	TION 16.0	R5-6 SQ MI					
	PEAK FLOW	TIME			MAXIM	UM AVERAG	E FLOW				
				6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)									
+	1118.	1.25	(INCHES) (AC-FT)	133. 1.500 66.	1.	36. 603 71.	17. 1.624 72.	17. 1.624 72.			
			CUMULATIV	/E AREA =	0.83	SQ MI					
				COM	IPUTED KI VARIA (DT SHO	NEMATIC P BLE TIME WN IS A M	ARAMETERS STEP IINIMUM)				
		ELE	MENT AI	JPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN		0.07	1.62	2.16	516.67	837.38	77.35	1.39	4.17

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6127E+02 EXCESS=0.0000E+00 OUTFLOW=0.6143E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR= -0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.07	1.62	3.00)	834.70	75.00	1.39
	* * *		* * *	* * *		* * *		* * *		
			HYDROGR	APH AT STA	ATION	R5-6				
			TRANSPOSI	TION AREA	90.0	SQ MI				
	PEAK FLOW	TIME			MAXIM	UM AVERA	AGE FLOW			
	(676)	(6-HR	24	-HR	72-HR	49.95-HR		
+	(CFS)	(HR)	(CFS)							
+	835.	1.25	(010)	112.		30.	15.	15.		
			(INCHES)	1.264	1.	371	1.392	1.392		
			(AC-FT)	56.		60.	61.	61.		
			CUMULATI	VE AREA =	0.83	SQ MI				
	* * *		* * *	* * *		* * *		* * *		

		INTERPOLATE	D HYDROGRA	APH AT	R5-6	
PEAK FLOW	TIME		C UD	MAXIMUM	AVERAGE FLOW	40.05 UD
(CFS)	(HR)	(050)	0-HK	24-HR	/ 2-HR	49.95-HK

+	(CFS)	(HR)					
			(CFS)				
+	1386.	1.20		150.	40.	19.	19.
			(INCHES)	1.684	1.785	1.806	1.806
			(AC-FT)	74.	79.	80.	80.

CUMULATIVE AREA = 0.83 SQ MI

Onsite_6hr.out

*** *** *** ***	*** *** *	** *** *** *	** *** **	* *** *** *:	** *** ***	*** *	** *** ***	* * * * * * * * * *	* *** ***	*** *** **	* *** *** *** ***
	* * * * * * * * * * *	****									
131 KK	* SB *	06 * *	BASIN								
	*******	****									
	SUBBAS	IN RUNOFF DA	TA								
132 BA	SUBB	ASIN CHARACT TAREA	ERISTICS 0.14	SUBBASIN ARI	EA						
133 LG	GREE	N AND AMPT L STRTL DTH PSIF XKSAT RTIMP	OSS RATE 0.16 0.25 4.55 0.45 53.00	STARTING LOS MOISTURE DEN WETTING FROM HYDRAULIC CO PERCENT IMPN	SS FICIT NT SUCTION ONDUCTIVITY ERVIOUS ARI	Y EA					
134 UC	CLAR	K UNITGRAPH TC R	0.32 0.24	FIME OF CONC STORAGE COEF	CENTRATION FFICIENT						
135 UA	ACCU	MULATED-AREA 0.0 100.0	VS. TIME 5.0	, 11 ORDINA 16.0 30	ATES 0.0 69	5.0	77.0	84.0	90.0	94.0	97.0
						* * *					
				U CLARK SNYDER	JNIT HYDROO TC= 0.32 TP= 0.19	GRAPH 1 2 HR, 9 HR,	PARAMETERS R= CP=	0.24 HR 0.48			
					UNIT H	HYDROGI	RAPH	,			
	18. 73.	72. 60.	161. 49.	214. 39.	29 END-OF-1 206. 32.	189. 26.	164. 21.	, 136. 17.	111. 14.	90. 11.	
* * *	9.	8.	6. ***	5.	4.	3.	3.	2.	2.		
~ ~ ~		HYDROGRA	PH AT STA	TION SB	Об МТ						
TOTAL R	AINFALL =	2 76 TOT	- 220.1 JOSS =	0.46 T	TTAL EXCESS	5 =	2 30				
PEAK FLOW	TTME	2.70, 101	- 10000 –	MAXIMIM 2	AVERAGE FL	วพ	2.50				
+ (CFS)	(HR)		6-HR	24-HR	72-1	HR	49.95-HR				
+ 422.	0.95	(CFS)	33.	8.	4	4.	4.				
		(INCHES) (AC-FT)	2.285 17.	2.285 17.	2.28	85 7.	2.285 17.				
		CUMULATIV	'E AREA =	0.14 SQ M	II						
***		* * *	* * *		* * *		* * *				
		HYDROGRA TRANSPOSIT	PH AT STA' ION AREA	TION SBO 0.5 SQ	06 MI						
TOTAL R	AINFALL =	2.74, TOI	AL LOSS =	0.46, TC	OTAL EXCESS	S =	2.28				
PEAK FLOW	TIME			MAXIMUM A	AVERAGE FLO	WC					
+ (CFS)	(HR)		6-HR	24-HR	72-1	HR	49.95-HR				
+ 419.	0.95	(CFS)	33.	8.	4	4.	4.				
		(INCHES) (AC-FT)	2.269 16.	2.269 16.	2.20	59 5.	2.269 16.				
		CUMULATIV	'E AREA =	0.14 SQ M	II						
* * *		* * *	* * *		* * *		* * *				
		HYDROGRA TRANSPOSIT	PH AT STA' ION AREA	TION SBO 2.8 SQ	06 MI						
TOTAL R	AINFALL =	2.69, TOI	AL LOSS =	0.50, TC	OTAL EXCESS	S =	2.19				
PEAK FLOW	TIME		6-UD	MAXIMUM A	AVERAGE FLO	WC	49 95-UD				
+ (CFS)	(HR)		0-HK	24-HK	/2-1	.117	49.93-HK				
+ 373.	1.00	(INCHES)	32. 2.181	8. 2.181	2.18	4. 81	4. 2.181				
		(/		2.101	2.1						

		0	nsite_6hr.out	
(AC-FT)	16.	16.	16.	16.

CUMULATIVE AREA = 0.14 SQ MI

* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION SB06 16.0 SQ MI		
TOTAL R	AINFALL =	2.54, TOT.	AL LOSS =	0.53, TOTAL	EXCESS =	2.01
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 316.	1.00	(CFS)	29.	7.	4.	4.
		(INCHES) (AC-FT)	1.997 14.	1.997 14.	1.997 14.	1.997 14.
		CUMULATIV	E AREA =	0.14 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION SB06 90.0 SQ MI		
TOTAL R	AINFALL =	2.23, TOT.	AL LOSS =	0.56, TOTAL	EXCESS =	1.67
PEAK FLOW	TIME		6 110	MAXIMUM AVER	AGE FLOW	
+ (CFS)	(HR)		0-HK	Z4-HK	/ 2-HK	49.90-HK
+ 241.	1.00	(CFS)	24.	б.	3.	3.
		(INCHES) (AC-FT)	1.661 12.	1.661 12.	1.661 12.	1.661 12.
		CUMULATIV	E AREA =	0.14 SQ MI		
* * *		***	* * *	***		* * *
		INTERPOLA	TED HYDROG	RAPH AT SB	06	
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49 95-HP
+ (CFS)	(HR)		0 1110	21 111	, 2 III	19.99 114
+ 420.	0.95	(CFS)	33.	8.	4.	4.
		(INCHES) (AC-FT)	2.272	2.272	2.272	2.272
		CUMULATIV	E AREA =	0.14 SQ MI		
*** *** *** ***	*** *** *	** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** ***
	********	* * * * *				
137 KK	* CP	-6 * C	OMBINE			
	* * * * * * * * * * *	* ****				
		P	RINCESS BL	VD AND SCOTTSD	ALE RD (PR	INCESS BLVD
139 HC	HYDR	OGRAPH COMBI	NATION	IIMBED OF UVDDO		TOMBINE
		TCOMP	2 N	UNDER OF HIDRU	GRAPES IU (~O™D TIN₽
					* * *	

			TRANSPOSIT	ION AREA	0.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	1662.	1.20		185.	49.	24.	24.
			(INCHES)	1.782	1.881	1.900	1.900
			(AC-FT)	92.	97.	98.	98.
			CUMULATIV	E AREA =	0.96 SQ MI		
	***		* * *	***	* * 1	k	* * *

HYDROGRAPH AT STATION CP-6

		TRANSPOSIT	ION AREA	0.5 SQ MI	Onsite_6hr.	out
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1650.	1.20	(CFS)	183.	48.	23.	23.
		(INCHES) (AC-FT)	1.769 91.	1.869 96.	1.887 97.	1.887 97.
		CUMULATIV	E AREA =	0.96 SQ MI		
* * *		* * *	* * *	* * '	*	* * *
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION CP-6 2.8 SQ MI		
PEAK FLOW	TIME		6_UP	MAXIMUM AVE	RAGE FLOW	10 05-UD
+ (CFS)	(HR)		0-nk	24-UK	/2-nr	<i>ч∍.э</i> ⊃-пк
+ 1542.	1.20	(CFS)	176.	47.	23.	23.
		(INCHES) (AC-FT)	1.702 87.	1.801 93.	1.820 93.	1.820 93.
		CUMULATIV	E AREA =	0.96 SQ MI		
* * *		* * *	* * *	**	*	* * *
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION CP-6 16.0 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	40.55
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1308.	1.20	(CFS)	161.	43.	21.	21.
. 19001	1.10	(INCHES) (AC-FT)	1.555 80.	1.659 85.	1.677 86.	1.677 86.
		CUMULATIV	E AREA =	0.96 SQ MI		
* * *		* * *	* * *	* * `	*	* * *
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION CP-6 90.0 SQ MI		
PEAK FLOW	TIME		c	MAXIMUM AVE	RAGE FLOW	40.05
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 982	1.25	(CFS)	135	37	18	18
502.	1.20	(INCHES)	1.305	1.412	1.430	1.430
		(AC-FT)	0/. E AREA -	13. 0 96 90 MT	13.	/3.
* * *		***	- ARDA =	U.90 SV MI	*	* * *
* * *		~ ^ ^	* * *	**	•	~ ~ ~
		INTERPOLA	TED HYDROG	RAPH AT C	P-6	
PEAK FLOW	TIME		6-up	MAXIMUM AVE	RAGE FLOW	49 95-UD
+ (CFS)	(HR)	· ·	0-HK	24-HK	/2-HK	47.70-HK
+ 1609.	1.20	(CFS)	181.	48.	23.	23.
		(INCHES) (AC-FT)	1.743 90.	1.843 95.	1.862 96.	1.862 96.
		CUMULATIV	E AREA =	0.96 SQ MI		
*** *** *** ***	*** *** *	*** *** *** **	** *** ***	*** *** ***	*** *** ***	*** *** ***
	* * * * * * * * * * *	* * * * *				
140 88	*	207 *	BASTN			

140 KK * SB07 * BASIN * * *******

SUBBASIN RUNOFF DATA

141 BA SUBBASIN CHARACTERISTICS TAREA 0.07 SUBBASIN AREA

					0	nsite_6hr.	out				
	142 LG	GREEI	N AND AMPT LO STRTL	OSS RATE 0.21 ST	TARTING LOSS	T					
			PSIF	4.00 WI	TTING FRONT S	UCTION					
			RTIMP	49.00 PI	ERCENT IMPERVI	OUS AREA					
	143 UC	CLARI	K UNITGRAPH TC	0 20 T	ME OF CONCENT	RATION					
			R	0.11 ST	TORAGE COEFFIC	IENT					
	144 UA	ACCUI	MULATED-AREA 0.0	VS. TIME, 5.0 10	11 ORDINATES 5.0 30.0	65.0	77.0	84.0	90.0	94.0	97.0
		:	100.0								
						* * *					
					UNIT CLARK TC SNYDER TP	HYDROGRAPH = 0.20 HR = 0.13 HR	H PARAMETERS , R= 0. , CP= 0.	11 HR 62			
					14 E	UNIT HYDRO	OGRAPH				
		39. 9	156. 6	219. 4	180. 13	0. 84	4. 53.	34.	22.	14.	
	* * *		***	* * *	***		* * *				
			HYDROGRA	PH AT STAT	ION SB07						
			TRANSPOSIT	ION AREA	0.0 SQ MI						
	TOTAL RAI	NFALL =	2.76, TOT	AL LOSS =	0.54, TOTAL	EXCESS =	2.22				
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER. 24-HR	AGE FLOW 72-HR	49.95-HR				
+	(CFS)	(HR)	(CFS)								
+	386.	0.90	(INCHES) (AC-FT)	18. 2.209 9.	4. 2.209 9.	2. 2.209 9.	2. 2.209 9.				
			CUMULATIV	E AREA =	0.07 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRA: TRANSPOSIT	PH AT STAT: ION AREA	ION SB07 0.5 SQ MI						
	TOTAL RAI	NFALL =	2.74, TOT	AL LOSS =	0.54, TOTAL	EXCESS =	2.20				
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49 95-HR				
+	(CFS)	(HR)	(CFS)	0 1110	21 111	/2 1110	19.95 Inc				
+	384.	0.90	(INCHES) (AC-FT)	17. 2.193 9.	4. 2.193 9.	2. 2.193 9.	2. 2.193 9.				
			CUMULATIV	e area =	0.07 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRA TRANSPOSIT	PH AT STAT: ION AREA	ION SB07 2.8 SQ MI						
	TOTAL RAI	NFALL =	2.69, TOT	AL LOSS =	0.58, TOTAL	EXCESS =	2.10				
	PEAK FLOW	TIME		6_UP	MAXIMUM AVER	AGE FLOW	40 05-UD				
+	(CFS)	(HR)		0-HK	24-HK	/2-HR	49.95-HR				
+	308.	0.90	(CFS)	17.	4.	2.	2.				
			(AC-FT)	8.	8.	8.	8.				
			CUMULATIV	E AREA =	0.07 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRA: TRANSPOSIT	PH AT STAT: ION AREA	ION SB07 16.0 SQ MI						
	TOTAL RAI	NFALL =	2.54, TOT	AL LOSS =	0.63, TOTAL	EXCESS =	1.91				
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER. 24-HR	AGE FLOW 72-HR	49.95-HR				
+	(CFS)	(HR)	(CFS)								
+	249.	0.90	(INCHES) (AC-FT)	15. 1.901 8.	4. 1.901 8.	2. 1.901 8.	2. 1.901 8.				
						Page 37					

CUMULATIVE AREA = 0.07 SQ MI

* * *	*	· * *	* * *		* * *		* * *				
		HYDROGR. TRANSPOSI	APH AT STA TION AREA	TION SB 90.0 SQ)7 MI						
TOTAL R	AINFALL =	2.23, TO	TAL LOSS =	0.66, T	DTAL EX	CESS =	1.57				
PEAK FLOW	TIME			MAXIMUM 2	VERAGE	FLOW					
+ (CFS)	(HR)		6-HR	24-HR		72-HR	49.95-HR				
+ 181.	0.90	(CFS)	12. 1.563	3. 1.563		1. 1.563	1. 1.563				
		(AC-FT)	б.	б.		б.	б.				
		CUMULATI	VE AREA =	0.07 SQ I	4I						
***	*	***	***		* * *		* * *				
		INTERPOL	ATED HYDRO	GRAPH AT	SB07						
PEAK FLOW	TIME			MAXIMUM 2	VERAGE	FLOW					
+ (CFS)	(HR)	()	6-HR	24-HR		72-HR	49.95-HR				
+ 384.	0.90	(CFS)	17. 2.197	4. 2.197		2. 2.197	2. 2.197				
		(AC-FT)	9.	9.	47	9.	9.				
		COMOLATI	VE AREA -	0.07 30 1	11						
*** *** ***	*** *** ***	* * * * * * *	*** *** **	* *** *** *	** ***	*** *** *	** *** ***	* *** *** **	* *** ***	*** *** *** *	** *** *** ***
* * *											
	*******	* * * *									
146 KK	* * R7-8	* } *	ROUTE								
	*	*									
		:	HAYDEN ROA	D NORTH CHAI	INEL FR	OM LEGACY	BLVD TO S	SR 101L FREE	EWAY		
	HYDROGRA	APH ROUTIN	G DATA								
148 RK	KINEMA	TIC WAVE	STREAM ROU	TING CHANNEL LENG	чтн						
		S	0.0014	SLOPE	UNFOO	COPPETATE	איזיי				
		CA	0.00	CONTRIBUTIN	G AREA	COEFFICIE	NI				
		SHAPE WD	TRAP 46.00	CHANNEL SHAI BOTTOM WIDTI	PE H OR DI	AMETER					
	N	Z IDXMIN	4.00	SIDE SLOPE MINIMUM NUMI	BER OF	DX INTERV	ALS				
						* * *					
			COM	PUTED KINEMA VARIABLE (DT SHOWN I	ATIC PA TIME S IS A MI	RAMETERS STEP NIMUM)					
	ELE	EMENT A	LPHA	M I	ЭT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
				(M:	EN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)	
	MAIN	1	0.21	1.53	2.79	694.50	374.54	61.97	2.32	4.32	
CONTINUITY	SUMMARY (AC-	FT) - INF	LOW=0.8717	E+01 EXCES	5=0.000	0E+00 OUT	FLOW=0.916	50E+01 BASIN	I STORAGE=0	.1297E-03 PER	CENT ERROR=

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN		0.21 1.53		3.00		36	0.59	63.00	2.31
	* * *		* * *	* * *		* * *					
			HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION R 0.0 S	7-8 Q MI					
	PEAK FLOW	TIME		6-HR	MAXIMUM 24-H	AVERAGE R	FLOW 72-HR	49.9	5-HR		
++	(CFS) 361.	(HR) 1.05	(CFS)	18.	5		2.		2.		

Page 38

(INCHE) (AC-F)	S) 2.31: T) 9	1 2	Ons .314 9.	site_6hr.ou 2.314 9.	t 2.314 9.			
CUMULA	ATIVE AREA :	= 0.07	SQ MI					
	C	OMPUTED K VARI (DT SH	INEMATIC F ABLE TIME OWN IS A M	PARAMETERS STEP IINIMUM)				
ELEMENT	ALPHA	М	DT (MIN)	DX (FT)	PEAK	TIME TO PEAK (MIN)	VOLUME	MAXIMUM CELERITY (FPS)
MAIN	0.21	1.53	2.80	694.50	373.06	62.02	2.31	4.31

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8655E+01 EXCESS=0.0000E+00 OUTFLOW=0.9098E+01 BASIN STORAGE=0.1282E-03 PERCENT ERROR=-5.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	0.21	1.53	3.00		359.23	63.00	2.30	
;	* * *	* * *	* * *		* * *		* * *			
		HYDROGR TRANSPOSI	APH AT STAT FION AREA	TION R7 0.5 SQ	-8 MI					
PEAK 1	FLOW TIM	ME		MAXIMUM	AVERAGE H	FLOW				
+ (CE	2) (UI	D)	6-HR	24-HR	72	2-HR	49.95-HR			
+ (CF.	5) (11	(CFS)								
+ 3!	59. 1.0	05	18.	5.		2.	2.			
		(INCHES)	2.295	2.298	2.	. 298 9	2.298			
		(AC FI)	2.	2.		۶.	2.			
		CUMULATI	VE AREA =	0.07 SQ	MI					
			COME	OUTED KINEM VARIABLE (DT SHOWN	ATIC PARA TIME STE IS A MINI	AMETERS EP IMUM)				
		ELEMENT A	LPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
				(M	IN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	0.21	1.53	3.00	694.50	300.60	62.65	2.18	4.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8267E+01 EXCESS=0.0000E+00 OUTFLOW=0.8591E+01 BASIN STORAGE=0.1511E-03 PERCENT ERROR= -3.9

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	0.21	1.53	3.00		299.77	63.00	2.18		
	* * *	* * *	* * *		* * *		* * *				
		HYDF TRANSI	ROGRAPH AT STA POSITION AREA	ATION 2.8	R7-8 SQ MI						
	PEAK FLOW	TIME		MAXIM	IUM AVERAGE	E FLOW					
+	(CFS)	(HR)	6-HR	24	-HR	72-HR	49.95-HR				
+	300.	(CF 1.05 (INCHE (AC-E	TS) 17. TS) 2.176 T) 9.	2.	4. 178 9.	2. 2.179 9.	2. 2.179 9.				
		CUMUI	ATIVE AREA =	0.07	SQ MI						
			COI	MPUTED KI VARIA (DT SHO	NEMATIC PA ABLE TIME S WN IS A MI	ARAMETERS STEP INIMUM)					
		ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM	
					(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)	
		MAIN	0.21	1.53	3.00	694.50	243.19	65.55	1.99	3.72	
С	ONTINUITY SU	JMMARY (AC-FT) -	INFLOW=0.750	2E+01 EX	CESS=0.000)0E+00 OUT	FLOW=0.786	6E+01 BASIN	STORAGE=0	.1118E-03 PERCE	NT ERROR=

-4.8

MAIN	0.21	1.53	3.00	238.95	66.00	2.00

	* * *	* * *		* * *		* * *		* * *			
		TR	HYDROGRAPH ANSPOSITIC	I AT STAT DN AREA	TION 16.0	R7-8 SQ MI					
	PEAK FLOW	TIME			MAXIMU	JM AVERAGI	E FLOW				
				6-HR	24-	HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(
	220	1 10	(CFS)	16		4	2	2			
Ŧ	239.	1.10	NOURC	1 005	1 0	4.	4.	1 007			
		(1	NCHES)	1.995	1.3	0	1.997	1.997			
		(AC-FI)	8.		8.	8.	8.			
		C	UMULATIVE	AREA =	0.07 \$	SQ MI					
				COME	VUTED KIN VARIAN (DT SHOW	NEMATIC PA BLE TIME S NN IS A MS	ARAMETERS STEP INIMUM)				
		ELEME	NT ALPH	IA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	0.	21	1.53	2.82	555.60	178.83	67.24	1.61	3.33

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6168E+01 EXCESS=0.0000E+00 OUTFLOW=0.6362E+01 BASIN STORAGE=0.1260E-03 PERCENT ERROR=-3.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	EN	0.21	1.53	3.00		176.29	66.00	1.61
	* * *		* * *	* * *		* * *		* * *		
			HYDROGF TRANSPOSI	APH AT STA TION AREA	ATION 90.0	R7-8 SQ MI				
	PEAK FLOW	TIME			MAXIM	JM AVERA	GE FLOW			
				6-HR	24-	-HR	72-HR	49.95-HR		
+	(CFS)	(HR)								
			(CFS)							
+	176.	1.10		13.		3.	2.	2.		
			(INCHES)	1.609	1.0	511	1.611	1.611		
			(AC-FT)	б.		б.	б.	б.		
			CUMULATI	VE AREA =	0.07 \$	SQ MI				
	* * *		* * *	* * *		* * *		* * *		
			INTERPOI	ATED HYDRO	OGRAPH AT	R7-	8			

	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	,	. ,	(CFS)				
+	360.	1.05		18.	5.	2.	2.
			(INCHES)	2.299	2.301	2.301	2.301
			(AC-FT)	9.	9.	9.	9.
			CUMULATIV	E AREA =	0.07 SQ MI		

*** ***

|
 |
|------|------|------|------|------|------|------|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

		* * * * * * * * * * *	* * * *		
		*	*		
149	KK	* SB08	3 *	BASIN	
		*	*		
		*******	* * * *		
		SUBBASIN	I RUNOFF DA	TA	
1 5 0		GUDDA			
150	BA	SUBBAS	SIN CHARACT	ERISTICS	
			TAREA	0.22	SUBBASIN AREA
1 5 1	тC	ODEEN			
191	ЪG	GREEN	AND AMPI D	OSS KAIE	CENDETING LOGG
			STRTL	0.14	STARTING LOSS
			DTH	0.25	MOISTURE DEFICIT
			PSIF	4.10	WETTING FRONT SUCTION
			XKSAT	0.59	HYDRAULIC CONDUCTIVITY
			RTIMP	59.00	PERCENT IMPERVIOUS AREA
152	UC	CLARK	UNITGRAPH		
			TC	0.33	TIME OF CONCENTRATION

Onsite_6hr.out R 0.19 STORAGE COEFFICIENT

	153 UA	ACCU	MULATED-AREA 0.0 5 100.0	VS. TIME, 5.0 1	11 ORDINATES 6.0 30.0	65.0	77.0	84.0	90.0	94.0	97.0
						* * *					
					UNIT CLARK TC= SNYDER TP=	HYDROGRAPH 0.33 HR, 0.19 HR,	PARAMETERS R= 0 CP= 0	.19 HR .55			
		35. 106. 8.	127. 82. 6.	298. 63. 5.	24 EN 409. 385 49. 37 4.	UNIT HYDROG D-OF-PERIOE . 339. . 29.	RAPH ORDINATES 288. 22.	232. 17.	179. 13.	138. 10.	
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION SB08 0.0 SQ MI						
	TOTAL RA	AINFALL =	2.76, TOT#	AL LOSS =	0.42, TOTAL	EXCESS =	2.34				
	PEAK FLOW	TIME			MAXIMUM AVERA	GE FLOW					
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+	796.	0.95	(CFS) (INCHES) (AC-FT)	56. 2.325 28	14. 2.325 28	7. 2.325 28	7. 2.325 28				
			CUMULATIVE	E AREA =	0.22 SQ MI	201	201				
	***		* * *	* * *	* * *		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION SB08 0.5 SQ MI						
	TOTAL RA	AINFALL =	2.74, TOT#	AL LOSS =	0.42, TOTAL	EXCESS =	2.32				
	PEAK FLOW	TIME			MAXIMUM AVERA	GE FLOW					
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+	791.	0.95	(CFS)	56.	14.	7.	7.				
			(INCHES) (AC-FT)	2.309 28.	2.309 28.	2.309 28.	2.309 28.				
			CUMULATIVE	E AREA =	0.22 SQ MI						
	* * *		* * *	* * *	***		* * *				
			HYDROGRAE TRANSPOSITI	PH AT STAT	ION SB08 2.8 SQ MI						
	TOTAL RA	AINFALL =	2.69, TOT#	AL LOSS =	0.46, TOTAL	EXCESS =	2.23				
+	PEAK FLOW (CFS)	TIME (HR)		6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR				
+	686.	1.00	(CFS) (INCHES) (AC-FT)	53. 2.218 26.	13. 2.218 26.	6. 2.218 26.	6. 2.218 26.				
			CUMULATIVE	E AREA =	0.22 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRAE TRANSPOSITI	PH AT STAT ION AREA	ION SB08 16.0 SQ MI						
	TOTAL RA	AINFALL =	2.54, TOT#	AL LOSS =	0.50, TOTAL	EXCESS =	2.04				
	PEAK FLOW	TIME		C UD	MAXIMUM AVERA	GE FLOW	40.05.00				
+	(CFS)	(HR)		0-HK	24-HK	/2-HK	49.90-HK				
+	577.	1.00	(CFS)	49.	12.	6.	6.				
			(INCHES) (AC-FT)	∠.032 24.	2.032	2.032 24.	2.032				
			CUMULATIVE	E AREA =	0.22 SQ MI						
	* * *		* * *	* * *	* * *		* * *				
			HYDROGRAI TRANSPOSITI	PH AT STAT	ION SB08 90.0 SO MI						

				c	Onsite_6hr.	out				
TOTAL RA	AINFALL =	2.23, TOTA	AL LOSS =	0.53, TOTAL	EXCESS =	1.71				
PEAK FLOW	TIME		-	MAXIMUM AVER	RAGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 439.	1.00	(CFS)	41.	10.	5.	5.				
		(INCHES) (AC-FT)	1.699 20.	1.699 20.	1.699 20.	1.699 20.				
		CUMULATIV	E AREA =	0.22 SQ MI						
* * *		* * *	* * *	* * *	r	* * *				
		INTERPOLA	TED HYDROG	RAPH AT SB	308					
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 792.	0.95	(CFS)	56.	14.	7.	7.				
		(INCHES) (AC-FT)	2.311	2.311	2.311	2.311				
		CUMULATIV	E AREA =	0.22 SO MT		-2.				
*** *** *** ***	*** *** *	** *** *** *	** *** ***	*** *** *** *	*** *** ***	*** *** *** **	*** *** *	*** *** ***	* * * * * * * * * * * * * * *	* * *
	* * * * * * * * * * *	* * * * *								
155 KK	* CP	-8 * C(OMBINE							
	******	****			יייי מגסם אי	NEN DOND MODEN	OUANNET \			
		SI	K IUIL FRE	EWAY AND HAYDE	IN ROAD (HAY	LUEN ROAD NORTH	CHANNEL)			
157 HC	HYDR	OGRAPH COMBII	NATION 2 N	UMBER OF HYDRO	GRAPHS TO (COMBINE				
157 HC	HYDR	OGRAPH COMBII ICOMP	NATION 2 N	UMBER OF HYDRO	GRAPHS TO (COMBINE				
157 HC ***	HYDR	OGRAPH COMBII ICOMP	NATION 2 NI ***	UMBER OF HYDRO	OGRAPHS TO (***	COMBINE				
157 HC ***	HYDR	OGRAPH COMBII ICOMP *** HYDROGRAI	NATION 2 NT *** PH AT STAT	UMBER OF HYDRO *** ION _ CP-8	OGRAPHS TO (***	COMBINE ***				
157 HC ***	HYDR	OGRAPH COMBII ICOMP *** HYDROGRAI TRANSPOSIT	NATION 2 N 2 N *** PH AT STAT. ION AREA	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI	OGRAPHS TO (***	COMBINE ***				
157 HC *** PEAK FLOW	HYDR TIME	OGRAPH COMBIN ICOMP *** HYDROGRAI TRANSPOSIT	NATION 2 N *** PH AT STAT ION AREA 6-HR	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR	OGRAPHS TO (*** RAGE FLOW 72-HR	COMBINE *** 49.95-HR				
157 HC *** PEAK FLOW + (CFS)	HYDR TIME (HR)	OGRAPH COMBIN ICOMP *** HYDROGRAN TRANSPOSIT: (CES)	NATION 2 NI *** PH AT STAT. ION AREA 6-HR	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR	OGRAPHS TO (*** RAGE FLOW 72-HR	20MBINE *** 49.95-HR				
157 HC *** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	OGRAPH COMBINICOMP	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2 322	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19.	OGRAPHS TO (*** RAGE FLOW 72-HR 9. 2 322	20MBINE *** 49.95-HR 9. 2.322				
157 HC *** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	OGRAPH COMBIN ICOMP *** HYDROGRAN TRANSPOSIT: (CFS) (INCHES) (AC-FT)	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37.	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37.	OGRAPHS TO (*** RAGE FLOW 72-HR 9. 2.322 37.	20MBINE *** 49.95-HR 9. 2.322 37.				
157 HC *** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	OGRAPH COMBINICOMP **** HYDROGRAITRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVN	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA =	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI	OGRAPHS TO (*** PAGE FLOW 72-HR 9. 2.322 37.	20MBINE *** 49.95-HR 9. 2.322 37.				
157 HC *** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	OGRAPH COMBIN ICOMP *** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI	OGRAPHS TO (*** RAGE FLOW 72-HR 9. 2.322 37.	20MBINE *** 49.95-HR 2.322 37.				
157 HC *** PEAK FLOW + (CFS) + 1041. ***	HYDR TIME (HR) 1.05	COGRAPH COMBINICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI ****	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI ***	OGRAPHS TO (*** RAGE FLOW 72-HR 9. 2.322 37.	20MBINE *** 49.95-HR 9. 2.322 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. ***	HYDR TIME (HR) 1.05	OGRAPH COMBIN ICOMP *** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT:	NATION 2 N *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI	OGRAPHS TO (*** RAGE FLOW 72-HR 9. 2.322 37.	20MBINE *** 49.95-HR 9. 2.322 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW	HYDR TIME (HR) 1.05 TIME	OGRAPH COMBIN ICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT:	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER	AGE FLOW AGE FLOW AGE FLOW AGE FLOW	20MBINE *** 49.95-HR 9. 2.322 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS)	HYDR TIME (HR) 1.05 TIME (HR)	OGRAPH COMBIN ICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT:	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR	DGRAPHS TO (*** AGE FLOW 72-HR 9. 2.322 37. 37. RAGE FLOW 72-HR	20MBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP **** HYDROGRANT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE **** HYDROGRANT TRANSPOSIT: (CFS)	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 6-HR 74.	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18.	DGRAPHS TO (*** AGE FLOW 72-HR 9. 2.322 37. 37. AGE FLOW 72-HR 9.	20MBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR 9.				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBIN ICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVN **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT)	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 6-HR 6-HR 74. 2.306 37.	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37.	DGRAPHS TO (*** AGE FLOW 72-HR 9. 2.322 37. AGE FLOW 72-HR 9. 2.307 37.	20MBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR 49.95-HR 9. 2.307 37.				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 6-HR 74. 2.306 37. E AREA =	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI	AGE FLOW 72-HR 9. 2.322 37. A A AGE FLOW 72-HR 9. 2.307 37.	20MBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 6-HR 74. 2.306 37. E AREA =	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI	AGE FLOW 72-HR 9. 2.322 37. RAGE FLOW 72-HR 9. 2.307 37.	20MBINE *** 49.95-HR 2.322 37. *** 49.95-HR 49.95-HR 9. 2.307 37.				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	<pre>OGRAPH COMBIN ICOMP **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVN **** HYDROGRAI TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVN ****</pre>	NATION 2 N *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	AGE FLOW 72-HR 9. 2.322 37. 2.322 37. 2.327 37. 2.307 37.	COMBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP OGRAPH COMBINICOMP **** HYDROGRANT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRANT (AC-FT) CUMULATIVI **** HYDROGRANT ****	NATION 2 N *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 74. 2.306 37. E AREA = *** PH AT STAT. ION AREA	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	AGE FLOW 72-HR 9. 2.322 37. RAGE FLOW 72-HR 9. 2.307 37.	ХОМВІΝЕ *** 49.95-HR 2.322 37. *** 49.95-HR 2.307 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035. ***	HYDR TIME (HR) 1.05 TIME (HR) 1.05	COGRAPH COMBINICOMP OGRAPH COMBINICOMP **** HYDROGRAIT (CFS) (INCHES) (AC-FT) CUMULATIVIT **** HYDROGRAIT (CFS) (INCHES) (AC-FT) CUMULATIVIT **** HYDROGRAIT ****	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 2.306 37. E AREA = *** PH AT STAT. ION AREA	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	CAGE FLOW 72-HR 9. 2.322 37. RAGE FLOW 72-HR 9. 2.307 37.	20MBINE *** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37. ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035. ***	HYDR TIME (HR) 1.05 TIME (HR) 1.05	CORAPH COMBINICOMP OGRAPH COMBINICOMP **** HYDROGRAIT (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAIT (CFS) (INCHES) (AC-FT) CUMULATIVI **** HYDROGRAIT TRANSPOSIT	NATION 2 N *** PH AT STAT 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA = *** PH AT STAT ION AREA E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	AGE FLOW 72-HR 9. 2.322 37. 2.322 37. 2.322 37. 37. 2.307 37. 37. 2.307 37.	<pre>XMBINE **** 49.95-HR</pre>				
157 HC **** PEAK FLOW + (CFS) + 1041. **** PEAK FLOW + (CFS) + 1035. **** PEAK FLOW + (CFS)	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP OGRAPH COMBINICOMP **** HYDROGRANT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVN **** HYDROGRANT (CFS) (INCHES) (AC-FT) CUMULATIVN **** HYDROGRANT TRANSPOSIT: (CFS)	NATION 2 NI *** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 74. 2.306 37. E AREA = *** PH AT STAT. ION AREA 6-HR 74. 2.306 37. E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI *** ION CP-8 2.8 SQ MI ***	AGE FLOW 72-HR 9. 2.322 37. 2.322 37. 2.327 37. 2.307 37. 37. 2.307 37. 37.	ХОМВІΝЕ *** 49.95-HR 2.322 37. *** 49.95-HR 9. 2.307 37. *** 49.95-HR ***				
157 HC *** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035. *** PEAK FLOW + (CFS) + (CFS) + 937.	HYDR TIME (HR) 1.05 TIME (HR) 1.05	OGRAPH COMBINICOMP COMP	NATION 2 NI *** PH AT STAT. ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT. ION AREA 6-HR 74. 2.306 37. E AREA = *** PH AT STAT. ION AREA 6-HR 74. 2.306 37. E AREA = ***	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI *** ION CP-8 0.30 SQ MI *** ION 2.8 SQ MI ***	AGE FLOW 72-HR 9. 2.322 37. RAGE FLOW 72-HR 9. 2.307 37. 37. A RAGE FLOW 72-HR 9. 2.307 37. 37.	20MBINE *** 49.95-HR 2.322 37. *** 49.95-HR 2.307 37. *** 49.95-HR 9. 2.307 37.				

* * *		* * *	***	***	ŧ	* * *				
		HYDROO TRANSPOS	GRAPH AT STAT SITION AREA	TION CP-8 16.0 SQ MI						
PEAK FLOW	W TIME		6-HR	MAXIMUM AVEF 24-HR	RAGE FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS))							
+ 783.	1.05	(CFS	65.	16.	8.	8.				
		(INCHES (AC-FT) 2.023) 32.	2.023 32.	2.023 32.	2.023 32.				
		CUMULA	FIVE AREA =	0.30 SQ MI						
* * *		* * *	* * *	* * 1	ŧ	* * *				
		HYDROO TRANSPOS	GRAPH AT STAT SITION AREA	TION CP-8 90.0 SQ MI						
PEAK FLOW	W TIME			MAXIMUM AVER	RAGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
(CFD)	(1110)	(CFS)							
+ 561.	1.10	(INCHES	54.) 1.676) 27.	13. 1.677 27.	6. 1.677 27.	6. 1.677 27.				
		CUMULA	FIVE AREA =	0.30 SQ MI						
* * *		* * *	* * *	* * *	÷	* * *				
		INTERPO	OLATED HYDROC	GRAPH AT CI	2-8					
PEAK FLOW	W TIME		C IID	MAXIMUM AVER	RAGE FLOW	40.05 100				
+ (CFS)	(HR)		0-HR	24-HR	/2-HR	49.95-HR				
+ 1035	1 05	(CFS) 74	18	9	9				
. 1000.	1.05	(INCHES (AC-FT) 2.307	2.308	2.308 37.	2.308 37.				
		CUMULA	FIVE AREA =	0.30 SQ MI						
*** *** **	** *** *** *	** *** **	* *** *** ***	* * * * * * * * *	*** *** ***	*** *** ***	*** *** **	* *** ***	*** *** *** **	** *** *** ***

	* * * * * * * * * *	*****								
158 KK	* R8	8-9 *	ROUTE							
	* * * * * * * * * * *	*								
			HAYDEN ROAI	NORTH CHANNEI	G FROM HAYD	EN ROAD TO B	ASIN 53R			
	HYDROG	RAPH ROUT	ING DATA							
160 RK	KINE	MATIC WAVI L S N CA	E STREAM ROUT 1250. (0.0013 S 0.030 (0.000 (TING CHANNEL LENGTH SLOPE CHANNEL ROUGHNE CONTRIBUTING AF	ESS COEFFIC	IENT				
		WD	67.00 E	BOTTOM WIDTH OF	R DIAMETER					
		Z NDXMIN	4.00 S 2 N	SIDE SLOPE	OF DX INTE	RVALS				

			COME	OUTED KINEMATIC VARIABLE TIN (DT SHOWN IS A	C PARAMETER ME STEP A MINIMUM)	S				
	म	LEMENT	ALPHA	M DT	ха	PEAK	TIME TO	VOLUME	MAXIMUM	
	L.			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MA	AIN	0.15	1.56 1.3	32 416.6	7 1031.83	65.57	2.33	5.61	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3691E+02 EXCESS=0.0000E+00 OUTFLOW=0.3702E+02 BASIN STORAGE=0.1702E-03 PERCENT ERROR=-0.3

				Onsite_6hr.out							
		MA	IN	0.15	1.56	3.00		1013.13	66.00	2.33	
	* * *		* * *	* * *		* * *		* * *			
			HYDR TRANSP	OGRAPH AT ST OSITION AREA	ATION 0.	R8-9 0 SQ MI					
	PEAK FLOW	TIME			MAXI	MUM AVERAG	GE FLOW				
+	(CFS)	(HR)	(()	6-HR	2	4-HR	72-HR	49.95-HR			
+	1013.	1.10	(INCHE (AC-F	S) 75. S) 2.329 T) 37.	2	19. .330 37.	9. 2.330 37.	9. 2.330 37.			
			CUMUL	ATIVE AREA =	0.30	SQ MI					
				CO	MPUTED K VARI (DT SH	INEMATIC H ABLE TIME OWN IS A M	PARAMETERS STEP MINIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	0.15	1.56	1.33	416.67	1027.12	65.64	2.31	5.60

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3666E+02 EXCESS=0.0000E+00 OUTFLOW=0.3678E+02 BASIN STORAGE=0.2024E-03 PERCENT ERROR=-0.3

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAI	N	0.15	1.56	3.00		1010.29	66.00	2.32	
	* * *		* * *	***		* * *		* * *			
			HYDRO TRANSPO	GRAPH AT STA SITION AREA	ATION 0.5	R8-9 5 SQ MI					
	PEAK FLOW	TIME			MAXIN	MUM AVERAG	E FLOW				
				6-HR	24	1-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(CFS)							
+	1010.	1.10		74.		19.	9.	9.			
			(INCHES) 2.314	2.	.315	2.316	2.316			
			(AC-FT) 37.		37.	37.	37.			
			CUMULA	TIVE AREA =	0.30	SQ MI					
				COM	IPUTED KI VARIA (DT SHO	INEMATIC P ABLE TIME DWN IS A M	PARAMETERS STEP IINIMUM)				
		EL	EMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAI	N	0.15	1.56	1.45	416.67	913.69	66.38	2.21	5.40

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3510E+02 EXCESS=0.0000E+00 OUTFLOW=0.3519E+02 BASIN STORAGE=0.1735E-03 PERCENT ERROR=-0.3

		MA	AIN	0.15	1.56	3.00		911.34	66.00	2.21	
	* * *		* * *	* * *		* * *		* * *			
			HYDRO TRANSPO	OGRAPH AT STA DSITION AREA	ATION 2.8	R8-9 SQ MI					
F	EAK FLOW	TIME			MAXIM	UM AVERAG	GE FLOW				
				6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)									
			(CFS	5)							
+	911.	1.10	(TNOULD	71.		18.	9.	9.			
			(INCHES		۷.,	214	2.214	2.214			
			(AC-F			55.	55.	55.			
			CUMULA	ATIVE AREA =	0.30	SQ MI					
				COI	MPUTED KII VARIA (DT SHON	NEMATIC I BLE TIME WN IS A N	PARAMETERS STEP MINIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)

MAIN 0.15 1.56 1.48 416.67 772.14 65.64 2.03 5.07

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3216E+02 EXCESS=0.0000E+00 OUTFLOW=0.3228E+02 BASIN STORAGE=0.1954E-03 PERCENT ERROR=-0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAI	N	0.15	1.56	3.00		769.23	66.00	2.03	
	* * *		* * *	* * *		* * *		* * *			
			HYDROG TRANSPOS	RAPH AT STA ITION AREA	ATION 16.0	R8-9 SQ MI					
I	PEAK FLOW	TIME			MAXIM	UM AVERAG	GE FLOW				
+	(CFS)	(HR)		6-HR	24	-HR	72-HR	49.95-HR			
+	769.	1.10	(CFS)	65.		16.	8.	8.			
			(INCHES) (AC-FT)	2.031 32.	2.	033 32.	2.033	2.033 32.			
			CUMULAT	IVE AREA =	0.30	SQ MI					
				COM	MPUTED KI VARIA (DT SHO	NEMATIC E BLE TIME WN IS A N	PARAMETERS STEP MINIMUM)				
		EL	EMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAI	N	0.15	1.56	1.59	416.67	554.15	67.90	1.68	4.50

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2666E+02 EXCESS=0.0000E+00 OUTFLOW=0.2676E+02 BASIN STORAGE=0.1898E-03 PERCENT ERROR=-0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.15	1.56 3	3.00	554.05	69.00	1.68		
	* * *		* * *	* * *	÷	* * *	* * *				
			HYDROGE TRANSPOSI	APH AT STA TION AREA	ATION R8-9 90.0 SQ M	9 MI					
PEAK	FLOW	TIME			MAXIMUM AV	VERAGE FLOW					
+ (CE	FS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 5	554.	1.15	(CFS)	54.	13.	б.	б.				
			(INCHES) (AC-FT)	1.682 27.	1.684 27.	1.684 27.	1.684 27.				
			CUMULATI	VE AREA =	0.30 SQ MI	Ľ					
	* * *		* * *	* * *	ŕ	* * *	* * *				
			INTERPOL	ATED HYDRO	GRAPH AT	R8-9					
PEAK	FLOW	TIME			MAXIMUM AV	VERAGE FLOW					
+ (CE	FS)	(HR)	<i>(</i>)	6-HR	24-HR	72-HR	49.95-HR				
+ 10	010.	1.10	(CFS)	74.	19.	9.	9.				
			(INCHES) (AC-FT)	2.315 37.	2.316 37.	2.316 37.	2.316 37.				
			CUMULATI	VE AREA =	0.30 SQ MI	Ľ					
*** **	** *** :	*** *** *	** *** ***	*** *** **	************	* *** *** ***	*** *** *** *	*** *** ***	* *** *** ***	*** *** *** *	*** *** ***
		* * * * * * * * * * *	****								
161 F	KK -	- * SB	^ 09 *	BASIN							
		*	*								
		*******	* * * * *								

SUBBASIN RUNOFF DATA

							Onsite 6h	.out				
	162	BA	SUBB	ASIN CHARACTI TAREA	ERISTICS 0.05 S	UBBASIN AREA						
	163	LG	GREE	N AND AMPT LO STRTL DTH PSIF XKSAT RTIMP	DSS RATE 0.15 S 0.25 M 4.00 W 0.61 H 55.00 P	TARTING LOSS OISTURE DEFIC ETTING FRONT YDRAULIC COM ERCENT IMPER	CIT SUCTION DUCTIVITY VIOUS AREA					
	164	UC	CLAR	K UNITGRAPH TC R	0.25 T 0.23 S	IME OF CONCE TORAGE COEFF	NTRATION ICIENT					
	165	UA	ACCU	MULATED-AREA 0.0 100.0	VS. TIME, 5.0 1	11 ORDINAT 6.0 30.0	ES 0 65.0	77.0	84.0	90.0	94.0	97.0
							* *	*				
						UN CLARK SNYDER	IT HYDROGRA IC= 0.25 H IP= 0.15 H	PH PARAMETERS R, R= 0 R, CP= 0	.23 HR .42			
						0.7	UNIT HYD	ROGRAPH				
			11. 23. 3	51. 19. 2	86. 15.	89. 12.	82. 10.	70. 56. 8. 6.	45. 5.	36. 4.	29. 3.	
		* * *	5.	***	***	±• **	⊥• **	***				
				HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB09 0.0 SQ M	I					
	Т	OTAL RA	AINFALL =	2.76, TOT	AL LOSS =	0.47, TOT	AL EXCESS =	2.29				
	PEAK	FLOW	TIME		6-HR	MAXIMUM AV 24-HR	ERAGE FLOW 72-HR	49.95-HR				
+	(C	PS)	(HR)	(CFS)								
+		174.	0.95	(INCHES) (AC-FT)	13. 2.280 6.	3. 2.280 6.	2. 2.280 6.	2. 2.280 6.				
				CUMULATIV	E AREA =	0.05 SQ MI						
		* * *		* * *	* * *	*	* *	* * *				
				HYDROGRAI TRANSPOSIT	PH AT STAT LON AREA	ION SB09 0.5 SQ M	I					
	Т	OTAL RA	AINFALL =	2.74, TOT2	AL LOSS =	0.46, TOT	AL EXCESS =	2.27				
	PEAK	FLOW	TIME			MAXIMUM AV	ERAGE FLOW					
+	(C	(FS)	(HR)	((77.7)	6-HR	24-HR	72-HR	49.95-HR				
+		173.	0.95	(INCHES)	13. 2.264	3. 2.264	2. 2.264	2. 2.264				
				CUMULATIV	E AREA =	0.05 SQ MI						
				4 4 4								
		* * *		HYDROGRAN TRANSPOSIT	PH AT STAT	ION SB09 2.8 SQ M	× ×	* * *				
	Т	OTAL RA	AINFALL =	2.69, TOT	AL LOSS =	0.51, TOTA	AL EXCESS =	2.18				
	PEAK	FLOW	TIME			MAXIMUM AV	ERAGE FLOW					
+	(C	(FS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+		153.	0.95	(CFS)	12.	3.	1.	1.				
				(INCHES) (AC-FT)	2.168 6.	2.168 6.	2.168 6.	2.168 6.				
				CUMULATIV	S AREA =	0.05 SQ MI						
		* * *		* * *	* * *	*	* *	* * *				
				HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	ION SB09 16.0 SQ M	I					
	Т	OTAL RA	AINFALL =	2.54, TOT	AL LOSS =	0.55, TOT	AL EXCESS =	1.99				
	PEAK	FLOW	TIME		6-HR	MAXIMUM AV 24-HR	ERAGE FLOW 72-HR	49.95-HR				
+	(C	CFS)	(HR)									

					01	nsite_6hr.	out	
+	127.	0.95	(CFS)	11.	3.	1.	1.	
			(INCHES) (AC-FT)	1.978 5.	1.978 5.	1.978 5.	1.978 5.	
			CUMULATIV	e area =	0.05 SQ MI			
	* * *		* * *	* * *	* * *		* * *	
			HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION SB09 90.0 SQ MI			
	TOTAL R	AINFALL =	2.23, TOTA	AL LOSS =	0.58, TOTAL	EXCESS =	1.65	
I	PEAK FLOW	TIME		6-HP	MAXIMUM AVERA	AGE FLOW	49 95_HP	
+	(CFS)	(HR)	(CEG)	0-HK	24-nk	/2-nk	49.95-nk	
+	96.	0.95	(INCHES) (AC-FT)	9. 1.642 5.	2. 1.642 5.	1. 1.642 5.	1. 1.642 5.	
			CUMULATIV	E AREA =	0.05 SO MI			
	* * *		***	* * *	***		* * *	
			INTERPOLA	FED HYDROG	RAPH AT SBO)9		
I	PEAK FLOW	TIME		6 . III	MAXIMUM AVER	AGE FLOW	40.05.00	
+	(CFS)	(HR)	(777 7)	6-HR	24-HR	72-HR	49.95-HR	
+	173.	0.95	(CFS)	13.	3.	2.	2.	
			(AC-FT)	2.269 6.	2.269 6.	2.269 6.	2.269 6.	
			CUMULATIV	E AREA =	0.05 SQ MI			
* *	** *** ***	*** *** *	** *** *** *	** *** ***	*** *** *** **	* *** ***	*** *** *** **	* *** *** *** ***
***	*							
		* * * * * * * * *	* * * * *					
1	167 KK	* * CD	* _9 * C(MRINE				
-	207 Illi	*	*					
			SI	R 101L FRE	EWAY AND BASIN	53R (HAYDI	EN ROAD NORTH C	HANNEL)
1	169 HC	HYDR	OGRAPH COMBII ICOMP	NATION 2 N	UMBER OF HYDROG	FRAPHS TO (COMBINE	
						* * *		
	* * *		* * *	* * *	* * *		* * *	
			HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION CP-9 0.0 SQ MI			
I	PEAK FLOW	TIME		C IID	MAXIMUM AVERA	AGE FLOW	40.05.10	
+	(CFS)	(HR)	(()	6-HR	24-HR	/2-HR	49.95-HR	
+	1127.	1.10	(INCHES)	87. 2.322 43.	22. 2.323 43.	11. 2.323 43.	11. 2.323 43.	
			CUMULATIV	E AREA =	0.35 SQ MI			
	***		* * *	* * *	* * *		* * *	
			HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION CP-9 0.5 SQ MI			
I	PEAK FLOW	TIME			MAXIMUM AVERA	AGE FLOW		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+	1124.	1.10	(CFS)	87.	22.	10.	10.	
			(INCHES)	2 307	2.308	2 308	2.308	
			(AC-FT)	43.	43.	43.	43.	

*** *** *** *** *** ***

* * *

				(Onsite_6hr.	out	
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	'ION CP-9 2.8 SO MI			
DEAK ELON	ттме			MAYTMIM AVE	ACE ELON		
FLAR FLOW	TIME		6-HR	24-HR	72-HR	49.95-HR	
+ (CFS)	(HR)	(CFS)					
+ 1023.	1.10	(INCHES) (AC-FT)	83. 2.206 41.	21. 2.207 41.	10. 2.207 41.	10. 2.207 41.	
		CUMULATIV	E AREA =	0.35 SQ MI			
* * *		* * *	* * *	* * *		* * *	
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	'ION CP-9 16.0 SQ MI			
PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+ 969	1 10	(CFS)	76	10	٩	٩	
+ 009.	1.10	(INCHES) (AC-FT)	2.023 38.	2.024 38.	2.025 38.	2.025 38.	
		CUMULATIV	E AREA =	0.35 SQ MI			
***		* * *	* * *	***		* * *	
		HYDROGRAI TRANSPOSIT	PH AT STAT ION AREA	'ION CP-9 90.0 SQ MI			
PEAK FLOW	TIME		C UD	MAXIMUM AVEF	RAGE FLOW	40.05.00	
+ (CFS)	(HR)		0-HK	24-RK	/2-nk	49.95-nk	
+ 622.	1.15	(CFS)	63.	16.	8.	8.	
		(INCHES) (AC-FT)	1.676 31.	1.678 31.	1.678 31.	1.678 31.	
		CUMULATIV	E AREA =	0.35 SQ MI			
* * *		* * *	* * *	* * *		* * *	
		INTERPOLA	FED HYDROG	RAPH AT CI	9-9		
PEAK FLOW	TIME			MAXIMUM AVEF	RAGE FLOW		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+ 1124	1 10	(CFS)	87	22	10	10	
·	1.10	(INCHES) (AC-FT)	2.307 43.	2.309 43.	2.309 43.	2.309 43.	
		CUMULATIV	E AREA =	0.35 SQ MI			
***	*** *** *	** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** ***	*** *** *** *** *** *** *** *** *** *** ***
	******	* * * * *					
170 KK	* * DTMA	* /// *					
1,0 100	*	*					
		P: 10	IMA ROAD C D0-YR, 6-H	HANNEL HYDROGF IR FLO-2D MODEI	APH FROM P (XS 183)	INNACLE PEAK	SOUTH ADMS
	SUBBAS	SIN RUNOFF DA	ГА				
173 BA	SUBB	ASIN CHARACTI	ERISTICS				
		TAREA	12.30 S	UBBASIN AREA	***		
				-			
* * *		* * *	* * *	***	f	* * *	
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	ION PIMACH 0.0 SQ MI			
PEAK FLOW	TIME		-	MAXIMUM AVER	AGE FLOW		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+ 4017.	5.50	(CFS)	1092.	292.	146.	146.	
		(INCHES)	0.825	0.884	0.919	0.919	

Page 48

Onsite_6hr.out (AC-FT) 541. 580. 603. 603.

CUMULATIVE AREA = 12.30 SQ MI

***		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STATION AREA	FION PIMACH 0.5 SQ MI		
PEAK FLOW	TIME		C UD	MAXIMUM AVER	AGE FLOW	40.05 HD
+ (CFS)	(HR)		0-nk	24-nk	/2-nk	49.95-nk
+ 4017.	5.50	(INCHES) (AC-FT)	1092. 0.825 541.	292. 0.884 580.	146. 0.919 603.	146. 0.919 603.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STATION AREA	FION PIMACH 2.8 SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49 95-HR
+ (CFS)	(HR)	(CFG)	0 1110	24 1110	72 110	49.95 m
+ 4017.	5.50	(INCHES) (AC-FT)	1092. 0.825 541.	292. 0.884 580.	146. 0.919 603.	146. 0.919 603.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION PIMACH 16.0 SQ MI		
PEAK FLOW	TIME		6 UD	MAXIMUM AVER	AGE FLOW	40.05 UD
+ (CFS)	(HR)	(CEC)	0-nk	24-nk	/2-nk	49.95-nk
+ 4017.	5.50	(INCHES) (AC-FT)	1092. 0.825 541.	292. 0.884 580.	146. 0.919 603.	146. 0.919 603.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STATION AREA	FION PIMACH 90.0 SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49 95-HR
+ (CFS)	(HR)	(CES)	0 1110		, <u>2</u>	19199 111
+ 4017.	5.50	(INCHES) (AC-FT)	1092. 0.825 541.	292. 0.884 580.	146. 0.919 603.	146. 0.919 603.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		INTERPOLA	TED HYDRO	GRAPH AT PIMA	СН	
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49 95-HP
+ (CFS)	(HR)	(CFC)	5 111	21 111	, 2 III	12.25 IIK
+ 4017.	5.50	(INCHES) (AC-FT)	1092. 0.825 541.	292. 0.884 580.	146. 0.919 603.	146. 0.919 603.

CUMULATIVE AREA = 12.30 SQ MI

	* *		Oi	nsite_6hr.	out	
	*****	BYPASS ALONG	SE SIDE OF BAS	IN 53R TO	ADOT CULVERT N	IEAR UNION
DT	DIVERSION ISTAD	PIMABY DI	VERSION HYDROG	RAPH IDENT	FIFICATION	
DI	INFLOW	0.00 100	0.00 10000.00	1		
DQ	DIVERTED FLOW	0.00 100	0.00 1000.00	1		

* * *	* * *	* * *	* * *		* * *	
	DIVERS	SION HYDROGRAP SITION AREA	H PIMABY 0.0 SQ MI			
PEAK FLOW	TIME	6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR) (CFS)	1				
+ 1000.	4.95 (INCHES) (AC-FT)	605. 0.458 300.	171. 0.516 338.	88. 0.551 361.	88. 0.551 361.	
	CUMULAT	TIVE AREA =	12.30 SQ MI			
* * *	* * *	* * *	* * *		* * *	
	HYDROC TRANSPOS	GRAPH AT STATI SITION AREA	ON PIMAIN 0.0 SQ MI			
PEAK FLOW	TIME	6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR) (CFS)					
+ 3017.	5.50 (INCHES)	486. 0.368	122. 0.368	58. 0.368	58. 0.368	
	(AC-FT) CUMULAT	TIVE AREA =	241. 12.30 SQ MI	241.	241.	
* * *	* * *	* * *	* * *		* * *	
	DIVERS	SION HYDROGRAP SITION AREA	H PIMABY 0.5 SQ MI			
PEAK FLOW	TIME	6 UD	MAXIMUM AVERA	GE FLOW	40.0E UD	
+ (CFS)	(HR)	0-nk	24-nk	/2-nk	49.95-nk	
+ 1000.	4.95 (INCHES) (AC-FT)	605. 0.458 300.	171. 0.516 338.	88. 0.551 361.	88. 0.551 361.	
	CUMULAT	TIVE AREA =	12.30 SQ MI			
* * *	* * *	* * *	* * *		* * *	
	HYDROO TRANSPOS	GRAPH AT STATI SITION AREA	ON PIMAIN 0.5 SQ MI			
PEAK FLOW	TIME	6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR	
+ 3017.	(CFS)	486.	122.	58.	58.	
	(INCHES) (AC-FT)	0.368	0.368 241.	0.368 241.	0.368	
	CUMULAT	TIVE AREA =	12.30 SQ MI			
* * *	* * *	* * *	* * *		* * *	
	DIVERS	SION HYDROGRAP SITION AREA	H PIMABY 2.8 SQ MI			
PEAK FLOW	TIME	6-HR	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR)					
+ 1000.	4.95 (INCHES)	605. 0.458	171. 0.516	88. 0.551	88. 0.551	
	(AC-FT) CUMULAT	300. CIVE AREA =	338. 12.30 sq mi	361.	361.	
* * *	* * *	* * *	* * *		* * *	

* * *

* * *

* * *

HILLS DR

		HYDROGRA TRANSPOSIT	PH AT STATION AREA	FION PIMAIN 2.8 SQ MI		
PEAK FLOW	TTME			MAXIMUM AVER	AGE FLOW	
(CEC)	(110)		6-HR	24-HR	72-HR	49.95-HR
+ (CFS)	(пк)	(CFS)	105	100	50	50
+ 3017.	5.50	(INCHES) (AC-FT)	486. 0.368 241.	0.368 241.	58. 0.368 241.	58. 0.368 241.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		DIVERSIO TRANSPOSIT	N HYDROGRA ION AREA	APH PIMABY 16.0 SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)					
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES) (AC-FT)	0.458 300.	0.516 338.	0.551 361.	0.551 361.
		CUMULATIV	E AREA =	12.30 SQ MI		
***		* * *	* * *	***		* * *
		HYDROGRA TRANSPOSIT	PH AT STAT	FION PIMAIN 16.0 SQ MI		
PEAK FLOW	TIME		6	MAXIMUM AVER	AGE FLOW	40.05.00
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 3017.	5.50	(CFS)	486.	122.	58.	58.
		(INCHES) (AC-FT)	0.368 241.	0.368 241.	0.368 241.	0.368 241.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	***	***		* * *
		DIVERSIO TRANSPOSIT	N HYDROGRA ION AREA	APH PIMABY 90.0 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES)	0.458	0.516	0.551	0.551
		CUMULATIV	E AREA =	12.30 SQ MI	5011	5011
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STAT	TION PIMAIN 90.0 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 3017	5.50	(CFS)	486	122	58	58
		(INCHES) (AC-FT)	0.368 241.	0.368 241.	0.368 241.	0.368 241.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	***		* * *
	IN	ITERPOLATED D	IVERSION H	HYDROGRAPH AT	PIMABY	

PEAK FLOW		TIME	MAXIMUM AVERAGE FLOW						
		(6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)	(CFS)						
+	1000.	4.95	()	605.	171.	88.	88.		
			(INCHES)	0.458	0.516	0.551	0.551		
			(AC-FT)	300.	338.	361.	361.		
			CUMULATIVE	E AREA =	12.30 SQ MI				

***		* * *	* * *	***		* * *
		INTERPOLA	TED HYDROG	RAPH AT PIMAI	IN	
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR	AGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 3017.	5.50	(INCHES)	486. 0 368	122. 0 368	58. 0 368	58. 0 368
		(AC-FT)	241.	241.	241.	241.
		CUMULATIV	E AREA =	12.30 SQ MI		
*** *** ***	* * * * * * * *	** *** *** *	** *** ***	* * * * * * * * * * * *	** *** ***	*** *** ***

	*	*				
216 KK	* PWR(CH * *				
	*******	**** P(OWERLINE C	HANNEL HYDROGRA	APH FROM F	LO-2D
		1	00-YR, 6-H	IR FLO-2D MODEL	(XS 107)	
	SUBBAS	IN RUNOFF DAT	ГА			
219 BA	SUBB	ASIN CHARACTI	ERISTICS	UBBASIN AREA		
					* * *	
* * *		* * *	* * *	* * *		* * *
		UVDDOCDA	 נות אית פיתיאים	ידסתעות אסיי		
		TRANSPOSIT	ION AREA	0.0 SQ MI		
PEAK FLOW	TIME		-	MAXIMUM AVER	AGE_FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 740.	5.80	(CFS)	432.	136.	75.	75.
		(INCHES)	0.574	0.724 270	0.826	0.826
		CIIMIILATIVI	E AREA =	7 00 SO MT	500.	500.
***		* * *	* * *	* * *		* * *
		HYDROGRA	PH AT STAT	TION PWRCH		
		TRANSPOSIT	lon area	U.5 SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR	AGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 740.	5.80	(INCHES)	432. 0.574	136. 0.724	75. 0.826	75. 0.826
		(AC-FT)	214.	270.	308.	308.
		CUMULATIV	E AREA =	7.00 SQ MI		
***		* * *	* * *	* * *		* * *
***		INVERSE				
		HYDROGRAI TRANSPOSIT	ph at stat Ion area	2.8 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVERA	AGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 740.	5.80	(CFS)	432.	136.	75.	75.
		(INCHES)	0.574	0.724	0.826	0.826
		CIIMIII.ATTV	E AREA -	7 00 SO MT	500.	500.
		COMOLATIV	- ANDA -	1.00 JUMI		
***		* * *	* * *	***		***
		HYDROGRA	PH AT STAT	TION PWRCH		
		TRANSPOSIT	LON AREA	16.U SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR	AGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)					

Onsite_6hr.out

					0	nsite_6hr.	out
+	740.	5.80	(CFS) (INCHES) (AC-FT)	432. 0.574 214.	136. 0.724 270.	75. 0.826 308.	75. 0.826 308.
			CUMULATIV	E AREA =	7.00 SQ MI		
	* * *		* * *	* * *	* * *		* * *
			HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION PWRCH 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	740.	5.80	(INCHES) (AC-FT)	432. 0.574 214.	136. 0.724 270.	75. 0.826 308.	75. 0.826 308.
			CUMULATIV	E AREA =	7.00 SQ MI		
	* * *		* * *	* * *	* * *		+++

INTERPOLATED HYDROGRAPH AT PWRCH

PEAK FLOW TIME				MAXIMUM AVER	AGE FLOW		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	740.	5.80		432.	136.	75.	75.
			(INCHES)	0.574	0.724	0.826	0.826
			(AC-FT)	214.	270.	308.	308.
			CUMULATIV	E AREA =	7.00 SQ MI		

*** ***

*	*	*	
---	---	---	--

	* * * * * * * * *	* * * * *										
	*	*										
257 KK	* BINF	'LO *										
	*	*										
	* * * * * * * * *	* * * * *										
			FOTAL INFLO	OW INTO BASIN	53R.							
259 HC	HYDF	OGRAPH COMBI	NATION									
		ICOMP	3 NU	JMBER OF HYDRO	GRAPHS TO C	COMBINE						

+++		* * *	* * *	+ + +		* * *						
		HYDROGRA	יייע אין	ON BINELO								
		TRANSPOSIT	ION AREA									
		IIIANDFODII.	LON AREA	0.0 50 111								
PEAK FLOW	TIME			MAXIMUM AVEF	AGE FLOW							
			6-HR	24-HR	72-HR	49.95-HR						
+ (CFS)	(HR)											
		(CFS)										
+ 3634.	5.50		919.	277.	144.	144.						
		(INCHES)	0.435	0.523	0.566	0.566						
		(AC-FT)	456.	549.	593.	593.						
		CUMULATIV	E AREA =	19.65 SQ MI								
			.	د بد بد		<u>بد</u> بد بد						
***		* * *	* * *	***		* * *						
		UVDDOCDA	ייע איי פייאייז									
		TRANSDOGTT	ION APPA	0 5 SO MT								
		IIIANDFODII.	LON AREA	0.5 50 111								
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW							
			6-HR	24-HR	72-HR	49.95-HR						
+ (CFS)	(HR)											
,		(CFS)										
+ 3634.	5.50		919.	276.	144.	144.						
		(INCHES)	0.435	0.523	0.565	0.565						
		(AC-FT)	456.	548.	593.	593.						
		CUMULATIV	E AREA =	19.65 SQ MI								
***		* * *	* * *	د بد بد		+++						
* * *			~ ^ ^	***		~ ^ ^						
		UVDDOCDA	ישגים שע מר	ON DINELO								
		TRANCOCTT	ION APPA	2 8 60 MT								
		INAMOPOSII.	LOW AUGA	2.0 SQ MI								
					011	ISICC_OUL.O	uc					
-------------	-----------------	------------------------------	-------------------------------------	-----------------------------------	--	--	---	--------------------------	------------	-----------	--------------	-------
PEAK FLOW	TIME			MAXI	MUM AVERA	GE FLOW						
+ (CFS)	(HR)		6-HI	ε 2	4-HR	72-HR	49.95-HR					
+ 3634.	5.50	(CFS)	919 0.435 456	5 0	275. .521 546	143. 0.564 591	143. 0.564					
		CUMULAT	IVE AREA =	= 19.65	SQ MI	591.	591.					
* * *		* * *	* * 3	ŧ	* * *		* * *					
		HYDROGI TRANSPOSI	RAPH AT SI ITION AREA	ATION 16.	BINFLO 0 SQ MI							
PEAK FLOW	TIME		6-88	MAXI	MUM AVERA	GE FLOW 72-HR	49 95-HR					
+ (CFS)	(HR)	(CFS)	0 111			, <u> </u>	19199 111					
+ 3634.	5.50	(INCHES) (AC-FT)	919 0.435 456	5 0	274. .518 543.	142. 0.560 587.	142. 0.560 587.					
		CUMULAT	IVE AREA =	= 19.65	SQ MI							
* * *		* * *	***	ŧ	* * *		* * *					
		HYDROGI	RAPH AT SI	TATION	BINFLO							
		TRANSPOS	ITION AREA	90.	0 SQ MI							
PEAK FLOW	TIME		6-HI	MAXI R 2	MUM AVERA 4-HR	GE FLOW 72-HR	49.95-HR					
+ (CFS)	(HR)	(CFS)	010		0.7.0	1 4 1	1 4 1					
+ 3634.	5.50	(INCHES) (AC-FT)	0.435 456	5 0	.512 536.	141. 0.554 581.	141. 0.554 581.					
		CUMULAT	IVE AREA =	19.65	SQ MI							
* * *		* * *	***	÷	* * *		* * *					
		INTERPOI	LATED HYDE	OGRAPH A	T BINFL	0						
PEAK FLOW	TIME	INTERCO		махт	MIIM AVERA	GE FLOW						
+ (CFS)	(HR)		6-HI	2 2	4-HR	72-HR	49.95-HR					
+ 3634.	5.50	(CFS)	919.		273.	142.	142.					
		(INCHES) (AC-FT)	0.435 456	5 0	.517 542.	0.560 587.	0.560 587.					
		CUMULAT	IVE AREA =	= 19.65	SQ MI							
*** *** ***	* * * * * * * *	** *** ***	*** ***	*** *** *	** *** **	* * * * * * * *	*** *** ***	*** *** *	** *** ***	*** *** *	** *** *** :	* * *
* * *												
	*******	* * * * *										
260 KK	* BAS	* IN *										
	*******	****				000000 000						
		I	ELEV 1594 OUTFLOW H THE OUTLI	AND 1615 AND 1615 RATING CU	E FROM PRO ; BASIN S RVE FROM (ARE INLET	IDE SLOPES CULVERTMAS CONTROLLEI	STEEPENED STEEPENED TER FOR 2-6 D.	EN TO 3:1 O" PIPES				
	HYDROG	RAPH ROUTII	NG DATA									
265 RS	STOR.	AGE ROUTING	3			211 2						
		NSTPS ITYP RSVRIC X	1 STOR 0.00 0.00	TYPE OF INITIAL WORKING	CONDITION CONDITION R AND D C	CHES CONDITION N OEFFICIENT						
266 SV	ST	ORAGE	0.0	44.9	76.8	108.7	140.6	171.5	202.5	233.5	264.5	
295.5			328.7	362.0	395.2	428.5	461.7	497.2	532.7	568.3	603.8	
268 SE	ELEV.	ATION 2	1594.00	1597.00	1598.00	1599.00	1600.00	1601.00	1602.00	1603.00	1604.00	
1605.00		2	1606.00	1607.00	1608.00	1609.00	1610.00	1611.00	1612.00	1613.00	1614.00	
1615.00												

* * *

				Onsi	te_6hr.out					
270 SQ	DISCHARGE	0.	95.	153.	210.	244.	265.	284.	303.	320.
477.		353.	369.	384.	398.	412.	426.	439.	452.	465.

* * *

* * *

* * *

* * * HYDROGRAPH AT STATION BASIN RANSPOSITION AREA 0.0 SO MT

* * *

* * *

+

			IRANSPOSII	ION AREA	0.0 SQ M.	L	
1	PEAK FLOW	TIME			MAXIMUM AVI	ERAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(27 2)				
	262	0 20	(CFS)	255	250	1.4.1	1.4.1
Ŧ	303.	0.30	(INCHES)	0 168	0 474	0 556	0 556
			(AC-FT)	176.	496.	582.	582.
Pl	EAK STORAGE	TIME			MAXIMUM AVE	RAGE STORAGE	
		(110)		6-HR	24-HR	72-HR	49.95-HR
Ŧ	(AC-F1) 351	(nk) 8 30		332	189	101	101
	551.	0.50		552.	105.	101.	101.
1	PEAK STAGE	TIME			MAXIMUM AVI	ERAGE STAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(FEET)	(HR)		1606 11	1601 55	1500 00	1500 00
	1000.08	8.30		1000.11	1601.55	1598.29	1598.29
			CUMULATIV	E AREA =	19.65 SO MT		
	* * *		* * *	***	*:	* *	* * *
			HYDROGRA	PH AT STAT	TTON BASTN		
			TRANSPOSIT	ION AREA	0.5 SO M	Ľ	
					~		
1	PEAK FLOW	TIME			MAXIMUM AVI	ERAGE FLOW	
	(070)	(6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CES)				
+	363.	8.30	(CFS)	355.	250.	141.	141.
			(INCHES)	0.168	0.474	0.555	0.555
			(AC-FT)	176.	496.	582.	582.
		min					
P	EAK STORAGE	TIME		6_UD	MAXIMUM AVE	RAGE STORAGE	10 05 UD
+	(AC-FT)	(HR)		0-nk	24-nK	/2-nk	49.95-HK
	351.	8.30		332.	189.	100.	100.
1	PEAK STAGE	TIME		6 . HR	MAXIMUM AVI	ERAGE STAGE	40.05.000
		(110)		6-HR	24-HR	72-HR	49.95-HR
Ŧ	1606 67	(nk) 8 30		1606 11	1601 55	1598 28	1598 28
	2000107	0.50		1000111	1001.00	1000.20	1000120
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		* * *	***	*	**	* * *
			HYDROGRA	PH AT STAT	TION BASIN		
			TRANSPOSIT	ION AREA	2.8 SQ M	Ľ	
1	PEAK FLOW	TIME		6_UD	MAXIMUM AVI	SRAGE FLOW	
+	(CFS)	(HR)		0-nk	24-UK	/ 2 - nr.	49.90-HR
-	(== = /	()	(CFS)				
+	363.	8.30		354.	250.	141.	141.
			(INCHES)	0.168	0.473	0.553	0.553
			(AC-FT)	176.	495.	580.	580.

		(110 1 1 /	1/01	1951	500.	500.
PEAK STORAGE	TIME		6 IID	MAXIMUM AVER	AGE STORAGE	40.05 UD
	(0-HR	Z4-HR	/2-HR	49.95-HR
+ (AC-FT)	(HR)					
350.	8.30		331.	188.	100.	100.
PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
			6-HR	24-HR	72-HR	49.95-HR
+ (FEET)	(HR)					
1606.65	8.30		1606.08	1601.53	1598.27	1598.27
		CUMULATIV	e area =	19.65 SQ MI		
* * *		* * *	* * *	* * :	*	* * *

HYDROGRAPH AT STATION BASIN TRANSPOSITION AREA 16.0 SQ MI MAXIMUM AVERAGE FLOW 24-HR 72-HR PEAK FLOW TIME

6-HR 72-HR 49.95-HR (CFS) (HR) (CFS)

						Onsite_6hr.c	out
+	362.	8.30		353.	249.	140.	140.
			(INCHES)	0.167	0.471	0.550	0.550
			(AC-FT)	175.	494.	577.	577.
PE	AK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(AC-FT)	(HR)					
	349.	8.35		330.	187.	99.	99.
Pl	EAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(FEET)	(HR)					
	1606.61	8.30		1606.04	1601.50	1598.24	1598.24
			CUMULATIV	e area =	19.65 SQ MI		
	* * *		* * *	* * *	* *	*	* * *
			HYDROGRA	PH AT STAT	TION BASIN		
			TRANSPOSIT	ION AREA	90.0 SQ MI		
Pl	EAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	361.	8.35		352.	247.	138.	138.
			(INCHES)	0.167	0.468	0.544	0.544
			(AC-FT)	175.	491.	570.	570.
PE	AK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(AC-FT)	(HR)					
	346.	8.35		327.	185.	98.	98.
Pl	EAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(FEET)	(HR)					
-	1606.52	8.35		1605.96	1601.44	1598.18	1598.18
			CUMULATIV	e area =	19.65 SQ MI		
	* * *		***	* * *	* *	· *	* * *

			INTERPOLA	TED HYDROG	GRAPH AT BAS	IN	
	PEAK FLOW	TIME			MAXIMUM AVEF	AGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	362.	8.30		353.	249.	140.	140.
			(INCHES)	0.167	0.471	0.550	0.550
			(AC-FT)	175.	493.	576.	576.
			CUMULATIV	E AREA =	19.65 SQ MI		

 $2-60\,"$ CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY. DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE EXCESS CAPACITY.

HYDROGRAPH ROUTING DATA

276	RK	KINEMATIC WAVE	STREAM RO	UTING
		L	550.	CHANNEL LENGTH
		S	0.0052	SLOPE
		N	0.024	CHANNEL ROUGHNESS COEFFICIENT
		CA	0.00	CONTRIBUTING AREA
		SHAPE	CIRC	CHANNEL SHAPE
		WD	7.00	BOTTOM WIDTH OR DIAMETER
		Z	0.00	SIDE SLOPE
		NDXMIN	2	MINIMUM NUMBER OF DX INTERVALS

* * *

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	3.34	1.25	0.29	183.33	363.48	498.70	0.56	10.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5822E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 5.57 1.25 5.00 505.70	501.00	0.56
*** *** *** ***		
HYDROGRAPH AT STATION BSNRT1 TRANSPOSITION AREA 0.0 SQ MI		
PEAK FLOW TIME MAXIMUM AVERAGE FLOW		
6-HR 24-HR 72-HR 49.95-HR		
+ (CFS) (HR)		
(CFS)		
+ 363. 8.35 355. 250. 141. 141.		
(INCHES) 0.168 0.474 0.556 0.556		

(AC-FT)

582.

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT **** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

		(,				
ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	3.34	1.25	0.29	183.33	363.42	498.84	0.56	10.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5819E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	3.34	1.25	3.00	363.42	501.00	0.56
	* * *		* * *	* * *		* * *	* * *		
			HYDROGR# TRANSPOSIT	APH AT STA FION AREA	TION BSN 0.5 S	RT1 Q MI			
1	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-H	r 72-hr	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	363.	8.35		355.	250	. 141.	141.		
			(INCHES)	0.168	0.47	4 0.555	0.555		
			(AC-FT)	176.	496	. 582.	582.		

CUMULATIVE AREA = 19.65 SQ MI

Onsite_6hr.out COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	3.34	1.25	0.45	183.33	363.06	498.87	0.55	10.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5801E+03 EXCESS=0.0000E+00 OUTFLOW=0.5800E+03 BASIN STORAGE=0.3288E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	3.34	1.25	3.00		363.06	501.00	0.55	
	* * *		* * *	* * *		* * *		* * *			
			HYDR(TRANSP(OGRAPH AT ST. OSITION AREA	ATION 2.	BSNRT1 8 SQ MI					
	PEAK FLOW	TIME		6-HR	MAXII	MUM AVERAG 4-HR	E FLOW 72-HR	49.95-HR			
+	(CFS)	(HR)	(CF	5)	_						
+	363.	8.35	(INCHE) (AC-F	354. S) 0.168 F) 176.	0	250. .473 495.	141. 0.553 580.	141. 0.553 580.			
			CUMUL	ATIVE AREA =	19.65	SQ MI					
				CO	MPUTED K VARI (DT SH	INEMATIC P ABLE TIME OWN IS A M	ARAMETERS STEP INIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	3.34	1.25	0.38	183.33	362.38	500.88	0.55	10.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5767E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3287E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	3.34	1.25	3.00		362.38	501.00	0.55	
* *	*	* * *	* * *		* * *		* * *			
		HYDROG TRANSPOS	RAPH AT STA ITION AREA	TION E 16.0	SNRT1 SQ MI					
PEAK FL	OW TIME	2		MAXIM	IUM AVERAG	E FLOW				
(()		6-HR	24	-HR	72-HR	49.95-HR			
+ (CFS)	(HR)	(CFS)								
+ 362	. 8.35	5	353.	2	49.	140.	140.			
		(INCHES) (AC-FT)	0.167 175.	0. 4	471 94.	0.550 577.	0.550 577.			
		CUMULAT	IVE AREA =	19.65	SQ MI					
			COM	IPUTED KI VARIA (DT SHC	NEMATIC P. BLE TIME : WN IS A M	ARAMETERS STEP INIMUM)				
		ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
					(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	3.34	1.25	0.34	183.33	361.10	501.33	0.54	10.65

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5702E+03 BASIN STORAGE=0.3284E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	3.34	1.25	3.00	361.10	501.00	0.54
* * *	* * *	* * :	*	* * *	* * *		
	HYDR(TRANSP	OGRAPH AT S	TATION B A 90.0	SNRT1 SO MI			

						Onsi	ite_6hr.o	ut				
P	EAK FLOW	TIME			MAXIMUM	I AVERAGE	FLOW					
+	(CFS)	(HR)		6-HR	24-н	IR	72-HR	49.95-HR				
+	361.	8.35	(CFS)	352.	248		138.	138.				
	5011	0.00	(INCHES) (AC-FT)	0.167 175.	0.46 491	8	0.544 570.	0.544 570.				
			CUMULAT	IVE AREA =	19.65 SQ) MI						
	* * *		* * *	***		* * *		* * *				
			INTERPO	LATED HYDR	OGRAPH AT	BSNRT1						
Ρ	EAK FLOW	TIME		6-HR	MAXIMUM 24-H	I AVERAGE	FLOW	49 95-HR				
+	(CFS)	(HR)		0 1110	21 11	iit.	/2 1110	19.95 Inc				
+	362.	8.35	(TNCHES)	353. 0 167	249). /1	140.	140. 0 549				
			(AC-FT)	175.	494		576.	576.				
			CUMULAT	IVE AREA =	19.65 SQ) MI						
* *	* *** ***	* * * * * * *	*** *** ***	*** *** *	** *** ***	*** ***	*** ***	*** *** ***	*** *** **	* *** ***	*** *** *** *	** *** *** ***
* * *												
		******	****									
0		*	*									
2	// KK	* BSNR	*									
		* * * * * * * * *	* * * * *	2-60" RCP	PIPES FROM	I SR 101L	FREEWAY	TO UNION H	ILLS DR (BA	SIN 53R OU	TFAL	
		HYDROG	RAPH ROUTI	NG DATA								
2	70 PV	K T NE	MATTC WAVE	CTDEAM DO	UTTNO							
2	79 KK	K INE	L	1200.	CHANNEL LE	NGTH						
			S N	0.0077	SLOPE CHANNEL RO	UGHNESS	COEFFICI	ENT				
			CA SHAPE	0.00 CIRC	CONTRIBUTI	NG AREA						
			WD	7.00	BOTTOM WID	TH OR DI	AMETER					
			NDXMIN	2	MINIMUM NU	MBER OF	DX INTER	VALS				
				CO	MDIFED KINE	MATTC DA	***					
				CO	VARIABL (DT SHOWN	E TIME S I IS A MI	TEP					
		E	LEMENT 2	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
					(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
		MA	AIN	7.51	1.25	0.44	400.00	363.48	501.11	0.56	20.39	
		0111011 ()					0		10.02 53073	GT053.07	22565 01 252	
0.0	NIINUIIY	SUMMARI (A	AC-FI) - IN	FLOW=0.582	ZE+U3 EACE	.55=0.000	IUE+00 00.	IFLOW=0.582	IE+03 BASIN	SIORAGE=0	.3/50E-UI PER	CENI ERROR=
					INTERPOLAT	ED TO SP	ECIFIED (COMPUTATION	INTERVAL			
		MA	AIN	7.51	1.25	3.00		363.48	501.00	0.56		
	* * *		* * *	* * *		* * *		* * *				
			HYDROGI TRANSPOS	RAPH AT ST. ITION AREA	ATION BSN 0.0 S	IRT2 SQ MI						
P	EAK FLOW	TIME			MAXIMUM	I AVERAGE	FLOW					
+	(CFS)	(HR)		6-HR	24-H	IR	72-HR	49.95-HR				
+	363	8 25	(CFS)	255	250	1	141	1/1				
Ŧ	203.	0.35	(INCHES)	0.168	∠50 0.47	4	0.555	0.555				
			(AC-FT)	176.	496	i.	582.	582.				

CUMULATIVE AREA = 19.65 SQ MI

М

ALPHA

ELEMENT

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

DT DX

PEAK TIME TO VOLUME MAXIMUM

Onsite_6hr.out									
			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
MAIN	7.51	1.25	0.44	400.00	363.42	501.35	0.56	20.39	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5818E+03 BASIN STORAGE=0.3756E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	1	7.51	1.25	3.00		363.42	501.00	0.56	
	* * *	ł	* * *	* * *		* * *		* * *			
			HYDROGRA TRANSPOSI	APH AT STA FION AREA	TION B 0.5	SNRT2 SQ MI					
	PEAK FLOW	TIME			MAXIM	UM AVERAG	E FLOW				
		(110)		6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(CFS)								
+	363.	8.35	()	355.	2	50.	141.	141.			
			(INCHES)	0.168	0.	474	0.555	0.555			
			(AC-FT)	176.	4	96.	582.	582.			
			CUMULATI	/E AREA =	19.65	SQ MI					
				COM	PUTED KI VARIA (DT SHO	NEMATIC P. BLE TIME WN IS A M	ARAMETERS STEP INIMUM)				
		ELE	ement ai	LPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	1	7.51	1.25	0.36	400.00	363.06	501.42	0.55	20.38

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5800E+03 EXCESS=0.0000E+00 OUTFLOW=0.5799E+03 BASIN STORAGE=0.3755E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAI	N	7.51	1.25	3.00		363.06	501.00	0.55	
	* * *		* * *	***	ŧ	* * *		* * *			
			HYDRO TRANSPO	GRAPH AT ST SITION AREA	TATION 2.	BSNRT2 8 SQ MI					
	PEAK FLOW	TIME			MAXI	MUM AVERAG	E FLOW				
	(()		6-HI	٤ 2	4-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(<i>C</i> F S	.)							
+	363.	8.35	(INCHES	354) 0.168	3 0	250. .473	140. 0.553	140. 0.553			
			(AC-FT) 176		495.	580.	580.			
			CUMULA	TIVE AREA =	19.65	SQ MI					
				CC	MPUTED K VARI (DT SH	INEMATIC P ABLE TIME OWN IS A M	ARAMETERS STEP INIMUM)				
		EL	EMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAI	N	7.51	1.25	0.48	400.00	362.38	501.44	0.55	20.37

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5766E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3753E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	1 7	.51	1.25	3.00		362.38	501.00	0.55
* * *	*	* *	* * *		* * *		* * *		
		HYDROGRAF TRANSPOSITI	PH AT STA ON AREA	ATION B 16.0	SNRT2 SQ MI				
PEAK FLOW	TIME			MAXIM	UM AVERAG	GE FLOW			
+ (CES)	(HR)		6-HR	24	-HR	72-HR	49.95-HR		
(010)	(1110)	(CFS)							

					077	tto Chr ou	+			
362.	8.35	(INCHES (AC-FT	353.) 0.167) 175.	0	249. .471 494.	140. 0.550 577.	140. 0.550 577.			
		CUMULA	FIVE AREA =	19.65	SQ MI					
			CO	MPUTED K VARI (DT SH	INEMATIC PA ABLE TIME S OWN IS A MI	ARAMETERS STEP INIMUM)				
	E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
					(MIN)	(F.T.)	(CFS)	(MIN)	(IN)	(FPS)
	MA	IN	7.51	1.25	0.38	400.00	361.10	501.56	0.54	20.36

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5701E+03 BASIN STORAGE=0.3750E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	7.51	1.25	3.00	361.09	501.00	0.54
	* * *		* * *	* * *		* * *	* * *		
			HYDROGR TRANSPOSI	APH AT STA TION AREA	TION BSNR 90.0 SQ	T2 MI			
	PEAK FLOW	TIME			MAXIMUM	AVERAGE FLOW			
				6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	361.	8.35		352.	248.	138.	138.		
			(INCHES)	0.167	0.468	0.544	0.544		
			(AC-FT)	175.	491.	570.	570.		
			CUMULATI	VE AREA =	19.65 SQ	MI			
	* * *		* * *	* * *		* * *	* * *		

			INTERPOLATEI	HYDROG	RAPH AT BS1	NRT2	
]	PEAK FLOW	TIME			MAXIMUM AVE	ERAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	362.	8.35		353.	249.	139.	139.
			(INCHES)	0.167	0.471	0.549	0.549
			(AC-FT)	175.	494.	576.	576.

CUMULATIVE AREA = 19.65 SQ MI

+

	* * * * * * * * * *	* * * * *				
	*	*				
280 KK	* PIMAB	3Y *				
	*	*				
	* * * * * * * * * *	* * * * *				
		RI	ETRIEVE PI	MA BYPASS CHANN	EL HYDROGRA	APH
282 DR	RETRI	LEVE DIVERS	ION HYDROG	RAPH		
		ISTAD	PIMABY	DIVERSION HYDRC	GRAPH IDENT	TIFICATION
					* * *	
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSI	APH AT STA FION AREA	TION PIMABY 0.0 SQ MI		
DEAK ELOW	TTME			MAXIMIM AVER	AGE FLOW	
10100 1000	1 1 1 1 1 1		6-HR	24-HR	72-HR	49 95-HR
+ (CFS)	(HR)					
(== =)	()	(CFS)				
+ 1000.	4.95	()	605.	171.	88.	88.
		(INCHES)	0.286	0.323	0.345	0.345
		(AC-FT)	300.	338.	361.	361.
		CUMULATI	VE AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *

		UVDDOCDAT	סנו איד פידיי		Onsite_6hr.	out
		TRANSPOSIT	ION AREA	0.5 SQ MI		
PEAK FLOW	TIME		6 IID	MAXIMUM AVER	RAGE FLOW	
+ (CFS)	(HR)		0-HK	24-HK	/Z-HR	чу.ур-нк
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES)	0.286	0.323	0.345	0.345
		(AC FI)		10 20 00 MT	501.	501.
		COMOLATIV	S AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRAI TRANSPOSIT:	PH AT STAT	TION PIMABY 2.8 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1000	4 95	(CFS)	605	171	QQ	QQ
. 1000.		(INCHES)	0.286	0.323	0.345	0.345
		(AC-FT)	300.	338.	361.	361.
		CUMULATIV	E AREA =	12.30 SQ MI		
* * *		* * *	* * *	* * *	f	* * *
		HYDROGRAI	PH AT STAT	TION PIMABY		
		TRANSPOSIT	lon area	16.U SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	RAGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)					
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES) (AC-FT)	0.286 300.	0.323 338.	0.345 361.	0.345 361.
		CUMULATIV	E AREA =	12.30 SQ MI		
***		* * *	* * *	* * *		* * *
		HYDDOGDAI	א אד פידאיז	TON DIMARY		
		TRANSPOSIT	ION AREA	90.0 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
1000	4 05	(CFS)	C05	1 - 1	0.0	0.0
+ 1000.	4.95	(INCHES)	0.286	0.323	88. 0.345	88. 0.345
		(AC-FT)	300.	338.	361.	361.
		CUMULATIV	E AREA =	12.30 SQ MI		
***		* * *	* * *	* * *		* * *
		INTERPOLA	TED HYDROG	GRAPH AT PIMA	ABY	
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CFC)	(버머)		6-HR	24-HR	72-HR	49.95-HR
(CFS)	(rik)	(CFS)				
+ 1000.	4.95	(INCHES)	605. 0.458	171. 0.516	88. 0.551	88. 0.551
		(AC-FT)	300.	338.	361.	361.
		CUMULATIV	E AREA =	12.30 SQ MI		
*** *** ***	* * * * * * *	*** *** *** **	** *** ***	* *** *** *** *	*** *** ***	*** *** ***

* * *

UNION HILLS DR CHANNEL FROM SR 101L FREEWAY TO 82ND ST

HYDROGRAPH ROUTING DATA

285 RK KINEMATIC WAVE STREAM ROUTING

			Ons	ite 6hr.ou	t			
I	3157.	CHANNEL	LENGTH					
S	0.0082	SLOPE						
N	0.013	CHANNEL	ROUGHNESS	COEFFICIE	NT			
CA	0.00	CONTRIB	UTING AREA					
SHAPE	TRAP	CHANNEL	SHAPE					
WE	24.00	BOTTOM	WIDTH OR D	IAMETER				
2	4.00	SIDE SL	OPE					
NDXMIN	1 2	MINIMUM	NUMBER OF	DX INTERV	ALS			
				* * *				
	CC	MPUTED K	INEMATIC P	ARAMETERS				
		VARI	ABLE TIME :	STEP				
		(DT SH	OWN IS A M	INIMUM)				
ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	1.87	1.47	3.00		1000.00	300.00	0.55	
	* * *		* * *	***		* * *		* * *			
			HYDRO TRANSPO	GRAPH AT STA SITION AREA	ATION .	PMB-RT 0 SQ MI					
	PEAK FLOW	TIME		6-HR	MAXII 2	MUM AVERAGI 4-HR	E FLOW 72-HR	49.95-HR			
+	(CFS)	(HR)	(CFS)	_						
+	1000.	5.00	(INCHES (AC-FT	605.) 0.457) 300.	0	171. .516 338.	87. 0.551 361.	87. 0.551 361.			
			CUMULA'	TIVE AREA = COM	12.30 IPUTED K VARI (DT SH	SQ MI INEMATIC PA ABLE TIME S OWN IS A M	ARAMETERS STEP INIMUM)				
		E	LEMENT	ALPHA	М	DT (MIN)	DX (FT)	PEAK (CFS)	TIME TO PEAK (MIN)	VOLUME	MAXIMUM CELERITY (FPS)
		MA	IN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	1.87	1.47	3.00		1000.00	300.00	0.55	
	* * *		* * *	* * *		* * *		* * *			
			HYDRO TRANSPO	GRAPH AT SI SITION AREA	ATION 0.	PMB-RT 5 SQ MI					
Pl	EAK FLOW	TIME			MAXI	MUM AVERAG	E FLOW				
		(110)		6-HF	. 2	4-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(CFS	5)							
+	1000.	5.00		605.		171.	87.	87.			
			(INCHES (AC-FI	3) 0.457 2) 300.	0	.516 338.	0.551 361.	0.551 361.			
			CUMULA	TIVE AREA =	12.30	SQ MI					
				CC	MPUTED K VARI (DT SH	INEMATIC P ABLE TIME OWN IS A M	ARAMETERS STEP INIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MAIN	1.87	1.47	3.00		1000.00	300.00	0.55	
	* * *	* *	*	* * *	* * *		* * *			
		T	HYDROGRAPH AT RANSPOSITION #	STATION	PMB-RT 2.8 SQ MI					
	PEAK FLOW	TIME		MAX	KIMUM AVERAG	JE FLOW				
	(()	6	-HR	24-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(CES)							
+	1000.	5.00	INCHES) 0.	505. 457	171. 0.516	87. 0.551	87. 0.551			
			(AC-F1) 3	300.	338.	301.	301.			
			CUMULATIVE ARE	IA = 12.3	30 SQ MI					
				COMPUTED VAF (DT S	KINEMATIC E RIABLE TIME SHOWN IS A M	PARAMETERS STEP MINIMUM)				
		ELEM	ENT ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM
					(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		Ν	IAIN	1.87	1.47	3.00		1000.00	300.00	0.55	
	* * *		* * *	***		* * *		* * *			
			HYDR TRANSP	OGRAPH AT ST OSITION AREA	ATION P 16.0	MB-RT SQ MI					
	PEAK FLOW	TIME			MAXIM	UM AVERAG	E FLOW				
				6-HR	24	-HR	72-HR	49.95-HR			
+	(CFS)	(HR)									
			(CF	S)							
+	1000.	5.00		605.	1	71.	87.	87.			
			(INCHE	S) 0.457	0.	516	0.551	0.551			
			(AC-F	T) 300.	3	38.	361.	361.			
			CUMUL	ATIVE AREA =	12.30	SQ MI					
				CO	MPUTED KI VARIA (DT SHO	NEMATIC E BLE TIME WN IS A N	PARAMETERS STEP IINIMUM)	5			
			ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY

			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	1.87	1.47	3.00		1000.00	300.00	0.55
	* * *		* * *	* * *		* * *		* * *		
			HYDROGR TRANSPOSI	APH AT STA TION AREA	ATION PM 90.0	1B-RT SQ MI				
	PEAK FLOW	TIME			MAXIMU	JM AVERAG	E FLOW			
				6-HR	24-	-HR	72-HR	49.95-HR		
+	(CFS)	(HR)								
			(CFS)							
+	1000.	5.00		605.	17	/1.	87.	87.		
			(INCHES)	0.457	0.5	516	0.551	0.551		
			(AC-FT)	300.	33	38.	361.	361.		
			CUMULATI	VE AREA =	12.30 S	SQ MI				
	* * *		* * *	* * *		* * *		* * *		

INTERPOLATED HYDROGRAPH AT PMB-RT

	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	1000.	5.00		605.	171.	87.	87.
			(INCHES)	0.457	0.516	0.551	0.551
			(AC-FT)	300.	338.	361.	361.

CUMULATIVE AREA = 12.30 SQ MI

* * *

			******	****									
	206	vv	* * CD	*	DACIN								
	200	icic	*	*	DADIN								
			*******	****									
			SUBBAS	IN RUNOFF	DATA								
	287	BA	SUBB	ASTN CHARA	CTERISTICS								
		2	6622	TAREA	0.04	SUBBASIN	AREA						
	288	LG	GREE	ידסאב רואב אי	LOSS RATE								
	100	10	GIUL	STRTL	0.15	STARTING	LOSS						
				DTH	0.25 4.25	MOISTURE	DEFICIT RONT SUC	TTON .					
				XKSAT	0.55	HYDRAULIC	CONDUCI	IVITY					
				RTIMP	55.00	PERCENT I	MPERVIOU	IS AREA					
:	289	UC	CLAR	K UNITGRAP	Н								
				TC R	0.23	TIME OF C STORAGE C	ONCENTRA	ATION NT					
-	290	UA	ACCU	MULATED-AR 0.0	EA VS. TIM 5.0	E, 11 ORD 16.0	INATES 30.0	65.0	77.0	84.0	90.0	94.0	97.0
				100.0									
								* * *					
							UNITE H	IVDROGRAPH	PARAMETERS				
						CLAR	K TC=	0.23 HR,	R= ().16 HR			
						SNYDE	R TP=	0.14 HR,	CP=	0.51			
							τ	NIT HYDRO	GRAPH				
			13.	58.	90.	85.	19 ENE 71.	OF-PERIO 54	D ORDINATES	29.	21.	15.	
			11.	8.	б.	4.	3.	2	. 2.	1.	1.		
		* * *		* * *	* * *		* * *		* * *				
				ססמעע	ידי די נוחגם	ATTON	CD10						
				TRANSPOS	ITION AREA	0.0	SQ MI						
	Т	OTAL R	AINFALL =	2.76, т	OTAL LOSS :	= 0.46,	TOTAL E	XCESS =	2.30				
	202		TIME	,		MAXIMIT		E ELOW					
1	PEAN	C FLOW	1 TWF		6-HR	MAXIMU 24-	M AVERAG HR	72-HR	49.95-HR				
+	(C	CFS)	(HR)										
+		170.	0.90	(CFS)	10.		2.	1.	1.				
				(INCHES)	2.287	2.2	87	2.287	2.287				
				(AC-FI)	5.		5.	5.	5.				
				CUMULAT	IVE AREA =	0.04 S	Q MI						
		***		* * *	***		***		* * *				
				HYDROG TRANSPOS	RAPH AT ST ITION AREA	ATION 0.5	SB10 SQ MI						
	Т	TOTAL R	AINFALL =	2.74, T	OTAL LOSS :	= 0.46,	TOTAL E	XCESS =	2.28				
1	PEAK	FLOW	TIME			MAXIMU	M AVERAG	E FLOW					
	10		(6-HR	24-	HR	72-HR	49.95-HR				
+	((.5)	(HR)	(CFS)									
+		169.	0.90	(TNOURS)	10.	0.0	2.	1.	1.				
				(INCHES) (AC-FT)	2.272	2.2	72 5.	2.2/2 5.	2.272				

CUMULATIVE AREA = 0.04 SQ MI

* * *

* * *

```
Onsite_6hr.out
                                                 SB10
                        HYDROGRAPH AT STATION
                                             2.8 SQ MI
                      TRANSPOSITION AREA
  TOTAL RAINFALL =
                       2.69, TOTAL LOSS =
                                           0.50, TOTAL EXCESS =
                                                                    2.19
PEAK FLOW
              TIME
                                            MAXIMUM AVERAGE FLOW
                                                                     49.95-HR
                                    6-HR
                                               24-HR
                                                           72-HR
  (CFS)
              (HR)
                        (CFS)
   142.
              0.95
                                      9.
                                                  2.
                                                              1.
                                                                            1.
                                                            2.179
                      (INCHES)
                                               2.179
                                                                         2.179
                                   2.179
                       (AC-FT)
                                     5.
                                                5.
                                                              5.
                                                                           5.
                       CUMULATIVE AREA =
                                            0.04 SQ MI
     * * *
                     * * *
                                                   * * *
                                     * * *
                                                                      * * *
                        HYDROGRAPH AT STATION
                                               SB10
                      TRANSPOSITION AREA
                                             16.0 SQ MI
                       2.54, TOTAL LOSS =
   TOTAL RAINFALL =
                                             0.54, TOTAL EXCESS =
                                                                      2.00
                                            MAXIMUM AVERAGE FLOW
PEAK FLOW
              TIME
                                                                      49.95-HR
                                    6-HR
                                               24-HR
                                                            72-HR
  (CFS)
              (HR)
                         (CFS)
   118.
              0.95
                                      9
                                                  2
                                                              1
                                                                            1
                      (INCHES)
                                               1 990
                                                                         1.990
                                   1.990
                                                            1.990
                       (AC-FT)
                                                              4.
                                                  4.
                                                                            4.
                                      4.
                       CUMULATIVE AREA =
                                            0.04 SQ MI
     ***
                     * * *
                                     ***
                                                    * * *
                                                                      * * *
                        HYDROGRAPH AT STATION SB10
                      TRANSPOSITION AREA
  TOTAL RAINFALL =
                     2.23, TOTAL LOSS =
                                             0.57, TOTAL EXCESS =
                                                                    1.66
PEAK FLOW
              TIME
                                            MAXIMUM AVERAGE FLOW
                                    6-HR
                                              24-HR
                                                         72-HR
                                                                      49.95-HR
  (CFS)
              (HR)
                        (CFS)
     88.
              0.95
                                      7.
                                                  2.
                                                              1.
                                                                            1.
                      (INCHES)
                                   1.655
                                               1.655
                                                            1.655
                                                                         1.655
                       (AC-FT)
                                      4.
                                                   4.
                                                               4.
                                                                            4.
                       CUMULATIVE AREA =
                                            0.04 SQ MI
                                                                      * * *
     ***
                     * * *
                                     * * *
                                                     * * *
```

INTERPOLATED HYDROGRAPH AT SB10
PEAK FLOW TIME MAXIMUM AVERAGE FLOW
6-HR 24-HR 72-HR

	PEAK FLOW	T THE	MAXIMUM AVERAGE FLOW							
				6-HR	24-HR	72-HR	49.95-HR			
+	(CFS)	(HR)								
			(CFS)							
+	169.	0.90		10.	2.	1.	1.			
			(INCHES)	2.276	2.276	2.276	2.276			
			(AC-FT)	5.	5.	5.	5.			
			CUMULATIV	E AREA =	0.04 SQ MI					

+

+

*** ***

		******	* * * *				
		*	*				
292	KK	* CP-1) *	COMBINE			
		*	*				
		* * * * * * * * * *	* * * *				
				UNION HILLS DR	AND 82ND ST	(UNION HII	LLS DR CHANNEL)
294	HC	HYDRO	GRAPH CON	MBINATION			
			ICOMP	3 NUME	BER OF HYDROG	RAPHS TO CC	DMBINE
						* * *	
	* * *		* * *	* * *	* * *		* * *
			HYDROO TRANSPOS	GRAPH AT STATION SITION AREA	I CP-10 0.0 SQ MI		
DEAF	K FLOW	TTME		N	AXIMIM AVERA	GE FLOW	
1 111		1 1110		6-HR	24-HR	72-HR	49.95-HR

					C	Onsite_6hr.out			
+	(CFS)	(HR)	(CFS)						
+	1355.	6.85	(INCHES) (AC-FT)	909. 0.429 451.	420. 0.794 834.	230. 0.903 948.	230. 0.903 948.		
			CUMULATIV	E AREA =	19.69 SQ MI				
	* * *		* * *	* * *	* * *		* * *		
			HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	TION CP-10 0.5 SQ MI				
	PEAK FLOW	TIME		C UD	MAXIMUM AVER	AGE FLOW	40.05.00		
+	(CFS)	(HR)		0-HR	24-HR	/ Z-HR	49.95-HK		
+	1355.	6.85	(CFS)	909.	420.	230.	230.		
			(INCHES) (AC-FT)	0.429 451.	0.794 834.	0.903 948.	0.903 948.		
			CUMULATIV	E AREA =	19.69 SQ MI				
	* * *		* * *	* * *	***		* * *		
			HYDROGRA TRANSPOSIT	PH AT STATION AREA	TION CP-10 2.8 SQ MI				
	PEAK FLOW	TIME		6 IID	MAXIMUM AVER	AGE FLOW			
+	(CFS)	(HR)	(777 7)	0-HK	24-nk	/2-nk	49.95-nk		
+	1355.	6.85	(CFS)	909.	420.	229.	229.		
			(INCHES) (AC-FT)	0.429 451.	0.793 833.	0.901 946.	0.901 946.		
			CUMULATIV	E AREA =	19.69 SQ MI				
	* * *		* * *	* * *	***		* * *		
			HYDROGRA TRANSPOSIT	PH AT STATION AREA	TION CP-10 16.0 SQ MI				
	PEAK FLOW	TIME		6 MD	MAXIMUM AVER	AGE FLOW	40.05.00		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR		
+	1354.	6.85	(CFS)	907.	419.	228.	228.		
			(INCHES)	0.429	0.791	0.897	0.897		
			CUMULATIV	E AREA =	19.69 SQ MI	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		
	* * *		* * *	* * *	* * *		* * *		
			HYDROGRA TRANSPOSIT	PH AT STATION AREA	FION CP-10 90.0 SQ MI				
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW			
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR		
	1252	6 0E	(CFS)	0.05	417	226	226		
Ŧ	1353.	0.05	(INCHES) (AC-FT)	0.427 449.	0.788 828.	0.890 935.	0.890 935.		
			CUMULATIV	E AREA =	19.69 SQ MI				
	***		* * *	* * *	***		* * *		
			TNTERPOLA	TED HYDRO	TRAPH AT CP-	10			
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW			

				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	1354.	6.85		907.	419.	228.	228.
			(INCHES)	0.428	0.791	0.896	0.896
			(AC-FT)	450.	831.	941.	941.
			CUMULATIV	E AREA =	19.69 SQ MI		

	* *														
295 KK	* R10-11 *	ROUTE													
	* ***														
		UNTON HTT	LS DR CHA	NNEL FROM	82ND ST TO	HAYDEN R	DAD.								
		0112011 1122	DD Dit oli		0000 01 10	,									
	HYDROGRAPH ROUTING DATA														
297 RK	KINEMATIC WAY	/E STREAM RC	UTING												
	L	1277.	CHANNEL	LENGTH											
	S	0.0014	SLOPE												
	N	0.030	CHANNEL	ROUGHNESS	COEFFICIEN	T									
	CA	0.00	CONTRIBU	JTING AREA											
	SHAPE	TRAP	CHANNEL	SHAPE											
	WD	220.00	BOTTOM W	IDTH OR DI	AMETER										
	Z	4.00	SIDE SLC	PE											
	NDXMIN	2	MINIMUM	NUMBER OF	DX INTERVA	ALS									
					* * *										
		CC	MPUTED KI	NEMATIC PA	RAMETERS										
			VARIA	BLE TIME S	TEP										
			(DT SHC	WN IS A MI	NIMUM)										
	ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY						
				(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)						
	MAIN	0.06	1.62	1.62	425.67	1355.03	412.64	0.90	4.66						

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9482E+03 EXCESS=0.0000E+00 OUTFLOW=0.9474E+03 BASIN STORAGE=0.9166E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	Μ	IAIN	0.06	1.62	3.00		1354.77	411.00	0.90	
* * *		* * *	* * *		* * *		* * *			
		HYDRC TRANSPC	GRAPH AT STA SITION AREA	ATION R1 0.0	0-11 SQ MI					
PEAK FLOW	TIME			MAXIMU	M AVERAC	E FLOW				
			6-HR	24-	HR	72-HR	49.95-HR			
+ (CFS)	(HR)									
		(CFS	5)							
+ 1355.	6.85		909.	42	0.	229.	229.			
		(INCHES	3) 0.429	0.7	94	0.902	0.902			
		(AC-FI	r) 451.	83	4.	947.	947.			
		CUMULA	TIVE AREA =	19.69 S	Q MI					
			COM	MPUTED KIN	EMATIC I	ARAMETERS	3			
				VARIAB	LE TIME	STEP				
				(DT SHOW	NISAN	(INIMUM)				
		ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO DEAK	VOLUME	MAXIMUM

			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MA	IN 0.	06 1.62	1.56	425.67	1354.98	412.72	0.90	4.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9479E+03 EXCESS=0.0000E+00 OUTFLOW=0.9473E+03 BASIN STORAGE=0.9166E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.06	1.62	3.00		1354.72	411.00	0.90
	*** **:		* * *	* * *		* * *		* * *		
			HYDROGR# TRANSPOSIT	APH AT STA SION AREA	ATION RI 0.5	10-11 SQ MI				
	PEAK FLOW	TIME			MAXIM	JM AVERAG	E FLOW			
				6-HR	24-	-HR	72-HR	49.95-HR		
+	(CFS)	(HR)								
			(CFS)							
+	1355.	6.85		909.	42	20.	229.	229.		
			(INCHES)	0.429	0.7	794	0.902	0.902		
			(AC-FT)	451.	83	34.	947.	947.		

CUMULATIVE AREA = 19.69 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

Onsite_6hr.out												
ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY				
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)				
MAIN	0.06	1.62	1.57	425.67	1354.58	412.38	0.90	4.66				

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9458E+03 EXCESS=0.0000E+00 OUTFLOW=0.9450E+03 BASIN STORAGE=0.9164E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

		MA	IN	0.06	1.62	3.00		1354.33	411.00	0.90	
	* * *		* * *	***		* * *		* * *			
			HYDR TRANSP	OGRAPH AT ST OSITION AREA	ATION 2.	R10-11 8 SQ MI					
	PEAK FLOW	TIME			MAXI	MUM AVERAG	E FLOW				
	(()	(6-HR	. 2	4-HR	72-HR	49.95-HR			
+	(CFS)	(HR)	(CF	S)							
+	1354.	6.85	(INCHE	908. S) 0.429 T) 450	0	420. .793 833	229. 0.900 945	229. 0.900 945			
	(AC-FT) 450. CUMULATIVE AREA =				19.69	SQ MI					
				CO	MPUTED K VARI (DT SH	INEMATIC P ABLE TIME OWN IS A M	ARAMETERS STEP INIMUM)				
		E	LEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
						(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
		MA	IN	0.06	1.62	1.67	425.67	1353.83	412.54	0.90	4.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9420E+03 EXCESS=0.0000E+00 OUTFLOW=0.9412E+03 BASIN STORAGE=0.9165E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.06	1.62	3.00		1353.59	411.00	0.90	
* * *	* * *	* * *		* * *		* * *			
	H TRAI	YDROGRAPH AT ST. NSPOSITION AREA	ATION RI 16.0	10-11 SQ MI					
PEAK FLOW	TIME		MAXIM	JM AVERAG	E FLOW				
+ (CFS)	(HR)	6-HR	24-	-HR	72-HR	49.95-HR			
+ 1354.	6.85 (ING (AG	(CFS) 907. CHES) 0.428 C-FT) 450.	41 0.7 83	19. 791 31.	228. 0.896 941.	228. 0.896 941.			
	CUI	MULATIVE AREA =	19.69 \$	SQ MI					
		CO	MPUTED KII VARIAN (DT SHON	NEMATIC P BLE TIME WN IS A M	PARAMETERS STEP HINIMUM)				
	ELEMEN	Т АLРНА	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
				(MIN)	(F.T.)	(CFS)	(MIN)	(1N)	(PPS)
	MAIN	0.06	1.62	1.66	425.67	1352.40	412.19	0.89	4.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9349E+03 EXCESS=0.0000E+00 OUTFLOW=0.9341E+03 BASIN STORAGE=0.9161E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.06	1.62	3.00	1352.18	411.00	0.89		
* * *	* * *	* *	*	* * *	* * *				
	HYDROGRAPH AT STATION R10-11 TRANSPOSITION AREA 90.0 SQ MI								
PEAK FLOW	TIME		MAXIM	UM AVERAGE FL	WC				

L FLOW	1 TMF		MAXIMUM AVERAGE FLOW							
		6-HR	24-HR	72-HR	49.95-HR					

(070)				Or	nsite_6hr.	out					
+ (CFS)	(HR)	(CFS)									
+ 1352.	6.85	(INCHES) (AC-FT)	904. 0.427 448.	417. 0.788 828.	226. 0.889 934.	226. 0.889 934.					
		CUMULAT	IVE AREA =	19.69 SQ MI							
***		* * *	* * *	***		* * *					
		INTERPOI	LATED HYDROG	GRAPH AT R10-1	11						
PEAK FLOW	TIME			MAXIMUM AVERA	AGE FLOW						
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR					
+ 1353.	6.85	(CFS)	906.	419.	228.	228.					
		(INCHES) (AC-FT)	0.428 449.	0.791 831.	0.895 940.	0.895 940.					
		CUMULAT	IVE AREA =	19.69 SQ MI							
*** *** ***	*** *** *	** *** ***	*** *** ***	* *** *** *** **	** *** ***	*** *** ***	*** *** ***	* *** ***	*** *** **	* *** ***	*** ***

	* * * * * * * * *	* * * * *									
298 KK	* SB	11 *	BASIN								
	*******	* * * * *									
	SUBBAS	IN RUNOFF I	ATA								
299 BA	SUBB	ASIN CHARAG TAREA	CTERISTICS 0.07 S	SUBBASIN AREA							
300 LG	GREE	N AND AMPT STRTL DTH PSIF XKSAT	LOSS RATE 0.15 S 0.25 M 4.15 W 0.58 H	TARTING LOSS MOISTURE DEFICIT WETTING FRONT SU HYDRAULIC CONDUC	r JCTION CTIVITY						
301 UC	CLAR	RTIMP K UNITGRAPH	55.00 E	PERCENT IMPERVIC	DUS AREA						
		TC R	0.29 1 0.23 S	TIME OF CONCENTE STORAGE COEFFICI	RATION LENT						
302 UA	ACCUI	MULATED-ARI 0.0 100.0	EA VS. TIME, 5.0 1	11 ORDINATES	65.0	77.0	84.0	90.0	94.0	97.0	
					* * *						
				UNIT CLARK TC= SNYDER TP=	HYDROGRAPH = 0.29 HR, = 0.19 HR,	H PARAMETERS R= 0 CP= 0	.23 HR .50				
					UNIT HYDRO	GRAPH					
	12.	50.	99.	27 EN 119. 112	ND-OF-PERIC	DD ORDINATES	67.	54.	43.		
	35.	28.	23.	18. 15	5. 12	2. 9. 1	8.	б.	5.		
* * *	1.	***	***	***		***					
		HYDROGI TRANSPOS	RAPH AT STAT	TION SB11 0.0 SO MI							
TOTAL R	ATNFALL =	2.76. TO	OTAL LOSS =	0.46. TOTAL	EXCESS =	2.29					
PEAK FLOW	TIME	,		MAXIMUM AVERA	AGE FLOW						
+ (CFS)	(HP)		6-HR	24-HR	72-HR	49.95-HR					
	0.05	(CFS)	17	4	2	2					
- 255.	0.95	(INCHES) (AC-FT)	2.282 9.	4. 2.282 9.	2.282 9.	2. 2.282 9.					
		CUMULAT	IVE AREA =	0.07 SQ MI							
* * *		* * *	* * *	* * *		* * *					
		HYDROGI TRANSPOS	RAPH AT STAT ITION AREA	TION SB11 0.5 SQ MI							
TOTAL R	AINFALL =	2.74, TC	OTAL LOSS =	0.46, TOTAL	EXCESS =	2.28					

	הבאת היו סויי	TT T 8473			(MAVTMITM	Onsite_6hr.	out
	FEAR FLUW	ттыр		6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	231.	0.95	(INCHES) (AC-FT)	17. 2.267 9.	4. 2.267 9.	2. 2.267 9.	2. 2.267 9.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		* * *	* * *	* * *	ŧ	* * *
			HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION SB11 2.8 SQ MI		
	TOTAL R	AINFALL =	2.69, TOT#	AL LOSS =	0.50, TOTAI	L EXCESS =	2.18
	PEAK FLOW	TIME		e	MAXIMUM AVER	RAGE FLOW	40.65
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	201.	1.00	(CFS)	17.	4.	2.	2.
			(INCHES) (AC-FT)	2.172 8.	2.172 8.	2.172 8.	2.172 8.
			CUMULATIVE	S AREA =	0.07 SQ MI		
	* * *		* * *	* * *	* * *	k	* * *
			HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION SB11 16.0 SQ MI		
	TOTAL R	AINFALL =	2.54, TOT#	AL LOSS =	0.55, TOTAI	L EXCESS =	1.99
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER	RAGE FLOW	49 95-HP
+	(CFS)	(HR)		An-0	ALL-L7	/ 2-nr	-7.93-NK
+	169.	1.00	(CFS)	15.	4.	2.	2.
			(INCHES) (AC-FT)	1.982 8.	1.982 8.	1.982 8.	1.982 8.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	* * *		* * *	* * *	***	k.	* * *
			HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION SB11 90.0 SQ MI		
	TOTAL R	AINFALL =	2.23, TOT#	AL LOSS =	0.58, TOTAI	L EXCESS =	1.65
	PEAK FLOW	TIME		<	MAXIMUM AVER	RAGE FLOW	40.05
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	129.	1.00	(CFS)	13.	3.	2.	2.
			(INCHES) (AC-FT)	1.647 6.	1.647 6.	1.647 6.	1.647 6.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		* * *	* * *	***	*	***
			INTERPOLAT	TED HYDROG	RAPH AT SE	311	
	PEAK FLOW	TIME		-	MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	231.	0.95	(CFS)	17.	4.	2.	2.
			(INCHES) (AC-FT)	2.270	2.270 9.	2.270 9.	2.270 9.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	*** *** ***	*** *** *	** *** ***	** *** ***	*** *** *** -	*** *** ***	*** *** ***
*	**				7		
		* * * * * * * * * *	****				
	304 KK	* CP-	11 * CC *	OMBINE			
		* * * * * * * * *	* * * * *				

UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)

206 40	עעד	CONDI COMDI	NATION	0	nsite_6hr.	out
300 HC	HIDF	ICOMP	2 2	NUMBER OF HYDRO	GRAPHS TO C	COMBINE
					* * *	
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION CP-11 0.0 SQ MI		
PEAK FLOW	TIME		6_UP	MAXIMUM AVER.	AGE FLOW	10 05-UD
+ (CFS)	(HR)	(CES)	0-HK	24-110	/z-nk	49.95-nk
+ 1355.	6.85	(TNOURS)	909.	420.	232.	232.
		(AC-FT)	451.	834.	956.	956.
		CUMULATIV	E AREA =	19.76 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION CP-11 0.5 SQ MI		
PEAK FLOW	TIME		<i>c</i>	MAXIMUM AVER	AGE FLOW	40.05.00
+ (CFS)	(HR)	<i></i>	6-HR	24-HR	72-HR	49.95-HR
+ 1355.	6.85	(CFS)	909.	420.	232.	232.
		(INCHES) (AC-FT)	0.428 451.	0.791 834.	0.907 956.	0.907 956.
		CUMULATIV	E AREA =	19.76 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION CP-11 2.8 SQ MI		
PEAK FLOW	TIME		C IID	MAXIMUM AVER	AGE FLOW	40.05 UD
+ (CFS)	(HR)		6-HR	24-HR	/2-HR	49.95-HR
+ 1354.	6.85	(CFS)	908.	420.	231.	231.
		(INCHES) (AC-FT)	0.427 450.	0.790 833.	0.904 953.	0.904 953.
		CUMULATIV	E AREA =	19.76 SQ MI		
***		* * *	* * *	***		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION CP-11 16.0 SQ MI		
PEAK FLOW	TIME		6 UD	MAXIMUM AVER.	AGE FLOW	40 05 UD
+ (CFS)	(HR)		0-HK	24-nk	/2-nk	49.95-nk
+ 1354.	6.85	(CFS)	907.	419.	230.	230.
		(AC-FT)	450.	831.	949.	949.
		CUMULATIV	E AREA =	19.76 SQ MI		
* * *		* * *	* * *	* * *		* * *
		HYDROGRA TRANSPOSIT	PH AT STA ION AREA	TION CP-11 90.0 SQ MI		
PEAK FLOW	TIME		<	MAXIMUM AVER	AGE FLOW	40.05 ***
+ (CFS)	(HR)	(CEC)	0-HR	24-HR	/2-HR	49.95-HR
+ 1352.	6.85	(CFS)	904.	417.	228.	228.
		(AC-FT)	448.	828.	0.892 940.	940.
		CUMULATIV	E AREA =	19.76 SQ MI		
* * *		* * *	* * *	***		* * *
		INTERPOLA	TED HYDRO	GRAPH AT CP-	11	
PEAK FLOW	TIME		6-UP	MAXIMUM AVER	AGE FLOW	40 05-00
+ (CFS)	(HR)	(CFS)	0-nK	24-11	/ 2 - nr.	77.73-NK

					Onsite_6hr.ou	ıt
1353.	6.85		906.	419.	230.	230.
		(INCHES)	0.426	0.788	0.899	0.899
		(AC-FT)	449.	831.	948.	948.
	1353.	1353. 6.85	1353. 6.85 (INCHES) (AC-FT)	1353. 6.85 906. (INCHES) 0.426 (AC-FT) 449.	1353. 6.85 906. 419. (INCHES) 0.426 0.788 (AC-FT) 449. 831.	Onsite_Ghr.or 1353. 6.85 906. 419. 230. (INCHES) 0.426 0.788 0.899 (AC-FT) 449. 831. 948.

1

CUMULATIVE AREA = 19.76 SQ MI

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	0000000000	(m) mt ())	PEAK	TIME OF	AVERAGE FI	LOW FOR MAXIN	MUM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	F.TOM	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	76THST	51.	4.55	15.	4.	2.	0.24		
+	HYDROGRAPH AT	SB01	324.	0.95	26.	б.	3.	0.11		
+	2 COMBINED AT	CP-1	323.	0.95	37.	11.	5.	0.35		
+	ROUTED TO	R1-2	315.	1.10	37.	11.	5.	0.35		
+	HYDROGRAPH AT	SB02	489.	0.95	38.	10.	5.	0.16		
+	2 COMBINED AT	CP-2	731.	1.05	75.	20.	10.	0.51		
+	ROUTED TO	R2-3	719.	1.10	75.	20.	10.	0.51		
+	HYDROGRAPH AT	SB03	129.	1.00	12.	3.	1.	0.05		
+	2 COMBINED AT	CP-3	828.	1.10	86.	23.	11.	0.56		
+	ROUTED TO	R3-5	806.	1.20	86.	23.	11.	0.56		
+	HYDROGRAPH AT	SB04	525.	0.95	36.	9.	4.	0.14		
+	ROUTED TO	R4-5	511.	1.05	37.	9.	4.	0.14		
+	HYDROGRAPH AT	SB05	399.	0.95	30.	7.	4.	0.13		
+	3 COMBINED AT	CP-5	1410.	1.15	150.	40.	19.	0.83		
+	ROUTED TO	R5-6	1386.	1.20	150.	40.	19.	0.83		
+	HYDROGRAPH AT	SB06	420.	0.95	33.	8.	4.	0.14		
+	2 COMBINED AT	CP-6	1609.	1.20	181.	48.	23.	0.96		
+	HYDROGRAPH AT	SB07	384.	0.90	17.	4.	2.	0.07		
+	ROUTED TO	R7-8	360.	1.05	18.	5.	2.	0.07		
+	HYDROGRAPH AT	SB08	792.	0.95	56.	14.	7.	0.22		
+	2 COMBINED AT	CP-8	1035.	1.05	74.	18.	9.	0.30		
+	ROUTED TO	R8-9	1010.	1.10	74.	19.	9.	0.30		
+	HYDROGRAPH AT	SB09	173.	0.95	13.	3.	2.	0.05		
+	2 COMBINED AT	CP-9	1124.	1.10	87.	22.	10.	0.35		
+	HYDROGRAPH AT	PIMACH	4017.	5.50	1092.	292.	146.	12.30		
+	DIVERSION TO	PIMABY	1000.	4.95	605.	171.	88.	12.30		
	HYDROGRAPH AT									

+		PIMAIN	3017.	. 5.50	Onsite_6hr 486.	.out 122.	58.	12.30		
+	HYDROGRAPH	AT PWRCH	740.	. 5.80	432.	136.	75.	7.00		
+	3 COMBINED	AT BINFLO	3634.	. 5.50	919.	273.	142.	19.65		
+	ROUTED TO	BASIN	362.	. 8.30	353.	249.	140.	19.65		
+	ROUTED TO	BSNRT1	362.	. 8.35	353.	249.	140.	19.65		
+	ROUTED TO	BSNRT2	362.	. 8.35	353.	249.	139.	19.65		
+	HYDROGRAPH	AT PIMABY	1000.	4.95	605.	171.	88.	12.30		
+	ROUTED TO	PMB-RT	1000.	. 5.00	605.	171.	87.	12.30		
+	HYDROGRAPH	AT SB10	169.	. 0.90	10.	2.	1.	0.04		
+	3 COMBINED	AT CP-10	1354.	. 6.85	907.	419.	228.	19.69		
+	ROUTED TO	R10-11	1353.	. 6.85	906.	419.	228.	19.69		
+	HYDROGRAPH	AT SB11	231.	. 0.95	17.	4.	2.	0.07		
+ 1	2 COMBINED	AT CP-11	1353.	. 6.85	906.	419.	230.	19.76		
			ç	SUMMARY OF	KINEMATIC WAV	E - MUSKING	UM-CUNGE ROU	TING		
				(FLOW]	IS DIRECT RUNO	FF WITHOUT	BASE FLOW)			
							INTERPO	LATED TO		
							COMPLITATIO	N INTERVAL		
	ISTAQ	ELEMENT	DT I	PEAK TII	ME TO VOLUI PEAK	ME DT	PEAK	TIME TO PEAK	VOLUME	
	ISTAQ	ELEMENT	DT I	PEAK TI	ME TO VOLUI PEAK	ME DT	PEAK	TIME TO PEAK	VOLUME	
	ISTAQ	ELEMENT	DT F	PEAK TII	ME TO VOLUI PEAK (MIN) (IN	ME DT	PEAK (CFS)	TIME TO PEAK (MIN)	VOLUME	
	ISTAQ FOR STORM	ELEMENT = 1 STORM AF	DT E (MIN) (REA (SQ MI)	PEAK TII (CFS)	ME TO VOLUI PEAK (MIN) (IN 0.00	ME DT	PEAK (CFS)	TIME TO PEAK (MIN)	VOLUME	
	ISTAQ FOR STORM R1-2	element = 1 storm af Mane	DT I (MIN) (REA (SQ MI) 3.00 32	PEAK TIN (CFS)) = (24.42 (ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.1	ME DT) (MIN) 9 3.00	РЕАК (CFS) 317.42	TIME TO PEAK (MIN) 66.00	VOLUME (IN) 1.19	
	ISTAQ FOR STORM R1-2	ELEMENT = 1 STORM AF MANE	DT H (MIN) (REA (SQ MI) 3.00 32	PEAK TII (CFS)) = (24.42 (ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.1	ME DT) (MIN) 9 3.00	РЕАК (CFS) 317.42	TIME TO PEAK (MIN) 66.00	VOLUME (IN) 1.19	
CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI	DT E (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221E	PEAK TII (CFS)) = (24.42 (E+02 EXCES:	ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 S=0.0000E+00 OT	ME DT) (MIN) 9 3.00 UTFLOW=0.22	РЕАК (CFS) 317.42 34E+02 BASIN	TIME TO PEAK (MIN) 66.00	VOLUME (IN) 1.19 5560E-01 PERCENT 1	ERROR=
CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF	DT E (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221E REA (SQ MI)	PEAK TII (CFS)) = (24.42 (E+02 EXCES:) = (ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 S=0.0000E+00 OU	ME DT) (MIN) 9 3.00 UTFLOW=0.22	РЕАК (CFS) 317.42 34E+02 BASIN	TIME TO PEAK (MIN) 66.00 STORAGE=0.	VOLUME (IN) 1.19 5560E-01 PERCENT 1	ERROR=
CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM R1-2	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF MANE	DT H (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221H REA (SQ MI) 3.00 32	PEAK TII (CFS)) = (24.42 (E+02 EXCES:) = (21.94 (ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 5=0.0000E+00 01 0.50 53.70 1.18	ME DT) (MIN) 9 3.00 UTFLOW=0.22 8 3.00	РЕАК (CFS) 317.42 34E+02 BASIN 314.95	TIME TO PEAK (MIN) 66.00 STORAGE=0. 66.00	VOLUME (IN) 1.19 5560E-01 PERCENT 1 1.18	ERROR=
CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM R1-2	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF MANE	DT I (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221E REA (SQ MI) 3.00 32	PEAK TII (CFS)) = (24.42 (E+02 EXCES:) = (21.94 (ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 5=0.0000E+00 00 0.50 53.70 1.19	ME DT) (MIN) 9 3.00 UTFLOW=0.22 8 3.00	PEAK (CFS) 317.42 34E+02 BASIN 314.95	TIME TO PEAK (MIN) 66.00 STORAGE=0.	VOLUME (IN) 1.19 5560E-01 PERCENT 1 1.18	ERROR =
CONTINUI -0.8 CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM R1-2 TY SUMMARY	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF MANE (AC-FT) - INFI	DT I (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221H REA (SQ MI) 3.00 32 LOW=0.2212H	PEAK TII (CFS)) = (24.42 (E+02 EXCES:) = (21.94 (E+02 EXCES:	ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 5=0.0000E+00 00 53.70 1.19 5=0.0000E+00 00	ME DT) (MIN) 9 3.00 UTFLOW=0.22 8 3.00 UTFLOW=0.22	PEAK (CFS) 317.42 34E+02 BASIN 314.95 23E+02 BASIN	TIME TO PEAK (MIN) 66.00 STORAGE=0. 66.00	VOLUME (IN) 1.19 5560E-01 PERCENT 1 1.18 5936E-01 PERCENT 1	ERROR= ERROR=
CONTINUI -0.8 CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM R1-2 TY SUMMARY FOR STORM	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF MANE (AC-FT) - INFI = 3 STORM AF	DT H (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221E REA (SQ MI) 3.00 32 LOW=0.2212E	PEAK TII (CFS)) = (24.42 (2	ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 5=0.0000E+00 OT 0.50 53.70 1.18 5=0.0000E+00 OT	ME DT) (MIN) 9 3.00 UTFLOW=0.22 8 3.00	PEAK (CFS) 317.42 34E+02 BASIN 314.95 23E+02 BASIN	TIME TO PEAK (MIN) 66.00 STORAGE=0. 66.00	VOLUME (IN) 1.19 5560E-01 PERCENT 1 1.18 5936E-01 PERCENT 1	ERROR= ERROR=
CONTINUI -0.8 CONTINUI -0.8	ISTAQ FOR STORM R1-2 TY SUMMARY FOR STORM R1-2 TY SUMMARY FOR STORM R1-2	ELEMENT = 1 STORM AF MANE (AC-FT) - INFI = 2 STORM AF MANE (AC-FT) - INFI = 3 STORM AF MANE	DT I (MIN) (REA (SQ MI) 3.00 32 LOW=0.2221H REA (SQ MI) 3.00 32 LOW=0.2212H REA (SQ MI) 3.00 28	PEAK TII (CFS)) = (24.42 (E+02 EXCES:) = (21.94 (E+02 EXCES:) =	ME TO VOLUI PEAK (MIN) (IN 0.00 53.63 1.19 5=0.0000E+00 00 0.50 53.70 1.14 5=0.0000E+00 01 2.80 57.46 1.19	ME DT) (MIN) 9 3.00 UTFLOW=0.22 8 3.00 UTFLOW=0.22 5 3.00	PEAK (CFS) 317.42 34E+02 BASIN 314.95 23E+02 BASIN 280.31	TIME TO PEAK (MIN) 66.00 STORAGE=0. 66.00 STORAGE=0. 66.00	VOLUME (IN) 1.19 5560E-01 PERCENT 1 1.18 5936E-01 PERCENT 1 1.15	ERROR= ERROR=

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2153E+02 EXCESS=0.0000E+00 OUTFLOW=0.2160E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=

	FOR STORM	I = 4 STORM A	AREA (SQ	MI) =	16.00					
	R1-2	MANE	3.00	239.43	66.99	1.09	3.00	234.05	69.00	1.09
CONTINUIT	Y SUMMARY	(AC-FT) - INF	'LOW=0.20)36E+02 EXC	ESS=0.0000E-	-00 OUTFLOW	I=0.2044E	+02 BASIN S	STORAGE=0.5560	E-01 PERCENT ERROR=
	FOR STORM	1 = 5 STORM A	AREA (SQ	MI) =	90.00					
	R1-2	MANE	2.91	179.26	70.19	0.98	3.00	178.38	69.00	0.98
										- 01
-0.8	Y SUMMARY	(AC-FT) - INF	'LOW=0.18	334E+02 EXC	ESS=0.0000E-	-00 OUTFLOW	V=0.1842E	+02 BASIN S	STORAGE=0.6416	E-01 PERCENT ERROR=
		1 – 1 STORM 7	DEA (CO	MT) -	0.00					
	POK 510KF	MANE	1 61	726 00	65 69	1 52	2 00	725 57	66 00	1 52
	K2-5	MANE	1.01	720.00	03.09	1.33	3.00	123.31	00.00	1.33
CONTINUIT	Y SUMMARY	(AC-FT) - INF	TLOW=0.41	52E+02 EXC	ESS=0.0000E-	+00 OUTFLOW	J=0.4152E	+02 BASIN S	STORAGE=0.4192	E-01 PERCENT ERROR=
-0.1	50111111	(110 11) 111	2011 01 12		200 0.00002	00 0011201			,10101012 01 1172	2 01 12:02:01 2:000
	FOR STORM	1 = 2 STORM A	AREA (SO	MI) =	0.50					
	R2-3	MANE	1.61	719.73	65.75	1.52	3.00	719.25	66.00	1.52
CONTINUII	Y SUMMARY	(AC-FT) - INF	LOW=0.41	28E+02 EXC	ESS=0.0000E-	+00 OUTFLOW	√=0.4128E	+02 BASIN S	STORAGE=0.4197	E-01 PERCENT ERROR=
-0.1										
	FOR STORM	1 = 3 STORM A	AREA (SQ	MI) =	2.80					
	R2-3	MANE	1.65	650.44	66.16	1.47	3.00	647.31	66.00	1.47
CONTINUIT	Y SUMMARY	(AC-FT) - INF	"LOW=0.39	985E+02 EXC	ESS=0.0000E-	00 OUTFLOW	I=0.3986E	+02 BASIN S	STORAGE=0.4192	E-01 PERCENT ERROR=
-0.1										
	FOR STORM	1 = 4 STORM A	AREA (SQ	MI) =	16.00					
	R2-3	MANE	1.61	553.64	68.36	1.37	3.00	550.82	69.00	1.37
CONTINUIT	Y SUMMARY	(AC-FT) - INF	'LOW=0.37	11E+02 EXC	ESS=0.0000E-	00 OUTFLOW	I=0.3710E	+02 BASIN S	STORAGE=0.4192	E-01 PERCENT ERROR=
-v.1										
	FOR STORM	1 = 5 STORM A	AREA (SQ	MI) =	90.00					
	R2-3	MANE	1.77	421.93	69.46	1.19	3.00	418.11	69.00	1.19

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3232E+02 EXCESS=0.0000E+00 OUTFLOW=0.3234E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= -0.2 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R3-5 MANE 2.78 817.36 73.14 1.60 3.00 816.94 72.00 1.60 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4741E+02 EXCESS=0.0000E+00 OUTFLOW=0.4763E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR= -0 6 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R3-5 MANE 2.79 810.60 70.45 1.59 3.00 810.54 72.00 1.59 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4713E+02 EXCESS=0.0000E+00 OUTFLOW=0.4736E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR= -0.7 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R3-5 MANE 2.90 742.52 73.90 1.54 3.00 740 16 72 00 1 54 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4551E+02 EXCESS=0.0000E+00 OUTFLOW=0.4571E+02 BASIN STORAGE=0.8226E-01 PERCENT ERROR= -0.6 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 3.00 634.55 73.70 1.43 3.00 626.49 75.00 1.43 R3-5 MANE CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4224E+02 EXCESS=0.0000E+00 OUTFLOW=0.4240E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR= -0.6 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 478 66 1 24 R3-5 MANE 3 00 74.64 3 00 478 05 75 00 1 24 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3665E+02 EXCESS=0.0000E+00 OUTFLOW=0.3688E+02 BASIN STORAGE=0.8233E-01 PERCENT ERROR= -0.8 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R4-5 MANE 2.41 520.58 62.34 2.39 3.00 513.38 63.00 2.40

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1819E+02 EXCESS=0.0000E+00 OUTFLOW=0.1838E+02 BASIN STORAGE=0.3179E-04 PERCENT ERROR=-1.0

	Onsite_6hr.out										
	R4-5	MANE	2.42	516.56	62.40	2.38	3.00	510.06	63.00	2.39	
CONTINUITY SU	JMMARY	(AC-FT) - INF	LOW=0.18	07E+02 EXCE	SS=0.0000E+	00 OUTFLOW	=0.1825	E+02 BASIN S	STORAGE=0.4744	E-04 PERCENT ERROR=	
FOR	R STORM	= 3 STORM A	REA (SQ	MI) =	2.80	2 22	2 00	451 16	62.00	0.00	
	R4-5	MANE	2.55	451.64	62.77	2.29	3.00	451.16	63.00	2.30	
CONTINUITY SI	IMMARY	(AC-FT) - INF	T.OW=0 17	45E+02 EXCE	SS=0 0000E+	00 OUTFLOW	1=0 1762	E+02 BASIN S	TORAGE=0 4583	E-04 PERCENT ERROR=	
-1.0		(110 11) 111	2011 0127	151.01 1001		00 001120	0.1702		1010102 01 1000		
FOR	STORM	= 4 STORM A	rea (sq	MI) =	16.00						
	R4-5	MANE	2.73	379.50	64.90	2.12	3.00	374.76	63.00	2.12	
CONTINUITY SU	JMMARY	(AC-FT) - INF	LOW=0.16	09E+02 EXCE	SS=0.0000E+	00 OUTFLOW	=0.1629	E+02 BASIN S	STORAGE=0.4132	E-04 PERCENT ERROR=	
-1.2											
FOR	STORM	= 5 STORM A	rea (sq	MI) =	90.00						
	R4-5	MANE	2.87	291.80	65.24	1.78	3.00	288.81	66.00	1.78	
CONTINUITY SU -1.2	JMMARY	(AC-FT) - INF	LOW=0.13	54E+02 EXCE	SS=0.0000E+	00 OUTFLOW	=0.1370	E+02 BASIN S	STORAGE=0.4337	E-04 PERCENT ERROR=	
		1		\							
F.OF	STORM	= 1 STORM A	REA (SQ	ML) =	0.00	1 04	2 00	1400 10	72 00	1 04	
	K3-0	MANE	1./1	1430.15	/3.20	1.04	3.00	1420.13	72.00	1.04	
CONTINUITY SU	JMMARY	(AC-FT) - INF	LOW=0.80	96E+02 EXCE	SS=0.0000E+	00 OUTFLOW	=0.8101	E+02 BASIN S	STORAGE=0.7278	E-01 PERCENT ERROR=	
-0.1											
FOR	STORM	= 2 STORM A	rea (sq	MI) =	0.50						
	R5-6	MANE	1.72	1417.75	71.63	1.82	3.00	1417.68	72.00	1.82	
CONTINUITY SU	JMMARY	(AC-FT) - INF	LOW=0.80	47E+02 EXCE	SS=0.0000E+	00 OUTFLOW	=0.8049	E+02 BASIN S	TORAGE=0.7282	E-01 PERCENT ERROR=	
-U.1											
FOR	R STORM	= 3 STORM A	rea (sq	MI) =	2.80						
	R5-6	MANE	1.83	1320.58	72.30	1.76	3.00	1310.29	72.00	1.76	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7757E+02 EXCESS=0.0000E+00 OUTFLOW=0.7762E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR=-0.2

	FOR	STORM	= 4 STORM A	REA (SQ	MI) =	16.00					
		R5-6	MANE	1.92	1120.07	73.97	1.62	3.00	1117.54	75.00	1.62
CONTINUIT	Y SU	MMARY	(AC-FT) - INF	LOW=0.7	160E+02 EXC	CESS=0.0000E+	-00 OUTFLOW	=0.7164	E+02 BASIN	STORAGE=0.7274	E-01 PERCENT ERROR=
-0.2											
	FOR	STORM	i = 5 storm A	REA (SQ	MI) =	90.00					
		R5-6	MANE	2.16	837.38	77.35	1.39	3.00	834.70	75.00	1.39

-0.2

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6127E+02 EXCESS=0.0000E+00 OUTFLOW=0.6143E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR= -0.4

FOR STORM = 1 STORM AREA (SQ MI) = 0.00 2.79 374.54 61.97 2.32 3.00 360.59 63.00 2.31 R7-8 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8717E+01 EXCESS=0.0000E+00 OUTFLOW=0.9160E+01 BASIN STORAGE=0.1297E-03 PERCENT ERROR= -5.1

FOR STORM = 2 STORM AREA (SQ MI) = 0.50 2.80 373.06 62.02 2.31 3.00 359.23 63.00 2.30 R7-8 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8655E+01 EXCESS=0.0000E+00 OUTFLOW=0.9098E+01 BASIN STORAGE=0.1282E-03 PERCENT ERROR= -5.1

FOR STORM = 3 STORM AREA (SQ MI) = 2.80 3.00 300.60 62.65 2.18 3.00 299.77 63.00 2.18 R7-8 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8267E+01 EXCESS=0.0000E+00 OUTFLOW=0.8591E+01 BASIN STORAGE=0.1511E-03 PERCENT ERROR= -3.9

FOR STORM	= 4	STORM AREA	(SQ MI) =	16.00					
R7-8	MANE	3 0	0 2	43 19	65 55	1 99	3 00	238 95	66 00	2 00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7502E+01 EXCESS=0.0000E+00 OUTFLOW=0.7866E+01 BASIN STORAGE=0.1118E-03 PERCENT ERROR= -4.8

FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R7-8 MANE 2.82 178.83 67.24 1.61 3.00 176.29 66.00 1.61

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6168E+01 EXCESS=0.0000E+00 OUTFLOW=0.6362E+01 BASIN STORAGE=0.1260E-03 PERCENT ERROR= -3.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R8-9 MANE 1.32 1031.83 65.57 2.33 3.00 1013.13 66.00 2.33 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3691E+02 EXCESS=0.0000E+00 OUTFLOW=0.3702E+02 BASIN STORAGE=0.1702E-03 PERCENT ERROR= -0.3 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R8-9 MANE 1.33 1027.12 65.64 2.31 3.00 1010.29 66.00 2.32 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3666E+02 EXCESS=0.0000E+00 OUTFLOW=0.3678E+02 BASIN STORAGE=0.2024E-03 PERCENT ERROR= -0.3 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 1.45 913.69 66.38 2.21 3.00 911.34 66.00 2.21 R8-9 MANE CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3510E+02 EXCESS=0.0000E+00 OUTFLOW=0.3519E+02 BASIN STORAGE=0.1735E-03 PERCENT ERROR= -0.3 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 772.14 65.64 2.03 R8-9 MANE 1.48 3.00 769.23 66.00 2.03 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3216E+02 EXCESS=0.0000E+00 OUTFLOW=0.3228E+02 BASIN STORAGE=0.1954E-03 PERCENT ERROR= -0.4 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R8-9 MANE 1.59 554.15 67.90 1.68 3.00 554.05 69.00 1.68 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2666E+02 EXCESS=0.0000E+00 OUTFLOW=0.2676E+02 BASIN STORAGE=0.1898E-03 PERCENT ERROR= -0.4 FOR STORM = 1 STORM AREA (SQ MI) = 0 00 0.29 363.48 498.70 0.56 BSNRT1 MANE 3.00 363.48 501.00 0.56 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5822E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50

BSNRT1 MANE 0.29 363.42 498.84 0.56 3.00 363.42 501.00 0.56

Page 80

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5819E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0 0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 BSNRT1 MANE 0.45 363.06 498.87 0.55 3.00 363.06 501.00 0.55 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5801E+03 EXCESS=0.0000E+00 OUTFLOW=0.5800E+03 BASIN STORAGE=0.3288E-01 PERCENT ERROR= 0.0 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 BSNRT1 MANE 0.38 362.38 500.88 0.55 3.00 362.38 501.00 0.55 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5767E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3287E-01 PERCENT ERROR= 0.0 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 BSNRT1 MANE 0.34 361.10 501.33 0.54 3.00 361.10 501.00 0.54 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5702E+03 BASIN STORAGE=0.3284E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 BSNRT2 MANE 0 44 363.48 501.11 0.56 3.00 363.48 501.00 0.56 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5821E+03 BASIN STORAGE=0.3756E-01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 BSNRT2 MANE 0.44 363.42 501.35 0.56 3.00 363.42 501.00 0.56 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5818E+03 BASIN STORAGE=0.3756E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 BSNRT2 MANE 0.36 363.06 501.42 0.55 3.00 363.06 501.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5800E+03 EXCESS=0.0000E+00 OUTFLOW=0.5799E+03 BASIN STORAGE=0.3755E-01 PERCENT ERROR= 0.0

	Onsite_6hr.out											
	FOR STORM	= 4 STORM A	AREA (SO	MI) =	16.00							
			(~ <u>c</u>									
	BSNRT2	MANE	0.48	362.38	501.44	0.55	3.00	362.38	501.00	0.55		
CONTINUTT	V SIIMMARY	(AC-ET) - INE	T.OW=0 5'	766E+03 EXC	ESS=0 0000E+	00 OUTFLOW	=0 5766	E+03 BASIN	STORAGE=0 3753	E-01 PERCENT ERROR=		
0.0	1 DOMINICI	(110 11) 111	101-0.5	TODE TOS LINC		00 0011100	-0.5700	E.05 BINDIN	510101011011-0.5755	h of theory hereit		
	FOR STORM	= 5 STORM A	AREA (SQ	MI) =	90.00							
	DCNDT7	MANE	0 29	261 10	501 56	0 54	3 00	261 00	501 00	0.54		
	BONKIZ	MAINE	0.50	301.10	501.50	0.54	3.00	501.09	501.00	0.54		
CONTINUIT	Y SUMMARY	(AC-FT) - INF	LOW=0.5	702E+03 EXC	ESS=0.0000E+	00 OUTFLOW	=0.5701	E+03 BASIN	STORAGE=0.3750	E-01 PERCENT ERROR=		
0.0												
	FOR STORM	= 1 STORM A	AREA (SQ	MI) =	0.00							
	PMB-RT	MANE	0.99	1000.00	299.31	0.55	3.00	1000.00	300.00	0.55		
CONTINUIT	Y SUMMARY	(AC-FT) - INF	LOW=0.36	615E+03 EXC	ESS=0.0000E+	00 OUTFLOW	=0.3612	E+03 BASIN	STORAGE=0.1613	E+00 PERCENT ERROR=		
0.0												
	FOR STORM	= 2 STORM A	AREA (SQ	MI) =	0.50							
	PMB-RT	MANE	0.99	1000.00	299.31	0.55	3.00	1000.00	300.00	0.55		
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INF	'LOW=0.36	515E+03 EXC	ESS=0.0000E+	00 OUTFLOW	=0.3612	E+03 BASIN	STORAGE=0.1613	E+00 PERCENT ERROR=		
	FOR STORM	- 3 GTORM #	PFA (SO	MT) -	2 80							
	FOR STORM	- 5 51000 4	ILLA (DQ	MI) =	2.00							
	PMB-RT	MANE	0.99	1000.00	299.31	0.55	3.00	1000.00	300.00	0.55		
CONTENTITE	VOTIMMADY			(1EE,02 EVO	ECC-0 0000E		-0 2612		CTODACE-0 1613	ELOO DEDCENT EDDOD-		
0.0	I SUMMARI	(AC-FI) - INF	LOW=0.36	DIDE+03 EAC	ESS=0.0000E+	OU OUIFLOW	-0.3012	ETUS BASIN	SIORAGE=0.1013	E+00 PERCENI ERROR=		
	FOR STORM	= 4 STORM A	AREA (SO	MI) =	16.00							
			0.00	1000.00	000.01	0.55	2	1000 00	200.00	0.55		
	DWR-KJ.	MANE	0.99	1000.00	299.31	0.55	3.00	1000.00	300.00	0.55		
CONTINUUT	Y SUMMARY	(AC-FT) - TNF	LOW=0.36	515E+03 EXC	ESS=0.0000F+	00 OUTFIOW	=0.3612	E+03 BASTN	STORAGE=0.1613	E+00 PERCENT ERROR=		
0.0		, _		110								
	FOR STORM	= 5 STORM A	AREA (SQ	MI) =	90.00							
	PMR-RT	MANE	0 99	1000 00	299 31	0 55	3 00	1000 00	300 00	0 55		
	1 mp 1(1				L	0.00	2.00	1000.00	200.00			

	FOR STORM	I = 1 STORM A	AREA (SQ	MI) =	0.00					
	R10-11	MANE	1.62	1355.03	412.64	0.90	3.00	1354.77	411.00	0.90
CONTINUIT	Y SUMMARY	(AC-FT) - INF	FLOW=0.9	482E+03 EX0	CESS=0.0000E+	-00 OUTFLOW	2=0.9474	E+03 BASIN	STORAGE=0.9166	E+00 PERCENT ERROR=
0.0										
	FOR STORM	I = 2 STORM P	AREA (SQ	MI) =	0.50					
	R10-11	MANE	1.56	1354.98	412.72	0.90	3.00	1354.72	411.00	0.90
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INF	FLOW=0.9	479E+03 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.9473	E+03 BASIN	STORAGE=0.9166	E+00 PERCENT ERROR=
	FOR STORM	I = 3 STORM A	AREA (SQ	MI) =	2.80					
	R10-11	MANE	1.57	1354.58	412.38	0.90	3.00	1354.33	411.00	0.90
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INF	FLOW=0.9	458E+03 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.9450	E+03 BASIN	STORAGE=0.9164	E+00 PERCENT ERROR=
	FOR STORM	i = 4 STORM A	AREA (SQ	MI) =	16.00					
	R10-11	MANE	1.67	1353.83	412.54	0.90	3.00	1353.59	411.00	0.90
CONTINUIT 0.0	Y SUMMARY	(AC-FT) - INF	FLOW=0.9	420E+03 EX0	CESS=0.0000E+	-00 OUTFLOW	=0.9412	E+03 BASIN	STORAGE=0.9165	E+00 PERCENT ERROR=
	FOR STORM	= 5 STORM A	AREA (SQ	MI) =	90.00					
	R10-11	MANE	1.66	1352.40	412.19	0.89	3.00	1352.18	411.00	0.89

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9349E+03 EXCESS=0.0000E+00 OUTFLOW=0.9341E+03 BASIN STORAGE=0.9161E+00 PERCENT ERROR= 0.0

*** NORMAL END OF HEC-1 ***

0.0

Appendix C Cavasson HEC-1 Data *Toll at Cavasson*

Flood Control District of Maricopa County Drainage Design Management System RAINFALL DATA Project Reference: 17114 - DATA

Page 1			Flojectiv								
ID	Method	Duration	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr			
DEFAULT	NOAA14	5 MIN	0.258	0.349	0.418	0.511	0.583	0.656			
	NOAA14	10 MIN	0.393	0.530	0.636	0.778	0.887	0.998			
	NOAA14	15 MIN	0.487	0.658	0.789	0.965	1.099	1.237			
	NOAA14	30 MIN	0.656	0.886	1.063	1.299	1.480	1.666			
	NOAA14	1 HOUR	0.812	1.096	1.315	1.608	1.832	2.062			
	NOAA14	2 HOUR	0.939	1.251	1.490	1.814	2.060	2.315			
	NOAA14	3 HOUR	1.024	1.339	1.588	1.936	2.212	2.498			
	NOAA14	6 HOUR	1.215	1.549	1.817	2.182	2.465	2.760			
	NOAA14	12 HOUR	1.374	1.734	2.016	2.399	2.690	2.993			
	NOAA14	24 HOUR	1.622	2.097	2.476	3.005	3.425	3.865			

Soil Map—Aguila-Carefree Area, Arizona, Parts of Maricopa and Pinal Counties

ŝ

8

Soil Map—Aguila-Carefree Area, Arizona, Parts of Maricopa and Pinal Counties

MAP INFORMATION	The soil surveys that comprise your AOI were mapped at 1:24,000.	Please rely on the bar scale on each map sheet for map measurements.	Source of Map: Natural Resources Conservation Service	Coordinate System: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator projection which preserves direction and shape but distorts.	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	Soil Survey Area: Aquila-Carefree Area, Arizona, Parts of	Maricopa and Pinal Counties	SUIVEY AIER DAIR. VEISION 11, SEP 11, 2017	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	Date(s) aerial images were photographed: Oct 31, 2014—Dec 7,	2014	The orthophoto or other base map on which the soil lines were	imagery displayed on these maps. As a result, some minor	shifting of map unit boundaries may be evident.						
QN	Spoil Area	South Story Spot	Vet Spot	△ Other Canadal Line Footward	 Special Line reatures Features 	Streams and Canals	sportation Rails	Interstate Highways	US Routes	Major Roads	Local Roads	ground	Aerial Photography										
MAP LEGE	terest (AOI) Area of Interest (AOI)	Soil Map Unit Polygons	Soil Map Unit Lines	Soil Map Unit Points	Point Features Wate	Borrow Pit	Tran Clay Spot	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow Bac	Marsh or swamp	Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot
	Area of Int	Soils	}	•	Special	0 0	×	\$	*	0 0 0	0	V	1	¢<	0	0	>	+	0 0 0 0	Û	\$	A	Q

٦

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
55	Gilman loams	768.3	30.2%
90	Momoli gravelly sandy loam, 1 to 5 percent slopes	1,778.8	69.8%
Totals for Area of Interest		2,547.2	100.0%

PROJECT NAME:	Cavasson Master Plan Phase 3 Ultimate
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

The following spreadsheets were used to prepare input data for HEC-1 Green and Ampt Method described in The Drainage Design Manual for Maricopa County

Spreadsheet equations and assumptions were as follows:

SHEET 1: Summary	Summary of HEC-1 Input.
SHEET 2: Basin Geometry	Drainage areas, watercourse length, slope, adjusted slope, land type, and $K_b.$
	Slopes were adjusted according to Figure 5.4.
	Land type and K_b were determined using Table 5.1.
SHEET 3: Green-Ampt Parameters	Soil characteristics, XKSAT, PSIF, DTHETA, and RTEMP.
	Soil type and percentages determined from Flood Control soils map.
	XKSAT determined using Appendix A. If applicable a logrithmic weighted value was determined for multiple soils within a basin according to the following equation:
	$\overline{XSAT} = ALOG \sum [\% SOIL TYPE(IN DECIMAL) \cdot LOG(XSAT)]$
	Where: XSAT det er min ed from Appendix A
	PSIF and DTHETA determined using Figure 4.3.
	RTEMP is a weighted value based on soil data. The following equation was used to determine the weighted value:
	$RTEMP = \sum \% \text{ soil type} \cdot [\% ROCK \text{ outcrop}(IN \text{ decimal})]$
	These values may be used for predeveloped conditions.
SHEET 4: Land Use Parameters	Land use categories, IA, and RTEMP. IA and RTEMP are weighted based on percentage of land use. These values may be used for post developement conditions.
SHEET 5: Retention Required	This is the Proposed Condition Retention that will be required for each SubBasin. It is calculated as the FIRST FLUSH per the Development Agreement (Construction of Offsite Powerline Channel) The Formula used is from COS: Vol = Cw*(P/12)*Area In HEC-1 this will be input as a Divert and not brought back The Divert will be labeled: DIVXXX, where XXX is the Basin ID
Cavasson Master Plan Phase 3 Ultimate	

18114-221	
TSW	
7/20/2023	

			SEE SHEET	_FOR DETERM	INATION OF	THE FOLL	OWING INP	UT	
Sheet # -	→ 2	2	4	2	4	3	3	3	4
	BASIN	WATERCOURSE		SLOPE					GREATER OF
BASIN	AREA	LENGTH	Kb	ADJUSTED	IA		PSIF	XKSAT	RTEMP SOIL
NUMBER	(Miles ²)	(Miles)	WEIGHTED	(Ft/Mile)	WEIGHTED	(in)	(in)	(in/hr)	OR WEIGHTED
SB01-C	0.0270	0.3286	0.032	96	0.25	0.35	4.3	0.5778	45%
SB01-B	0.0240	0.2750	0.033	115	0.25	0.35	4.3	0.5778	45%
SB01-A	0.0610	0.2750	0.030	121	0.25	0.35	4.3	0.5778	45%
SB02NE	0.0335	0.3873	0.032	72	0.25	0.35	4.3	0.5778	45%
SB02NW	0.0193	0.1919	0.033	86	0.25	0.35	4.3	0.5778	45%
SB02W	0.0571	0.3483	0.111	88	0.35	0.35	4.3	0.5111	0%
SB02E1	0.0252	0.2788	0.032	86	0.10	0.35	4.3	0.6222	80%
SB02E2	0.0189	0.2973	0.033	77	0.10	0.35	4.3	0.6222	80%
SB8NW	0.0147	0.1445	0.034	83	0.10	0.35	4.3	0.6222	80%
SB8NE	0.0150	0.1405	0.034	85	0.10	0.35	4.3	0.6222	80%
SB8SW	0.0129	0.1383	0.034	116	0.10	0.35	4.3	0.6222	80%
SB8SE	0.0131	0.1580	0.034	104	0.10	0.35	4.3	0.6222	80%
SB08W	0.0589	0.3428	0.030	64	0.10	0.35	4.3	0.6222	80%
SB07W	0.0468	0.3138	0.031	99	0.25	0.35	4.3	0.5778	45%

SUM= 0.4272

PROJECT NAME: HUBBARD JOB # : PREPARED BY: DATE:	Cavasson Master Plan Phase 3 Ultimate 18114-221 TSW 7/20/2023	
---	--	--

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

						BAS	IN ELEVAT	ION		SLOPE	
BASIN	E	BASIN AREA	4	WATER COUR	SE LENGTH		Low	Δ Elevation			ADJUSTED
NUMBER	(Feet ²)	(ACRES)	(Miles ²)	(Feet)	(Miles)	(Feet)	(Feet)	(Feet)	(Ft/Ft)	(Ft/Mile)	(Ft/Mile)
SB01-C	752,914	17.28	0.0270	1735	0.329	1681.0	1649.3	31.7	0.0183	96.47	96.5
SB01-B	668,111	15.34	0.0240	1452	0.275	1668.5	1637.0	31.5	0.0217	114.55	114.5
SB01-A	1,700,557	39.04	0.0610	1452	0.275	1659.3	1626.0	33.3	0.0229	121.09	121.1
SB02NE	934,725	21.46	0.0335	2045	0.387	1652.0	1624.0	28.0	0.0137	72.29	72.3
SB02NW	537,015	12.33	0.0193	1013	0.192	1640.5	1624.0	16.5	0.0163	86.00	86.0
SB02W	1,592,151	36.55	0.0571	1839	0.348	1634.5	1604.0	30.5	0.0166	87.57	87.6
SB02E1	701,285	16.10	0.0252	1472	0.279	1631.0	1607.0	24.0	0.0163	86.09	86.1
SB02E2	526,856	12.09	0.0189	1570	0.297	1627.0	1604.0	23.0	0.0146	77.35	77.4
SB8NW	408,919	9.39	0.0147	763	0.145	1654.0	1642.0	12.0	0.0157	83.04	83.0
SB8NE	417,750	9.59	0.0150	742	0.141	1654.0	1642.0	12.0	0.0162	85.39	85.4
SB8SW	358,807	8.24	0.0129	730	0.138	1642.0	1626.0	16.0	0.0219	115.73	115.7
SB8SE	365,480	8.39	0.0131	834	0.158	1642.5	1626.0	16.5	0.0198	104.46	104.5
SB08W	1,641,602	37.69	0.0589	1810	0.343	1634.0	1612.0	22.0	0.0122	64.18	64.2
SB07W	1,303,601	29.93	0.0468	1657	0.314	1685.0	1654.0	31.0	0.0187	98.78	98.8

SUM= 11,909,774 273 0.4272

PROJECT NAME:	Cavasson Master Plan Phase 3 Ultimate
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

						XKSAT				
				ROCK OUTCROP		ADJUSTED FOR				
BASIN	BASIN AREA	SOIL	% OF SOIL	% OF SOIL	XKSAT	60%	XKSAT	PSIF	DTHETA	RTEMP SOIL
NUMBER	(Miles ²)	TYPE	TYPE	IMPERVIOUS	(in/hr)	VEGATATION*	(in/hr)	(in)	(in)	IN SUBBASIN
SB01-C	0.0270	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB01-B	0.0240	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB01-A	0.0610	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02NE	0.0335	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02NW	0.0193	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02W	0.0571	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02E1	0.0252	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB02E2	0.0189	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8NW	0.0147	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8NE	0.0150	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8SW	0.0129	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8SE	0.0131	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB08W	0.0589	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB07W	0.0468	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%

*60% vegetation was used for C2 land uses, MFR land uses used 50% and NDR used 35% vegetation

PREPARED BY: TSW DATE: 7/20/2023	PROJECT NAME: Cavasson N HUBBARD JOB # : 18114-221 PREPARED BY: TSW DATE: 7/20/2023	faster Plan Phase 3 Ultimate
--	---	------------------------------

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

BASIN	BASIN AREA	LAND	% OF	SUB AREA	LAND	K _b	K _b	IA FOR	IA	RTEMP FOR	RTEMP FOR	RTEMP	RTEMP MAX
NUMBER	ACRES	USE	BASIN	ACRES	TYPE		WEIGHTED	LAND USE	WEIGHTED	SOIL IN BASIN	LAND USE	WEIGHTED	
SB01-C	17.28	MFR	100%	17.28	А	0.0323	0.0323	0.25	0.25	0%	45%	45%	45%
SB01-B	15.34	MFR	100%	15.34	А	0.0326	0.0326	0.25	0.25	0%	45%	45%	45%
SB01-A	39.04	MFR	100%	39.04	А	0.0301	0.0301	0.25	0.25	0%	45%	45%	45%
SB02NE	21.46	MFR	100%	21.46	А	0.0317	0.0317	0.25	0.25	0%	45%	45%	45%
SB02NW	12.33	MFR	100%	12.33	А	0.0332	0.0332	0.25	0.25	0%	45%	45%	45%
SB02W	36.55	NDR	100%	36.55	С	0.1109	0.1109	0.35	0.35	0%	0%	0%	0%
SB02E1	16.10	C2	100%	16.10	А	0.0325	0.0325	0.1	0.10	0%	80%	80%	80%
SB02E2	12.09	C2	100%	12.09	А	0.0332	0.0332	0.1	0.10	0%	80%	80%	80%
SB8NW	9.39	C2	100%	9.39	А	0.0339	0.0339	0.1	0.10	0%	80%	80%	80%
SB8NE	9.59	C2	100%	9.59	А	0.0339	0.0339	0.1	0.10	0%	80%	80%	80%
SB8SW	8.24	C2	100%	8.24	А	0.0343	0.0343	0.1	0.10	0%	80%	80%	80%
SB8SE	8.39	C2	100%	8.39	А	0.0342	0.0342	0.1	0.10	0%	80%	80%	80%
SB08W	37.69	C2	100%	37.69	А	0.0301	0.0301	0.1	0.10	0%	80%	80%	80%
SB07W	29.93	MFR	100%	29.93	Α	0.0308	0.0308	0.25	0.25	0%	45%	45%	45%

SUM=

273

PROJECT NAME:	Cavasson Master Plan Phase 3 Ultimate
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

SHADED HEADING INDICATES USER INPUT SPREADSHEET

					Volume	Required
BASIN	E	BASIN AREA	4	Weighted C		
NUMBER	(Feet ²)	(ACRES)	(Miles ²)	Proposed Cond.	[acre-ft]	[ft ³]
SB01-C	752,914	17.28	0.0270	0.85	0.612	26,665.7
SB01-B	668,111	15.34	0.0240	0.85	0.543	23,662.3
SB01-A	1,700,557	39.04	0.0610	0.85	1.383	60,228.1
SB02NE	934,725	21.46	0.0335	0.85	0.760	33,104.9
SB02NW	537,015	12.33	0.0193	0.85	0.437	19,019.3
SB02W	1,592,151	36.55	0.0571	0.85	1.295	56,388.7
SB02E1	701,285	16.10	0.0252	0.85	0.570	24,837.2
SB02E2	526,856	12.09	0.0189	0.85	0.428	18,659.5
SB8NW	408,919	9.39	0.0147	0.85	0.332	14,482.5
SB8NE	417,750	9.59	0.0150	0.85	0.340	14,795.3
SB8SW	358,807	8.24	0.0129	0.85	0.292	12,707.8
SB8SE	365,480	8.39	0.0131	0.85	0.297	12,944.1
SB08W	1,641,602	37.69	0.0589	0.85	1.335	58,140.1
SB07W	1,303,601	29.93	0.0468	0.85	1.060	46,169.2
SUM=	11,909,774	273	0.43		9.683	421,804.5

PROJECT NAME:	Cavasson Master Plan Phase 3 Existing
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

The following spreadsheets were used to prepare input data for HEC-1 Green and Ampt Method described in The Drainage Design Manual for Maricopa County

Spreadsheet equations and assumptions were as follows:

SHEET 1: Summary	Summary of HEC-1 Input.
SHEET 2: Basin Geometry	Drainage areas, watercourse length, slope, adjusted slope, land type, and $K_b.$
	Slopes were adjusted according to Figure 5.4.
	Land type and K_b were determined using Table 5.1.
SHEET 3: Green-Ampt Parameters	Soil characteristics, XKSAT, PSIF, DTHETA, and RTEMP.
	Soil type and percentages determined from Flood Control soils map.
	XKSAT determined using Appendix A. If applicable a logrithmic weighted value was determined for multiple soils within a basin according to the following equation:
	$\overline{XSAT} = ALOG \sum [\% SOIL TYPE(IN DECIMAL) \cdot LOG(XSAT)]$
	Where: XSAT det er min ed from Appendix A
	PSIF and DTHETA determined using Figure 4.3.
	RTEMP is a weighted value based on soil data. The following equation was used to determine the weighted value:
	$RTEMP = \sum \% \text{ soil type} \cdot [\% \text{ rock outcrop}(\text{in decimal})]$
	These values may be used for predeveloped conditions.
SHEET 4: Land Use Parameters	Land use categories, IA, and RTEMP. IA and RTEMP are weighted based on percentage of land use. These values may be used for post developement conditions.
SHEET 5: Retention Required	This is the Proposed Condition Retention that will be required for each SubBasin. It is calculated as the FIRST FLUSH per the Development Agreement (Construction of Offsite Powerline Channel) The Formula used is from COS: Vol = $Cw^*(P/12)^*$ Area In HEC-1 this will be input as a Divert and not brought back The Divert will be labeled: DIVXXX, where XXX is the Basin ID

PROJECT NAME:	Cavasson Master Plan Phase 3 Existing
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

	SEE SHEET _ FOR DETERMINATION OF THE FOLLOWING INPUT									
Sheet # -	→ 2	2	4	2	4	3	3	3	4	
	BASIN	WATERCOURSE		SLOPE					GREATER OF	
BASIN	AREA	LENGTH	Kb	ADJUSTED	IA	DTHETA	PSIF	XKSAT	RTEMP SOIL	
NUMBER	(Miles ²)	(Miles)	WEIGHTED	(Ft/Mile)	WEIGHTED	(in)	(in)	(in/hr)	OR WEIGHTED	
SB01-C	0.0270	0.3286	0.119	96	0.35	0.35	4.3	0.5111	0%	
SB01-B	0.0240	0.2750	0.120	115	0.35	0.35	4.3	0.5111	0%	
SB01-A	0.0610	0.2750	0.110	121	0.35	0.35	4.3	0.5111	0%	
SB02NE	0.0335	0.3873	0.117	72	0.35	0.35	4.3	0.5111	0%	
SB02NW	0.0193	0.1919	0.123	86	0.35	0.35	4.3	0.5111	0%	
SB02W	0.0571	0.3483	0.111	88	0.35	0.35	4.3	0.5111	0%	
SB02E1	0.0252	0.2788	0.120	86	0.35	0.35	4.3	0.5111	0%	
SB02E2	0.0189	0.2973	0.126	77	0.35	0.35	4.3	0.5111	0%	
SB8NW	0.0147	0.1445	0.126	83	0.35	0.35	4.3	0.5111	0%	
SB8NE	0.0150	0.1405	0.125	85	0.35	0.35	4.3	0.5111	0%	
SB8SW	0.0129	0.1383	0.127	116	0.35	0.35	4.3	0.5111	0%	
SB8SE	0.0131	0.1580	0.127	104	0.35	0.35	4.3	0.5111	0%	
SB08W	0.0589	0.3428	0.030	64	0.10	0.35	4.3	0.5111	80%	
SB07W	0.0468	0.3138	0.113	99	0.35	0.35	4.3	0.5111	0%	

SUM= 0.4272

PROJECT NAME: HUBBARD JOB # : PREPARED BY: DATE:	Cavasson Master Plan Phase 3 Existing 18114-221 TSW 7/20/2023	
---	--	--

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

				BAS	IN ELEVAT	ION		SLOPE			
BASIN	E	BASIN AREA	4	WATER COUR	SE LENGTH	High	Low	Δ Elevation			ADJUSTED
NUMBER	(Feet ²)	(ACRES)	(Miles ²)	(Feet)	(Miles)	(Feet)	(Feet)	(Feet)	(Ft/Ft)	(Ft/Mile)	(Ft/Mile)
SB01-C	752,914	17.28	0.0270	1735	0.329	1681.0	1649.3	31.7	0.0183	96.47	96.5
SB01-B	668,111	15.34	0.0240	1452	0.275	1668.5	1637.0	31.5	0.0217	114.55	114.5
SB01-A	1,700,557	39.04	0.0610	1452	0.275	1659.3	1626.0	33.3	0.0229	121.09	121.1
SB02NE	934,725	21.46	0.0335	2045	0.387	1652.0	1624.0	28.0	0.0137	72.29	72.3
SB02NW	537,015	12.33	0.0193	1013	0.192	1640.5	1624.0	16.5	0.0163	86.00	86.0
SB02W	1,592,151	36.55	0.0571	1839	0.348	1634.5	1604.0	30.5	0.0166	87.57	87.6
SB02E1	701,285	16.10	0.0252	1472	0.279	1631.0	1607.0	24.0	0.0163	86.09	86.1
SB02E2	526,856	12.09	0.0189	1570	0.297	1627.0	1604.0	23.0	0.0146	77.35	77.4
SB8NW	408,919	9.39	0.0147	763	0.145	1654.0	1642.0	12.0	0.0157	83.04	83.0
SB8NE	417,750	9.59	0.0150	742	0.141	1654.0	1642.0	12.0	0.0162	85.39	85.4
SB8SW	358,807	8.24	0.0129	730	0.138	1642.0	1626.0	16.0	0.0219	115.73	115.7
SB8SE	365,480	8.39	0.0131	834	0.158	1642.5	1626.0	16.5	0.0198	104.46	104.5
SB08W	1,641,602	37.69	0.0589	1810	0.343	1634.0	1612.0	22.0	0.0122	64.18	64.2
SB07W	1,303,601	29.93	0.0468	1657	0.314	1685.0	1654.0	31.0	0.0187	98.78	98.8

SUM= 11,909,774 273 0.4272

PROJECT NAME:	Cavasson Master Plan Phase 3 Existing
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

				ROCK OUTCROP		XKSAT ADJUSTED FOR				
BASIN	BASIN AREA	SOIL	% OF SOIL	% OF SOIL	XKSAT	35%	XKSAT	PSIF	DTHETA	RTEMP SOIL
NUMBER	(Miles ²)	TYPE	TYPE	IMPERVIOUS	(in/hr)	VEGATATION	(in/hr)	(in)	(in)	IN SUBBASIN
SB01-C	0.0270	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB01-B	0.0240	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB01-A	0.0610	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02NE	0.0335	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02NW	0.0193	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02W	0.0571	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02E1	0.0252	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02E2	0.0189	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8NW	0.0147	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8NE	0.0150	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8SW	0.0129	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8SE	0.0131	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB08W	0.0589	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB07W	0.0468	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%

Check: 0.4272

PROJECT NAME:	Cavasson Master Plan Phase 3 Existing
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

BASIN	BASIN AREA	LAND	% OF	SUB AREA	LAND	K _b	K _b	IA FOR	IA	RTEMP FOR	RTEMP FOR	RTEMP	RTEMP MAX
NUMBER	ACRES	USE	BASIN	ACRES	TYPE		WEIGHTED	LAND USE	WEIGHTED	SOIL IN BASIN	LAND USE	WEIGHTED	
SB01-C	17.28	NDR	100%	17.28	С	0.1191	0.1191	0.35	0.35	0%	0%	0%	0%
SB01-B	15.34	NDR	100%	15.34	С	0.1204	0.1204	0.35	0.35	0%	0%	0%	0%
SB01-A	39.04	NDR	100%	39.04	С	0.1102	0.1102	0.35	0.35	0%	0%	0%	0%
SB02NE	21.46	NDR	100%	21.46	С	0.1167	0.1167	0.35	0.35	0%	0%	0%	0%
SB02NW	12.33	NDR	100%	12.33	С	0.1227	0.1227	0.35	0.35	0%	0%	0%	0%
SB02W	36.55	NDR	100%	36.55	С	0.1109	0.1109	0.35	0.35	0%	0%	0%	0%
SB02E1	16.10	NDR	100%	16.10	С	0.1198	0.1198	0.35	0.35	0%	0%	0%	0%
SB02E2	12.09	NDR	100%	12.09	С	0.1229	0.1229	0.35	0.35	0%	0%	0%	0%
SB8NW	9.39	NDR	100%	9.39	С	0.1257	0.1257	0.35	0.35	0%	0%	0%	0%
SB8NE	9.59	NDR	100%	9.59	С	0.1255	0.1255	0.35	0.35	0%	0%	0%	0%
SB8SW	8.24	NDR	100%	8.24	С	0.1271	0.1271	0.35	0.35	0%	0%	0%	0%
SB8SE	8.39	NDR	100%	8.39	С	0.1269	0.1269	0.35	0.35	0%	0%	0%	0%
SB08W	37.69	C2	100%	37.69	A	0.0301	0.0301	0.1	0.10	0%	80%	80%	80%
SB07W	29.93	NDR	100%	29.93	С	0.1131	0.1131	0.35	0.35	0%	0%	0%	0%

SUM=

273

PROJECT NAME:	Cavasson Master Plan Phase 3 Existing
HUBBARD JOB # :	18114-221
PREPARED BY:	TSW
DATE:	7/20/2023

SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

Volume Required									
BASIN	BASIN AREA			Weighted C	Volumo	rtoquirou	t		
NUMBER	(Feet ²)	(ACRES)	(Miles ²)	Proposed Cond.	[acre-ft]	[ft ³]	eet)		
SB01-C	752,914	17.28	0.0270	0.85	0.612	26,665.7	ΤÍ		
SB01-B	668,111	15.34	0.0240	0.85	0.543	23,662.3			
SB01-A	1,700,557	39.04	0.0610	0.85	1.383	60,228.1			
SB02NE	934,725	21.46	0.0335	0.85	0.760	33,104.9			
SB02NW	537,015	12.33	0.0193	0.85	0.437	19,019.3			
SB02W	1,592,151	36.55	0.0571	0.85	1.295	56,388.7			
SB02E1	701,285	16.10	0.0252	0.85	0.570	24,837.2			
SB02E2	526,856	12.09	0.0189	0.85	0.428	18,659.5			
SB8NW	408,919	9.39	0.0147	0.85	0.332	14,482.5			
SB8NE	417,750	9.59	0.0150	0.85	0.340	14,795.3			
SB8SW	358,807	8.24	0.0129	0.85	0.292	12,707.8			
SB8SE	365,480	8.39	0.0131	0.85	0.297	12,944.1			
SB08W	1,641,602	37.69	0.0589	0.85	1.335	58,140.1			
SB07W	1,303,601	29.93	0.0468	0.85	1.060	46,169.2			
SUM=	11,909,774	273	0.43		9.683	421,804.5	,		

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Stage Discharge at 1609, Weir Controls

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.50
Bottom Length (ft)	= 6.00	Q (cfs)	= 8.330
Total Depth (ft)	= 1.50	Area (sqft)	= 4.00
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 2.08
		Top Width (ft)	= 10.00
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Q vs Depth		
No. Increments	= 15		

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Stage Discharge at 1610, Weir Controls

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.00
Bottom Length (ft)	= 6.00	Q (cfs)	= 28.52
Total Depth (ft)	= 1.50	Area (sqft)	= 10.00
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 2.85
		Top Width (ft)	= 14.00
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Q vs Depth		
No. Increments	= 15		

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Stage Discharge 1611, Culvert Controls

50.50
50.50
dc+D)/2
,
50.50
50.50
.00
.59
.61
605.55
609.30
611.00
.33

. Top Width (ft) Crest Width (ft)

=	1613.00
=	275.00
=	307.00

		- 7.59
ll (C)	Veloc Up (ft/s)	= 8.61
, 0.5	HGL Dn (ft)	= 1605.55
	HGL Up (ft)	= 1609.30
	Hw Elev (ft)	= 1611.00
	Hw/D (ft)	= 1.33
	Flow Regime	= Inlet Control

Weir Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Stage Discharge 1611 and Above, Culvert Controls

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.00
Bottom Length (ft)	= 581.41	Q (cfs)	= 1812.29
Total Depth (ft)	= 1.00	Area (sqft)	= 585.41
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 3.10
,		Top Width (ft)	= 589.41
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Q vs Depth		
No. Increments	= 10		

Culvert Report

Crest Width (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 307.00

Thursday, Jul 20 2023

Stage Discharge 1613.2, Culvert Controls

Invert Elev Dn (ft)	= 1602.90	Calculations	
Pipe Length (ft)	= 334.00	Qmin (cfs)	= 300.00
Slope (%)	= 1.23	Qmax (cfs)	= 300.00
Invert Elev Up (ft)	= 1607.00	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 36.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 300.00
No. Barrels	= 3	Qpipe (cfs)	= 218.12
n-Value	= 0.012	Qovertop (cfs)	= 81.88
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 10.49
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.88
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1605.75
		HGL Up (ft)	= 1609.69
Embankment		Hw Elev (ft)	= 1613.20
Top Elevation (ft)	= 1613.00	Hw/D (ft)	= 2.07
Top Width (ft)	= 275.00	Flow Regime	= Inlet Control

Elev (ft) Stage Discharge 1613.2, Culvert Controls Hw Depth (ft) 1614.00 7.00 Inlet 1612.00 5.00 1610.00 3.00 1608.00 1.00 1606.00 -1.00 1604.00 -3.00 1602.00 -5.00 1600.00 --7.00 50 100 150 200 250 300 350 400 450 500 550 Circular Culvert - HGL Embank Reach (ft)

Culvert Report

Crest Width (ft)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 307.00

Thursday, Jul 20 2023

Stage Discharge 1613.3, Culvert Controls

Invert Elev Dn (ft)	= 1602.90	Calculations	
Pipe Length (ft)	= 334.00	Qmin (cfs)	= 360.00
Slope (%)	= 1.23	Qmax (cfs)	= 360.00
Invert Elev Up (ft)	= 1607.00	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 36.0		()
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 360.00
No. Barrels	= 3	Qpipe (cfs)	= 220.25
n-Value	= 0.012	Qovertop (cfs)	= 139.75
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 10.58
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 10.96
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 1605.75
		HGL Up (ft)	= 1609.70
Embankment		Hw Elev (ft)	= 1613.29
Top Elevation (ft)	= 1613.00	Hw/D (ft)	= 2.10
Top Width (ft)	= 275.00	Flow Regime	= Inlet Control

Elev (ft) Stage Discharge 1613.3, Culvert Controls Hw Depth (ft) 1614.00 7.00 Inletcontrol 1612.00 5.00 1610.00 3.00 1608.00 1.00 1606.00 -1.00 1604.00 -3.00 1602.00 -5.00 1600.00 --7.00 50 100 150 200 250 300 350 400 450 500 550 Circular Culvert - HGL Embank Reach (ft)

HYDRAULIC CALCULATION SHEET Stage Storage Calculation for State Route 101 Detention Basin at CP08W for R8W-4N Hubbard Engineering Project No. 18114-221

Project Name: Cavasson Phase 3C Project No.: 18114-221				Prepared By: Revised By:	Date: 7/20/2023 Date:			
				RF				
	Drainage	HW Area	Bottom	Н	Volume Provided	Volume Provided	Volume Provided	Cumulative
	Area	ft^2	ft^2	ft	ft ³	yd ³	acre-feet	acre-feet
	1608-1609 EX	12,929.14	5,702.11	1	9,072	336	0.208	
	1608-1609 P1	23,264.29	14,812.53	1	18,880	699	0.433	0.642
	1609-1610 P1	33,504.04	23,264.29	1	28,229	1,046	0.648	1.290
	1610-1611 P1	46,797.22	33,504.04	1	39,966	1,480	0.917	2.207
	1611-1612 P1	120,932.18	46,797.22	1	80,986	2,999	1.859	4.066
				Total ->	177,133	6,560	4.066	

Drainage Areas describe the one foot slice calculated for each stage of detention. The EX drainage area is the ADOT concrete basin and the P1 drainage areas denote the detention basin constructed as part of Cavasson Phase 1 and Claret Monument Sign

Volume Provided = $H/3*(A_{H.W.} + A_{BOTTOM} + (A_{H.W.} * A_{BOTTOM})^{0.5})$

Appendix D Cavasson HEC-1 Ultimate *Toll at Cavasson* 10yr-6hr-Ultimate

1**	*********	********	******	*******	***
*					*
*	FLOOD HY	DROGRAPH F	PACKAGE	(HEC-1)	*
*		JUN	1998	. ,	*
*		VERSION 4	1.1		*
*					*
*	RUN DATE	20JUL23	TIME	09:20:32	*
*					*
**	*********	********	******	******	***

*		*							
*	U.S. ARMY CORPS OF ENGINEERS	*							
*	HYDROLOGIC ENGINEERING CENTER	*							
*	609 SECOND STREET	*							
*	DAVIS, CALIFORNIA 95616	*							
*	(916) 756-1104	*							
*		*							
****	******	****							

Х	Х	XXXXXXX	XXX	XXX		Х		
Х	Х	х	Х	Х		XX		
Х	Х	х	Х			Х		
XXXXXXX		XXXX	Х		XXXXX	Х		
Х	Х	Х	Х			Х		
Х	Х	Х	Х	Х		Х		
Х	Х	XXXXXXX	XXXXX		XXXXX			XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	1
LINE	ID.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10		
1	ID	C	ROSS ROA	DS EAST I	DRAINAGE	INFRAST	RUCTURE						
2	ID	P	POWERLINE CORRIDOR										
3	ID	R	ESERVE R	OUTING O	F BASIN	53R N OF	SR101 &	E OF HA	YDEN RD,	SCOTTSD	ALE, AZ		
4	ID	I	NFLOW HY	DROGRAPH	S FROM T	he ppsadi	MS DRAFT	FLO-2D I	MODEL:				
5	ID	10	-YR, 6-H	R BASE W	/WALLS (W/ MODIF:	ICATIONS	TO CONT	AIN POWE	RLINE AN	D		
6	ID		PIMA R	OAD FLOW	s.								
7	ID												
8	ID	Р	REPARED	BY: T.Y.	LIN INTE	RNATIONA	L; LAST I	MODIFIED	: 09/14				
9	ID	MO	DELERS:	RK, MW									
10	ID												
11	ID	R	EVISED B	Y: HUBBA	RD ENGIN	EERING;	LAST MOD	IFIED: 1	1/14/18				
12	ID	MO	DELERS: I	MSW, ES									
13	ID	RE	VISIONS	NOTED WI	TH HE								
14	ID		ULTIMA	TE CONDI	TION MOD	EL,WITH I	POWERLIN	E AND BAS	SIN 53R	AND			
15	ID		THIS I	S THE PO	ST-DEVEL	OPMENT M	ODEL WIT	H DEVELO	PMENT N	OF LEGAC	Y		
16	ID		UPDATE	D INFLOW	HYDROGR.	APHS TO I	REFLECT	15MIN IN	с.				
17	ID												
18	ID	R	EVISED B	Y: HUBBA	RD ENGIN	EERING;	LAST MOD	IFIED: 0	7/20/23				
19	ID		MODELE	RS: MSW,	TSW								
20	ID		REVISI	ONS NOTE	D WITH H	E (HUBBAI	RD ENGIN	EERING)					
21	ID		BASIN	2E WAS S	PLIT AT	CENTER PO	DINT DUE	TO FLOW	UNDER 1	01			
22	ID												
23	IT	3	0	0	1000								
24	IN	15											
25	IO	5											
	*DIA	AGRAM											
	*												
26	JD	1.817	0.0001										
27	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
28	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
29	PC	0.962	0.972	0.983	0.991	1.000							
30	JD	1.806	0.5000										
31	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
32	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
33	PC	0.962	0.972	0.983	0.991	1.000							
34	JD	1.772	2.8										
35	PC	0.000	0.009	0.016	0.025	0.034	0.042	0.051	0.059	0.068	0.077		
36	PC	0.088	0.101	0.121	0.164	0.253	0.451	0.694	0.836	0.900	0.938		
37	PC	0.950	0.963	0.975	0.988	1.000							
	*												

39	KM	-	76TH ST C	HANNEL H	YDROGRAP	H FROM P	INNACLE I	PEAK SOU	TH ADMS				
40	КМ	1	0-YR 6-	HR. DERT	VED EROM	100-YR		ROGRAPHS	_				
10	RA RA	0 24				100 11							
41		0.24	0	0	0	0	0	0	0	0	0		
42	IQ OT	0	0	0 01	0 01		0 50	0 1 2	27 04	21 04	21 1		
45	IJ OT	22.07	17 10	0.01	11 20	0.00	0.58	8.15	27.04	51.94	51.1		
44	U QI	22.07	17.10	13.79	11.20	9.48	8.22	7.44	6.76	6.13	5.32		
45	QI	4.66	4.31	3.73	3.05	2.71	2.44	2.18	2.2/	1.51	1.61		
46	QI	1.48	1.38	1.29	1.17	1.01	0.96	0.97	0.77	0.84	0.86		
47	QI	0.70	0.68	0.67	0.62	0.58	0.55	0.53	0.51	0.49	0.46		
48	QI	0.44	0.43	0.42	0.40	0.38	0.37	0.35	0.34	0.33	0.31		
49	QI	0.30	0.29	0.28									
	*												
					HEC-1	INPUT						PAGE	2
LINE	ID.		2.	3.	4 .		6.	7 .	8.	9.	10		
50	кк	SB01A	BASIN										
51	RΔ	0.061	5/10/211										
52	DR	2 721											
53	PC	0 000	0 008	0 016	Q Q25	0 033	0 0/1	0 050	0 058	0 066	0 075		
55		0.000	0.000	0.010	0.025	0.000	0.041	0.050	0.000	0.000	0.075		
54	PC	0.007	0.099	0.119	0.150	0.234	0.415	0.700	0.0/5	0.910	0.944		
55	PC	0.956	0.968	0.9/9	0.990	1.000							
56	LG	0.25	0.25	4.03	0.56	45							
57	UC	0.439	0.231										
58	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
59	UA	100											
	*												
60	КК	SB01A	DIVERT										
61	KM	[DIVERSION	OF FIRS	T FLUSH	VOLUME F	OR BASIN	SB01A					
62	KM	F	IRST FLU	SH VOL =	1.383 A	C-FT							
63	DT	RET01A	1.383										
64	DT	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
65	DO	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
05	*	0.0	10.0	20.0	50.0	40.0	50.0	00.0	100.0	190.0	200.0		
66	VV	CD 1	COMPTNE										
00		CP-1			сти ст /								
67	KM	1	EGACY BL	VD AND 7	DIH SI (MILLER R	D CHANNE	L)					
68	HC	2	0.301										
	*												
69	KK	R1A-2W	ROUTE										
70	KM	F	ROUTE CP-	1 TO CP-	2W								
71	RK	1114	0.0200	0.018		TRAP	2.000	0.00					
	*												
72	KK	SB02NW	BASIN										
73	KM	E	BASIN SBØ	2E WAS S	PLIT INT	O SUB BA	SINS NOR	TH OF CA	VASSON				
74	KM	A	AND SOUTH	OF CAVA	SSON								
75	BA	0.0193											
76	LG	0.25	0.25	4.03	0.56	45							
77	UC	0.211	0.167										
78	IIΔ	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
79		100	5.0	5.0	0.0	12.0	2010	13.0	, , , , , ,	2010	2010		
/5	*	100											
	•												
00	VV	CDOONIN	DTVEDT										
80		SDOTIAN						CDOONUL					
81	KM	L	JIVERSION	UF FIRS	I FLUSH	VOLUME F	OK BASIN	2B02INM					
82	KM	ł	-IRSI FLU	SH VOL =	0.43/ A	C-F1							
83	DT	RET2NW	0.437										
84	DI	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
85	DI	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
86	DQ	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
87	DQ	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
	*												
					HEC-1	INPUT						PAGE	3
LINE	ID.	1			4.	5.	6.		8.	9.	10		
88	кк	CP-02W	COMBINE										
89	KM		COMBINE R	OUTE ERO	M 1A-2W	WITH NEW	SUB BAS	IN SBOOM	N				
90	HC	2	0 305		_,, _,,								
	*	2	5.505										
	•												
01	VV	ר וורם	DOUTE										
20 2	KK DV	1200		0 010			2 000	0.00					
92	KK *	1380	0.0140	0.018		IKAP	2.000	0.00					

93	KK	SB01C	BASIN									
94	BA	0.02/	0.05	4 02	0.50	45						
95	LG	0.25	0.25	4.03	0.56	45						
96		0.264	0.2/2	F 0		12.0	20.0	42.0	75 0	00.0	06.0	
97	UA	100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
98	UA *	100										
99	КК	SB01C	DIVERT									
100	KM	D	IVERSION	OF FIRS	T FLUSH V	OLUME FO	OR BASIN	SB01C				
101	KM	F	IRST FLU	SH VOL =	0.612 AC	-FT						
102	DT	RETØ1C	0.612									
103	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
104	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
105	кк	R1C-1B	ROUTE									
105	RK	542	0.005	0.013		CTRC	5,000					
200	*	5.2		01010		02.110	51000					
107	КК	SB01B	BASIN									
108	BA	0.024										
109	LG	0.25	0.25	4.03	0.56	45						
110	UC	0.234	0.224									
111	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
112	UA	100										
	*											
113	KK	SB01B	DIVERT									
114	KM	D	IVERSION	OF FIRS	T FLUSH V	OLUME FO	OR BASIN	SB01B				
115	KM	F	IRST FLU	SH VOL =	0.543 AC	-FT						
116	DT	RET01B	0.543									
117	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
118	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
110	VV	CD 01P	COMPTNE									
120	KM	CF-01D	COMBINE D		M 1C-18 4			TN CRAIR				
120	HC	2	0 051		M IC-ID W		300 0A31	IN SDOID				
121	*	2	0.051									
					HEC-1	INPUT						PAGE 4
LINE	ID.	1.	2.	3.	4	5.	6	7.	8.	9.	10	
122	KK	R1B-2N	ROUTE									
123	RK *	2144	0.008	0.013		CIRC	5.000					
124	VV	CROONE	RACTN									
124		0 0225	DAJIN									
125	DA LG	0.0555	0 25	1 03	0 56	15						
120		0.25	0.25	4.05	0.00	45						
128	110	0.514	3 0	50	80	12 Q	20 Q	13 0	75 0	90 0	96.0	
120		100	5.0	5.0	0.0	12.0	20.0	43.0	75.0	50.0	90.0	
125	*	100										
130	КК	SB02NE	DIVERT									
131	KM		IVERSION	OF FIRS	T FLUSH V	OLUME FO	OR BASIN	SB02NE				
132	KM	F	TRST FIU	SH VOL =	0.760 AC	-FT		5502.112				
133	DT	RET2NE	0.760									
134	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
135	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
120		CD 021	COMPTUE									
136 137	KK	CP-02N			ON /DACT			21 ()		-		
13/ 130	KM		UMBINE R	UUIE 1B-	∠N (BASIN	IZ 2801-1	5 AND SB6	от-с) WI	IH SB02N	E		
138	HC *	2	0.085									
139	кк	R2N-2	ROUTE									
140	RK *	1380	0.014	0.018		TRAP	2.000	0.00				
		CD 0075										
141			DACTO									
140	KK	2R07E5	BASIN			T CENTE	-				01	
142	KK KM	SB02E2 B	BASIN BASIN 2E	HAD TO B	E SPLIT A	T CENTER	R POINT [DUE TO F	LOW UNDE	R LOOP 1	01	
142 143	KK KM KM	5802E2 B T	BASIN BASIN 2E H THIS IS TH	HAD TO B HE WEST	E SPLIT A SPLIT -HE	T CENTER	R POINT E	DUE TO F	LOW UNDE	R LOOP 1	01	
142 143 144	KK KM BA	5802E2 B T 0.019	BASIN BASIN 2E THIS IS T	HAD TO B HE WEST	E SPLIT A SPLIT -HE	T CENTER	R POINT E	DUE TO F	LOW UNDE	R LOOP 1	01	

146	UC	0.244	0.304									
147	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
148	UA	100										
	*											
149	КК	SB02E2	DIVERT									
150	KM	C	VERSION	OF FIRS	T FLUSH V	VOLUME FO	R BASIN	SB02E				
151	KM	F	IRST FLU	SH VOL =	0.428 A	C-FT						
152	DT	RET2E2	0.428									
153	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
154	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*											
155	KK	SB02W	BASIN									
156	BA	0.0571										
157	LG	0.35	0.35	4.33	0.51	0						
158	UC	0.686	0.535									
159	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
160	UA	100										
	*											
					HEC-1	INPUT						PAGE 5
LINE	ID.	1.	2.	3.	4.	5	6.	7.	8.	9.	10	
161	KK	CP-02	COMBINE									
162	HC	4	0.1816									
	*											
163	KK	R2-3	ROUTE									
164	KM	Μ	MILLER RD	CHANNEL	FROM SR	101L FRE	EWAY TO	MAYO BL	/D			
165	RK	1260	0.0015	0.030		TRAP	92	4				
	*											
166	KK	SB03	BASIN									
167	BA	0.048										
168	LG	0.15	0.25	4.50	0.47	55						
169	UC	0.364	0.294									
170	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
171	UA	100										
	*											
172	KK	CP-03	COMBINE									
173	HC	2										
	*											
174	KK	R3-5	ROUTE									
175	KM	٢	MILLER RD	CHANNEL	FROM MAY	YO BLVD T	O PRINCE	ESS BLVD				
176	RK	2396	0.0015	0.03		TRAP	98	4				
	*											
177	KK	SB05	BASIN									
178	BA	0.126										
179	LG	0.22	0.25	4.50	0.44	48						
180	UC	0.327	0.226									
181	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
182	UA	100										
	*											
183	KK	CP-5A	COMBINE									
184	HC	2										
	*											
185	KK	SB07W	BASIN									
186	BA	0.0468	_	-	_							
187	LG	0.25	0.25	4.03	0.56	45						
188	UC	0.250	0.178			· · ·						
189	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
190	UA	100										
	*											
		-										
191	KK	SB07W	DIVERT				/					
192	KM	C	VERSION	OF FIRS	T FLUSH V	VOLUME FO	OR BASIN	SB07W				
193	KM	F	IRST FLU	SH VOL =	1.060 A	L-FT						
194	DT	RET07W	1.060						465 -	4		
195	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
196	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*											

LINE	ID.	1.	2.	3	4	5	6	7.	8.	9.	10	
407			DOUTE									
197	KK	R/W-8W	ROUTE						1011 505			
198	KM	н	AYDEN KUA	AD NORTH		FROM LEG		JIUSK.	101L FRE	EWAY		
199		275/	0 001711		IU LUUP			4				
200	*	5754	0.0013	0.05		INAP	40	4				
201	КК	SB8NW	BASIN									
202	КМ	В	ASIN JUS	г ѕоитн с)F LEGACY	/ - FUTUR	E MOB SI	ITE				
203	BA	0.0147										
204	LG	0.10	0.25	4.03	0.61	80						
205	UC	0.171	0.131									
206	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
207	UA *	100										
208	кк	SB8NIM	DTVERT									
200	KM	D	IVERSION	OF FIRST	FLUSH V	OLUME FC	R BASIN	SB8NW				
210	KM	F	IRST FLUS	SH VOL =	0.332 AC	C-FT						
211	DT	RET8NW	0.332									
212	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
213	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
21.4	KK	DONILION	DOUTE									
214		RSNMSN										
215		R N		SUD DASI	IN SDOINW	BROKEN				NC		
210		6/3		0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN OW WAS		JOWN IN	10 4 306 1	-SUDDASI	20		
217	*	045	0.0115	0.010			40	-				
218	кк	SB8NE	BASIN									
219	KM	S	ITE JUST	SOUTH OF	LEGACY	AND WEST	OF HAYE	DEN - FU	TURE RET	AIL		
220	BA	0.015										
221	LG	0.10	0.25	4.03	0.61	80						
222	UC	0.164	0.113									
223	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
224	UA *	100										
225	KK	SB8NE	DIVERT									
226	КM	D	IVERSION	OF FIRST	FLUSH V	OLUME FC	R BASIN	SB8NE				
227	KM	F	IRST FLUS	SH VOL =	0.340 AC	C-FT						
228	DT	RET8NE	0.340									
229	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
230	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
231	КК	R8NF8N	ROUTE									
232	KM	R	OUTE NEW	SUB BASI	N SB8NE	TO OUTLE	T AT CA	/ASSON B	LVD			
233	KM	N	IORTH HALI	OF BASI	N 8W WAS	5 BROKEN	DOWN INT	TO 4 SUB	-SUBBASI	NS		
234	RK	622	0.011	0.018		TRAP	46	4				
	*				HEC-1	INPUT						PAGE 7
	סד	1	2	2			c	7	0	0	10	
LINL	10.			•••••••••••••••••••••••••••••••••••••••						••••••	10	
235	KK	SB8SW	BASIN									
236	KM	S	ITE JUST	NORTH OF	CAVASSO	ON BLVD E	AST OF C	CLARET DI	R - FUTU	RE MF		
237	BA	0.0129										
238	LG	0.10	0.25	4.03	0.61	80						
239	UC	0.149	0.110									
240	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
241	UA *	100										
242	KK	SB8SW	DIVERT									
243	KM	D	IVERSION	OF FIRST	FLUSH \	OLUME FC	R BASIN	SB8SW				
244	KM	F	IRST FLUS	SH VOL =	0.292 AC	C-FT						
245	DT	RET8SW	0.292									
246	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
247	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
248	ĸĸ	SBSCE	ΒΔςτμ									
249	KM	5505L S	ITE JUST	NORTH OF	CAVASSO	N AND WF	ST OF H4	AYDEN -	FUTURF H	OTEL OR	RETAII	
250	RΔ	0.0131			C. WA330					UN CILL		
251	LG	0.10	0.25	4.03	0.61	80						

252	UC	0.165	0.137										
253	114	a	3 0	50	8 0	12 0	20 0	43 0	75 Ø	90 0	96 A		
255	UA	0	5.0	5.0	0.0	12.0	20.0	43.0	75.0	50.0	90.0		
254	UA	100											
	*												
255	KK.	CDOCE											
255	NN.	SDOSE	DIVERI										
256	KM	0	DIVERSION	I OF FIRS	T FLUSH	VOLUME F	FOR BASIN	I SB8SE					
257	КМ	F	IRST FLU	JSH VOL =	0.297 A	C-FT							
250		ргтосг	0 207		01257								
258	וט	REISSE	0.297										
259	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
260	DO	0 0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200 0		
200	*	0.0		2010	50.0		50.0	0010	20010		20010		
261	КК	CP-08N	COMBINE										
262	KM	(D AT THI	ET ON NO				NTERS EX	TST STOR				
202	KP1						4330N - L		131 3100	M DRAIN			
263	HC	4	0.055/										
	*												
261	VV	DON OU	POUTE										
204	KK	KON-OW	ROUTE										
265	KM	ŀ	KOUTE NEW	I SOB BAS	IN2 2R8N	IE SB8NW	2882M 2F	385E 10 C	P-08M				
266	KM	F	ROUTE IN	STORM DR	RAIN								
267	RK	1592	0 015	0.013		CTRC	3						
207	*	1002	0.015	0.015		cinc	5						
268	KK	SB08W	BASIN										
269	RA	0 0500											
209	DA	600009	o		0								
270	LG	0.10	0.25	4.03	0.61	80							
271	UC	0.262	0.177										
272	114	Q	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
272	114	100	5.0	5.0	0.0	12.00	2010	1310	/5.0	2010	50.0		
273	UA	100											
	*												
					HEC-1	. INPUT						PAGE 8	3
	TD	1	2	2		-	6	-	0	0	10		
LINE	ID.		2 .		4.			•••••/•			10		
274	KK	CDAOLI											
274	NN.	SDOOM	DIVERI										
275	KM	0	DIVERSION	I OF FIRS	ST FLUSH	VOLUME F	OR BASIN	I SB08W					
276	KM	F	IRST FLU	JSH VOL R	E0 = 1.3	35 AC-F1	F, PROVID	DED = 1.4	15				
277	КМ	1	ГНТЅ ТЅ Р	XTSTING	AND WAS	BUTLT TN	PHASE 1	l					
277			1 415			DOIL! I		-					
278	וט	RETOW	1.415										
279	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
280	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
281	KK	CP-08W	COMBINE										
282	HC	3	0.1614										
	*												
283	KK	R8W-4N	ROUTE										
284	КМ		STAGE ST	ORAGE RO	UTING UN	IDER THE	LOOP 101	-HE					
285	PC	1	STOP	0 00	0								
205	100	1	3100	0.00	0								
286	SV	0.000	0.642	1.290	2.207	4.066	4.066						
287	SE	1608.0	1609.0	1610.0	1611.0	1612.0	1613.0						
288	50	a aaa	8 330	28 52	150 5	300 0	360 0						
200	5Q CF	1 6 0 0	1600.0	1610.02	1611 0	1612 2	1612.2						
289	SE	1908.0	1009.0	1010.0	1611.0	1613.2	1613.3						
	*												
290	ĸĸ	SR02F1	RΔCTN										
200						AT 000					01		
291	KM	E	SASIN 2E	HAD TO B	SE SPLIT	AI CENTE	K POINT	DUE TO F	LOW UNDE	к LOOP 1	01 10		
292	KM	1	THIS IS T	THE EAST	SPLIT -H	IE							
293	RΔ	0.0252											
201		Q 10	∧ ⊃⊑	1 00	Q (1	00							
224	LG	0.10	0.20	4.05	10.01	00							
295	UC	0.224	0.208										
296	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
297		100											
/	*	100											
	Ť												
298	KK	SB02E1	DIVERT										
299	KW.			NE ETD C				SB02E1					
200	NPI	L -					ON DADIN	JUUZEI					
300	KM	F	-IRST FLU	ISH VOL R	k = 0.5	/0 AC-F1	I -HE						
301	DT	RET2E1	0.570										
302	тл	aa	10 0	20 O	30 0	10 A	50 O	60 A	100 O	150 0	200 O		
202	D1	0.0	10.0	20.0	20.0	40.0	50.0	60.0	100.0	150.0	200.0		
203	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	T00.0	120.0	200.0		
	*												
304	ĸĸ	(P_/M	COMRINE										
20-			0 1000										
כשכ	HC	2	0.1900										
	*												

200	VV	DAN A	DOUTE									
200		N4N-4	ROUTE									
307	RK	2840	0.0130	0.030		TRAP	2.000	0.00				
	*											
308	ĸĸ	SBOA	RASTN									
200		0 144	DADIN									
509	DA	0.144			~							
310	LG	0.14	0.25	4.60	0.44	61						
311	UC	0.305	0.199									
312	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
313		100										
515	UA *	100										
	*											
					HEC-1	INPUT						PAGE 9
LINE	ID.	1 .	2	3.	4	5	6.	7	8	9	10	
24.4	1/1/	CD 4	COMPTNE									
314	KK	CP-4	COMBINE									
315	HC	2										
	*											
316	кк	R4-5	ROUTE									
217	KM							ц ст				
210	KI-I DK	1000	0.0012					11 31				
318	KK	1992	0.0013	0.03		TRAP	39	4				
	*											
319	КК	CP-05	COMBINE									
320	KM		RTNCESS		76TH ST	(PRTNCES		CHANNEL				
220	1214	г /	COMPTNE -			(I NINCL.						
321	KM	, c	OMBINE (CP-05A ANI	D R4-5							
322	HC	2										
	*											
323	кк	R5-6	ROUTE									
224	KM								חפ			
524	NPI DV	г 4 со 4	-KINCESS		NINEL FROM		10 300	IISDALE P				
325	RK	1694	0.0015	0.03		IRAP	188	4				
	*											
326	КК	SB06	BASIN									
227	RA RA	0 136	5/15211									
327	DA	0.130	0.25	4 55	0.45	50						
328	LG	0.16	0.25	4.55	0.45	53						
329	UC	0.321	0.246									
330	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
331	UA	100										
	*											
222	1/1/		COMPTNE									
332	KK	CP-06	COMBINE									
333	HC	2										
	*											
334	кк	SB07F	BASTN									
225		0 026	DASIN									
222	DA	0.020										
336	LG	0.10	0.25	4.03	0.74	0						
337	UC	0.574	0.527									
338	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
339	IΙΔ	100										
555	*	100										
340	KK	R7E-8E	ROUTE									
341	RK	3662	0.0130	0.030		TRAP	2.000	0.00				
	*											
242	V V	CDOOL	DACTN									
542	KK .	SDUGE	DASTN									
343	BA	0.078										
344	LG	0.10	0.25	4.08	0.72	0						
345	UC	0.798	0.652									
346		0	3 0	50	8 0	12 0	20 Q	43 0	75 0	90 0	96 A	
247	UA	100	5.0	5.0	0.0	12.0	20.0	43.0	75.0	50.0	50.0	
347	UA	100										
	*											
					HEC-1	INPUT						PAGE 10
LINE	ID.	1.	2		4	5.	6.	7	8.		10	
											= =	
240	1/1/	CROOM	DACTH									
348	KK	2RQAN	RAZIN									
349	BA	0.028										
350	LG	0.10	0.25	4.79	0.49	0						
351	UC	0.740	1.111									
350	114	A	2 0	50	8 0	12 A	20 Q	13 A	75 Q	90 0	96 0	
222	UA	100	5.0	5.0	0.0	12.0	20.0	42.0	0.01	90.0	90.0	
353	UA	100										
	*											

354	KK	R9NR8F	ROUTE									
25.	DI	2506	0.0012	0 0 0 0		TDAD	2 000	0 00				
355	KK	2586	0.0013	0.020		TRAP	2.000	0.00				
	*											
250	KK.		COMPTNE									
350	KK	CP-08E	COMBINE									
357	HC	3										
	*											
358	KK	R8E-R9	ROUTE									
359	RK	501	0.0013	0.020		TRAP	2,000	0.00				
555	*	501	0.0015	0.020			21000	0.00				
	*											
360	КК	SB09	BASIN									
261	B٨	0 086										
501	DA	0.000										
362	LG	0.10	0.25	4.79	0.49	0						
363	UC	0.683	0.518									
364	114	a	3 0	50	8 0	12 0	20 Q	43 0	75 0	90 0	96 Ø	
265		100	5.0	5.0	0.0	12.0	2010	1310	/5.0	2010	20.0	
365	UA	100										
	*											
366	ĸĸ	CP-09	COMBINE									
200			CONDINE									
367	HC	2										
	*											
260	KK.	DUDCU										
368	KK	PWKCH										
369	KM	F	POWERLINE	CHANNEL	(XS 107) & 50%	PIMA ROA	D CHANNE	L (XS 18	3) HYDRC	GRAPHS	
370	КМ	1	10-YR. 6-	HR. DERT	VED FROM	100-VR	DATA HYD	ROGRAPHS				
271			10 11, 0	int, DERI		100 11						
3/1	ВА	7.0										
372	QI	0	0	0	0	0	0	0	0	0	0	
373	OT	Q	Q	9	Ø	Q	0.07	11 70	33.57	285 55	257.89	
272	Q- 0T	226 02	250 26	406 55	406 55	464 26	425 60	100.04	205.21	203.33	237.03	
374	ŲΙ	236.82	258.26	406.55	486.55	461.36	425.60	409.84	395.31	391.//	376.42	
375	QI	346.76	376.76	276.32	247.65	220.91	197.44	178.64	155.41	139.22	129.78	
376	OT	113,97	102 76	96.30	85 88	79.7	72.75	65 45	59.94	54 69	51 22	
270	4- 0-T		102.70	41 07	42.77	26.02	24.05	22.15	20.01	27.02	27.02	
3//	ŲΙ	52.3	44.56	41.87	42.//	36.93	34.05	32.15	29.01	2/./2	27.03	
378	QI	25.05	23.86	22.04	20.81	19.27	18.55	17.90	20.82	16.03	15.23	
	*											
379	KK	RINFLO										
	1/M			FLOUL THE	O DACTN							
380	KP1		IUTAL IN	FLOW INI	O BASIN	53R.						
380 381		2	IUTAL IN	FLOW INI	O BASIN	53R.						
380 381	HC	2	IUIAL IN	FLOW INI	U BASIN	53R.						
380 381	HC *	2	IUTAL IN	FLOW INI	O BASIN	53R.						
380 381	HC *	2	TOTAL IN	FLOW INT	HEC-1	53R. INPUT						PAGE 11
380 381	HC *	2	IUTAL IN	FLOW INI	HEC-1	53R. INPUT						PAGE 11
380 381	HC *	2	IUTAL IN	FLOW INI	HEC-1	53R. INPUT	c	7	0	0	10	PAGE 11
380 381 LINE	HC * ID.	2	2.	3.	U BASIN НЕС-1	53R. INPUT	6.	7.	8.	9.	10	PAGE 11
380 381 LINE	HC * ID.	2	2.	3.	U BASIN НЕС-1	53R. INPUT	6.	7.	8.	9.	10	PAGE 11
380 381 LINE	HC * ID.	2	2.	3.	HEC-1	53R. INPUT	6.	7.	8.	9.	10	PAGE 11
380 381 LINE	HC * ID.	2 1.	2.	3.	HEC-1	53R. INPUT	6.	7.	8.	9.	10	PAGE 11
380 381 LINE 382	HC * ID.	2 1. BASIN	2.	3.	HEC-1	53R. INPUT 5.	6.	7.	8.	9.	10	PAGE 11
380 381 LINE 382 383	HC * ID. KK	2 1. BASIN BASIN	N STAGE/S	TORAGE F	HEC-1	INPUT 5. OSED CON	6. ITOURS BE	7. TWEEN	8.	9.	10	PAGE 11
380 381 LINE 382 383 384	HC * ID. KK KM	2 1. BASIN BASIN ELEV	2. N STAGE/S 1594 AND	TORAGE F 1615; B	HEC-1 HEC-1 4. ROM PROP ASIN SID	S3R. INPUT 5. OSED COM E SLOPES	6. ITOURS BE S STEEPEN	7. TWEEN ED TO 3:	8.	9.	10	PAGE 11
380 381 LINE 382 383 384 385	HC * ID. KK KM KM	2 1. BASIN BASIN ELEV	N STAGE/S	TORAGE F 1615; B	HEC-1 HEC-1 4. ROM PROP ASIN SID	S3R. INPUT 5. OSED COM E SLOPES	6. ITOURS BE STEEPEN MASTER E	7. TWEEN ED TO 3: OR 2-60"	8. 1 DTDES	9.	10	PAGE 11
380 381 LINE 382 383 384 385	HC * ID. KK KM KM	2 1. BASIN BASIN ELEV C	N STAGE/S 1594 AND DUTFLOW R	TORAGE F 1615; B ATING CU	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM	S3R. INPUT 5. OSED COM E SLOPES CULVERI	6. ITOURS BE S STEEPEN MASTER F	7. TWEEN ED TO 3: OR 2-60"	8. 1 PIPES	9.	10	PAGE 11
380 381 LINE 382 383 384 385 386	HC * ID. KK KM KM KM	2 1. BASIN BASIN ELEV C	N STAGE/S 1594 AND DUTFLOW R THE OUTLE	TORAGE F 1615; B ATING CU T PIPES	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE	S3R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC	6. ITOURS BE S STEEPEN MASTER F DLLED.	7. TWEEN ED TO 3: OR 2-60"	8. 1 PIPES	9.	10	PAGE 11
380 381 LINE 382 383 384 385 386 387	KM HC * ID. KK KM KM KM KM RS	2 BASIN BASIN ELEV C 1	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR	TORAGE F 1615; B ATING CU T PIPES 0	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE	S3R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC	6. ITOURS BE STEEPEN MASTER F DLLED.	7. TWEEN ED TO 3: OR 2-60"	8. 1 PIPES	9.	10	PAGE 11
380 381 LINE 382 383 384 385 386 387 388	KM HC * ID. KK KM KM KM KM RS SV	2 1. BASIN BASIN ELEV C 1 1 0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44 9	TORAGE F 1615; B ATING CU T PIPES 0 76 8	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108 7	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140 6	6. ITOURS BE S STEEPEN MASTER F DLLED. 171 5	7. TWEEN ED TO 3: OR 2-60" 202 5	8. 1 PIPES 233 5	9.	10	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 387 388	KM HC * ID. KK KM KM KM KM KM SS SS	2 BASIN BASIN ELEV C 1 0 0 0000 7	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9	TORAGE F 1615; B ATING CU T PIPES 0 76.8	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7	S3R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6	ITOURS BE STEEPEN MASTER F DLLED. 171.5	7. TWEEN ED TO 3: OR 2-60" 202.5	8. 1 PIPES 233.5	264.5	295.5	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 388 389	KM HC * ID. KK KM KM KM KM RS SV SV	2 BASIN BASIN ELEV (1 0 328.7	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5	S3R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7	ITOURS BE STEEPEN MASTER F DLLED. 171.5 497.2	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7	8. 1 PIPES 233.5 568.3	9. 264.5 603.8	10 295.5 639.3	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390	KM HC * ID. KK KM KM KM RS SV SV SV SE	2 BASIN BASIN ELEV (1 0 328.7 1594	N STAGE/S 1594 AND DUTFLOW R FHE OUTLE STOR 44.9 362.0 1597	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602	8. 1 PIPES 233.5 568.3 1603	264.5 603.8 1604	295.5 639.3 1605	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391	KM HC * ID. KK KM KM KM KM KM SV SV SV SE SE	2 BASIN BASIN ELEV C 1 0 328.7 1594 1606	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612	8. 1 PIPES 233.5 568.3 1603 1613	264.5 603.8 1604 1614	295.5 639.3 1605 1615	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 202	KM HC * ID. KK KM KM KM KM RS SV SV SV SE SE	2 BASIN BASIN ELEV C 1 0 328.7 1594 1606	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610	6. ITOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264 5	TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612	1 PIPES 233.5 568.3 1603 1613	264.5 603.8 1604 220 1	295.5 639.3 1605 226.0	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 392	KM HC * ID. KK KM KM KM KM SV SV SV SE SE SQ	2 BASIN BASIN ELEV (1 1 0 328.7 1594 1606 0	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR 44.9 362.0 1597 1607 94.6	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0	8. 1 PIPES 233.5 568.3 1603 1613 302.5	264.5 603.8 1604 1614 320.1	295.5 639.3 1605 1615 336.9	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393	KM HC * ID. KK KM KM KM KM RS SV SV SE SV SE SQ SQ	2 BASIN BASIN ELEV C 328.7 1594 1606 0 353.0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393	KM HC * ID. KK KM KM KM KM KM SV SV SV SE SE SQ SQ *	2 BASIN BASIN ELEV () 328.7 1594 1606 0 353.0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0	53R. INPUT 5. OSED CON E SLOPES CULVEN T CONTRC 140.6 461.7 1600 1610 244.2 412.0	6. ITOURS BE 5 STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9	1 PIPES 233.5 568.3 1603 1613 302.5 451.9	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393	KM HC * ID. KK KM KM KM KM SV SV SV SE SQ SQ \$Q *	2 BASIN BASIN ELEV 1 0 328.7 1594 1606 0 353.0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0	6. ITOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9	1 PIPES 233.5 568.3 1603 1613 302.5 451.9	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393	KM HC * ID. KK KM KM KM KM RS SV SV SE SV SE SV SV SE SQ SQ *	2 BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0	53R. INPUT 5. OSED CON E SLOPES CULVERI T CONTRC 140.6 461.7 1600 1610 244.2 412.0	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393	KM HC * ID. KK KM KM KM KM KM KM SV SV SV SV SE SQ SQ * KK	2 BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 394 395	KM HC * ID. KK KM KM KM KM SV SV SV SE SQ SQ SQ * KK	2 BASIN BASIN ELEV 0 1 0 328.7 1594 1606 0 353.0 BSNRT1	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396	KM HC * ID. KK KM KM KM KM KM SV SV SE SV SE SQ SQ \$ V KK KM KM	2 BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1	N STAGE/S 1594 AND DUTFLOW R STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 0-TNCH R	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397	KM HC * ID. KK KM KM KM KM KM KM SV SV SE SE SQ SQ * KK KM KM	2 1. BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1 2	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397	KM HC * ID. KK KM KM KM KM SV SV SE SQ SQ SQ SQ * KK KM KM	2 BASIN BASIN ELEV 0 328.7 1594 1606 0 353.0 BSNRT1 2 E	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 0ULFLOW M CONNEC PACITY.	HEC-1 HEC-1	53R. INPUT 5. OSED CON E SLOPES CULVENT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	1 PIPES 233.5 568.3 1603 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397 398	KM HC * ID. KK KM KM KM KM SV SV SE SE SQ SQ SQ * KK KM KM KM KM	2 BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 [550]	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024	HEC-1 HEC-1	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE C CIRC	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND i0-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397 398	KM HC * ID. KK KM KM KM KM KM SV SV SE SV SV SE SV SV SE SV SV SV KK KM KM KM KM KM KM KM KM KM	2 1. BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1 2 E 550	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 0ULFLOW M CONNEC PACITY. 0.024	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 393 393 394 395 396 397 398	HC + ID. KK KM KM KM KM KM SV SV SV SV SV SV SV SV SV SV SV SV SV	2 1. BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 0ULFLOW M CONNEC PACITY. 0.024	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVENT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC	6. ITOURS BE 5 STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398	KM HC * ID. KK KM KM KM KM KM KM KM KM KM KM KM KM	2 BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE C CIRC	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 N 53R UND G0-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397 398 399	KM HC * ID. KK KM KM KM KM KM KM SV SV SE SV SE SV SV SE SV SV KK KM KM KM KM KM KM KM KM KM KM KM KM	2 1. BASIN BASIN ELEV C 1 1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 400	KM HC * ID. KK KM KM KM KM KM SV SV SV SE SQ SV SV SE SQ SV KK KM KM KM KK KK KK KK	2 1. BASIN BASIN ELEV C 1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 400 400	KM HC * ID. KK KM KM KM KM KM KM KM KM KM KM KK KK	2 BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0 013	HEC-1 HEC-1	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE C CIRC 01L FREE	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 N 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E	264.5 603.8 1604 1614 320.1 464.5 MAY.	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 399 400 401	HC HC ID. KK KM KM KM KK SV SE SQ SQ SV SE SQ SV KK KK KK KK KK KK KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077	FLOW INT TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0 WAY TO U 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5 AY.	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 391 392 393 391 392 393 394 395 396 397 398 399 400 401	HC HC KK KM KM KM KM KM KM KM SV SE SV SE SV SV SE SV SV SE SV SV KK KK KK KK KK KK KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV () 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E	264.5 603.8 1604 1614 320.1 464.5	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 393 393 394 395 396 397 398 399 399 400 401	HC HC ID. KK KKM KKM KKM KK SV SE SQ SQ SQ SV SE SV SV SE SV SV SV SV SV SV SV SV SV SV SV SV SV	2 1. BASIN BASIN ELEV 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVENT T CONTRC 140.6 461.7 1600 2412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC	6. ITOURS BE 5 STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 50-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5 MAY.	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 400 401 402	KM HC * ID. KK KM KM KM KM KK SV SE SQ SQ SQ SQ * KK KM KM KK KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200 SB10	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN	FLOW INT TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE C CIRC	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 30-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEM ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5 IAY.	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 393 394 395 396 397 398 399 399 400 401 402 403	HC HC ID. KK KM KM KM KK SV SE SV SE SV SE SV SV SE SV SV SE KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV C 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200 SB10 0 0 400	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP 00WNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E	264.5 603.8 1604 1614 320.1 464.5	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 391 392 393 394 395 396 397 398 399 400 401 402 403	HC HC ID. KK KKM KKM KKM KK SV SE SQ SQ SQ SQ * KK KKM KK KK KK KK KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV C 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 1200 SB10 0.040	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN	TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 244.2 412.0 OR BASIN ES ARE C CIRC 01L FREE CIRC	6. TOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 N 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 396 397 398 399 400 401 402 403 404	HC HC ID. KK KM KM KM KM KK SV SV SE SQ SQ SV SE SQ SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SE SV SV SV SE SV SV SV SE SV SV SV SE SV SV SE SV SV SV SE SV SV SV SE SV SV SV SE SV SV SV SE SV SV SV SV SV SV SV SV SV SV SV SV SV	2 1. BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 2 1200 SB10 0.040 0.15	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN 0.25	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013 4.25	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIM ES ARE C CIRC 01L FREE CIRC	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 N 53R UND 30-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E	264.5 603.8 1604 1614 320.1 464.5 MAY.	295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 399 400 401 402 403 404 405	HC HC ID. KK KM KM KM KK SV SE SQ SQ SV SE SQ SV SV SE SQ SV KK KM KK KK KK KK KK KK KK KK KK KK KK	2 1. BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 1200 SB10 0.040 0.15 0.233	N STAGE/S 1594 AND DUTFLOW R STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN 0.25 0.161	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013 4.25	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1 0.55	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B	264.5 603.8 1604 1614 320.1 464.5	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406	HC HC ID. KK KM KM KM KK KK SV SE SV SE SV SV SE SV SV SV SV SV SV SV SV SV SV SV SV SV	2 1. BASIN BASIN ELEV () 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 1200 SB10 0.040 0.15 0.233 0	N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP 00WNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN 0.25 0.161 5 0	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013 4.25 16 0	HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1 0.55 30 0	53R. INPUT 5. OSED CON E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC 55 65 0	6. TOURS BE STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 30-INCH R 7.0 WAY TO U 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E	264.5 603.8 1604 1614 320.1 464.5 MAY.	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407	HC HC ID. KK KM KM KM KK SV SE SQ SQ SQ SV SE SV SV SE SV SV SE SV SV SV SV SV SV SV SV SV SV SV SV SV	2 1. BASIN BASIN ELEV () 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 1200 SB10 0.040 0.15 0.233 0 0	N STAGE/S 1594 AND DUTFLOW R IHE OUTLE STOR 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP 00WNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN 0.25 0.161 5.0	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013 4.25 16.0	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1 0.55 30.0	53R. INPUT 5. OSED COM E SLOPES CULVERT T CONTRC 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE C CIRC 01L FREE CIRC 55 65.0	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND GO-INCH R 7.0 WAY TO U 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (E 90.0	264.5 603.8 1604 1614 320.1 464.5 MAY.	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11
380 381 LINE 382 383 384 385 386 387 388 389 390 391 392 393 391 392 393 394 395 396 397 398 399 399 400 401 402 403 404 405 406 407	HC HC HC HC HC HC HC HC HC HC HC HC HC H	2 1. BASIN BASIN ELEV (1 0 328.7 1594 1606 0 353.0 BSNRT1 2 550 BSNRT2 1200 SB10 0.040 0.15 0.233 0 100	 N STAGE/S 1594 AND DUTFLOW R 44.9 362.0 1597 1607 94.6 368.5 2-60" CMP DOWNSTREA EXCESS CA 0.0052 2-60" RCP 0.0077 BASIN 0.25 0.161 5.0 	FLOW INT 3. TORAGE F 1615; B ATING CU T PIPES 0 76.8 395.2 1598 1608 153.4 383.5 OULFLOW M CONNEC PACITY. 0.024 PIPES F 0.013 4.25 16.0	HEC-1 HEC-1 HEC-1 4. ROM PROP ASIN SID RVE FROM ARE INLE 108.7 428.5 1599 1609 209.8 398.0 PIPES F TING PIP ROM SR 1 0.55 30.0	53R. INPUT 5. OSED COM E SLOPES CULVERI T CONTRO 140.6 461.7 1600 1610 244.2 412.0 OR BASIN ES ARE 6 CIRC 01L FREE CIRC 55 65.0	6. ITOURS BE S STEEPEN MASTER F DLLED. 171.5 497.2 1601 1611 264.5 425.7 I 53R UND 60-INCH R 7.0 WAY TO U 7.0	7. TWEEN ED TO 3: OR 2-60" 202.5 532.7 1602 1612 284.0 438.9 ER SR 10 CP AND W NION HIL 84.0	8. 1 PIPES 233.5 568.3 1603 1613 302.5 451.9 1L FREEW ILL HAVE LS DR (B 90.0	264.5 603.8 1604 1614 320.1 464.5 AY.	10 295.5 639.3 1605 1615 336.9 476.8	PAGE 11

	408	KK	CP-10 CC	OMBINE									
	409	KM	UNI	ION HILL	.S DR AND	0 82ND ST	(UNION	HILLS DR	CHANNEL)			
	410	HC	2										
		*											
			.										
	411	KK	R10-11	ROUTE	C								
	412	KM		LON HILL	S DR CHA	ANNEL FRO	M 82ND S		DEN ROAD				
	413	KK *	12// 6	0.0014	0.03		TRAP	220	4				
		4.											
	111	KK	CB11	BACTN									
	414	RΔ	0 071	DAJIN									
	416	LG	0.15	0.25	4 15	0.58	55						
	417	UC	0.296	0.232	1115	0.50							
	418	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	419	UA	100	5.0		5010	0010		0.10	2010	5.10	57.00	
		*											
1						HEC-1	INPUT						PAGE 12
	LINE	ID	1	2	3	4	5	6	7	8	9	10	
	420	KK	CP-11 CC	OMBINE									
	421	KM	UNI	ION HILL	.s dr and) HAYDEN	ROAD (HA	YDEN RD	SOUTH CH	ANNEL)			
	422	HC	2										
		*											
	423	ZZ											
1	COUR	MATTC DTA	CD 444 OF 6										
TNDUT	SCHE	MATIC DIA	GRAM OF S	SIREAM N	IETWORK								
		NC											
LINE	(V) KUUTI	.NG	(>)) DIVERS	ION OK F	PUMP FLOW							
NO		CTOR	(/)										
NO.		CION	(()	/ KLIOKN				LOW					
38	767457												
50	, 011131												
50		SB01A											
50													
63			>	RETØ1A	l l								
60	•	SB01A											
66	CP-1												
	V												
	V												
69	R1A-2W												
	•												
	•												
72	•	SB02NW											
	•	•											
00	•	•		DETAN									
83	•		>	REIZNW	I								
80	•	SDUZINW											
	•	•											
88	CP-02W	•											
00	V												
	v												
91	R2W-2												
93		SB01C											
102	•		>	RET01C									
99		SB01C											
	•	V											
	•	V											
105	•	R1C-1B											
	•	•											
	•	•											
107	•	•	SE	301B									
	•	•		•									
	•	•		•									
116	•	•			> RE	-101B							
113	•	•	SE	SAIR									
	•	•		•									
	•	•		•									

119		CP-01B				
	•	V				
100	•	V				
122	•	KTR-SN				
	•	•				
124			SBØ2NE			
	•	•	•			
133	•	•		> RET	2NE	
130	•	•	SB02NE			
	•	•	•			
136		CP-02N	• • • • • • • • • • • • •			
		V				
	•	V				
139	•	R2N-2				
	•	•				
141	•	•	SB02E2			
152			••	> RET	2E2	
149	•	•	SB02E2			
	•	•	•			
155	•	•	•	SBOOM		
1))	•	•	•	5002W		
				•		
161	CP-02					
	V					
	V					
163	R2-3					
	•					
166	•	SB03				
	•	•				
172	CP-03					
	V					
17/	V 83-5					
1/4						
177		SB05				
	•	•				
107	CD 54	•				
102	CP-5A					
	•					
185		SB07W				
	•	•				
194	•		> RE1	[07W		
191	•	SB07W				
	•	V				
197		R7W-8W				
	•	•				
201	•	•	SB8NW			
	•	•	•			
211	•	•	•	RFT	8114	
208			SB8NW			
			V			
			V			
214	•	•	R8NW8N			
	•	•	•			
218	•	•	•	SRANE		
210	•	•	•	JDONE		
228					>	RET8NE
225	•	•	•	SB8NE		
	•	•	•	V		
231	•	•	•			
			•			

235					SB8SW		
		•		•			
			•		•		
245			•		•	> RET8SW	
242		•		•	SB8SW		
			•		•		
	•	•	•	•	•		
248	•	•	•	•	•	SB8SE	
	•	•	•	•	•	•	
	•	•	•	•	•		
258	•	•	•	•	•	>	RET8SE
255	•	•	•	•	•	SB8SE	
	•	•	•	•	•	•	
	•	•	•	•	•	•	
261	•	•	CP-08N	•••••		• • • • • • •	
	•	•	V				
264	•	•					
204	•	•	KON-OW				
	•	•	•				
268	•	•	•	SBORW			
200	•	•	•	SDOOM			
278					> RET8W		
274				SB08W			
		•	•	•			
281		CP-08W					
		V					
	•	V					
283	•	R8W-4N					
	•	•					
200	•	•	600054				
290	•	•	SB02E1				
	•	•	•				
201	•	•	•				
202	•	•	 SB02E1	> KEIZE	L		
290	•	•	SDOZLI				
	•	•	•				
304	•	CP-4N	•				
501		V					
	•	V					
306		R4N-4					
		•					
		•					
308	•	•	SB04				
	•	•	•				
	•	:	•				
314	•	CP-4	••••				
	•	V					
216	•						
510	•	K4-5					
	•	•					
319	СР-05	•					
515	v v						
	v						
323	R5-6						
	•						
326		SB06					
		•					
332	CP-06						
	•						
	•						
334	•	SB07E					
	•	V					
240	•	V DDE OF					
540	•	K/E-ØE					
	•	•					
3/10	•	•	SRARE				
J42	•	•	JDUOE				
	•	•	•				
348	•	•	•	SB09N			
	•	•	•	V			
			•	v			
354	•	•	•	R9NR8E			

		•	•		•
	356	•	CP-08E		• • • • • • • • • • •
		•	V	1	
	358	•	V R8F-R9		
	550				
	260	•		CD/	20
	300	•	•	2B6	
					•
	366	•	CP-09	•••••	••
		•			
	368	•		PWR	СН
		•	•		•
	379		BINFLO)	
		•	V	1	
	382	•	V BASIN	' 	
		•	v	1	
	204	•	V DCNDT1	1	
	554	•	V		
		•	V	1	
	399	•	BSNRT2		
	402	•		SB	10
		•	•		•
	408	•	CP-10		•••
		•	V	1	
	411	•	v R10-11		
		•			
	A1A	•		SB.	11
	-1			50.	
	420	•			•
	420	•	CP-11	••••	••
(*	**) RUNOFF	ALSO COMP	UTED AT	THIS LOCA	TION
1**	**********	*******	*****	*********	*
*	FLOOD HYD	ROGRAPH P	ACKAGE	(HEC-1)	*
*		JUN	1998		*
*		VERSION 4	.1		*
*	RUN DATE	20JUL23	TIME	09:20:32	*
*	* * * * * * * * * * * * * *	• ↓ ↓ ↓ ↓ ↓ ↓		***	*
**	****	***	*****	****	ኮጥ

***	******	***
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
***	***************************************	***

CROSS ROADS EAST DRAINAGE INFRASTRUCTURE POWERLINE CORRIDOR RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL: 10-YR, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND PIMA ROAD FLOWS. PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14 MODELERS: RK, MW REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 11/14/18 MODELERS: MSW, ES REVISIONS NOTED WITH HE ULTIMATE CONDITION MODEL, WITH POWERLINE AND BASIN 53R AND THIS IS THE POST-DEVELOPMENT MODEL WITH DEVELOPMENT N OF LEGACY UPDATED INFLOW HYDROGRAPHS TO REFLECT 15MIN INC. REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 07/20/23 MODELERS: MSW, TSW REVISIONS NOTED WITH HE (HUBBARD ENGINEERING) BASIN 2E WAS SPLIT AT CENTER POINT DUE TO FLOW UNDER 101

.

25 IO	OUTPUT CONTROL	VARIABLES								
	IPRNT	5	PRINT C	ONTROL						
	IPLOT	0	PLOT CO	NTROL						
	QSCAL	0.	HYDROGR	APH PLOT S	CALE					
тт										
11	NMTN	3	MTNUTES		ΔΤΤΟΝ ΤΝΤΕ	RVΔI				
	IDATE	1 0	STARTIN	IG DATE						
	ITIME	0000	STARTIN	IG TIME						
	NQ	1000	NUMBER	OF HYDROGR	APH ORDINA	TES				
	NDDATE	3 0	ENDING	DATE						
	NDTIME	0157	ENDING	TIME						
	ICENT	19	CENTURY	′ mark						
	COMPUTATION	INTERVAL	0.05 H	IOURS						
	TOTAL T	IME BASE	49.95 H	IOURS						
	ENGLISH UNITS									
	DRAINAGE AREA	SQUA	RE MILES	5						
	PRECIPITATION DEF	PTH INCH	IES							
	LENGTH, ELEVATION	N FEET								
	FLOW	CUBI	C FEET P	ER SECOND						
	STORAGE VOLUME	ACRE	-FEET							
	SURFACE AREA	ACRE	S							
	TEMPERATURE	DEGR	EES FAHR	ENHEIT						
26 JD	INDEX STORM NO.	. 1								
	STRM	1.82	PRECIPI	TATION DEP	TH					
	TRDA	0.00	TRANSPO	SITION DRA	INAGE AREA	N Contraction of the second seco				
27 PT	PRECIPITATION	PATTERN								
27 1 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02
	0.03	0.03	0.03	0.03	0.03	0.09	0.09	0.09	0.09	0.09
	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30 JD	TNDEX STORM NO.	. 2								
50 50	STRM	1.81	PRECIPI	TATION DEP	тн					
	TRDA	0.50	TRANSPO	SITION DRA	INAGE AREA	1				
31 PI	PRECIPITATION	N PATTERN								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02
	0.03	0.05	0.05	0.05	0.03	0.09	0.09	0.09	0.09	0.09
	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34 JD	INDEX STORM NO.	. 3	DDECTDI		T 11					
	TRDA	2.80	TRANSPO	SITION DEP	INAGE AREA	N N				
35 PI	PRECIPITATION	N PATTERN	0 00	0 00	0 00	0 00	0 00	0 00	0 00	0 00
	0.00 A AA	0.00	0.00	0.00 0 00	0.00 0 00	0.00 0 00	0.00	0.00 0 00	0.00 0 00	0.00 A AA
	0.00	0.00	0.00	0.00	0.00 0 00	0.00	0.00	0.00	0.00 0 00	0.00 A AA
	0.00	0.00	0.00	0.00	0.00 0 00	0.00	0.00	0.00	0.00 0 00	0.00 0 00
	0.00 0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0 00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
	0.00	0 00	0 00	0.00	0.00	0.00	0 00	0.00	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

OPERATION STATION FLOW PEAK 6-HOR 24-HOR 72-HOR AREA STAGE HYDROGRAPH AT 76THST 32. 4.50 10. 3. 1. 0.24 HYDROGRAPH AT 5801A 59. 4.25 7. 2. 1. 0.06 DIVERSION TO RET01A 48. 4.15 3. 1. 0.06 HYDROGRAPH AT 5801A 59. 4.25 4. 1. 0.06 LORGRAPH AT 5801A 59. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2W 86. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT 5802NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0.02 HYDROGRAPH AT 5802NW 23. 4.10 1. 0. 0.31 HYDROGRAPH AT 5802L 97. 4.30	
HYDROGRAPH AT 76THST 32. 4.59 10. 3. 1. 0.24 HYDROGRAPH AT 5801A 59. 4.25 7. 2. 1. 0.06 DIVERSION TO RET01A 48. 4.15 3. 1. 0. 0.06 HYDROGRAPH AT S801A 59. 4.25 4. 1. 0. 0.06 HYDROGRAPH AT S801A 59. 4.25 4. 1. 0. 0.06 2 COMBINED AT CP-1 86. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2N 86. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT S802NN 23. 4.10 2. 1. 0. 0.02 HYDROGRAPH AT S802NN 23. 4.10 1. 0. 0.02 HYDROGRAPH AT S802NN 23. 4.10 1. 0. 0.02 HYDROGRAPH AT S802NN 23. 4.10 1. 0. 0.02 0.11 LYDROGRAPH AT CP-02N	110N S14
HYDROGRAPH AT SB01A 59. 4.25 7. 2. 1. 0.06 DIVERSION TO RET01A 48. 4.15 3. 1. 0. 0.06 HYDROGRAPH AT SB01A 59. 4.25 4. 1. 0. 0.06 2 COMBINED AT CP-1 86. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2W 66. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0.02 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0.02 0.02 LVERSION TO RET2NW 18. 4.00 1. 0. 0.02 0.02 LVEROGRAPH AT SB02NW 23. 4.10 1. 0. 0.02 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HVDROGRA	GRAPH AT 76
DIVERSION TO RET01A 48. 4.15 3. 1. 0. 0.06 HYDROGRAPH AT SB01A 59. 4.25 4. 1. 0. 0.06 2 COMBINED AT CP-1 86. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2M 86. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NN 18. 4.00 1. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0.02 IVERSION TO RET2NN 18. 4.00 1. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0.02 IVERSION TO RET2NN 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.63 HYDROGRAPH AT SB01C 26. 4.15	GRAPH AT
HYDROGRAPH AT SB01A 59. 4.25 4. 1. 0. 0.06 2 COMBINED AT CP-1 86. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2W 86. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 COMBINED AT SB02NW 23. 4.10 1. 0. 0. 0.02 I MYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.31 ROUTED TO REM-2 97. 4.30 15. 4. 2. 0.31 MYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO<	SION TO RE
2 COMBINED AT CP-1 86. 4.25 14. 4. 2. 0.30 ROUTED TO R1A-2W 86. 4.30 14. 4. 2. 0.30 HYDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 2 COMBINED AT SB02NW 23. 4.10 1. 0. 0. 0.02 2 COMBINED AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2N-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO RET01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH A	GRAPH AT
ROUTED TO RIA-2W 86. 4.30 14. 4. 2. 0.30 MVDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 COMBINED AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03 HYDROGRAPH AT SB01	BINED AT
HYDROGRAPH AT SB02NW 23. 4.10 2. 1. 0. 0.02 DIVERSION TO RET2NW 18. 4.00 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 LYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 LYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 LYDROGRAPH AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 HYDROGRAPH AT SB01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	D TO R1
DIVERSION TO RET2NM 18. 4.00 1. 0. 0. 0.02 HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 2 COMBINED AT SB02NW 23. 4.10 1. 0. 0. 0.02 2 COMBINED AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 HYDROGRAPH AT SB01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	GRAPH AT SE
HYDROGRAPH AT SB02NW 23. 4.10 1. 0. 0. 0.02 2 COMBINED AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO RET01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	SION TO RE
2 COMBINED AT CP-02W 97. 4.30 15. 4. 2. 0.31 ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO RET01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	GRAPH AT SE
ROUTED TO R2W-2 97. 4.30 15. 4. 2. 0.31 HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO RET01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	BINED AT CF
HYDROGRAPH AT SB01C 26. 4.15 3. 1. 0. 0.03 DIVERSION TO RET01C 24. 4.10 1. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0.03	D TO F
DIVERSION TO RET01C 24. 4.10 1. 0. 0. 0.03 HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	GRAPH AT
HYDROGRAPH AT SB01C 26. 4.15 2. 0. 0. 0.03	SION TO RE
	GRAPH AT
ROUTED TO R1C-1B 25. 4.20 2. 0. 0. 0.03	D TO R1
HYDROGRAPH AT SB01B 25. 4.15 3. 1. 0. 0.02	GRAPH AT

DIVERSION TO

1
	RET01B	22.	4.05	1.	0.	0.	0.02
HYDROGRAPH AT	SB01B	25.	4.15	2.	0.	0.	0.02
2 COMBINED AT	CP-01B	48.	4.20	3.	1.	0.	0.05
ROUTED TO	R1B-2N	47.	4.20	3.	1.	0.	0.05
HYDROGRAPH AT	SB02NE	29.	4.20	4.	1.	0.	0.03
DIVERSION TO	RET2NE	27.	4.15	2.	0.	0.	0.03
HYDROGRAPH AT	SB02NE	27.	4.25	2.	1.	0.	0.03
2 COMBINED AT	CP-02N	73.	4.25	6.	1.	1.	0.09
ROUTED TO	R2N-2	72.	4.25	6.	1.	1.	0.09
HYDROGRAPH AT	SB02E2	22.	4.15	3.	1.	0.	0.02
DIVERSION TO	RET2E2	12.	3.95	1.	0.	0.	0.02
HYDROGRAPH AT	SB02E2	22.	4.15	2.	1.	0.	0.02
HYDROGRAPH AT	SB02W	16.	4.50	2.	1.	0.	0.06
4 COMBINED AT	CP-02	189.	4.30	25.	7.	3.	0.18
ROUTED TO	R2-3	187.	4.35	25.	7.	3.	0.18
HYDROGRAPH AT	SB03	47.	4.15	6.	2.	1.	0.05
2 COMBINED AT	CP-03	220.	4.35	31.	8.	4.	0.23
ROUTED TO	R3-5	214.	4.55	31.	8.	4.	0.23
HYDROGRAPH AT	SB05	134.	4.10	15.	4.	2.	0.13
2 COMBINED AT	CP-5A	250.	4.55	45.	12.	6.	0.36
HYDROGRAPH AT	SB07W	54.	4.15	5.	1.	1.	0.05
DIVERSION TO	RET07W	41.	4.05	2.	1.	0.	0.05
HYDROGRAPH AT	SB07W	54.	4.15	3.	1.	0.	0.05
ROUTED TO	R7W-8W	51.	4.65	5.	1.	1.	0.05
HYDROGRAPH AT	SB8NW	24.	4.05	2.	1.	0.	0.01
DIVERSION TO	RET8NW	8.	3.80	1.	0.	0.	0.01
HYDROGRAPH AT	SB8NW	24.	4.05	2.	0.	0.	0.01

RO	UTED TO	R8NW8N	24.	4.10	2.	0.	0.	0.01
HYI	DROGRAPH AT	SB8NE	25.	4.05	2.	1.	0.	0.01
DI	VERSION TO	RET8NE	8.	3.80	1.	0.	0.	0.01
HYI	DROGRAPH AT	SB8NE	25.	4.05	2.	0.	0.	0.01
RO	UTED TO	R8NE8N	25.	4.10	2.	0.	0.	0.01
HYI	DROGRAPH AT	SB8SW	22.	4.05	2.	1.	0.	0.01
DI	VERSION TO	RET8SW	7.	3.75	1.	0.	0.	0.01
HYI	DROGRAPH AT	SB8SW	22.	4.05	2.	0.	0.	0.01
HYI	DROGRAPH AT	SB8SE	21.	4.05	2.	1.	0.	0.01
DI	VERSION TO	RET8SE	7.	3.80	1.	0.	0.	0.01
HYI	DROGRAPH AT	SB8SE	21.	4.05	2.	0.	0.	0.01
4 (COMBINED AT	CP-08N	90.	4.05	7.	2.	1.	0.06
RO	UTED TO	R8N-8W	89.	4.10	7.	2.	1.	0.06
HYI	DROGRAPH AT	SB08W	85.	4.15	10.	2.	1.	0.06
DI	VERSION TO	RET8W	36.	3.90	3.	1.	0.	0.06
HYI	DROGRAPH AT	SB08W	85.	4.15	7.	2.	1.	0.06
3 (COMBINED AT	CP-08W	172.	4.10	18.	5.	2.	0.16
RO	UTED TO	R8W-4N	137.	4.20	18.	5.	2.	0.16
HYI	DROGRAPH AT	SB02E1	35.	4.10	4.	1.	0.	0.03
DI	VERSION TO	RET2E1	13.	3.85	1.	0.	0.	0.03
HYI	DROGRAPH AT	SB02E1	35.	4.10	3.	1.	0.	0.03
2 (COMBINED AT	CP-4N	167.	4.20	21.	5.	3.	0.19
RO	UTED TO	R4N-4	164.	4.20	21.	5.	3.	0.19
HYI	DROGRAPH AT	SB04	178.	4.10	20.	5.	2.	0.14
2 (COMBINED AT	CP-4	312.	4.15	40.	10.	5.	0.33
RO	UTED TO	R4-5	310.	4.25	40.	10.	5.	0.33
2	COMBINED AT	CP-05	397.	4.50	82.	22.	11.	0.69

2 COMBINED AT CP-06 440. A.35 96. 25. 12. HYDROGRAPH AT S807E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT S808E 21. 4.55 3. 1. 0. HYDROGRAPH AT S808E 21. 4.55 3. 1. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. HYDROGRAPH AT S809 34. 4.60 6. 2. 1. HYDROGRAPH AT S809 34. 4.60 6. 2. 1. HYDROGRAPH AT S809 34. 4.55 11. 3. 1. PURCH 487. 5.75 285. 91. 50. 50. ROUTED TO BSNRT1 171. 9.10 156. 85. 48. ROUTED TO BSNRT2 171. 9.10 156. 85. 48. HYDROGRAPH AT S8	MIN) (IN)	(HIIN)								
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HVDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HVDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HVDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HVDROGRAPH AT SB08E 21. 4.55 3. 1. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HVOROGRAPH AT S809 34. 4.50 5. 1. 1. 2 COMBINED AT CP-09 66. 4.55 11. 3. 1. ROUTED TO BASIN 171. 9.10 156.		(MTN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)		
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.55 11. 3. 1. 1. R8E-R9 34. 4.60 6. 2. 1. 1. GP-09 66. 4.55 11. 3. 1. 2. COMBINED AT FWRCH 487. 5.75 <td< td=""><td>D TO TERVAL ME TO VOLUM PEAK</td><td>JTING DLATED TO DN INTERVA TIME TO PEAK</td><td>1-CUNGE ROUT ASE FLOW) INTERPOL COMPUTATION PEAK</td><td>MUSKINGU WITHOUT BA</td><td>TIC WAVE - CT RUNOFF VOLUME</td><td>Y OF KINEMA LOW IS DIRE TIME TO PEAK</td><td>SUMMAR (F PEAK</td><td>DT</td><td>1ENT</td><td>ISTAQ ELEM</td></td<>	D TO TERVAL ME TO VOLUM PEAK	JTING DLATED TO DN INTERVA TIME TO PEAK	1-CUNGE ROUT ASE FLOW) INTERPOL COMPUTATION PEAK	MUSKINGU WITHOUT BA	TIC WAVE - CT RUNOFF VOLUME	Y OF KINEMA LOW IS DIRE TIME TO PEAK	SUMMAR (F PEAK	DT	1ENT	ISTAQ ELEM
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. 2 COMBINED AT CP-09 66. 4.55 11. 3. 1. 2 COMBINED AT BASIN <td< td=""><td>7.33</td><td>7.3</td><td>49.</td><td>85.</td><td>156.</td><td>.20</td><td>171. 9</td><td>1</td><td>CP-11</td><td>2 COMBINED AT</td></td<>	7.33	7.3	49.	85.	156.	.20	171. 9	1	CP-11	2 COMBINED AT
2 CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. 3 COMBINED AT CP-08E 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. YOROGRAPH AT PWRCH 487. 5.75 285. 91. 50. ROUTED TO BASIN 171. 9.10	0.07	0.0	1.	2.	9.	.10	77. 4	1	SB11	HYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.63 5. 1. 1. 2 COMBINED AT CP-09 66. 4.55 11. 3. 1. HYDROGRAPH AT PWRCH 487. 5.75 285. 91. 50. 2 COMBINED AT BASIN 171. 9.10	7.26	7.2	48.	85.	156.	.20	171. 9	1	R10-11	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NRBE 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1. 2 COMBINED AT SB09 34. 4.45 5. 1. 1. 12 COMBINED AT PWRCH 487. 5.75 285. 91. 50. 2 COMBINED AT BINFLO 484. 5.75<	7.26	7.20	49.	85.	156.	.10	171. 9	0	CP-10	2 COMBINED AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08D 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. 3 COMBINED AT SB09 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.75 5. 1. 1. 2 COMBINED AT PWRCH 487. 5.75	0.04	0.0	1.	1.	5.	.05	52. 4	0	SB10	HYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08D 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1. COMBINED AT CP-09 66. 4.55 11. 3. 1. HYDROGRAPH AT SB09 34. 5.75 285. 91. 50. 2 COMBINED AT CP-09 66. 4.55	7.22	7.2	48.	85.	156.	.10	171. 9	2	BSNRT2	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB090 6. 4.55 2. 0. 0. HYDROGRAPH AT SB090 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1. 2 COMBINED AT CP-09 66. 4.55 11. 3. 1. HYDROGRAPH AT SB09 34. 5.75 285. 91. 50. 2 COMBINED AT CP-09 66. 4.55	7.22	7.2	48.	85.	156.	.10	171. 9	1	BSNRT1	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.66 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1. 2 COMBINED AT CP-09 66. 4.55 11. 3. 1. HYDROGRAPH AT PWRCH 487. 5.75 <	7.22	7.2	48.	85.	156.	.10	171. 9	N	BASIN	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. YVDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. YDROGRAPH AT SB08E 21. 4.55 3. 1. 0. YDROGRAPH AT SB09N 6. 4.55 2. 0. 0. YDROGRAPH AT SB09N 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R9RR8E 34. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. YDROGRAPH AT SB09 34. 4.45 5. 1. 1. YDROGRAPH AT SB09 34. 4.45 5. 1. 1. 2 COMBINED AT CP-09 66. 4.55 11. <td>7.22</td> <td>7.2</td> <td>50.</td> <td>90.</td> <td>283.</td> <td>.75</td> <td>484. 5</td> <td>0</td> <td>BINFLO</td> <td>2 COMBINED AT</td>	7.22	7.2	50.	90.	283.	.75	484. 5	0	BINFLO	2 COMBINED AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. 3 COMBINED AT CP-08E 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1. HYDROGRAPH AT SB09 34. 4.45 5. 1. 1.	7.00	7.0	50.	91.	285.	.75	487. 5	н	PWRCH	HYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.60 6. 2. 1. ROUTED TO R8E-R9 34. 4.60 6. 2. 1. HYDROGRAPH AT SB09N 34. 4.45 5. 1. 1.	0.22	0.2	1.	3.	11.	. 55	66. 4	9	CP-09	2 COMBINED AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 34. 4.60 6. 2. 1.	0.09	0.0	1.	1.	5.	. 45	34. 4	9	SB09	HYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0. ROUTED TO R9NR8E 6. 4.65 2. 0. 0.	0.13	0.1	1.	2.	6.	. 60	34. 4	с 9	R8F-R9	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08B 21. 4.55 3. 1. 0. HYDROGRAPH AT SB09N 6. 4.55 2. 0. 0. ROUTED TO SB09N 6. 4.55 2. 0. 0.	0.03	0.0	0.	0.	2.		6. 4	F	R9NR8E	3 COMBINED AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0. HYDROGRAPH AT SB08E 21. 4.55 3. 1. 0.	0.03	0.03	0.	0.	2.	.55	6. 4	N	SB09N	ROUTED TO
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO R7E-8E 8. 4.50 1. 0. 0. HYDROGRAPH AT 25. 1. 0. 0. 0.	0.08	0.08	0.	1.	3.	.55	21. 4	E	SB08E	IYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12. HYDROGRAPH AT SB07E 9. 4.40 1. 0. 0. ROUTED TO	0.03	0.03	0.	0.	1.	.50	8. 4	E	R7E-8E	IYDROGRAPH AT
2 COMBINED AT CP-06 440. 4.35 96. 25. 12.	0.03	0.03	0.	0.	1.	.40	9. 4	E	SB07E	ROUTED TO
2 COMBINED AT	0.82	0.82	12.	25.	96.	.35	440. 4	6	CP-06	HYDROGRAPH AT
SB06 145. 4.10 17. 4. 2.	0.14	0.14	2.	4.	17.	.10	145. 4	6	SB06	COMBINED AT
R5-6 387. 4.60 82. 22. 11.	0.69	0.69	11.	22.	82.	.60	387. 4	6	R5-6	

+ 1

CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.8	110E+01	EXCESS=0.0000	E+00 OUTFL	-OW=0.8108E+	01 BASIN	STORAGE=0.2428	BE-02 PERCENT	ERROR=	0.0
FOR STO R1A-2	DRM = 2 W MANE	STORM	AREA (SQ 0.22	MI) = 86.23	0.50 3 255.60	0.50	3.00	85.99	258.00	0.50		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.8	082E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.8081E+	01 BASIN	STORAGE=0.2428	8E-02 PERCENT	ERROR=	0.0
FOR STO R1A-2	DRM = 3 W MANE	STORM	AREA (SQ 0.23	MI) = 56.86	2.80 5 261.41	0.46	3.00	56.60	261.00	0.46		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.7	389E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.7388E+	01 BASIN	STORAGE=0.2428	BE-02 PERCENT	ERROR=	0.0
FOR STO R2W-	ORM = 1 2 MANE	STORM	AREA (SQ 0.41	MI) = 97.65	0.00 5 258.39	0.54	3.00	97.55	258.00	0.54		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.8	773E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.8771E+	01 BASIN	STORAGE=0.3356	5E-02 PERCENT	ERROR=	0.0
FOR STO R2W-	0RM = 2 2 mane	STORM	AREA (SQ 0.41	MI) = 96.96	0.50 5 258.16	0.54	3.00	96.86	258.00	0.54		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.8	738E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.8735E+	01 BASIN	STORAGE=0.3354	E-02 PERCENT	ERROR=	0.0
FOR STO R2W-	0RM = 3 2 mane	STORM	AREA (SQ 0.36	MI) = 63.48	2.80 3 261.95	0.48	3.00	62.70	264.00	0.48		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.7	822E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.7820E+	01 BASIN	STORAGE=0.3356	E-02 PERCENT	ERROR=	0.0
FOR STO R1C-1	DRM = 1 .B MANE	STORM	AREA (SQ 0.47	MI) = 26.07	0.00 7 249.94	0.64	3.00	25.45	252.00	0.64		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.9	235E+00	EXCESS=0.0000	E+00 OUTFL	.OW=0.9234E+	00 BASIN	STORAGE=0.1159	9E-13 PERCENT	ERROR=	0.0
FOR STO R1C-1	0rm = 2 .B mane	STORM	AREA (SQ 0.40	MI) = 25.48	0.50 3 250.16	0.63	3.00	25.16	252.00	0.64		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.9	114E+00	EXCESS=0.0000	E+00 OUTFL	.OW=0.9112E+	00 BASIN	STORAGE=0.1161	LE-13 PERCENT	ERROR=	0.0
FOR STO R1C-1	orm = 3 .B mane	STORM	AREA (SQ 0.40	MI) = 12.02	2.80 2 255.91	0.42	3.00	11.53	258.00	0.42		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.6	045E+00	EXCESS=0.0000	E+00 OUTFL	.OW=0.6050E+	00 BASIN	STORAGE=0.1171	LE-13 PERCENT	ERROR=	-0.1
FOR STO R1B-2	0RM = 1 IN MANE	STORM	AREA (SQ 1.00	MI) = 48.05	0.00 5 253.91	0.64	3.00	47.04	252.00	0.64		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.1	748E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.1752E+	01 BASIN	STORAGE=0.3293	BE-11 PERCENT	ERROR=	-0.2
FOR STO R1B-2	0rm = 2 :n mane	STORM	AREA (SQ 0.96	MI) = 47.49	0.50 9 253.51	0.63	3.00	46.32	252.00	0.63		
CONTINUITY SUMMAR	Y (AC-F	T) - I	NFLOW=0.1	727E+01	EXCESS=0.0000	E+00 OUTFL	-OW=0.1726E+	01 BASIN	STORAGE=0.3446	E-11 PERCENT	ERROR=	0.0
FOR STO R1B-2)RM = 3 :N MANE	STORM	AREA (SQ 1.20	MI) = 21.35	2.80 5 259.25	0.42	3.00	21.16	258.00	0.42		

FOR STOR R2N-2	M = 1 MANE	STORM	AREA (SQ 0.38	MI) = 73.38	0.00 255.29	0.64	3.00	73.19	255.00	0.64		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.28	890E+01	EXCESS=0.0000	E+00 OUTFL	DW=0.2895∣	E+01 BASIN	STORAGE=0.58	35E-06 PERCENT	ERROR=	-0.2
FOR STOR R2N-2	M = 2 MANE	STORM	AREA (SQ 0.42	MI) = 72.58	0.50 255.46	0.63	3.00	72.21	255.00	0.63		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.2	852E+01	EXCESS=0.0000	E+00 OUTFL	DW=0.2855∣	E+01 BASIN	STORAGE=0.44	37E-06 PERCENT	ERROR=	-0.1
FOR STOR R2N-2	M = 3 MANE	STORM	AREA (SQ 0.51	MI) = 34.33	2.80 261.97	0.42	3.00	34.12	261.00	0.42		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	894E+01	EXCESS=0.0000	E+00 OUTFL	DW=0.18951	E+01 BASIN	STORAGE=0.49	997E-06 PERCENT	ERROR=	-0.1
FOR STOR R2-3	M = 1 MANE	STORM	AREA (SQ 2.37	MI) = 190.46	0.00 262.56	1.43	3.00	187.15	261.00	1.43		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	391E+02	EXCESS=0.0000	E+00 OUTFL	DW=0.13876	E+02 BASIN	STORAGE=0.31	48E-01 PERCENT	ERROR=	0.0
FOR STOR R2-3	M = 2 Mane	STORM	AREA (SQ 2.39	MI) = 188.45	0.50 262.33	1.42	3.00	187.10	261.00	1.42		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	380E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.13778	E+02 BASIN	STORAGE=0.31	48E-01 PERCENT	ERROR=	-0.1
FOR STOR R2-3	M = 3 MANE	STORM	AREA (SQ 2.98	MI) = 108.61	2.80 268.44	1.11	3.00	107.22	270.00	1.11		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	081E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.1078∣	E+02 BASIN	STORAGE=0.31	48E-01 PERCENT	ERROR=	0.0
FOR STOR R3-5	M = 1 MANE	STORM	AREA (SQ 3.00	MI) = 218.33	0.00 271.57	1.39	3.00	214.58	273.00	1.39		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	702E+02	EXCESS=0.0000)E+00 OUTFL	DW=0.1699∣	E+02 BASIN	STORAGE=0.69	955E-01 PERCENT	ERROR=	-0.2
FOR STOR R3-5	M = 2 Mane	STORM	AREA (SQ 3.00	MI) = 214.12	0.50 272.95	1.38	3.00	213.94	273.00	1.39		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	688E+02	EXCESS=0.0000	E+00 OUTFL	DW=0.16968	E+02 BASIN	STORAGE=0.69	968E-01 PERCENT	ERROR=	-0.9
FOR STOR R3-5	M = 3 MANE	STORM	AREA (SQ 3.32	MI) = 124.97	2.80 281.91	1.09	3.00	124.88	282.00	1.10		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	344E+02	EXCESS=0.0000	E+00 OUTFL	DW=0.13418	E+02 BASIN	STORAGE=0.74	28E-01 PERCENT	ERROR=	-0.3
FOR STOR R7W-8W	M = 1 MANE	STORM	AREA (SQ 1.68	MI) = 52.79	0.00 276.79	0.96	3.00	51.01	279.00	0.96		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	600E+01	EXCESS=0.0000	E+00 OUTFL	DW=0.2399∣	E+01 BASIN	STORAGE=0.29	081E-03 PERCENT	ERROR=	-50.0
FOR STOR R7W-8W	M = 2 MANE	STORM	AREA (SQ 1.69	MI) = 52.24	0.50 276.99	0.95	3.00	50.66	279.00	0.95		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	579E+01	EXCESS=0.0000	E+00 OUTFL	DW=0.23738	E+01 BASIN	STORAGE=0.28	51E-03 PERCENT	ERROR=	-50.4
FOR STOR R7W-8W	M = 3 MANE	STORM	AREA (SQ 0.57	MI) = 23.36	2.80 290.76	0.62	3.00	23.27	291.00	0.63		

CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.1	047E+01	EXCESS=0.0000	E+00	OUTFLOW	l=0.1550E+	01 BASIN	STORAGE=0.	2509E-03	PERCENT	ERROR=	-48.0
	FOR STORM R8NW8N	1 = 1 MANE	STORM	AREA (SQ 0.90	MI) = 23.67	0.00 7 245.12	1.	.12	3.00	23.61	246.00	1.12	2		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.8	762E+00	EXCESS=0.0000	E+00	OUTFLOW	I=0.8785E+	00 BASIN	STORAGE=0.	1427E-06	PERCENT	ERROR=	-0.3
	FOR STORM R8NW8N	1 = 2 Mane	STORM	AREA (SQ 0.89	MI) = 23.53	0.50 1 245.06	1.	11	3.00	23.45	246.00	1.11	L		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.8	684E+00	EXCESS=0.0000	E+00	OUTFLOW	I=0.8709E+	00 BASIN	STORAGE=0.	1495E-06	PERCENT	ERROR=	-0.3
	FOR STORM R8NW8N	1 = 3 Mane	STORM	AREA (SQ 0.99	MI) = 12.76	2.80 5 245.64	1.	.01	3.00	12.75	246.00	1.01	L		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.7	895E+00	EXCESS=0.0000	E+00	OUTFLOW	l=0.7947E+	00 BASIN	STORAGE=0.	1506E-06	PERCENT	ERROR=	-0.7
	FOR STORM R8NE8N	1 = 1 MANE	STORM	AREA (SQ 0.90	MI) = 25.10	0.00 0 244.37	1.	.12	3.00	24.86	246.00	1.12	2		
CONTINUITY	SUMMARY	(AC-FT	T) - IN	IFLOW=0.8	929E+00	EXCESS=0.0000	E+00	OUTFLOW	l=0.8983E+	00 BASIN	STORAGE=0.	1026E-06	PERCENT	ERROR=	-0.6
	FOR STORM R8NE8N	1 = 2 Mane	STORM	AREA (SQ 0.87	MI) = 24.95	0.50 5 244.34	1.	.11	3.00	24.69	246.00	1.11	L		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.8	849E+00	EXCESS=0.0000	E+00	OUTFLOW	I=0.8866E+	00 BASIN	STORAGE=0.	1149E-06	PERCENT	ERROR=	-0.2
	FOR STORM R8NE8N	1 = 3 Mane	STORM	AREA (SQ 1.02	MI) = 13.29	2.80 9 245.08	1.	.01	3.00	13.20	246.00	1.01	L		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.8	044E+00	EXCESS=0.0000	E+00	OUTFLOW	I=0.8070E+	00 BASIN	STORAGE=0.	1185E-06	PERCENT	ERROR=	-0.3
	FOR STORM R8N-8W	1 = 1 MANE	STORM	AREA (SQ 0.50	MI) = 90.20	0.00 5 244.05	1.	.12	3.00	89.79	246.00	1.12	2		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.3	323E+01	EXCESS=0.0000	E+00	OUTFLOW	I=0.3326E+	01 BASIN	STORAGE=0.	1332E-07	PERCENT	ERROR=	-0.1
	FOR STORM R8N-8W	1 = 2 Mane	STORM	AREA (SQ 0.50	MI) = 89.65	0.50 5 244.04	1.	11	3.00	89.18	246.00	1.11	L		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.3	296E+01	EXCESS=0.0000	E+00	OUTFLOW	I=0.3298E+	01 BASIN	STORAGE=0.	1340E-07	PERCENT	ERROR=	-0.1
	FOR STORM R8N-8W	1 = 3 Mane	STORM	AREA (SQ 0.71	MI) = 48.48	2.80 8 244.61	1.	.01	3.00	48.33	246.00	1.01	L		
CONTINUITY	SUMMARY	(AC-FT) - IN	IFLOW=0.2	995E+01	EXCESS=0.0000	E+00	OUTFLOW	l=0.2995E+	01 BASIN	STORAGE=0.	1327E-07	PERCENT	ERROR=	0.0
	FOR STORM R4N-4	1 = 1 MANE	STORM	AREA (SQ 0.60	MI) = 167.98	0.00 8 253.40	1.	.07	3.00	165.34	252.00	1.07	7		
CONTINUITY	SUMMARY	(AC-FT	() - IN	IFLOW=0.1	065E+02	EXCESS=0.0000	E+00	OUTFLOW	l=0.1066E+	02 BASIN	STORAGE=0.	1165E-03	PERCENT	ERROR=	-0.1
	FOR STORM R4N-4	1 = 2 Mane	STORM	AREA (SQ 0.60	MI) = 166.44	0.50 4 252.95	1.	.06	3.00	163.74	252.00	1.06	5		
CONTINUITY	SUMMARY	(AC-F1	() - IN	IFLOW=0.1	055E+02	EXCESS=0.0000	E+00	OUTFLOW	l=0.1056E+	02 BASIN	STORAGE=0.	1190E-03	PERCENT	ERROR=	-0.1

	FOR STORM R4N-4	1 = 3 MANE	STORM	AREA (SQ 0.77	MI) = 98.89	2.80 256.01	0.91	3.00	98.41	255.00	0.90		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.9	006E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.9007	E+01 BASIN	STORAGE=0.	1090E-03 PERCENT	ERROR=	0.0
	FOR STORM R4-5	1 = 1 MANE	STORM	AREA (SQ 2.76	MI) = 313.86	0.00 256.89	1.18	3.00	311.81	255.00	1.18		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.2	075E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.2078	E+02 BASIN	STORAGE=0.	3871E-03 PERCENT	ERROR=	-0.2
	FOR STORM R4-5	1 = 2 MANE	STORM	AREA (SQ 2.76	MI) = 311.07	0.50 257.07	1.17	3.00	309.97	255.00	1.17		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.2	057E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.2061	E+02 BASIN	STORAGE=0.	3769E-03 PERCENT	ERROR=	-0.2
	FOR STORM R4-5	1 = 3 MANE	STORM	AREA (SQ 3.00	MI) = 182.72	2.80 261.31	1.01	3.00	182.52	261.00	1.01		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	783E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.1784	E+02 BASIN	STORAGE=0.	3987E-03 PERCENT	ERROR=	-0.1
	FOR STORM R5-6	1 = 1 MANE	STORM	AREA (SQ 2.96	MI) = 426.24	0.00 261.67	1.24	3.00	421.86	261.00	1.24		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.4	537E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.4529	E+02 BASIN	STORAGE=0.	5641E-01 PERCENT	ERROR=	0.1
	FOR STORM R5-6	1 = 2 MANE	STORM	AREA (SQ 2.97	MI) = 428.96	0.50 276.76	1.23	3.00	420.18	276.00	1.23		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.4	515E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.4505	E+02 BASIN	STORAGE=0.	5641E-01 PERCENT	ERROR=	0.1
	FOR STORM R5-6	1 = 3 MANE	STORM	AREA (SQ 2.64	MI) = 264.03	2.80 286.62	1.02	3.00	262.76	288.00	1.02		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.3	753E+02	EXCESS=0.0000	E+00 OUTFL	OW=0.3745	E+02 BASIN	STORAGE=0.	6479E-01 PERCENT	ERROR=	0.0
	FOR STORM R7E-8E	1 = 1 MANE	STORM	AREA (SQ 2.48	MI) = 8.47	0.00 267.86	0.41	3.00	8.45	270.00	0.41		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.5	640E+00	EXCESS=0.0000	E+00 OUTFL	OW=0.5642	E+00 BASIN	STORAGE=0.	1424E-04 PERCENT	ERROR=	0.0
	FOR STORM R7E-8E	1 = 2 MANE	STORM	AREA (SQ 2.49	MI) = 8.36	0.50 268.11	0.40	3.00	8.32	270.00	0.40		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.5	555E+00	EXCESS=0.0000	E+00 OUTFL	OW=0.5565	E+00 BASIN	STORAGE=0.	1227E-04 PERCENT	ERROR=	-0.2
	FOR STORM R7E-8E	1 = 3 MANE	STORM	AREA (SQ 3.00	MI) = 0.79	2.80 281.23	0.04	3.00	0.79	282.00	0.04		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.5	136E-01	EXCESS=0.0000	E+00 OUTFL	OW=0.5564	E-01 BASIN	STORAGE=0.	1218E-04 PERCENT	ERROR=	-8.4
	FOR STORM R9NR8E	1 = 1 MANE	STORM	AREA (SQ 3.00	MI) = 6.31	0.00 281.03	0.51	3.00	6.30	279.00	0.51		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.7	576E+00	EXCESS=0.0000	E+00 OUTFL	OW=0.7564	E+00 BASIN	STORAGE=0.	1663E-04 PERCENT	ERROR=	0.2
	FOR STORM R9NR8E	1 = 2 MANE	STORM	AREA (SQ 3.00	MI) = 6.24	0.50 281.18	0.50	3.00	6.22	279.00	0.50		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7487E+00 EXCESS=0.0000E+00 OUTFLOW=0.7475E+00 BASIN STORAGE=0.1891E-04 PERCENT ERROR= 0.2 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R9NR8E MANE 3.00 0.14 3.00 1.69 287.45 0.14 1.68 288.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2051E+00 EXCESS=0.0000E+00 OUTFLOW=0.2049E+00 BASIN STORAGE=0.1591E-04 PERCENT ERROR= 0.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R8E-R9 MANE 0.31 34.65 276.05 0.43 3.00 34.65 276.00 0.43 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3043E+01 EXCESS=0.0000E+00 OUTFLOW=0.3043E+01 BASIN STORAGE=0.7386E-05 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R8E-R9 MANE 0.31 34.16 276.08 0.43 3.00 34.16 276.00 0.43 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3001E+01 EXCESS=0.0000E+00 OUTFLOW=0.3002E+01 BASIN STORAGE=0.7554E-05 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R8E-R9 MANE 0.73 4.44 286.10 0.06 3.00 4.42 285.00 0.06 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4419E+00 EXCESS=0.0000E+00 OUTFLOW=0.4419E+00 BASIN STORAGE=0.7013E-05 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 BSNRT1 MANE 3.00 0.53 0.43 176.85 541.04 0.53 176.85 543.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2055E+03 EXCESS=0.0000E+00 OUTFLOW=0.2055E+03 BASIN STORAGE=0.2436E-01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 0.53 BSNRT1 MANE 0.43 176.79 541.14 0.53 3.00 176.79 543.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2054E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2436E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 BSNRT1 MANE 0.47 172.81 544.06 0.52 3.00 172.80 543.00 0.52 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2012E+03 EXCESS=0.0000E+00 OUTFLOW=0.2012E+03 BASIN STORAGE=0.2435E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 BSNRT2 MANE 0.44 176.85 543.47 0.53 3.00 176.85 543.00 0.53 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2055E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 BSNRT2 MANE 0.44 176.78 543.55 0.53 3.00 176.78 543.00 0.53 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2054E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 BSNRT2 MANE 0.48 172.80 3.00 0.52 544.14 0.52 172.80 546.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2012E+03 EXCESS=0.0000E+00 OUTFLOW=0.2011E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R10-11 MANE 3.46 176.84 548.85 0.54 3.00 176.84 549.00 0.54

FOR STOR	M = 2 STO	RM AREA (SQ	MI) =	0.50							
R10-11	MANE	3.45	176.78	548.95	0.54	3.00	176.78	549.00	0.54		
CONTINUITY SUMMARY	(AC-FT) -	INFLOW=0.20	079E+03	EXCESS=0.000	0E+00 OUTFLC	W=0.2074	E+03 BASIN	STORAGE=0	.5529E+00 PERCENT	ERROR=	0.0
	· · ·										
	M - 3 STO	DM ADEA (CO	мт) —	2 80							
FOR 310M	·1 = 5 510		172 00	2.00	0.50	2 00	472.00	FF2 00	0.53		
R10-11	MANE	3.43	1/2.80	553.00	0.52	3.00	1/2.80	552.00	0.52		
CONTINUITY SUMMARY	(AC_ET)		222E+02	EVCESS-0 000	AETOO ONTELC	W-0 2028	ETOS BVCIN	STOPAGE-0	5528ELAA DEPCENT	EPPOP-	<u>a</u> a
CONTINUIT SUMMART	(AC-FT) -	INFLOW-0.20	JJJL+0J	LXCL33-0.000	DL+00 COTFLC	w-0.2020	LTOS DASIN	STORAGE-0	JJZOLTOU FLICLINI	LINION-	0.0

*** NORMAL END OF HEC-1 ***

100yr-6hr-Ultimate

1**	*********	********	******	*******	***
*					*
*	FLOOD HY	DROGRAPH	PACKAGE	(HEC-1)	*
*		JUN	1998	. ,	*
*		VERSION 4	4.1		*
*					*
*	RUN DATE	20JUL23	TIME	08:45:55	*
*					*
**	*********	*******	******	*******	***

****	***********	****
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
****	*****	****

х	X XXXXXXX		XXX	XXX		Х
х	Х	х	Х	Х		XX
Х	Х	х	Х			Х
XXXXX	XX	XXXX	Х		XXXXX	Х
х	Х	х	Х			Х
х	Х	х	Х	Х		Х
Х	Х	XXXXXXX	XXX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

				HEC-1	INPUT						PAGE	1
LINE	ID	1		4.	5.	6.	7.	8.	9.	10		
1	ID	CROSS	5 ROADS EAST	DRAINAGE	INFRAST	RUCTURE						
2	ID	POWER	RLINE CORRIDO	R								
3	ID	RESER	RVE ROUTING C	F BASIN	53R N OF	SR101 &	E OF HAY	/DEN RD,	SCOTTSDA	ALE, AZ		
4	ID	INFLC	W HYDROGRAPH	IS FROM T	HE PPSADI	MS DRAFT	FLO-2D I	10DEL:		-		
5	ID	100-YR	R, 6-HR BASE	W/WALLS	(W/ MODI	FICATIONS	S TO CON	TAIN POW	ERLINE AM	ND		
6	ID	PI	MA ROAD FLOW	IS.								
7	ID											
8	ID	PREPA	ARED BY: T.Y.	LIN INTE	RNATIONA	L; LAST M	MODIFIED	: 09/14				
9	ID	MODELE	RS: RK, MW									
10	ID											
11	ID	REVIS	SED BY: HUBBA	RD ENGIN	EERING;	LAST MODI	IFIED: 1	L/14/18				
12	ID	MODELE	RS: MSW, ES									
13	ID	REVISI	CONS NOTED WI	TH HE								
14	ID	UL	TIMATE CONDI	TION MOD	EL,WITH I	POWERLINE	E AND BAS	SIN 53R /	AND			
15	ID	TH	IS IS THE PC	ST-DEVEL	OPMENT M	ODEL WITH	H DEVELO	PMENT N (OF LEGACY	Y		
16	ID	UF	DATED INFLOW	HYDROGR	APHS TO I	REFLECT 1	15MIN ING	2.				
17	ID											
18	ID	REVIS	SED BY: HUBBA	RD ENGIN	EERING;	LAST MODI	IFIED: 10	0/25/19				
19	ID	MODELE	RS: MSW									
20	ID	XKSAT	ADJUSTMENT									
21	ID											
22	ID	REVIS	SED BY: HUBBA	RD ENGIN	EERING;	LAST MOD	IFIED: 0	7/15/20				
23	ID	MODELE	ERS: MSW, TSW	I								
24	ID	REVISI	CONS NOTED WI	ТН НЕ (Н	ubbard Ei	ngineerin	ng)					
25	ID	NE	EW PROPOSED C	ONDITION	MODEL,	ACCOUNT F	FOR WHAT	HAS BEE	N			
26	ID	CC	ONSTRUCTED IN	I PHASE 1	INFRAST	RUCTURE,	DETAIL (OUT NEW (CP			
27	ID	AC	COUNT FOR HI	GHER C F	ACTOR ANI	D IMPERVI	IOUSNESS	, ADD RE	TENTION			
28	ID	FI	ERST FLUSH RE	TENTION	ADDED AS	DIVERT (CARD WITH	H VOLUME	REQUIRED	0		
29	ID											
30	ID	REVIS	SED BY: HUBBA	RD ENGIN	EERING;	LAST MODI	IFIED: 0	7/20/23				
31	ID	MC	DELERS: MSW,	TSW								
32	ID	RE	VISIONS NOTE	D WITH H	e (hubbai	RD ENGINE	EERING)					
33	ID	BA	ASIN 2E WAS S	PLIT AT	CENTER PO	DINT DUE	TO FLOW	UNDER 1	91			
34	ID											
35	IT	3	0 0	1000								
36	IN	15										
37	IO	5										
	*DIA *	GRAM										
38	סנ	2.755 0.0	0001									
39	PC	0.000 0.	008 0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
40	PC	0.087 0.	099 0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
-								· · · =				

41	PC	0.962	0.972	0.983	0.991	1.000							
42	JD	2.738	0.5000										
43	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074		
44	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950		
45	PC	0.962	0.972	0.983	0.991	1.000							
46	JD	2.686	2.8										
47	PC	0.000	0.009	0.016	0.025	0.034	0.042	0.051	0.059	0.068	0.077		
48	PC	0.088	0.101	0.121	0.164	0.253	0.451	0.694	0.836	0.900	0.938		
49	PC	0.950	0.963	0.975	0.988	1,000							
50	סר	2.540	16.0										
51	PC	0.000	0.015	0 020	0 030	0 048	0.063	0.076	0 090	0 105	0 119		
52	PC	0.000	0.015	0.020	0.000	0.040	0.005	0.670	0.000	0.105	0.110		
52		0.155	0.152	0.175	0.222	1 000	0.4/2	0.070	0.750	0.000	0.912		
22	PC	0.940	0.900	0.975	0.90/							DACE	r
					HEC-1	INPUT						PAGE	2
	TD	1	2	2	4	-	~	7	0	0	10		
LINE	ID.				4.		6.	/.	8.	9.	10		
	75		~~~~										
54	JD	2.232	90.0										
55	PC	0.000	0.021	0.035	0.051	0.071	0.087	0.105	0.125	0.143	0.160		
56	PC	0.179	0.201	0.232	0.281	0.364	0.500	0.658	0.773	0.841	0.888		
57	PC	0.927	0.945	0.964	0.982	1.000							
58	JD	3.657	10.0										
59	JD	3.533	20.0										
	*												
60	KK	76THST											
61	KM	76	5TH ST CH	ANNEL HY	DROGRAPH	FROM PI	NNACLE P	EAK SOUT	h adms				
62	KM	10	0-YR, 6-1	HR FLO-2	D MODEL	(XS 98)							
63	BA	0.24				` '							
64	OI	0	0	0	0	0	0	0	0	0	0		
65		0	0	0.01	0.01	0.09	0.9	12.7	42.26	49.92	48.6		
66		34 49	26 72	21 55	17 51	14 81	12 84	11 63	10 56	9 58	8 32		
67		7 29	6 73	5 83	1 76	1 23	2 81	3 /	3 55	2 36	2 51		
68		2 22	2 16	2 02	1 92	1 50	1 5	1 5 2	1 21	1 21	1 3/		
60	IQ OT	2.52	2.10	1.02	1.05	1.50	1.5	1.52	0.70	0.70	1.54		
09 70	IJ OT	1.09	1.07	1.04	0.97	0.91	0.00	0.05	0.79	0.70	0.72		
70	IJ	0.69	0.67	0.65	0.62	0.0	0.58	0.55	0.53	0.51	0.49		
/1	QI	0.4/	0.45	0.44									
	*												
72	KK	SB01A	BASIN										
73	BA	0.061											
74	PB	2.721											
75	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.075		
76	PC	0.087	0.099	0.119	0.150	0.234	0.413	0.766	0.875	0.916	0.944		
77	PC	0.956	0.968	0.979	0.990	1.000							
78	LG	0.25	0.25	4.03	0.56	45							
79	UC	0.439	0.231										
80	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
81		100	5.0	5.0	0.0	12.00	2010	13.0	, , , , , ,	2010	20.0		
01	*	100											
00	VV	CD01 A											
02		SDOTA						CD01 A					
83	KM	L	JIVERSION	OF FIRS	I FLUSH	VULUME F	OK BASIN	2B0TH					
84	KM	F	-IKSI FLU	SH VUL =	1.383 A	C-FI -HE							
85	DI	REIØIA	1.383					<i></i>		450.0			
86	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
87	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
88	KK	CP-1	COMBINE										
89	KM	L	EGACY BL	VD AND 7	6TH ST (MILLER R	D CHANNE	L)					
90	HC	2	0.301										
	*												
91	KK	R1A-2W	ROUTE										
92	KM	F	ROUTE CP-	1 TO CP-2	2W								
93	RK	1114	0.0200	0.018		TRAP	2.000	0.00					
	*												
					HFC-1	TNPLIT						PAGE	3
					THEC I	INIOI						TAGE	5
	тр	1	2	2	4	E	6	7	0	0	10		
LINC	10.				•••••4•			•••••					
		CDOOL	D • • • • • •										
94	KK	SR05NM	BASIN	or		o c··							
95	KM	E	SASIN SB0	2E WAS S	PLIT INT	U SUB BA	SINS NOR	IH OF CA	VASSON				
96	KM	A	AND SOUTH	OF CAVA	SSON -HE								
97	BA	0.0193											
98	LG	0.25	0.25	4.03	0.56	45							
99	UC	0.172	0.133										

100 101	UA UA	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
	*												
102	КК	SB02NW	DIVERT										
103	КМ	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB02NW					
104	KM	F	TRST FILL	SH VOL =	0 437 AC	-FT -HF		5502					
105			0 437		0.457 AC								
105			0.457	10.0	15 0	20.0	25.0	20.0	25.0	10.0	45 0		
106	DI	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
107	DI	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
108	DQ	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
109	DQ *	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
110	KK.		COMPTNE										
110	KK	CP-02W	COMBINE										
111	KM	C	OMBINE R	OUTE FROM	1 1A-2W W	ITTH NEM	SOB BASI	N SB02N	N				
112	HC *	2	0.305										
113	ĸĸ	R214-2	ROUTE										
114		1200	0 0140	0 010		TDAD	2 000	0 00					
114	КК *	1290	0.0140	0.018		IKAP	2.000	0.00					
115	ĸĸ	SBOIC	BASTN										
116		0 0 7 7	DADTIN										
110	БА	0.027	0.25	4 03	0.50	45							
11/	LG	0.25	0.25	4.03	0.56	45							
118	UC	0.215	0.216										
119	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
120	UA	100											
	*												
121	КК	SB01C	DIVERT										
122	KM	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB01C					
123	KM	F	TRST FILL	SH VOL =	0 612 AC	-FT -HF							
124		RETO1C	0 612		0.012 //0								
124		0 0	10.012	20.0	30 0	10 0	50 0	60 0	100 0	150 0	200 0		
125	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
126	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
127	KK	R1C-1B	ROUTE										
128	KM	к	0 2	2									
129	RK	542	0.005	0.013		CIRC	5.000						
	*												
					HEC-1	INPUT						PAGE 4	•
LINE	ID.	1.	2.		4	5.	6	7.	8.	9.	10		
130	KK	SB01B	BASIN										
131	BA	0.024											
132	IG	0.25	0.25	4.03	0.56	45							
133		A 191	0 178										
13/	114	0.12	3.0	50	80	12 Q	20 0	13 0	75 Q	90 0	96.0		
125		100	5.0	5.0	0.0	12.0	20.0	40.0	75.0	50.0	50.0		
133	*	100											
126		60010	DTUEDT										
136	KK	ZROIR	DIVERI										
137	KM	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	JR BASIN	SB01B					
138	KM	F	IRST FLU	SH VOL =	0.543 AC	-FT -HE							
139	DT	RET01B	0.543										
140	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
141	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
142	КК	CP-01B	COMBINE										
143	КМ	C	OMBINE R	OUTE FROM	1 1C-1B W	ITH NEW	SUB BASI	N SB01B					
144	HC	2	0.051										
	*												
145	*	D1D 21	DOUTE										
145	* KK	R1B-2N	ROUTE	2									
145 146	* КК КМ	R1B-2N KO	ROUTE 2	2			_						
145 146 147	* KK KM RK *	R1B-2N KO 2144	ROUTE 2 0.008	2 0.013		CIRC	5.000						
145 146 147	* KK KM RK *	R1B-2N KO 2144	ROUTE 2 0.008	2 0.013		CIRC	5.000						
145 146 147 148	* KK KM RK *	R1B-2N KO 2144 SB02NE	ROUTE 2 0.008 BASIN	2 0.013		CIRC	5.000						
145 146 147 148 149	* KK KM RK * KK BA	R1B-2N KO 2144 SB02NE 0.0335	ROUTE 2 0.008 BASIN	2 0.013		CIRC	5.000						
145 146 147 148 149 150	* KK KM RK * KK BA LG	R1B-2N KO 2144 SB02NE 0.0335 0.25	ROUTE 2 0.008 BASIN 0.25	2 0.013 4.03	0.56	CIRC 45	5.000						
145 146 147 148 149 150 151	* KK KM RK * KK BA LG LG	R1B-2N KO 2144 SB02NE 0.0335 0.25	ROUTE 2 0.008 BASIN 0.25 0.267	2 0.013 4.03	0.56	CIRC 45	5.000						
145 146 147 148 149 150 151 152	* KK KM RK * KK BA LG UC	R1B-2N KO 2144 SB02NE 0.0335 0.25 0.255	ROUTE 2 0.008 BASIN 0.25 0.267 3.0	2 0.013 4.03	0.56 8 0	CIRC 45	5.000	43 0	75 0	90 0	95.0		
145 146 147 148 149 150 151 152 153	* KK KM RK * KK BA LG UC UA	R1B-2N KO 2144 SB02NE 0.0335 0.255 0.255 0	ROUTE 2 0.008 BASIN 0.25 0.267 3.0	2 0.013 4.03 5.0	0.56 8.0	CIRC 45 12.0	5.000 20.0	43.0	75.0	90.0	96.0		

154	KK	SB02NE	DIVERT										
155	KM	D	IVERSION	OF FIRS	T FLUSH \	OLUME FC	R BASIN	SB02NE					
156	KM	F	TRST FILL	SH VOL =	0 760 AC	-FT -HF							
157		DETONE		511 VOL -	0.700 A								
157		REIZNE	0.700					<u> </u>	100.0	450.0			
158	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
159	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
160	кк	CP-02N	COMBINE										
161	KM	021	OMBINE D		ON (BACTA			21_C) WT		=			
101	NPI			OUTE IB-	ZN (BASI	12 2001-0	S AND SDE	oi-c) wi	IN SDUZIN	=			
162	HC	2	0.085										
	*												
163	KK	R2N-2	ROUTE										
164	RK	1380	0.014	0.018		TRAP	2.000	0.00					
	*												
						TNDUT						DAGE	5
					HLC-1	INIOI						TAUL	5
			-	-		-	-	_			10		
LINE	ID.	1.	2.		4.	5	6.	•••••	8.	9.	10		
165	KK	SB02E2	BASIN										
166	КМ		WEST SPI	TT OF BA	STN SBO2	DUF TO	HTGH POT	TNT -HF					
167	BA	0 019		2. 0. 27.	5211 55021								
107		0.015	0.25	4 02	0 (1	80							
168	LG	0.10	0.25	4.03	0.61	80							
169	UC	0.205	0.233										
170	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
171	UA	100											
	*												
170	VV	CRAJEJ											
172		3D02L2						CDODED					
1/3	KM	D	IVERSION	OF FIRS	I FLUSH V	OLUME FC	DK BASIN	2802E2					
174	KM	F	IRST FLU	SH VOL =	0.428 AG	C-FT -HE							
175	DT	RET2E2	0.428										
176	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
177	DO	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
170	1/1/	CROOLL	DACTN										
1/8	KK	SB02M	BASIN										
179	BA	0.0571											
180	LG	0.35	0.35	4.33	0.51	0							
181	UC	0.686	0.535										
182	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
183	IΔ	100											
105	*	100											
184	KK	CP-02	COMBINE										
185	HC	4	0.1816										
	*												
186	КК	R2-3	ROUTE										
187	КМ	м	TILER RD	CHANNEL	FROM SR	1011 FRF	FWAY TO	MAYO BL	/D				
188	RK	1260	0 0015	0 030		TRAD	92	1					
100	*	1200	0.0015	0.050		TIX-1	52						
		CD	D										
189	КК	2803	RASIN										
190	BA	0.048											
191	LG	0.15	0.25	4.50	0.47	55							
192	UC	0.364	0.294										
193	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
194		100											
104	*	100											
105	1712	CD 00	COMPTHE										
195	KK	CP-03	COMBINE										
196	HC	2											
	*												
197	КК	R3-5	ROUTE										
198	КМ	м	ILLER RD	CHANNEI	FROM MAY	O BLVD T	O PRINCE	ESS BIVD					
199	RK	2396	0.0015	0.03		TRAP	98	4					
100	*	2000	0.0010	0.05		I I VALE	06	4					
												DACE	c
					HEC-1	TINLOI						PAGE	ь
		-	-	-	-	_	-	_	-	-			
LINE	ID.	1.	2.	3.	4.	5	6.	7.	8.	9.	10		
		CDOF	DACTN										

201 BA 0.126

*

1

202	LG	0.22	0.25	4.50	0.44	48						
203	UC	0.327	0.226									
204	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
205	UA	100										
	*											
206	КК	CP-5A	COMBINE									
207	HC	2										
207	*	-										
208	кк	SBOTH	BASTN									
200	RA RA	0 0/68	DASIN									
205		0.0400 0.25	0 25	1 03	0 56	15						
210		0.25	0.25	4.05	0.00	4)						
211		0.205	2.0	ΕQ	0 0	12 0	20.0	12 0	75 0	00.0	06.0	
212		100	5.0	5.0	0.0	12.0	20.0	45.0	75.0	90.0	50.0	
215	UA *	100										
214	VV	CDOTH										
214		2D01M										
215	KM	U -	IVERSION			OLUME FU	K DASIN	200/M				
210			1 0C0	H VUL =	1.000 AC	,-FI -NE						
217		KEIØ/W	10.00	<u>-</u>	20.0	10.0	F0 0	60.0	100 0	150 0	200.0	
218	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
219	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	120.0	200.0	
	Ť											
			DOUTE									
220	KK	R/W-8W	ROUTE	D NODTH								
221	KM	н	AYDEN ROA	D NORTH	CHANNEL	FROM LEG	ACY BLVL) 10 SR :	LØIL FRE	EWAY		
222	KM	H	E MODIFIE	DROUTE	TO LOOP	101 W OF	HAYDEN					
223	RK	3754	0.0013	0.03		TRAP	46	4				
	*											
224	KK	SB8NW	BASIN									
225	KM	В	ASIN JUST	SOUTH C	OF LEGACY	′ - FUTUR	E MOB SI	TE -HE				
226	BA	0.0147										
227	LG	0.10	0.25	4.03	0.61	80						
228	UC	0.144	0.108									
229	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
230	UA	100										
	*											
231	KK	SB8NW	DIVERT									
231 232	KK KM	SB8NW D	DIVERT	OF FIRST	r flush v	OLUME FO	R BASIN	SB8NW				
231 232 233	КК КМ КМ	SB8NW D F	DIVERT IVERSION IRST FLUS	OF FIRST H VOL =	FLUSH V 0.332 AC	/OLUME FO C-FT -HE	R BASIN	SB8NW				
231 232 233 234	KK KM KM DT	SB8NW D F RET8NW	DIVERT DIVERSION IRST FLUS 0.332	OF FIRST H VOL =	FLUSH V 0.332 AC	/OLUME FC C-FT -HE	R BASIN	SB8NW				
231 232 233 234 235	KK KM KM DT DI	SB8NW D F RET8NW 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0	OF FIRST H VOL = 20.0	FLUSH V 0.332 AC 30.0	/OLUME FC C-FT -HE 40.0	R BASIN 50.0	SB8NW 60.0	100.0	150.0	200.0	
231 232 233 234 235 236	KK KM DT DI DQ	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST 3H VOL = 20.0 20.0	FLUSH V 0.332 AC 30.0 30.0	/OLUME FO C-FT -HE 40.0 40.0	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
231 232 233 234 235 236	KK KM DT DI DQ *	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST SH VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0	/OLUME FO C-FT -HE 40.0 40.0	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
231 232 233 234 235 236	KK KM DT DI DQ *	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST 5H VOL = 20.0 20.0	FLUSH V 0.332 AC 30.0 30.0 HEC-1	VOLUME FO C-FT -HE 40.0 40.0 INPUT	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236	KK KM DT DI DQ *	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1	VOLUME FC C-FT -HE 40.0 40.0 INPUT	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236	KK KM DT DI DQ *	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1	/OLUME FC C-FT -HE 40.0 40.0 INPUT	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE	KK KM DT DI DQ * ID.	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1	/OLUME FC 2-FT -HE 40.0 40.0 INPUT 5	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE	KK KM DT DI DQ * ID.	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0	OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1	/OLUME FO 2-FT -HE 40.0 40.0 INPUT	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE	KK KM DT DI DQ * ID.	SB8NW D F RET8NW 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2	OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1	/OLUME FO C-FT -HE 40.0 40.0 INPUT	R BASIN 50.0 50.0	SB8NW 60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238	KK KM DT DI DQ * ID. KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW	OF FIRST H VOL = 20.0 20.0 3	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE	R BASIN 50.0 50.0 6	SB8NW 60.0 60.0 7.	100.0 100.0 8.	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239	KK KM DT DI DQ * ID. KK KM KM	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N N	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN	R BASIN 50.0 50.0 6 T AT CAN DOWN INT	SB8NW 60.0 60.0 7. /ASSON BI	100.0 100.0 8. _VD -HE -SUBBASI	150.0 150.0 9.	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240	KK KM DT DI DQ * ID. KK KM KM KM	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW 0.0TH HALF 0.0113	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0F BAST 0.018	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI 10 4 SUB- 4	100.0 100.0 8. _VD -HE -SUBBASI	150.0 150.0 9.	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240	KK KM DT DI DQ * ID. KK KM KM RK *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0F BAST 0.018	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB: 4	100.0 100.0 8. _VD -HE -SUBBASI	150.0 150.0 9.	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240	KK KM DT DI DQ * ID. KK KM KM RK *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0F BAST 0.018	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB: 4	100.0 100.0 8. _VD -HE -SUBBASII	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241	KK KM DT DI DQ * ID. KK KM KM KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0F BAST 0.018	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI r0 4 SUB 4	100.0 100.0 8. _VD -HE -SUBBASII	150.0 150.0	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242	KK KM DT DI DQ * ID. KK KM KK KM KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB: 4	100.0 100.0 8. .VD -HE -SUBBASII	150.0 150.0 9. NS	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243	KK KM DT DI DQ * ID. KK KM KM KK KM KK KM BA	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE SB8NE S0.015	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ OF BASJ 0.018 SOUTH OF	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS	VOLUME FO 2-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB- 4 DEN - FUT	100.0 100.0 8. .VD -HE -SUBBASII	150.0 150.0 9. NS	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244	KK KM DT DI QQ * ID. KK KM KM KK KM KK KM BA LG	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25	OF FIRST H VOL = 20.0 20.0 3 SUB BASD 0.018 SOUTH OF 4.03	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB- 4 DEN - FUT	100.0 100.0 8. .VD -HE -SUBBASII	150.0 150.0 9. NS	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245	KK KM DT DI DQ * ID. KK KM KM KK KM KK KM BA LG UC	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03	F FLUSH V 0.332 AC 30.0 HEC-1 4 CN SB8NW CN 8W WAS E LEGACY 0.61	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT	100.0 100.0 8. -SUBBASII	150.0 150.0 9. NS	200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246	KK KM DT DI DQ * ID. KK KM KM RK * KK KM BA LG UC UA	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0	DIVERT IVERSION IRST FLUSS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST OF BAST 0.018 SOUTH OF 4.03 5.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 CN SB8NW CN 8W WAS E LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB- 4 DEN - FUT 43.0	100.0 100.0 8. -VD -HE -SUBBASII	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247	KK KM DT DI DQ * ID. KK KM KM RK * KK KM BA LG UC UA UIA	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0	100.0 100.0 8. -VD -HE -SUBBASII FURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247	KK KM DT DI DQ * ID. KK KM KM RK * KK KM BA LG UC UA VA *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE SB8NE S 0.015 0.10 0.138 0 100	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0	100.0 100.0 8. .VD -HE -SUBBASII FURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 244 245 246 247	KK KM DT DI DQ * ID. KK KM KM KM KK KK KM BA LG UC UA UA *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE SB8NE S 0.015 0.10 0.138 0 100	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0	100.0 100.0 8. .VD -HE -SUBBASII FURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247	KK KM DT DI DQ * ID. KK KM KM KK KM BA LG UC UA VA *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SR8NF	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB: 4 DEN - FUT 43.0	100.0 100.0 8. .VD -HE -SUBBASII TURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249	KK KM DT DI DQ * ID. KK KM KK KM KK KM BA LG UC UA VA * KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S0.015 0.10 0.138 0 100 SB8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF 4.03 5.0 OF ETRST	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	VOLUME FO 2-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	R BASIN 50.0 50.0 6 Τ ΑΤ CAN DOWN INT 46 ΟΓ HAYE 20.0	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB: 4 DEN - FUT 43.0	100.0 100.0 8. 	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250	KK KM DT DI DQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA * KK KK KM	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0.10 0.138 0 100 SB8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FUIS	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF 4.03 5.0 OF FIRST	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS F LEGACY 0.61 8.0	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 VOLUME FO -FT -HE	R BASIN 50.0 50.0 50.0 50.0 T AT CAN DOWN INT 46 OF HAYE 20.0 R BASIN	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB- 4 DEN - FUT 43.0 SB8NE	100.0 100.0 8. _VD -HE -SUBBASII	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251	KK KM DT DI QQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA * KK KM KM	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SB8NE D F BET SNIE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL =	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	<pre>/OLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE</pre>	R BASIN 50.0 50.0 6 T AT CAN DOWN INT 46 OF HAYE 20.0 R BASIN	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB- 4 DEN - FUT 43.0 SB8NE	100.0 100.0 8. _VD -HE -SUBBASII	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252	KK KM DT DI DQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA * KK KM KM KM	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0.10 0.138 0.100 SB8NE D F RET8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10 0	OF FIRST H VOL = 20.0 20.0 3 SUB BASI 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC	VOLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 VOLUME FO C-FT -HE 40.0 40.	R BASIN 50.0 50.0 50.0 50.0 T AT CAN DOWN INT 46 OF HAYE 20.0 PR BASIN 50.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0 SB8NE 60.0	100.0 100.0 8. .VD -HE -SUBBASII FURE RET/ 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 252	KK KM KM DT DI DQ * ID. KK KM KK KM KK KK KK KK KK KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0.10 0.138 0.100 SB8NE D F RET8NE 0.0 0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 20.0	<pre>/0LUME F0 C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /0LUME F0 C-FT -HE 40.0 /0 0 /0 0</pre>	R BASIN 50.0 50.0 50.0 T AT CAN DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0	SB8NW 60.0 60.0 77. VASSON BI TO 4 SUB 4 DEN - FUT 43.0 SB8NE 60.0	100.0 100.0 8. -SUBBASII FURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KK KM DT DI DQ * ID. KK KM KM KK KM BA LG UC UA UA * KK KM KM DT DI Q *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SB8NE D SB8NE D F RET8NE 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS F LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0	/OLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	R BASIN 50.0 50.0 50.0 50.0 T AT T AT DOWN INT 46 0 OF HAYE 20.0 0 PR BASIN 50.0 50.0	SB8NW 60.0 60.0 7. 7. (ASSON BI TO 4 SUB 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8. 8. 	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 244 245 246 247 248 249 250 251 252 253	KK KM DT DI DQ * ID. KK KM KM KK KK KM KM KA KK KK KM KM DT DI QQ *	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SB8NE D F RET8NE 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0	/OLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	R BASIN 50.0 50.0 50.0 50.0 6 50.0 T AT COF HAYE 20.0 20.0 PR BASIN 50.0 50.0 50.0 50.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8. .VD -HE -SUBBASII FURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 244 245 246 247 248 249 250 251 252 253	KK KM KM DT DI DQ * ID. KK KM KK KK KK KK KK KK KK KK KK KK KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S0.015 0.10 0.138 0 100 SB8NE D F RET8NE 0.0 0.0	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0	/OLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	R BASIN 50.0 50.0 50.0 50.0 T AT T AT COF HAYE 20.0 20.0 PR BASIN 50.0 50.0 50.0 50.0	SB8NW 60.0 60.0 7. /ASSON BI TO 4 SUB 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8. .VD -HE -SUBBASII TURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KK KM KM DT DI DQ * ID. KK KM KK KK KK KK KK KK KK KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S0.015 0.10 0.138 0 100 SB8NE D F RET8NE 0.0 0.0 R8NE8N	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0 ROUTE	OF FIRST H VOL = 20.0 20.0 3 SUB BAST 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0	<pre>/0LUME F0 C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /0LUME F0 C-FT -HE 40.0 40.0</pre>	R BASIN 50.0 50.0 50.0 50.0 6 50.0 T AT DOWN INT 46 0F OF HAYE 20.0 20.0 PR BASIN 50.0 50.0 50.0 50.0	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB: 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8. 8. 	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256	KK KM KM DI DQ * ID. KK KM KK KK KK KK KK KK KK KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SB8NE D F RET8NE 0.0 0.0 SB8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0 ROUTE OUTE NEW	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0 20.0	F FLUSH V 0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0	<pre>/0LUME F0 C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /0LUME F0 C-FT -HE 40.0 40.0 TO OUTLE BROKEN</pre>	R BASIN 50.0 50.0 50.0 50.0 T AT CAN AG OF HAYE 20.0 R BASIN 50.0 50.0 50.0 T AT CAN 50.0 T AT CAN 50.0 COUNT T	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB: 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8. -VD -HE -SUBBASII TURE RET/ 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
231 232 233 234 235 236 LINE 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257	KK KM KM DI DQ * ID. KK KM KK KK KK KK KK KK KK KK KK KK KK	SB8NW D F RET8NW 0.0 0.0 1. R8NW8N R N 643 SB8NE S 0.015 0.10 0.138 0 100 SB8NE D F RET8NE 0.0 0.0 SB8NE D F RET8NE 0.0 0.0 SB8NE SB8NE SB8NE C C SB8NE	DIVERT IVERSION IRST FLUS 0.332 10.0 10.0 2 ROUTE OUTE NEW ORTH HALF 0.0113 BASIN ITE JUST 0.25 0.094 3.0 DIVERT IVERSION IRST FLUS 0.340 10.0 10.0 ROUTE NEW ORTH HALF	OF FIRST H VOL = 20.0 20.0 3 SUB BASJ 0.018 SOUTH OF 4.03 5.0 OF FIRST H VOL = 20.0 20.0 20.0 SUB BASJ 0 F BASJ	F FLUSH V 0.332 AC 30.0 HEC-1 4 IN SB8NW IN 8W WAS F LEGACY 0.61 8.0 F FLUSH V 0.340 AC 30.0 30.0 30.0	<pre>/0LUME F0 C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /0LUME F0 C-FT -HE 40.0 40.0 40.0</pre>	R BASIN 50.0 50.0 50.0 50.0 T AT CAN DOWN INT 46 OF HAYD 20.0 R BASIN 50.0 50.0 R BASIN 50.0 50.0 T AT CAN 50.0 50.0 T AT CAN DOWN INT	SB8NW 60.0 60.0 7. (ASSON BI TO 4 SUB- 43.0 SB8NE 60.0 60.0 (ASSON BI TO 4 SUB- 60.0	100.0 100.0 8. -VD -HE -SUBBASII TURE RET/ 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7

250		CROCH	DACTH									
258	KK	2B82M	BASIN									
259	KM	S	SITE JUST	NORTH O	F CAVASS	ON BLVD	EAST OF	CLARET DF	۲ - FUTU	RE MF		
260	D۸	0 0120										
200	DA	0.0129										
261	LG	0.10	0.25	4.03	0.61	80						
262	UC	0.126	0.091									
262	114	0	2 0	ГО	0 0	12.0	20.0	42.0	75 0	00.0	06.0	
205	UA	0	5.0	5.0	0.0	12.0	20.0	45.0	15.0	90.0	96.0	
264	UA	100										
	*											
265		CROCH	D.T. (5D.T									
265	KK	2B82M	DIVERI									
266	KM	C	DIVERSION	I OF FIRS	T FLUSH	VOLUME F	OR BASIN	I SB8SW				
267	KW		TPCT EII		0 202 M							
207	KM			JSH VOL -	0.292 A							
268	DT	RET8SW	0.292									
269	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
270	00	99	10 0	20 Q	30 0	40 Q	50 0	60 0	100 0	150 0	200 0	
270	*	0.0	2010	2010	50.0		5010		20010	25010	20010	
271	KK	SB8SE	BASIN									
272	КМ	C	TTE JUST	NORTH O	F CAVASS		EST OF H	AVDEN - F	ITTIRE H	OTEL OR	RETΔTI	
272		~ ~ ~ ~ ~	JIL 3031						OTONE II			
273	BA	0.0131										
274	LG	0.10	0.25	4.03	0.61	80						
275	lic	0 139	0 113									
275		0.100	2.0	F 0		12.0	20.0	42.0	75 0	00.0	06.0	
276	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	15.0	90.0	96.0	
277	UA	100										
	*											
					HEC-1	INPUT						PAGE 0
LINE	ID.	1.	2.		4.	5.	6.		8.		10	
278	KK	SB8SE	DIVERT									
279	КМ	D	TVERSTON	OF FTRS	T FLUSH	VOLUME F	OR BASTN	I SB8SF				
200	KM	-	TDCT FUI		0 207 4		011 071021					
280	KP1	г	IKSI FLU	JSH VUL =	0.297 A	C-FI -HE						
281	DT	RET8SE	0.297									
282	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
283	00	0 0	10 0	20 0	30 0	10 0	50 0	60 0	100 0	150 0	200 0	
285	DQ	0.0	10.0	20.0	50.0	40.0	50.0	00.0	100.0	130.0	200.0	
	*											
284	KK	CP-08N	COMBINE									
284	KK	CP-08N	COMBINE	FT ON NO								
284 285	KK KM	CP-08N C	COMBINE	ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EX	IST STOR	M DRAIN		
284 285 286	KK KM HC	CP-08N C 4	COMBINE CP AT INL 0.0557	.ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EXI	IST STOR	M DRAIN		
284 285 286	KK KM HC *	CP-08N C	COMBINE CP AT INL 0.0557	ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EXI	IST STOR	M DRAIN		
284 285 286	KK KM HC *	CP-08N C	COMBINE CP AT INL 0.0557	.ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EX	IST STOR	M DRAIN		
284 285 286	KK KM HC *	CP-08N C 4	COMBINE CP AT INL 0.0557	.ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EXI	IST STOR	M DRAIN		
284 285 286 287	КК КМ НС * КК	CP-08N C 4 R8N-8W	COMBINE CP AT INL 0.0557 ROUTE	.ET ON NO	RTH SIDE	OF CAVA	SSON - E	NTERS EX	IST STOR	M DRAIN		
284 285 286 287 288	КК КМ НС * КК КМ	CP-08N C 4 R8N-8W F	COMBINE CP AT INL 0.0557 ROUTE ROUTE NEW	.et on No N SUB BAS	RTH SIDE INS SB8N	OF CAVA	SSON - E SB8SW SE	NTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 288 289	КК КМ НС * КК КМ КМ	CP-08N C 4 R8N-8W F	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW	ET ON NO	RTH SIDE INS SB8N	OF CAVA	SSON - E SB8SW SE	NTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 289 200	KK KM HC * KK KM KM	CP-08N C 4 R8N-8W F F	COMBINE CP AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN	ET ON NO	RTH SIDE INS SB8N AIN -I	OF CAVA	SSON - E SB8SW SE	NTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 289 290	кк КМ НС * КК КМ КМ КМ	CP-08N C 4 R8N-8W F F 1592	COMBINE CP AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015	ET ON NO SUB BAS STORM DR 0.013	RTH SIDE INS SB8N AIN -I	OF CAVA E SB8NW S HE CIRC	SSON - E SB8SW SE 3	NTERS EXI	EST STOR	M DRAIN		
284 285 286 287 288 289 290	KK KM HC * KK KM KM RK *	CP-08N C 4 R8N-8W F 1592	COMBINE CP AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015	ET ON NO I SUB BAS STORM DR 0.013	RTH SIDE INS SB8N AIN -I	OF CAVA E SB8NW HE CIRC	SSON - E SB8SW SE 3	NTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 289 290	KK KM HC * KK KM KM RK *	CP-08N C 4 R8N-8W F F 1592	COMBINE CP AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015	ET ON NO I SUB BAS STORM DR 0.013	RTH SIDE INS SB8NI AIN -I	OF CAVA E SB8NW : HE CIRC	SSON - E SB8SW SE 3	ENTERS EXI	EST STOR	M DRAIN		
284 285 286 287 288 289 290 291	KK KM HC * KK KM RK *	CP-08N C 4 R8N-8W F 1592 SB08W	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN	ET ON NO SUB BAS STORM DR 0.013	RTH SIDE INS SB8NI AIN -I	OF CAVA E SB8NW : HE CIRC	SSON - E SB8SW SE 3	NTERS EXI	EST STOR	M DRAIN		
284 285 286 287 288 289 290 291	KK KM HC * KK KM RK * KK	CP-08N 4 R8N-8W F 1592 SB08W	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN	LET ON NO N SUB BAS STORM DR 0.013	RTH SIDE INS SB8NI AIN -I	OF CAVA E SB8NW HE CIRC	SSON - E SB8SW SE 3	NTERS EXI	EST STOR	M DRAIN		
284 285 286 287 288 289 290 291 292	КК КМ НС * КК КМ КМ КМ КК 8А	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN	ET ON NO SUB BAS STORM DR 0.013	RTH SIDE INS SB8NN AIN -I	OF CAVA E SB8NW : HE CIRC	SSON - E SB8SW SE 3	ENTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 289 290 290 291 292 293	KK KM HC * KK KM RK KM KK BA LG	CP-08N 4 R8N-8W F 1592 SB08W 0.0589 0.10	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25	ET ON NO SUB BAS STORM DR 0.013 4.03	RTH SIDE INS SB8N AIN -I 0.61	OF CAVA E SB8NW : HE CIRC 80	SSON - E SB8SW SE 3	INTERS EXI	IST STOR	M DRAIN		
284 285 286 287 288 289 290 291 292 293 294	KK KM HC * KK KM RK * KK BA LG LG	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0 146	ET ON NO SUB BAS STORM DR 0.013 4.03	RTH SIDE INS SB8NI AIN -I 0.61	OF CAVA E SB8NW S HE CIRC 80	SSON - E SB8SW SE 3	NTERS EXI	est stor	M DRAIN		
284 285 286 287 288 289 290 290 291 292 293 294 295	KK KM HC * KK KM RK * KK BA LG UC	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146	ET ON NO SUB BAS STORM DR 0.013 4.03	RTH SIDE INS SB8NI AIN -I 0.61	OF CAVA E SB8NW S HE CIRC 80	SSON - E SB8SW SE 3	ENTERS EX3	257 STOR	M DRAIN	06.0	
284 285 286 287 288 289 290 290 291 292 293 294 295	KK KM HC * KK KM RK * KK BA LG UC UA	CP-08N 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8N AIN -I 0.61 8.0	OF CAVA E SB8NW : HE CIRC 80 12.0	SSON - E SB8SW SE 3 20.0	ENTERS EX 10 1885E TO CF 43.0	25.0	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 290 291 292 293 294 295 296	KK KM HC * KK KM RK * KK BA LG UC UC UA UA	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0	LET ON NO N SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8N AIN -I 0.61 8.0	OF CAVA E SB8NW : HE CIRC 80 12.0	SSON - E SB8SW SE 3 20.0	ENTERS EXI BASE TO CF	25.0	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296	KK KM HC KK KM RK KM RK * KK BA LG UC UA UA X	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0	OF CAVA E SB8NW : HE CIRC 80 12.0	SSON - E SB8SW SE 3 20.0	NTERS EXI 88SE TO CF 43.0	25T STOR 2-08W 75.0	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296	KK KM KK KM KK KK KK BA LG UC UA UA X	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8NN AIN -1 0.61 8.0	OF CAVA E SB8NW S HE CIRC 80 12.0	SSON - E SB8SW SE 3 20.0	ENTERS EX3 285E TO CF 43.0	25.0	90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296	KK KM HC * KK KM KM RK * KK BA LG UC UA VA *	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0	LET ON NO I SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8N AIN -I 0.61 8.0	OF CAVA E SB8NW : HE CIRC 80 12.0	SSON - E SB8SW SE 3 20.0	ENTERS EXI BASE TO CF	25.0	90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297	KK KM HC KK KM RK KM RK KK UC UA UA X KK	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT	LET ON NO N SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0	OF CAVA	SSON - E SB8SW SE 3 20.0	ENTERS EXI BASE TO CF	25.0	90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298	KK KM KC KK KM RK KM KK BA LG UC UA X KK KM	CP-08N C 4 R8N-8W F T592 SB08W 0.0589 0.10 0.221 0 100 SB08W C	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F	SSON - E SB8SW SE 3 20.0 OR BASIN	ENTERS EX3 1885E TO CF 43.0 1 SB08W	251 STOR	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299	KK KM KK KK KK KK KK KK KK KK KK KK	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0	RTH SIDE INS SB8N AIN -I 0.61 8.0 T FLUSH Y FO = 1 3	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F4	SSON - E SB8SW SE 3 20.0 OR BASIN	ENTERS EX 1885E TO CF 43.0 1 SB08W 1 SB08W 1 D = 1 41	25 STOR	90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 299	KK KM HC KK KK KK KK KK KK LG UC UA UA * KK KM KM	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION EIRST FLU	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.33	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME FI	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID	A3.0 SBORN A3.0 I SBORN SED = 1.41	25 STOR	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300	KK KM HC KK KM RK KM KK KM KM KM KM	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 0.221 0 100 SB08W C F T	COMBINE P AT INL 0.0557 ROUTE ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION FIRST FLU HIS IS E	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 I OF FIRS JSH VOL R XISTING	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS I	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1	ENTERS EX 1885E TO CF 43.0 1 SB08W 2ED = 1.41 HE	25 STOR	M DRAIN 90.0	96.0	
284 285 286 287 288 289 290 290 291 292 293 294 295 296 297 298 299 300 301	KK KM HC * KK KM KK KM KK KM KM KM KM DT	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 0.221 0 100 SB08W C F RET8W	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS I	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F 35 AC-FT BUILT IN	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1	ENTERS EX 2885E TO CF 43.0 1 SB08W DED = 1.41 HE	25 STOR	90.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 294 295 296 297 298 299 300 301 302	KK KM HC KK KM KM KM KK KK KK KM KM KM KM KM DI	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS I 30.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F(35 AC-FT BUILT IN 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0	ENTERS EX1 88SE TO CF 43.0 I SB08W DED = 1.41 HE 60.0	25 STOR 2-08W 75.0	90.0 150.0	96.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 295 296 297 298 299 300 301 302 202	KK KM HC KK KK KK KK KK KK KK KK KK KK KK KK KK	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 0.221 0 100 SB08W C F T RET8W 0.0 0	COMBINE P AT INL 0.0557 ROUTE REW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 I OF FIRS JSH VOL R EXISTING 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS I 30.0	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0	ENTERS EX EXEST TO CF 43.0 1 SB08W DED = 1.41 HE 60.0 60.0	25 100.0	90.0 150.0	96.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS I 30.0 30.0	OF CAVAS E SB8NW S HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0 50.0	ENTERS EX 2885E TO CF 43.0 1 SB08W DED = 1.41 0 - HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	KK KM HC KK KM KM KM KM KM KM KM KM KM KM DT DI QQ *	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 I OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8N AIN -1 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS 1 30.0 30.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F4 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0 50.0	ENTERS EX1 88SE TO CF 43.0 I SB08W 9ED = 1.41 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	KK KM HC KK KK KM KK KK KK KK KK KK KM KM DI DQ *	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION IRST FLU THIS IS E 1.415 10.0 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 1 OF FIRS ISH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS 1 30.0 30.0	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F4 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1 50.0 50.0	ENTERS EX1 28SE TO CF 43.0 1 SB08W DED = 1.41 00.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F T592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 0.0	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.33 AND WAS I 30.0 30.0	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1 50.0 50.0	ENTERS EX 2885E TO CF 43.0 1 SB08W DED = 1.41 0 - HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 0.0 CP-08W	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION IRST FLU THIS IS E 1.415 10.0 10.0 COMBINE	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS DSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS I 30.0 30.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F4 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIE PHASE 1 50.0 50.0	ENTERS EX1 28SE TO CF 43.0 1 SB08W 2ED = 1.41 5HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303	KK KM HC KK KK KK KK KK KK KK KK KK KK KK HC	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 0.0 CP-08W 3	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION IRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS DSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS 1 30.0 30.0	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0 50.0	ENTERS EX1 2885E TO CF 43.0 1 SB08W DED = 1.41 0ED = 1.41 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.33 AND WAS I 30.0 30.0	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1 50.0 50.0	ENTERS EX1 2885E TO CF 43.0 1 SB08W DED = 1.41 0 - HE 60.0 60.0	25 2-08W 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 0.0 CP-08W 3	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU CHIS IS E 1.415 10.0 10.0 COMBINE 0.1614	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS 1 30.0 30.0	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1 50.0 50.0	ENTERS EX1 28SE TO CF 43.0 1 SB08W 2ED = 1.41 5HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303	KK KM HC * KK KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 6 0.0 CP-08W 3 RET8W	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION CIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS DSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS 1 30.0 30.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME FM 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVIC PHASE 1 50.0 50.0	ENTERS EX1 88SE TO CF 43.0 I SB08W DED = 1.41 HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303	KK KM HC KK KK KK KK KK KK KK KK KK KK KK KK KK	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 I OF FIRS JSH VOL R EXISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS I 30.0 30.0	OF CAVA E SB8NW 1 HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN , PROVID PHASE 1 50.0 50.0	ENTERS EX1 88SE TO CF 43.0 1 SB08W DED = 1.41 HE 60.0 60.0	25 2-08W 75.0 100.0 100.0	M DRAIN 90.0 150.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303	KK KM KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 0.0 CP-08W 3 R8W-4N	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R XISTING 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y EQ = 1.3 AND WAS I 30.0 30.0	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN PROVIC PHASE 1 50.0 50.0	ENTERS EX1 2885E TO CF 43.0 1 SB08W DED = 1.41 0 - HE 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308	KK KM HC * KK KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R 20.0 20.0 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS I 30.0 30.0 30.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F4 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 OR BASIN PHASE 1 50.0 50.0	ENTERS EX1 88SE TO CF 43.0 1 SB08W 9ED = 1.41 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308 309	KK HC * KK KM KK * KK BA GUUAUA * KK MM KM DT JUQ * KK C * KK KS SV	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STOR 0.642	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0 1 OF FIRS JSH VOL R EXISTING 20.0 20.0 20.0	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH Y EQ = 1.33 AND WAS I 30.0 30.0 30.0	OF CAVA: E SB8NW : HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0	SSON - E SB8SW SE 3 20.0 0R BASIN , PROVIE PHASE 1 50.0 50.0 100P 101	ENTERS EX ENTERS EX ENTERS EX ENTERS EX 43.0 1 SB08W DED = 1.41 60.0 60.0 60.0 HE	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308 309 210	KK KM HC * KK KK	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F RET8W 0.0 CP-08W 3 R8W-4N 1 0.000 0	COMBINE P AT INL 0.0557 ROUTE NEW ROUTE NEW ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION TIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642	LET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0 20.0 1.290	RTH SIDE INS SB8NI AIN -I 0.61 8.0 T FLUSH V EQ = 1.33 AND WAS I 30.0 30.0 UTING UNI 0 2.207	OF CAVA E SB8NW S HE CIRC 80 12.0 VOLUME F 35 AC-FT BUILT IN 40.0 40.0 DER THE 4.066	SSON - E SB8SW SE 3 20.0 OR BASIN PROVIC PHASE 1 50.0 50.0 LOOP 101 4.066	ENTERS EX1 88SE TO CF 43.0 1 SB08W DED = 1.41 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308 309 310	KK KM HC * KK KK KK KK KK KK KK KK KK KK KK KK K	CP-08N C 4 R8N-8W F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0 CORAGE RO 0.00 1.290 1610.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS 1 30.0 30.0 30.0 UTING UNI 0 2.207 1611.0	OF CAVA E SB8NW : HE CIRC 80 12.0 VOLUME F 35 AC-FT BUILT IN 40.0 40.0 DER THE 4.066 1612.0	SSON - E SB8SW SE 3 20.0 OR BASIN PHASE 1 50.0 50.0 50.0 LOOP 101 4.066 1613.0	ENTERS EX1 28SE TO CF 43.0 1 SB08W 2ED = 1.41 60.0 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308 309 310 311	KK HC * KK KM KK KK * KK BA G U U U U A KK KM KM T T I D Q KK C * KK KK S V SE S O	CP-08N C 4 R8N-8W F 592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 0.000	COMBINE P AT INL 0.0557 ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERT DIVERSION IRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330	ET ON NO SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 1 OF FIRS SSH VOL R EXISTING 20.0 20.0 20.0 1.290 1610.0 28.52	RTH SIDE INS SB8NI AIN	OF CAVA: E SB8NW : HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0 40.0 DER THE 4.066 1612.0 300.0	SSON - E SB8SW SE 3 20.0 OR BASIN PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360.0	ENTERS EX1 ENTERS EX1 ENTERS EX1 ENTERS EX1 43.0 I SB08W DED = 1.41 60.0 60.0 60.0 HE	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 301 302 303 304 305 306 307 308 309 310 311 312	KK KM HC * KK K	CP-08N CP-08N C 4 R8N-8W F F 1592 SB08W 0.0589 0.10 0.221 0 100 SB08W C F T RET8W 0.0 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 0 0.000	COMBINE P AT INL 0.0557 ROUTE NEW COUTE NEW COUTE NEW COUTE IN 0.015 BASIN 0.25 0.146 3.0 DIVERT DIVERSION FIRST FLU HIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330	SUB BAS STORM DR 0.013 4.03 5.0 4.03 5.0 V OF FIRS JSH VOL R EXISTING 20.0 20.0 1.290 1610.0 28.52 1610.0	RTH SIDE INS SB8NI AIN -1 0.61 8.0 T FLUSH V EQ = 1.3 AND WAS 1 30.0 30.0 30.0 UTING UNI 0 2.207 1611.0 150.5 1611 0	OF CAVA: E SB8NW : HE CIRC 80 12.0 VOLUME F0 35 AC-FT BUILT IN 40.0 40.0 40.0 DER THE 4.066 1612.0 300.0 1613 2	SSON - E SB8SW SE 3 20.0 OR BASIN PROVID PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360.0 1613.3	ENTERS EX1 2885E TO CF 43.0 1 SB08W DED = 1.41 60.0 60.0	25 STOR 2-08W 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	

*

1	PAG	F	9
	- AG	E	2

LINE	ID.	1	2.		4	5.	6	7.	8.	9.	10	
313	ĸĸ	SB02F1	ΒΔςτΝ									
314	KM	JUULLI	FAST SPI	TT OF BAS	STN SBO2E		HTGH POI	INT -HE				
215	R/1	0 0252		IT OF DA.	510 50021	DOL IO						
216	LC	0.0252	0.25	4 02	0 61	00						
510	LG	0.10	0.25	4.05	0.01	80						
317	UC	0.189	0.1/2									
318	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
319	UA *	100										
320	КК	SB02E1	DIVERT									
321	KM	[DIVERSION	OF FIRST	Γ FLUSH \	OLUME FO	OR BASIN	SB02E1				
322	KM	1	FIRST FLU	JSH VOL RE	EQ = 0.57	70 AC-FT	-HE					
323	DT	RET2E1	0.570		-							
324	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
325	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
226	KK	CD 411	COMPTNE									
326	КК	CP-4N	COMBINE									
327	HC *	2	0.1866									
328	KK	R4N-4	ROUTE									
329	RK *	2840	0.0130	0.030		TRAP	2.000	0.00				
220		6004	DAGTN									
330	KK	2804	RAZIN									
331	ВА	0.144										
332	LG	0.14	0.25	4.60	0.44	61						
333	UC	0.305	0.199									
334	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
335	UA	100										
	*											
336	кк	CP-4	COMBINE									
337	нс	2 2	CONDINE									
557	*	2										
338	КК	R4-5	ROUTE									
339	KM	1	PRINCESS	BLVD CHAN	NNEL FROM	1 77TH S	г то 76тн	I ST				
340	RK	1992	0.0013	0.03		TRAP	39	4				
	*											
341	KK	CP-05	COMBINE									
342	KM	I	PRINCESS	BLVD AND	76TH ST	(PRINCES	SS BLVD (CHANNEL)				
343	KM	(COMBINE C	P-05A AND	D R4-5							
344	HC *	2										
345	кк	R5-6	ROUTE									
346	KM		PRINCESS	BLVD CHAN	NEL FROM	1 76TH S		TSDALF I	RD			
347	RK	1694	0.0015	0.03		TRAP	188	4				
	*				HEC-1	INPUT						PAGE 10
LINE	ID.	1	2.		4	5.	6	7.	8.	9.	10	
348	КК	SB06	BASIN									
349	BA	0.136										
350	LG	0.16	0.25	4.55	0.45	53						
351	UC	0.321	0.246									
352	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
353	UA	100										
	Ť											
354	KK	CP-06	COMBINE									
355	HC *	2										
356	VV	SEVIC	BVCIN									
257		0 00/E	DADTIN									
55/ 250	BA	0.020	0.25	4 00	0 74	•						
220	LG	0.10	0.25	4.03	0.74	Ø						
359	00	0.5/4	0.52/	F 0	0.0	40.0	20.0	42.0	75 0	<u> </u>	00.0	
300	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	/5.0	90.0	96.0	
361	LIΔ	100										

262	VV	D7E 0E	POUTE									
362		K/E-OE	RUUTE	0 0 0 0			2 000	0 00				
363	KK *	3662	0.0130	0.030		IKAP	2.000	0.00				
	Ť											
364	КК	SB08E	BASIN									
365	BA	0.078										
366	LG	0.10	0.25	4.08	0.72	0						
367	UC	0.798	0.652									
368	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
369	UA	100										
	*											
370	кк	SRAGN	BASTN									
370	RA RA	0 020	DADIN									
272	DA LC	0.020	0 75	4 70	0 10	۵						
372		0.10	0.25	4.79	0.49	0						
373	UC	0.740	1.111			40.0	~ ~ ~	42.0	75 0	~~ ~		
374	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
375	UA	100										
	*											
376	KK	R9N-R9	ROUTE									
377	RK	2586	0.0013	0.020		TRAP	2.000	0.00				
	*											
378	КК	CP-08E	COMBINE									
379	нс	3										
575	*	5										
200	VV		DOUTE									
201		KOE-K9	R001E	0 0 0 0			2 000	0 00				
381	KK *	501	0.0013	0.020		IKAP	2.000	0.00				
	*											
					HEC-1	INPUT						PAGE 11
LINE	ID.	1	2.	3.	4.	5.	6.	7.	8.	9.	10	
382	KK	SB09	BASIN									
383	BA	0.086										
384	LG	0.10	0.25	4.79	0.49	0						
385	UC	0.683	0.518									
386	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
387		100	5.0	5.0	0.0	12.00	2010	13.0	/5.0	5010	50.0	
507	*	100										
200		CD 00	COMPTNE									
388	KK	CP-09	COMBINE									
389	HC	2										
	*											
390	KK	PWRCH										
391	KM	F	POWERLINE	CHANNEL	. (XS 107) & 50%	PIMA ROA	D CHANNE	L (XS 18	3) HYDRC	GRAPHS	
392	KM	-	100-YR, 6	-HR FLO-	2D MODEL	(XS 107)					
393	BA	7.0										
394	QI	0	0	0	0	0	0	0	0	0	0	
395	QI	0	0	0	0	0	0.11	17.74	50.91	433.53	391.08	
396	ÕI	359.13	391.64	616.52	737.85	699.64	645.41	621.52	599.48	594.12	570.84	
397	0.1	525.86	472.45	419.04	375.56	335	299.45	270.9	235.68	211.13	196.81	
398	0T	172.83	155.83	146.04	130.32	120.9	110 32	99.25	90.9	82.93	77.68	
399		79.3	67 58	63 5	64 86	56 01	51 64	18 75	13 99	12 01	10 99	
100		27 00	26 10	22 12	21 56	20.01	20 12	40.7J	4J.99 21 E7	242.04	40.99	
400	IQ OT	27.99	36.19	20.05	51.50	29.22	20.15	27.15	51.57	24.51	23.1	
401	QI	22.09	21.66	20.95								
	*											
402	KK	BINFLO										
403	KM		TOTAL IN	IFLOW INT	O BASIN	53R.						
404	HC	2										
	*											
405	КК	BASIN										
406	KM	BAST	N 53R STA	GE/STORA	GE FROM	PROPOSED	CONTOUR	S BETWEF	N			
407	КM	FLEV	1594 AND	1615 P	ASIN STD	E SI OPES	STEEPEN	ED TO 3.	1			
408	IXP1						MASTED E	OR 2_60"	- DTDEC			
100		-		T DTDEC				SI 2-00	1 11 13			
403			THE UUILE	I FIFES	AVE THE	I CONTRO	LLEV.					
410	KS	1	STUR	9	100 -	140 -	174 -	202 -	222 5	264 5	205 5	
411	SV	0	44.9	/6.8	108.7	140.6	1/1.5	202.5	233.5	264.5	295.5	
412	SV	328.7	362.0	395.2	428.5	461.7	497.2	532.7	568.3	603.8	639.3	
413	SE	1594	1597	1598	1599	1600	1601	1602	1603	1604	1605	
414	SE	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	
415	SQ	0	94.6	153.4	209.8	244.2	264.5	284.0	302.5	320.1	336.9	
	-											

*

	416	SQ *	353.0	368.5	383.5	398.0	412.0	425.7	438.9	451.9	464.5	476.8	
	417	KK	BSNRT1										
	418	KM	2	-60" CMP	OULFLOW	PIPES FO	OR BASIN	53R UNDE	R SR 101	LL FREEW	AY.		
	419	KM	D	OWNSTREA	M CONNEC	TING PIPE	ES ARE 60	0-INCH RC	P AND WI	ILL HAVE			
	420	KM	E	XCESS CA	PACITY.								
	421	RK	550	0.0052	0.024		CIRC	7.0					
		*											
1						HEC-1	INPUT						PAGE 12
	LINE	ID.	1.	2.		4		6	7	8.	9.	10	
	422	VV	DCNDTO										
	422	KK	BSNRIZ			DOM CD 10							
	423	KIM DV	1200	-60 KCP	PIPES FI	KOM SK IE	OIL FREEV		IION HILL	.S DK (B	AS 53R UL	JIFALL)	
	424	*	1200	0.00//	0.013		CIRC	7.0					
		4											
	125	VV	CP10	DACTN									
	425		3010	DASIN									
	420		0.040	0.25	4 25	0 55							
	427	LG	0.15	0.25	4.25	0.55	55						
	428	UC	0.233	0.161	16.0	20.0	65.0	77 0	04.0	00.0		07.0	
	429	UA	0	5.0	16.0	30.0	65.0	//.0	84.0	90.0	94.0	97.0	
	430	UA	100										
		*											
	421	VV	CD 10										
	431	KK	CP-10							`			
	432	KM	0	NION HIL	LS DR ANI	J 82ND SI	I (UNION	HILLS DR	CHANNEL	-)			
	433	HC	2	0.229									
		*											
			540.44	DOUTE									
	434	KK	R10-11	ROUTE									
	435	KM	U	NION HIL	LS DR CHA	ANNEL FRO	DM 82ND 9	ST TO HAY	DEN ROAL)			
	436	RK	1277	0.0014	0.03		TRAP	220	4				
		*											
	437	KK	SB11	BASIN									
	438	BA	0.071										
	439	LG	0.15	0.25	4.15	0.58	55						
	440	UC	0.296	0.232									
	441	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	442	UA	100										
		*											
	443	KK	CP-11	COMBINE									
	444	KM	U	NION HIL	LS DR ANI	d hayden	ROAD (HA	AYDEN RD	SOUTH CH	HANNEL)			
	445	HC	2	0.3									
		*											
	446	ZZ											
1	COUR			CTDEAM									
	SCHE	MATIC DI	AGRAM OF	SIKEAM	NETWORK								
		NG	(
	(*) (0011		() DIVER		ONF FLOW	N						
NO.	(,) CONNE	CTOR	(<	-) RETUR	N OF DTVI	RTFD OR	PUMPED F	FLOW					
				/									
60	76THST												
72		SB01	A										
85				> RET01	Α								
82		SB01	A										
88	CP-1												
	V												
	V												
91	R1A-2W												
	•												
94	•	SB02N	W										
	•												
105			·	> RET2N	W								
102		SB02N	W										
	•												

110	CP-02W.				
	V				
113	V R2M-2				
115					
115	•	SB01C			
	•	•			
124		•	> RE1	F01C	
121	•	SB01C			
	•	V			
177	•	P1C 1P			
127		KIC-IB			
130	•		SB01B		
	•	•	•		
139	•	•	•	>	RET01B
136	•		SB01B		RETOID
	•		•		
142	•	CP-01B	• • • • • • • • • • • • • •		
	•	v			
145		R1B-2N			
	•				
140	•	•	CROONE		
140	•	•	3D02NE		
157			••	>	RET2NE
154	•	•	SB02NE		
	•	•	•		
160	•	CP-02N	• • • • • • • • • • • • •		
		V			
	•	V			
163	•	R2N-2			
165	•		SB02E2		
	•				
175	•	•	•		ретоео
172			SB02E2	/	NLIZLZ
	•		•		
	•	•	•		
178	•	•	•	SB	02W
	•				•
184	CP-02.				•••
	V				
106	V د دم				
100	KZ-3				
189	•	SB03			
	•	•			
195	CP-03	•			
199	V				
	V				
197	R3-5				
	•				
200		SB05			
	•	•			
	:	•			
206	CP-5A.	• • • • • • • • • • • • •			
	•				
208		SB07W			
	•	•			
217	•	•		יידטק	
∠⊥/ 214	•	SR07W	> КЕ	W/01	
T		V			
		V			

	345	V R5-6			
	240	•	CD0/	-	
	348	•	2806	•	
	354	CP-06	•••••		
	356	•	SB07I	≣ ∕	
	362	•	N R7E-81	/	
	364	•	•	. SB0	8E
		•			•
	370	•	•		. SB09N . V
	376	•			• V • R9N-R9
		•			· ·
	378	•	CP-08I ۱	≣ /	
	380	•	۱ R8E-R9	/ 9	
		•			
	382	•		. SB	09
	200	•		•	•
	388	•	CP-05	• •	••
	390	•		. PWR	СН
		•			•
	402	•	BINFLO) /	•••
	405	•		/	
	405	•	DASI	/	
	417	•	۱ BSNRT:	/ L	
		•	\ \	/	
	422	•	BSNRT	2	
	425	•			10
	425	•		. 58	
	431	•	CP-10	9	•
		•	\ \	/	
	434	•	R10-11	L •	
	437	•			11
		•			•
	443	•	CP-12	1	•
(* 1**	**) RUNOFF ********	= ALSO COMP *********	PUTED A	Γ THIS LOCA *********	TION **
*	FLOOD HY	DROGRAPH P	ACKAGE	(HFC-1)	*
*	. 2000 111		1998	(*
*		VERSION 4	+• 1		*
*	RUN DATE	20JUL23	TIME	08:45:55	*
**	********	*******	*****	*******	**

***	*******	****
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
، ماد ماد ماد	د ماه	ماد ماد ماد ما

		CROSS ROADS EAST DRAINAGE INFRASTRUCTURE POWERLINE CORRIDOR RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL: 100-YR, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND												
	PIMA RUAD FLUWS. PREPARED BY: T.Y.LIN INTERNATTONAL: LAST MODIFTED: 09/14													
	MODELERS: RK, MW													
		MODIFIED: ERLINE AND WITH DEVE ECT 15MIN	FIED: 11/14/18 AND BASIN 53R AND DEVELOPMENT N OF LEGACY SMIN INC.											
	REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19 MODELERS: MSW XKSAT ADJUSTMENT													
		REVISED MODELE REVISI NEW F CONST ACCOU FIRST REVISED MODEL REVISED BASIN	BY: HUBBA ERS: MSW, PROPOSED (JNT FOR H FLUSH RE BY: HUBBA LERS: MSW, SIONS NOTE	ARD ENGINEE TSW O WITH HE (CONDITION M I PHASE 1 I IGHER C FAC ETENTION AD ARD ENGINEE TSW ED WITH HE SPLIT AT CE	RING; LAST Hubbard Er ODEL, ACCC NFRASTRUCT TOR AND IM DED AS DIV RING; LAST (HUBBARD E NTER POINT	MODIFIED: ngineering) DUNT FOR WH "URE, DETAI IPERVIOUSNE /ERT CARD W MODIFIED: ENGINEERING DUE TO FL	07/15/20 AT HAS BEE L OUT NEW SS, ADD RE ITH VOLUME 07/20/23) OW UNDER 1	N CP TENTION E REQUIRED 01						
37 IO	OUTPUT CONTR IPRNT IPLOT QSCAL	OL VARIABLE	ES 5 PRINT (9 PLOT C(. HYDROGF	CONTROL ONTROL RAPH PLOT S	CALE									
IT	HYDROGRAPH T NMIN IDATE ITIME NQ NDDATE NDTIME ICENT	IME DATA 1 6 0000 1000 3 6 0157 19	3 MINUTES 3 STARTIN 3 STARTIN 3 NUMBER 3 ENDING 4 ENDING 4 CENTUR	5 IN COMPUT IG DATE IG TIME OF HYDROGR DATE TIME (MARK	ATION INTE	RVAL								
	COMPUTATIO TOTAL	N INTERVAL TIME BASE	0.05 H 49.95 H	iours Iours										
	ENGLISH UNITS DRAINAGE AREA PRECIPITATION LENGTH, ELEVAT FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE	SQU DEPTH ING ION FEE ACF ACF DEC	JARE MILES CHES ET BIC FEET F RE-FEET RES GREES FAHF	S PER SECOND RENHEIT										
38 JD	INDEX STORM STRM TRDA	NO. 1 2.76 0.06	5 PRECIPI 9 TRANSPO	ITATION DEP SITION DRA	TH INAGE AREA	۱.								
39 PI	PRECIPITAT	ION PATTER	N											
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00 0 02	0.00 0 02	0.00 0 02	0.00 0 02	0.02 0 00	0.02 0 00	0.02 0 00	0.02 0 00					
	0.03 0.02	0.02	0.03	0.02	0.05	0.09	0.09	0.09	0.09					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					

0.00

42 JD	INDEX STORM NO. 2			NTU						
	TRDA 6	0.50 TRANSP	TRANSPOSITION DRAINAGE AREA							
43 PI	PRECIPITATION PATT	ERN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02	
	0.03 0.03	0.03	0.03	0.03	0.09	0.09	0.09	0.09	0.09	
	0.02 0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
40 JD	STRM 2	2.69 PRECIP	ITATION DEF	PTH						
	TRDA 2	2.80 TRANSP	OSITION DRA	AINAGE AREA	۱.					
47 PI	PRECIPITATION PATT	ERN								
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.04 0.04	0.01	0.01	0.01	0.02	0.05	0.02	0.05	0.02	
	0.03 0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	
	0.01 0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
50 JD	INDEX STORM NO. 4									
	STRM 2 TRDA 16	2.54 PRECIP	ITATION DEP	YTH						
		1.00 TRANST	USITION DIV	AINAGE ANEA	1					
51 PI	PRECIPITATION PATT	ERN								
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.01 0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	
	0.03 0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	
	0.03 0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	
	0.01 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	
		0.00	0100			0.00	0.00	0100		
54 JD	INDEX STORM NO. 5 STRM 2	2.23 PRECIP	ITATION DEF	РТΗ						
	TRDA 96	0.00 TRANSP	OSITION DRA	AINAGE AREA	١					
55 PI	PRECIPITATION PATT	ERN								
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	
	0.03 0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
	0.02 0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	
	0.01 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
58 JD	INDEX STORM NO. 6			отц						
	TRDA 16	0.00 TRANSP	OSITION DEP	AINAGE AREA	۱.					
0 рт	Ρ ΒΕΛΤΟΤΤΛΤΤΟΝ ΟΛΤΙ	FRN								
U LT	0.00 0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

			0.00	(0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	(00.6	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	(0.00 0.01	0.00	0.00		0.00	0.01	0.01		0.01	0.01	0.01
			0.01	(0.01 0.03	0.01	0.01		0.01	0.02	0.02		0.02	0.02	0.02
			0.02	(0.02	0.02	0.02		0.02	0.01	0.01		0.01	0.01	0.01
			0.01	(0.01	0.01	0.01		0.01	0.01	0.01		0.01	0.01	0.01
			0.00	(00.6	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
59 JD		IN	DEX STORI	M NO.	7 3	53 PRECTPT	τάττον Γ	TEPT	н						
			TRD	4	20	.00 TRANSPO	SITION D	DRAI	NAGE AREA						
0 PI	PRECIPITATION PATTERN														
			0.00	(0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	(00.6	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	(9.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	(0.00 2 00	0.00	0.00		0.00	0.00	0.00		0.00 0 00	0.00	0.00
			0.00	(a.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.01	é	0.00 0.01	0.01	0.01		0.01	0.02	0.02		0.02	0.02	0.02
			0.03	(0.03	0.03	0.03		0.03	0.03	0.03		0.03	0.03	0.03
			0.02	(0.02	0.02	0.02		0.02	0.01	0.01		0.01	0.01	0.01
			0.01	(0.01	0.01	0.01		0.01	0.01	0.01		0.01	0.01	0.01
			0.00	(00.6	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
			0.00	,	0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	т0	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	FOKULT		ттиг	CTED			то				MAX			
		FUKKUI	WARNING	LTWE	SIEP	CALCULATION	FAILED	10	CONVERGE.	STADILITY	PROBLEMS	MAY	RESULI		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***			ттмг				то				MAX			
	4.4.4.	FDKRUT	WARNING	TTWE	SIEP	CALCULATION	FAILED	10	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULI		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		
	***	EDKRIIT	MARNITNG	TTMF	STED			τo	CONVERSE	σταρτι ττ ν		мл∨	RESIIIT		
		TUKRUT	WHININING	I THE	JIEP	CALCULATION	FAILED	10	CONVERGE.	JIADILIII	I NUBLERIS	mAf	NLJULI		
	***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	т0	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT		

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1 *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 27

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 10
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CO
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2 *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

1

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	STATION	PEAK	TIME OF	AVERAGE F	LOW FOR MAXI	MUM PERIOD	BASIN	MAXIMUM	TIME OF		
OFENATION	STATION	FLOW	FLAK	6-HOUR	24-HOUR	72-HOUR	ANLA	STAGE	MAX STAC		
HYDROGRAPH A	T 76THST	50.	4.50	15.	4.	2.	0.24				
HYDROGRAPH A	r Sb01A	103.	4.25	12.	3.	1.	0.06				
DIVERSION TO	RET01A	44.	4.05	3.	1.	0.	0.06				
HYDROGRAPH A	r SB01A	103.	4.25	9.	2.	1.	0.06				
2 COMBINED A	Г СР-1	145.	4,25	24.	7.	3.	0.30				
ROUTED TO	R1A-2W	144	4 30	24	7	3	0 30				
HYDROGRAPH A		42	4.50	24.	1		0.50				
DIVERSION TO	SBOZINW	45.	4.05	4.	1.	0.	0.02				
HYDROGRAPH A	RET2NW	14.	3.85	1.	0.	0.	0.02				
2 COMBINED A	SB02NW T	43.	4.05	3.	1.	0.	0.02				
ROUTED TO	CP-02W	164.	4.25	27.	7.	4.	0.31				
HYDROGRAPH A	R2W-2	163.	4.25	27.	7.	4.	0.31				
DIVERSION TO	SB01C	51.	4.10	5.	1.	1.	0.03				
HYDROGRAPH A	RETØ1C	20.	3.90	1.	0.	0.	0.03				
ROUTED TO	SB01C	51.	4.10	4.	1.	0.	0.03				
	R1C-1B	50.	4.10	4.	1.	0.	0.03				

HYDROGRAPH AT	SB01B	50.	4.10	5.	1.	1.	0.02
DIVERSION TO	RETØ1B	17.	3.90	1.	0.	0.	0.02
HYDROGRAPH AT	SB01B	50.	4.10	3.	1.	0.	0.02
2 COMBINED AT	CP-01B	100.	4.10	7.	2.	1.	0.05
ROUTED TO	R1B-2N	97.	4.15	7.	2.	1.	0.05
HYDROGRAPH AT	SBØ2NE	57.	4.15	6.	2.	1.	0.03
DIVERSION TO	RET2NE	27.	3.95	2.	0.	0.	0.03
HYDROGRAPH AT	SB02NE	57.	4.15	5.	1.	1.	0.03
2 COMBINED AT	CP-02N	154.	4.15	12.	3.	1.	0.09
ROUTED TO	R2N-2	154.	4.15	12.	3.	1.	0.09
HYDROGRAPH AT	SB02E2	40.	4.10	5.	1.	1.	0.02
DIVERSION TO	RET2E2	8.	3.70	1.	0.	0.	0.02
HYDROGRAPH AT	SB02E2	40.	4.10	4.	1.	0.	0.02
HYDROGRAPH AT	SB02W	39.	4.50	6.	1.	1.	0.06
4 COMBINED AT	CP-02	346.	4.20	49.	13.	6.	0.18
ROUTED TO	R2-3	346.	4.25	49.	13.	6.	0.18
HYDROGRAPH AT	SB03	78	4, 15	10	3	1	0.05
2 COMBINED AT	CP-03	412	4 25	58	15	8	0.23
ROUTED TO	R3_5	412.	4.25	58	15	8	0.23
HYDROGRAPH AT	SP05	220	4.33	25	<u> </u>	2	0.23
2 COMBINED AT	CD EA	E26	4.10	23.	22	11	0.15
HYDROGRAPH AT	CF - JA	104	4.50	01.	22.	11.	0.50
DIVERSION TO	SD07W	104.	4.10	9.	2.	1.	0.05
HYDROGRAPH AT	007U	29.	2.05	2.	1.	U. 1	0.05
ROUTED TO	2RQ\M	104.	4.10	/.	2.	1.	0.05
HYDROGRAPH AT	к/W-8W	104.	4.45	8.	2.	1.	0.05
	SB8NW	40.	4.05	4.	1.	0.	0.01

DIVERSION TO

	RET8NW	6.	3.55	1.	0.	0.	0.01
HYDROGRAPH AT	SB8NW	40.	4.05	3.	1.	0.	0.01
ROUTED TO	R8NW8N	39.	4.05	3.	1.	0.	0.01
HYDROGRAPH AT	SB8NE	42.	4.05	4.	1.	0.	0.01
DIVERSION TO	RET8NE	6.	3.55	1.	0.	0.	0.01
HYDROGRAPH AT	SB8NE	42.	4.05	3.	1.	0.	0.01
ROUTED TO	R8NE8N	42.	4.05	3.	1.	0.	0.01
HYDROGRAPH AT	SB8SW	37.	4.05	3.	1.	0.	0.01
DIVERSION TO	RET8SW	5.	3.55	1.	0.	0.	0.01
HYDROGRAPH AT	SB8SW	37.	4.05	3.	1.	0.	0.01
HYDROGRAPH AT	SB8SE	36.	4.05	3.	1.	0.	0.01
DIVERSION TO	RET8SE	5.	3.55	1.	0.	0.	0.01
HYDROGRAPH AT	SB8SE	36.	4.05	3.	1.	0.	0.01
4 COMBINED AT	CP-08N	153.	4.05	12.	3.	1.	0.06
ROUTED TO	R8N-8W	150.	4.05	12.	3.	1.	0.06
HYDROGRAPH AT	SB08W	145.	4.10	15.	4.	2.	0.06
DIVERSION TO	RET8W	27.	3.65	3.	1.	0.	0.06
HYDROGRAPH AT	SB08W	145.	4.10	12.	3.	1.	0.06
3 COMBINED AT	CP-08W	287.	4.10	32.	8.	4.	0.16
ROUTED TO	R8W-4N	203.	4.20	32.	8.	4.	0.16
HYDROGRAPH AT	SB02E1	60.	4.10	6.	2.	1.	0.03
DIVERSION TO	RET2E1	12.	3.65	1.	0.	0.	0.03
HYDROGRAPH AT	SB02E1	60.	4.10	5.	1.	1.	0.03
2 COMBINED AT	CP-4N	254.	4.15	37.	9.	4.	0.19
ROUTED TO	R4N-4	252.	4.15	37.	9.	4.	0.19
HYDROGRAPH AT	SB04	292.	4.10	32.	8.	4.	0.14
2 COMBINED AT	CP-4	533.	4.10	68.	17.	8.	0.33

ROUTED TO	R4-5	; 5	528.	4.20	68.	17.	8.	0.33	
2 COMBINED	AT CP-05	; 9	934.	4.30	146.	38.	19.	0.69	
ROUTED TO	R5-6	5 9	916.	4.40	146.	38.	19.	0.69	
HYDROGRAPH	AT SBØ6	5 2	243.	4.10	29.	7.	3.	0.14	
2 COMBINED	AT CP-06	5 9	996.	4.40	171.	45.	22.	0.82	
HYDROGRAPH	AT SB07E	E	19.	4.40	3.	1.	0.	0.03	
ROUTED TO	R7E-8E	E	19.	4.45	3.	1.	0.	0.03	
HYDROGRAPH	AT SB08E	E	46.	4.55	8.	2.	1.	0.08	
HYDROGRAPH	AT SB09N	I	13.	4.55	3.	1.	0.	0.03	
ROUTED TO	R9N-R9)	13.	4.65	3.	1.	0.	0.03	
3 COMBINED	AT CP-08E	E	76.	4.55	13.	3.	2.	0.13	
ROUTED TO	R8E-R9)	76.	4.55	13.	3.	2.	0.13	
HYDROGRAPH	AT SB09)	71.	4.45	10.	2.	1.	0.09	
2 COMBINED	AT CP-09) 1	144.	4.50	23.	6.	3.	0.22	
HYDROGRAPH	AT PWRCH	1 7	738.	5.75	429.	135.	74.	7.00	
2 COMBINED	AT BINFLC) 7	749.	5.75	439.	138.	76.	7.22	
ROUTED TO	BASIN	1 2	241.	9.20	228.	130.	73.	7.22	
ROUTED TO	BSNRT1	1 2	241.	9.25	228.	130.	73.	7.22	
ROUTED TO	BSNRT2	2 2	241.	9.25	228.	130.	73.	7.22	
HYDROGRAPH	AT SB10)	87.	4.05	8.	2.	1.	0.04	
2 COMBINED	AT CP-10) 2	244.	9.20	232.	133.	76.	0.23	
ROUTED TO	R10-11	. 2	244.	9.30	232.	133.	76.	0.23	
	AT SB11	1 1	130.	4.10	15.	4.	2.	0.07	
2 COMBINED	CP-11	1 2	244.	9.30	232.	136.	77.	0.30	
			SUMMA (FLOW IS	5 DIRECT RUNOFF	- MUSKINGUN WITHOUT BA	ASE FLOW) INTERPOLAT	ING ATED TO	
ISTAQ	ELEMENT	DT	PEAK	TIME PE	e to Volume Eak	DT	COMPUTATION I PEAK T	NTERVAL IME TO PEAK	VOLUME
		(MIN)	(CFS)	((MIN) (IN)	(MIN)	(CFS)	(MIN)	(IN)

+ 1

	FOR STORM R1A-2W	1 = 1 ΜΔΝΕ	STORM	AREA (SQ 0.31	MI) = 145.99	0.00 255.52	0.86	3.00	145.05	258 00	0.86		
		10442		0.51	115.55	255152	0.00	5.00	119109	250100	0.00		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	385E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1385	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	1 = 2 MANE	STORM	AREA (SQ 0.31	MI) = 145.24	0.50 255.66	0.86	3.00	144.23	258.00	0.86		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	380E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1380	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	1 = 3 MANE	STORM	AREA (SQ 0.30	MI) = 102.74	2.80 258.17	0.82	3.00	102.70	258.00	0.82		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	311E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1311	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	1 = 4 Mane	STORM	AREA (SQ 0.30	MI) = 86.26	16.00 258.55	0.77	3.00	86.14	258.00	0.77		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	240E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1240	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STOR R1A-2W	1 = 5 MANE	STORM	AREA (SQ 0.35	MI) = 70.99	90.00 270.31	0.71	3.00	70.97	270.00	0.71		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	143E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1143	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	1 = 6 Mane	STORM	AREA (SQ 0.22	MI) = 101.82	10.00 261.19	0.92	3.00	101.82	261.00	0.92		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.14	483E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1483	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	1 = 7 MANE	STORM	AREA (SQ 0.27	MI) = 99.04	20.00 261.08	0.90	3.00	99.04	261.00	0.90		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.14	451E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1451	E+02 BASIN	STORAGE=0.2	984E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	1 = 1 MANE	STORM	AREA (SQ 0.36	MI) = 164.36	0.00 255.38	0.94	3.00	163.85	255.00	0.94		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	526E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1526	E+02 BASIN	STORAGE=0.4	391E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	1 = 2 MANE	STORM	AREA (SQ 0.27	MI) = 163.57	0.50 255.50	0.93	3.00	162.94	255.00	0.93		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	520E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1520	E+02 BASIN	STORAGE=0.4	391E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	1 = 3 MANE	STORM	AREA (SQ 0.35	MI) = 117.20	2.80 258.14	0.88	3.00	117.19	258.00	0.88		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.14	428E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1428	E+02 BASIN	STORAGE=0.4	391E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	1 = 4 MANE	STORM	AREA (SQ 0.38	MI) = 96.83	16.00 258.51	0.82	3.00	96.72	258.00	0.82		
CONTINU	ITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	335E+02 E	EXCESS=0.0000	E+00 OUTFL	OW=0.1335	E+02 BASIN	STORAGE=0.4	391E-02 PERCENT	ERROR=	0.0
	FOR STOR	1 = 5 MANE	STORM	AREA (SQ 0.37	MI) = 75.72	90.00 261.93	0.74	3.00	75.66	261.00	0.74		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1207E+02 EXCESS=0.0000E+00 OUTFLOW=0.1206E+02 BASIN STORAGE=0.4391E-02 PERCENT ERROR= 0.0 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 0.24 117.87 258.45 1.02 3.00 117.68 1.02 R2W-2 MANE 258.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1655E+02 EXCESS=0.0000E+00 OUTFLOW=0.1655E+02 BASIN STORAGE=0.4391E-02 PERCENT ERROR= 0.0 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 R2W-2 MANE 0.24 114.22 258.50 0.99 3.00 114.02 258.00 0.99 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1613E+02 EXCESS=0.0000E+00 OUTFLOW=0.1613E+02 BASIN STORAGE=0.4391E-02 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R1C-1B MANE 0.30 51.03 1.36 3.00 50.29 246.00 1.37 246.76 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1961E+01 EXCESS=0.0000E+00 OUTFLOW=0.1962E+01 BASIN STORAGE=0.1121E-13 PERCENT ERROR= -0.1 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R1C-1B MANE 0.40 50.59 246.72 1.35 3.00 49.89 246.00 1.35 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1941E+01 EXCESS=0.0000E+00 OUTFLOW=0.1942E+01 BASIN STORAGE=0.1138E-13 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R1C-1B MANE 27.84 3.00 0.42 246.95 1.13 27.64 249.00 1.14 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1632E+01 EXCESS=0.0000E+00 OUTFLOW=0.1631E+01 BASIN STORAGE=0.1119E-13 PERCENT ERROR= 0.1 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R1C-1B MANE 3.00 0.92 0.40 19.93 246.90 0.91 19.81 249.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1321E+01 EXCESS=0.0000E+00 OUTFLOW=0.1317E+01 BASIN STORAGE=0.1123E-13 PERCENT ERROR= 0.3 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R1C-1B MANE 0.50 11.56 247.25 0.62 3.00 11.55 249.00 0.62 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8898E+00 EXCESS=0.0000E+00 OUTFLOW=0.8904E+00 BASIN STORAGE=0.1117E-13 PERCENT ERROR= -0.1 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 R1C-1B MANE 0.35 26.68 246.72 1.66 3.00 26.64 249.00 1.66 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2396E+01 EXCESS=0.0000E+00 OUTFLOW=0.2395E+01 BASIN STORAGE=0.1140E-13 PERCENT ERROR= 0.0 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 R1C-1B MANE 0.32 25.38 246.62 1.57 3.00 25.34 249.00 1.57 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2256E+01 EXCESS=0.0000E+00 OUTFLOW=0.2254E+01 BASIN STORAGE=0.1122E-13 PERCENT ERROR= 0.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R1B-2N MANE 0.92 99.26 3.00 247.53 1.36 98.01 249.00 1.36 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3711E+01 EXCESS=0.0000E+00 OUTFLOW=0.3711E+01 BASIN STORAGE=0.3220E-11 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R1B-2N MANE 0.83 98.83 247.91 1.35 3.00 97.26 249.00 1.35

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3673E+01 EXCESS=0.0000E+00 OUTFLOW=0.3684E+01 BASIN STORAGE=0.3207E-11 PERCENT ERROR= -0.3
```
	FOR STORM R1B-2N	1 = 3 MANE	STORM	AREA (SQ 1.03	MI) = 53.55	2.80 247.69	1.14	3.00	53.37	249.00	1.13		
CONTINUI	Y SUMMARY	(AC-F	[) - II	NFLOW=0.3	088E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.3089E	+01 BASIN	STORAGE=0.31	37E-11 PERCENT	ERROR=	0.0
	FOR STORM R1B-2N	1 = 4 MANE	STORM	AREA (SQ 1.09	MI) = 38.34	16.00 248.42	0.92	3.00	38.21	249.00	0.92		
CONTINUIT	Y SUMMARY	(AC-F	() - I	NFLOW=0.2	500E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.2500E	+01 BASIN	STORAGE=0.32	64E-11 PERCENT	ERROR=	0.0
	FOR STORM R1B-2N	1 = 5 MANE	STORM	AREA (SQ 1.19	9 MI) = 22.19	90.00 248.72	0.62	3.00	22.17	249.00	0.62		
CONTINUI	Y SUMMARY	(AC-F	[) - II	NFLOW=0.1	.684E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.1686E	+01 BASIN	STORAGE=0.32	55E-11 PERCENT	ERROR=	-0.1
	FOR STORM R1B-2N	1 = 6 Mane	STORM	AREA (SQ 0.90	9 MI) = 51.28	10.00 247.95	1.67	3.00	51.12	249.00	1.66		
CONTINUI	TY SUMMARY	(AC-F	() - I	NFLOW=0.4	529E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.4530E	+01 BASIN	STORAGE=0.32	57E-11 PERCENT	ERROR=	0.0
	FOR STORM R1B-2N	1 = 7 MANE	STORM	AREA (SQ 1.05	9 MI) = 48.69	20.00 248.70	1.57	3.00	48.64	249.00	1.57		
CONTINUI	TY SUMMARY	(AC-F	() - I	NFLOW=0.4	264E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.4266E	+01 BASIN	STORAGE=0.31	18E-11 PERCENT	ERROR=	0.0
	FOR STORM R2N-2	1 = 1 MANE	STORM	AREA (SQ 0.31	MI) = 154.68	0.00 249.16	1.36	3.00	154.46	249.00	1.36		
CONTINUIT	Y SUMMARY	(AC-F	() - I	NFLOW=0.6	138E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.6147E	+01 BASIN	STORAGE=0.51	05E-06 PERCENT	ERROR=	-0.1
	FOR STORM R2N-2	1 = 2 MANE	STORM	AREA (SQ 0.31	MI) = 153.62	0.50 249.29	1.34	3.00	153.29	249.00	1.35		
CONTINUIT	'Y SUMMARY	(AC-F	[) - II	NFLOW=0.6	080E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.6088E	+01 BASIN	STORAGE=0.54	65E-06 PERCENT	ERROR=	-0.1
	FOR STORM R2N-2	1 = 3 MANE	STORM	AREA (SQ 0.42	9 MI) = 85.54	2.80 249.46	1.13	3.00	85.38	249.00	1.13		
CONTINUI	'Y SUMMARY	(AC-F	[) - II	NFLOW=0.5	110E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.5111E	+01 BASIN	STORAGE=0.44	42E-06 PERCENT	ERROR=	0.0
	FOR STORM R2N-2	1 = 4 MANE	STORM	AREA (SQ 0.42	9 MI) = 61.35	16.00 249.48	0.91	3.00	61.19	249.00	0.91		
CONTINUI	'Y SUMMARY	(AC-F	r) - II	NFLOW=0.4	137E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.4138E	+01 BASIN	STORAGE=0.51	90E-06 PERCENT	ERROR=	0.0
	FOR STORM R2N-2	1 = 5 MANE	STORM	AREA (SQ 0.47	MI) = 35.73	90.00 249.69	0.62	3.00	35.56	249.00	0.61		
CONTINUIT	'Y SUMMARY	(AC-F	r) - II	NFLOW=0.2	788E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.2789E	+01 BASIN	STORAGE=0.51	40E-06 PERCENT	ERROR=	-0.1
	FOR STORM R2N-2	1 = 6 MANE	STORM	AREA (SQ 0.30	MI) = 82.46	10.00 249.44	1.65	3.00	82.26	249.00	1.65		
CONTINUI	TY SUMMARY	(AC-F	[) - II	NFLOW=0.7	500E+01	EXCESS=0.0000	E+00 OUTFL	OW=0.7502E	+01 BASIN	STORAGE=0.48	16E-06 PERCENT	ERROR=	0.0

FOR STORM = 7 STORM AREA (SQ MI) = 20.00

R2N-2 MANE 0.39 78.41 249.52 3.00 78.24 249.00 1.56 1.56 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7064E+01 EXCESS=0.0000E+00 OUTFLOW=0.7065E+01 BASIN STORAGE=0.4315E-06 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R2-3 MANE 2.04 347.37 255.29 2.70 3.00 347.37 255.00 2.70 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2619E+02 EXCESS=0.0000E+00 OUTFLOW=0.2617E+02 BASIN STORAGE=0.4195E-01 PERCENT ERROR= -0.1 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R2-3 MANE 1.91 345.65 255.87 2.68 3.00 345.42 255.00 2.68 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2603E+02 EXCESS=0.0000E+00 OUTFLOW=0.2597E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R2-3 MANE 2.25 225.57 259.44 3.00 2.34 2.35 224.41 261.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2276E+02 EXCESS=0.0000E+00 OUTFLOW=0.2272E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.0 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R2-3 MANE 2.53 172.53 260.84 2.05 3.00 172.47 261.00 2.05 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1991E+02 EXCESS=0.0000E+00 OUTFLOW=0.1985E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.1 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R2-3 MANE 2.96 118.90 263.24 1.68 3.00 118.75 264.00 1.68 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1630E+02 EXCESS=0.0000E+00 OUTFLOW=0.1624E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.1 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 R2-3 MANE 2.34 231.88 262.66 2.98 3.00 231.53 261.00 2.97 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2888E+02 EXCESS=0.0000E+00 OUTFLOW=0.2882E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.1 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 2.85 R2-3 MANE 2.34 221.80 263.10 2.85 3.00 221.59 261.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2770E+02 EXCESS=0.0000E+00 OUTFLOW=0.2764E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= 0.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R3-5 MANE 3.00 412.68 261.29 2.56 3.00 410.64 261.00 2.57 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3128E+02 EXCESS=0.0000E+00 OUTFLOW=0.3139E+02 BASIN STORAGE=0.7696E-01 PERCENT ERROR= -0.6 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R3-5 MANE 3.00 410.61 2.55 3.00 407.61 2.55 261.45 261.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3106E+02 EXCESS=0.0000E+00 OUTFLOW=0.3119E+02 BASIN STORAGE=0.7696E-01 PERCENT ERROR= -0.7 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R3-5 MANE 3.00 268.85 266.94 2.23 3.00 268.82 267.00 2.23 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2736E+02 EXCESS=0.0000E+00 OUTFLOW=0.2730E+02 BASIN STORAGE=0.8862E-01 PERCENT ERROR= -0.1 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R3-5 MANE 3.00 270.05 1.95 3.00 204.66 270.00 1.95 204.70

CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.2	395E+02	EXCESS=0.0000E	+00 OUTF	LOW=0.2390	E+02 BASIN	STORAGE=0	.9259E-01 PERCEN	ERROR=	-0.2
FOR STOF R3-5	RM = 5 5 MANE	STORM	AREA (SQ 3.00	MI) = 139.39	90.00 9 275.21	1.59	3.00	139.08	276.00	1.59		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.1	956E+02	EXCESS=0.0000E	+00 OUTF	LOW=0.1945	E+02 BASIN	STORAGE=0	.9871E-01 PERCEN	FERROR=	0.0
FOR STOF R3-5	RM = 6 5 MANE	STORM	AREA (SQ 3.00	MI) = 276.07	10.00 7 269.91	2.86	3.00	276.00	270.00	2.86		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.3	506E+02	EXCESS=0.0000E	+00 OUTF	LOW=0.3497	E+02 BASIN	STORAGE=0	.9253E-01 PERCEN	ERROR=	0.0
FOR STOF R3-5	RM = 7 5 MANE	STORM	AREA (SQ 3.00	MI) = 263.45	20.00 5 268.98	2.73	3.00	263.27	270.00	2.73		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.3	361E+02	EXCESS=0.0000E	+00 OUTF	LOW=0.3346	E+02 BASIN	STORAGE=0	.9261E-01 PERCEN	ERROR=	0.2
FOR STOF R7W-8V	RM = 1 N MANE	STORM	AREA (SQ 2.73	MI) = 102.63	0.00 3 267.82	1.79	3.00	102.19	267.00	1.79		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.34	402E+01	EXCESS=0.0000E	+00 OUTF	LOW=0.4461	E+01 BASIN	STORAGE=0	.3428E-03 PERCEN	ERROR=	-31.1
FOR STOF R7W-8V	RM = 2 N MANE	STORM	AREA (SQ 2.59	MI) = 104.73	0.50 3 266.79	1.55	3.00	104.06	267.00	1.55		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.3	367E+01	EXCESS=0.0000E	+00 OUTF	LOW=0.3871	E+01 BASIN	STORAGE=0	.3311E-03 PERCEN	ERROR=	-15.0
FOR STOF R7W-8₩	RM = 3 N MANE	STORM	AREA (SQ 2.99	MI) = 52.62	2.80 2 270.98	1.33	3.00	52.50	273.00	1.33		
CONTINUITY SUMMARY	(AC-F	T) - IN	VFLOW=0.2	832E+01	EXCESS=0.0000E	+00 OUTF	LOW=0.3326	E+01 BASIN	STORAGE=0	.3101E-03 PERCEN	ERROR=	-17.5
FOR STOF R7W-8V	RM = 4 N MANE	STORM	AREA (SQ 3.00	MI) = 37.32	16.00 2 275.61	1.13	3.00	37.24	276.00	1.13		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.2	292E+01	EXCESS=0.0000E	+00 OUTF	-LOW=0.2822	E+01 BASIN	STORAGE=0	.3108E-03 PERCEN	ERROR=	-23.1
FOR STOF R7W-8V	RM = 5 N MANE	STORM	AREA (SQ 3.00	MI) = 21.45	90.00 5 284.63	0.78	3.00	21.39	282.00	0.78		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	544E+01	EXCESS=0.0000E	+00 OUTF	-LOW=0.1942	E+01 BASIN	STORAGE=0	.3316E-03 PERCEN	ERROR=	-25.8
FOR STOF R7W-8V	RM = 6 N MANE	STORM	AREA (SQ 3.00	MI) = 49.46	10.00 5 273.94	1.67	3.00	49.38	273.00	1.67		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.4	156E+01	EXCESS=0.0000E	+00 OUTF	LOW=0.4179	E+01 BASIN	STORAGE=0	.3376E-03 PERCEN	ERROR=	-0.6
FOR STOF R7W-8₩	RM = 7 N MANE	STORM	AREA (SQ 3.00	MI) = 47.01	20.00 L 271.91	1.58	3.00	46.97	273.00	1.58		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.3	912E+01	EXCESS=0.0000E	+00 OUTF	-LOW=0.3956	E+01 BASIN	STORAGE=0	.3474E-03 PERCEN	ERROR=	-1.1
FOR STOP R8NW8N	RM = 1 N MANE	STORM	AREA (SQ 0.75	MI) = 40.02	0.00 2 244.34	1.98	3.00	39.44	243.00	1.98		

	FOR STORM R8NW8N	= 2 Mane	STORM	AREA (SQ 0.77	MI) = 39.68	0.50 244.02	1.96	3.00	39.17	243.00	1.96		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	538E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1540E	+01 BASIN	STORAGE=0.3	1352E-06 PERCENT	ERROR=	-0.2
	FOR STORM R8NW8N	= 3 Mane	STORM	AREA (SQ 0.97	MI) = 21.41	2.80 244.47	1.86	3.00	21.33	243.00	1.86		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	449E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1455E	+01 BASIN	STORAGE=0.	1154E-06 PERCENT	ERROR=	-0.4
	FOR STORM R8NW8N	= 4 Mane	STORM	AREA (SQ 1.05	MI) = 16.17	16.00 244.69	1.68	3.00	16.11	243.00	1.68		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	313E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1317E	+01 BASIN	STORAGE=0.	1153E-06 PERCENT	ERROR=	-0.2
	FOR STORM R8NW8N	= 5 Mane	STORM	AREA (SQ 1.03	MI) = 10.82	90.00 245.03	1.37	3.00	10.72	243.00	1.37		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	074E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1077E	+01 BASIN	STORAGE=0.	1398E-06 PERCENT	ERROR=	-0.3
	FOR STORM R8NW8N	= 6 Mane	STORM	AREA (SQ 0.91	MI) = 19.33	10.00 244.37	2.65	3.00	19.25	243.00	2.65		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.2	076E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.2081E	+01 BASIN	STORAGE=0.	1314E-06 PERCENT	ERROR=	-0.2
	FOR STORM R8NW8N	= 7 Mane	STORM	AREA (SQ 0.88	MI) = 18.61	20.00 244.50	2.54	3.00	18.51	243.00	2.54		
CONTINUI	TY SUMMARY ((AC-F1	[) - IN	NFLOW=0.1	987E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1989E	+01 BASIN	STORAGE=0.	1316E-06 PERCENT	ERROR=	-0.1
	FOR STORM R8NE8N	= 1 MANE	STORM	AREA (SQ 0.69	MI) = 42.06	0.00 244.33	1.98	3.00	41.68	243.00	1.98		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	579E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1583E	+01 BASIN	STORAGE=0.	1124E-06 PERCENT	ERROR=	-0.2
	FOR STORM R8NE8N	= 2 Mane	STORM	AREA (SQ 0.68	MI) = 41.82	0.50 244.25	1.96	3.00	41.41	243.00	1.96		
CONTINUI	TY SUMMARY ((AC-F1	[) - IN	NFLOW=0.1	567E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1569E	+01 BASIN	STORAGE=0.	1055E-06 PERCENT	ERROR=	-0.1
	FOR STORM R8NE8N	= 3 Mane	STORM	AREA (SQ 0.92	MI) = 22.13	2.80 243.92	1.85	3.00	22.08	243.00	1.86		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	476E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1484E	+01 BASIN	STORAGE=0.	1034E-06 PERCENT	ERROR=	-0.5
	FOR STORM R8NE8N	= 4 Mane	STORM	AREA (SQ 0.97	MI) = 16.69	16.00 243.96	1.68	3.00	16.65	243.00	1.67		
CONTINUI	TY SUMMARY ((AC-F1	() - IN	NFLOW=0.1	338E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1340E	+01 BASIN	STORAGE=0.	1343E-06 PERCENT	ERROR=	-0.2
	FOR STORM R8NE8N	= 5 Mane	STORM	AREA (SQ 1.12	MI) = 11.10	90.00 244.46	1.37	3.00	11.06	243.00	1.37		
CONTINUI	TY SUMMARY ((AC-F1	[) - IN	NFLOW=0.1	094E+01	EXCESS=0.0000	0E+00 OUTFL	OW=0.1095E	+01 BASIN	STORAGE=0.	1098E-06 PERCENT	ERROR=	-0.1
	FOR STORM R8NE8N	= 6 Mane	STORM	AREA (SQ 0.90	MI) = 19.88	10.00 244.18	2.65	3.00	19.84	243.00	2.65		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2116E+01 EXCESS=0.0000E+00 OUTFLOW=0.2117E+01 BASIN STORAGE=0.9623E-07 PERCENT ERROR= -0.1 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 R8NE8N MANE 0.86 19.14 244.71 2.54 3.00 19.09 243.00 2.53 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2025E+01 EXCESS=0.0000E+00 OUTFLOW=0.2028E+01 BASIN STORAGE=0.1302E-06 PERCENT ERROR= -0.2 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R8N-8W MANE 0.52 152.44 243.65 1.98 3.00 150.95 243.00 1.98 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5871E+01 EXCESS=0.0000E+00 OUTFLOW=0.5874E+01 BASIN STORAGE=0.1353E-07 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R8N-8W MANE 149.94 1.96 0.51 151.61 243.84 1.96 3.00 243.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+01 EXCESS=0.0000E+00 OUTFLOW=0.5823E+01 BASIN STORAGE=0.1343E-07 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R8N-8W MANE 0.53 81.55 243.95 1.85 3.00 81.15 243.00 1.85 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5500E+01 EXCESS=0.0000E+00 OUTFLOW=0.5501E+01 BASIN STORAGE=0.1336E-07 PERCENT ERROR= 0.0 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R8N-8W MANE 0.65 61.43 243.75 1.68 3.00 61.23 243.00 1.68 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4978E+01 EXCESS=0.0000E+00 OUTFLOW=0.4978E+01 BASIN STORAGE=0.1320E-07 PERCENT ERROR= 0.0 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R8N-8W MANE 0.74 40.89 244.25 1.37 3.00 40.71 243.00 1.37 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4070E+01 EXCESS=0.0000E+00 OUTFLOW=0.4071E+01 BASIN STORAGE=0.1350E-07 PERCENT ERROR= 0.0 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 3.00 R8N-8W MANE 0.57 73.39 244.05 2.65 73.13 243.00 2.65 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7867E+01 EXCESS=0.0000E+00 OUTFLOW=0.7867E+01 BASIN STORAGE=0.1321E-07 PERCENT ERROR= 0.0 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 3.00 243 00 2.53 R8N-8W MANE 0 64 70.52 244.05 2.53 70.34 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7526E+01 EXCESS=0.0000E+00 OUTFLOW=0.7527E+01 BASIN STORAGE=0.1341E-07 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R4N-4 MANE 1.92 0.64 254.10 249.72 1.92 3.00 252.86 249.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1911E+02 EXCESS=0.0000E+00 OUTFLOW=0.1914E+02 BASIN STORAGE=0.1270E-03 PERCENT ERROR= -0.1 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R4N-4 MANE 0.55 253.13 250.14 1.85 3.00 251.46 249.00 1.85 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1840E+02 EXCESS=0.0000E+00 OUTFLOW=0.1841E+02 BASIN STORAGE=0.1340E-03 PERCENT ERROR= -0.1 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 1.71 3.00 249.00 1.71 R4N-4 MANE 0.69 184.86 247.60 184.57 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1702E+02 EXCESS=0.0000E+00 OUTFLOW=0.1703E+02 BASIN STORAGE=0.1322E-03 PERCENT ERROR= 0.0

	FOR STORM R4N-4	1 = 4 MANE	STORM	AREA (SQ 0.69	MI) = 142.09	16.00 249.64	1.53	3.00	141.96	249.00	1.53		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.1	522E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.1523	E+02 BASIN	STORAGE=0.1	.308E-03 PERCEN	T ERROR=	-0.1
	FOR STORM R4N-4	1 = 5 MANE	STORM	AREA (SQ 0.75	MI) = 95.95	90.00 250.50	1.21	3.00	95.49	249.00	1.21		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.1	207E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.1207	E+02 BASIN	STORAGE=0.1	.249E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4N-4	1 = 6 Mane	STORM	AREA (SQ 0.67	MI) = 173.19	10.00 249.80	2.39	3.00	173.09	249.00	2.39		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.2	383E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.23831	E+02 BASIN	STORAGE=0.1	.314E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4N-4	1 = 7 MANE	STORM	AREA (SQ 0.66	MI) = 166.58	20.00 249.65	2.29	3.00	166.45	249.00	2.29		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.2	276E+02	EXCESS=0.0000	E+00 OUTFL	.0W=0.22761	E+02 BASIN	STORAGE=0.1	.294E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4-5	1 = 1 MANE	STORM	AREA (SQ 2.45	MI) = 529.86	0.00 252.44	2.01	3.00	529.34	252.00	2.01		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.3	538E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.35441	E+02 BASIN	STORAGE=0.4	077E-03 PERCEN	T ERROR=	-0.2
	FOR STORM R4-5	1 = 2 MANE	STORM	AREA (SQ 2.35	MI) = 527.86	0.50 252.26	1.96	3.00	527.49	252.00	1.96		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.3	453E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.34531	E+02 BASIN	STORAGE=0.3	991E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4-5	1 = 3 MANE	STORM	AREA (SQ 2.78	MI) = 353.24	2.80 251.22	1.81	3.00	352.97	252.00	1.81		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.3	197E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.31991	E+02 BASIN	STORAGE=0.4	213E-03 PERCEN	T ERROR=	-0.1
	FOR STORM R4-5	1 = 4 Mane	STORM	AREA (SQ 3.00	MI) = 268.61	16.00 253.06	1.63	3.00	266.78	252.00	1.63		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.2	865E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.28661	E+02 BASIN	STORAGE=0.4	088E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4-5	1 = 5 MANE	STORM	AREA (SQ 3.00	MI) = 177.35	90.00 253.32	1.31	3.00	177.27	255.00	1.31		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.2	309E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.2313	E+02 BASIN	STORAGE=0.3	969E-03 PERCEN	T ERROR=	-0.2
	FOR STORM R4-5	1 = 6 Mane	STORM	AREA (SQ 2.81	MI) = 333.62	10.00 253.57	2.50	3.00	332.61	252.00	2.50		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.4	397E+02	EXCESS=0.0000	E+00 OUTFL	.0W=0.44031	E+02 BASIN	STORAGE=0.4	063E-03 PERCEN	T ERROR=	-0.1
	FOR STORM R4-5	1 = 7 MANE	STORM	AREA (SQ 2.77	MI) = 320.55	20.00 252.33	2.39	3.00	319.94	252.00	2.39		
CONTINUI	TY SUMMARY	(AC-F	T) - II	NFLOW=0.4	208E+02	EXCESS=0.0000	E+00 OUTFL	.OW=0.4214	E+02 BASIN	STORAGE=0.4	005E-03 PERCEN	T ERROR=	-0.2
	FOR STORM R5-6	1 = 1 MANE	STORM	AREA (SQ 2.16	MI) = 991.74	0.00 263.54	2.17	3.00	984.16	264.00	2.17		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7955E+02 EXCESS=0.0000E+00 OUTFLOW=0.7943E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.1 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 3.00 977.43 R5-6 MANE 2.15 982.67 263.70 2.14 264.00 2.14 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7838E+02 EXCESS=0.0000E+00 OUTFLOW=0.7827E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R5-6 MANE 2.55 669.02 267.79 1.93 3.00 667.64 267.00 1.93 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7065E+02 EXCESS=0.0000E+00 OUTFLOW=0.7061E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R5-6 MANE 2.89 496.65 268.90 1.71 3.00 495.45 270.00 1.70 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6247E+02 EXCESS=0.0000E+00 OUTFLOW=0.6240E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R5-6 MANE 3.00 319.50 275.61 1.37 3.00 319.38 276.00 1.38 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5039E+02 EXCESS=0.0000E+00 OUTFLOW=0.5032E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 R5-6 MANE 3.00 2.57 2.50 684.58 266.23 2.57 683.78 264.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9427E+02 EXCESS=0.0000E+00 OUTFLOW=0.9421E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 2.46 R5-6 MANE 2.52 653.44 264.51 2.46 3.00 652.59 264.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9018E+02 EXCESS=0.0000E+00 OUTFLOW=0.9012E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R7E-8E MANE 1.76 19.03 266.67 0.91 3.00 19.02 267.00 0.91 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1268E+01 EXCESS=0.0000E+00 OUTFLOW=0.1268E+01 BASIN STORAGE=0.1101E-04 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R7E-8E MANE 1.77 18.85 266.81 0.90 3.00 18.84 267.00 0.90 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1254E+01 EXCESS=0.0000E+00 OUTFLOW=0.1254E+01 BASIN STORAGE=0.1092E-04 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R7E-8E MANE 2.41 8.57 268.50 0.49 3.00 8.54 270.00 0.49 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6750E+00 EXCESS=0.0000E+00 OUTFLOW=0.6756E+00 BASIN STORAGE=0.1319E-04 PERCENT ERROR= -0.1 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R7E-8E MANE 3.00 3.99 3.00 3.99 0.21 269.13 0.21 270.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2917E+00 EXCESS=0.0000E+00 OUTFLOW=0.2928E+00 BASIN STORAGE=0.1256E-04 PERCENT ERROR= -0.4 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R7E-8E MANE 3.00 0.26 292.33 0.01 3.00 0.25 294.00 0.01

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1646E-01 EXCESS=0.0000E+00 OUTFLOW=0.2054E-01 BASIN STORAGE=0.1096E-04 PERCENT ERROR= -24.8

FOR STOR R7E-8E	M = 6 Mane	STORM	AREA (S 2.36	Q MI) = 9.61	10.00 1 272.07	0.60	3.00	9.60	273.00	0.60		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	8313E+00	EXCESS=0.000	0E+00 OUTFLO	DW=0.8321E	E+00 BASIN	STORAGE=0.1	454E-04 PERCENT	ERROR=	-0.1
FOR STOR R7E-8E	M = 7 MANE	STORM	AREA (S 2.43	Q MI) = 8.70	20.00 271.22	0.54	3.00	8.69	273.00	0.54		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	7492E+00	EXCESS=0.000	0E+00 OUTFLO	OW=0.7500E	E+00 BASIN	STORAGE=0.1	049E-04 PERCENT	ERROR=	-0.1
FOR STOR R9N-R9	M = 1 MANE	STORM	AREA (S 2.26	Q MI) = 13.31	0.00 1 278.00	1.08	3.00	13.26	279.00	1.08		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	1613E+01	EXCESS=0.000	0E+00 OUTFLO	DW=0.1611E	+01 BASIN	STORAGE=0.2	018E-04 PERCENT	ERROR=	0.1
FOR STOR R9N-R9	M = 2 MANE	STORM	AREA (S 2.27	Q MI) = 13.16	0.50 5 278.20	1.07	3.00	13.12	279.00	1.07		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	1595E+01	EXCESS=0.000	0E+00 OUTFLO	OW=0.1593E	+01 BASIN	STORAGE=0.1	743E-04 PERCENT	ERROR=	0.1
FOR STOR R9N-R9	M = 3 MANE	STORM	AREA (S 2.76	Q MI) = 8.13	2.80 3 284.79	0.74	3.00	8.13	285.00	0.74		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	1103E+01	EXCESS=0.000	0E+00 OUTFLO	OW=0.1102E	+01 BASIN	STORAGE=0.2	044E-04 PERCENT	ERROR=	0.1
FOR STOR R9N-R9	M = 4 MANE	STORM	AREA (S 3.00	Q MI) = 5.05	16.00 5 284.63	0.46	3.00	5.05	285.00	0.46		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	6843E+00	EXCESS=0.000	0E+00 OUTFLO	DW=0.6838E	+00 BASIN	STORAGE=0.2	050E-04 PERCENT	ERROR=	0.1
FOR STOR R9N-R9	M = 5 MANE	STORM	AREA (S 3.00	Q MI) = 1.59	90.00 9 293.56	0.14	3.00	1.59	294.00	0.14		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	2079E+00	EXCESS=0.000	0E+00 OUTFLO	OW=0.2079E	E+00 BASIN	STORAGE=0.1	894E-04 PERCENT	ERROR=	0.0
FOR STOR R9N-R9	M = 6 Mane	STORM	AREA (S 2.65	Q MI) = 9.46	10.00 5 288.90	0.92	3.00	9.46	288.00	0.92		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	1380E+01	EXCESS=0.000	0E+00 OUTFLO	OW=0.1379E	+01 BASIN	STORAGE=0.1	805E-04 PERCENT	ERROR=	0.1
FOR STOR R9N-R9	M = 7 MANE	STORM	AREA (S 2.68	Q MI) = 8.74	20.00 4 288.39	0.84	3.00	8.73	288.00	0.84		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	1261E+01	EXCESS=0.000	0E+00 OUTFLO	OW=0.1260E	+01 BASIN	STORAGE=0.1	932E-04 PERCENT	ERROR=	0.1
FOR STOR R8E-R9	M = 1 MANE	STORM	AREA (S 0.32	Q MI) = 77.02	0.00 2 273.53	0.96	3.00	76.82	273.00	0.96		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	6728E+01	EXCESS=0.000	0E+00 OUTFLO	DW=0.6728E	E+01 BASIN	STORAGE=0.7	838E-05 PERCENT	ERROR=	0.0
FOR STOR R8E-R9	M = 2 MANE	STORM	AREA (S 0.32	Q MI) = 76.18	0.50 3 273.66	0.95	3.00	75.99	273.00	0.95		
CONTINUITY SUMMARY	(AC-F	T) - II	NFLOW=0.	6652E+01	EXCESS=0.000	0E+00 OUTFLO	DW=0.6653E	E+01 BASIN	STORAGE=0.7	629E-05 PERCENT	ERROR=	0.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

	R8E-R9	MANE		0.45	38.17	7 276.54	0.55	3.00	38.13	276.00	0.55		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.3	882E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.3882E	E+01 BASIN	STORAGE=0.74	462E-05 PERCEN	T ERROR=	0.0
	FOR STORM R8E-R9	1 = 4 MANE	STORM	AREA (SÇ 0.52	0 MI) = 19.07	16.00 7 276.61	0.27	3.00	19.04	276.00	0.27		
CONTINUIT	Y SUMMARY	(AC-F	T) - IN	NFLOW=0.1	.925E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.1925E	E+01 BASIN	STORAGE=0.7	540E-05 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 5 MANE	STORM	AREA (SQ 0.94	0 MI) = 2.52	90.00 2 293.35	0.04	3.00	2.51	294.00	0.04		
CONTINUIT	Y SUMMARY	(AC-F	T) - IN	NFLOW=0.3	008E+00	EXCESS=0.0000	E+00 OUTFL	.OW=0.3008E	E+00 BASIN	STORAGE=0.6	726E-05 PERCEN	T ERROR=	0.0
	FOR STOR R8E-R9	1 = 6 MANE	STORM	AREA (SQ 0.36	0 MI) = 44.12	10.00 2 279.67	0.68	3.00	44.08	279.00	0.68		
CONTINUIT	Y SUMMARY	(AC-F	T) - IN	NFLOW=0.4	782E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.4782E	E+01 BASIN	STORAGE=0.74	472E-05 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 7 MANE	STORM	AREA (SQ 0.43	0 MI) = 40.11	20.00 1 279.56	0.62	3.00	40.07	279.00	0.62		
CONTINUIT	Y SUMMARY	(AC-F	T) - IN	NFLOW=0.4	334E+01	EXCESS=0.0000	E+00 OUTFL	.OW=0.4334E	E+01 BASIN	STORAGE=0.70	666E-05 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 1 MANE	STORM	AREA (SQ 0.39	0 MI) = 244.41	0.00 1 552.63	0.80	3.00	244.41	552.00	0.80		
CONTINUIT	Y SUMMARY	(AC-F	T) - IN	NFLOW=0.3	084E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.3084E	E+03 BASIN	STORAGE=0.3	153E-01 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 2 MANE	STORM	AREA (SÇ 0.39	9 MI) = 244.30	0.50 5 552.54	0.80	3.00	244.36	552.00	0.80		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.3	083E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.3082E	E+03 BASIN	STORAGE=0.3	153E-01 PERCEN	T ERROR=	0.0
	FOR STORM BSNRT1	1 = 3 MANE	STORM	AREA (SQ 0.41	9 MI) = 241.71	2.80 1 552.95	0.79	3.00	241.71	552.00	0.79		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.3	040E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.3039E	E+03 BASIN	STORAGE=0.3	152E-01 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 4 MANE	STORM	AREA (SQ 0.33	9 MI) = 239.65	16.00 5 552.95	0.78	3.00	239.64	555.00	0.78		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.3	008E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.3007E	E+03 BASIN	STORAGE=0.3	152E-01 PERCEN	T ERROR=	0.0
	FOR STORM BSNRT1	1 = 5 MANE	STORM	AREA (SQ 0.44	9 MI) = 237.69	90.00 9 555.51	0.77	3.00	237.69	555.00	0.77		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.2	977E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.2976E	E+03 BASIN	STORAGE=0.3	151E-01 PERCEN	T ERROR=	0.0
	FOR STOR	1 = 6 MANE	STORM	AREA (SQ 0.46	0 MI) = 242.84	10.00 4 552.79	0.79	3.00	242.84	552.00	0.79		
CONTINUIT	Y SUMMARY	(AC-F	T) - II	NFLOW=0.3	057E+03	EXCESS=0.0000	E+00 OUTFL	.OW=0.3057E	E+03 BASIN	STORAGE=0.3	153E-01 PERCEN	T ERROR=	0.0
	FOR STORM BSNRT1	1 = 7 MANE	STORM	AREA (SQ 0.37	0 MI) = 242.32	20.00 2 552.68	0.79	3.00	242.32	552.00	0.79		

CONTINUITY SUMMARY	(AC-F	() - I	NFLOW=0.3	049E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3049E	+03 BASIN	STORAGE=0.3	153E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 1 MANE	STORM	AREA (SQ 0.50	MI) = 244.41	0.00 L 552.74	0.80	3.00	244.41	552.00	0.80		
CONTINUITY SUMMARY	(AC-F	[) - II	NFLOW=0.3	084E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3083E	+03 BASIN	STORAGE=0.3	501E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 2 MANE	STORM	AREA (SQ 0.43	MI) = 244.30	0.50 5 552.89	0.80	3.00	244.36	552.00	0.80		
CONTINUITY SUMMARY	(AC-F1	[) - II	NFLOW=0.3	082E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3082E	+03 BASIN	STORAGE=0.3	501E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 3 MANE	STORM	AREA (SQ 0.49	MI) = 241.71	2.80 L 553.29	0.79	3.00	241.71	555.00	0.79		
CONTINUITY SUMMARY	(AC-F	[) - II	NFLOW=0.3	040E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3039E	+03 BASIN	STORAGE=0.3	500E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 4 MANE	STORM	AREA (SQ 0.36	MI) = 239.64	16.00 4 555.76	0.78	3.00	239.64	555.00	0.78		
CONTINUITY SUMMARY	(AC-FI	[) - II	NFLOW=0.3	007E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3007E	+03 BASIN	STORAGE=0.3	599E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 5 MANE	STORM	AREA (SQ 0.37	MI) = 237.69	90.00 9 555.79	0.77	3.00	237.69	555.00	0.77		
CONTINUITY SUMMARY	(AC-F	[) - II	NFLOW=0.2	976E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.2976E	+03 BASIN	STORAGE=0.3	598E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 6 MANE	STORM	AREA (SQ 0.50	MI) = 242.84	10.00 4 553.18	0.79	3.00	242.83	552.00	0.79		
CONTINUITY SUMMARY	(AC-F	() - I	NFLOW=0.3	057E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3057E	+03 BASIN	STORAGE=0.3	500E-01 PERCENT	ERROR=	0.0
FOR STOR BSNRT2	M = 7 MANE	STORM	AREA (SQ 0.36	MI) = 242.32	20.00 2 552.92	0.79	3.00	242.31	555.00	0.79		
CONTINUITY SUMMARY	(AC-FI	[) - II	NFLOW=0.3	049E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3048E	+03 BASIN	STORAGE=0.3	500E-01 PERCENT	ERROR=	0.0
FOR STOR R10-11	M = 1 MANE	STORM	AREA (SQ 3.04	MI) = 244.41	0.00 L 557.55	25.54	3.00	244.41	558.00	25.53		
CONTINUITY SUMMARY	(AC-F	[) - II	NFLOW=0.3	125E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3119E	+03 BASIN	STORAGE=0.6	746E+00 PERCENT	ERROR=	0.0
FOR STOR R10-11	M = 2 MANE	STORM	AREA (SQ 3.07	MI) = 244.36	0.50 5 558.85	25.53	3.00	244.35	558.00	25.52		
CONTINUITY SUMMARY	(AC-FI	[) - II	NFLOW=0.3	124E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3117E	+03 BASIN	STORAGE=0.6	746E+00 PERCENT	ERROR=	0.0
FOR STOR R10-11	M = 3 MANE	STORM	AREA (SQ 3.00	MI) = 241.71	2.80 L 559.89	25.15	3.00	241.70	561.00	25.13		
CONTINUITY SUMMARY	(AC-F	() - I	NFLOW=0.3	077E+03	EXCESS=0.0000E	+00 OUTFL	OW=0.3071E	+03 BASIN	STORAGE=0.6	744E+00 PERCENT	ERROR=	0.0
FOR STOR R10-11	M = 4 Mane	STORM	AREA (SQ 3.00	MI) = 239.64	16.00 4 561.16	24.84	3.00	239.64	561.00	24.84		

	FOR STORM	l = 5 S	TORM AREA	(SQ MI) =	90.00							
	R10-11	MANE	3.0	7 237.6	8 560.85	24.53	3.00	237.68	561.00	24.53		
CONTINUIT	Y SUMMARY	(AC-FT)	- INFLOW=	0.3003E+03	EXCESS=0.0	000E+00 OUT	FLOW=0.299	6E+03 BASIN	STORAGE=0	.6743E+00 PERCENT	F ERROR=	0.0
		(-)										
	FOR STORM	1 = 6 S	TORM AREA	(SQ MI) =	10.00							
	R10-11	MANE	3.0	7 242.8	3 560.81	25.40	3.00	242.83	558.00	25.38		
CONTINUET		(AC ET)		2 2100E102		AAAELAA OUT		DELAS BACTN		CTALE OR DEPCENT		0 0
CONTINUTI	T SUPPART	(AC-FT)	- INFLOW=	0.31000403	EXCESS=0.0	0002+00 001	FLOW=0.510	ZETUS DASIN	STURAGE=0	.0/442+00 PERCEN	ERROR=	0.0
	FOR STORM	l = 7 S	TORM AREA	(SQ MI) =	20.00							
	R10-11	MANE	3.00	242.3	1 558.78	25.30	3.00	242.31	561.00	25.30		
CONTINUIT	'Y SUMMARY	(AC-FT)	 INFLOW=0 	0.3097E+03	EXCESS=0.0	000E+00 OUT	FLOW=0.309	0E+03 BASIN	STORAGE=0	.6745E+00 PERCENT	F ERROR=	0.0

*** NORMAL END OF HEC-1 ***

100yr-24hr-Ultimate

1**	********	********	******	*******	***
*					*
*	FLOOD HYD	DROGRAPH F	PACKAGE	(HEC-1)	*
*		JUN	1998	. ,	*
*		VERSION 4	1.1		*
*					*
*	RUN DATE	20JUL23	TIME	10:25:33	*
*					*
**	********	********	******	*******	***

****	***************************************	****
*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*
****	******	****

х	Х	XXXXXXX	XXX	XXX		Х
х	Х	х	Х	Х		XX
Х	Х	х	Х			Х
XXXXX	XX	XXXX	Х		XXXXX	Х
х	Х	х	Х			Х
х	Х	х	Х	Х		Х
Х	Х	XXXXXXX	XXX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

				HEC-1	INPUT						PAGE	1
LINE	ID	1	.2	4.	5.	6.	7.	8.	9.	10		
1	ID	CROSS	ROADS EAST [ORAINAGE	INFRAST	RUCTURE						
2	ID	POWERL	INE CORRIDO	2								
3	ID	RESERV	E ROUTING O	BASIN	53R N OF	SR101 &	E OF HAY	YDEN RD,	SCOTTSD	ALE, AZ		
4	ID	INFLOW	HYDROGRAPHS	5 FROM T	he ppsadi	MS DRAFT	FLO-2D I	MODEL:				
5	ID	100-YR,	24-HR BASE	W/WALLS	(W/ MOD	IFICATION	NS TO CO	NTAIN POL	VERLINE /	AND		
6	ID	PIM	A ROAD FLOWS	5.								
7	ID											
8	ID	PREPAR	ED BY: T.Y.I	IN INTE	RNATIONA	L; LAST M	MODIFIED	: 09/14				
9	ID	MODELER	S: RK, MW									
10	ID											
11	ID	REVISE	D BY: HUBBA	RD ENGIN	EERING;	LAST MODI	IFIED: 0	8/07/18				
12	ID	MODELER	S: MSW, ES									
13	ID	REVISIO	NS NOTED WI	ГН НЕ								
14	ID	NEW	NEW PROP CONDITION MODEL, WITH POWERLINE AND BASIN 53R									
15	ID	THI	THIS IS THE ULTIMATE CONDITION MODEL									
16	ID											
17	ID	REVISE	REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19									
18	ID	MODELER	MODELERS: MSW									
19	ID	XKSAT A	DJUSTMENT									
20	ID											
21	ID	REVISE	D BY: HUBBA	RD ENGIN	EERING;	LAST MOD	IFIED: 0	7/15/20				
22	ID	MODELER	S: MSW, TSW									
23	ID	REVISIO	NS NOTED WI	ГН НЕ (Н	ubbard Ei	ngineerin	ng)					
24	ID	NEW	PROPOSED CO	ONDITION	MODEL,	ACCOUNT F	FOR WHAT	HAS BEE	N			
25	ID	CON	STRUCTED IN	PHASE 1	INFRAST	RUCTURE,	DETAIL (OUT NEW (CP			
26	ID	ACC	OUNT FOR HIG	SHER C F	ACTOR ANI	D IMPERVI	IOUSNESS	, ADD RE	FENTION			
27	ID	FIR	ST FLUSH RE	FENTION A	ADDED AS	DIVERT (CARD WIT	H VOLUME	REQUIRE	D		
28	ID											
29	ID	REVISE	D BY: HUBBA	RD ENGIN	EERING;	LAST MODI	IFIED: 0	7/20/23				
30	ID	MOD	ELERS: MSW,	TSW								
31	ID	REV	ISIONS NOTE	O WITH H	e (hubbai	RD ENGINE	EERING)					
32	ID	BAS	IN 2E WAS SE	PLIT AT	CENTER PO	DINT DUE	TO FLOW	UNDER 10	91			
33	ID											
34	IT	3	0 0	1000								
35	IN	15										
36	IO	5										
	*DIA	GRAM										
	*											
37	JD	3.849 0.00	01									
38	PC	0.000 0.0	02 0.005	0.008	0.011	0.014	0.017	0.020	0.023	0.026		
39	PC	0.029 0.0	32 0.035	0.038	0.041	0.044	0.048	0.052	0.056	0.060		
40	PC	0.064 0.0	68 0.072	0.076	0.080	0.085	0.090	0.095	0.100	0.105		

	PC	0.110	0.115	0.120	0.126	0.133	0.140	0.147	0.155	0.163	0.172		
10	DC	0 101	0 101	0 202	0 210	0 226	0 257	0 202	0 207	0 662	0 707		
42	PC	0.191	0.191	0.205	0.218	0.230	0.257	0.285	0.30/	0.005	0.707		
43	PC	0.735	0.758	0.776	0.791	0.804	0.815	0.825	0.834	0.842	0.849		
44	PC	0.856	0.863	0.869	0.875	0.881	0.887	0.893	0.898	0.903	0.908		
10	DC	0 012	0 019	0 022	0 026	0 020	0 024	0 020	0 042	0 046	0 050		
45	PC	0.915	0.910	0.922	0.920	0.950	0.954	0.930	0.942	0.940	0.950		
46	PC	0.953	0.956	0.959	0.962	0.965	0.968	0.971	0.974	0.977	0.980		
47	PC	0.983	0.986	0.989	0.992	0.995	0.998	1.000					
10	סד	2 657	10.0										
40	JD	5.057	10.0										
49	JD	3.533	20.0										
	*												
					HEC-1							PAGE 2	
					HLC-1	TINFUT						FAUL 2	
LINE	ID.	1.	2.		4.	5.	6.	7.	8.	9.	10		
50	KK	76THST											
51	KM	7	'6TH ST C	HANNEL H	YDROGRAPI	H FROM P	INNACLE	PEAK SOU	TH ADMS				
52	КM	1	00-VR 2	4-HR FLO		(XS 98)						
52		0.24	.00 11(; 2	+ III I LO	20 HODEI)						
53	BA	0.24											
54	QI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
55	ŌT	a aa	a aa	a aa	a aa	a aa	a aa	a aa	a aa	a aa	a aa		
55	Q1 oT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
56	QI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01		
57	OI	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.03	0.05		
58	ÕT	0 09	0 11	0 1/	Q 21	0 31	0 51	0 76	3 70	17 69	17 79		
50	U U	0.09	0.11	0.14	0.21	0.54	0.51	0.70	5.70	17.09	47.75		
59	QI	68.57	54.61	42.75	35.61	32.34	29.25	26.13	22.83	19.41	18.11		
60	OI	16.15	14.54	13.75	12.53	12.00	11.44	10.52	9.81	9.34	9.09		
61	ΛT	0 11	Q 71	2 2 Z	8 05	7 67	7 75	7 /7	7 69	6 97	6 77		
<u>.</u>	ČT ČT	2.11	0./1	6.57	5.05	7.07		/ . 4/	7.00	5.57	5.//		
62	Q1	6.59	6.44	6.32	6.12	5.95	5.87	5.70	5.84	5.41	5.44		
63	OI	4.56	4.81	4.75	4.78	4.69	4.67	4.61	4.36	4.20	4.00		
64	ÔT	2 75	2 51	2 /0	2 / 2	2 61	2 65	2 19	2 36	2 10	2 07		
04	QI	5.75	5.51	2.49	5.45	5.01	5.05	2.40	2.50	2.19	2.07		
65	QI	1.94	1.72	1.71	1.36	1.48	1.13	1.13	1.20	1.10	1.06		
66	OI	1.06	1.00	0.94	0.89	0.85	0.81	0.78	0.74	0.72	0.70		
67	с- ОТ	0 67	0 61	0 62	0 50	0 57	0 55	0 52	0 51	0 10	0 17		
67	QI	0.07	0.04	0.02	0.59	0.57	0.55	0.55	0.51	0.49	0.47		
68	QI	0.45	0.44	0.42	0.40	0.39							
	*												
69	KK	SB01A	BASIN										
70	RΔ	0 061											
70		0.001											
/1	РВ	2./21											
72	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.075		
73	PC	0 087	0 000	A 119	0 150	0 231	0 113	0 766	0 875	Q 916	0 911		
75		0.007	0.055	0.115	0.150	1 000	0.415	0.700	0.075	0.910	0.944		
74	PC	0.956	0.968	0.979	0.990	1.000							
75	LG	0.25	0.25	4.03	0.56	45							
76		A 130	Q 221										
76	UC	0.439	0.231										
76 77	UC UA	0.439 0	0.231 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78	UC UA UA	0.439 0 100	0.231 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78	UC UA UA *	0.439 0 100	0.231 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78	UC UA UA *	0.439 0 100	0.231 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78	UC UA UA *	0.439 0 100	0.231 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78 79	UC UA UA *	0.439 0 100 SB01A	0.231 3.0 DIVERT	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
76 77 78 79 80	UC UA VA * KK	0.439 0 100 SB01A	0.231 3.0 DIVERT	5.0 OF ETRS	8.0 T ELUSH)	12.0 /01.1ME_E	20.0 Or bastn	43.0 SB014	75.0	90.0	96.0		
76 77 78 79 80	UC UA UA * KK KM	0.439 0 100 SB01A	0.231 3.0 DIVERT DIVERSION	5.0 OF FIRS	8.0 T FLUSH V	12.0	20.0 OR BASIN	43.0 SB01A	75.0	90.0	96.0		
76 77 78 79 80 81	UC UA UA * KK KM KM	0.439 0 100 SB01A F	0.231 3.0 DIVERT DIVERSION FIRST FLU	5.0 OF FIRS SH VOL =	8.0 T FLUSH \ 1.383 AG	12.0 /OLUME F(C-FT -HE	20.0 OR BASIN	43.0 SB01A	75.0	90.0	96.0		
76 77 78 79 80 81 82	UC UA UA * KK KM KM DT	0.439 0 100 SB01A F RET01A	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383	5.0 OF FIRS SH VOL =	8.0 T FLUSH \ 1.383 AG	12.0 /OLUME FC C-FT -HE	20.0 OR BASIN	43.0 SB01A	75.0	90.0	96.0		
76 77 78 79 80 81 82 83	UC UA VA KK KM CT DT	0.439 0 100 SB01A F RET01A 0.0	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0	5.0 OF FIRS SH VOL = 20.0	8.0 T FLUSH \ 1.383 A(30.0	12.0 /OLUME F6 2-FT -HE 40.0	20.0 OR BASIN 50.0	43.0 SB01A 60.0	75.0	90.0	96.0		
76 77 78 79 80 81 82 83	UC UA VA KK KM DT DI	0.439 0 100 SB01A E F RET01A 0.0	0.231 3.0 DIVERT DIVERSION CIRST FLU 1.383 10.0	5.0 OF FIRS SH VOL = 20.0	8.0 T FLUSH V 1.383 A(30.0	12.0 /OLUME F(C-FT -HE 40.0	20.0 OR BASIN 50.0	43.0 SB01A 60.0	75.0 100.0	90.0 150.0	96.0 200.0		
76 77 78 79 80 81 82 83 84	UC UA VA * KK KM KM DT DI DI Q	0.439 0 100 SB01A F RET01A 0.0 0.0	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0	5.0 OF FIRS SH VOL = 20.0 20.0	8.0 T FLUSH V 1.383 A0 30.0 30.0	12.0 /OLUME F(C-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 83 84	UC UA * KK KM KM DT DI DQ *	0.439 0 100 SB01A C F RET01A 0.0 0.0	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0	5.0 OF FIRS SH VOL = 20.0 20.0	8.0 T FLUSH V 1.383 A0 30.0 30.0	12.0 /OLUME Ff C-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 83 84	UC UA * KK KM KM DT DI DQ *	0.439 0 100 SB01A C F RET01A 0.0 0.0	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0	5.0 OF FIRS SH VOL = 20.0 20.0	8.0 T FLUSH V 1.383 A0 30.0 30.0	12.0 VOLUME F0 C-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84	UC UA * KK KM DT DI DQ *	0.439 0 100 SB01A E F RET01A 0.0 0.0	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0	5.0 OF FIRS SH VOL = 20.0 20.0	8.0 T FLUSH V 1.383 AC 30.0 30.0	12.0 VOLUME F C-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85	UC UA * KK KM DT DI DQ * KK	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0 COMBINE	5.0 OF FIRS SH VOL = 20.0 20.0	8.0 T FLUSH V 1.383 A0 30.0 30.0	12.0 /OLUME Ff C-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 84 85 86	UC UA * KK KM DT DI DQ * KK KM	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH \ 1.383 A0 30.0 30.0 5TH ST (1	12.0 /OLUME F0 2-FT -HE 40.0 40.0 /ILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 83 84 85 86 85	UC UA VA KK KM DT DI DQ * KK KM HC	0.439 0 100 SB01A F RET01A 0.0 0.0 CP-1 L 2	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH V 1.383 AC 30.0 30.0 5TH ST (1	12.0 VOLUME Fr 2-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87	UC UA * KK KM DT DI DQ * KK KM HC	0.439 0 100 SB01A E F RET01A 0.0 0.0 CP-1 L 2	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH V 1.383 A0 30.0 30.0 5TH ST (1	12.0 VOLUME F4 C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87	UC UA * KK KM DT DI DQ * KK KM HC *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE LEGACY BL 0.301	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH \ 1.383 A0 30.0 30.0 5TH ST (1	12.0 /OLUME Ff C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 83 84 85 86 87	UC UA * KK KM DT DI DQ * KK KM HC *	0.439 0 100 SB01A F RET01A 0.0 0.0 CP-1 L 2	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH \ 1.383 A(30.0 30.0 5TH ST (1	12.0 VOLUME F(C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87 88	UC UA * KK KM DT DI DQ * KK KK KK	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH V 1.383 A0 30.0 30.0 5TH ST (1	12.0 /OLUME F4 2-FT -HE 40.0 40.0	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87 88 88	UC UA * KK KM DT DI DQ * KK KM HC *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7	8.0 T FLUSH N 1.383 A0 30.0 30.0 5TH ST (1	12.0 /OLUME Ff C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87 88 88 89	UC UA VA KK KM DT DI DQ * KK KM HC *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP-	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP-	8.0 T FLUSH V 1.383 AC 30.0 30.0 5TH ST (1	12.0 VOLUME F(C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE	43.0 SB01A 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90	UC UA * KK KM DT DI DQ * KK KM HC * KK KM RK	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP-1 0.018	8.0 T FLUSH V 1.383 A0 30.0 30.0 5TH ST (1	12.0 VOLUME F4 C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	UC UA * KK KM DT DI DQ * KK KM HC * KK KM RK *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH \ 1.383 A0 30.0 30.0 5TH ST (1	12.0 VOLUME Ff C-FT -HE 40.0 40.0 MILLER RI	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
76 77 78 80 81 82 83 84 85 86 87 88 88 89 90	UC UA * KK KM KM DI DQ * KK KM HC * KK KK KK *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH V 1.383 A0 30.0 30.0 5TH ST (P	12.0 VOLUME FO C-FT -HE 40.0 40.0 MILLER RI TRAP	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	DAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	UC UA * KK KM DT DI DQ * KK KM C * KK KK RK *	0.439 0 100 SB01A E F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH V 1.383 A0 30.0 5TH ST (P 2W HEC-1	12.0 VOLUME F C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 89 90	UC UA * KK KM DT DI DQ * KK KM C * KK KK KK *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 70 1 TO CP- 0.018	8.0 T FLUSH V 1.383 A0 30.0 5TH ST (1 2W HEC-1	12.0 VOLUME Ff C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L)	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 89 90 LINE	UC UA X KK KM DT DI DQ X KK KM HC X KK KK KK X TD.	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH \ 1.383 A0 30.0 30.0 5TH ST (1 2W HEC-1 4.	12.0 VOLUME FR C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5.	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L) 0.00	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 89 90 LINE	UC UA * KK KM DT DI DQ * KK KM HC * ID.	0.439 0 100 SB01A F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH V 1.383 AC 30.0 30.0 5TH ST (P 2W HEC-1	12.0 VOLUME F C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5.	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L) 0.00	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90	UC UA * KK KM DT DI DQ * KK KM HC * KK KM RK * ID.	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH V 1.383 A0 30.0 5TH ST (1 2W HEC-1 4.	12.0 VOLUME FC C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5.	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L) 0.00	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE	UC UA * KK KM DT DI DQ * KK KM HC * KK KM RK * ID.	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH \ 1.383 A0 30.0 5TH ST (1 2W HEC-1 4.	12.0 VOLUME FR C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5.	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L) 0.00	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 87 88 89 90 LLINE 91	UC UA * KK KM DT DI DQ * KK KM HC * ID. KK	0.439 0 100 SB01A F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE .EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018	8.0 T FLUSH V 1.383 AC 30.0 30.0 5TH ST (P 2W HEC-1	12.0 VOLUME F C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5.	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000	43.0 SB01A 60.0 60.0 L) 0.00	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 LINE 91 92	UC UA * KK KM DT DI DQ * KK KM C * KK KM RK * ID. KK	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW	0.231 3.0 DIVERT DIVERSION TRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SB0	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 7 1 TO CP-1 0.018 3. 2E WAS SI	8.0 T FLUSH V 1.383 A0 30.0 5TH ST (M 2W HEC-1 4.	12.0 VOLUME Fr C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93	UC UA * KK KM DT DI DQ * KK KM C * KK KK RK * ID. KK	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SB0	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 70 1 TO CP- 0.018 3. 2E WAS SI	8.0 T FLUSH N 1.383 AC 30.0 30.0 5TH ST (P 2W HEC-1 4. PLIT INTO	12.0 VOLUME Ff C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: HE	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 88 89 90 LLINE 91 92 93	UC UA * KK KM DT DI DQ * KK KM HC * ID. KK KM KM	0.439 0 100 SB01A F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE .EGACY BL' 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SASIN SB0 ND SOUTH	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018 3. 2E WAS SI OF CAVA:	8.0 T FLUSH V 1.383 AG 30.0 30.0 5TH ST (P HEC-1 4. PLIT INTO SSON	12.0 VOLUME F C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 LINE 91 92 93 94	UC UA X KK KM DT DI DQ * KK KM C * KK KM KM KM KM KM BA	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SB0 ND SOUTH	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 7 1 TO CP-1 0.018 3. 2E WAS SI OF CAVA:	8.0 T FLUSH V 1.383 A0 30.0 5TH ST (P 2W HEC-1 4. PLIT INTO 55ON	12.0 VOLUME FF C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93 94 95	UC UA * KK KM DT DI QQ * KK KM CT DI QQ * KK KM KM KM KM BA LG	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN BASIN SB0 ND SOUTH 0.25	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 70 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03	8.0 T FLUSH 1 1.383 AG 30.0 30.0 5TH ST (1 2W HEC-1 4. PLIT INTO SSON 0.56	12.0 VOLUME Ff C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93 94 95 96	UC UA * KK KM DT DI DQ * KK KM HC * ID. KK KM BA LG	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25 0.275	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE .EGACY BL' 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SASIN SB0 ND SOUTH 0.25 0.224	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03	8.0 T FLUSH V 1.383 AG 30.0 30.0 5TH ST (P HEC-1 4. PLIT INTO SSON 0.56	12.0 VOLUME FR C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 LINE 91 92 93 94 95 96	UC UA WA KK KM DT DI DQ * KK KM HC * KK KM KM KM KM BA LG UC	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25 0.276	0.231 3.0 DIVERT DIVERSION CIRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN BASIN SB0 ND SOUTH 0.25 0.224	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03	8.0 T FLUSH V 1.383 AG 30.0 30.0 5TH ST (P 2W HEC-1 4. PLIT INTO SSON 0.56	12.0 VOLUME FF C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA	75.0 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 LINE 91 92 93 94 95 96 97	UC UA * KK KM DT DI QQ * KK KM HC * ID. KK KM KM BA LG UC UA	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25 0.276 0	0.231 3.0 DIVERT DIVERSION IRST FLU 1.383 10.0 10.0 COMBINE EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SASIN SB0 ND SOUTH 0.25 0.224 3.0	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 70 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03 5.0	8.0 T FLUSH V 1.383 AG 30.0 30.0 5TH ST (1 2W HEC-1 4. PLIT INTO SSON 0.56 8.0	12.0 VOLUME F4 C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45 12.0	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR 20.0	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA 43.0	75.0 100.0 100.0 8. VASSON 75.0	90.0 150.0 150.0	96.0 200.0 200.0 10 96.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 LINE 91 92 93 94 95 96 97 98	UC UA WA KK KM KM DT DI DQ * KK KM HC * KK KM RK * ID. KK KM BA LG UC UA UA	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25 0.276 0 100	0.231 3.0 DIVERT DIVERSION TIRST FLU 1.383 10.0 10.0 COMBINE .EGACY BL' 0.301 ROUTE COUTE CP- 0.0200 2. BASIN SB0 ND SOUTH 0.25 0.224 3.0	5.0 OF FIRS SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03 5.0	8.0 T FLUSH V 1.383 AG 30.0 30.0 5TH ST (P HEC-1 4. PLIT INTO SSON 0.56 8.0	12.0 /OLUME FR C-FT -HE 40.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45 12.0	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR 20.0	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA 43.0	75.0 100.0 100.0 8. VASSON 75.0	90.0 150.0 150.0	96.0 200.0 200.0 10 96.0	PAGE 3	
76 77 78 79 80 81 82 83 84 85 86 87 88 87 88 89 90 LLINE 91 92 93 94 95 96 97 98	UC UA * KK KM DT DI DQ * KK KM HC * KK KM KM KM BA LG UC UA *	0.439 0 100 SB01A C F RET01A 0.0 0.0 CP-1 L 2 R1A-2W F 1114 1. SB02NW E 0.0193 0.25 0.276 0 100	0.231 3.0 DIVERT DIVERSION CIRST FLU 1.383 10.0 10.0 COMBINE .EGACY BL 0.301 ROUTE COUTE CP- 0.0200 2. BASIN BASIN SB0 ND SOUTH 0.25 0.224 3.0	5.0 OF FIRS: SH VOL = 20.0 20.0 VD AND 7 1 TO CP- 0.018 3. 2E WAS SI OF CAVA: 4.03 5.0	8.0 T FLUSH V 1.383 A(30.0 30.0 5TH ST (P 2W HEC-1 4. PLIT INT(SSON 0.56 8.0	12.0 VOLUME FF 240.0 40.0 MILLER RI TRAP INPUT 5. D SUB BA: -HE 45 12.0	20.0 OR BASIN 50.0 50.0 D CHANNE 2.000 6. SINS NOR 20.0	43.0 SB01A 60.0 60.0 L) 0.00 7. TH OF CA 43.0	75.0 100.0 100.0 8. VASSON 75.0	90.0 150.0 150.0	96.0 200.0 200.0 10 96.0	PAGE 3	

99	KK	SB02NW	DIVERT									
100	КМ	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB02NW				
101	KM	F	IRST FLU	SH VOL =	0.437 AC	-FT -HE						
102	DT	RFT2NW	0.437									
103	DT	0 0	5.0	10 0	15 0	20 Q	25 A	30 0	35 0	40 Q	45 0	
10/		50.0	55.0	60.0	65 0	70 0	80.0	90.0	100 0	150 0	200 0	
104	DO	50.0	55.0	10.0	15 0	20.0	25.0	20.0	25.0	10.0	200.0	
105	DQ	0.0	5.0	10.0	15.0	20.0	25.0	50.0	35.0	40.0	45.0	
100	DQ *	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0	
107	KK	CP-02W	COMBINE									
108	KM	C	COMBINE R	OUTE FROM	1 1A-2W h	ITH NEW	SUB BASI	N SBØ2N	N			
109	HC	2	0.305									
	*											
110	КК	R2W-2	ROUTE									
111	RK	1380	0.0140	0.018		TRAP	2.000	0.00				
	*											
112	ĸĸ	SBOIC	BACTN									
112		0 027	DASIN									
113	БА	0.027	0.25	4 02	0 50	45						
114	LG	0.25	0.25	4.03	0.56	45						
115	UC	0.345	0.366									
116	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
117	UA	100										
	*											
118	KK	SB01C	DIVERT									
119	КМ	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB01C				
120	КМ	F	IRST FLU	SH VOL =	0.612 AC	-FT -HE						
121	DT	RET01C	0.612									
122	DT	A A	10 0	20 0	30 0	40 Q	50 0	60 0	100 0	150 O	200 0	
122		0.0 0 0	10.0	20.0	30.0	10.0	50.0	60.0	100.0	150.0	200.0	
125	ЪQ *	0.0	10.0	20.0	50.0	40.0	50.0	00.0	100.0	130.0	200.0	
124	KK	R1C-1B	ROUTE									
125				0 01 0		CTDC	F 000					
	*	542	0.005	0.013		CIRC	5.000					
	*	542	0.005	0.013	HEC-1	CIRC INPUT	5.000					PAGE 4
	*	542	0.005	0.013	HEC-1	CIRC INPUT	5.000					PAGE 4
LINE	* ID.	1.	2.	0.013	HEC-1	CIRC INPUT	5.000	7.	8.	9.	10	PAGE 4
LINE	* ID.	1.	2.	0.013 3	HEC-1	CIRC INPUT	5.000	7.	8.	9.	10	PAGE 4
LINE	ID.	1.	0.005	0.013 3	HEC-1	CIRC INPUT	5.000	7.	8.	9.	10	PAGE 4
126	ID.	SB01B	BASIN	0.013	HEC-1	CIRC INPUT	5.000	7.	8.	9.	10	PAGE 4
126 127	ID. KK	542 1. SB01B 0.024	0.005 2. BASIN	0.013	HEC-1	CIRC INPUT	5.000	7.	8.	9.	10	PAGE 4
126 127 128	ID. KK BA LG	542 1. SB01B 0.024 0.25	0.005 2. BASIN 0.25	0.013 3 4.03	HEC-1 4 0.56	CIRC INPUT 5.	5.000	7.	8.	9.	10	PAGE 4
126 127 128 129	ID. KK BA LG UC	542 1. SB01B 0.024 0.25 0.304	0.005 2. BASIN 0.25 0.298	0.013 3 4.03	HEC-1	CIRC INPUT 5 45	5.000	7.	8.	9.	10	PAGE 4
126 127 128 129 130	ID. KK BA LG UC UA	542 1. SB01B 0.024 0.25 0.304 0	0.005 2. BASIN 0.25 0.298 3.0	0.013 3 4.03 5.0	HEC-1 4 0.56 8.0	CIRC INPUT 5. 45 12.0	5.000 6 20.0	43.0	8. 75.0	9. 90.0	96.0	PAGE 4
126 127 128 129 130 131	ID. KK BA LG UC UA VA *	542 1. SB01B 0.024 0.25 0.304 0 100	0.005 2. BASIN 0.25 0.298 3.0	0.013 3 4.03 5.0	HEC-1 4 0.56 8.0	CIRC INPUT 5. 45 12.0	5.000 6 20.0	43.0	75.0	9. 90.0	10 96.0	PAGE 4
126 127 128 129 130 131	ID. KK BA LG UC UA VA *	542 1. SB01B 0.024 0.25 0.304 0 100	0.005 2. BASIN 0.25 0.298 3.0	0.013 3 4.03 5.0	HEC-1 4 0.56 8.0	CIRC INPUT 5. 45 12.0	5.000 6 20.0	7. 43.0	8. 75.0	9. 90.0	10 96.0	PAGE 4
LINE 126 127 128 129 130 131	ID. KK BA LG UC UA VA *	542 SB01B 0.024 0.25 0.304 0 100 SB01B	0.005 2. BASIN 0.25 0.298 3.0 DIVERT	0.013 3 4.03 5.0	HEC-1 4 0.56 8.0	CIRC INPUT 5. 45 12.0	5.000 6 20.0	7. 43.0	8. 75.0	9. 90.0	10 96.0	PAGE 4
LINE 126 127 128 129 130 131 132 133	ID. KK BA LG UC UA UA X KK KM	542 SB01B 0.024 0.25 0.304 0 100 SB01B	0.005 MASIN 0.25 0.298 3.0 DIVERT DIVERT	0.013 3 4.03 5.0 OF FIRST	HEC-1 4 0.56 8.0	CIRC INPUT 5 45 12.0 'OLUME FC	5.000 6 20.0 DR BASIN	7. 43.0 SB01B	8. 75.0	9. 90.0	10 96.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134	KK * ID. KK BA LG UC UA UA * KK KM KM	542 SB01B 0.024 0.25 0.304 0 100 SB01B F	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERT DIVERSION	0.013 3 4.03 5.0 OF FIRST SH VOL =	HEC-1 4 0.56 8.0 [.] FLUSH V 0.543 AC	CIRC INPUT 5 45 12.0 OLUME F(:-FT -HE	5.000 6 20.0 DR BASIN	7. 43.0 SB01B	8. 75.0	9. 90.0	10 96.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135	ID. KK BA LG UC UA X KK KM KM DT	542 SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543	0.013 3 4.03 5.0 OF FIRST SH VOL =	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE	5.000 6 20.0 DR BASIN	7. 43.0 SB01B	8. 75.0	9. 90.0	10 96.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136	ID. KK BA LG UC UA VA * KK KM KM DI DI	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0	HEC-1 4 0.56 8.0 ⁻ FLUSH V 0.543 AC 30.0	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0	5.000 6 20.0 DR BASIN 50.0	7. 43.0 SB01B 60.0	8. 75.0 100.0	9. 90.0 150.0	10 96.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137	KK * ID. KK BA LG UC UA UA * KK KM KM DI DI DD	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERSION TRST FLU 0.543 10.0 10.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0	HEC-1 4 0.56 8.0 [•] FLUSH V 0.543 AC 30.0 30.0	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	9. 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137	KK * ID. KK BA LG UC UA UA * KK KM KM DT DI DQ *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543 10.0 10.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	9. 90.0 150.0 150.0	96.0 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137	KK * ID. KK BA LG UC UA UA * KK KM KM DT DI DQ *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU 0.543 10.0 10.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138	KK * ID. KK BA LG UC UA UA * KK KM KM DT DI DQ * KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 [•] FLUSH V 0.543 AC 30.0 30.0	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139	KK * ID. KK BA LG UC UA UA UA * KK KM DT DI DQ * KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B	0.005 BASIN 0.25 0.298 3.0 DIVERT DIVERSION TRST FLU 0.543 10.0 10.0 COMBINE	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0	HEC-1 4 0.56 8.0 [.] FLUSH V 0.543 AC 30.0 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 8001B	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0	96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KM KM KM KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2	0.005 0.005 0.25 0.298 3.0 DIVERT DIVERT DIVERSION COMBINE COMBINE COMBINE 0.051	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0 8001B	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KM HC *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE COMBINE 0.051	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 30.0 B WITH S	CIRC INPUT 5 45 12.0 OLUME FC -FT -HE 40.0 40.0 801B	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	KK * ID. KK BA LG UC UA UA VA KK KM KM KK KK KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU 0.543 10.0 10.0 COMBINE RI 0.051 ROUTE	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0 8001B	5.000 6 20.0 DR BASIN 50.0 50.0	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KK KK KK KK KK KK KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION COMBINE COMBINE COMBINE COMBINE COMBINE 0.051 ROUTE 0.015	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 DUTE 1C-1 0.025	HEC-1 4 0.56 8.0 • FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0 8001B TRAP	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KK KK KK KK KK *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE RI 0.051 ROUTE 0.015	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 30.0	CIRC INPUT 5 45 12.0 OLUME FO -FT -HE 40.0 40.0 801B TRAP	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0 0.00	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KK KM HC *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE RI 0.051 ROUTE 0.015 BAST	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME F(-FT -HE 40.0 40.0 B01B TRAP	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KK KK KK KK KK KK KK KK KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.225	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE RI 0.051 ROUTE 0.015 BASIN	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025	HEC-1 4 0.56 8.0 • FLUSH V 0.543 AC 30.0 30.0 30.0	CIRC INPUT 5. 45 12.0 OLUME FO FT -HE 40.0 40.0 8001B TRAP	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 144	KK * ID. KK BA LG UC UA UA VA * KK KM KM DT DI DQ * KK KK KM HC * KK KK KK KK KK KK KK KK KK BA	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE COMBINE COMBINE ROUTE 0.015 BASIN	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC -FT -HE 40.0 40.0 8001B TRAP	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0	8. 75.0 100.0 100.0	90.0 90.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 145	KK * ID. KK BA LG UC UA UA * KK KM KM DT DI DQ * KK KK KK KK KK KK LG	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.25	0.005 0.005 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543 10.0 10.0 COMBINE COMBINE RI 0.051 ROUTE 0.015 BASIN 0.25	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FO 40.0 40.0 B01B TRAP 45	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0 0.00	8. 75.0 100.0 100.0	90.0 90.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	KK * ID. KK BA LG UC UA UA * KK KM DT DI DQ V * KK KM HC * KK KK RK * KK BA LG UC	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543 10.0 10.0 COMBINE COMBINE RU 0.051 ROUTE 0.015 BASIN 0.25 0.448	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 8001B TRAP 45	5.000 6 20.0 DR BASIN 50.0 50.0 80.00	7. 43.0 SB01B 60.0 60.0 0.00	8. 75.0 100.0 100.0	90.0 90.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	KK * ID. KK BA LG UC UA UA * KK KM KM DT DI DQ * KK KM HC * KK KK RK *	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION EIRST FLU: 0.543 10.0 10.0 COMBINE R 0.051 ROUTE 0.015 BASIN 0.25 0.448 3.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0	HEC-1 4 0.56 8.0 30.0 30.0 B WITH S 0.56 8.0	CIRC INPUT 5. 45 12.0 OLUME F(-FT -HE 40.0 40.0 B01B TRAP 45 12.0	5.000 6 20.0 DR BASIN 50.0 50.0 80.00 80.00	7. 43.0 SB01B 60.0 60.0 0.00 43.0	8. 75.0 100.0 100.0	9. 90.0 150.0 150.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	KK * ID. KK BA LG UC UA UA * KK KM DT DI DQ * KK KM HC * KK RK * KK BA LG UC UA UA	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0 100	0.005 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543 10.0 10.0 COMBINE COMBINE 0.051 ROUTE 0.015 BASIN 0.25 0.448 3.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0	HEC-1 4 0.56 8.0 	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 8001B TRAP 45 12.0	5.000 6 20.0 DR BASIN 50.0 50.0 80.00 80.00	7. 43.0 SB01B 60.0 60.0 0.00 43.0	8. 75.0 100.0 100.0	90.0 90.0 90.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	KK * ID. KK BA LG UC UA UA * KK KM DT DI DQ * KK KM HC * KK RK KK BA LG UC UA UA UA X	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0 100	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE COMBINE COMBINE ROUTE 0.015 BASIN 0.25 0.448 3.0	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S 0.56 8.0	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 8001B TRAP 45 12.0	5.000 6 20.0 DR BASIN 50.0 50.0 80.00 20.0	7. 43.0 SB01B 60.0 60.0 0.00 43.0	8. 75.0 100.0 100.0	90.0 90.0 150.0 90.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	KK * ID. KK BA LG UC UA UA VA * KK KM HC DI DQ * KK KM KK KK KK KK KK KK KK KK KK KK KK KK K	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0 100 SB02NE	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU 0.543 10.0 10.0 COMBINE COMBINE COMBINE ROUTE 0.051 ROUTE 0.015 BASIN 0.25 0.448 3.0 DIVERT	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0	HEC-1 4 0.56 8.0 FLUSH V 0.543 AC 30.0 30.0 B WITH S 0.56 8.0	CIRC INPUT 5. 45 12.0 OLUME FO -FT -HE 40.0 40.0 40.0 B01B TRAP 45 12.0	5.000 6 20.0 DR BASIN 50.0 50.0 80.00 80.00	7. 43.0 SB01B 60.0 60.0 0.00 43.0	75.0 100.0 100.0	90.0 90.0 150.0 90.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150	KK * ID. KK BA LG UC UA UA * KK KM HC * KK KK KK KK KK KK KK KK KK KK KK KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0 100 SB02NE	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION TIRST FLU: 0.543 10.0 10.0 COMBINE RU 0.051 ROUTE 0.015 BASIN 0.25 0.448 3.0 DIVERT DIVERT DIVERT	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0 OF FIRST	HEC-1 4 0.56 8.0 	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 40.0 B01B TRAP 45 12.0	5.000 6 20.0 DR BASIN 50.0 50.0 80.00 20.0 DR BASIN	7. 43.0 SB01B 60.0 60.0 0.00 43.0 SB02NE	75.0 100.0 100.0	90.0 90.0 90.0	10 96.0 200.0 200.0	PAGE 4
LINE 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	KK * ID. KK BA LG UC UA UA * KK KM DT DI DQ * KK KM HC * KK RK * KK BA LG UC UA UA UA * KK KK KK KK KK KK KK KK	542 1. SB01B 0.024 0.25 0.304 0 100 SB01B C F RET01B 0.0 0.0 CP-01B C 2 R1B-2N 1268 SB02NE 0.0335 0.25 0.406 0 100 SB02NE	0.005 2. BASIN 0.25 0.298 3.0 DIVERT DIVERSION IRST FLU: 0.543 10.0 10.0 COMBINE COMBINE COMBINE 0.051 ROUTE 0.015 BASIN 0.25 0.448 3.0 DIVERT DIVERT DIVERT	0.013 3 4.03 5.0 OF FIRST SH VOL = 20.0 20.0 20.0 DUTE 1C-1 0.025 4.03 5.0 OF FIRST SH VOL =	HEC-1 4 0.56 8.0 	CIRC INPUT 5. 45 12.0 OLUME FC 40.0 40.0 601B TRAP 45 12.0	5.000 20.0 20.0 50.0 50.0 80.00 20.0 20.0 DR BASIN	7. 43.0 SB01B 60.0 60.0 0.00 43.0 SB02NE	8. 75.0 100.0 100.0	90.0 90.0 150.0 90.0	10 96.0 200.0 200.0	PAGE 4

153 154	DI DQ *	0.0 0.0	10.0 10.0	20.0 20.0	30.0 30.0	40.0 40.0	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
155 156 157	КК КМ НС	CP-02N 2	COMBINE COMBINE R 0.085	OUTE 1B-3	2N (BASINS	SB01-B	AND SB0	1-C) WI ⁻	rh sb02ni	Ē		
	*											
158 159	KK RK	R2N-2 1380	ROUTE 0.014	0.018		TRAP	2.000	0.00				
					HEC-1 I	NPUT						PAGE 5
LINE	ID.	1	2.	3.	4	5	6	7.	8.	9.	10	
160	кк	SB02E2	BASIN									
161	КМ	l	BASIN 2E	HAD TO B	E SPLIT AT	CENTER	POINT D	UE TO FI	OW UNDER	R LOOP 10	01	
162 163	KM BA	0 019	THIS IS T	HE WEST	SPLIT -HE							
164	LG	0.019	0.25	4.03	0.61	80						
165	UC	0.210	0.239									
166	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
167	UA *	100										
168	КК	SB02E2	DIVERT									
169	КМ	1	DIVERSION	OF FIRS	T FLUSH VO	LUME FO	R BASIN	SB02E				
170	KM		FIRST FLU	SH VOL =	0.428 AC-	FT -HE						
171	DT	RET2E2	0.428	20.0	20.0	10 0	EQ Q	60.0	100 0	150 0	200 0	
172	DO	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
27.5	*		1010	2010	2010		5010		20010	25010	20010	
174	КК	SB02W	BASIN									
175	BA	0.0571										
176	LG	0.35	0.35	4.33	0.51	0						
178		0.686	0.535 3 0	50	8 0	12 0	20 0	13 0	75 0	90 0	96.0	
179	UA	100	5.0	5.0	0.0	12.0	20.0	45.0	75.0	50.0	50.0	
	*											
180	КК	CP-02	COMBINE									
181	HC	4	0.1816									
	*											
182	КК	R2-3	ROUTE									
183	KM	I	MILLER RD	CHANNEL	FROM SR 1	01L FRE	EWAY TO	MAYO BL	/D			
184	RK *	1260	0.0015	0.030		TRAP	92	4				
185	КК	SB03	BASIN									
186	BA	0.048										
187	LG	0.15	0.25	4.50	0.47	55						
188	UC	0.364	0.294	16.0	20.0	65 0	77 0	01 Q	00.0	04.0	07.0	
189	UA	100	5.0	10.0	50.0	05.0	77.0	04.0	90.0	94.0	97.0	
	*											
191	КК	CP-03	COMBINE									
192	HC *	2										
193	КК	R3-5	ROUTF									
194	KM	1	MILLER RD	CHANNEL	FROM MAYO	BLVD T	O PRINCE	SS BLVD				
195	RK	2396	0.0015	0.03		TRAP	98	4				
	*				HEC-1 I	NPUT						PAGE 6
LINE	ID.	1	2.	3.	4	5	6	7.	8.	9.	10	
196	КК	SB05	BASIN									
197	BA	0.126										
198	LG	0.22	0.25	4.50	0.44	48						
199	UC	0.327	0.226	16.0	20.0	65 0	77 0	04 0	00.0	04 0	07 0	
200 201		0 100	5.0	10.0	0.00	0.00	//.0	84.0	90.0	94.0	97.0	
201	*	100										

202	КК	CP-5A	COMBINE									
202		2 2	CONDINE									
203	HC	2										
	*											
204	кк	SB07W	BASTN									
205	DA	0 0169	5/10/2/1									
205	DA	0.0408	0.25	4 07	0.56	45						
206	LG	0.25	0.25	4.03	0.56	45						
207	UC	0.323	0.237									
208	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
209	LIΔ	100										
200	*	200										
210	KK	SB07W	DIVERT									
211	KM	C	DIVERSION	OF FIRS	Γ FLUSH \	OLUME FO	R BASIN	SB07W				
212	КМ	F	IRST FLUS	SH VOL =	1.060 AC	-FT -HE						
213	DT	RETOT	1 060									
213		0.0	10.0	20.0	20.0	10.0	F0 0	60.0	100 0	150 0	200.0	
214	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
215	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*											
216	КК	R7W-8W	ROUTE									
217	KM								011 EDE			
217	KP	1	IATULN KUP					10 31 1	LOIL FALL	-WAT		
218	KM	F	HE MODIFIE	D ROUTE	TO LOOP	TOT M OF	HAYDEN					
219	RK	3754	0.0013	0.03		TRAP	46	4				
	*											
220	ĸĸ	SBRNM	ΒΔςτΝ									
220		JUONW				/		TC 115				
221	KM	E	SASIN JUSI	SUUTH	JF LEGACY	- FUIUR	E MOB SI	IE -HE				
222	BA	0.0147										
223	LG	0.10	0.25	4.03	0.61	80						
224	UC	0.252	0.200									
225		0	3.0	50	8 0	12 0	20 0	13 0	75 0	90 0	96.0	
225	UA	100	5.0	5.0	0.0	12.0	20.0	40.0	/5.0	50.0	50.0	
226	UA	100										
	*											
227	КК	SB8NW	DIVERT									
228	KM	с-с Г		OF ETRS								
220	NP1	L		01 1 11/2				31 37 31 404				
	1/ 8.4		TRCT FLUC		0 222 40			550				
229	KM	F	IRST FLUS	SH VOL =	0.332 AC	C-FT -HE		020				
229 230	KM DT	F RET8NW	IRST FLUS 0.332	SH VOL =	0.332 AC	C-FT -HE						
229 230 231	KM DT DI	F RET8NW 0.0	IRST FLUS 0.332 10.0	5H VOL = 20.0	0.332 AC	2-FT -HE 40.0	50.0	60.0	100.0	150.0	200.0	
229 230 231 232	KM DT DI DQ	F RET8NW 0.0 0.0	IRST FLUS 0.332 10.0 10.0	SH VOL = 20.0 20.0	0.332 AC 30.0 30.0	40.0 40.0	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
229 230 231 232	KM DT DI DQ *	F RET8NW 0.0 0.0	IRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0	40.0 40.0	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
229 230 231 232	KM DT DI DQ *	F RET8NW 0.0 0.0	IRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 1NPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
239 230 231 232	KM DT DI DQ *	F RET8NW 0.0 0.0	IRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 1NPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232	KM DT DI DQ *	F RET8NW 0.0 0.0	IRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	2-FT -HE 40.0 40.0 INPUT	50.0 50.0	60.0 60.0	100.0 100.0 8	150.0 150.0	200.0 200.0	PAGE 7
239 230 231 232 LINE	KM DT DI DQ * ID.	F RET8NW 0.0 0.0	FIRST FLUS 0.332 10.0 10.0	SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 1NPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
239 230 231 232 LINE	KM DT DI DQ * ID.	F RET8NW 0.0 0.0	FIRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 1NPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE	KM DT DI DQ * ID.	F RET8NW 0.0 0.0	FIRST FLUS 0.332 10.0 10.0	5H VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 1NPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233	KM DT DI DQ * ID.	F RET8NW 0.0 0.0 1.	FIRST FLUS 0.332 10.0 10.0 2	SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1	40.0 40.0 40.0 INPUT	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234	KM DT DQ * ID. KK	F RET8NW 0.0 0.0 1. R8NW8N	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW	SH VOL = 20.0 20.0 3. SUB BAS:	0.332 AC 30.0 30.0 HEC-1 4	2-FT -HE 40.0 40.0 INPUT 5	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235	KM DT DI DQ * ID. KK KM KM	F RET8NW 0.0 0.0 1. R8NW8N	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF	SUB BAS: SUB BAS: OF BAS:	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW	 -FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN 	50.0 50.0 6 T AT CAV DOWN INT	60.0 60.0 7 /ASSON BL	100.0 100.0 8.	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236	KM DT DI DQ * ID. KK KM KM KK	F RET8NW 0.0 0.0 1. R8NW8N 643	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0 0113	SH VOL = 20.0 20.0 3. SUB BAS: 0F BAS: 0 018	0.332 AC 30.0 30.0 HEC-1 4 CN SB8NW CN 8W WAS	 FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP 	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 (ASSON BI 70 4 SUB- 4	100.0 100.0	150.0 150.0	200.0 200.0	PAGE 7
230 231 232 LINE 233 234 235 236	KM DT DQ * ID. KK KM KM KM KK KK	F RET8NW 0.0 0.0 1. R8NW8N F 043	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113	SH VOL = 20.0 20.0 3. SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 EN SB8NW EN SB8NW	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 /ASSON BI 70 4 SUB- 4	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0	200.0 200.0	PAGE 7
230 231 232 LINE 233 234 235 236	KM DT DQ * ID. KK KM KM RK *	F RET8NW 0.0 0.0 1. R8NW8N F 043	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113	SH VOL = 20.0 20.0 3. SUB BAS: 0F BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 /ASSON BI 70 4 SUB- 4	100.0 100.0 8 .VD -HE -SUBBASIN	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236	KM DT DI DQ * ID. KK KM KM RK *	F RET8NW 0.0 0.0 1. R8NW8N F N 643	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113	SH VOL = 20.0 20.0 3. SUB BAS: 0F BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 CN SB8NW CN 8W WAS	TO OUTLE BROKEN TRAP	50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 7 /ASSON BI 70 4 SUB- 4	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0	200.0 200.0	PAGE 7
230 231 232 LINE 233 234 235 236 237	KM DT DI DQ * ID. KK KM KM RK * KK	F RET8NW 0.0 0.0 1. R8NW8N F 043 SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN	SH VOL = 20.0 20.0 3. SUB BAS: 0F BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4	TO OUTLE BROKEN TRAP	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 /ASSON BI 0 4 SUB- 4	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238	KM DT DQ * ID. KK KM KM RK KK KK KK	F RET8NW 0.0 0.0 1. R8NW8N F 643 SB8NE SB8NE	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN SITE JUST	5H VOL = 20.0 20.0 20.0 3. SUB BAS: 0.6 BAS: 0.018 SOUTH OI	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN SB8NW IN 8W WAS	 FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 (ASSON BL O 4 SUB- 4	100.0 100.0 8. .VD -HE .SUBBASIN	150.0 150.0 9.	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239	KM DT DQ * ID. KK KM KM RK * KK KM BA	F RET8NW 0.0 0.0 1. R8NW8N F 0.43 SB8NE SB8NE SB8NE SB8NE	FIRST FLUS 0.332 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST	SUB BAS: 0.018 SOUTH OF	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS	40.0 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 (ASSON BI TO 4 SUB- 4 DEN - FUT	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240	KM DT DQ * ID. KK KM KM KK KM KK KM LG	F RET8NW 0.0 0.0 1. R8NW8N F 643 SB8NE SB8NE SB8NE SB8NE SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25	SH VOL = 20.0 20.0 SUB BAS: 0F BAS: 0.018 SOUTH OI 4.03	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61	TO OUTLE BROKEN TRAP	50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 /ASSON BL 0 4 SUB- 4	100.0 100.0 8 .VD -HE SUBBASIN	150.0 150.0 9.	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241	KM DT DI DQ * ID. KK KM KM RK * KK KM BA LG	F RET8NW 0.0 0.0 1. R8NW8N F M 643 SB8NE SB8NE SB8NE 0.015 0.10 0.239	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172	SH VOL = 20.0 20.0 20.0 SUB BAS: OF BAS: 0.018 SOUTH OF 4.03	0.332 AC 30.0 30.0 HEC-1 4 CN SB8NW CN 88 WAS	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80	50.0 50.0 6 T AT CAV DOWN INT 46	60.0 60.0 7 /ASSON BI 0 4 SUB- 4	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0 9.	200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241	KM DT DQ * ID. KK KM KM KK KK KM BA LG UC	F RET8NW 0.0 0.0 1. R8NW8N F 643 SB8NE SB8NE SB8NE SB8NE SB8NE SB8NE SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172	SUB BAS: 0.018 SOUTH OI 4.03	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE	60.0 60.0 7 (ASSON BL O 4 SUB- 4 DEN - FUT	100.0 100.0 8 .VD -HE .SUBBASIN	150.0 150.0	200.0 200.0 10	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242	KM DT DQ X ID. KK KM KM KK KM KK KK KM BA LG UC UA	F RET8NW 0.0 0.0 1. R8NW8N F M 643 SB8NE SB8NE SB8NE 0.015 0.10 0.239 0	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0	SUB BAS: 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	2-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYD 20.0	60.0 60.0 7 (ASSON BL TO 4 SUB- 4 DEN - FUT 43.0	100.0 100.0 8 	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243	KM DT DQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA	F RET8NW 0.0 0.0 1. R8NW8N F 043 SB8NE 5 0.015 0.10 0.239 0 100	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0	 C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0	60.0 60.0 /ASSON BL 0 4 SUB- 4 DEN - FUT 43.0	100.0 100.0 8 .VD -HE SUBBASIN FURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243	KM DT DQ * ID. KK KM KM KK KM KK KM BA LG UC UC UA UA *	F RET8NW 0.0 0.0 1. R8NW8N F 643 SB8NE SB8NE SB8NE SB8NE SB8NE 0.015 0.10 0.239 0 100	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0	60.0 60.0 /ASSON BL 0 4 SUB- 4 DEN - FUT 43.0	100.0 100.0 8 	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243	KM DT DQ * ID. KK KM KM KM KK KM KK KM BA LG UC UA UA *	F RET8NW 0.0 0.0 1. R8NW8N F 043 SB8NE SB8NE SB8NE SB8NE 0.015 0.10 0.239 0 100	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0	SH VOL = 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0	60.0 60.0 7 /ASSON BL 0 4 SUB- 4 4	100.0 100.0 8 	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243	KM DT DQ * ID. KK KM KM KK KK KK KK KK KK KK	F RET8NW 0.0 0.0 0.0 0.0 588NK 5 0.015 0.10 0.239 0 100 5B8NK	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT	5H VOL = 20.0 20.0 20.0 3. SUB BAS: 0.018 SOUTH OI 4.03 5.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0	AND WEST 80 12.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0	60.0 60.0 7 (ASSON BL O 4 SUB- 4 DEN - FUT 43.0	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245	KM DT DQ * ID. KK KM KM KK KK KM BA LG UC UA UA * KK KK	F RET8NW 0.0 0.0 1. R8NW8N F 0.43 SB8NE 0.015 0.10 0.239 0 100 SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT	SH VOL = 20.0 20.0 3. SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF ETRC	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 I FLUSH V	CLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 YOLUME FO	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASTM	60.0 60.0 7 (ASSON BL TO 4 SUB- 4 DEN - FUT 43.0 SB8NF	100.0 100.0 8 .VD -HE .SUBBASIN TURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246	KM DT DQ * ID. KK KM KK KM KK KM BA LG UC UA UA * KK KK KM	F RET8NW 0.0 0.0 1. R8NW8N F 0.43 SB8NE 0.015 0.10 0.239 0 100 SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH V	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 (OLUME FO	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN	60.0 60.0 /ASSON BI O 4 SUB- 4 DEN - FUT 43.0 SB8NE	100.0 100.0 8 	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 244	KM DT DQ * ID. KK KM KM KK KM KK KM LG UC UA UA * KK KK KM KM	F RET8NW 0.0 0.0 1. R8NW8N F 0.43 SB8NE 5 0.015 0.10 0.239 0 100 SB8NE E F	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SH VOL =	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 I FLUSH AC 0.340 AC	2-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 /OLUME FC 2-FT -HE	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN	60.0 60.0 77 43.0 5B8NE	100.0 100.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247	KM DT DQ * ID. KK KM KM KK KK KM BA LG UC UA UA * KK KM KM KM DT	F RET8NW 0.0 0.0 0.0 0.0 588NK 0.015 0.10 0.239 0 100 SB8NE C F RET8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SH VOL =	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH AC 0.340 AC	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN	60.0 60.0 7 (ASSON BL O 4 SUB- 4 DEN - FUT 43.0 SB8NE	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0	150.0 150.0 9. NS AIL 90.0	200.0 200.0 10 96.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248	KM DT DQ * ID. KK KM KM KK KM KK KM LG UC UA UA * KK KM KM KM DT DI	F RET8NW 0.0 0.0 0.0 0.0 588NE 0.015 0.10 0.239 0 100 SB8NE C F RET8NE 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 I FLUSH V 0.340 AC 30.0	 CLOINE FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 YOLUME FO C-FT -HE 40.0 	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0	60.0 60.0 7 (ASSON BL O 4 SUB- 4 DEN - FUT 43.0 SB8NE 60.0	100.0 100.0 8 .VD -HE SUBBASIN TURE RETA 75.0 100.0	150.0 150.0 9. AIL 90.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249	KM DT DQ * ID. KK KM KM KM KK KM KM BA LG UC UA UA * KK KM KM DT DI DQ	F RET8NW 0.0 0.0 0.0 0.0 5 R8NW8N F N 643 SB8NE 5 0.015 0.10 0.239 0 100 SB8NE C F RET8NE 0.0 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 7 FLUSH AC 0.340 AC 30.0 30.0	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE 5 BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 PR BASIN 50.0 50.0	60.0 60.0 77 43.0 60.0 60.0 60.0	100.0 100.0 8 .VD -HE SUBBASIN TURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249	KM DT DQ * ID. KK KM KM KM KK KM BA LG UC UA UA * KK KM KM DT DQ *	F RET8NW 0.0 0.0 0.0 0.0 0.0 5 88NK 0.015 0.045 0.015 0.10 0.239 0 100 5 88NE C F RET8NE 0.0 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS: SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 T FLUSH X 0.340 AC 30.0 30.0	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0	60.0 60.0 77 43.0 588NE 60.0 60.0	100.0 100.0 8 	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249	KM DT DQ * ID. KK KM KM KK KK KK KK KM BA LG UC UA VA * KK KK KM DT DI Q *	F RET8NW 0.0 0.0 0.0 0.0 588NK 0.015 0.10 0.239 0 100 588NK C F RET8NE 0.0 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1 4 CN SB8NW CN SB8N	CLUME FO 40.0 40.0 1NPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYD 20.0 R BASIN 50.0 50.0	60.0 60.0 77 43.0 588NE 60.0 60.0	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249	KM DT DQ * ID. KK KM KM KK KK KM KK KK KK KM KK KK KM LG UC UA UA * KK KK KM KM DT DI DQ *	F RET8NW 0.0 0.0 0.0 0.0 5 R8NW8N F M 643 SB8NE 0.015 0.10 0.239 0 100 SB8NE F RET8NE 0.0 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0	SH VOL = 20.0 20.0 20.0 SUB BAS: OF BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS: SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 I FLUSH X 0.340 AC 30.0 30.0	CLUME FO C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0	60.0 60.0 (ASSON BL O 4 SUB- 4 DEN - FUT 43.0 SB8NE 60.0 60.0	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249	KM DT DQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA * KK KM KM KM KM KM KK KK KK KK KK KK KK	F RET8NW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.239 0 0.00 0.239 0 0.00 0.239 0 0.00 0.239 0 0.00 5B8NE C F RET8NE 0.0 0.0 0.0	FIRST FLUS 0.332 10.0 10.0 10.0 10.0 NOUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 ROUTE	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OR 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0 20.0	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 I FLUSH AC 0.340 AC 30.0 30.0	C-FT -HE 40.0 40.0 1NPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0	60.0 60.0 77 43.0 60.0 60.0 60.0	100.0 100.0 8 .VD -HE SUBBASIN TURE RET/ 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 244 245 244 245 244 245 246 247 248 249 250 251	KM DT DQ * ID. KK KM KM KK KM KK KM BA LG UC UA UA * KK KM KM DI DQ * KK KK KM	F RET8NW 0.0 0.0 0.0 1. R8NW8N F 643 SB8NE 5 0.015 0.10 0.239 0 100 SB8NE C F RET8NE 0.0 SB8NE C F RET8NE 0.0 SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 10.0 ROUTE ROUTE NEW	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SOF FIRS SH VOL = 20.0 20.0 SUB BAS:	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 C FLUSH AC 30.0 30.0 30.0 30.0 CN SB8NE	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0	60.0 60.0 77 43.0 60.0 5B8NE 60.0 60.0 60.0	100.0 100.0 8 .VD -HE .SUBBASIN TURE RETA 75.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252	KM DT DQ * ID. KK KM KM KK KK KM KM BA LG UC UA VA * KK KM KM DT DI Q * KK KM KM	F RET8NW 0.0 0.0 0.0 0.0 0.0 588NE 5 0.015 0.10 0.239 0 100 588NE 5 RET8NE 0.0 5 SB8NE 5 C F RET8NE 0.0 0.0 5 SB8NE	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW JORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 ROUTE ROUTE NEW JORTH HALF	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SOF FIRS SUB BAS: 20.0 20.0 20.0 SUB BAS: SUB BAS:	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 C FLUSH V 0.340 AC 30.0 30.0 30.0 CN SB8NE IN SB8NE	CLEANE THE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE BROKEN	50.0 50.0 6 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0	60.0 60.0 77 43.0 588NE 60.0 60.0 60.0 74 SUB-	100.0 100.0 8 .VD -HE SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS NIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KM DT DQ * ID. KK KM KM KK KM KK KM KK KM KM LG UC UA UA VA KK KM KM KM KK KM KK KM KK KM KK KK KK	F RET8NW 0.0 0.0 0.0 0.0 0.0 5 88NW8N F 643 SB8NE SB8NE SB8NE SB8NE C F RET8NE 0.0 0.0 5 SB8NE C F RET8NE 0.0 0.0 0 8 SB8NE SB	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.011	SUB BAS: 20.0 20.0 20.0 SUB BAS: OF BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS: SUB BAS: 20.0 20.0 SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH X 0.340 AC 30.0 30.0 30.0 (N SB8NE (N SB8NE (N SB8NE (N SB8NE (N SB8NE	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE BROKEN TRAP	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 77 (ASSON BL O 4 SUB- 4 0EN - FUT 43.0 SB8NE 60.0 60.0 60.0 (ASSON BL O 4 SUB- 4	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KM DT DQ * ID. KK KM KM KK KM KK KM KK KM KM LG UC UA UA * KK KM KM DT DI QQ * KK KM KM KM KM KM KM KM KM KM KM KM KM	F RET8NW 0.0 0.0 0.0 0.0 0.0 5 88NK 5 0.015 0.10 0.239 0 100 5 88NE 5 0.015 0.10 0.239 0 100 5 88NE 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.011	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SH VOL = 20.0 20.0 SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 C FLUSH AC 0.340 AC 30.0 30.0 30.0 CN SB8NE IN SB8NE	C-FT -HE 40.0 40.0 1NPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE 5 BROKEN TRAP	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 60.0 (ASSON BI 0 4 SUB- 4 43.0 SB8NE 60.0 60.0 60.0 (ASSON BI 0 4 SUB- 4	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 244 245 244 245 244 245 244 245 244 245 247 248 249 250 251 252 253	KM DT DQ * ID. KK KM KM KK KM KK KM KM KK KM KM CT DI DQ * KK KM KM KM KM KM KK KK KK KK KK KK KK	F RET8NW 0.0 0.0 0.0 0.0 0.0 5 88NW8N F 643 5 88NE 5 0.015 0.10 0.239 0 100 5 88NE 5 0.015 0.10 0.239 0 100 5 88NE 5 88NE 5 0.015 0.239 0 100 5 88NE 5 88NE 5 88NE 5 8 88NE 5 88NE 5 88NE 5 8 88NE 5 88NE 6 22	FIRST FLUS 0.332 10.0 10.0 10.0 2 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.011	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH V 0.340 AC 30.0 30.0 30.0 (N SB8NE (N SB8NE (N SB8NE (N SB8NE	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE BROKEN TRAP	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 77 43.0 60.0 588NE 60.0 60.0 60.0 7ASSON BL 0 4 SUB- 4	100.0 100.0 8 .VD -HE .SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KM DT DQ * ID. KK KM KM KK KK KK KK KM KM KK KM KM KM	F RET8NW 0.0 0.0 0.0 0.0 0.0 5 88NW8N F 643 5 88NNE 5 0.015 0.10 0.239 0 100 5 888NE C F RET8NE 0.0 0.0 5 88NNE SB8NE C RET8NE 0.0 0.0 5 88NNE SB8NE C RET8NE 0.0 0.0 5 88NNE SB8NE C RET8NE 0.0 0.0 5 88NNE SB8NE C RET8NW 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	FIRST FLUS 0.332 10.0 10.0 10.0 ROUTE ROUTE NEW NORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 ROUTE ROUTE NEW NORTH HALF 0.011	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SUB VOL = 20.0 20.0 SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH AC 30.0 30.0 30.0 30.0 (N SB8NE (N SB8NE (N SB8NE (N SB8NE	 CLOTE T - HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE BROKEN TRAP 	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYD 20.0 R BASIN 50.0 50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 77 43.0 588NE 60.0 60.0 60.0 4 50 4 SUB- 4	100.0 100.0 8 .VD -HE SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS NIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253	KM DT DQ * ID. KK KM KM KK KM KK KM KK KM KK KM KK KM KK KK	F RET8NW 0.0 0.0 0.0 0.0 0.0 588NE 5 0.015 0.10 0.239 0 100 588NE 5 888NE 5 RET8NE 0.0 0.0 5 888NE 5 RET8NE 0.0 0.0 5 888NE 5 888NE 5 80.0 5 888NE 5 80.0 5 888NE 5 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.0 8 80.00 80.00000000	FIRST FLUS 0.332 10.0 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN SITE JUST 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.011 BASIN	SH VOL = 20.0 20.0 20.0 SUB BAS: OF BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS SUB BAS: 20.0 20.0 SUB BAS: 0.018	0.332 AC 30.0 30.0 HEC-1 4 (N SB8NW (N 8W WAS E LEGACY 0.61 8.0 C FLUSH X 0.340 AC 30.0 30.0 30.0 (N SB8NE (N SB8NE (N SB8NE (N SB8NE	C-FT -HE 40.0 40.0 INPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE BROKEN TRAP	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 50.0 T AT CAV DOWN INT 46	60.0 60.0 77 (ASSON BL 0 4 SUB- 4 0EN - FUT 43.0 SB8NE 60.0 60.0 60.0 60.0 4 SUB- 4	100.0 100.0 8 .VD -HE -SUBBASIN TURE RETA 75.0 100.0 100.0 100.0	150.0 150.0 9. NS AIL 90.0 150.0 150.0	200.0 200.0 10 96.0 200.0	PAGE 7
229 230 231 232 LINE 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	KM DT DQ * ID. KK KM KM RK * KK KM KM KM KM KM KM KM CT DI QQ * KK KM KM KM KM KK KK KK KK KK KK KK KK	F RET8NW 0.0 0.0 0.0 0.0 0.0 0.0 5B8NE 0.015 0.10 0.239 0 100 5B8NE C F RET8NE 0.0 0.0 5B8NE C F RET8NE 0.0 0.0 5B8NE SB8NE SB8SW S	FIRST FLUS 0.332 10.0 10.0 10.0 10.0 ROUTE ROUTE NEW WORTH HALF 0.0113 BASIN FIRST FLUS 0.25 0.172 3.0 DIVERT DIVERSION FIRST FLUS 0.340 10.0 10.0 ROUTE NEW WORTH HALF 0.011 BASIN SITE JUST	SH VOL = 20.0 20.0 20.0 SUB BAS: 0.018 SOUTH OI 4.03 5.0 OF FIRS ⁻ SH VOL = 20.0 20.0 SUB BAS: 0.018 SUB BAS: 0.018 NORTH OI	0.332 AC 30.0 30.0 HEC-1 4 IN SB8NW IN 8W WAS E LEGACY 0.61 8.0 C FLUSH AC 0.340 AC 30.0 30.0 30.0 CN SB8NE IN SB8NE IN SB8NE IN SB8NE IN SB8NE IN SB8NE	C-FT -HE 40.0 40.0 1NPUT 5 TO OUTLE BROKEN TRAP AND WEST 80 12.0 /OLUME FO C-FT -HE 40.0 40.0 TO OUTLE 5 BROKEN TRAP	50.0 50.0 50.0 T AT CAV DOWN INT 46 OF HAYE 20.0 R BASIN 50.0 50.0 T AT CAV DOWN INT 46 AST OF C	60.0 60.0 60.0 (ASSON BI 0 4 SUB- 4 0EN - FUT 43.0 SB8NE 60.0 60.0 60.0 (ASSON BI 0 4 SUB- 4	100.0 100.0 8 .VD -HE SUBBASIN TURE RETA 75.0 100.0 100.0 100.0 .VD -HE SUBBASIN & - FUTUF	150.0 150.0 9. NS AIL 90.0 150.0 150.0 NS	200.0 200.0 10 96.0 200.0 200.0	PAGE 7

257	LG	0.10	0.25	4.03	0.61	80							
258	UC	0.219	0.169										
259	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
260	UA	100											
	*												
261	KK	SB8SW	DIVERT										
262	KM	1	DIVERSION	OF FIRS	T FLUSH	VOLUME F	OR BASIN	SB8SW					
263	KM		FIRST FLU	JSH VOL =	0.292 A	C-FT -HE	-						
264	DT	RET8SW	0.292										
265	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
266	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
267	KK	SB8SE	BASIN										
268	KM	0 0121	SITE JUST	NORTH C	OF CAVASS	ON AND N	VEST OF H	AYDEN -	FUTURE H	OTEL OR	RETAIL		
269	ВА	0.0131	0.25	4 02	0 (1	00							
270		0.10	0.25	4.05	0.01	00							
271	110	0.242	3.0	50	8 0	12 0	20 Q	13 0	75 Q	90 0	96.0		
272		100	5.0	5.0	0.0	12.0	20.0	45.0	75.0	50.0	50.0		
275	*	100											
					HFC-1	TNPUT						PAGE	8
													Ũ
LINE	ID.	1	2.	3 .	4.		6.	7 .	8.	9.	10		
274	КК	SB8SE	DIVERT										
275	KM	1	DIVERSION	OF FIRS	T FLUSH	VOLUME H	OR BASIN	SB8SE					
276	KM		FIRST FLU	JSH VOL =	0.297 A	C-FT -HE	E						
277	DT	RET8SE	0.297										
278	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
279	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*												
280	KK	CP-08N	COMBINE										
281	KM		CP AT INL	LET ON NO	RTH SIDE	OF CAVA	ASSON - E	NTERS EX	IST STOR	M DRAIN	-HE		
282	HC	1	a a557										
	inc.	-	0.0557										
	*	4	0.0557										
202	*		DOUTE										
283	кк км	- R8N-8W	ROUTE										
283 284	KK KM	R8N-8W	ROUTE NEW	SUB BAS	SINS SB8N	IE SB8NW	SB8SW SB	8SE TO C	P-08W				
283 284 285 286	KK KM KM	+ R8N-8W	ROUTE ROUTE NEW ROUTE IN	N SUB BAS	INS SB8N AIN	IE SB8NW -HE	SB8SW SB	8SE TO C	P-08W				
283 284 285 286	KK KM KM RK	+ R8N-8W 1592	ROUTE ROUTE NEW ROUTE IN 0.015	V SUB BAS STORM DR 0.013	INS SB8N AIN	IE SB8NW -HE CIRC	SB8SW SB 3	8SE TO C	P-08W				
283 284 285 286	KK KM KM RK *	- R8N-8W 1592	ROUTE ROUTE NEW ROUTE IN 0.015	N SUB BAS STORM DR 0.013	INS SB8N AIN	IE SB8NW -HE CIRC	SB8SW SB 3	8SE TO C	P-08W				
283 284 285 286 287	KK KM RK *	- R8N-8W 1592 SB08W	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN	N SUB BAS STORM DR 0.013	INS SB8N AIN	IE SB8NW -HE CIRC	SB8SW SB 3	85E TO C	P-08W				
283 284 285 286 287 288	KK KM KM RK * KK BA	R8N-8W 1592 SB08W 0.0589	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN	N SUB BAS STORM DR 0.013	INS SB8N AIN	IE SB8NW -HE CIRC	SB8SW SB 3	85E TO C	P-08W				
283 284 285 286 287 288 288 289	KK KM KM RK * KK BA LG	R8N-8W 1592 SB08W 0.0589 0.10	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25	N SUB BAS STORM DR 0.013 4.03	INS SB8N AIN 0.61	IE SB8NW -HE CIRC 80	SB8SW SB 3	85E TO C	P-08W				
283 284 285 286 287 288 289 290	KK KM KM RK * KK BA LG UC	R8N-8W 1592 SB08W 0.0589 0.10 0.225	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150	N SUB BAS STORM DR 0.013 4.03	INS SB8N AIN 0.61	IE SB8NW -HE CIRC 80	SB8SW SB 3	8SE TO C	P-08W				
283 284 285 286 287 288 289 290 291	KK KM KM RK * KK BA LG UC UC	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0	N SUB BAS STORM DR 0.013 4.03 5.0	DINS SB8N AIN 0.61 8.0	IE SB8NW -HE CIRC 80 12.0	SB8SW SB 3 20.0	8SE TO C	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292	KK KM KM RK * KK BA LG UC UA UA	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100	ROUTE ROUTE INE ROUTE IN 0.015 BASIN 0.25 0.150 3.0	N SUB BAS STORM DR 0.013 4.03 5.0	DINS SB8N AIN 0.61 8.0	IE SB8NW -HE CIRC 80 12.0	SB8SW SB 3 20.0	8SE TO C 43.0	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292	KK KM KM RK * KK BA LG UC UA UA X	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0.10 0.205 0.100	ROUTE ROUTE INE ROUTE IN 0.015 BASIN 0.25 0.150 3.0	N SUB BAS STORM DR 0.013 4.03 5.0	DINS SB8N AIN 0.61 8.0	IE SB8NW -HE CIRC 80 12.0	SB8SW SB 3 20.0	8SE TO C 43.0	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292	KK KM KM RK * KK BA LG UC UA UA VA *	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0	N SUB BAS STORM DR 0.013 4.03 5.0	DINS SB8N AIN 0.61 8.0	IE SB8NW -HE CIRC 80 12.0	SB8SW SB 3 20.0	8SE TO C 43.0	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 292	KK KM KM RK * KK BA LG UC UA UA X KK	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0.10 0.225 0.10 0.225 0.10 0.225 0.10 0.225	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT	N SUB BAS STORM DR 0.013 4.03 5.0	DINS SB8N AIN 0.61 8.0	IE SB8NW -HE CIRC 80 12.0	SB8SW SB 3 20.0	8SE TO C 43.0	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 292 293 294	KK KM KM RK * KK BA LG UC UA UA UA X KK KM	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERT	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS	INS SB8N AIN 0.61 8.0 T FLUSH	IE SB8NW -HE CIRC 80 12.0 VOLUME F	SB8SW SB 3 20.0 FOR BASIN	8SE TO C 43.0 SB08W	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 292 293 294 295	KK KM KM RK * KK BA LG UC UA UA UA X KK KM	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERT DIVERSION FIRST FLU	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R	2INS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3	IE SB8NW -HE CIRC 80 12.0 VOLUME F	SB8SW SB 3 20.0 FOR BASIN F, PROVID	8SE TO C 43.0 SB08W ED = 1.4	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 292 293 294 295 296	KK KM KM RK KK BA LG UC UA UA VA KK KM KM	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERT DIVERSION FIRST FLU THIS IS E	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING	INS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1	43.0 SB08W ED = 1.4 -HE	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 291 292 293 294 295 296 297	KK KM KM KK KK BA LG UC UA UA X KK KM KM KM KM DT	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING	INS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1	43.0 SB08W ED = 1.4 -HE	P-08W 75.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 291 292 293 294 295 296 297 298	KK KM KM KK KK BA LG UC UA VA KK KM KM KM KM DT DI	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0	INS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0	P-08W 75.0 15 100.0	90.0	96.0		
283 284 285 286 287 288 289 290 291 292 291 292 293 294 295 296 297 298 299	KK KM KM KK KK BA LG UC UA UA KK KM KM KM KM DT DI DI DQ	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 291 292 293 294 295 296 297 298 299	KK KM KM KK KK BA LG UC UA UA VA KK KM KM KM KM KM KM ZD DI DQ *	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLL THIS IS E 1.415 10.0 10.0	V SUB BAS STORM DR 0.013 4.03 5.0 V OF FIRS JSH VOL R EXISTING 20.0 20.0	AINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299	KK KM KM KK KK BA LG UC UA UA VA KK KM KM KM KM DT DI DQ *	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERT DIVERSION FIRST FLL THIS IS E 1.415 10.0 10.0	V SUB BAS STORM DR 0.013 4.03 5.0 V OF FIRS JSH VOL R EXISTING 20.0 20.0	AINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 299	KK KM KM KK KK BA LG UC UA UA VA KK KM KM KM KM KM KM KM KM KK KK	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 299 299	KK KM KM KK KK BA LG UC UA UA VA KK KM KM KM KM KM KM KM KM KM KM KM KK KK	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0 CP-08W 3	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLL THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	AINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN F, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 299 299	KK KM KM KK KK BA LG UC UA UA VA KK KM KM KM KM KM KM KM KM KM KM KM KM	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W 1 SB08W 1 SB08W 1 CP-08W 3	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLL THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 299 300 301	KK KM KM KK KK BA LG UC UC UA UA * KK KM KM KM KM KM KM KM KM KM KM KM KM	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W 100 SB08W 100 CP-08W 3	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERT DIVERSION FIRST FLL THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R EXISTING 20.0 20.0	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 290 291 292 293 294 295 296 297 298 299 300 301	KK KM KM KK KK BA LG UC UC UC UC UC UC UC UC UC UC UC UC UC	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0 CP-08W 3 R8W-4N	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R 20.0 20.0	2INS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	KK KM KM KK KK BA LG UC UC UC UC UC UC UC UC UC UC UC UC UC	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 CP-08W 3 R8W-4N	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST	N SUB BAS STORM DR 0.013 4.03 5.0 N OF FIRS JSH VOL R 20.0 20.0 20.0	UITING UN	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 20.0	8SE TO C 43.0 ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305	KK KM KM KK KK BA LG UC UA UA UA * KK KM KM KM KM KM KM KK KK KK KK KK KK	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0 CP-08W 3 R8W-4N 1 0.0000 CP-08W	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL F EXISTING 20.0 20.0	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0 UUTING UN 0 2 207	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306	KK KM KM KK KK BA LG UC UA UA UA X KK KM KM KM KM KM KK KK KK KK KK KK SV SC	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 0.0 CP-08W 3 R8W-4N 1 0.000 1608	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609 0	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL R 20.0 20.0 20.0 10.00 1.290 1.290	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0 UUTING UN 0 2.207 1611 0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0 IDER THE 4.066 1612 0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101 4.066 1613 0	43.0 SB08W ED = 1.4 -HE 60.0 60.0 -HE	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307	KK KM KM KK KK BA LG UC UA UA X KK KM KM KM KM KM KM KK KK KK KK KK KK	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0.10 0.225 0.10 0.225 0.10 0.00 SB08W CP-08W 3 R8W-4N 1 0.000 1608.0 0.002 0	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS F 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8 330	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL F EXISTING 20.0 20.0 10.00 1.290 1610.0 28.52	DINS SB8N AIN 0.61 8.0 T FLUSH EQ = 1.3 AND WAS 30.0 30.0 UUTING UN 0 2.207 1611.0 150 5	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F ⁻ BUILT IN 40.0 40.0	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360 0	8SE TO CI 43.0 SB08W ED = 1.4 -НЕ 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308	KK KM KM KK KK BA LG UC UA UA * KK KM KM KM DT DI DQ * KK HC * KK KK SV SE SQ SE	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W SB08W CP-08W 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 0.000 1608.0	ROUTE ROUTE IN ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL F EXISTING 20.0 20.0 20.0 1.290 1610.0 28.52 1610.0	UTING UN 2.207 1611.0 2.207 1611.0 2.10 2.207	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F ⁻ BUILT IN 40.0 40.0 100 1013 2	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360.0 1613 3	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308	KK KM KM KM KK * KK BA LG UC UA UA * KK KM KM DT DI Q * KK HC * KK KM RS SV SE SQ SE *	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W SB08W CP-08W 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 1608.0	ROUTE ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330 1609.0	V SUB BAS STORM DF 0.013 4.03 5.0 V OF FIRS JSH VOL F EXISTING 20.0 20.0 20.0 1000 1.290 1610.0 28.52 1610.0	UTING UN 2.207 1611.0 2.207 1611.0	IE SB8NW -HE CIRC 80 12.0 VOLUME F 35 AC-F BUILT IN 40.0 40.0 10DER THE 4.066 1612.0 300.0 1613.2	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360.0 1613.3	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0 100.0	90.0 150.0 150.0	96.0 200.0 200.0		
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308	KK KM KM KK KK BA LG UC UA UA * KK KM KM KM DT DI DQ * KK KK KK KK KK KK KK SV SE SQ SE *	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 1608.0	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330 1609.0	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL F EXISTING 20.0 20.0 20.0 1.290 1610.0 28.52 1610.0	UTING UN 2.207 1611.0 2.207 1611.0 HEC-1	IE SB8NW -HE CIRC 80 12.0 VOLUME I 35 AC-F ⁻ BUILT IN 40.0 40.0 10ER THE 4.066 1612.0 300.0 1613.2 . INPUT	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 LOOP 101 4.066 1613.0 360.0 1613.3	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE	9
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308	KK KM KM KK KK KK KK KK KK KK KK KK KK K	R8N-8W 1592 SB08W 0.0589 0.10 0.225 0 100 SB08W RET8W 0.0 CP-08W 3 R8W-4N 1 0.000 1608.0 1608.0	ROUTE ROUTE NEW ROUTE IN 0.015 BASIN 0.25 0.150 3.0 DIVERT DIVERSION FIRST FLU THIS IS E 1.415 10.0 10.0 COMBINE 0.1614 ROUTE STAGE ST STOR 0.642 1609.0 8.330 1609.0	N SUB BAS STORM DF 0.013 4.03 5.0 N OF FIRS JSH VOL F EXISTING 20.0 20.0 20.0 1.290 1610.0 28.52 1610.0	UTING UN 2.207 1611.0 2.207 1611.0 HEC-1	IE SB8NW -HE CIRC 80 12.0 VOLUME I 35 AC-F ⁻ BUILT IN 40.0 40.0 10ER THE 4.066 1612.0 300.0 1613.2 . INPUT	SB8SW SB 3 20.0 FOR BASIN 7, PROVID N PHASE 1 50.0 50.0 50.0 LOOP 101 4.066 1613.0 360.0 1613.3	8SE TO C 43.0 SB08W ED = 1.4 -HE 60.0 60.0	P-08W 75.0 15 100.0	90.0 150.0 150.0	96.0 200.0 200.0	PAGE	9

309 310	КК КМ	SB02E1	BASIN EAST SPL	IT OF BAS	IN SBO2E	DUE TO	HIGH POI	NT -HE				
311	BA	0.0252										
312	LG	0.10	0.25	4.03	0.61	80						
313		0.193	9.1/6	5 0	8 0	12 0	20.0	13 0	75 0	00 0	96.0	
315	UA	100	5.0	5.0	0.0	12.0	20.0	43.0	75.0	50.0	50.0	
515	*	100										
316	KK	SB02E1	DIVERT									
317	KM	[DIVERSION	I OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB02E1				
318	KM	F	FIRST FLU	JSH VOL RE	Q = 0.57	0 AC-FT	-HE					
319		REIZE1	0.5/0	20.0	20.0	10.0	F0 0	60.0	100.0	150.0	200 0	
320	DO	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
521	*	0.0	10.0	20.0	50.0	40.0	50.0	00.0	100.0	130.0	200.0	
322	KK	CP-4N	COMBINE									
323	HC	2	0.1866									
	*											
324	кк	R4N-4	ROUTE									
325	RK	2840	0.0130	0.030		TRAP	2.000	0.00				
	*											
326	KK	SB04	BASIN									
327	BA	0.144	0.25	4 60	0 44	C1						
328		0.14	0.25	4.60	0.44	61						
330	114	0.505	5.0	16.0	30.0	65.0	77.0	84 0	90.0	94.0	97.0	
331	UA	100	5.0	10.0	50.0	05.0	,,,,,,	0110	20.0	5110	57.0	
	*											
332	KK	CP-4	COMBINE									
333	HC *	2										
334	КК	R4-5	ROUTE									
335	KM	F	PRINCESS	BLVD CHAN	INEL FROM	77TH S	г то 76т⊦	I ST				
336	RK	1992	0.0013	0.03		TRAP	39	4				
	*											
227	ĸĸ	CD_05										
338	KM	CF-05	PRINCESS	BIVD AND	76TH ST	(PRTNCF		ΉΔΝΝΕΙ)				
339	KM		COMBINE C	CP-05A AND	R4-5	(
340	HC	2										
	*											
241	V V		DOUTE									
341 342	KK	K5-6		BIVD CHAN		76TH S1	ι το ςροτ		חא			
343	RK	1694	0.0015	0.03		TRAP	188	4				
	*											
					HEC-1	INPUT						PAGE 10
	тп	1	2	3	4	5	6	7	8	٩	10	
	10.					••••••	0	••••		•••••	10	
344	KK	SB06	BASIN									
345	BA	0.136										
346	LG	0.16	0.25	4.55	0.45	53						
347 348		0.321	0.246	16.0	30 0	65 0	77 Ø	81 0	90 0	91 0	97 0	
349	UA	100	5.0	10.0	50.0	05.0	//.0	04.0	50.0	54.0	57.0	
5.12	*	200										
350	KK	CP-06	COMBINE									
351	HC *	2										
352	КК	SB07E	BASIN									
353	BA	0.026										
354	LG	0.10	0.25	4.03	0.74	0						
355	UC	0.574	0.527									
356	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
357	UA *	100										
358	КК	R7E-8E	ROUTE									
359	RK	3662	0.0130	0.030		TRAP	2.000	0.00				

360	КК	SB08E	BASIN									
361	RΔ	0.078										
362		a 1a	0 25	1 08	0 72	Q						
363		0.10	0.25	4.00	0.72	0						
202	UC	0.798	0.052			40.0		42.0	75 0	~~ ~		
364	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	/5.0	90.0	96.0	
365	UA	100										
	*											
366	KK	SB09N	BASIN									
367	BA	0.028										
368	LG	0.10	0.25	4.79	0.49	0						
369	UC	0.740	1.111									
370	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
371		100										
	*											
372	кк	R9N-R9	ROUTE									
373	RK	2586	0 0013	a a2a		ΤΡΔΡ	2 000	9 99				
575	*	2500	0.0015	0.020		110 u	2.000	0.00				
274	VV	CD 00E	COMPTNE									
374		CF-00L	CONDINE									
575	пс *	5										
	4											
376	KK	R8E-R9	ROUTE									
377	RK	501	0.0013	0.020		TRAP	2.000	0.00				
	*											
					HEC-1	INPUT						PAGE 11
LINE	ID.	1	2.	3.	4	5.		7	8.	9.	10	
378	KK	SB09	BASIN									
379	BA	0.086										
380	LG	0.10	0.25	4.79	0.49	0						
381	UC	0.683	0.518									
382		9	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
383		100	5.0	5.0	0.0	12.00	2010	1310	,,,,,	2010	20.0	
505	*	100										
394	KK	CD-00	COMPTNE									
204		CP-09	COMBINE									
202	пс *	2										
200		DUDCU										
386	KK				<i></i>							
387		i witteri			(XS 107)	0 & 50% I	γιμα κωρι	D CHANNEL	. (XS 18:	3) HYDRO	GRAPHS	
	KM	I	POWERLINE	CHANNEL	(
388	KM KM		POWERLINE 100-YR, 2	4-HR FLO	-2D MODEL	(XS 10	7)					
388 389	КМ КМ КМ		POWERLINE 100-YR, 2 FROM PINN	4-HR FLO	-2D MODEL	(XS 10) ADMS 100	7) -YR, 24-H	HR FLO-2D	MODEL			
388 389 390	KM KM KM BA	7.0	POWERLINE 100-YR, 2 FROM PINN	4-HR FLO ACLE PEA	-2D MODEL C SOUTH 4	(XS 10) ADMS 100	7) -YR, 24-H	HR FLO-2D	MODEL			
388 389 390 391	KM KM KM BA QI	7.0 0	POWERLINE 100-YR, 2 FROM PINN 0	4-HR FLO ACLE PEAI	-2D MODEL SOUTH A	. (XS 10) ADMS 100 0	7) -YR, 24-H 0	HR FLO-2D Ø	0 MODEL	0	0	
388 389 390 391 392	KM KM BA QI OI	7.0 0	POWERLINE 100-YR, 2 FROM PINN 0 0	4-HR FLO ACLE PEAI 0 0	2D MODEL SOUTH 4	. (XS 10 ADMS 100 0 0	7) -YR, 24-H 0 0	HR FLO-20 0 0	0 MODEL 0 0	0	0 0	
388 389 390 391 392 393	KM KM BA QI QI OI	7.0 0 0	POWERLINE 100-YR, 2 FROM PINN 0 0 0	4-HR FLO ACLE PEAI 0 0 0	2D MODEL SOUTH 4 0 0	(XS 107 ADMS 100 0 0 0	-YR, 24-F 0 0	HR FLO-20 0 0 0	0 MODEL 0 0 0	0 0 0	0 0 0	
388 389 390 391 392 393 394	KM KM BA QI QI QI QI	7.0 0 0	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0	4-HR FLO ACLE PEAI 0 0 0 0	2D MODEL SOUTH 4 0 0 0	(XS 103 ADMS 100 0 0 0	-YR, 24-H 0 0 0	IR FLO-20 0 0 0	0 MODEL 0 0 0 0	0 0 0	0 0 0	
388 389 390 391 392 393 394 395	KM KM BA QI QI QI QI QI	7.0 0 0 0	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0	4-HR FLO ACLE PEAI 0 0 0 0	-2D MODEL < SOUTH 4 0 0 0 0 0	(XS 10) DMS 100 0 0 0 0	-YR, 24-H 0 0 0 0	HR FLO-20 0 0 0 0	0 MODEL 0 0 0 0 0	0 0 0	0 0 0	
388 389 390 391 392 393 394 395 206	KM KM BA QI QI QI QI QI	7.0 0 0 0 0 0 0	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 0 0	4-HR FLO ACLE PEAI 0 0 0 0 0	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 0 0 0 0 0 0	. (XS 10) ADMS 100 0 0 0 0 0 0	-YR, 24-H 0 0 0 1	HR FLO-20 0 0 0 1 2822	0 MODEL 0 0 0 0 3 3	0 0 0 43	0 0 0 495	
388 389 390 391 392 393 394 395 396 207	KM KM BA QI QI QI QI QI QI QI	7.0 0 0 0 1099	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1400	4-HR FLO ACLE PEAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2D MODEL -2D MODEL 6 0 0 0 0 3747 1170	(XS 107) ADMS 100 0 0 0 0 0 3658 1047	-YR, 24-H 0 0 0 1 3175	HR FLO-20 0 0 0 1 2822	0 MODEL 0 0 0 0 3 2378	0 0 0 43 2084	0 0 495 1898	
388 389 390 391 392 393 394 395 396 397	KM KM BA QI QI QI QI QI QI QI QI QI	7.0 0 0 0 0 1099 1699	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331	-2D MODEL < SOUTH A 0 0 0 0 3747 1179	(XS 107) (XS 107) 0 0 0 0 0 0 3658 1047	-YR, 24-H 0 0 0 1 3175 940	HR FLO-20 0 0 0 1 2822 851	0 MODEL 0 0 0 3 2378 773	0 0 43 2084 705	0 0 495 1898 645	
388 389 390 391 392 393 394 395 396 397 398	KM KM BA QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331 521	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 0 3747 1179 488	(XS 107 ADMS 100 0 0 0 0 3658 1047 460	-YR, 24-H 0 0 0 1 3175 940 435	HR FLO-20 0 0 0 1 2822 851 410	0 MODEL 0 0 0 3 2378 773 387	0 0 43 2084 705 370	0 0 495 1898 645 356	
388 389 390 391 392 393 394 395 396 397 398 399	KM KM BA QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331 521 317	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 3747 1179 488 303	(XS 107 ADMS 100 0 0 0 3658 1047 460 293	-YR, 24-H 0 0 1 3175 940 435 281	HR FLO-22 0 0 0 1 2822 851 410 270	0 MODEL 0 0 0 0 0 0 3 2378 773 387 257	0 0 43 2084 705 370 258	0 0 495 1898 645 356 248	
388 389 390 391 392 393 394 395 396 397 398 399 400	KM KM BA QI QI QI QI QI QI QI QI QI QI QI	7.0 7.0 0 0 0 1099 1699 597 339 240	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328 237	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331 521 317 223	-2D MODEL < SOUTH 4 0 0 0 0 0 3747 1179 488 303 220	(XS 107 ADMS 1009 0 0 0 3658 1047 460 293 214	7) -YR, 24-H 0 0 0 1 3175 940 435 281 209	HR FLO-20 0 0 1 2822 851 410 270 205	0 MODEL 0 0 0 0 0 3 2378 773 387 257 201	0 0 43 2084 705 370 258 192	0 0 495 1898 645 356 248 188	
388 389 390 391 392 393 394 395 396 397 398 399 400 401	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI	10099 1099 1699 597 339 240 180	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328 237 179	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331 521 317 223 164	-2D MODEL < SOUTH A 0 0 0 0 3747 1179 488 303 220 158	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149	-YR, 24-H 0 0 1 3175 940 435 281 209 142	HR FLO-20 0 0 1 2822 851 410 270 205 137	0 MODEL 0 0 0 3 2378 773 387 257 201 126	0 0 43 2084 705 370 258 192 120	0 0 495 1898 645 356 248 188 117	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	1099 1699 597 339 240 180 107	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97	-2D MODEL < SOUTH A 0 0 0 0 3747 1179 488 303 220 158 99	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86	-YR, 24-H 0 0 1 3175 940 435 281 209 142 83	HR FLO-20 0 0 1 2822 851 410 270 205 137 82	0 MODEL 0 0 0 0 3 2378 773 387 257 201 126 74	0 0 43 2084 705 370 258 192 120 70	0 0 495 1898 645 356 248 188 117 66	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 180 107 62	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 0 0 0 0 0 0	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50	HR FLO-20 0 0 1 2822 851 410 270 205 137 82 50	0 MODEL 0 0 0 0 0 0 0 0 3 2378 773 387 257 201 126 74 48	0 0 43 2084 705 370 258 192 120 70 42	0 0 495 1898 645 356 248 188 117 66 41	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 7.0 0 0 0 1099 1699 597 339 240 180 107 62 40	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 0 0 0 0 0 0	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36	-YR, 24-H 0 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH A 0 0 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 0 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH A 0 0 0 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328 237 179 102 59 37 30	4-HR FLO ACLE PEAI 0 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL SOUTH A 0 0 0 0 0 0 0 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23	(XS 107 ADMS 1003 0 0 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328 237 179 102 59 37 30	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI X KK KM	7.0 0 0 0 1099 1699 1699 1699 1699 1699 16	POWERLINE 100-YR, 2 FROM PINN 0 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH A 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-20 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI KK KM HC	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL (SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-20 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 0 0 0 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL (SOUTH A 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI X KK KM HC *	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH A 0 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 0 0 3 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 317 223 164 97 57 35 24	-2D MODEL < SOUTH A 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5	(XS 107 ADMS 1009 0 0 0 3658 1047 460 293 214 149 86 52 36 23 53R.	-YR, 24-H 0 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 412	KM KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 1699 1699 1699 1699 240 180 107 62 40 31 BINFLO 2 BASIN	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INTO	-2D MODEL SOUTH A 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 20 0 0 0 0 0 0 0 0 0 0 0 0 0	(XS 107 ADMS 1009 0 0 3658 1047 460 293 214 149 86 52 36 23 36 23	7) -YR, 24-H 0 0 1 3175 940 435 281 209 142 83 50 32	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI X KK KM HC X KK	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2 BASIN	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INTO	-2D MODEL (SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPC	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23 36 23	TOURS BET	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31	0 MODEL 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI X KK KM HC *	7.0 0 0 0 0 1099 1699 1699 1699 1699 1699	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN N STAGE/S 1594 AND	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INTO	-2D MODEL (SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPC	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23 36 23 53R.	TOURS BET	HR FLO-22 0 0 0 1 2822 851 410 270 205 137 82 50 31 State of the second	0 MODEL 0 0 0 2378 773 387 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 404 405 406 407 408 409 410 411 412	KM KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 1699 1699 1699 1699 16	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN N STAGE/S 1594 AND DUTFLOW R	4-HR FLO ACLE PEAI 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INT(TORAGE FI 1615; B, ATING CUI	-2D MODEL (SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPC	(XS 107 ADMS 100 0 0 3658 1047 460 293 214 149 86 52 36 23 36 23 53R.	TOURS BET STEEPENE MASTER FO	HR FLO-22 0 0 0 1 2822 851 410 270 205 137 82 50 31 FWEEN ED TO 3:1 DR 2-60"	D MODEL 0 0 0 2378 773 387 257 201 126 74 48 30 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 406 407 408	KM KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2 BASIN BASIN ELEV	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN N STAGE/S 1594 AND DUTFLOW R THE OUTLE	4-HR FLO ACLE PEAN 0 0 0 2055 1331 521 521 521 521 521 521 521 521 521 52	-2D MODEL (SOUTH A 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPC ASIN SIDE RVE FROM ARE INLET	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23 53R. 53R.	TOURS BET STEEPENE MASTER FC	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31 FWEEN ED TO 3:1 DR 2-60"	D MODEL 0 0 0 2378 773 387 257 201 126 74 48 30 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 406 407 408 409 410 411 412 413 414	KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	7.0 0 0 0 1099 1699 597 339 240 180 107 62 40 31 BINFLO 2 BASIN BASIN ELEV	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR	4-HR FLO ACLE PEAH 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INT(TORAGE FI 1615; BA ATING CUI T PIPES A 0	-2D MODEL (SOUTH A 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPO ASIN SIDE RVE FROM ARE INLET	(XS 107 ADMS 100 0 0 0 3658 1047 460 293 214 149 86 52 36 23 36 23 37 38	TOURS BET STEEPENE MASTER FC	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31 FWEEN ED TO 3:1 DR 2-60"	D MODEL 0 0 0 2378 773 387 257 201 126 74 48 30 257 201 126 74 48 30	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 406 407 408 409 410 411 412 413 414 415	KM KM KM BA QI QI QI QI QI QI QI QI QI QI QI QI QI	BASIN BASIN BASIN ELEV	POWERLINE 100-YR, 2 FROM PINN 0 0 0 1198 1499 559 328 237 179 102 59 37 30 TOTAL IN N STAGE/S 1594 AND DUTFLOW R THE OUTLE STOR 44.9	4-HR FLO ACLE PEAH 0 0 0 2055 1331 521 317 223 164 97 57 35 24 FLOW INT(TORAGE FI 1615; BA ATING CUI T PIPES A 0 76.8	-2D MODEL (SOUTH 4 0 0 0 0 3747 1179 488 303 220 158 99 55 40 23 D BASIN 5 ROM PROPC ASIN SIDE RVE FROM ARE INLET 108.7	(XS 107 ADMS 1009 0 0 3658 1047 460 293 214 149 86 52 36 23 53R. SSED CONT SLOPES CULVERTI CONTROL 140.6	TOURS BET STEEPENE MASTER FC LLED. 171.5	HR FLO-22 0 0 1 2822 851 410 270 205 137 82 50 31 FINEEN ED TO 3:1 DR 2-60"	0 MODEL 0 0 0 0 0 0 0 0 0 1 2 3 7 7 3 8 7 2 5 2 0 1 1 2 6 7 4 4 8 3 0 1 2 5 7 2 0 1 1 2 6 7 4 8 3 0 1 2 5 7 2 5 7 2 0 1 1 2 6 7 4 8 3 0 1 2 5 7 2 0 1 1 2 6 7 2 5 7 2 0 1 1 2 6 7 2 5 7 2 0 1 1 2 6 7 4 8 3 0 1 2 5 7 2 0 1 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 1 2 6 7 4 8 3 0 2 3 2 3 7 2 4 8 3 0 2 3 2 3 8 7 2 4 8 3 0 2 3 5 2 2 1 2 6 2 4 8 3 0 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 43 2084 705 370 258 192 120 70 42 31	0 0 495 1898 645 356 248 188 117 66 41 30	

	417	SE	1594	1597	1598	1599	1600	1601	1602	1603	1604	1605	
	418	SF	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	
	419	50		94 6	153 4	209 8	244 2	264 5	284 0	302 5	320 1	336 9	
	410	50	252 0	368 5	202 5	308.0	112 Q	125 7	138 0	151 0	161 5	176 8	
	420	yc *	972.0	508.5		590.0	412.0	423.7	430.9	431.9	404.5	470.8	
1							TNDUT						DACE 13
T						HEC-1	INPUT						PAGE 12
					-		-	-	_				
	LINE	ID.	1	2 .	••••••3••	4	5 .	6.	/.	8.	9.	10	
	421	KK	BSNRT1										
	422	KM	2	2-60" CMP	OULFLOW	PIPES FC	OR BASIN	53R UND	ER SR 10	1L FREEW	AY.		
	423	KM	[OWNSTREA	M CONNECT	ING PIPE	ES ARE 6	0-INCH R	CP AND W	ILL HAVE			
	424	KM	1	EXCESS CA	PACITY.								
	425	RK	550	0.0052	0.024		CIRC	7.0					
		*											
	426	кк	BSNRT2										
	420	KN KN	05141(12				11 EDEE						
	427		1200		0 012							UTIALL)	
	420	*	1200	0.00//	0.013		CINC	7.0					
	400		684.0	DACTN									
	429	KK	SB10	BASIN									
	430	BA	0.040										
	431	LG	0.15	0.25	4.25	0.55	55						
	432	UC	0.233	0.161									
	433	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	434	UA	100										
		*											
	435	КК	CP-10	COMBINE									
	436	КМ		INTON HTI	IS DR AND	0 82ND 51	Γ (UNTON	HTLLS D	R CHANNE				
	437	HC	2			02.10 01	(0.120.1			- /			
	-57	*	2										
	120	VV	D10 11	POUTE									
	430		VI0-II							`			
	439	KM DV	4 2 7 7	JNION HIL		ANNEL FRO			YDEN KOA	J			
	440	RK	1277	0.0014	0.03		TRAP	220	4				
		*											
	441	KK	SB11	BASIN									
	442	BA	0.071										
	443	LG	0.15	0.25	4.15	0.58	55						
	444	UC	0.296	0.232									
	445	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	446	UA	100										
		*											
	447	кк	CP-11	COMBINE									
	448	КМ	0	INTON HTI		ΗΔΥΠΕΝ	ROAD (H	AVDEN RD	SOUTH C	HANNEL)			
	440		, ,			INTEL			500111 C				
	449	*	2										
	450												
1	450	LL											
T	COUL	MATTC DT		CTDEAM									
TNDUT	SCHE	MATIC DI	AGRAM U	- SIREAM	NETWORK								
INPUT	()		,										
LINE	(V) ROUTI	NG	(->) DIVER	SION OR F	PUMP FLOW	V						
NO.	(.) CONNE	CTOR	(<) RETUR	N OF DIVE	RTED OR	PUMPED	FLOW					
50	76THST												
69		SB01	A										
	•												
82	•		•	-> RET01	Δ								
79	•	SB01	^	/ 11/01									
13	•	2001											
	•		•										
05			•										
85	CP-1	• • • • • • • •	•										
	V												
	V												
88	R1A-2W												
	•												
91		SB02N	W										
102	-			-> RET2N	N								

99	. SB02N	łW
	•	•
107	CP-02W	•
	V	
110	R2W-2	
	•	
112	. SB01	IC
	•	•
121		> RET01C
118	. SB01	
	•	V
124	. R1C-1	LB
	•	•
126	•	. SB01B
		• •
135		> RET01B
132		. SB01B
	•	· ·
138	. CP-01	 LB
	•	V
		V
141	. R1B-2	2N
	•	•
143		SB02NE
152	•	> RET2NE
149	•	. SB02NE
	•	• •
155	. CP-02	2N
		V
	•	V
158	• R2N-	-2
	•	•
160		. SB02E2
	•	· ·
171	•	> RET2E2
168	•	. SB02E2
	•	• •
174		SB02W
180	CP-02	
	V	
182	R2-3	
	•	
185	. SB6	33
	•	•
191	СР-03	•
	V	-
	V	
193	R3-5	
	•	
196	. SBP	95
202	CP-5A	•
	•	
204	. SB07	7₩
	•	
_		
213		> RET07W

210	. SB07W				
	. v				
216	. V				
210	. K/W-OW				
220		SB8NW			
	• •	•			
230			> RET8N	IM	
227		SB8NW			
		V			
233	· · ·	R8NW8N			
		•			
227		•	CDONE		
237	• •	•	SBONE		
247		•		> RET8N	E
244	• •	•	SB8NE		
		•	v		
250			R8NE8N		
		•	•		
254	· ·	•	•	SB8SW	
				•	
		•	•	•	
264	• •	•	•		> RET8SW
201	· · ·	•		3003W	
		•	•		
267		•	•	•	SB8SE
	• •	•	•	•	•
277		•		•	> RET8SE
274		•	•	•	SB8SE
	• •	•	•	•	•
280		CP-08N	• • • • • • • • • • • • • • • • • • • •	•	•
		V			
282	• •				
283	· · ·	v R8N-8W			
283	· · · · · · · · · · · · · · · · · · ·	V R8N-8W			
283 287	· · · · · · · · · · · · · · · · · · ·	v R8N-8W	SB08W		
283 287	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W		
283 287 297	· · · · · · · · · · · · · · · · · · ·	V R8N-8W - - - - -	SB08W - 	> RET8I	N
283 287 297 293	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W	> RET81	٨
283 287 297 293		V R8N-8W	SB08W - SB08W -	> RET81	N
283 287 297 293 300	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W -	> RET81	Ν
283 287 297 293 300	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - -	> RET81	Ν
283 287 297 293 300	· · · · · · · · · · · · · · · · · · ·	V R8N-8W - - - - - - - - - - - - - - - - - -	SB08W - SB08W - -	> RET8I	N
283 287 297 293 300 302	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - -	> RET8I	N
283 287 297 293 300 302	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - -	> RET8I	Ν
283 287 297 293 300 302 309		V R8N-8W - - - - - - - - - - - - - - - - - -	SB08W - SB08W - -	> RET8I	Ν
283 287 297 293 300 302 309	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SBØ8W - SBØ8W - -	> RET8I	N
283 287 297 293 300 302 309 319	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W	> RET81	N
283 287 297 293 300 302 309 319 316	· · · · · · · · · · · · · · · · · · ·	V R8N-8W - - - - - - - - - - - - - - - 	SB08W SB08W	> RET81	N
283 287 297 293 300 302 309 319 316	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W	> RET81	Ν
283 287 297 293 300 302 309 319 316 322	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - > RET2E	> RET81	Ν
283 287 297 293 300 302 309 319 316 322	· · · · · · · · · · · · · · · · · · ·	V R8N-8W - - - - - - - - - - - - - - - - - -	SBØ8W SBØ8W 	> RET81	M
283 287 297 293 300 302 309 319 316 322	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W 	> RET81	M
283 287 297 293 300 302 309 319 316 322 324	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W 	> RET81	N
283 287 297 293 300 302 309 319 316 322 324	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - > RET2E	> RET81	N
283 287 297 293 300 302 309 319 316 322 324 326	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W	> RET81	N
283 287 297 293 300 302 309 319 316 322 324 326	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - > RET2E	> RET81	Ν
283 287 297 293 300 302 309 319 316 322 324 326 332	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SBØ8W SBØ8W 	> RET81	Ν
283 287 297 293 300 302 309 319 316 322 324 326 332	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W SB08W 	> RET81	M
283 287 297 293 300 302 309 319 316 322 324 326 332	· · · · · · · · · · · · · · · · · · ·	V R8N-8W	SB08W - SB08W - > RET2E	> RET81	N

	337	СР-05 V			
	341	V R5-6			
		•			
	344		SB06		
		•	•		
	350	СР-06			
		•			
	352	•	SB07E		
	552		V		
	250	•			
	358	•	K/E-8E		
	360	•		SB08I	Ξ
		•	•		•
	366				. SB09N
		•			. V
	372	•	•		. V RAN-RA
	572	•	•		· · · ·
	374	•	CP-08E	•••••	• • • • • • • • • • • • • • • •
		•	v		
	376		R8E-R9		
		•	•		
	378	•	•	SB09	9
	~~ ~	•			
	384	•	CP-09	•••••	•
		•			
	386	•		PWRCH	ł
		•	•		•
	406	•	BINFLO		
		•	V		
	100	•	V BASTN		
	409	•	V		
		•	v		
	421	•	BSNRT1		
		•	v V		
	426		BSNRT2		
		•			
	429	•	•	SB16	9
	425	•			
	435	•	CP-10		•
			v		
	438	•	R10-11		
		•	•		
	441	•		SB1	1
		•			•
	447	•	(P_11		•
	<i>+</i> /	•	Ci - 11	•••••	•
('	***) RU	NOFF ALSO COM	PUTED AT	THIS LOCAT	EON
**	******	*****	******	***********	*
* *	FI OO	D HYDROGRAPH	PACKAGE	(HEC-1) ³	*
*	. 200	JUN	1998	(k
*		VERSION	4.1	,	*
*		בכווורסב ATF	ттм⊨	, 10·25·33	r k
*	NON D	2030123			*
*;	******	*****	******	********	*

1,

*		*
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET	*
*	DAVIS, CALIFORNIA 95616	*
*	(916) 756-1104	*
*		*

		CROSS ROADS EAST DRAINAGE INFRASTRUCTURE POWERLINE CORRIDOR RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL: 100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND PIMA ROAD FLOWS.									
		PREPARED MODELER	3Y: T.Y. 5: RK, M	LIN INTERNA W	ATIONAL; L	AST MODIFI	ED: 09/14				
		REVISED B MODELER REVISIO NEW PR THIS I	Y: HUBBA 5: MSW, NS NOTED OP CONDI 5 THE UL	RD ENGINEE ES WITH HE TION MODEL TIMATE CON	RING; LAST ,WITH POWER DITION MOD	MODIFIED: RLINE AND EL	08/07/18 BASIN 53R				
		REVISED B MODELER XKSAT A	Y: HUBBA 5: MSW DJUSTMEN	RD ENGINEE	RING; LAST	MODIFIED:	10/25/19				
		REVISED B' MODELER REVISIO NEW PR CONSTRI ACCOUN FIRST REVISED B' MODELE REVISIO BASIN	Y: HUBBA 5: MSW, NS NOTED DPOSED IN JCTED IN F FOR HI FLUSH RE Y: HUBBA RS: MSW, DNS NOTE 2E WAS S	RD ENGINEE TSW WITH HE (I ONDITION MU PHASE 1 II GHER C FAC TENTION ADI RD ENGINEE TSW D WITH HE PLIT AT CE	RING; LAST Hubbard En DDEL, ACCOU NFRASTRUCTI TOR AND IM DED AS DIV RING; LAST (HUBBARD EI NTER POINT	MODIFIED: gineering) UNT FOR WH, URE, DETAI PERVIOUSNES ERT CARD W MODIFIED: NGINEERING DUE TO FLO	07/15/20 AT HAS BEE L OUT NEW SS, ADD RE ITH VOLUME 07/20/23) OW UNDER 1	N CP TENTION REQUIRED 21			
36 IO	OUTPUT CONTROL IPRNT IPLOT QSCAL	VARIABLES 5 0 0.	PRINT C PLOT CC HYDROGF	ONTROL NTROL APH PLOT SU	CALE						
IT	HYDROGRAPH TIM NMIN IDATE ITIME NQ NDDATE NDTIME ICENT	E DATA 3 1 0 0000 1000 3 0 0157 19	MINUTES STARTIN STARTIN NUMBER ENDING ENDING CENTURY	IN COMPUTA IG DATE IG TIME OF HYDROGRA DATE TIME MARK	ATION INTE APH ORDINA	RVAL TES					
	COMPUTATION TOTAL T	INTERVAL IME BASE	0.05 H 49.95 H	IOURS IOURS							
	ENGLISH UNITS DRAINAGE AREA PRECIPITATION DE LENGTH, ELEVATIO FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE	SQUAI PTH INCH N FEET CUBI ACRE ACRE DEGR	RE MILES ES C FEET F -FEET S EES FAHF	ER SECOND							
37 JD	INDEX STORM NO STRM TRDA	. 1 3.85 0.00	PRECIPI TRANSPC	TATION DEP SITION DRA	TH INAGE AREA						
38 PI	PRECIPITATIO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	N PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

48 JD

STRM

TRDA

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.66 PRECIPITATION DEPTH 10.00 TRANSPOSITION DRAINAGE AREA

0 PI	PRECIPITAT	ION PATTER	N							
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
49 JD	INDEX STORM NO.	3								
	STRM TRDA	3.53 20.00	PRECIPITA TRANSPOSI	TION DEPTH TION DRAIN	AGE AREA					
0 DT		DATTEDN								
0 11			0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	0.02 0	.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
	0.01 0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0 0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0 0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0 0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0 0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0 0.00 0	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			· · · ·	· · · ·	· · · ·	· · · ·	· · · •	· - -	· - -	

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 35

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

1

OPERATION	STATION	PEAK FLOW	TIME OF PEAK	AVERAGE F	LOW FOR MAXIN	NUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE	
				6-HOUR	24-HOUR	72-HOUR				
HYDROGRAPH AT	76THST	69.	12.50	23.	8.	4.	0.24			

	HYDROGRAPH AT	SB01A	86.	12.25	11.	4.	2.	0.06
	DIVERSION TO	RET01A	6.	11.55	2.	1.	0.	0.06
	HYDROGRAPH AT	SB01A	86.	12.25	10.	3.	1.	0.06
	2 COMBINED AT	CP-1	135.	12.30	33.	11.	5.	0.30
	ROUTED TO	R1A-2W	134.	12.30	33.	11.	5.	0.30
	HYDROGRAPH AT	SB02NW	29.	12.15	3.	1.	1.	0.02
	DIVERSION TO HYDROGRAPH AT 2 COMBINED AT	RET2NW	2.	11.45	1.	0.	0.	0.02
		SB02NW	29.	12.15	3.	1.	0.	0.02
		CP-02W	156.	12.25	36.	12.	6.	0.31
	ROUTED TO	R2W-2	155.	12.25	36.	12.	6.	0.31
	HYDROGRAPH AT	SB01C	32.	12.20	5.	2.	1.	0.03
	DIVERSION TO	RET01C	3.	11.60	1.	0.	0.	0.03
	HYDROGRAPH AT	SB01C	32.	12.20	5.	1.	1.	0.03
	ROUTED TO	R1C-1B	31.	12.25	5.	1.	1.	0.03
	HYDROGRAPH AT	SB01B	32.	12.20	4.	1.	1.	0.02
	DIVERSION TO	RET01B	2.	11.50	1.	0.	0.	0.02
	HYDROGRAPH AT	SB01B	32.	12.20	4.	1.	1.	0.02
	2 COMBINED AT	CP-01B	63.	12.20	9.	2.	1.	0.05
	ROUTED TO	R1B-2N	62.	12.25	9.	2.	1.	0.05
	HYDROGRAPH AT	SB02NE	35.	12.25	6.	2.	1.	0.03
	DIVERSION TO	RET2NE	3.	11.70	1.	0.	0.	0.03
	HYDROGRAPH AT	SB02NE	35.	12.25	6.	2.	1.	0.03
	2 COMBINED AT	CP-02N	96.	12.25	14.	4.	2.	0.09
	ROUTED TO	R2N-2	95.	12.25	14.	4.	2.	0.09
	HYDROGRAPH AT	SB02E2	33.	12.10	5.	2.	1.	0.02
	DIVERSION TO	RET2E2	1.	9.00	1.	0.	0.	0.02

HYDROGRAPH AT

4

	SB02E2	33.	12.10	5.	1.	1.	0.02
HYDROGRAPH AT	SB02W	34.	12.45	5.	1.	1.	0.06
4 COMBINED AT	CP-02	292.	12.30	59.	18.	9.	0.18
ROUTED TO	R2-3	291.	12.35	59.	18.	9.	0.18
HYDROGRAPH AT	SB03	65.	12.15	10.	3.	2.	0.05
2 COMBINED AT	CP-03	334.	12.35	68.	21.	10.	0.23
ROUTED TO	R3-5	332.	12.45	68.	21.	10.	0.23
HYDROGRAPH AT	SB05	190.	12.10	24.	8.	4.	0.13
2 COMBINED AT	CP-5A	404.	12.45	89.	28.	14.	0.36
HYDROGRAPH AT	SB07W	68.	12.20	8.	3.	1.	0.05
DIVERSION TO	RET07W	4.	11.50	2.	1.	0.	0.05
HYDROGRAPH AT	SB07W	68.	12.20	8.	2.	1.	0.05
ROUTED TO	R7W-8W	66.	12.60	8.	2.	1.	0.05
HYDROGRAPH AT	SB8NW	27.	12.15	4.	1.	1.	0.01
DIVERSION TO	RET8NW	1.	9.00	1.	0.	0.	0.01
HYDROGRAPH AT	SB8NW	27.	12.15	4.	1.	1.	0.01
ROUTED TO	R8NW8N	26.	12.15	4.	1.	1.	0.01
HYDROGRAPH AT	SB8NE	29.	12.10	4.	1.	1.	0.01
DIVERSION TO	RET8NE	1.	8.95	1.	0.	0.	0.01
HYDROGRAPH AT	SB8NE	29.	12.10	4.	1.	1.	0.01
ROUTED TO	R8NE8N	28.	12.15	4.	1.	1.	0.01
HYDROGRAPH AT	SB8SW	25.	12.10	3.	1.	1.	0.01
DIVERSION TO	RET8SW	1.	8.95	0.	0.	0.	0.01
HYDROGRAPH AT	SB8SW	25.	12.10	3.	1.	0.	0.01
HYDROGRAPH AT	SB8SE	23.	12.15	3.	1.	1.	0.01
DIVERSION TO	RET8SE	1.	9.00	0.	0.	0.	0.01
HYDROGRAPH AT	SB8SE	23.	12.15	3.	1.	0.	0.01

4 COMBINED AT	CP-08N	102.	12.15	14.	4.	2.	0.06
ROUTED TO	R8N-8W	101.	12.15	14.	4.	2.	0.06
HYDROGRAPH AT	SBORN	118	12 10		5		0.06
DIVERSION TO	DETOU		0.20	14.	1	2.	0.00
HYDROGRAPH AT	REI8W	3.	9.20	2.	1.	0.	0.06
	SB08W	118.	12.10	14.	4.	2.	0.06
3 COMBINED AT	CP-08W	214.	12.10	36.	11.	5.	0.16
ROUTED TO	R8W-4N	170.	12.25	35.	11.	5.	0.16
HYDROGRAPH AT	SB02E1	49.	12.10	6.	2.	1.	0.03
DIVERSION TO	RET2E1	1.	8.95	1.	0.	0.	0.03
HYDROGRAPH AT	SB02E1	49.	12.10	6.	2.	1.	0.03
2 COMBINED AT	CP-4N	209.	12.15	41.	12.	6.	0.19
ROUTED TO	R4N-4	208.	12.15	41.	12.	6.	0.19
HYDROGRAPH AT	SB04	241.	12.10	31.	10.	5.	0.14
2 COMBINED AT	CP-4	438.	12.10	71.	22.	11.	0.33
ROUTED TO	R4-5	435.	12.20	71.	22.	11.	0.33
2 COMBINED AT	CP-05	734.	12.35	159.	51.	25.	0.69
ROUTED TO	R5-6	730.	12.45	159.	51.	25.	0.69
HYDROGRAPH AT	SB06	202.	12.10	27.	9.	4.	0.14
2 COMBINED AT	CP-06	819.	12.40	185.	59.	29.	0.82
HYDROGRAPH AT	SB07E	16.	12.40	2.	1.	0.	0.03
ROUTED TO	R7E-8E	16.	12.45	2.	1.	0.	0.03
HYDROGRAPH AT	SB08E	39.	12.55	6.	2.	1.	0.08
HYDROGRAPH AT	SB09N	11.	12.55	3.	1.	0.	0.03
ROUTED TO	R9N-R9	11.	12.65	3.	1.	0.	0.03
3 COMBINED AT	CP-08E	63.	12.55	11.	3.	1.	0.13
ROUTED TO	R8E-R9	63.	12.55	11.	3.	1.	0.13
HYDROGRAPH AT			,		2.		5.15
	SB09	60.	12.45	9.	2.	1.	0.09

+	2 COMBINED	AT	CP-0	9	120. 1	.2.50	2	0.	5.	2.	0.22			
+	HYDROGRAPH	AT	PWRC	Н 3	747. 1	.3.25	154	0.	502.	248.	7.00			
+	2 COMBINED	AT	BINFL	0 3	788. 1	.3.25	155	8.	507.	250.	7.22			
+	ROUTED TO		BASI	N	462. 1	8.45	45	8.	399.	241.	7.22			
+	ROUTED TO		BSNRT	1	462. 1	.8.50	45	8.	399.	241.	7.22			
+	ROUTED TO		BSNRT	2	462. 1	.8.50	45	8.	399.	241.	7.22			
+	HYDROGRAPH	AT	SB1	0	72. 1	.2.05	:	8.	3.	1.	0.04			
+	2 COMBINED	AT	CP-1	0	463. 1	.8.50	45	9.	400.	242.	7.26			
+	ROUTED TO		R10-1	1	463. 1	.8.55	45	9.	400.	241.	7.26			
+	HYDROGRAPH	AT	SB1	1	107. 1	.2.10	14	4.	5.	2.	0.07			
+	2 COMBINED	AT	CP-1	1	465. 1	.8.55	46	0.	401.	244.	7.33			
1					SUMMA (ARY OF K	INEMATIC DIRECT	WAVE - N RUNOFF W	MUSKINGUM ITHOUT BA	-CUNGE ROUT SE FLOW)	ING			
	ISTAQ	ELEME	ENT	DT	PEAK	TIME	TO Y	VOLUME	DT	INTERPOL COMPUTATION PEAK	ATED TO INTERVAL TIME TO	VOLUME		
				(MIN)	(CFS)	(1	MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR STORM R1A-2W	= 1 MANE	STORM	AREA (SQ 0.27	MI) = 138.22	0.0 738	00 .13	1.40	3.00	138.18	738.00	1.40		
CONTINUI	TY SUMMARY	(AC-F1	T) - IN	FLOW=0.2	249E+02	EXCESS=	0.0000E+	00 OUTFL	OW=0.2249	E+02 BASIN	STORAGE=0.	2963E-02 PERCENT	ERROR=	0.0
	FOR STORM	= 2	STORM	AREA (SQ	MI) =	10.	00 11	1 27	3 00	122 72	738 00	1 27		
			_\	0.25	152.70			1.57	5.00	192.75	/50.00	1.37		
CONTINUI	TY SUMMARY	(AC-F	T) - IN	FLOW=0.2	206E+02	EXCESS=	0.0000E+	30 OUTFLO	OW=0.2206	E+02 BASIN	STORAGE=0.	2963E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	= 3 Mane	STORM	AREA (SQ 0.23	MI) = 129.25	20. 738	00 .12	1.36	3.00	129.19	738.00	1.36		
CONTINUI	TY SUMMARY	(AC-F	T) - IN	FLOW=0.2	178E+02	EXCESS=	0.0000E+	00 OUTFL	OW=0.2178	E+02 BASIN	STORAGE=0.	2963E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	= 1 MANE	STORM	AREA (SQ 0.20	MI) = 160.62	0.0 2 735	00 .42	1.50	3.00	159.58	735.00	1.50		
CONTINUI	TY SUMMARY	(AC-FI	T) - IN	FLOW=0.2	435E+02	EXCESS=	0.0000E+	00 OUTFL	OW=0.2435	E+02 BASIN	STORAGE=0.	4089E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	= 2 Mane	STORM	AREA (SQ 0.28	MI) = 153.29	10. 735	00 .70	1.46	3.00	152.40	738.00	1.46		
CONTINUI	TY SUMMARY	(AC-F	T) - IN	FLOW=0.2	379E+02	EXCESS=	0.0000E+	00 OUTFL	OW=0.2378	E+02 BASIN	STORAGE=0.	4089E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	= 3 Mane	STORM	AREA (SQ 0.22	MI) = 148.68	20. 8 735	00 .55	1.44	3.00	147.99	738.00	1.44		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2342E+02 EXCESS=0.0000E+00 OUTFLOW=0.2342E+02 BASIN STORAGE=0.4090E-02 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 3.00 32.39 1.81 R1C-1B MANE 0.43 32.64 732.90 1.80 735.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2599E+01 EXCESS=0.0000E+00 OUTFLOW=0.2599E+01 BASIN STORAGE=0.9756E-13 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R1C-1B MANE 0.39 30.53 732.80 1.67 3.00 30.31 735.00 1.67 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2408E+01 EXCESS=0.0000E+00 OUTFLOW=0.2408E+01 BASIN STORAGE=0.9547E-13 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R1C-1B MANE 0.44 29.15 732.86 1.59 3.00 28.96 735.00 1.59 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2284E+01 EXCESS=0.0000E+00 OUTFLOW=0.2285E+01 BASIN STORAGE=0.9767E-13 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R1B-2N MANE 1.55 64.38 735.51 1.81 3.00 64.19 735.00 1.81 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4913E+01 EXCESS=0.0000E+00 OUTFLOW=0.4913E+01 BASIN STORAGE=0.5632E-04 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R1B-2N MANE 3.00 1.51 60.32 734.68 1.67 60.22 735.00 1.67 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4553E+01 EXCESS=0.0000E+00 OUTFLOW=0.4552E+01 BASIN STORAGE=0.5975E-04 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R1B-2N MANE 1.46 57.82 735.22 1.59 3.00 57.66 735.00 1.59 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4319E+01 EXCESS=0.0000E+00 OUTFLOW=0.4320E+01 BASIN STORAGE=0.5659E-04 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R2N-2 MANE 0.26 99.78 735.68 1.80 3.00 99.10 735.00 1.80 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8138E+01 EXCESS=0.0000E+00 OUTFLOW=0.8139E+01 BASIN STORAGE=0.1854E-04 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R2N-2 MANE 0.41 93.34 735.52 1.66 3.00 92.74 735.00 1.66 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7542E+01 EXCESS=0.0000E+00 OUTFLOW=0.7543E+01 BASIN STORAGE=0.1946E-04 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R2N-2 MANE 0.30 89.45 735.69 1.58 3.00 88.67 735.00 1.58 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7158E+01 EXCESS=0.0000E+00 OUTFLOW=0.7159E+01 BASIN STORAGE=0.1834E-04 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 2.00 302.20 3.00 3.91 R2-3 MANE 740.66 3.91 301.87 741.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3789E+02 EXCESS=0.0000E+00 OUTFLOW=0.3783E+02 BASIN STORAGE=0.3881E-01 PERCENT ERROR= 0.1 FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R2-3 MANE 2.15 284.82 3.74 3.00 284.60 741.00 3.74 740.61

F	OR S	STORM R2-3	= 3 Mane	STORM	AREA (SQ 2.18	MI) = 273.91	20.00 740.89	3.63	3.00	273.83	741.00	3.63		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.3	526E+02	EXCESS=0.0000E	+00 OUTI	FLOW=0.3517E+	⊦02 BASIN	STORAGE=0.36	35E-01 PERCENT	ERROR=	0.1
F	OR S	STORM 83-5	= 1 MANE	STORM	AREA (SQ 2.78	MI) = 347.19	0.00 747.80	3.61	3.00	345.18	747.00	3.61		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.4	436E+02	EXCESS=0.0000E	+00 OUTI	FLOW=0.4421E+	⊦02 BASIN	STORAGE=0.82	13E-01 PERCENT	ERROR=	0.2
F	FOR S	STORM 83-5	= 2 Mane	STORM	AREA (SQ 2.83	MI) = 327.37	10.00 749.00	3.45	3.00	325.41	747.00	3.45		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.4	237E+02	EXCESS=0.0000E	+00 OUTI	FLOW=0.4224E+	+02 BASIN	STORAGE=0.82	13E-01 PERCENT	ERROR=	0.1
F	OR S	STORM 83-5	= 3 Mane	STORM	AREA (SQ 2.98	MI) = 313.61	20.00 748.50	3.35	3.00	311.40	750.00	3.34		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.4	111E+02	EXCESS=0.0000E	+00 OUTI	FLOW=0.4096E+	⊦02 BASIN	STORAGE=0.82	13E-01 PERCENT	ERROR=	0.2
F	OR S R7V	STORM V-8W	= 1 MANE	STORM	AREA (SQ 3.00	MI) = 68.93	0.00 754.57	1.91	3.00	68.50	756.00	1.91		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.4	511E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.4779E+	+01 BASIN	STORAGE=0.93	74E-03 PERCENT	ERROR=	-6.0
F	OR S R71	STORM V-8W	= 2 Mane	STORM	AREA (SQ 3.00	MI) = 64.32	10.00 754.67	1.83	3.00	64.21	756.00	1.83		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.4	179E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.4572E+	+01 BASIN	STORAGE=0.83	68E-03 PERCENT	ERROR=	-9.4
F	OR S R7V	STORM V-8W	= 3 Mane	STORM	AREA (SQ 3.00	MI) = 63.27	20.00 756.75	1.63	3.00	59.66	759.00	1.63		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.3	965E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.4073E+	+01 BASIN	STORAGE=0.83	62E-03 PERCENT	ERROR=	-2.8
F	OR S R8N	STORM IW8N	= 1 MANE	STORM	AREA (SQ 0.83	MI) = 27.24	0.00 730.38	2.83	3.00	27.08	729.00	2.83		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.2	215E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.2217E+	+01 BASIN	STORAGE=0.33	50E-06 PERCENT	ERROR=	-0.1
F	OR S R8N	STORM IW8N	= 2 Mane	STORM	AREA (SQ 0.90	MI) = 25.74	10.00 730.14	2.66	3.00	25.61	729.00	2.66		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.2	082E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.2084E+	⊦01 BASIN	STORAGE=0.29	81E-06 PERCENT	ERROR=	-0.1
F	OR S R8N	STORM IW8N	= 3 MANE	STORM	AREA (SQ 0.87	MI) = 24.80	20.00 730.23	2.55	3.00	24.66	729.00	2.55		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.1	996E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.1998E+	⊦01 BASIN	STORAGE=0.28	40E-06 PERCENT	ERROR=	-0.1
F	OR S R8N	STORM NE8N	= 1 MANE	STORM	AREA (SQ 0.80	MI) = 29.24	0.00 728.00	2.83	3.00	29.14	729.00	2.83		
CONTINUITY	SUM	1ary	(AC-F	T) - I	NFLOW=0.2	259E+01	EXCESS=0.0000E	+00 OUTI	FLOW=0.2263E+	⊦01 BASIN	STORAGE=0.33	12E-06 PERCENT	ERROR=	-0.1
F	OR S	TORM	= 2	STORM	AREA (SQ	MI) =	10.00							

	R8NE8N	MANE	0.87	27.62	2 728.44	2.66	3.00	27.56	729.00	2.66		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.2124E+01	EXCESS=0.00	00E+00 OUTF	LOW=0.2127	E+01 BASIN	STORAGE=0	.3201E-06 PERCEN	T ERROR=	-0.2
	FOR STORM R8NE8N	1 = 3 MANE	STORM AREA (0.87	(SQ MI) = 7 26.65	20.00 5 727.97	2.55	3.00	26.55	729.00	2.55		
CONTINUI	ry summary	(AC-F	T) - INFLOW=0	0.2036E+01	EXCESS=0.00	00E+00 OUTF	LOW=0.2038	E+01 BASIN	STORAGE=0	.3381E-06 PERCEN	T ERROR=	-0.1
	FOR STORM R8N-8W	1 = 1 MANE	STORM AREA (0.63	(SQ MI) = 3 104.30	0.00 729.26	2.83	3.00	104.19	729.00	2.83		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.8393E+01	EXCESS=0.00	00E+00 OUTF	LOW=0.8394	E+01 BASIN	STORAGE=0	.4795E-07 PERCEN	T ERROR=	0.0
	FOR STORM R8N-8W	1 = 2 MANE	STORM AREA (0.63	(SQ MI) = 3 98.64	10.00 4 729.78	2.66	3.00	98.54	729.00	2.66		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.7889E+01	EXCESS=0.00	00E+00 OUTF	LOW=0.7890	E+01 BASIN	STORAGE=0	.4709E-07 PERCEN	T ERROR=	0.0
	FOR STORM R8N-8W	1 = 3 MANE	STORM AREA (0.51	(SQ MI) = L 95.24	20.00 1 729.83	2.55	3.00	94.91	729.00	2.55		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.7563E+01	EXCESS=0.00	00E+00 OUTF	LOW=0.7564	E+01 BASIN	STORAGE=0	.4620E-07 PERCEN	T ERROR=	0.0
	FOR STORM R4N-4	1 = 1 MANE	STORM AREA (0.62	(SQ MI) = 2 213.12	0.00 2 730.47	2.59	3.00	211.87	729.00	2.59		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.2575E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.2576	E+02 BASIN	STORAGE=0	.3243E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4N-4	1 = 2 MANE	STORM AREA (0.55	(SQ MI) = 5 206.27	10.00 7 730.30	2.44	3.00	205.23	729.00	2.44		
CONTINUI	ry summary	(AC-F	T) - INFLOW=0	0.2428E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.2429	E+02 BASIN	STORAGE=0	.3185E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4N-4	1 = 3 MANE	STORM AREA (0.61	(SQ MI) = L 201.64	20.00 4 730.38	2.31	3.00	200.92	729.00	2.31		
CONTINUI	ry summary	(AC-F	T) - INFLOW=0	0.2296E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.2297	E+02 BASIN	STORAGE=0	.3174E-03 PERCEN	T ERROR=	0.0
	FOR STORM R4-5	1 = 1 MANE	STORM AREA (2.44	(SQ MI) = 4 450.25	0.00 5 732.20	2.65	3.00	449.62	732.00	2.65		
CONTINUIT	ry summary	(AC-F	T) - INFLOW=0	0.4676E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.4671	E+02 BASIN	STORAGE=0	.1241E-02 PERCEN	T ERROR=	0.1
	FOR STORM R4-5	1 = 2 MANE	STORM AREA (2.46	(SQ MI) = 5 430.99	10.00 731.20	2.51	3.00	429.42	732.00	2.51		
CONTINUI	ry summary	(AC-F	T) - INFLOW=0	. 4415E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.4417	E+02 BASIN	STORAGE=0	.1156E-02 PERCEN	T ERROR=	-0.1
	FOR STORM R4-5	1 = 3 MANE	STORM AREA (2.59	(SQ MI) = 9 413.08	20.00 3 733.30	2.39	3.00	412.54	732.00	2.39		
CONTINUI	ry summary	(AC-F	T) - INFLOW=0	0.4210E+02	EXCESS=0.00	00E+00 OUTF	LOW=0.4212	E+02 BASIN	STORAGE=0	.1072E-02 PERCEN	T ERROR=	-0.1
	FOR STORM R5-6	1 = 1 MANE	STORM AREA (2.40	(SQ MI) =) 767.39	0.00 9 744.77	2.92	3.00	764.40	744.00	2.92		

CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	068E+03	EXCESS=0.0000	E+00 OUTFI	LOW=0.1067E	+03 BASIN	STORAGE=0.	6946E-01 PERCENT	ERROR=	0.0
FOR STOF R5-6	RM = 2 5 mane	STORM	AREA (SQ 2.50	MI) = 720.70	10.00 746.65	2.77	3.00	719.61	747.00	2.77		
CONTINUITY SUMMARY	′ (AC-F	T) - IN	NFLOW=0.1	014E+03	EXCESS=0.0000	E+00 OUTFI	LOW=0.1013E	+03 BASIN	STORAGE=0.0	6948E-01 PERCENT	ERROR=	0.1
FOR STOF R5-6	RM = 3 5 MANE	STORM	AREA (SQ 2.49	MI) = 687.18	20.00 3 747.03	2.66	3.00	686.98	747.00	2.66		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.9	744E+02	EXCESS=0.0000	E+00 OUTFI	LOW=0.9736E	+02 BASIN	STORAGE=0.0	6948E-01 PERCENT	ERROR=	0.0
FOR STOF R7E-8E	RM = 1 MANE	STORM	AREA (SQ 1.93	MI) = 16.43	0.00 3 748.32	0.80	3.00	16.39	747.00	0.80		
CONTINUITY SUMMARY	′(AC-F	T) - IN	NFLOW=0.1	113E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.1112E	+01 BASIN	STORAGE=0.	1951E-04 PERCENT	ERROR=	0.0
FOR STOF R7E-8E	RM = 2 E MANE	STORM	AREA (SQ 1.94	MI) = 14.90	10.00 748.28	0.72	3.00	14.82	747.00	0.72		
CONTINUITY SUMMARY	′ (AC-F	T) - IN	NFLOW=0.9	964E+00	EXCESS=0.0000	E+00 OUTFI	LOW=0.9968E	+00 BASIN	STORAGE=0.3	1628E-04 PERCENT	ERROR=	0.0
FOR STOF R7E-8E	RM = 3 E MANE	STORM	AREA (SQ 2.13	MI) = 13.91	20.00 L 748.07	0.67	3.00	13.81	747.00	0.67		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.9	248E+00	EXCESS=0.0000	E+00 OUTFI	LOW=0.9254E	+00 BASIN	STORAGE=0.3	1626E-04 PERCENT	ERROR=	-0.1
FOR STOF R9N-R9	RM = 1 MANE	STORM	AREA (SQ 2.43	MI) = 11.87	0.00 7 758.35	0.97	3.00	11.83	759.00	0.97		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.1	453E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.1451E	+01 BASIN	STORAGE=0.	2431E-04 PERCENT	ERROR=	0.1
FOR STOF R9N-R9	RM = 2 9 mane	STORM	AREA (SQ 2.57	MI) = 10.88	10.00 3 757.62	0.89	3.00	10.84	759.00	0.89		
CONTINUITY SUMMARY	′(AC-F	T) - IN	NFLOW=0.1	330E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.1328E	+01 BASIN	STORAGE=0.2	2146E-04 PERCENT	ERROR=	0.1
FOR STOF R9N-R9	RM = 3 9 mane	STORM	AREA (SQ 2.61	MI) = 10.25	20.00 5 758.60	0.84	3.00	10.23	759.00	0.84		
CONTINUITY SUMMARY	′(AC-F	T) - IN	NFLOW=0.1	249E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.1248E	+01 BASIN	STORAGE=0.2	2338E-04 PERCENT	ERROR=	0.1
FOR STOF R8E-R9	RM = 1 9 MANE	STORM	AREA (SQ 0.31	MI) = 67.27	0.00 7 753.42	0.85	3.00	67.12	753.00	0.85		
CONTINUITY SUMMARY	(AC-F	T) - IN	NFLOW=0.5	955E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.5955E	+01 BASIN	STORAGE=0.	1051E-04 PERCENT	ERROR=	0.0
FOR STOF R8E-R9	RM = 2 9 mane	STORM	AREA (SQ 0.38	MI) = 60.94	10.00 4 753.41	0.76	3.00	60.79	753.00	0.76		
CONTINUITY SUMMARY	′ (AC-F	T) - IN	NFLOW=0.5	368E+01	EXCESS=0.0000	E+00 OUTFI	LOW=0.5368E	+01 BASIN	STORAGE=0.3	1067E-04 PERCENT	ERROR=	0.0
FOR STOF R8E-R9	RM = 3 9 mane	STORM	AREA (SQ 0.36	MI) = 56.87	20.00 7 753.51	0.71	3.00	56.68	753.00	0.71		

	FOR STORM BSNRT1	1 = 1 S MANE	STORM A	REA (SQ 0.38	MI) = 462.76	0.00 1109.87	2.58	3.00	462.76	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	944E+03	EXCESS=0.0000)E+00 OUTFLO	W=0.9943E	+03 BASIN	STORAGE=0.9346	E-01 PERCENT	ERROR=	0.0
	FOR STORM BSNRT1	1 = 2 S MANE	TORM A	REA (SQ 0.38	MI) = 462.49	10.00 1110.02	2.58	3.00	462.49	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	936E+03	EXCESS=0.0000	9E+00 OUTFLO	W=0.9935E	+03 BASIN	STORAGE=0.9328	E-01 PERCENT	ERROR=	0.0
	FOR STORM BSNRT1	1 = 3 S MANE	STORM A	REA (SQ 0.38	MI) = 462.32	20.00 1110.01	2.58	3.00	462.32	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	930E+03	EXCESS=0.0000	9E+00 OUTFLO	W=0.9929E	+03 BASIN	STORAGE=0.9316	E-01 PERCENT	ERROR=	0.0
	FOR STORM BSNRT2	1 = 1 S MANE	TORM A	REA (SQ 0.38	MI) = 462.76	0.00 1110.48	2.58	3.00	462.76	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	943E+03	EXCESS=0.0000)E+00 OUTFLO	W=0.9941E	+03 BASIN	STORAGE=0.1069	E+00 PERCENT	ERROR=	0.0
	FOR STORM BSNRT2	1 = 2 S MANE	TORM A	NREA (SQ 0.38	MI) = 462.49	10.00 1110.30	2.58	3.00	462.49	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	935E+03	EXCESS=0.0000	9E+00 OUTFLO	W=0.9933E	+03 BASIN	STORAGE=0.1067	'E+00 PERCENT	ERROR=	0.0
	FOR STORM BSNRT2	1 = 3 S MANE	TORM A	NREA (SQ 0.38	MI) = 462.32	20.00 1110.49	2.58	3.00	462.32	1110.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	929E+03	EXCESS=0.0000)E+00 OUTFLO	W=0.9927E	+03 BASIN	STORAGE=0.1065	E+00 PERCENT	ERROR=	0.0
	FOR STORM R10-11	1 = 1 S MANE	TORM A	REA (SQ 2.34	MI) = 463.63	0.00 1114.77	2.58	3.00	463.63	1113.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	994E+03	EXCESS=0.0000)E+00 OUTFLO	W=0.9982E	+03 BASIN	STORAGE=0.1212	E+01 PERCENT	ERROR=	0.0
	FOR STORM R10-11	1 = 2 S MANE	STORM A	REA (SQ 2.39	MI) = 463.32	10.00 1113.19	2.58	3.00	463.32	1113.00	2.58		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	983E+03	EXCESS=0.0000)E+00 OUTFLO	W=0.9972E	+03 BASIN	STORAGE=0.1068	E+01 PERCENT	ERROR=	0.0
	FOR STORM R10-11	1 = 3 S MANE	TORM A	REA (SQ 2.35	MI) = 463.12	20.00 1115.43	2.57	3.00	463.12	1113.00	2.57		
CONTINUI	TY SUMMARY	(AC-FT)	- INF	LOW=0.99	977E+03	EXCESS=0.0000	0E+00 OUTFLO	W=0.9964E	+03 BASIN	STORAGE=0.1562	E+01 PERCENT	ERROR=	0.0

*** NORMAL END OF HEC-1 ***

Appendix E Hydrology Calculations Toll at Cavasson
HYDROLOGIC CALCULATION SUMMARY SHEET RATIONAL METHOD Hubbard Engineering Project No. 18114-750

Project Name: Toll at Cavasson Project No.: 18114-750 Prepared by: TSW Revised by: TSW Date: 06/22/24 Date: 10/02/24

Complete calculations for each concentration point are presented in the attached hydrologic calculation sheets.

Sub-Basin		С		I			Α		Q		
&	Ru	noff Coeffic	ient		Intensity		Area	P	ge		
Concentration		Frequency		Frequency					Q Peak Discharge Frequency Joyear 50-year 100-year 32.09 47.79 57.02 4.74 7.97 9.36 3.66 6.15 7.22 3.57 6.01 7.05 4.32 7.26 8.52 3.58 6.02 7.07 0.39 0.59 0.66 0.66 0.98 1.10 3.64 5.41 6.09 13.57 20.13 22.68		
Point	10-year	50-year	100-year	10-year	50-year	100-year		10-year	50-year	100-year	
ID					[in/hr]		[acres]		[cfs]		
DA-A	0.80	0.85	0.90	3.66	5.13	5.78	10.96	32.09	47.79	57.02	
DA-OFF1	0.40	0.48	0.50	3.66	5.13	5.78	3.24	4.74	7.97	9.36	
DA-OFF-2	0.40	0.48	0.50	3.66	5.13	5.78	2.50	3.66	6.15	7.22	
DA-OFF-3	0.40	0.48	0.50	3.66	5.13	5.78	2.44	3.57	6.01	7.05	
DA-OFF-4	0.40	0.48	0.50	3.66	5.13	5.78	2.95	4.32	7.26	8.52	
DA-OFF-5	0.40	0.48	0.50	3.66	5.13	5.78	2.45	3.58	6.02	7.07	
SA-A1	0.85	0.90	0.90	3.66	5.13	5.78	0.13	0.39	0.59	0.66	
SA-A2	0.85	0.90	0.90	3.66	5.13	5.78	0.21	0.66	0.98	1.10	
SA-A3	0.85	0.90	0.90	3.66	5.13	5.78	1.17	3.64	5.41	6.09	
SA-A4	0.85	0.90	0.90	3.66	5.13	5.78	4.36	13.57	20.13	22.68	
SA-A5	0.85	0.90	0.90	3.66	5.13	5.78	1.22	3.78	5.61	6.32	
SA-A6	0.85	0.90	0.90	3.66	5.13	5.78	3.87	12.03	17.85	20.11	
SA-A7	0.85	0.90	0.90	3.66	5.13	5.78	3.71	11.55	17.14	19.31	
SA-A8	0.85	0.90	0.90	3.66	5.13	5.78	1.90	5.91	8.77	9.89	
SA-A9	0.85	0.90	0.90	3.66	5.13	5.78	1.27	3.96	5.88	6.62	
SA-A10	0.85	0.90	0.90	3.66	5.13	5.78	0.64	1.99	2.95	3.33	
SA-A11	0.85	0.90	0.90	3.66	5.13	5.78	0.04	0.12	0.18	0.21	
SA-A12	0.85	0.90	0.90	3.66	5.13	5.78	0.04	0.11	0.17	0.19	

Concentration Point ID: DA-A

Project Name: Toll at Cavasson Project No.: 18114-750				Pr I	epared by: T Revised by: T	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
Location Data	State: A	Arizona		County: Maricopa			Jurisdiction:	City of Scottsdale
Design Data		100	[]		E11		550.27	[0]
L	Chaok Frequency:	50	[yrs]		Flow	Flavation (L)=	550.57 1624.80	[IT] [#]
	Check Frequency:	10	[yrs]	Elevation _{Max} :			1034.60	[11]
		10	[yrs]		1	Elevation Min:	1529.08	[11]
Dr	ainage Area (A)=	10.96	[acres]		I F1 D-41	Elevation Difference:	305.12	[f]
					Flow Path	$Slope_{Average}(S) =$	0.55439	[ff/ft]
Watershed Chars	acteristics							
	Hydrologi	c Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	, Table 3.1, Pa	age 3-3)		
Dational Mathed	Commutations							
Kational Method	Time of Conce	ntration (Tc)	(1).					
	$T_{c} = 11.4*L0.5*$	Kb0.52*S-0	31*i-0.38					
	10 1111 2010	1200102 0 01	01 1 0.00					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	area [acres]		
	Frequency				T.	i		
	[vr]	m	h	K,	-c [min]	[in/hr]		
	10	-0.00625	0.04	0.033501	10.0	3.66		
	50	-0.00625	0.04	0.033501	10.0	5.1		
	100	-0.00625	0.04	0.033501	10.0	5.78		
	Peak Discharge	(Q):	5.03					
	$Q = C_{*1*}A$		[cfs]					
		А	[acres]					
		i	[in/hr]					
		C.	Runoff Co	efficient				
		c_2	C ⁽¹⁾ -	= 0.80				
			$C_{10} = C_{10}^{(1)}$	0.00				
			$C_{50}^{(1)} =$	- 0.85				
			$C_{100}^{(1)} =$	= 0.90				
		0	22.00	[
		$Q_{10} =$	32.09					
		$Q_{50} =$	47.79	[cfs]				
		$Q_{100} =$	57.02	[cfs]				

Concentration Point ID: DA-OFF1

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: T Revised by: T	'SW 'SW	Date: 06/22/24 Date: 10/02/24		
Location Data									
	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale	
Dosign Data									
Design Data Des	sign Frequency:	100	[yrs]		Flow I	Path Length (L)=	700.04	[ft]	
Ch	eck Frequency:	50	[yrs]			Elevation Max:	1640.00	[ft]	
Ch	eck Frequency:	10	[yrs]			Elevation Min:	1628.00	[ft]	
Drai	nage Area (A)=	3.24	[acres]		I	Elevation Difference:	12.00	[ft]	
					Flow Path	$Slope_{Average}(S) =$	0.01714	[ft/ft]	
Watershed Charac	teristics								
	Hydrologic	Soil Group:							
	Veget	tation Cover:	<25	[%]					
	Classifi	ication Type:	В	(Reference	, Table 3.1, Pa	age 3-3)			
Rational Method C	omputations								
	Time of Concer	ntration, (Tc)	(2):						
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38						
		L	[mi]		Kb=m Log A	+ b			
		S	[ft/mi]		m= -(0.01375			
		i	[in/hr]		b= 0	.08			
					$\mathbf{A} = \mathbf{A}$	area [acres]			
	Frequency				T _c	i			
	[yr]	m	b	K _b	[min]	[in/hr]			
	10	-0.01375	0.08	0.072983	10.0	3.66			
	50	-0.01375	0.08	0.072983	10.0	5.1			
	100	-0.01375	0.08	0.072983	10.0	5.78			
	Peak Discharge ((Q):							
	$Q = C_*i_*A$		[cfs]						
		А	[acres]						
		i	[in/hr]						
		C_2	Runoff Co	efficient					
			$C_{10}^{(1)} =$	0.40					
			$C_{50}^{(1)} =$	0.48					
			$C_{100}^{(1)} =$	0.50					
			100						
		$Q_{10} =$	4.74	[cfs]					
		$Q_{50} =$	7.97	[cfs]					
		$Q_{100} =$	9.36	[cfs]					

Concentration Point ID: DA-OFF-2

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: T Revised by: T	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data								
Design Duta Des	sign Frequency:	100	[yrs]		Flow I	Path Length (L)=	557.46	[ft]
Ch	eck Frequency:	50	[yrs]			Elevation Max:	1641.00	[ft]
Ch	eck Frequency:	10	[yrs]			Elevation Min:	1631.00	[ft]
Drai	nage Area (A)=	2.50	[acres]		E	Elevation $_{\text{Difference}}$:	10.00	[ft]
					Flow Path	$Slope_{Average}(S) =$	0.01794	[ft/ft]
Watershed Charac	teristics							
Water sheu Charac	Hydrologic	Soil Group:						
	Veget	tation Cover:	<25	[%]				
	Classifi	ication Type:	В	(Reference,	Table 3.1, Pa	ige 3-3)		
Rational Method C	omputations							
Kational Method C	Time of Concer	ntration. (Tc)	(2).					
	Tc = 11.4*L0.5*	Kb0.52*S-0	.31*i-0.38					
		L	[mi]		Kb=m Log A	+b		
		i	[in/hr]		h=0	.08		
		-	[]		A = A	rea [acres]		
	F				T			
	Frequency		h	V	I _c	l Fin /hw]		
	[yr] 10	III -0.01375	0.08	к _b 0.074532		3 66		
	50	-0.01375	0.08	0.074532	10.0	5.1		
	100	-0.01375	0.08	0.074532	10.0	5.78		
	D 1 D' 1							
	Peak Discharge ($O = C_*i_*A$	(Q):	[cfs]					
	Q Calari		[013]					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Coe	efficient				
			$C_{10}^{(1)} =$	0.40				
			$C_{50}^{(1)} =$	0.48				
			$C_{100}^{(1)} =$	0.50				
		$Q_{10} =$	3.66	[cfs]				
		$Q_{50} =$	6.15	[cfs]				
		$Q_{100} =$	7.22	[cfs]				

Concentration Point ID: DA-OFF-3

Project Name: Toll at Cavasson Project No.: 18114-750				Pro R	Prepared by: TSWDate: 06/22Revised by: TSWDate: 10/02			
Location Data								
	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data								
Design Data Des	sign Frequency:	100	[yrs]		Flow I	Path Length (L)=	552.20	[ft]
Ch	leck Frequency:	50	[yrs]			Elevation Max:	1642.00	[ft]
Ch	leck Frequency:	10	[yrs]			Elevation Min:	1632.00	[ft]
Drai	nage Area (A)=	2.44	[acres]		Ι	Elevation _{Difference} :	10.00	[ft]
					Flow Path	$Slope_{Average}\left(S\right) =$	0.01811	[ft/ft]
Watershed Charact	toristics							
water sited Charact	Hydrologic	Soil Group:						
	Veget	tation Cover:	<25	[%]				
	Classifi	ication Type:	В	(Reference,	Table 3.1, Pa	age 3-3)		
Rational Method C	omputations							
Rational Method C	Time of Concer	ntration. (Tc)	(2).					
	Tc = 11.4*L0.5*	Kb0.52*S-0.	.31*i-0.38					
		_						
		L	[mi]		Kb=m Log A	+ b		
		i	[in/hr]		h=0	.08		
		-	[]		A = A	area [acres]		
	F				T	•		
	Frequency		Ŀ	V	I _c [min]	l Fin /h r]		
	[yr]	m 0.01375	0.08	κ _b	[min]	[in/nr]		
	50	-0.01375	0.08	0.074674	10.0	5.1		
	100	-0.01375	0.08	0.074674	10.0	5.78		
	Deals Dischange	(\mathbf{O})						
	$O = C_*i_*A$	Q):	[cfs]					
			[]					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Coe	efficient				
			$C_{10}^{(1)} =$	0.40				
			$C_{50}^{(1)} =$	0.48				
			$C_{100}^{(1)} =$	0.50				
		-						
		$Q_{10} =$	3.57	[cfs]				
		$Q_{50} =$	6.01	[cfs]				
		$Q_{100} =$	7.05	[cfs]				

Concentration Point ID: DA-OFF-4

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: T Revised by: T	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data	· .	100	r 1		F1		(59.22	101
Des	sign Frequency:	100	[yrs]		Flow I	Flowetion	658.23 1645.00	[II]
CI	leck Frequency:	10	[yrs]			Elevation Max.	1645.00	[11]
Cr D	ieck Frequency:	10	[yrs]		т	Elevation Min:	1035.00	[π]
Drai	nage Area (A)=	2.95	[acres]			Clevation Difference:	10.00	[π]
					Flow Path	$Slope_{Average}(S) =$	0.01519	[ff/ft]
Watershed Charac	teristics							
Water shear Charac	Hydrologic	Soil Group:						
	Veget	ation Cover:	<25	[%]				
	Classifi	cation Type:	В	(Reference,	Table 3.1, Pa	age 3-3)		
	•							
Rational Method C	omputations	(T)	(2)					
	Time of Concert To $= 11.4 \times 10.5 \times 10^{-11}$	itration, (1c)	···: 31*; 0.38					
	10 - 11.4 L0.5	K00.52 5-0.	.51 1-0.56					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/mi]		m= -(0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	Area [acres]		
	Frequency				Т	i		
	[vr]	m	h	K.	[min]	[in/hr]		
	10	-0.01375	0.08	0.073544	10.0	3.66		
	50	-0.01375	0.08	0.073544	10.0	5.1		
	100	-0.01375	0.08	0.073544	10.0	5.78		
	Peak Discharge (Q):	5 6 3					
	$\mathbf{Q} = \mathbf{C}_{*1*}\mathbf{A}$		[cfs]					
		А	[acres]					
		i	[in/hr]					
		C.	Runoff Co	efficient				
		\mathbf{c}_2	C ⁽¹⁾ -	0.40				
			$C_{10} = C_{10}^{(1)}$	0.40				
			$C_{50} = (1)$	0.48				
			$C_{100}^{(1)} =$	0.50				
		0						
		$Q_{10} =$	4.32	[cfs]				
		$Q_{50} =$	7.26	[cfs]				
		$Q_{100} =$	8.52	[cfs]				

Concentration Point ID: DA-OFF-5

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	Prepared by: TSWDate: 06/22Revised by: TSWDate: 10/02			
Location Data								
	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data								
De	sign Frequency:	100	[yrs]		Flow I	Path Length (L)=	645.08	[ft]
Cł	neck Frequency:	50	[yrs]			Elevation Max:	1647.00	[ft]
Ch	neck Frequency:	10	[yrs]			Elevation Min:	1636.00	[ft]
Drai	nage Area (A)=	2.45	[acres]		I	Elevation Difference:	11.00	[ft]
					Flow Path	Slope _{Average} (S)=	0.01705	[ft/ft]
Watershed Charac	teristics							
	Hydrologic	c Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	В	(Reference,	Table 3.1, Pa	ige 3-3)		
Rational Method C	omputations							
	Time of Concer	ntration, (Tc)	(2):					
	Tc = 11.4*L0.5*	Kb0.52*S-0	.31*i-0.38					
		L	[mi]		Kh=m Log A	+ b		
		S	[ft/mi]		m= -(0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	area [acres]		
	Frequency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.01375	0.08	0.074661	10.0	3.66		
	50	-0.01375	0.08	0.074661	10.0	5.1		
	100	-0.01375	0.08	0.074661	10.0	5.78		
	Peak Discharge	(Q):						
	$Q = C_*i_*A$		[cfs]					
			[aaraa]					
		i	[acres]					
		r Ca	Runoff Coe	efficient				
		\mathbf{c}_2	C ⁽¹⁾ -	0.40				
			$C_{10} = C_{10}^{(1)} = C_{10}^{(1$	0.49				
			$C_{50} = C_{50}^{(1)}$	0.48				
			C ₁₀₀ =	0.50				
		O 10 =	3.58	[cfs]				
		$\mathbf{O}_{ro} =$	6.02	[cfs]				
		×50	7.07	[efs]				
		×100 -	/.0/	[]				

Concentration Point ID: SA-A1

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: ⊤ Revised by: ⊤	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
					*			
Design Data		100			_			503
De	esign Frequency:	100	[yrs]		Flow	Path Length (L)=	79.20	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1628.15	[f]
	· · · · · · · · · · · · · · · · · · ·	10	[yrs]		1	Elevation Min:	1027.15	[π]
Dra	inage Area (A)=	0.13	[acres]		E1 D. 41	Elevation Difference:	1.00	[f]
					Flow Path	$Slope_{Average}(S) =$	0.01263	[ff/ft]
Watershed Charac	teristics							
	Hydrologic	e Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	, Table 3.1, Pa	age 3-3)		
Deffered Method (· · · · · · · · · · · · · · · · · · ·							
Rational Method (Time of Concer	ntration (Ta)	(2).					
	$T_{c} = 11.4 \times 10.5 \times 10^{-5}$	Kb0 52*S-0	31*i_0 38					
	10 11.4 20.5	R00.52 5 0.	51 10.50					
		L	[mi]		Kb=m Log A	- + b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	.08		
					$\mathbf{A} = \mathbf{A}$	Area [acres]		
	Frequency				Т	i		
	[xr]	m	h	K.	Imin]	[in/hr]		
	10	-0.00625	0.04	0.045605	10.0	3 66		
	50	-0.00625	0.04	0.045605	10.0	5.1		
	100	-0.00625	0.04	0.045605	10.0	5.78		
	Peak Discharge	(Q):	5.03					
	$Q = C_{*1*}A$		[cfs]					
		Δ	[acres]					
		i	[in/hr]					
		C.	Runoff Co	efficient				
		c_2	C ⁽¹⁾ -	0.85				
			$C_{10} = C_{10}^{(1)}$	0.00				
			$C_{50} = $	0.90				
			$C_{100}^{(1)} =$	0.90				
		0						
		$Q_{10} =$	0.39	[cfs]				
		$Q_{50} =$	0.59	[cfs]				
		$Q_{100} =$	0.66	[cfs]				

Concentration Point ID: SA-A2

Project Name: Toll at Cavasson Project No.: 18114-750			Pr F	epared by: 7 Revised by: 7	SW SW	Date: Date:	06/22/24 10/02/24	
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
D D /								
Design Data	esign Frequency.	100	[vrs]		Flow	Path Length (L)=	441.15	[ff]]
C	heck Frequency:	50	[yrs]		11000	Elevation Mar:	1632.93	[ft]
C	heck Frequency:	10	[vrs]			Elevation Max	1627.05	[ff]
Dra	inage Area (A)=	0.21	[acres]		1	Elevation pige	5.88	[ft]
Dia	inage Area (A)-	0.21	[]		Flow Path	Slope. (S)=	0.01333	[ft] [ft/ft]
					11000 1 444	StopeAverage (B)	0.01555	
Watershed Charac	eteristics							
	Hydrologic	e Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	Table 3.1, Pa	age 3-3)		
Rational Method (Computations							
	Time of Concer	ntration, (Tc)	(1):					
	Tc = 11.4*L0.5*	Kb0.52*S-0	.31*i-0.38					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/m1]		m= -	0.01375		
		1	[in/hr]		b=0 $\Delta = A$.08 Area [acres]		
					A - F	lica [acies]		
	Frequency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.00625	0.04	0.044209	10.0	3.66		
	50	-0.00625	0.04	0.044209	10.0	5.1		
	100	-0.00625	0.04	0.044209	10.0	5.78		
	D. 1. D'. 1							
	Peak Discharge $0 = C_{ij} A$	(Q):	[cfs]					
	Q C*1*11		[eis]					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Co	efficient				
		-	$C_{10}^{(1)} =$	0.85				
			$C_{10}^{(1)} =$	0.90				
			$C_{50}^{(1)} =$	0.90				
			$C_{100} =$	0.90				
		0 -	0.66	[ofs]				
		$Q_{10} =$	0.00					
		$Q_{50} =$	0.98	[cfs]				
		$Q_{100} =$	1.10	[cfs]				

Concentration Point ID: SA-A3

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: 7 Revised by: 7	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
				-	1			
Design Data								
De	sign Frequency:	100	[yrs]		Flow	Path Length (L)=	592.47	[ft]
Cl	heck Frequency:	50	[yrs]			Elevation Max:	1633.50	[ft]
Cl	heck Frequency:	10	[yrs]			Elevation Min:	1627.25	[ft]
Drai	inage Area (A)=	1.17	[acres]]	Elevation _{Difference} :	6.25	[ft]
					Flow Path	Slope _{Average} (S)=	0.01055	[ft/ft]
	, .,.							
watersned Charac	Hydrologic	Soil Group						
	Veget	tation Cover:	<2.5	[%]				
	Classifi	ication Type:	A	(Reference	Table 3.1, Pa	age 3-3)		
		51		,	· · ·	0 /		
Rational Method C	Computations							
	Time of Concer	ntration, (Tc)	(2):					
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38					
		т	F		121	. 1.		
		S	[III] [ft/mi]		m = -1	0.01375		
		i	[in/hr]		b= 0	0.08		
					A = A	Area [acres]		
	Frequency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.00625	0.04	0.039572	10.0	3.66		
	50	-0.00625	0.04	0.039572	10.0	5.1		
	100	-0.00625	0.04	0.039572	10.0	5.78		
	Peak Discharge	(\mathbf{O})						
	$O = C_* i_* A$	(Q).	[cfs]					
	2 0		leng					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Co	efficient				
		-	$C_{10}^{(1)} =$	0.85				
			$C^{(1)} =$	- 0.00				
			$C_{50} = C_{50}^{(1)}$	0.90				
			$C_{100}^{(1)} =$	0.90				
		~						
		$Q_{10} =$	3.64	[cfs]				
		$Q_{50} =$	5.41	[cfs]				
		$Q_{100} =$	6.09	[cfs]				

Concentration Point ID: SA-A4

Project Name: Toll at Cavasson Project No.: 18114-750			Pr F	epared by: ⊤ Revised by: ⊤	SW SW	Date: 06/22/24 Date: 10/02/24 Jurisdiction: City of Scottsda 789.60 [ft] 1633.50 [ft] 1624.65 [ft] 8.85 [ft] 0.01121 [ft/ft]		
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
				-	*			
Design Data		100			_		=00.40	503
De	esign Frequency:	100	[yrs]		Flow	Path Length (L)=	789.60	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1633.50	[#]
	heck Frequency:	10	[yrs]		-	Elevation Min:	1624.65	[ft]
Dra	inage Area (A)=	4.36	[acres]		1	Elevation Difference:	8.85	[ft]
					Flow Path	Slope _{Average} (S)=	0.01121	[ft/ft]
Watershed Chara	rteristics							
vi atersnea chara	Hydrologi	c Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	, Table 3.1, Pa	age 3-3)		
Rational Method V	Time of Conce	ntustian (Ta)	(2).					
	$T_{c} = 11.4 \times 10.5^{3}$	*Kb0 52*S-0	31*i_0 38					
	10 11.4 20.5	R00.52 5 0.	51 10.50					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	Area [acres]		
	Frequency				T.	i		
	[vr]	m	h	K۲	[min]	[in/hr]		
	10	-0.00625	0.04	0.036003	10.0	3.66		
	50	-0.00625	0.04	0.036003	10.0	5.1		
	100	-0.00625	0.04	0.036003	10.0	5.78		
	Peak Discharge	(Q):	F C 1					
	$Q = C_{*1*}A$		[cīs]					
		А	[acres]					
		i	[in/hr]					
		C.	Runoff Co	efficient				
		- 2	C ⁽¹⁾ =	0.85				
			$C_{10} = C_{10}^{(1)} =$	- 0.00				
			$C_{50}^{(1)} =$	0.90				
			$C_{100}^{(1)} =$	0.90				
		0	10.55	[
		$Q_{10} =$	13.57					
		$Q_{50} =$	20.13	[cfs]				
		$Q_{100} =$	22.68	[cfs]				

Concentration Point ID: SA-A5

Project Name: Toll at Cavasson Project No.: 18114-750				Pr F	epared by: T Revised by: T	SW SW	Date: 06/22/24 Date: 10/02/24		
Location Data									
Location Data	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale	
					-				
Design Data		100					105.00	503	
De	sign Frequency:	100	[yrs]		Flow	Path Length (L)=	437.29	[ft]	
Ch	neck Frequency:	50	[yrs]			Elevation Max:	1633.50	[ft]	
Ch	neck Frequency:	10	[yrs]			Elevation Min:	1628.95	[ft]	
Drai	nage Area (A)=	1.22	[acres]		1	Elevation Difference:	4.55	[ft]	
					Flow Path	$Slope_{Average}(S) =$	0.01041	[ft/ft]	
Watershed Charac	toristics								
water sneu Charac	Hvdrologic	Soil Group:							
	Veget	tation Cover:	<25	[%]					
	Classifi	ication Type:	А	(Reference	, Table 3.1, Pa	age 3-3)			
Rational Method C	omputations								
	Time of Concer	ntration, (Tc)	(2):						
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38						
		т	[mi]		Vh-m Log A	⊥b			
		S	[ft/mi]		m= -	0.01375			
		i	[in/hr]		b= 0	.08			
					A = A	Area [acres]			
	Frequency				T _c	i			
	[yr]	m	b	K _b	[min]	[in/hr]			
	10	-0.00625	0.04	0.039471	10.0	3.66			
	50	-0.00625	0.04	0.039471	10.0	5.1			
	100	-0.00625	0.04	0.039471	10.0	5.78			
	Peak Discharge ((O)·							
	$O = C_*i_*A$	Q).	[cfs]						
			[]						
		А	[acres]						
		i	[in/hr]						
		C_2	Runoff Co	efficient					
		-	$C_{10}^{(1)} =$	0.85					
			$C_{10}^{(1)} =$	- 0.90					
			$C_{50} = C_{50}^{(1)}$	0.90					
			$C_{100} =$	0.90					
		0	2 50	[
		$Q_{10} =$	3.78						
		$Q_{50} =$	5.61	[cfs]					
		$Q_{100} =$	6.32	[cfs]					

Concentration Point ID: SA-A6

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data		100	r 1				702.20	501
Di	esign Frequency:	100	[yrs]		Flow	Path Length (L)=	1625.80	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1635.80	[π]
	heck Frequency:	10	[yrs]			Elevation Min:	1629.68	[π]
Dra	unage Area (A)=	3.87	[acres]			Elevation Difference:	6.12	[ft]
					Flow Path	Slope _{Average} (S)=	0.00772	[ft/ft]
Watershed Chara	cteristics							
	Hydrologic	c Soil Group:						
	Veget	tation Cover:	<25	[%]				
	Classifi	ication Type:	А	(Reference	, Table 3.1, Pa	age 3-3)		
Rational Method (Computations							
Rational Method v	Time of Concer	ntration. (Tc)	(2).					
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38					
		L	[mi]		Kb=m Log A	- + b		
		S	[ft/mi]		m= -	0.01375		
		1	[in/hr]		b= 0	0.08		
					A = A	Area [acres]		
	Frequency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.00625	0.04	0.03633	10.0	3.66		
	50	-0.00625	0.04	0.03633	10.0	5.1		
	100	-0.00625	0.04	0.03633	10.0	5.78		
	Deals Discharge	(\mathbf{O})						
	$O = C_i A$	(Q):	[cfs]					
	Q C*1*11		[UIS]					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Co	efficient				
		-	$C_{10}^{(1)} =$	= 0.85				
			$C_{co}^{(1)} =$	= 0.90				
			$C_{50}^{(1)} =$	- 0.90				
			$C_{100} =$	- 0.90				
		0	12.03	[cfs]				
		$Q_{10} - Q_{10}$	12.05	[UIS] [afa]				
		$Q_{50} =$	17.85					
		$Q_{100} =$	20.11	[cfs]				

Concentration Point ID: SA-A7

Project Name Project No.	: Toll at Cavasson : 18114-750	l		Pr F	epared by: ⊤ Revised by: ⊤	SW SW	Date: Date:	06/22/24 10/02/24
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
				,	1			•
Design Data								
De	esign Frequency:	100	[yrs]		Flow 1	Path Length $(L)=$	713.88	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1635.80	[ft]
C	heck Frequency:	10	[yrs]			Elevation Min:	1630.35	[ft]
Dra	inage Area (A)=	3.71	[acres]		I	Elevation _{Difference} :	5.45	[ft]
					Flow Path	Slope _{Average} (S)=	0.00763	[ft/ft]
Watershed Charac	eteristics Hydrologi	s Soil Group						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	A	(Reference.	Table 3.1, Pa	age 3-3)		
		51				0 /		
Rational Method G	Computations							
	Time of Concer	ntration, (Tc)	(2):					
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38					
		Ŧ	r .,		TZ1 T A	. 1		
		L	[mi]		Kb=m Log A	L + D 0.01375		
		i	[in/hr]		b=0	0.01375		
		•	[]		A = A	Area [acres]		
	Frequency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.00625	0.04	0.036439	10.0	3.66		
	50	-0.00625	0.04	0.036439	10.0	5.1		
	100	-0.00625	0.04	0.036439	10.0	5.78		
	Deals Disaharas	(\mathbf{O})						
	Peak Discharge $O = C$ i A	(Q):	[cfc]					
	$Q = C_{*I*A}$		[CIS]					
		А	[acres]					
		i	[in/hr]					
		C.	Runoff Co	efficient				
		- 2	C ⁽¹⁾ =	= 0.85				
			$C_{10} = C_{10}^{(1)}$	0.05				
			$C_{50}^{(1)} =$	- 0.90				
			$C_{100}^{(1)} =$	= 0.90				
		$Q_{10} =$	11.55	[cfs]				
		$Q_{50} =$	17.14	[cfs]				
		$Q_{100} =$	19.31	[cfs]				

Concentration Point ID: SA-A8

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Desire Dete								
Design Data	sign Frequency:	100	[vrs]		Flow	Path Length (L)=	485.24	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1635.80	[ft]
C	heck Frequency:	10	[yrs]			Elevation Min:	1631.04	[ft]
Dra	inage Area (A)=	1.90	[acres]]	Elevation Difference:	4.76	[ft]
	0				Flow Path	Slope _{Average} (S)=	0.00981	[ft/ft]
Watershed Charac	eteristics							
	Hydrologi	c Soil Group:		[0/]				
	Vege Classif	tation Cover:	<25	[%] (Reference	Table 3.1 P	age 3-3)		
	Classif	ication Type.	A	(Reference,	14010 5.1,14	age 5-5)		
Rational Method C	Computations							
	Time of Concer	ntration, (Tc)	(2):					
	Tc = 11.4*L0.5*	Kb0.52*S-0.	31*i-0.38					
		Т	[mi]		Kh=m Log A	+b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	0.08		
					A = A	Area [acres]		
	Frequency				Т	i		
	[vr]	m	h	K,	[min]	[in/hr]		
	10	-0.00625	0.04	0.038257	10.0	3.66		
	50	-0.00625	0.04	0.038257	10.0	5.1		
	100	-0.00625	0.04	0.038257	10.0	5.78		
	Peak Discharge	(Q):						
	$Q = C_*i_*A$		[cfs]					
		А	[acres]					
		i	[in/hr]					
		C_2	Runoff Co	efficient				
			$C_{10}^{(1)} =$	0.85				
			$C_{50}^{(1)} =$	0.90				
			$C_{100}^{(1)} =$	0.90				
		O ₁₀ =	5.91	[cfs]				
		$\mathbf{O}_{-1} =$	8 77	[cfs]				
		$Q_{50} =$	0.80	[efs]				
		V100 -	2.02	1013				

Concentration Point ID: SA-A9

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
					*			
Design Data		100						503
De	esign Frequency:	100	[yrs]		Flow	Path Length (L)=	552.77	[ft]
C	heck Frequency:	50	[yrs]			Elevation Max:	1635.80	[f]
	· · · · · · · · · · · · · · · · · · ·	10	[yrs]			Elevation Min:	1031.45	[n]
Dra	inage Area (A)=	1.27	[acres]		E1 D. 41	Slave (C)	4.35	[f]
					Flow Path	$Slope_{Average}(S) =$	0.00/8/	[ft/ft]
Watershed Charac	teristics							
	Hydrologic	e Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	Table 3.1, Pa	age 3-3)		
Deffered Method (· · · · · · · · · · · · · · · · · · ·							
Rational Method (Time of Concer	ntration (Ta)	(1).					
	$T_{c} = 11.4 \times 10.5 \times 10^{-5}$	Kb0 52*S-0	31*i_0 38					
	10 11.4 20.5	R00.52 5 0.	51 10.50					
		L	[mi]		Kb=m Log A	. + b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	.08		
					$\mathbf{A} = \mathbf{A}$	Area [acres]		
	Frequency				т	i		
	[xr]	m	h	К.	Imin]	[in/hr]		
	10	-0.00625	0.04	0.039344	10.0	3 66		
	50	-0.00625	0.04	0.039344	10.0	5.1		
	100	-0.00625	0.04	0.039344	10.0	5.78		
	Peak Discharge	(Q):	5 0 3					
	$Q = C_{*1*}A$		[cfs]					
		Δ	[acres]					
		i	[in/hr]					
		C I		officient				
		c_2	C ⁽¹⁾ -	0.05				
			$C_{10} = C_{10}^{(1)}$	0.85				
			$C_{50} = (1)$	0.90				
			$C_{100}^{(1)} =$	0.90				
		0	2.04	[
		$Q_{10} =$	3.96	[CIS]				
		$Q_{50} =$	5.88	[cfs]				
		$Q_{100} =$	6.62	[cfs]				

Concentration Point ID: SA-A10

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
				-	1			
Design Data								
Design Fr	requency:	100	[yrs]		Flow 1	Path Length (L)=	271.18	[ft]
Check Fi	requency:	50	[yrs]			Elevation Max:	1635.80	[ft]
Check Fi	requency:	10	[yrs]			Elevation Min:	1632.90	[ft]
Drainage A	Area (A)=	0.64	[acres]		ł	levation _{Difference} :	2.90	[ft]
					Flow Path	Slope _{Average} (S)=	0.01069	[ft/ft]
Watarshad Characteristi	05							
watersneu Characteristi	UNDER HVdrologia	e Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	Α	(Reference	, Table 3.1, Pa	ige 3-3)		
Rational Method Compu	tations							
Time	of Concer	ntration, (Tc)	(2):					
Tc =	11.4*L0.5*	Kb0.52*S-0.	.31*i-0.38					
		т	[mi]		Kh=m Log A	+ b		
		S	[ft/mi]		m= -(0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	rea [acres]		
Fre	equency				T _c	i		
	[yr]	m	b	K _b	[min]	[in/hr]		
	10	-0.00625	0.04	0.041214	10.0	3.66		
	50	-0.00625	0.04	0.041214	10.0	5.1		
	100	-0.00625	0.04	0.041214	10.0	5.78		
Peak	Discharge	(O):						
$\mathbf{Q} = 0$	C*i*A		[cfs]					
		А	[acres]					
		i	[in/hr]					
		i C ₂	[in/hr] Runoff Co	efficient				
		i C ₂	$[in/hr]$ Runoff Co $C_{10}^{(1)} =$	efficient • 0.85				
		i C ₂	[in/hr] Runoff Co $C_{10}^{(1)} =$ $C_{50}^{(1)} =$	efficient = 0.85 = 0.90				
		i C ₂	[in/hr] Runoff Co $C_{10}^{(1)} =$ $C_{50}^{(1)} =$ $C_{100}^{(1)} =$	efficient = 0.85 = 0.90 = 0.90				
		C_{2}	[in/hr] Runoff Co $C_{10}^{(1)} =$ $C_{50}^{(1)} =$ $C_{100}^{(1)} =$ 1.99	efficient 0.85 0.90 0.90 (cfs)				
		C_{2} $Q_{10} = 0$ $Q_{50} = 0$	[in/hr] Runoff Co $C_{10}^{(1)} =$ $C_{50}^{(1)} =$ $C_{100}^{(1)} =$ 1.99 2.95	efficient 0.85 0.90 0.90 [cfs] [cfs]				

Concentration Point ID: SA-A11

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
Location Data	State: A	Arizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
Design Data		100	[x.m.o.]		Elarri	Dath I an ath (I)-	26.02	r o 1
De	back Frequency:	50	[yrs]		FIOW	Flevation	20.02	[IL] [#]
C	heek Frequency.	10	[y18]			Elevation Max.	1625.35	[11]
C Due	incore Area (A)	10	[yis]		т	Thevation Min.	0.20	[11]
Dra	inage Area (A)=	0.04	[acres]		I Elarry Dath	Slame (S)	0.30	[Π]
					Flow Path	$Slope_{Average}(S) =$	0.01153	[ft/ft]
Watershed Charac	cteristics							
	Hydrologi	c Soil Group:						
	Vege	tation Cover:	<25	[%]				
	Classif	ication Type:	А	(Reference	Table 3.1, Pa	age 3-3)		
Dational Mathed	Tommutations							
Rational Method (Time of Conce	atuatian (Ta)	(2).					
	$T_{c} = 11.4 \times 10.5 \times 10^{-5}$	tration, (1c)	≤: 31*i_0 38					
	10 11.4 20.5	R00.52 5 0.	.51 10.50					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/mi]		m= -	0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	Area [acres]		
	Frequency				т	i		
	[vr]		h	K.	Imin]	[in/hr]		
	10	-0.00625	0.04	0.048767	10.0	3.66		
	50	-0.00625	0.04	0.048767	10.0	5.1		
	100	-0.00625	0.04	0.048767	10.0	5.78		
	Peak Discharge	(Q):						
	$Q = C_*i_*A$		[cfs]					
			[]					
		A	[acres]					
		1	[in/nr]	oc				
		C_2	Runoff Co	emcient				
			$C_{10}^{(1)} =$	0.85				
			$C_{50}^{(1)} =$	0.90				
			$C_{100}^{(1)} =$	0.90				
		O =	0.12	[cfs]				
		Q10 -	0.12	[015]				
		$Q_{50} =$	0.18					
		$Q_{100} =$	0.21					

Concentration Point ID: SA-A12

Project Name: Toll at Cavasson Project No.: 18114-750				Prepared by: TSW Revised by: TSW			Date: 06/22/24 Date: 10/02/24	
Location Data								
Location Data	State: A	rizona		County:	Maricopa		Jurisdiction:	City of Scottsdale
				2	1			
Design Data								
De	sign Frequency:	100	[yrs]		Flow I	Path Length (L)=	34.18	[ft]
Cl	heck Frequency:	50	[yrs]			Elevation Max:	1635.40	[ft]
Cl	heck Frequency:	10	[yrs]			Elevation Min:	1634.80	[ft]
Drai	inage Area (A)=	0.04	[acres]		E	Elevation Difference:	0.60	[ft]
					Flow Path	Slope _{Average} (S)=	0.01756	[ft/ft]
Watershed Charac	teristics							
	Hydrologic	Soil Group:						
	Veget	tation Cover:	<25	[%]				
	Classifi	ication Type:	A	(Reference	, Table 3.1, Pa	ige 3-3)		
Dational Mathed C	ammutations.							
Rational Method C	Time of Cores	stuation (To)	(2).					
	Time of Concer $T_c = 11.4 \times 10.5 \times 10^{-5}$	1tration, $(1c)$)^': 31*i₋0 38					
	10 11.4 20.5	100.52 5 0	.51 10.50					
		L	[mi]		Kb=m Log A	+ b		
		S	[ft/mi]		m= -(0.01375		
		i	[in/hr]		b= 0	.08		
					A = A	rea [acres]		
	Frequency				T.	i		
	[vr]	m	h	K,	[min]	[in/hr]		
	10	-0.00625	0.04	0.049006	10.0	3.66		
	50	-0.00625	0.04	0.049006	10.0	5.1		
	100	-0.00625	0.04	0.049006	10.0	5.78		
	Peak Discharge ((Q):						
	$Q = C_{*1*}A$		[cfs]					
		۵	[acres]					
		А ;	[in/hr]					
		I C		officient				
		C_2		0.05				
			$C_{10} = (1)$	0.85				
			$C_{50}^{(1)} =$	0.90				
			$C_{100}^{(1)} =$	0.90				
		0	0.11	[cfs]				
		Q ₁₀ -	0.11	[015] [0fa]				
		$Q_{50} =$	0.17					
		$Q_{100} =$	0.19	[cfs]				

Appendix F Hydraulic Calculations Toll at Cavasson Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Offsite Runoff Rerout Swale

User-defined		Highlighted	
Invert Elev (ft)	= 1627.80	Depth (ft)	= 0.94
Slope (%)	= 0.79	Q (cfs)	= 39.22
N-Value	= 0.030	Area (sqft)	= 11.66
		Velocity (ft/s)	= 3.36
Calculations		Wetted Perim (ft)	= 17.22
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.79
Known Q (cfs)	= 39.22	Top Width (ft)	= 17.02
		EGL (ft)	= 1.12

(Sta, El, n)-(Sta, El, n)... (0.00, 1629.00)-(3.60, 1628.00, 0.030)-(7.50, 1627.80, 0.030)-(15.00, 1628.00, 0.030)-(19.00, 1629.00, 0.030)-(34.00, 1630.00, 0.030)

HYDRAULIC CALCULATION SHEET Flow-by Inlet Summary Hubbard Engineering Project No. 18114-750

Project Name: Toll at Cavasson Project No.: 18114-750 Prepared by: TSW Revised By: Date: 10/02/24 Date:

Purpose: Summarize Flow-By Inlet Capture and Bypass Q100's

Methodology: Summarize the catch basin inlet capture and bypass calculations for the onsite flow-by configuration catch basins. Capacity Calculations are based on HEC-22 methodology.

Criteria:

References:

Results:

Identifi	ers	Catch Basin Para	Res	Total		
Contributory	Inlet	Catch Basin Inlet Type	Open Area	Q100 Captured	Q100 Bypass	Q100
Area ID	ID		[ft ²]	[cfs]	[cfs]	[cfs]
SA-A7	CB-13	2'x3' Steel Bar	3.32	3.07	11.12	19.31
SA-A8	CB-12	2'x3' Steel Bar	3.32	2.21	6.57	9.89
SA-A9	CB-14	2'x3' Steel Bar	3.32	1.80	4.82	6.62
SA-A10	CB-10	2'x3' Steel Bar	3.32	1.11	2.22	3.33

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

SA-A10 Flow-By Inlet (Q100)

Drop	Grate	Inlet
------	-------	-------

Location	= On grade	Compute by:	Known Q
Curb Length (ft)	= -0-	Q (cfs)	= 3.33
Throat Height (in)	= -0-		
Grate Area (sqft)	= -0-	Highlighted	
Grate Width (ft)	= 3.00	Q Total (cfs)	= 3.33
Grate Length (ft)	= 2.00	Q Capt (cfs)	= 1.11
• • • •		Q Bypass (cfs)	= 2.22
Gutter		Depth at Inlet (in)	= 1.92
Slope, Sw (ft/ft)	= 0.027	Efficiency (%)	= 33
Slope, Sx (ft/ft)	= 0.027	Gutter Spread (ft)	= 17.85
Local Depr (in)	= -0-	Gutter Vel (ft/s)	= 1.75
Gutter Width (ft)	= 6.00	Bypass Spread (ft)	= 15.63
Gutter Slope (%)	= 0.79	Bypass Depth (in)	= 1.56
Gutter n-value	= 0.016	· · · · · ·	

Calculations

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

SA-A8 Flow-By Inlet (Q100 - SA-A10 Capture)

Drop Grate Inlet		Calculations	
Location	= On grade	Compute by:	Known Q
Curb Length (ft)	= -0-	Q (cfs)	= 8.78
Throat Height (in)	= -0-		
Grate Area (sqft)	= -0-	Highlighted	
Grate Width (ft)	= 3.00	Q Total (cfs)	= 8.78
Grate Length (ft)	= 2.00	Q Capt (cfs)	= 2.21
• • • •		Q Bypass (cfs)	= 6.57
Gutter		Depth at Inlet (in)	= 3.00
Slope, Sw (ft/ft)	= 0.027	Efficiency (%)	= 25
Slope, Sx (ft/ft)	= 0.027	Gutter Spread (ft)	= 24.52
Local Depr (in)	= -0-	Gutter Vel (ft/s)	= 2.30
Gutter Width (ft)	= 6.00	Bypass Spread (ft)	= 22.30
Gutter Slope (%)	= 0.79	Bypass Depth (in)	= 2.64
Gutter n-value	= 0.016	· · · · · ·	

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

SA-A9 Flow-By Inlet (Q100)

Drop	Grate	Inlet
------	-------	-------

Drop Grate Inlet		Calculations	
Location	= On grade	Compute by:	Known Q
Curb Length (ft)	= -0-	Q (cfs)	= 6.62
Throat Height (in)	= -0-		
Grate Area (sqft)	= -0-	Highlighted	
Grate Width (ft)	= 3.00	Q Total (cfs)	= 6.62
Grate Length (ft)	= 2.00	Q Capt (cfs)	= 1.80
		Q Bypass (cfs)	= 4.82
Gutter		Depth at Inlet (in)	= 2.52
Slope, Sw (ft/ft)	= 0.027	Efficiency (%)	= 27
Slope, Sx (ft/ft)	= 0.027	Gutter Spread (ft)	= 21.56
Local Depr (in)	= -0-	Gutter Vel (ft/s)	= 2.29
Gutter Width (ft)	= 6.00	Bypass Spread (ft)	= 19.33
Gutter Slope (%)	= 0.93	Bypass Depth (in)	= 2.16
Gutter n-value	= 0.016		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

SA-A7 Flow-By Inlet (Q100 - SA-A10, SA-A8, SA-A9 Capture)

Drop Grate Inlet		Calculations	
Location	= On grade	Compute by:	Known Q
Curb Length (ft)	= -0-	Q (cfs)	= 14.19
Throat Height (in)	= -0-		
Grate Area (sqft)	= -0-	Highlighted	
Grate Width (ft)	= 3.00	Q Total (cfs)	= 14.19
Grate Length (ft)	= 2.00	Q Capt (cfs)	= 3.07
		Q Bypass (cfs)	= 11.12
Gutter		Depth at Inlet (in)	= 3.60
Slope, Sw (ft/ft)	= 0.027	Efficiency (%)	= 22
Slope, Sx (ft/ft)	= 0.027	Gutter Spread (ft)	= 28.22
Local Depr (in)	= -0-	Gutter Vel (ft/s)	= 2.76
Gutter Width (ft)	= 6.00	Bypass Spread (ft)	= 26.00
Gutter Slope (%)	= 0.93	Bypass Depth (in)	= 3.24
Gutter n-value	= 0.016		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

SA-A6 Q100 Street Capacity (SA-A7 through SA-A10 Capture Neglected)

User-defined		Highlighted	
Invert Elev (ft)	= 1629.74	Depth (ft)	= 0.42
Slope (%)	= 0.93	Q (cfs)	= 20.11
N-Value	= 0.013	Area (sqft)	= 5.01
		Velocity (ft/s)	= 4.01
Calculations		Wetted Perim (ft)	= 22.07
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.50
Known Q (cfs)	= 20.11	Top Width (ft)	= 22.05
		EGL (ft)	= 0.67

(Sta, El, n)-(Sta, El, n)... (0.00, 1630.60)-(1.50, 1630.18, 0.013)-(11.50, 1629.82, 0.013)-(14.50, 1629.74, 0.013)-(17.50, 1629.82, 0.013)-(24.50, 1630.18, 0.013)-(24.60, 1630.68, 0.013)

HYDRAULIC CALCULATION SHEET Inlet Calculations Hubbard Engineering Project No. 18114-750

Project Name: Toll at Cavasson Project No.: 18114-750

Prepared by: TSW Revised By:

Date: 10/02/24 Date:

Purpose: Evaluate inlet capacities using Orifice Discharging Freely into atmosphere

Methodology: Calculate the capacity of an inlet using the equation for Orifice Discharging Freely into Atmosphere, assuming that h is equal to the depth of ponding over the orifice and Cd is the coefficient of discharge for the orifice. Sharp Edged will be used for most inlet conditions. Combination inlets neglect curb opening capacity

Criteria: Inlet Capacity after using a 50% clogging factor must equal or exceed the flows from 100-YR 2-HR duration storm event.

References:

Calculations: Orifice Discharging Freely Into Atmosphere $Q = C_d * A_0 * Sqrt(2*g*h)$ [ft³]

C _d = 0.61	Sharp Edged
C _d = 0.98	Rounded
C _d = 0.80	Short Tube

Results:

Identifi	iers	Calculation Parameters		Results		Compare	
Contributory	Inlet	Cross Sectional Area	Ponding Depth	Configuration	Inlet Capacity	Clogged Inlet Capacity	Q100
Area ID	ID	[ft ²]	[ft]		[cfs]	[cfs]	[cfs]
SA-A1	CB-1	3.32	0.40	Sharp Edged	10.27	5.14	0.66
SA-A2	CB-2	3.32	0.50	Sharp Edged	11.49	5.74	1.10
SA-A3	CB-3	3.32	0.45	Sharp Edged	10.90	5.45	6.09
SA-A4	CB-4	2.60	0.50	Sharp Edged	9.00	4.50	17.23
SA-A5	CB-5	3.32	0.50	Sharp Edged	11.49	5.74	6.32
SA-A6	CB-6	3.32	0.50	Sharp Edged	11.49	5.74	11.92
SA-A11	CB-8	3.32	0.30	Sharp Edged	8.90	4.45	3.59
SA-A12	CB-7	3.32	0.30	Sharp Edged	8.90	4.45	0.19

SA-A4 includes the area for SA-A3, Clogged Capture for SA-A3 has been removed from the Q100 for SA-A4, SA-A11 includes the offsite flow from Claret Drive DA-OFFA

Appendix G Retention Dissipation Calculations *Toll at Cavasson*

HYDRAULIC CALCULATION SHEET Retention Calculations Hubbard Engineering Project No. 18114-750

Project Name: Toll at Cavasson Project No.: 18114-750 Prepared by: TSW Revised By:

(Reference 1)

Date: 06/22/24 Date:

Purpose: Evaluate the required and provided retention volumes in order to assess conformance to project criteria.

Methodology: Calculate the volume of stormwater required to be retained using City of Scottsdale criteria. Calculate the estimated volume of stormwater retained using retention basin geometry.

Criteria: Retain the calculated stormwater run-off for the first flush condition and 100-YR 2-HR duration storm event.

References: 2. Design Standards and Policies Manual, City of Scottsdale

Calculations: First Flush Volume Required = $C_{Composite} *D/12* A [ft^3]$

D = 0.5	[in]	(First Flush)	(Reference 1)
C = 0.95	(Paved Parking)		(Reference 1)
P = 2.30	[in]	(100 YR 2 HR)	

Composite C= (C1*A1 + C2*A2...+...)/(A1+A2+....)

Volume Required = Composite C*P/12*A

Results:

Identifiers	CALCULATE RETENTION VOLUME REQUIRED		Volume		
Contributory	Area	С	Required		
Area ID	[acres]		[acre-ft]	[ft ³]	[yd ³]
Adjacent Half Streets	2.29	0.95	0.42	18,166	673
DA-A	10.96	0.95	0.43	18,899	700
Total Area:	47.14	TOTAL VOLUME REQUIRED:	0.85	37,064.42	1,372.76

Project Name: Toll at Cavasson Project No.: 18114-750

Prepared by: TSW **Revised By:**

Date: 06/22/24 Date:

VOLUME PROVIDED

Volume of underground pipe provided in cubic feet

$V_{U.P.} = \pi^* r^{2*} L$

V_{U.P.} π r L

pi Underground pipe radius, ft Length of underground pipe in feet 5

UNDERGROUND RETENTION/DETENTION COMBINED

Retention	Length	Volume
Method		Provided
(ID)	(ft)	(<i>cf</i>)
UGST-1	45	3,534
UGST-2	25	1,963
UGST-3	55	4,320
UGST-4	105	8,247
UGST-5	105	8,247
UGST-6	140	10,996
Total	475	37,306

HYDRAULIC CALCULATION SHEET **Retention Basin Drain Time Calculations Hubbard Engineering** Project No. 18114-750

Project Name: Toll at Cavasson Project No.: 18114-750

Prepared by: TSW Revised by:

Date: 06/22/24 Date:

Purpose: Calculate the number of drywells required to facilitate drainage of the required volume within 36 hours.

Methodology: Calculate the number of drywells necessary to drain the retention basin and undeground storage tanks within 36 hours, assuming each drywell has an infiltration rate of 0.1 cfs

Criteria:

- 1. Drywell drainage capacity must discharge the retention volume provided within 36 hours.
 - 2. No percolation tests have been done on site. A drywell infiltration rate of 0.1 cfs will be used in accordance with reference 2

References: 2. Design Standards and Policies Manual, City of Scottsdale

Calculations:

Number of Drywells Required = V_{DW} / (Drywell Infiltration Rate * 3600 * 36 hours)

Drywell Infiltration Rate = 0.1 [cfs] (Reference 1)

Results:

Identifiers		Infiltration Drainage Capacity Calculations				V _{DW}	Number of
Retention	Volume ^(Ref. 1)	Bottom ^(Ref 1)			Infiltration		Drywells
Basin	Required	Area	Percolatio	n Rate ^(Ref. 2)	Drain Capacity		Required
ID	[ft ³]	[ft ²]	Test Location [*]	$[ft^3/hr/ft^2]^2$	[ft ³]	[ft ³]	
UGST-1	3,534.3	0.0		0.000	0.0	3,534.3	1
UGST-2	1,963.5	0.0		0.000	0.0	1,963.5	1
UGST-3	4,319.7	0.0		0.000	0.0	4,319.7	1
UGST-4	8,246.7	0.0		0.000	0.0	8,246.7	1
UGST-5	8,246.7	0.0		0.000	0.0	8,246.7	1
UGST-6	10,995.6	0.0		0.000	0.0	10,995.6	1
				Tot	al Number of Drywe	lls =	3

Total Number of Drywells =

PHOENIX 1102 WEST SOUTHERN AVENUE, SUITE 4 TEMPE, ARIZONA 85282 (0) 602-272-PTX1 (7891) DISPATCH 602-272-7890 (F) 602-272-7892 WWW.PROTEX-AZ.COM

<u>TUCSON</u> 916 WEST GRANT ROAD TUCSON, ARIZONA 85705 (0) 520-352-1050 (EXT 157) DISPATCH 520-352-0150 (F) 520-352-0150 <u>WWW.PROTEX-AZ.COM</u>

August 29, 2024

Toll Brothers Inc (Land)

Re: Drywell Percolation Testing Report

Job: Miller Road and Cavasson Boulevard Hayden Road and Loop 101 Pinal County, Arizona

ProTeX Job No.: 15349

Attention: Mr. Aaron Insco

The project consists of one- or two-story townhome residential structures. The requested testing consisted of one (1) constructed drywell located within the graded retention basins (please see the attached site map for drywell location). The drywell was tested using the following methodology.

Test Methodology:

- 1. Water is discharged into a drywell using a 3-inch diameter fire hose. The water level is raised to within a few feet of the rim of the drywell.
- 2. The rate of flow is adjusted until the water level is at a relatively constant elevation.
- 3. The flow of water through the meter was measured for a given period of time while holding the water level as constant as possible.
- 4. The measured flow of water for the given period of time is then divided by the time period to determine the flow rate.
- 5. Steps 3 and 4 are repeated for an extended period of time.

Discussion of Results:

Water was discharged into the drywell and tested for a period of approximately 1.5 hours. The following rate of percolation is assigned to the drywell:

Test Location	Percolation Rate (CFS)
DW 1	0.49

Please contact the undersigned at Engineering@ProTeX-AZ.com if there are any questions.

Respectfully submitted, **ProTeX - the PT Xperts, LLC**

Jones Tembo, PE

Ryan Ellwanger Staff Geologist

ATTACHMENTS: (2) pages: (1) Drywell Field Test Data and (1) Site Map

Client:	Toll Brothers Inc (Land)
Job Name:	Miller Rd and Cavasson Blvd
Location:	Hayden Rd and Loop 101
Date:	8/23/2024
Tested By:	JM
Drywell:	DW# 1

	Time	Gauge Reading (Gal)	
Test Start:	7:10	5625034.0	
Test End:	9:00	5649459.0	THE PERIS L.L.C.

T-Initial	T-final			Rate	Water Depth
(min)	(min)	G-initial (Gal) G-final (Gal)	(Gal/min)	From Rim (ft)
7:40	7:50	5632063.0	5634267.0	220.4	6.0
7:50	8:00	5634267.0	5636459.0	219.2	6.0
8:00	8:10	5636459.0	5638599.0	214.0	6.0
8:10	8:20	5638599.0	5640635.0	203.6	6.0
8:20	8:30	5640635.0	5642810.0	217.5	6.0
8:30	8:40	5642810.0	5645003.0	219.3	6.0
8:40	8:50	5645003.0	5647296.0	229.3	6.0
8:50	9:00	5647296.0	5649459.0	216.3	6.0
				221.6	Avg (Gal/min)
				0.49	Avg (CFS)

Appendix H 404 Permit Toll at Cavasson

March 27, 2019

U.S. Army Corps of Engineers Los Angeles District – Regulatory Division 915 Wilshire Blvd. Los Angeles, CA 90017

Subject: Statement of Sale of 0.89 Credits for the Cavasson Mixed-Use Development project, Corps permit number SPL-2018-00704, from the Arizona Game and Fish Department In-Lieu Fee Program to Nationwide Reality Investors Ltd.

The Arizona Game and Fish Department has an agreement with the U.S. Army Corps of Engineers – Los Angeles District to operate an In-Lieu-Fee Program. This letter confirms the sale of 0.89 credits of Advance Credits for establishment/enhancement of wetlands and Mesquite Bosque within the Arlington Wildlife Area; an Arizona Game and Fish Commission owned property. These credits are being used as compensatory mitigation for 0.89 acres of impact calculated at a 1:1 ratio for impacts to Waters of The U.S. associated with the Cavasson Mixed-Use Development Project. By selling credits to the above permittee, AGFD is the party responsible for fulfilling the mitigation aspect of Special Condition of the Permit listed above.

Signed,

Shawn F. Lowery Statewide ILF Restoration Program Manager Wildlife Contracts Branch Arizona Game and Fish Department

azgfd.gov | 602.942.3000 5000 W. CAREFREE HIGHWAY. PHOENIX AZ 85086

GOVERNOR: DOUGLAS A. DUCEY COMMISSIONERS: CHAIRMAN, JAMES R. AMMONS, YUMA | JAMES S. ZIELER, ST. JOHNS | ERIC S. SPARKS, TUSCON KURT R. DAVIS, PHOENIX | EDWARD "PAT" MADDEN, FLAGSTAFF DIRECTOR: TY E. GRAY DEPUTY DIRECTOR: TOM P. FINLEY

Exhibits Toll at Cavasson

8114\Design-Reports_MP\18114-101_Phase 3C Update\Drainage\Exhibits\DWG\Working\HEC1-CrossRoadsEast_Future_MA.dwg Jul 21, 2023 - 9:55am 7Wc

14\Design-Reports\18114-750\Drainage\Preliminary\Sub 2\Exhibits\18114-750 Drainage Exhibit.dwg Oct 02, 2024 - 11:59an

14\Design–Reports\18114–750\Drainage\Preliminary\Sub 1\Exhibits\18114–750 Drainage Exhibit.dwg Jun 24, 2024 – 8:15am TW

