

Drainage Reports

Abbreviated Water and Sewer Needs

Water Study

Wastewater Study

Stormwater Waiver Application

WASTEWATER COLLECTION SYSTEM

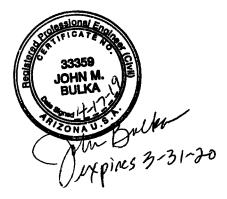
BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976


Prepared For:

Prepared By:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

> Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

Wastewater flowing from the proposed Honor Health Medical Office Building will discharge to a 6-inch private sewer line on the west side of the proposed building. The 6-inch private sewer line discharges into the City of Scottsdale's existing public 8-inch VCP sewer line in Brown Avenue.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Wastewater flows, Office:	0.4 gpd/sq. ft.
•	Peaking Factor, Office:	3
•	Minimum Mean Full Flow Velocity:	2.50 fps
•	Minimum Peak Full Flow Velocity:	10.0 fps
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	d/D = 0.65
	Abbreviations: gpd = gallons per day; fps = feet per second	

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Page 2

Mr. Levi Dillion, P.E. City of Scottsdale Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report WP# 194976

Based on the above design criteria, the projected average day flow for the proposed 117,000-sf Honor Health Medical Office Building project is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Wastewater Collection System Basis of Design Report provided for the Honor Health Medical Office Building development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John M. Bulka, P.E. Project Manager

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Wastewater Basis of Design Report.docx

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL WMISSION: CLIENT SERVICE[®] CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Medical Office Building

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Bulka, P.E. 4/17/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	Proposed 6 "	Sewer Lin	ne (2.0%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02000	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.87	in
Flow Area		0.05	ft²
Wetted Perimeter		0.59	ft
Hydraulic Radius		1.06	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		31.2	%
Critical Slope		0.00445	ft/ft
Velocity		4.16	ft/s
Velocity Head		0.27	ft
Specific Energy		0.42	ft
Froude Number		2.18	
Maximum Discharge		1.11	ft³/s
Discharge Full		1.03	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		31.19	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

4/16/2019 8:47:27 AM

Proposed 6" Sewer Line (2.0%)

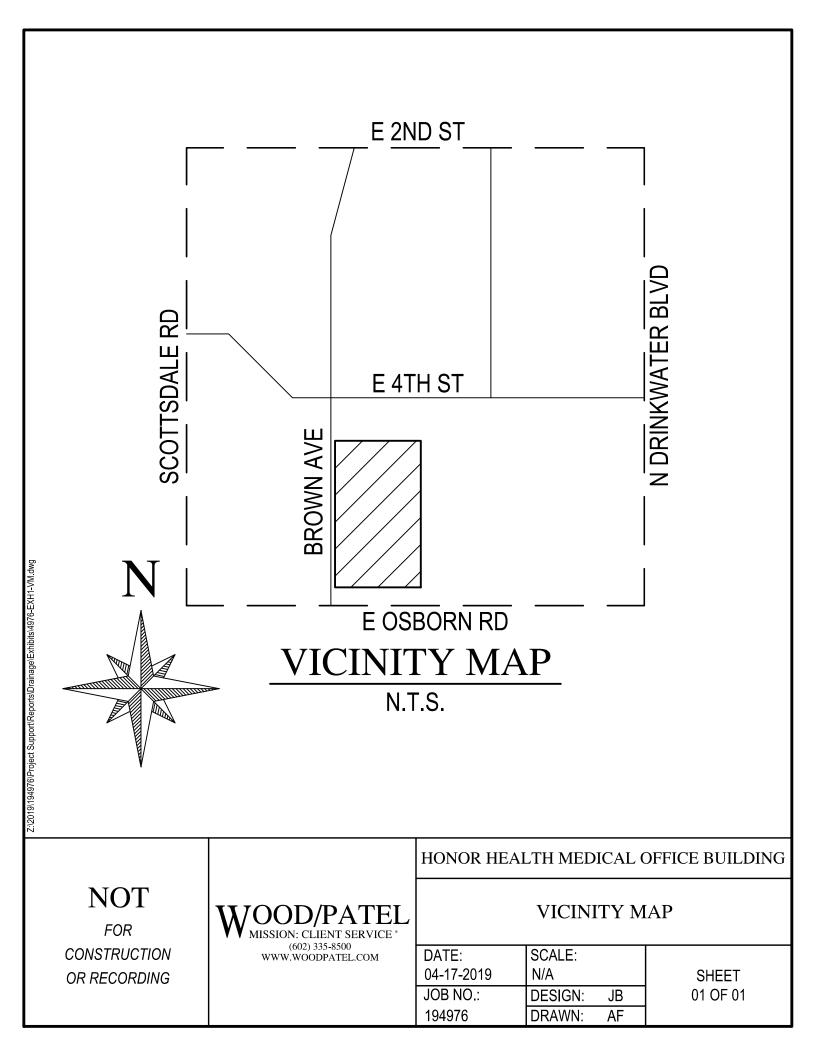
GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.87	in
Critical Depth	0.23	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.00445	ft/ft

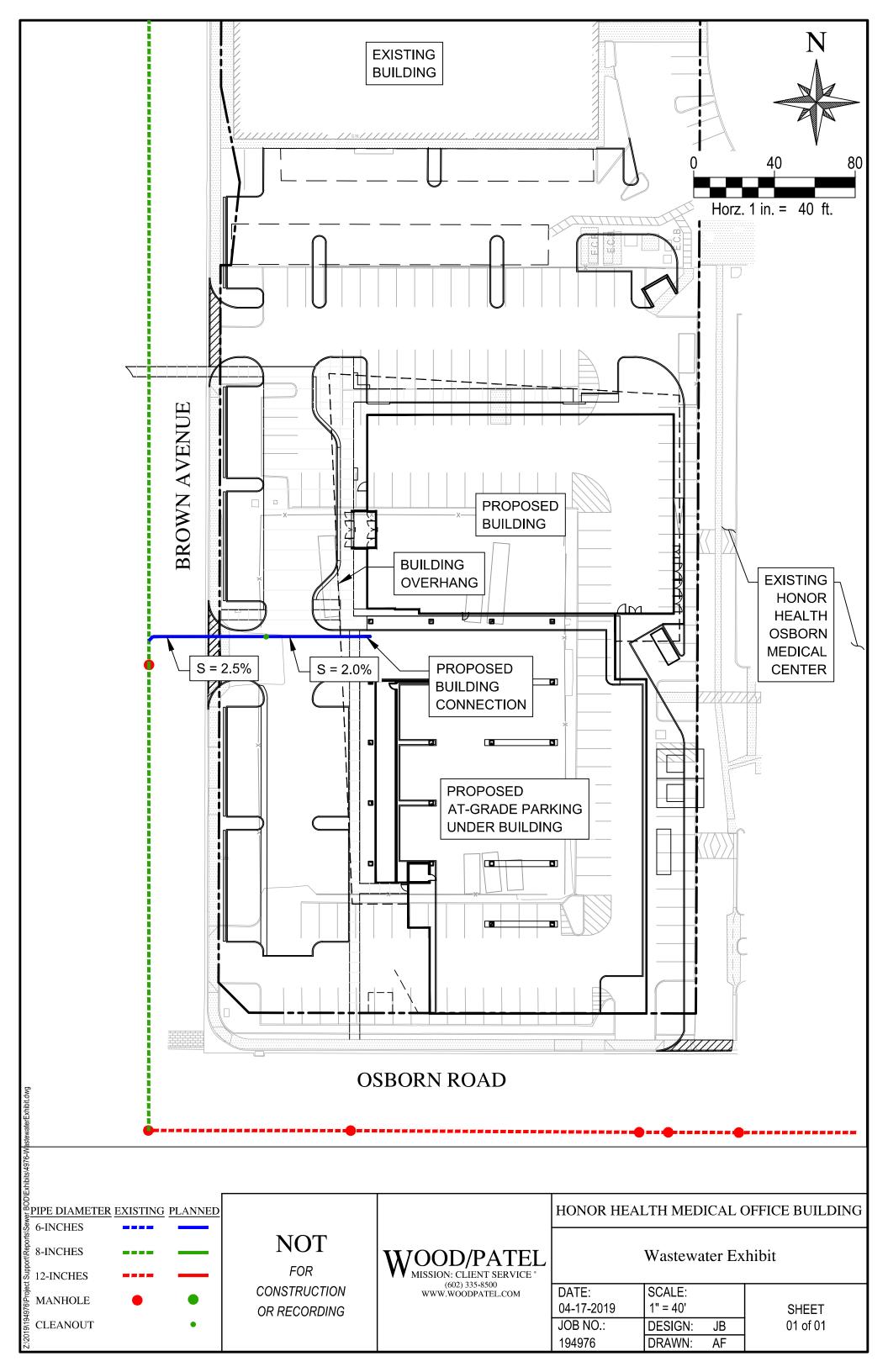
	Proposed 6"	Sewer Lir	ne (2.5%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02500	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.77	in
Flow Area		0.05	ft²
Wetted Perimeter		0.57	ft
Hydraulic Radius		1.01	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		29.4	%
Critical Slope		0.00446	ft/ft
Velocity		4.50	ft/s
Velocity Head		0.31	ft
Specific Energy		0.46	ft
Froude Number		2.44	
Maximum Discharge		1.24	ft³/s
Discharge Full		1.15	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		29.45	%
Downstream Velocity		Infinity	ft/s

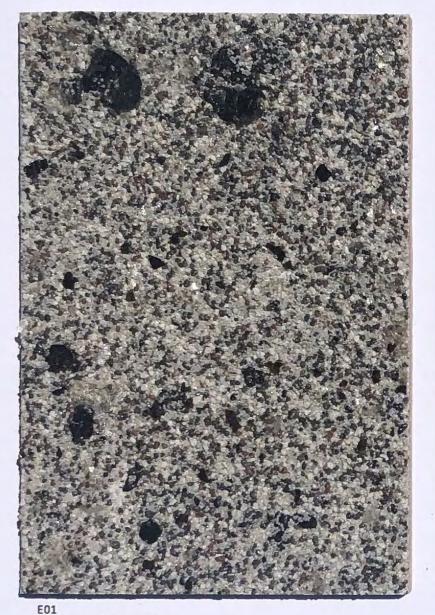
 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2


4/16/2019 8:45:16 AM

Proposed 6" Sewer Line (2.5%)


GVF Output Data


Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	in
Critical Depth	0.23	ft
Channel Slope	0.02500	ft/ft
Critical Slope	0.00446	ft/ft

VICINITY MAP

WASTEWATER EXHIBIT

PRODUCT: EIFS MANUFACTURER: DRYVIT FINISH: #200 GIBRALTAR TERRANEO M01

PRODUCT: METAL PANEL MANUFACTURER: PURE + FREEFORM FINISH: #MK-019

NEUROSCIENCE INSTITUTE

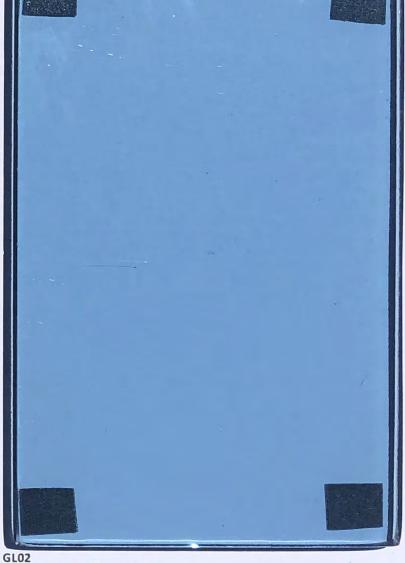
M02

PRODUCT: METAL PANEL MANUFACTURER: MORIN FINISH: BONE WHITE

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04:19:19

W:\635\63545 Honor Osborn Scottsdale MOB\7 Working Files\InDesign\190410_DRB EXTERIOR MATERIALS BOARD\190410_DRB EXTERIOR MATERIALS BOARD.indd

HONORHEALTH Devenney


PRODUCT: GLASS MANUFACTURER: VIRACON FINISH: VE3-2M, 1" INSULATING REFLECTIVITY: 6% EXTERIOR, 9% INTERIOR, 12% SOLAR

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04.19.19

GL01S

PRODUCT: SPANDREL GLASS **MANUFACTURER:** VIRACON **FINISH:**VE3-2M, 1" INSULATING WITH V175 HIGH OPACITY WHITE CERAMIC FRIT ON #4 SURFACE

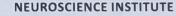
NEUROSCIENCE INSTITUTE

PRODUCT: GLASS MANUFACTURER: VIRACON FINISH: VUE 1-40 REFLECTIVITY: 15% EXTERIOR & INTERIOR, 27% SOLAR

EXTERIOR MULLION MANUFACTURER: ARCADIA FINISH: AB-7 STD. DARK BRONZE

EXTERIOR MULLION MANUFACTURER: ARCADIA FINISH: #11/CLEAR AC-2

PT01


EXTERIOR ELEVATION - WEST

PRODUCT: PAINT MANUFACTURER: SHERWIN WILLIAMS FINISH: SW 7069 IRON ORE GL02S

PRODUCT: GLASS SPANDREL MANUFACTURER: VIRACON FINISH: VUE1-40, 1" INSULATING, WITH V933 WARM GRAY #4

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04.19.19

W:\635\63545 Honor Osborn Scottsdale MOB\7 Working Files\InDesign\190410_DRB EXTERIOR MATERIALS BOARD\190410_DRB EXTERIOR MATERIALS BOARD.indd

WATER DISTRIBUTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

Prepared For:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 *Phone: (602) 943-7645*

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

Prepared By:

Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Water Distribution System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

The project site has public waterline infrastructure on three (3) sides of the site. There is one (1) 12-inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue. There is one (1) 6-inch CIP water main in 4^{th} Street. The Honor Health Medical Office Building site proposes two (2) private water connections that utilize the City's public waterline for domestic water and fire protection that connect to the existing public 8-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached *Water Exhibit* for a depiction of the existing water infrastructure surrounding the project.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the *City of Scottsdale Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Water Demand, Office:	8.34E-04 gpm/sq. ft.*
	Fire Flow Requirements:	min 1,500 gpm**
	Maximum Day Demand:	2.0 x ADD
	Peak Hour Demand:	3.5 x ADD
	Minimum Residual Pressure, Peak Hour:	50 psi
	Minimum Residual Pressure, Maximum Day + Fire Flow:	30 psi
Inc.	2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 •	(602) 335-8500 • Fax (602) 335-8580

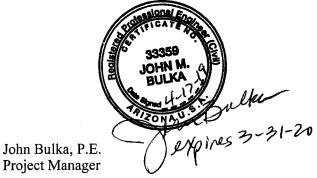
Wood, Patel & Associates, Inc. 2051 West N

٠	Maximum System Pressure:		120 psi
•	Maximum Pipe Head Loss, Maximum Day Demand:		8 ft / 1000 ft
•	Maximum Pipe Head Loss, Peak Hour Demand:		10 ft / 1000 ft
•	Minimum Pipe Diameter, Public Water Line:		8 inches
		1 1 1	

- Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch
 - * Includes both inside and outside use per Figure 6-1.2, COS Design Standards and Policies Manual
- ** Fire flow is based on 10% reduction to account for flow measurement inaccuracy (refer to attached calculations in the appendices)

Domestic water service will be provided by a proposed 3-inch private waterline and a 3-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 6-inch fire line for an automatic fire-sprinkler service. Irrigation water service will be provided by a suspected existing 1-inch irrigation line.

The average day water demand for the proposed 117,000-sf Honor Health Medical Office Building is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached calculations).


WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, was utilized to simulate the City of Scottsdale's water supply for the project (refer to attached modeling results).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Honor Health Medical Office Building project, with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the project site, with 2,500-gpm fire hydrant flows during maximum day demand. A 50-percent reduction was applied to the fire flow requirements due to the proposed sprinkler system. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

Thank you for your review of the Water Distribution System Basis of Design Report provided for the Honor Health Medical Office Building project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Water Basis of Design Report.docx

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Bulka, P.E. Date: 4/17/2019

LAND USE AND DWELLING UNIT BREAKDOWN BY JUNCTION																							
HYDRAULIC	ELEVATION	PRESSURE	LAND USE	DWELLING UNITS	DWELLING	DWELLING	DWELLING	DWELLING	DWELLING	DEMAND VALUE		UNITS	AVERAG	AVERAGE DAILY DEMAND		MAX	MAXIMUM DAY DEMAND				PEAK HOUR DEMAND		
MODEL NODE	(ft)	ZONE	ZONE		DEMAND VALUE	UNITS	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)						
J-BLDG	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6						
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6						

Notes:

1. Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 2. The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

Flow Test Permit No.: Date and time flow test cond	7242 East Os 194976 t No.: 19131 C57857 lucted: April 12, 201 intil: October 12, 2 Floyd Vaugh	19131					
Raw Test Data		Data with 13 PSI Safety Fa	Scousuale requires a				
Static Pressure: (Measured in pounds per sq	85.0 PSI uare inch)	Static Pressure: (Measured in pounds per so	72.0 PSI quare inch)maximum Static Pressure of 72 PSI for AFES Design.				
Residual Pressure: (Measured in pounds per sq	75.0 PSI uare inch)	Residual Pressure: (Measured in pounds per so	62.0 PSI quare inch)				
Pitot Pressure:	23.0 PSI						
(Measured in pounds per sq	uare inch)						
Diffuser Orifice Diameter: Or (Measured in inches)	ne 4-inch Hose Monster	Distance between hydrants: Approx.: 290 feet Main size: Not Provided					
Coefficient of Diffuser: .7875	5						
Flowing GPM: (Measured in gallons per min	1,803 GPM nute)	Flowing GPM:	1,803 GPM				
GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPM				
Flow Test Location	Nor	th 🕇					
Flow Fire Hydrant			East 4 th Street				
			East 4. Street				
Client Project No: 194976 Arizona Flow Testing Project No: 19131 Flow Test Permit No: C57857 Date and time flow test conducted: April 12, 2019 at 8:00 AM Data is current and reliable until: Coctober 12, 2019 Conducted by: Floyd Vaughan – Arizona Flow Testing, LLC (480-250-8154 Witnessed by: Ray Padilla – City of Scottsdale-Inspector (602-541-0586) Raw Test Data Static Pressure: 85.0 PSI (Measured in pounds per square inch) Pitot Pressure: 23.0 PSI (Measured in pounds per square inch) Diffuser Orifice Diameter: One 4-inch Hose Monster (Measured in nounds per square inch) Diffuser Orifice Diameter: One 4-inch Hose Monster (Measured in gallons per minute) GPM @ 20 PSI: 4,955 GPM Flow Test Location North Pressure Fire Hydrant Pressure Fire Hydrant North Brown Avenue	Project Site 7242 East Osborn Road						
North Brown Avenue			East Osborn Road				

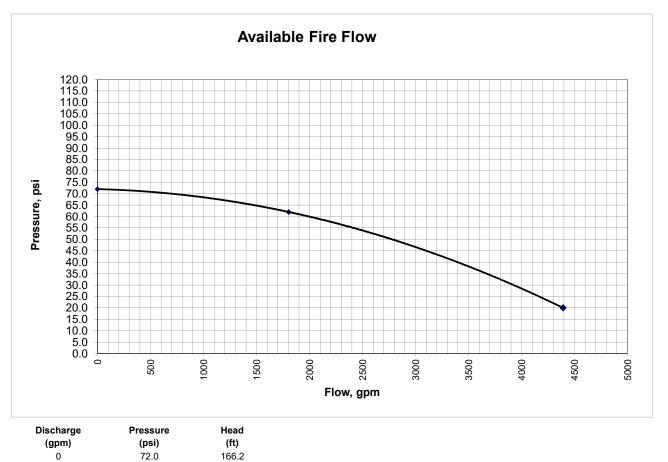
Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona


Flow Test Location:	7242 E Osborn Road, Scottsdale AZ				
Date of Flow Test:	April 12, 2019				

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

FlexTable: Pipe Table

Active Scenario: Calibration-Static

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	0	0.00
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	0	0.00
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-BLDG	1,245.00	0	1,412.70	73

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Start Node Stop Node Material Hazen-Williams Flow Label Diameter Velocity (in) С (gpm) (ft/s) EX P-1 8.0 EX J-1 EX J-2 Ductile Iron 130.0 0 0.00 8.0 EX P-6 EX FH-FLOW EX J-3 Ductile Iron 130.0 0 0.00 EX P-4 8.0 EX FH-TEST EX FH-1 Ductile Iron 130.0 0 0.00 EX P-5 EX FH-TEST EX FH-FLOW Ductile Iron 130.0 1,803 11.51 8.0 EX P-7 EX J-3 EX J-BLDG Ductile Iron 130.0 0.00 6.0 0 EX P-8 6.0 EX J-BLDG EX J-4 Ductile Iron 130.0 0 0.00 RES-1 PMP-1 130.0 1,803 0.32 P-RES 48.0 Ductile Iron EX FH-TEST P-PMP 48.0 PMP-1 Ductile Iron 130.0 1,803 0.32 EX P-2 8.0 EX J-2 J-BLDG Ductile Iron 130.0 0 0.00 EX P-3 8.0 J-BLDG EX FH-1 Ductile Iron 130.0 0 0.00

Active Scenario: Calibraion-Flow

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-BLDG	1,245.00	0	1,389.70	63

Active Scenario: Calibraion-Flow

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Calibraion-Max

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	4,392	28.03
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	4,392	0.78
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	4,392	0.78
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

Active Scenario: Calibraion-Max

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-BLDG	1,245.00	0	1,292.70	21

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Average Day Demand

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-98	0.62

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-BLDG	1,245.00	98	1,412.50	72

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-195	1.25

Active Scenario: Max Day

FlexTable: Junction Table

				-
Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.99	73
EX J-2	1,244.50	0	1,411.99	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-BLDG	1,245.00	195	1,411.99	72

Active Scenario: Max Day

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

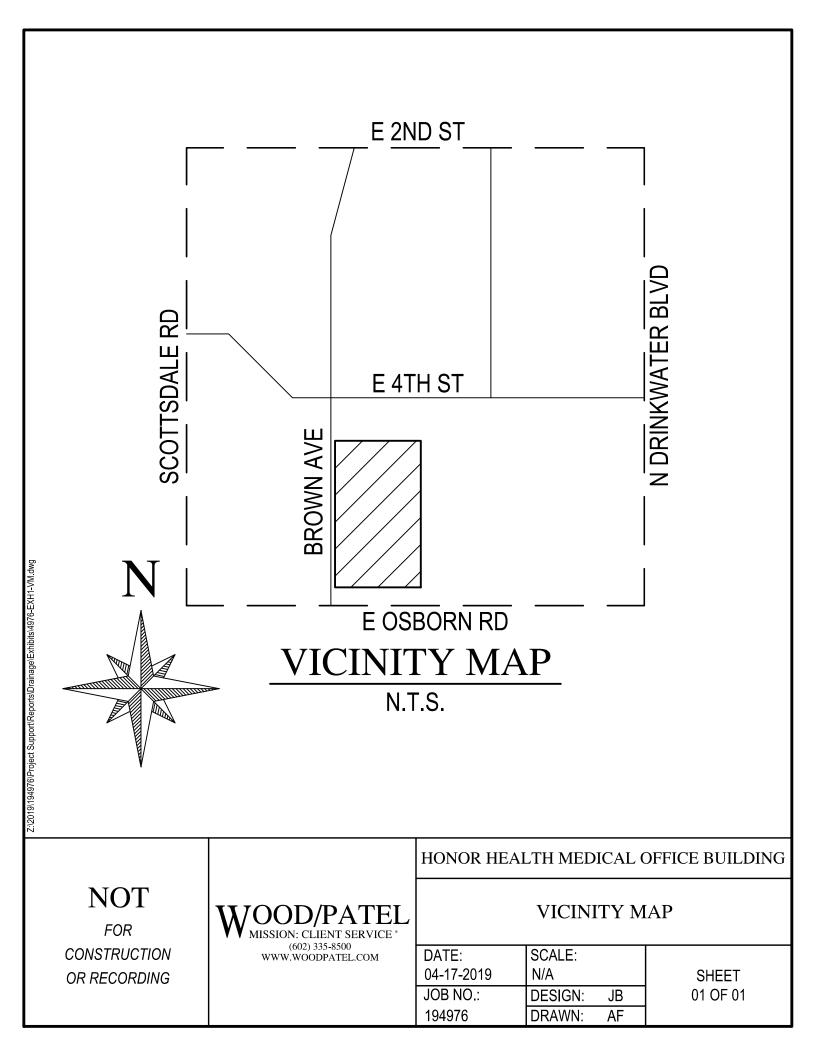
Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-342	2.18

Active Scenario: Peak Hour

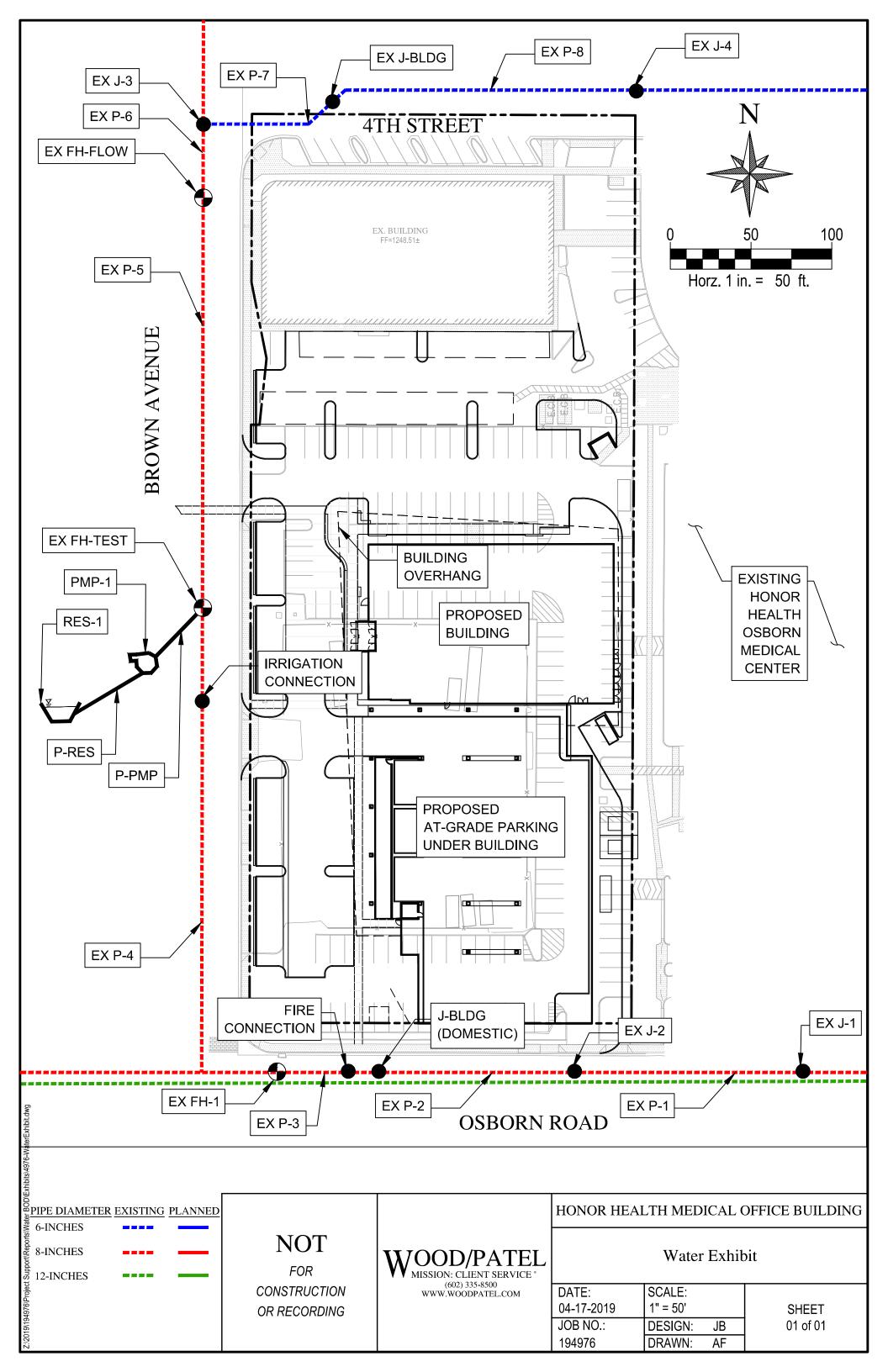
FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,410.71	72
EX J-2	1,244.50	0	1,410.71	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-BLDG	1,245.00	342	1,410.71	72

Active Scenario: Peak Hour


4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Fire Flow Node FlexTable: Fire Flow Report


Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (System)	Hydraulic Grade (ft)
EX J-1	1,244.00	2,500	2,330	30	EX J-2	1,411.99
EX J-2	1,244.50	2,500	2,406	30	EX J-1	1,411.99
EX FH-1	1,245.00	2,500	2,690	30	J-BLDG	1,412.03
EX FH-FLOW	1,247.50	2,500	2,888	30	EX J-BLDG	1,412.33
EX J-3	1,248.00	2,500	2,792	30	EX J-BLDG	1,412.33
EX FH-TEST	1,246.50	2,500	3,685	31	EX J-BLDG	1,412.33
EX J-BLDG	1,248.00	2,500	2,276	30	EX J-4	1,412.33
EX J-4	1,247.00	2,500	1,718	30	EX J-BLDG	1,412.33
J-BLDG	1,245.00	2,695	2,799	30	EX J-2	1,411.99

Active Scenario: Max Day + Fire Flow

4976-WaterCAD.wtg 4/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1 VICINITY MAP

WATER EXHIBIT

PRELIMINARY

DRAINAGE REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

Prepared For:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Water Resources Administration 7447 East Indian School Road Suite 205 Scottsdale, Arizona 85257

Prepared By: Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	EXIS	TING DRAINAGE CONDITIONS AND CHARACTERISTICS	2
	2.1	Existing Conditions	.2
	2.2	FEMA Floodplain	.2
3.0	PROI	POSED DRAINAGE PLAN	3
	3.1	Proposed Conditions	.3
	3.2	Retention and Dissipation	.3
	3.3	Lowest Floor Elevation	.4
	3.4	Operation and Maintenance	.5
4.0	SPEC	IAL CONDITIONS	6
5.0	DATA	A ANALYSIS	7
	5.1	Hydrologic Analysis	7
	5.2	Hydraulic Analysis	7
6.0	CON	CLUSIONS	8
7.0	REFE	CRENCES	9

APPENDICES

APPENDIX A Preliminary Hydrologic and Hydraulic Calculations

EXHIBITS

- EXHIBIT 1 Vicinity Map
- EXHIBIT 2 Aerial Drainage Map
- EXHIBIT 3 FEMA FIRM Map
- EXHIBIT 4 Aerial Map from November 2005
- EXHIBIT 5 Preliminary Drainage Map
- EXHIBIT 6 Preliminary Grading and Drainage Plan

km Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Preliminary Drainage Report.docx

i

1.0 INTRODUCTION

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Osborn Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to Exhibit 1 - Vicinity Map at the back of this report for the project location. The proposed 4-story office building will be 92,000 square feet with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will also include associated hardscape and landscaping.

The purpose of this report is to document the drainage design criteria utilized for the Honor Health Medical Office Building development, and is intended to support the Design Review Board (DRB) submittal for the project. This Preliminary Drainage Report has been prepared in accordance with Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the City of Scottsdale's technical requirements for drainage (Ref. 1), as applicable for the site.

1

2.0 EXISTING DRAINAGE CONDITIONS AND CHARACTERISTICS

2.1 Existing Conditions

The Honor Health Medical Office Building site is currently an asphalt parking lot with an existing building on the north side of the site (refer to Exhibit 2 - Existing Drainage Map). There is also an enclosed fenced area in the middle of the site, with a gravel surface that is currently being used for parking and storage containers. Aerial photography indicates a building was previously located at this location and was demolished around 2008. There are currently no storm water retention facilities on the site. There are currently two (2) drywells in the interior of the site. One (1) drywell appears to accept some runoff, but the second drywell is higher than the adjacent grades. In general, most of the site where development will occur drains overland to the southwest, into Osborn Road. The north side of the site, including the portion of the existing building, drains to the north. There is an existing catch basin on the north side of the building that connects to an existing public 18-inch storm drain in 4th Street. An existing scupper at the northeast portion of the site also drains storm water away from the existing building. A smaller portion of the site drains overland to Brown Avenue. Brown Avenue and Osborn Road both have existing storm drain. There are several existing catch basins on the east side of Brown Avenue that connect to a 48-inch main line. There are also several existing catch basins on the north side of Osborn Road that connect to a 54-inch main line. It is our understanding both of these storm drain main lines run to the east to Hayden Wash.

2.2 FEMA Floodplain

The Federal Emergency Management Agency (FEMA) has published a 100-year floodplain, per Flood Insurance Rate Map (FIRM). The City of Scottsdale FEMA Firm panel number is 04013C2235L, effective date October 16, 2013, and indicates the site falls within Zone "X" (refer to Exhibit 3 – *FEMA FIRM Map*).

Zone "X" is defined by FEMA as follows:

"0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flow with average depth less than one foot or with drainage areas of less than one square mile"

3.0 PROPOSED DRAINAGE PLAN

3.1 Proposed Conditions

The proposed grading for the site is designed to direct storm water runoff away from the proposed building and into the proposed on-site storm water facilities. Proposed catch basins and storm drains will collect the site runoff and store the first flush volume in an 8-foot-diameter underground storm water retention pipe (refer to Exhibit 6 – *Preliminary Grading and Drainage Plan*). The retention pipe will dewater by two (2) methods. The lower part of the pipe will drain to a proposed drywell at the southwest corner of the site. The upper part of the retention pipe will drain by a bleed-off pipe to the City of Scottsdale's storm drain in Osborn Road. We do not believe the entire underground retention system can be drained solely by a bleed-off pipe, due to the number of utility crossings in Osborn Road. 8-foot-diameter storage pipe was selected because the upper portion of the pipe can still be drained by gravity, and the upstream on-site storm water drain will not conflict with the on-site sanitary sewer. It should be noted the catch basin connection inverts in Osborn Road still need to be verified.

If the on-site catch basins become clogged, or if the on-site storm water storage system is exceeded, overland overflow routes have been incorporated into the grading and drainage design. The ultimate outfall for the project will be at the southwest corner of the site and will drain into Osborn Road.

3.2 Retention and Dissipation

It is our understanding a storm water retention waiver exists for the Honor Health campus, per City of Scottsdale Plan Check No. 3182-02. We have not seen the retention waiver, and it is unclear if this portion of the site is included in the waiver. Therefore, using a historical aerial map, the pre-development runoff coefficient was compared to the post-development runoff coefficient (refer to Exhibit 4 – *Aerial Map from November 2005*). The historical runoff coefficient of 0.93 is higher than the post-development runoff coefficient of 0.91. Because there is no increase in runoff, the City of Scottsdale's *Design Standards and Policies Manual* states the site must provide storm water retention for the first flush storm event. In accordance with the current City of Scottsdale's *Design Standards and Policies Manual*, the following required retention volume equation was used for this project, with the current precipitation depth of 0.5 inches:

3

 $Vol_{req} = \frac{P}{12} \times A \times C$ P = Precipitation Depth: 0.5 inches A = Total Area (sq. ft.) C = Post-Development Runoff Coefficient: 0.95

The required retention volume will be provided by proposed 8-foot-diameter underground C.M.P. storage pipes. The storm water retention volumes have been designed to accommodate the first flush event within the underground storage pipe. The retention volume required for the site is 4,445 cubic feet (cf). The proposed storm water retention system consists of one (1) 8-foot-diameter pipe, having a length of 90 linear feet of pipe (refer to Appendix A – *Preliminary Hydrologic and Hydraulic Calculations*). The underground storage system primarily utilizes a drywell to dissipate the retained volume within 36 hours. An estimate of the required number of drywells was calculated by utilizing a design drain rate of 0.10 cfs per drywell. Based on this design drywell drain rate, one (1) drywell each is required to dissipate the retention pipe. When the drywell is installed, percolation testing will be performed to determine the actual percolation rate of the drywell. The underground storage system also utilizes a bleed-off pipe to dissipate the retained volume within 36 hours. This bleed-off pipe will connect to the catch basin in Osborn Road and drain into the 54-inch storm drain.

The design of the storm water retention pipe will be finalized with the final plan set. We anticipate using proposed 8-foot-diameter C.M.P. underground storage pipe. The pipe manufacturer and Geotechnical Engineer will provide specifications for the H20/HS20 and H25/HS25 live loads and estimated design life that exceeds the City of Scottsdale's minimum design criteria of a 50-year design life for underground retention pipes.

3.3 Lowest Floor Elevation

The Preliminary Grading and Drainage Plan is designed to comply with the City of Scottsdale's floodplain ordinance in a Zone "X" floodplain. The proposed building has a finished floor elevation of 1247.50, which is 2.20 feet above the ultimate outfall elevation of 1245.30, located on the southwest corner of the site. If the outlet pipe for the retention basins becomes clogged, storm water can overflow over land (refer to Exhibit 5 – *Preliminary Drainage Map* for a graphical representation).

4

3.4 Operation and Maintenance

The property owner shall be solely responsible for the operation and maintenance of the storm water drainage system. In accordance with the City of Scottsdale's *Design Specifications and Policies Manual*, the owner will dedicate a public drainage easement for the storm water retention facilities. Operation and maintenance reference material will be provided in the Final Drainage Report.

4.0 SPECIAL CONDITIONS

Currently, there are no washes with 100-year flows greater than 50 cfs that traverse the project site. Also, there are no designated Section 404 washes within the site; therefore, no Section 404 permit is required.

5.0 DATA ANALYSIS

5.1 Hydrologic Analysis

The drainage improvements will be developed consistent with Chapter 4 of the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The Rational Method will be used to quantify peak discharge values for on-site concentration points for the full buildout scenario during the first flush storm event. Weighted "C" coefficients will be referenced from Chapter 4 of the City of Scottsdale's *Design Standards and Policies Manual*, 2018. Refer to Appendix A for rational calculation printouts, and Exhibit 4 for drainage basin tributary areas and concentration point locations.

5.2 Hydraulic Analysis

For this preliminary report, storm drain rim and invert information is provided on Exhibit 5. Hydraulic analysis of the proposed storm drain will be forthcoming once the City approves the conceptual storm water retention scenario. The on-site storm drain system will be designed to accommodate the 10-year storm event. Bentley StormCAD Version 5.6 will be utilized to analyze the proposed storm sewer system. StormCAD printouts and storm drain profiles will be available.

6.0 CONCLUSIONS

Based on our analysis of the site, the following conclusions can be made:

- 1. The proposed drainage infrastructure will be designed in accordance with the City of Scottsdale's *Design Standards and Policies Manual*, 2018.
- 2. The proposed site lies within a FEMA-designated "Other Flood Areas" Zone "X" shaded. Per the FEMA map (Panel 1760L), the FIRM information is as follows:

"0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flow with average depth less than one foot or with drainage areas of less than one square mile."

- 3. No off-site flows appear to impact the site.
- 4. The Rational Method was used to estimate peak discharges for all on-site drainage areas in this report.
- 5. In accordance with the City of Scottsdale's design guidelines, storm water retention will be provided for the first flush storm event (0.5 inches of rainfall).
- 6. Storm water retention will be provided in a retention basin. The volume required for the site is 4,445 cubic feet. The volume proposed is 4,524 cubic feet.
- 7. The proposed building has a finished floor elevation of 1247.50, which is 2.20 feet above the ultimate outfall elevation of 1245.30, located on the southwest corner of the site.
- 8. The property owner will maintain the on-site storm water retention system, and dedicate a public drainage easement for the storm water retention facilities.

8

7.0 **REFERENCES**

1. Design Standards and Policies Manual, Chapter 4: Grading and Drainage, City of Scottsdale, January 2018.

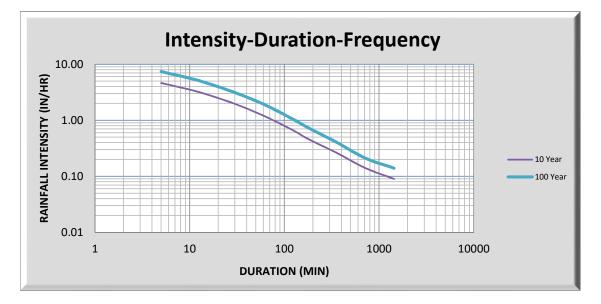
WOOD/PATEL MISSION: CLIENT SERVICE* **APPENDIX A**

PRELIMINARY HYDROLOGIC AND HYDRAULIC CALCULATIONS

WOOD/PATEL

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Site I-D-F Curve


Description:	Rational Method IDF Curve		
Location:	Honor Health Medical Office Building		
	City of Scottsdale, Arizona		

NOAA ATLAS 14 RAINFALL DEPTHS, INCHES

Duration	Average Recurrence Interval (years)							
Duration	2	5	10	25	50	100		
5-min	0.24	0.326	0.392	0.481	0.55	0.62		
10-min	0.365	0.496	0.596	0.733	0.838	0.944		
15-min	0.452	0.614	0.739	0.908	1.04	1.17		
30-min	0.609	0.827	0.995	1.22	1.4	1.58		
60-min	0.754	1.02	1.23	1.51	1.73	1.95		
2-hr	0.864	1.16	1.38	1.69	1.92	2.16		
3-hr	0.931	1.22	1.46	1.78	2.04	2.31		
6-hr	1.11	1.42	1.67	2.01	2.28	2.56		
12-hr	1.24	1.57	1.83			2.72		
24-hr	1.48	1.92	2.27	2.75	3.13	3.53		

RAINFALL INTENSITY, INCHES/HOUR

Duration			Frequency, y	ears		
minutes	2	5	10	25	50	100
5	2.88	3.91	4.70	5.77	6.60	7.44
10	2.19	2.98	3.58	4.40	5.03	5.66
15	1.81	2.46	2.96	3.63	4.16	4.68
30	1.22	1.65	1.99	2.44	2.80	3.16
60	0.75	1.02	1.23	1.51	1.73	1.95
120	0.43	0.58	0.69	0.85	0.96	1.08
180	0.31	0.41	0.49	0.59	0.68	0.77
360	0.19	0.24	0.28	0.34	0.38	0.43
720	0.10	0.13	0.15	0.18	0.20	0.23
1440	0.06	0.08	0.09	0.11	0.13	0.15

WOOD/PATEL

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONST

Table 1: 'C' Value Calculation

Location:	Honor Health Medical Office Building
Reference:	City of Scottsdale Engineering Design Criteria (2018)

Known Values:Design storm:100-yr, 2-hrRainfall, D:2.16

Calc. Values:

 $V_{Required} = \Delta CA \frac{D}{12}$

Where:

V = Retention Volume Required C = Runoff Coefficient D = Depth of Rainfall

A = Area of Watershed Contributing

Н	ist	tor	iCa	al

Contributing Sub-Area	Area (ft)	Land Use	Weighted Runoff Coefficient
1	112,734.00	Pavement, Asphalt, Roof	0.95
2	2 4,492.00 Landscap		0.45
Total	117,226.00		0.93

Proposed

Contributing Sub-Area	Area (ft)	Land Use	Weighted Runoff Coefficient
1	109,014.00	Pavement, Asphalt, Roof	0.95
2	8,212.00	Landscaping	0.45
Total	117,226.00		0.91

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Table 2 - Retention Volume Required & Provided

 Description:
 Calculation of Retention Volume Required & Provided 04/17/19

 Location:
 Honor Health Medical Office Building City of Scottsdale, Arizona

 Reference:
 City of Scottsdale Engineering Design Criteria (2018)

Known Values: Design storm: First Flush Rainfall, D: 0.50

Calc. Values: $V_r = C \times (D/12) \times A$

Where: V_r = Retention Volume Required C = Runoff Coefficient D = Depth of Rainfall A = Area of Watershed Contributing

 $V_p = \pi x (D/2)^2 x L$

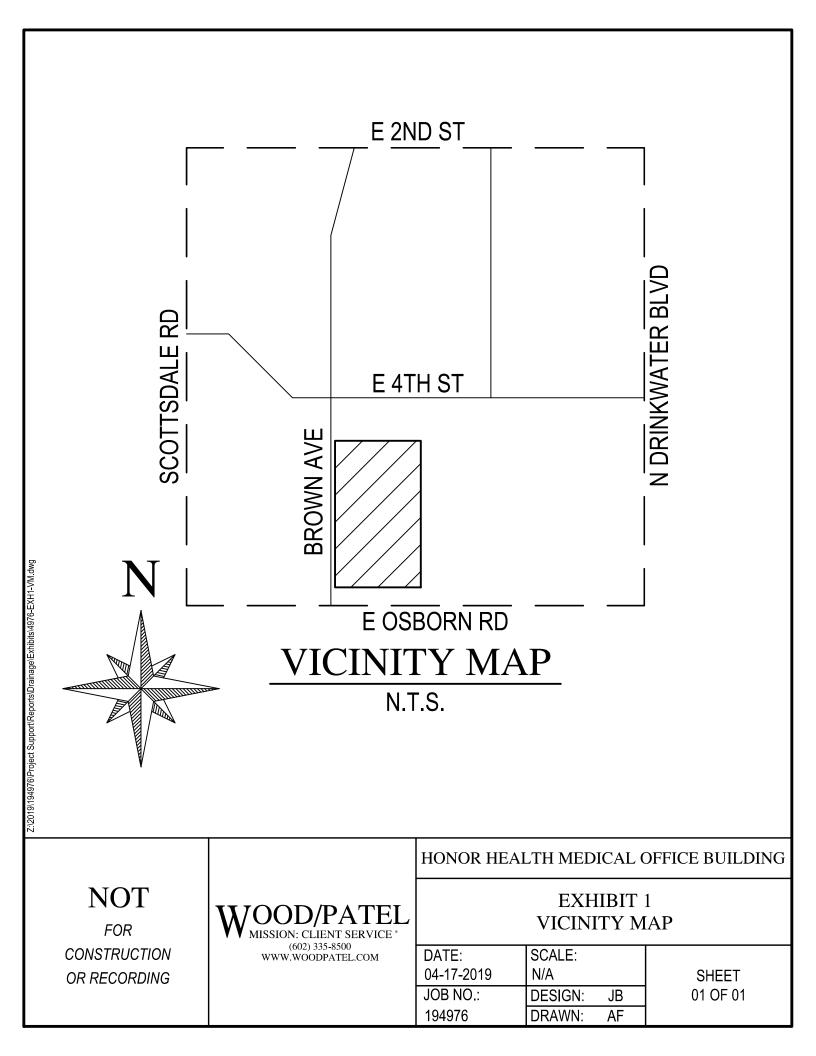
 $V_p = 0.5 x$ (Top Contour Area + Bottom Contour Area) x (Top Contour Elevation - Bottom Contour Elevation) (For Basin)

Where: V_p = Retention Volume Provided

Basin ID	Area (sf)	Land Use	100-Year Runoff Coefficient	100-Year, 2- Hour Volume Required (cu.ft)	100-Year, 2- Hour Volume Required (ac.ft)	Diameter of Pipe (ft)	Length of Pipe (ft)	Top Contour Area (sf)	Bottom Contour Area (sf)	Top Contour Elevation	Bottom Contour Elevation	100-Year, 2- Hour Volume Provided (cu.ft)
Underground A	117,226	Commercial/ Landscape	0.91	4,445	0.10	8	90	-	-	-	-	4,524
Total	117,226	-	-	4,445	0.10	-	-	-	-	-	-	4,524

WOOD/PATEL

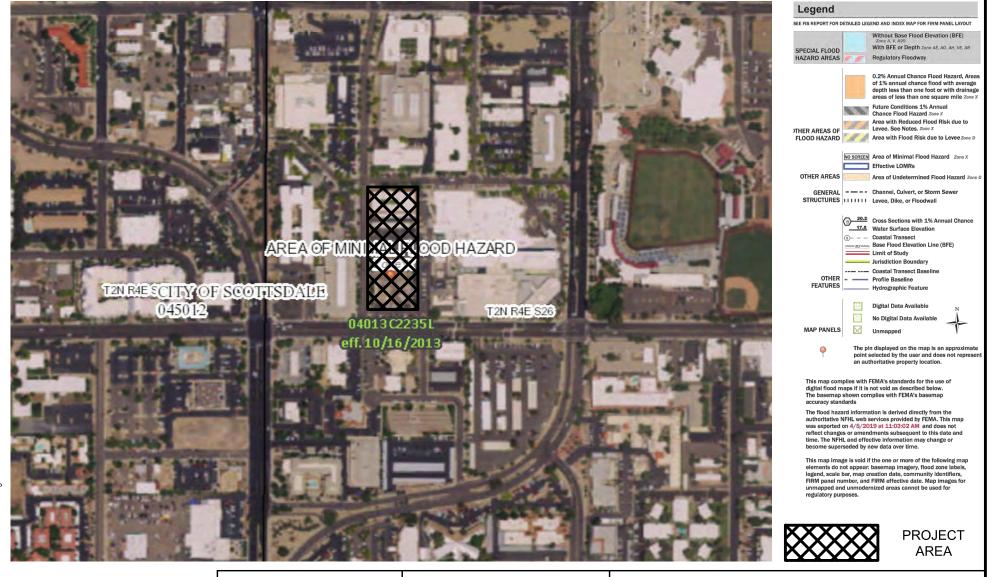
CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS


Table 3 - Required Drywells

Description: Date: Location: Drywell Calculations 04/17/19 Honor Health Medical Office Building City of Scottsdale, Arizona *City of Scottsdale Engineering Design Criteria (2018)*

References:

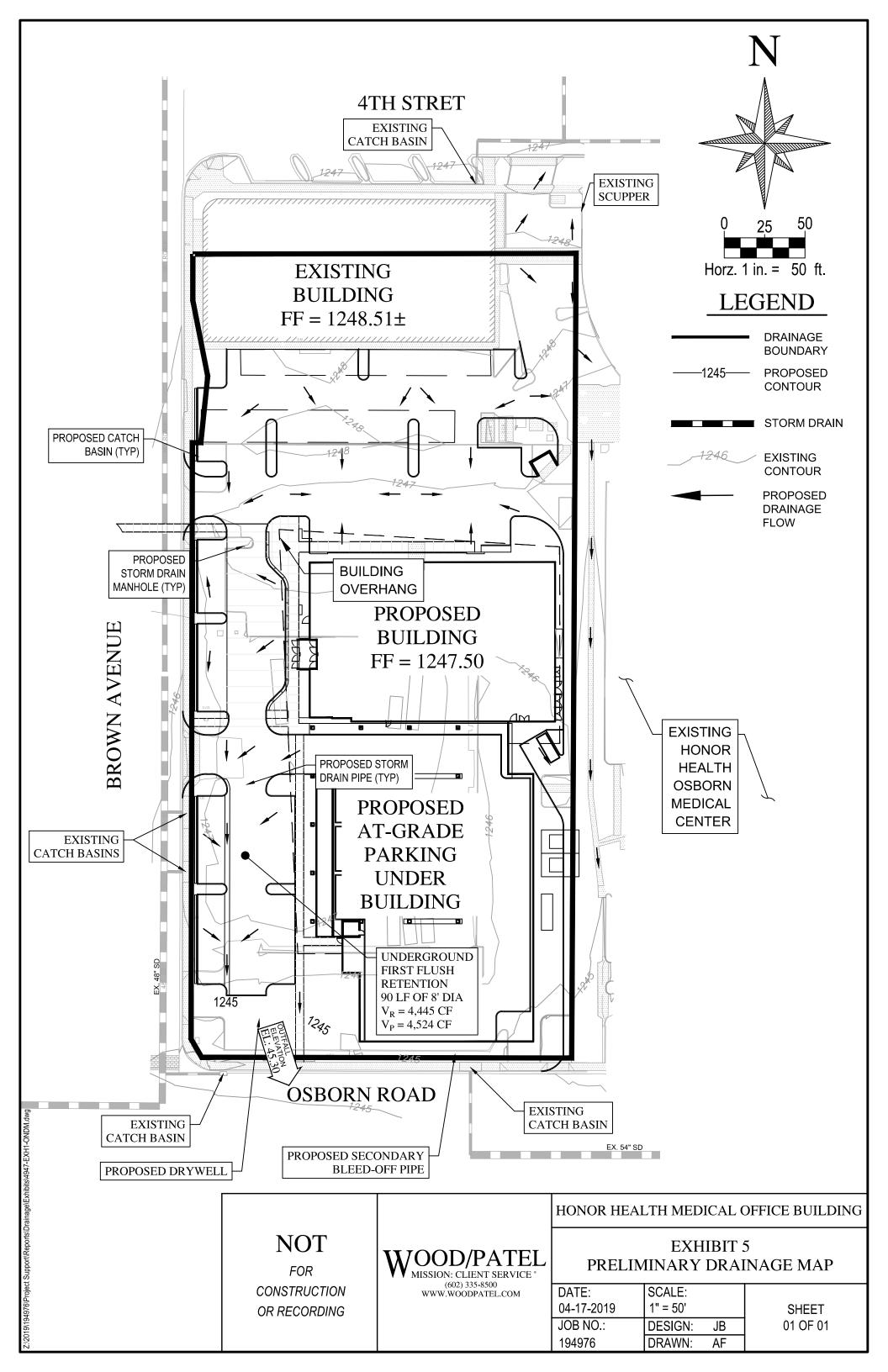
Design Maximum Drain Volume Required Percolation Number of Drywells **Drain Time Basin ID** Time Required/Provided (CF) Rate (hours) (Hours) (CFS) 0.10 Underground A 4,445 36 12.3 1


VICINITY MAP

EXISTING DRAINAGE MAP

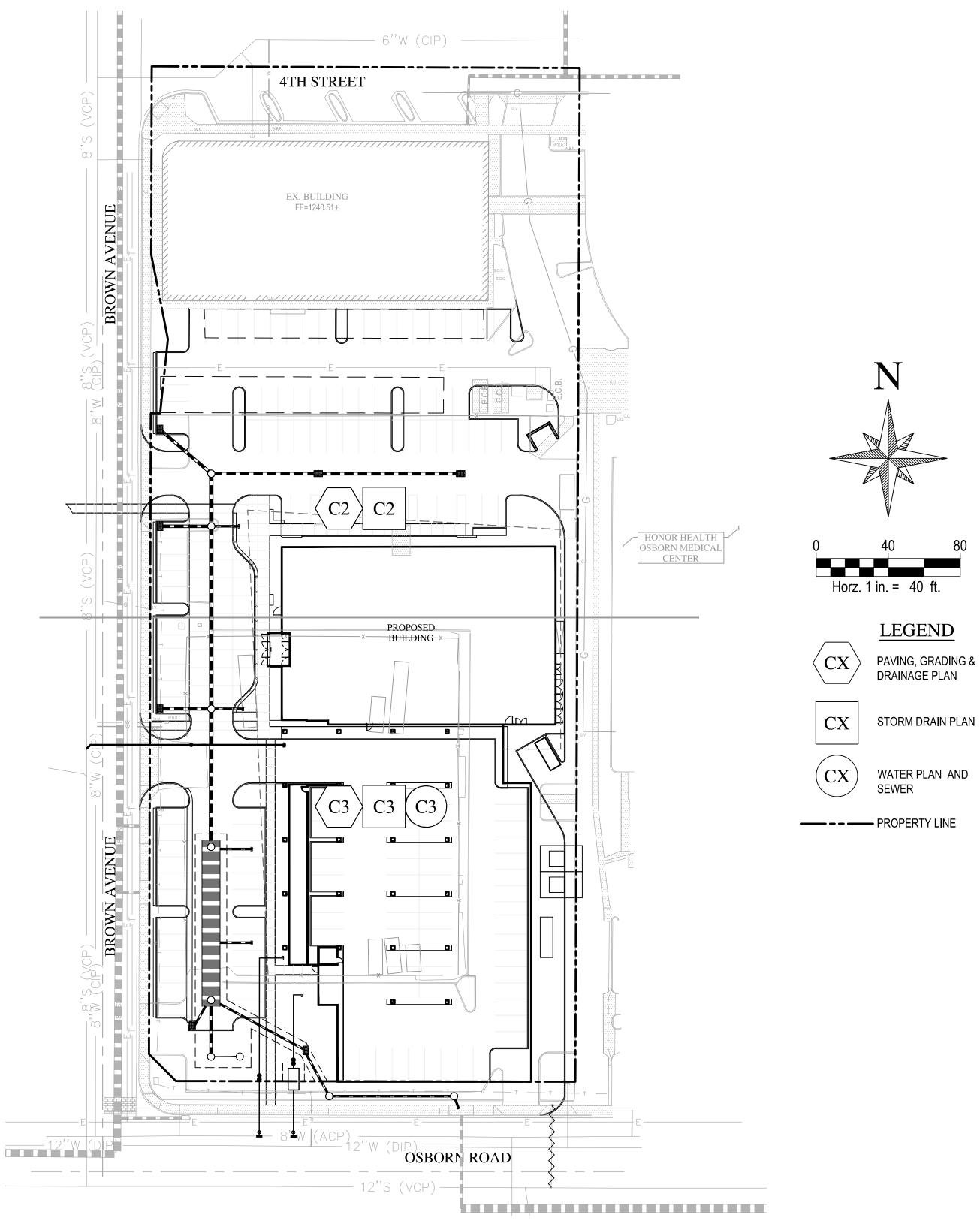


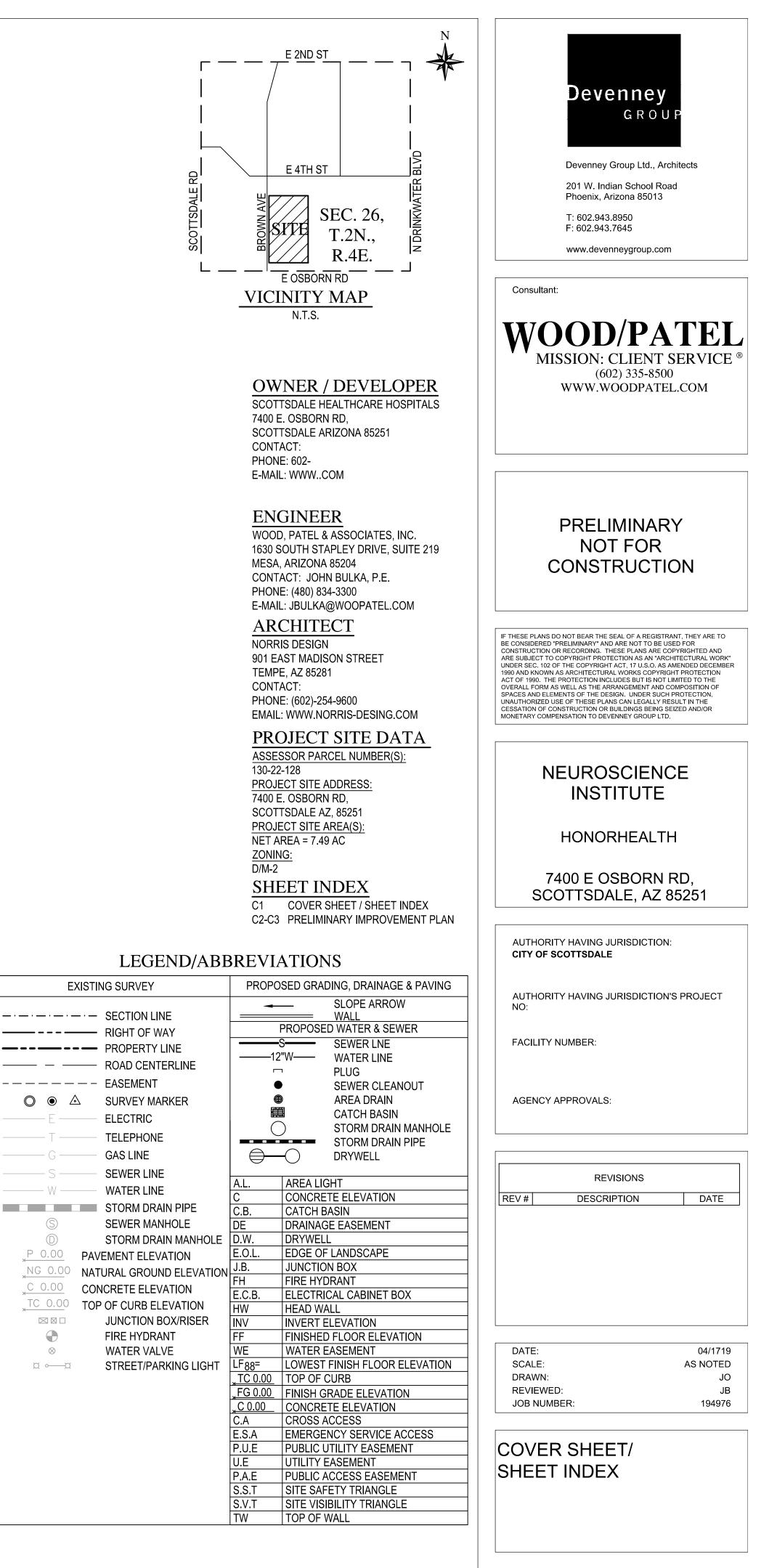
FEMA FIRM MAP



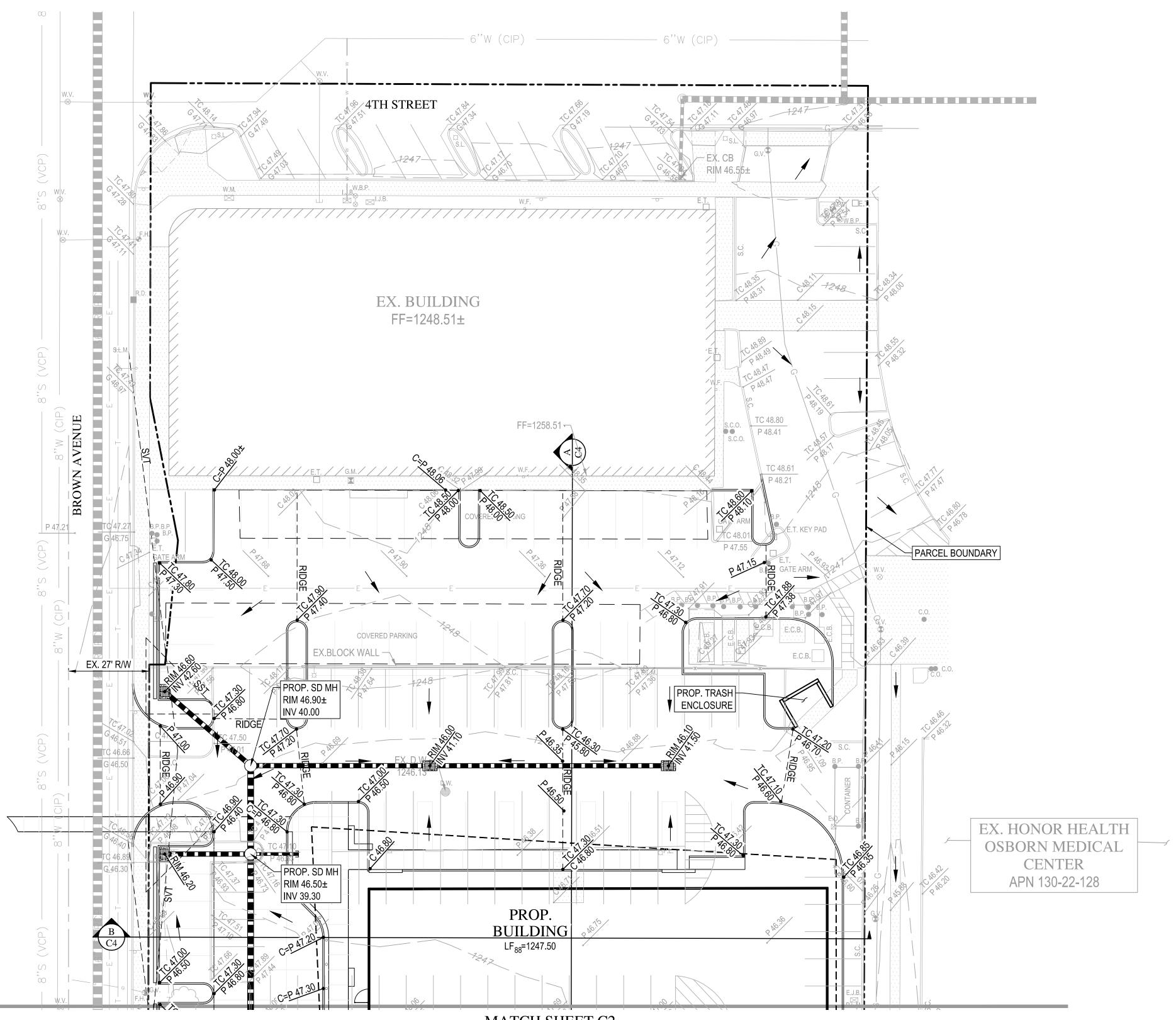
		HONOR HEA	ALTH MEDICAL (OFFICE BUILDING		
NOT FOR	WOOD/PATEL MISSION: CLIENT SERVICE *	EXHIBIT 3 FEMA FIRM MAP				
CONSTRUCTION OR RECORDING	(602) 335-8500 WWW.WOODPATEL.COM	DATE: 04-17-2019	SCALE: N/A	SHEET		
		JOB NO.:	DESIGN: JB	01 OF 01		
		194976	DRAWN: AF			

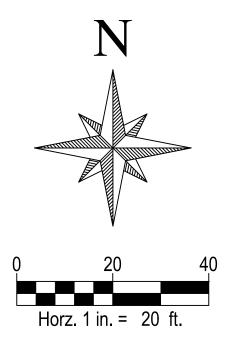
AERIAL MAP FROM NOVEMBER 2005



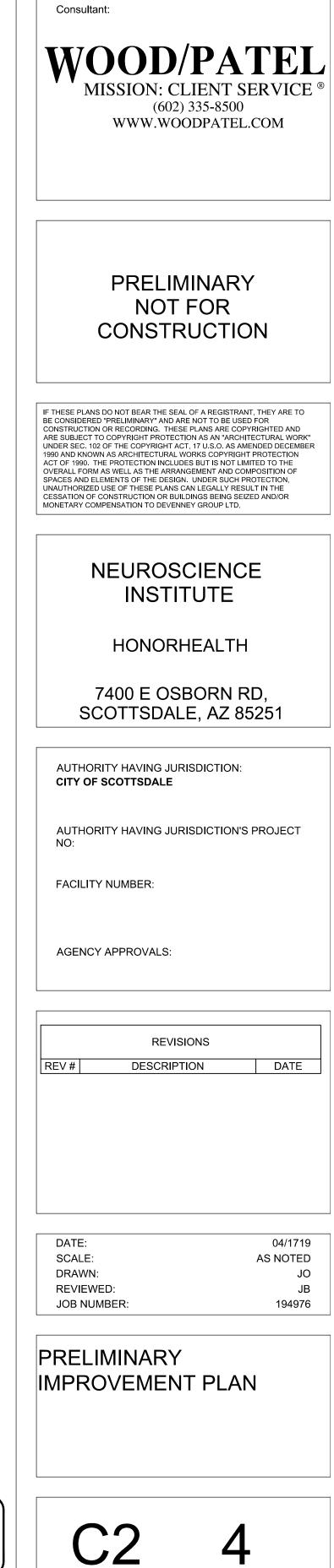

PRELIMINARY DRAINAGE MAP

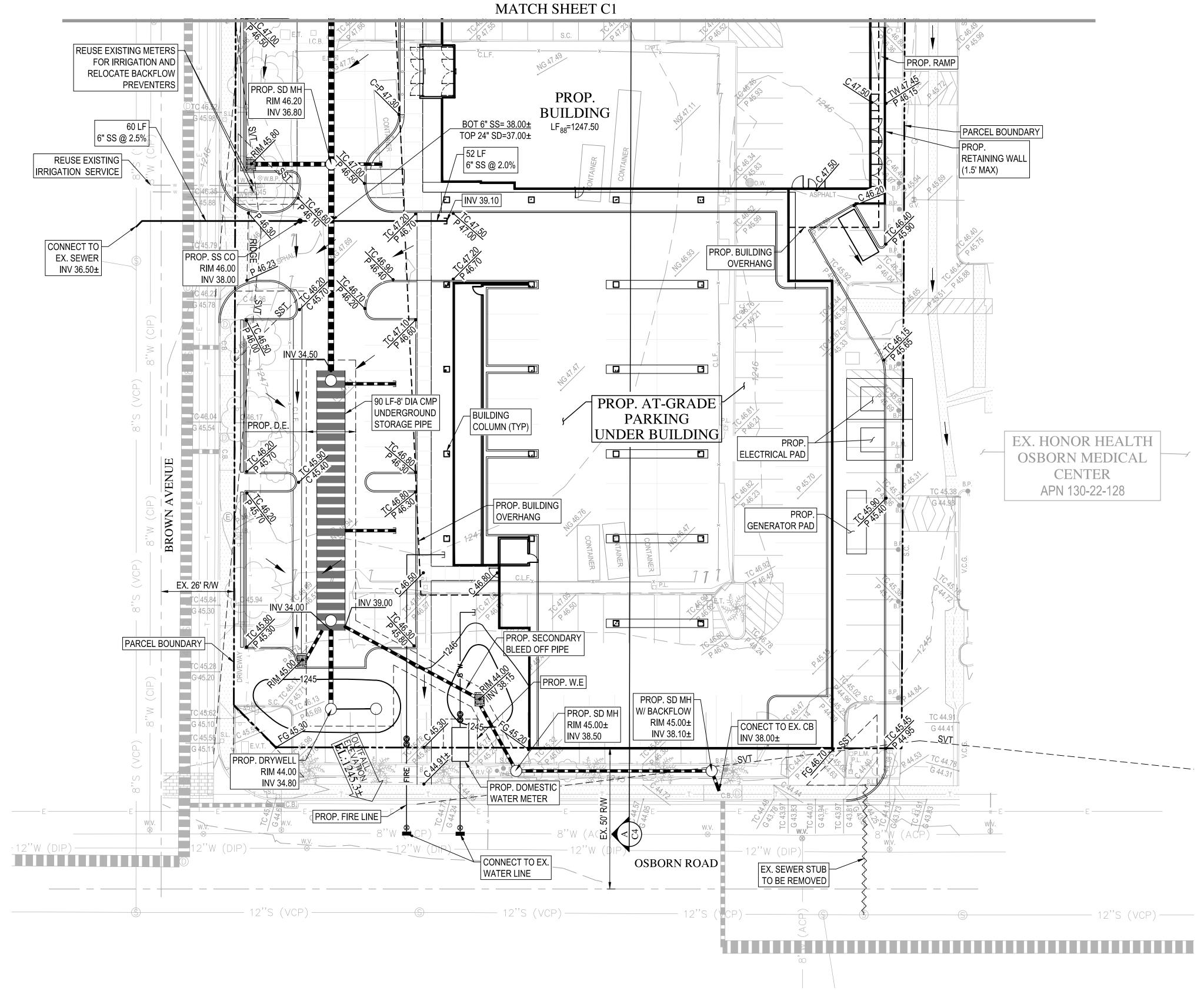
PRELIMINARY GRADING AND DRAINAGE PLAN


HONORHEALTH OSBORN PRELIMINARY IMPROVEMENT PLAN 7400 E. OSBORN RD, SCOTTSDALE, AZ 85251 A PORTION OF THE SOUTHEAST 1/4 OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA

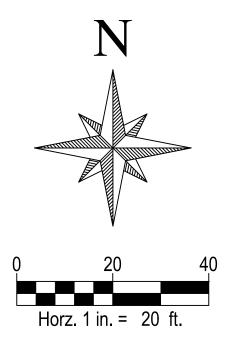


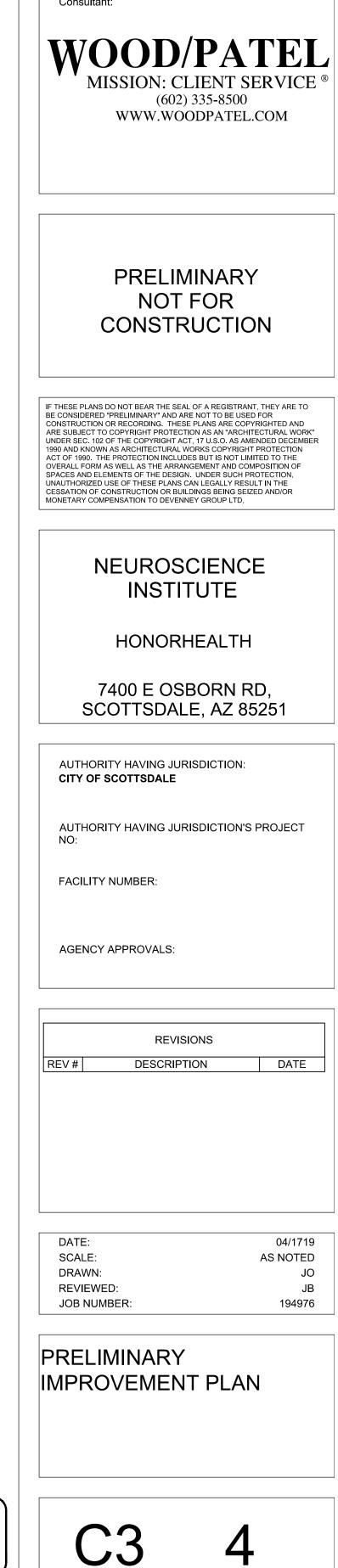
4


MATCH SHEET C2



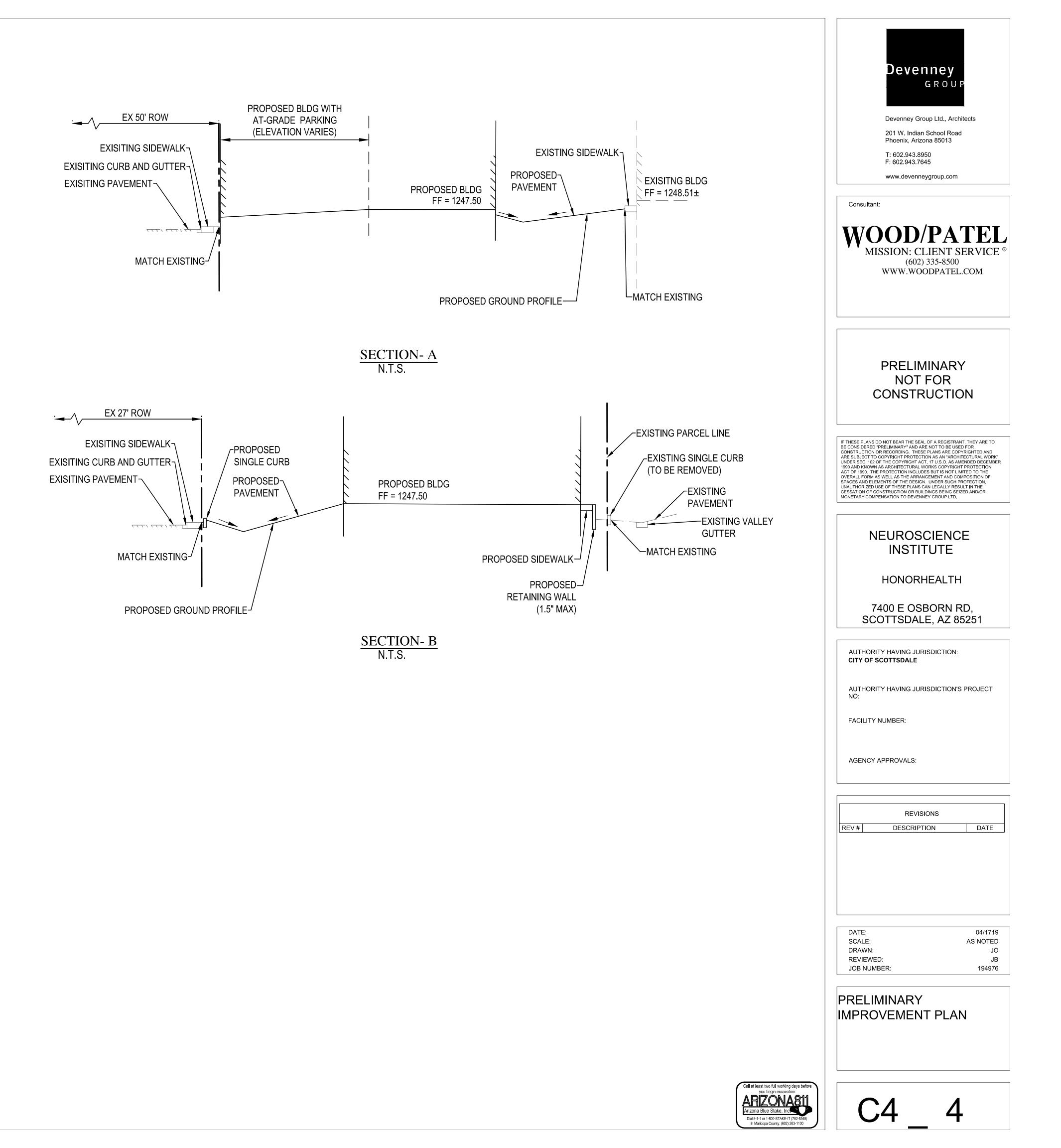
Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013


T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com



Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013

T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com


Consultant:

Call at least two full working days be

ARIZONA811 Arizona Blue Stake, Inc. Dia 8-1-1 or 1-800-STAKE-IT (782-5348)

In Maricopa County: (602) 263-1100

WASTEWATER COLLECTION SYSTEM

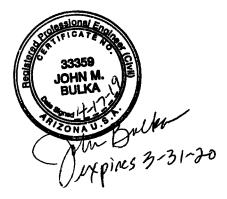
BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976


Prepared For:

Prepared By:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

> Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

Wastewater flowing from the proposed Honor Health Medical Office Building will discharge to a 6-inch private sewer line on the west side of the proposed building. The 6-inch private sewer line discharges into the City of Scottsdale's existing public 8-inch VCP sewer line in Brown Avenue.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Wastewater flows, Office:	0.4 gpd/sq. ft.
•	Peaking Factor, Office:	3
•	Minimum Mean Full Flow Velocity:	2.50 fps
•	Minimum Peak Full Flow Velocity:	10.0 fps
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	d/D = 0.65
	Abbreviations: gpd = gallons per day; fps = feet per second	

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Page 2

Mr. Levi Dillion, P.E. City of Scottsdale Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report WP# 194976

Based on the above design criteria, the projected average day flow for the proposed 117,000-sf Honor Health Medical Office Building project is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Wastewater Collection System Basis of Design Report provided for the Honor Health Medical Office Building development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John M. Bulka, P.E. Project Manager

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Wastewater Basis of Design Report.docx

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL WMISSION: CLIENT SERVICE[®] CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Medical Office Building

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Bulka, P.E. 4/17/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	Proposed 6"	Sewer Lin	ne (2.0%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02000	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.87	in
Flow Area		0.05	ft²
Wetted Perimeter		0.59	ft
Hydraulic Radius		1.06	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		31.2	%
Critical Slope		0.00445	ft/ft
Velocity		4.16	ft/s
Velocity Head		0.27	ft
Specific Energy		0.42	ft
Froude Number		2.18	
Maximum Discharge		1.11	ft³/s
Discharge Full		1.03	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		31.19	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

4/16/2019 8:47:27 AM

Proposed 6" Sewer Line (2.0%)

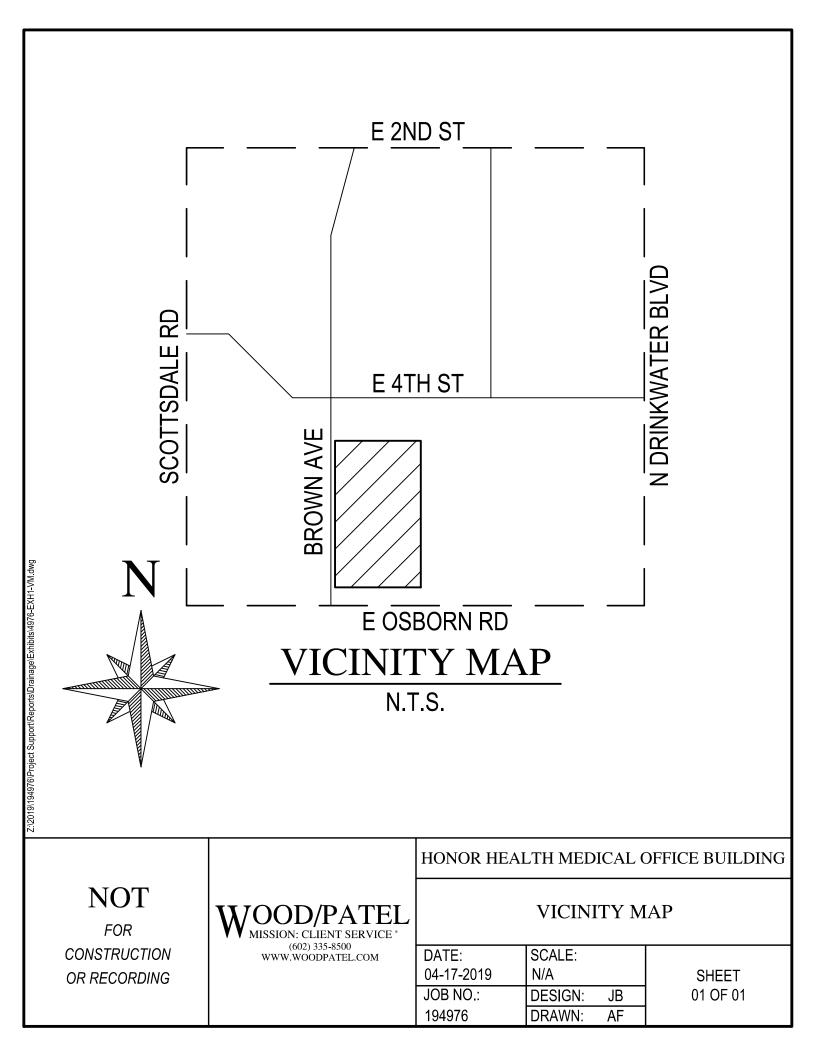
GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.87	in
Critical Depth	0.23	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.00445	ft/ft

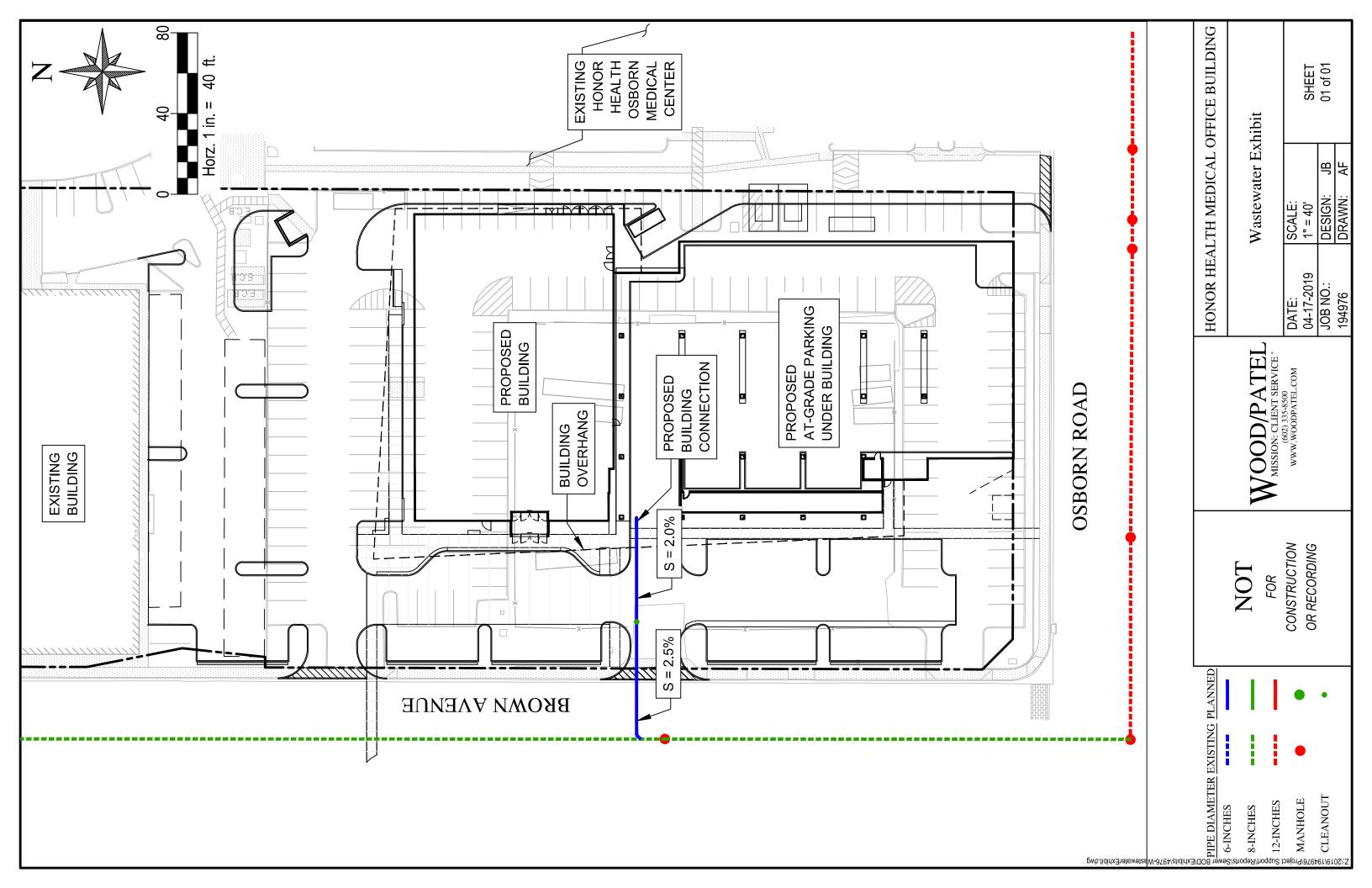
	Proposed 6"	Sewer Lir	ne (2.5%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02500	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.77	in
Flow Area		0.05	ft²
Wetted Perimeter		0.57	ft
Hydraulic Radius		1.01	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		29.4	%
Critical Slope		0.00446	ft/ft
Velocity		4.50	ft/s
Velocity Head		0.31	ft
Specific Energy		0.46	ft
Froude Number		2.44	
Maximum Discharge		1.24	ft³/s
Discharge Full		1.15	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		29.45	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2


4/16/2019 8:45:16 AM

Proposed 6" Sewer Line (2.5%)


GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	in
Critical Depth	0.23	ft
Channel Slope	0.02500	ft/ft
Critical Slope	0.00446	ft/ft

VICINITY MAP

WASTEWATER EXHIBIT

WATER DISTRIBUTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

Prepared For:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

Prepared By:

Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Water Distribution System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

The project site has public waterline infrastructure on three (3) sides of the site. There is one (1) 12-inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue. There is one (1) 6-inch CIP water main in 4^{th} Street. The Honor Health Medical Office Building site proposes two (2) private water connections that utilize the City's public waterline for domestic water and fire protection that connect to the existing public 8-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached *Water Exhibit* for a depiction of the existing water infrastructure surrounding the project.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the *City of Scottsdale Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Water Demand, Office:	8.34E-04 gpm/sq. ft.*
	Fire Flow Requirements:	min 1,500 gpm**
	Maximum Day Demand:	2.0 x ADD
	Peak Hour Demand:	3.5 x ADD
	Minimum Residual Pressure, Peak Hour:	50 psi
	Minimum Residual Pressure, Maximum Day + Fire Flow:	30 psi
Inc.	2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 •	(602) 335-8500 • Fax (602) 335-8580

Wood, Patel & Associates, Inc. 2051 West N

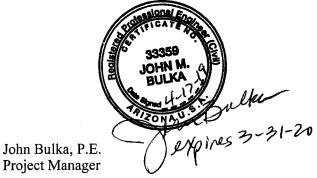
Mr. Levi Dillion, P.E. City of Scottsdale **Honor Health Medical Office Building** Water Collection System, Basis of Design Report WP# 194976

٠	Maximum System Pressure:					120 psi
•	Maximum Pipe Head Loss, Maximum Day Demand:				8 t	ft / 1000 ft
•	Maximum Pipe Head Loss, Peak Hour Demand:				10 1	ft / 1000 ft
•	Minimum Pipe Diameter, Public Water Line:					8 inches
		1	1	1	•	1

- Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch
 - * Includes both inside and outside use per Figure 6-1.2, COS Design Standards and Policies Manual
- ** Fire flow is based on 10% reduction to account for flow measurement inaccuracy (refer to attached calculations in the appendices)

Domestic water service will be provided by a proposed 3-inch private waterline and a 3-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 6-inch fire line for an automatic fire-sprinkler service. Irrigation water service will be provided by a suspected existing 1-inch irrigation line.

The average day water demand for the proposed 117,000-sf Honor Health Medical Office Building is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached calculations).


WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, was utilized to simulate the City of Scottsdale's water supply for the project (refer to attached modeling results).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Honor Health Medical Office Building project, with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the project site, with 2,500-gpm fire hydrant flows during maximum day demand. A 50-percent reduction was applied to the fire flow requirements due to the proposed sprinkler system. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

Thank you for your review of the Water Distribution System Basis of Design Report provided for the Honor Health Medical Office Building project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Water Basis of Design Report.docx

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Bulka, P.E. Date: 4/17/2019

LAND USE AND DWELLING UNIT BREAKDOWN BY JUNCTION																				
HYDRAULIC	ELEVATION	PRESSURE	LAND USE	DWELLING UNITS	DWELLING		DEMAND VALUE UNITS				AVERAG	GE DAILY D	EMAND	MAX	MAXIMUM DAY DEMAND			PEAK HOUR DEMAND		
MODEL NODE	ODE (ft)	ZONE	DNE		DEMAND VALUE	UNITS	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)			
J-BLDG	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6			
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6			

Notes:

1. Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 2. The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

Project Name: Project Address: Client Project No.: Arizona Flow Testing Projec Flow Test Permit No.: Date and time flow test cond Data is current and reliable to Conducted by: Witnessed by:	7242 East Os 194976 t No.: 19131 C57857 lucted: April 12, 201 intil: October 12, 2 Floyd Vaugh	19131						
Raw Test Data		Data with 13 PSI Safety Fa	Scousuale requires a					
Static Pressure: (Measured in pounds per sq	85.0 PSI uare inch)	Static Pressure: (Measured in pounds per so	72.0 PSI quare inch)maximum Static Pressure of 72 PSI for AFES Design.					
Residual Pressure: (Measured in pounds per sq	75.0 PSI uare inch)	Residual Pressure: (Measured in pounds per so	62.0 PSI quare inch)					
Pitot Pressure:	23.0 PSI							
(Measured in pounds per sq	uare inch)							
Diffuser Orifice Diameter: Or (Measured in inches)	ne 4-inch Hose Monster	Distance between hydrants: Approx.: 290 feet Main size: Not Provided						
Coefficient of Diffuser: .7875	5							
Flowing GPM: (Measured in gallons per min	1,803 GPM nute)	Flowing GPM:	1,803 GPM					
GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPM					
Flow Test Location	Nor	th 🕇						
Flow Fire Hydrant			East 4 th Street					
			East 4 th Street					
Pressure Fire Hydrant			Project Site 7242 East Osborn Road					
North Brown Avenue			East Osborn Road					

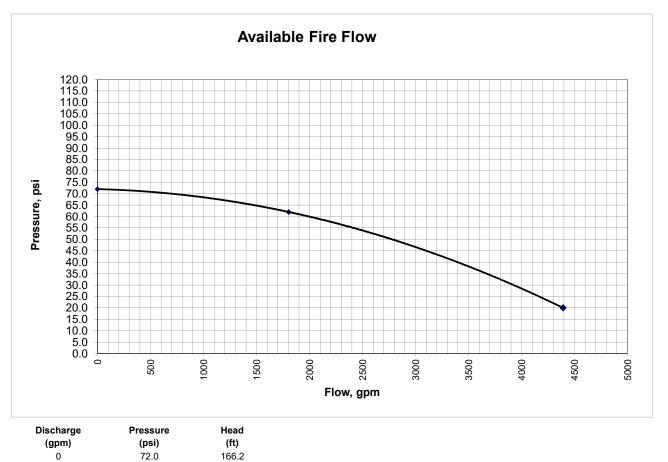
Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona


Flow Test Location:	7242 E Osborn Road, Scottsdale AZ
Date of Flow Test:	April 12, 2019

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

FlexTable: Pipe Table

Active Scenario: Calibration-Static

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	0	0.00
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	0	0.00
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-BLDG	1,245.00	0	1,412.70	73

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Start Node Stop Node Material Hazen-Williams Flow Label Diameter Velocity (in) С (gpm) (ft/s) EX P-1 8.0 EX J-1 EX J-2 Ductile Iron 130.0 0 0.00 8.0 EX P-6 EX FH-FLOW EX J-3 Ductile Iron 130.0 0 0.00 EX P-4 8.0 EX FH-TEST EX FH-1 Ductile Iron 130.0 0 0.00 EX P-5 EX FH-TEST EX FH-FLOW Ductile Iron 130.0 1,803 11.51 8.0 EX P-7 EX J-3 EX J-BLDG Ductile Iron 130.0 0.00 6.0 0 EX P-8 6.0 EX J-BLDG EX J-4 Ductile Iron 130.0 0 0.00 RES-1 PMP-1 130.0 1,803 0.32 P-RES 48.0 Ductile Iron EX FH-TEST P-PMP 48.0 PMP-1 Ductile Iron 130.0 1,803 0.32 EX P-2 8.0 EX J-2 J-BLDG Ductile Iron 130.0 0 0.00 EX P-3 8.0 J-BLDG EX FH-1 Ductile Iron 130.0 0 0.00

Active Scenario: Calibraion-Flow

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-BLDG	1,245.00	0	1,389.70	63

Active Scenario: Calibraion-Flow

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Calibraion-Max

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	4,392	28.03
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	4,392	0.78
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	4,392	0.78
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

Active Scenario: Calibraion-Max

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-BLDG	1,245.00	0	1,292.70	21

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Average Day Demand

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-98	0.62

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

			j_	
Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-BLDG	1,245.00	98	1,412.50	72

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-195	1.25

Active Scenario: Max Day

FlexTable: Junction Table

				-
Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.99	73
EX J-2	1,244.50	0	1,411.99	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-BLDG	1,245.00	195	1,411.99	72

Active Scenario: Max Day

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-342	2.18

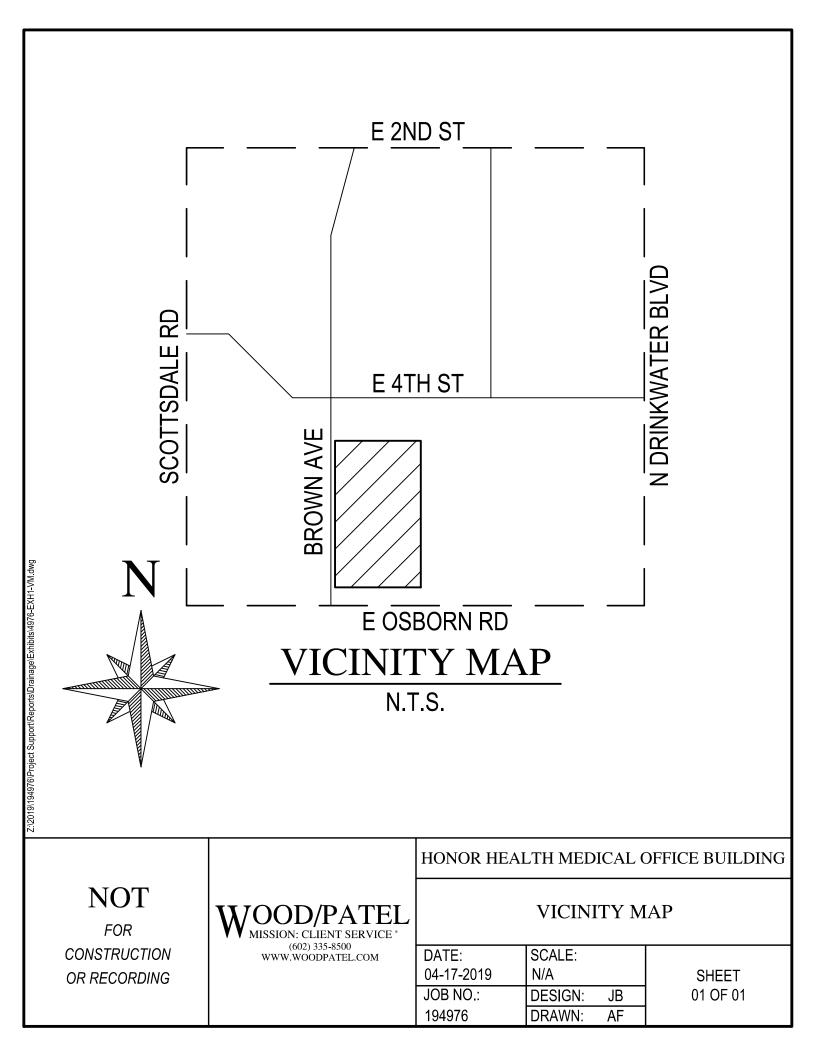
Active Scenario: Peak Hour

FlexTable: Junction Table

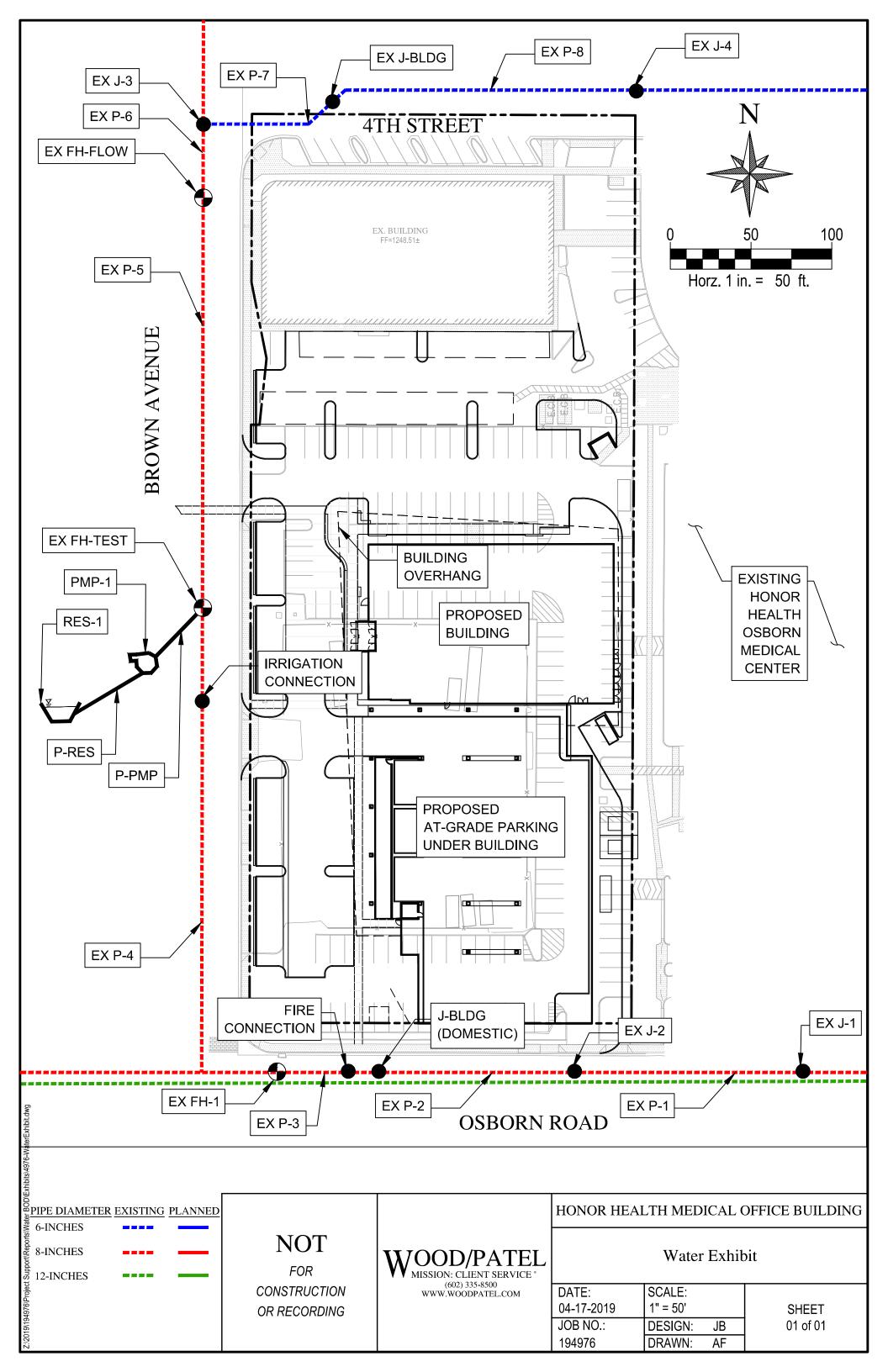
Label	Elevation (ft)	Demand (gpm)	· · · · · · · · · · · · · · · · · · ·	
EX J-1	1,244.00	0	1,410.71	72
EX J-2	1,244.50	0	1,410.71	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-BLDG	1,245.00	342	1,410.71	72

Active Scenario: Peak Hour

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Fire Flow Node FlexTable: Fire Flow Report

Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (System)	Hydraulic Grade (ft)
EX J-1	1,244.00	2,500	2,330	30	EX J-2	1,411.99
EX J-2	1,244.50	2,500	2,406	30	EX J-1	1,411.99
EX FH-1	1,245.00	2,500	2,690	30	J-BLDG	1,412.03
EX FH-FLOW	1,247.50	2,500	2,888	30	EX J-BLDG	1,412.33
EX J-3	1,248.00	2,500	2,792	30	EX J-BLDG	1,412.33
EX FH-TEST	1,246.50	2,500	3,685	31	EX J-BLDG	1,412.33
EX J-BLDG	1,248.00	2,500	2,276	30	EX J-4	1,412.33
EX J-4	1,247.00	2,500	1,718	30	EX J-BLDG	1,412.33
J-BLDG	1,245.00	2,695	2,799	30	EX J-2	1,411.99


Active Scenario: Max Day + Fire Flow

4976-WaterCAD.wtg 4/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

VICINITY MAP

WATER EXHIBIT

PRELIMINARY

DRAINAGE REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

Prepared For:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Water Resources Administration 7447 East Indian School Road Suite 205 Scottsdale, Arizona 85257

Prepared By: Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	EXIS	TING DRAINAGE CONDITIONS AND CHARACTERISTICS	2
	2.1	Existing Conditions	.2
	2.2	FEMA Floodplain	.2
3.0	PROI	POSED DRAINAGE PLAN	3
	3.1	Proposed Conditions	.3
	3.2	Retention and Dissipation	.3
	3.3	Lowest Floor Elevation	.4
	3.4	Operation and Maintenance	.5
4.0	SPEC	IAL CONDITIONS	6
5.0	DATA	A ANALYSIS	7
	5.1	Hydrologic Analysis	7
	5.2	Hydraulic Analysis	7
6.0	CON	CLUSIONS	8
7.0	REFE	CRENCES	9

APPENDICES

APPENDIX A Preliminary Hydrologic and Hydraulic Calculations

EXHIBITS

- EXHIBIT 1 Vicinity Map
- EXHIBIT 2 Aerial Drainage Map
- EXHIBIT 3 FEMA FIRM Map
- EXHIBIT 4 Aerial Map from November 2005
- EXHIBIT 5 Preliminary Drainage Map
- EXHIBIT 6 Preliminary Grading and Drainage Plan

km Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Preliminary Drainage Report.docx

i

1.0 INTRODUCTION

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Osborn Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to Exhibit 1 - Vicinity Map at the back of this report for the project location. The proposed 4-story office building will be 92,000 square feet with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will also include associated hardscape and landscaping.

The purpose of this report is to document the drainage design criteria utilized for the Honor Health Medical Office Building development, and is intended to support the Design Review Board (DRB) submittal for the project. This Preliminary Drainage Report has been prepared in accordance with Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the City of Scottsdale's technical requirements for drainage (Ref. 1), as applicable for the site.

1

2.0 EXISTING DRAINAGE CONDITIONS AND CHARACTERISTICS

2.1 Existing Conditions

The Honor Health Medical Office Building site is currently an asphalt parking lot with an existing building on the north side of the site (refer to Exhibit 2 - Existing Drainage Map). There is also an enclosed fenced area in the middle of the site, with a gravel surface that is currently being used for parking and storage containers. Aerial photography indicates a building was previously located at this location and was demolished around 2008. There are currently no storm water retention facilities on the site. There are currently two (2) drywells in the interior of the site. One (1) drywell appears to accept some runoff, but the second drywell is higher than the adjacent grades. In general, most of the site where development will occur drains overland to the southwest, into Osborn Road. The north side of the site, including the portion of the existing building, drains to the north. There is an existing catch basin on the north side of the building that connects to an existing public 18-inch storm drain in 4th Street. An existing scupper at the northeast portion of the site also drains storm water away from the existing building. A smaller portion of the site drains overland to Brown Avenue. Brown Avenue and Osborn Road both have existing storm drain. There are several existing catch basins on the east side of Brown Avenue that connect to a 48-inch main line. There are also several existing catch basins on the north side of Osborn Road that connect to a 54-inch main line. It is our understanding both of these storm drain main lines run to the east to Hayden Wash.

2.2 FEMA Floodplain

The Federal Emergency Management Agency (FEMA) has published a 100-year floodplain, per Flood Insurance Rate Map (FIRM). The City of Scottsdale FEMA Firm panel number is 04013C2235L, effective date October 16, 2013, and indicates the site falls within Zone "X" (refer to Exhibit 3 – *FEMA FIRM Map*).

Zone "X" is defined by FEMA as follows:

"0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flow with average depth less than one foot or with drainage areas of less than one square mile"

3.0 PROPOSED DRAINAGE PLAN

3.1 Proposed Conditions

The proposed grading for the site is designed to direct storm water runoff away from the proposed building and into the proposed on-site storm water facilities. Proposed catch basins and storm drains will collect the site runoff and store the first flush volume in an 8-foot-diameter underground storm water retention pipe (refer to Exhibit 6 – *Preliminary Grading and Drainage Plan*). The retention pipe will dewater by two (2) methods. The lower part of the pipe will drain to a proposed drywell at the southwest corner of the site. The upper part of the retention pipe will drain by a bleed-off pipe to the City of Scottsdale's storm drain in Osborn Road. We do not believe the entire underground retention system can be drained solely by a bleed-off pipe, due to the number of utility crossings in Osborn Road. 8-foot-diameter storage pipe was selected because the upper portion of the pipe can still be drained by gravity, and the upstream on-site storm water drain will not conflict with the on-site sanitary sewer. It should be noted the catch basin connection inverts in Osborn Road still need to be verified.

If the on-site catch basins become clogged, or if the on-site storm water storage system is exceeded, overland overflow routes have been incorporated into the grading and drainage design. The ultimate outfall for the project will be at the southwest corner of the site and will drain into Osborn Road.

3.2 Retention and Dissipation

It is our understanding a storm water retention waiver exists for the Honor Health campus, per City of Scottsdale Plan Check No. 3182-02. We have not seen the retention waiver, and it is unclear if this portion of the site is included in the waiver. Therefore, using a historical aerial map, the pre-development runoff coefficient was compared to the post-development runoff coefficient (refer to Exhibit 4 – *Aerial Map from November 2005*). The historical runoff coefficient of 0.93 is higher than the post-development runoff coefficient of 0.91. Because there is no increase in runoff, the City of Scottsdale's *Design Standards and Policies Manual* states the site must provide storm water retention for the first flush storm event. In accordance with the current City of Scottsdale's *Design Standards and Policies Manual*, the following required retention volume equation was used for this project, with the current precipitation depth of 0.5 inches:

3

 $Vol_{req} = \frac{P}{12} \times A \times C$ P = Precipitation Depth: 0.5 inches A = Total Area (sq. ft.) C = Post-Development Runoff Coefficient: 0.95

The required retention volume will be provided by proposed 8-foot-diameter underground C.M.P. storage pipes. The storm water retention volumes have been designed to accommodate the first flush event within the underground storage pipe. The retention volume required for the site is 4,445 cubic feet (cf). The proposed storm water retention system consists of one (1) 8-foot-diameter pipe, having a length of 90 linear feet of pipe (refer to Appendix A – *Preliminary Hydrologic and Hydraulic Calculations*). The underground storage system primarily utilizes a drywell to dissipate the retained volume within 36 hours. An estimate of the required number of drywells was calculated by utilizing a design drain rate of 0.10 cfs per drywell. Based on this design drywell drain rate, one (1) drywell each is required to dissipate the retention pipe. When the drywell is installed, percolation testing will be performed to determine the actual percolation rate of the drywell. The underground storage system also utilizes a bleed-off pipe to dissipate the retained volume within 36 hours. This bleed-off pipe will connect to the catch basin in Osborn Road and drain into the 54-inch storm drain.

The design of the storm water retention pipe will be finalized with the final plan set. We anticipate using proposed 8-foot-diameter C.M.P. underground storage pipe. The pipe manufacturer and Geotechnical Engineer will provide specifications for the H20/HS20 and H25/HS25 live loads and estimated design life that exceeds the City of Scottsdale's minimum design criteria of a 50-year design life for underground retention pipes.

3.3 Lowest Floor Elevation

The Preliminary Grading and Drainage Plan is designed to comply with the City of Scottsdale's floodplain ordinance in a Zone "X" floodplain. The proposed building has a finished floor elevation of 1247.50, which is 2.20 feet above the ultimate outfall elevation of 1245.30, located on the southwest corner of the site. If the outlet pipe for the retention basins becomes clogged, storm water can overflow over land (refer to Exhibit 5 – *Preliminary Drainage Map* for a graphical representation).

4

3.4 Operation and Maintenance

The property owner shall be solely responsible for the operation and maintenance of the storm water drainage system. In accordance with the City of Scottsdale's *Design Specifications and Policies Manual*, the owner will dedicate a public drainage easement for the storm water retention facilities. Operation and maintenance reference material will be provided in the Final Drainage Report.

4.0 SPECIAL CONDITIONS

Currently, there are no washes with 100-year flows greater than 50 cfs that traverse the project site. Also, there are no designated Section 404 washes within the site; therefore, no Section 404 permit is required.

5.0 DATA ANALYSIS

5.1 Hydrologic Analysis

The drainage improvements will be developed consistent with Chapter 4 of the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The Rational Method will be used to quantify peak discharge values for on-site concentration points for the full buildout scenario during the first flush storm event. Weighted "C" coefficients will be referenced from Chapter 4 of the City of Scottsdale's *Design Standards and Policies Manual*, 2018. Refer to Appendix A for rational calculation printouts, and Exhibit 4 for drainage basin tributary areas and concentration point locations.

5.2 Hydraulic Analysis

For this preliminary report, storm drain rim and invert information is provided on Exhibit 5. Hydraulic analysis of the proposed storm drain will be forthcoming once the City approves the conceptual storm water retention scenario. The on-site storm drain system will be designed to accommodate the 10-year storm event. Bentley StormCAD Version 5.6 will be utilized to analyze the proposed storm sewer system. StormCAD printouts and storm drain profiles will be available.

6.0 CONCLUSIONS

Based on our analysis of the site, the following conclusions can be made:

- 1. The proposed drainage infrastructure will be designed in accordance with the City of Scottsdale's *Design Standards and Policies Manual*, 2018.
- 2. The proposed site lies within a FEMA-designated "Other Flood Areas" Zone "X" shaded. Per the FEMA map (Panel 1760L), the FIRM information is as follows:

"0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flow with average depth less than one foot or with drainage areas of less than one square mile."

- 3. No off-site flows appear to impact the site.
- 4. The Rational Method was used to estimate peak discharges for all on-site drainage areas in this report.
- 5. In accordance with the City of Scottsdale's design guidelines, storm water retention will be provided for the first flush storm event (0.5 inches of rainfall).
- 6. Storm water retention will be provided in a retention basin. The volume required for the site is 4,445 cubic feet. The volume proposed is 4,524 cubic feet.
- 7. The proposed building has a finished floor elevation of 1247.50, which is 2.20 feet above the ultimate outfall elevation of 1245.30, located on the southwest corner of the site.
- 8. The property owner will maintain the on-site storm water retention system, and dedicate a public drainage easement for the storm water retention facilities.

8

7.0 **REFERENCES**

1. Design Standards and Policies Manual, Chapter 4: Grading and Drainage, City of Scottsdale, January 2018.

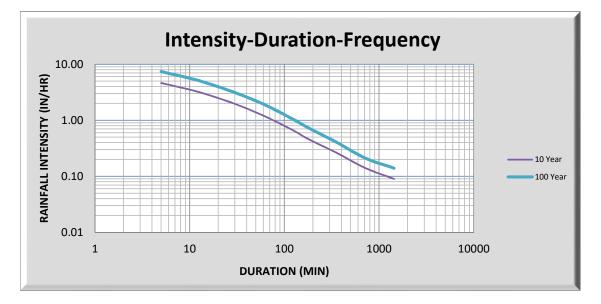
WOOD/PATEL MISSION: CLIENT SERVICE* **APPENDIX A**

PRELIMINARY HYDROLOGIC AND HYDRAULIC CALCULATIONS

WOOD/PATEL

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Site I-D-F Curve


Description:	Rational Method IDF Curve
Location:	Honor Health Medical Office Building
	City of Scottsdale, Arizona

NOAA ATLAS 14 RAINFALL DEPTHS, INCHES

Duration	Average Recurrence Interval (years)							
Duration	2	5	10	25	50	100		
5-min	0.24	0.326	0.392	0.481	0.55	0.62		
10-min	0.365	0.496	0.596	0.733	0.838	0.944		
15-min	0.452	0.614	0.739	0.908	1.04	1.17		
30-min	0.609	0.827	0.995	1.22	1.4	1.58		
60-min	0.754	1.02	1.23	1.51	1.73	1.95		
2-hr	0.864	1.16	1.38	1.69	1.92	2.16		
3-hr	0.931	1.22	1.46	1.78	2.04	2.31		
6-hr	1.11	1.42	1.67	2.01	2.28	2.56		
12-hr	1.24	1.57	1.83			2.72		
24-hr	1.48	1.92	2.27	2.75	3.13	3.53		

RAINFALL INTENSITY, INCHES/HOUR

Duration			Frequency, y	ears		
minutes	2	5	10	25	50	100
5	2.88	3.91	4.70	5.77	6.60	7.44
10	2.19	2.98	3.58	4.40	5.03	5.66
15	1.81	2.46	2.96	3.63	4.16	4.68
30	1.22	1.65	1.99	2.44	2.80	3.16
60	0.75	1.02	1.23	1.51	1.73	1.95
120	0.43	0.58	0.69	0.85	0.96	1.08
180	0.31	0.41	0.49	0.59	0.68	0.77
360	0.19	0.24	0.28	0.34	0.38	0.43
720	0.10	0.13	0.15	0.18	0.20	0.23
1440	0.06	0.08	0.09	0.11	0.13	0.15

WOOD/PATEL

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONST

Table 1: 'C' Value Calculation

Location:	Honor Health Medical Office Building
Reference:	City of Scottsdale Engineering Design Criteria (2018)

Known Values:Design storm:100-yr, 2-hrRainfall, D:2.16

Calc. Values:

 $V_{Required} = \Delta CA \frac{D}{12}$

Where:

V = Retention Volume Required C = Runoff Coefficient D = Depth of Rainfall

A = Area of Watershed Contributing

Н	ist	tor	iCa	al

Contributing Sub-Area	Area (ft)	Land Use	Weighted Runoff Coefficient
1	112,734.00	Pavement, Asphalt, Roof	0.95
2	4,492.00	Landscaping	0.45
Total	117,226.00		0.93

Proposed

Contributing Sub-Area	Area (ft)	Land Use	Weighted Runoff Coefficient
1	109,014.00	Pavement, Asphalt, Roof	0.95
2	8,212.00	Landscaping	0.45
Total	117,226.00		0.91

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Table 2 - Retention Volume Required & Provided

 Description:
 Calculation of Retention Volume Required & Provided

 Date:
 04/17/19

 Location:
 Honor Health Medical Office Building City of Scottsdale, Arizona

 Reference:
 City of Scottsdale Engineering Design Criteria (2018)

Known Values: Design storm: First Flush Rainfall, D: 0.50

Calc. Values: $V_r = C \times (D/12) \times A$

Where: V_r = Retention Volume Required C = Runoff Coefficient D = Depth of Rainfall A = Area of Watershed Contributing

 $V_p = \pi x (D/2)^2 x L$

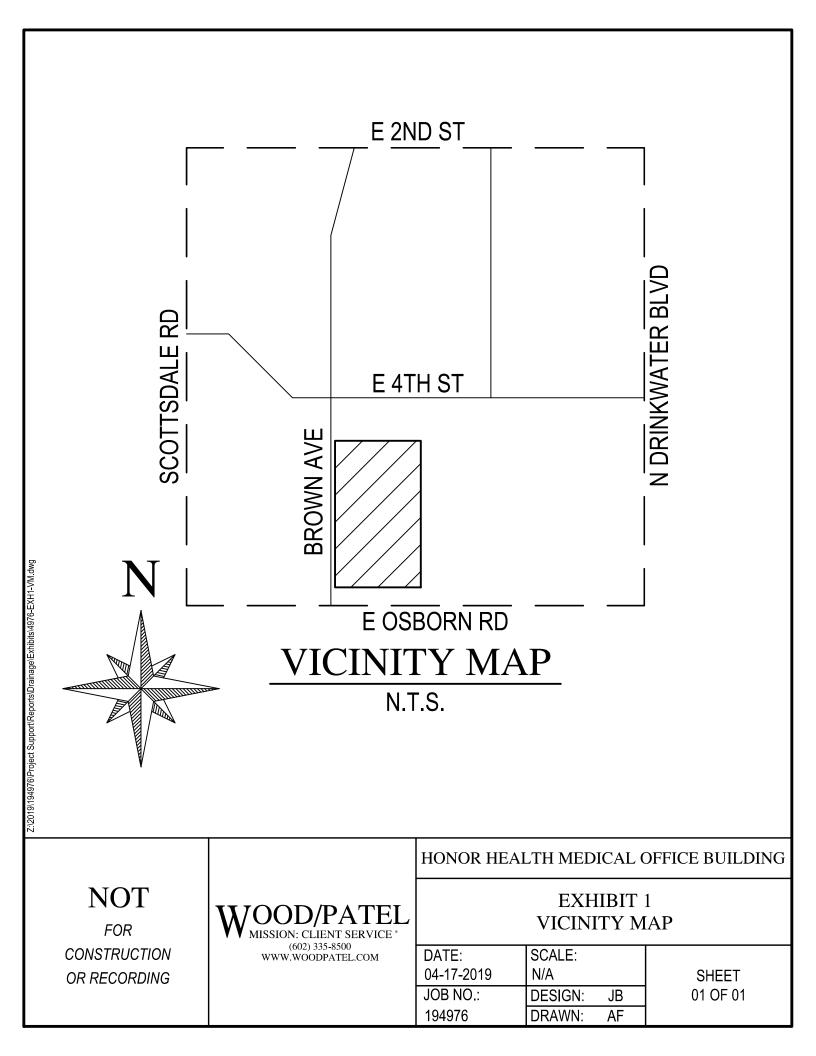
 $V_p = 0.5 x$ (Top Contour Area + Bottom Contour Area) x (Top Contour Elevation - Bottom Contour Elevation) (For Basin)

Where: V_p = Retention Volume Provided

Basin ID	Area (sf)	Land Use	100-Year Runoff Coefficient	100-Year, 2- Hour Volume Required (cu.ft)	100-Year, 2- Hour Volume Required (ac.ft)	Diameter of Pipe (ft)	Length of Pipe (ft)	Top Contour Area (sf)	Bottom Contour Area (sf)	Top Contour Elevation	Bottom Contour Elevation	100-Year, 2- Hour Volume Provided (cu.ft)
Underground A	117,226	Commercial/ Landscape	0.91	4,445	0.10	8	90	-	-	-	-	4,524
Total	117,226	-	-	4,445	0.10	-	-	-	-	-	-	4,524

WOOD/PATEL

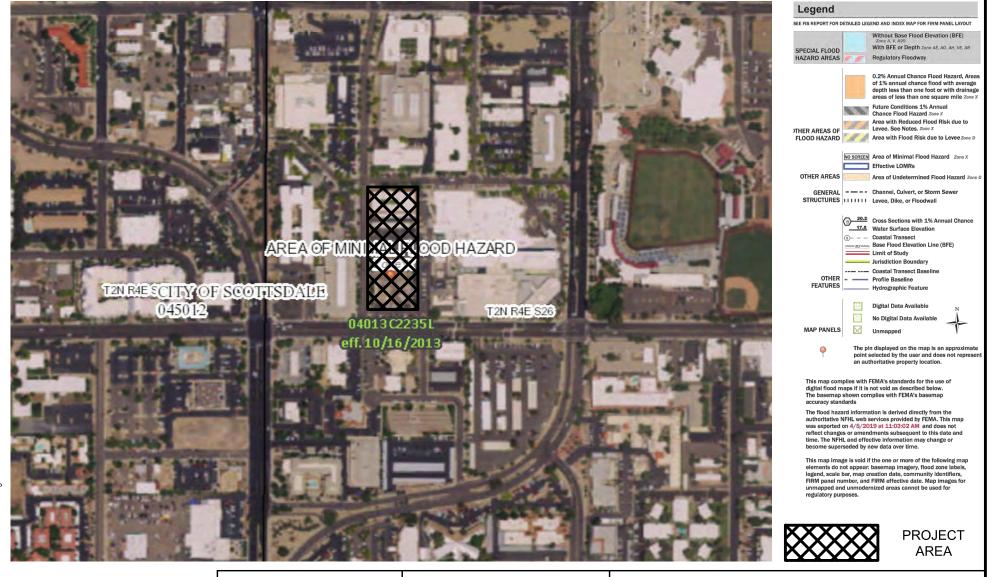
CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS


Table 3 - Required Drywells

Description: Date: Location: Drywell Calculations 04/17/19 Honor Health Medical Office Building City of Scottsdale, Arizona *City of Scottsdale Engineering Design Criteria (2018)*

References:

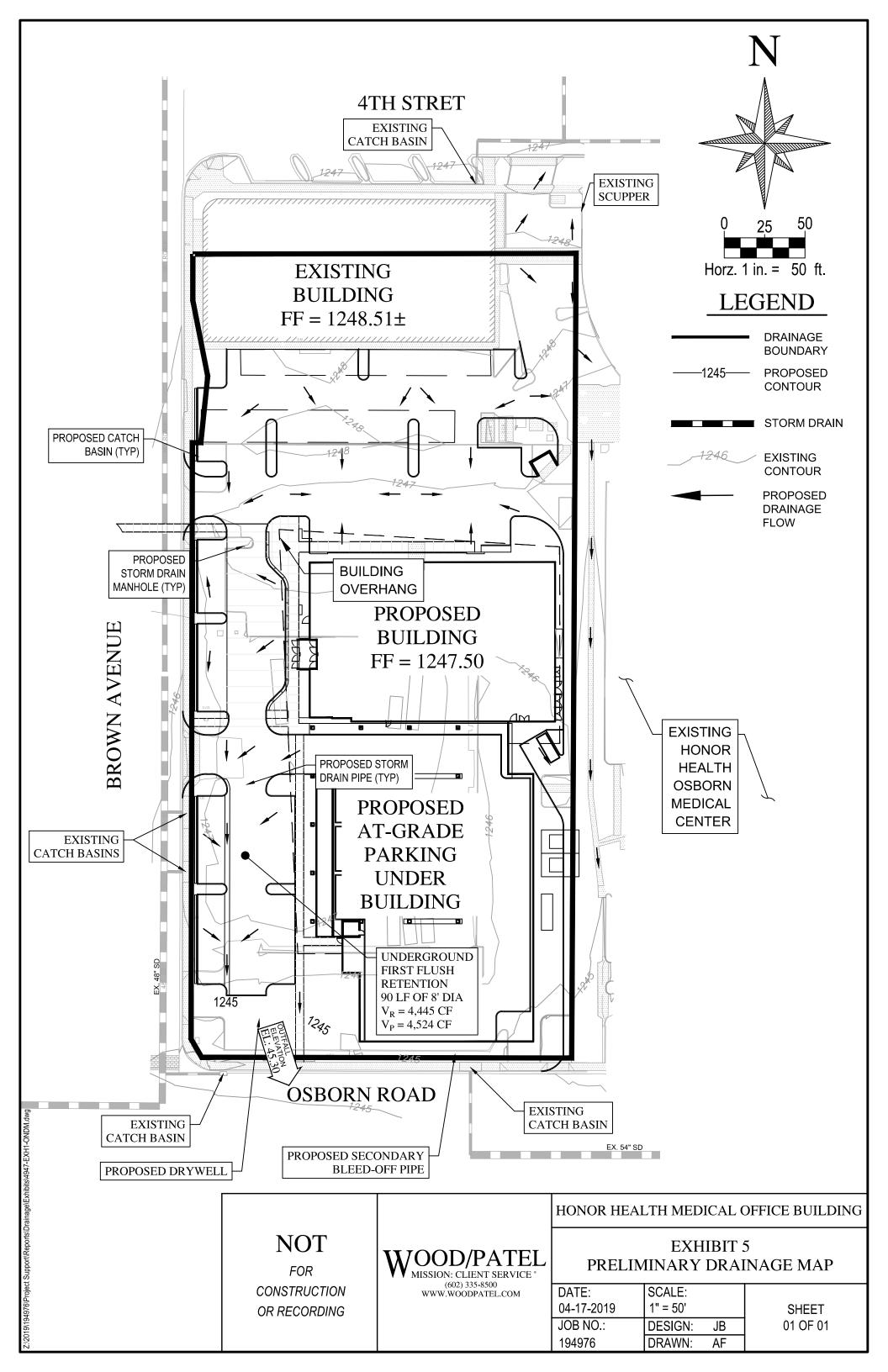
Design Maximum Drain Volume Required Percolation Number of Drywells **Drain Time Basin ID** Time Required/Provided (CF) Rate (hours) (Hours) (CFS) 0.10 Underground A 4,445 36 12.3 1


VICINITY MAP

EXISTING DRAINAGE MAP

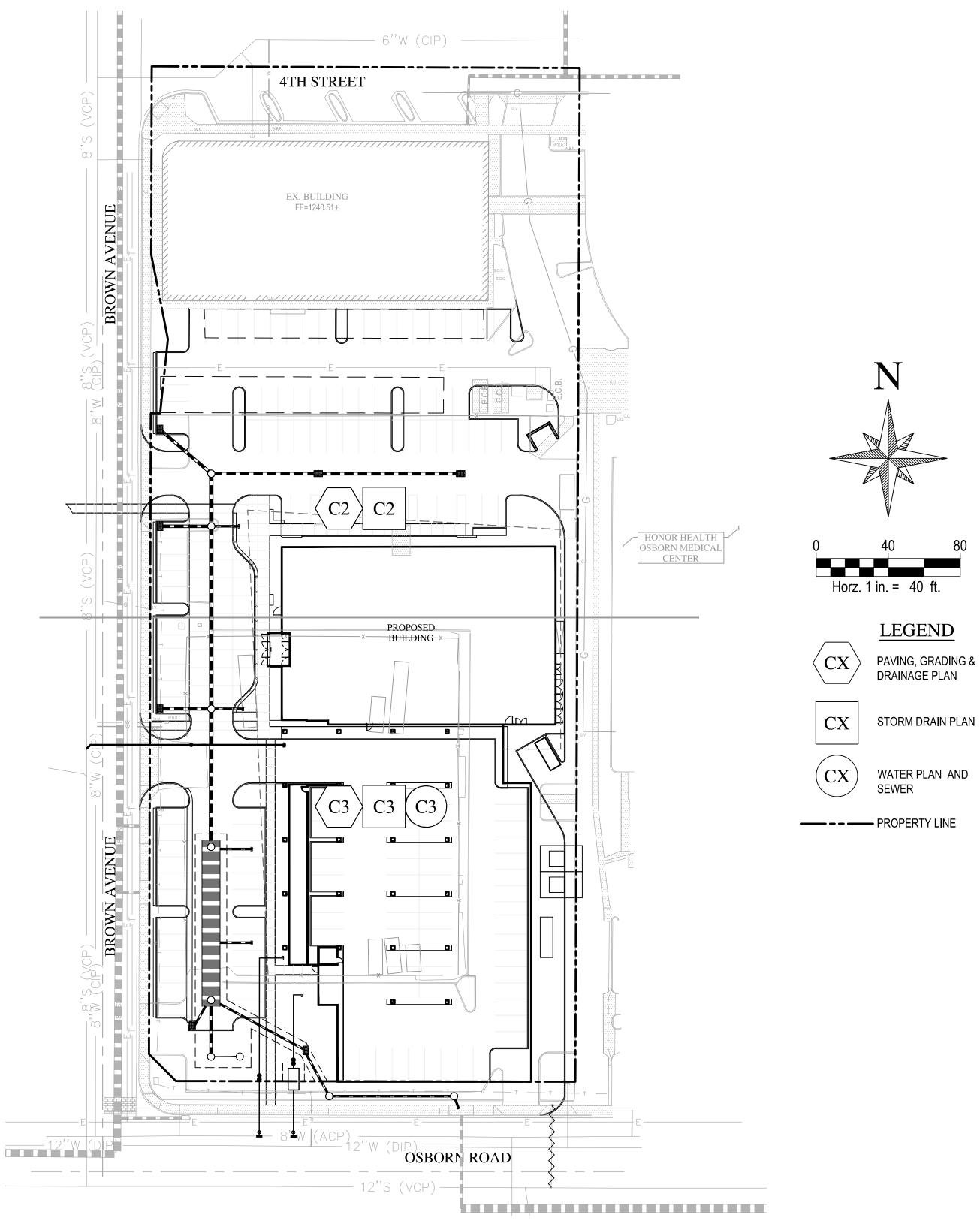


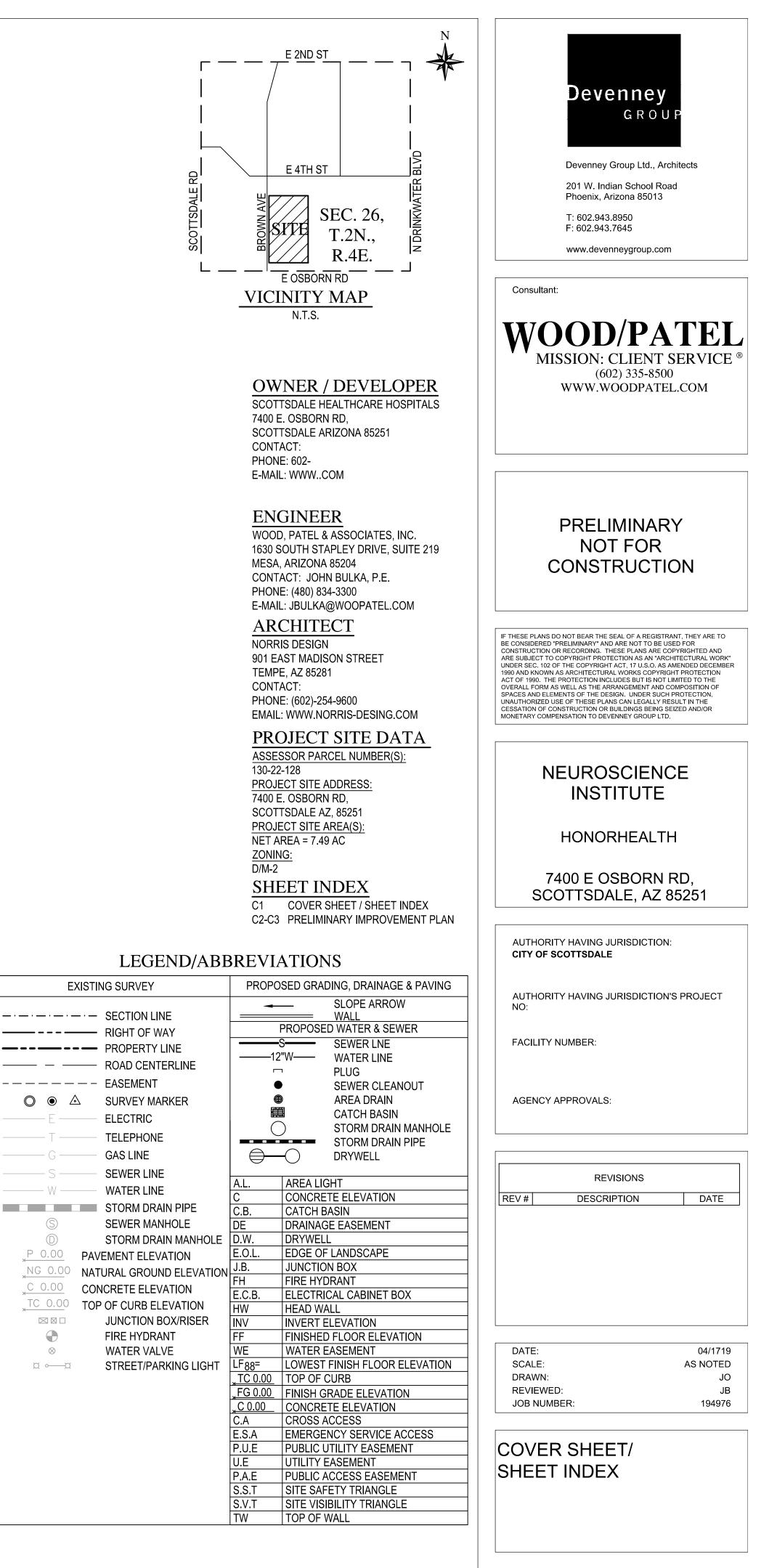
FEMA FIRM MAP



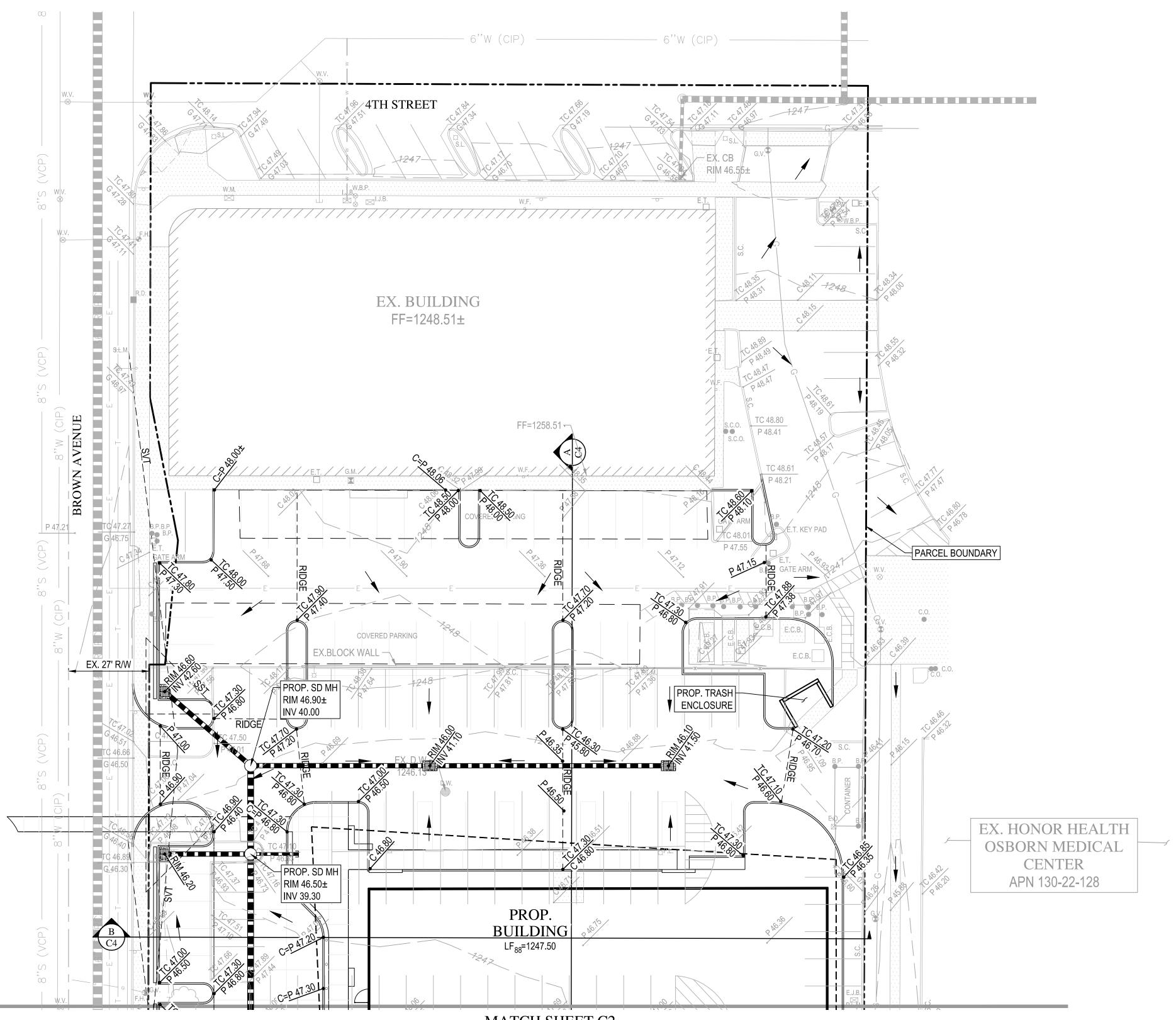
		HONOR HEA	ALTH MEDICAL (OFFICE BUILDING
NOT FOR	WOOD/PATEL MISSION: CLIENT SERVICE *		EXHIBIT : FEMA FIRM N	
CONSTRUCTION OR RECORDING	(602) 335-8500 WWW.WOODPATEL.COM	DATE: 04-17-2019	SCALE: N/A	SHEET
		JOB NO.:	DESIGN: JB	01 OF 01
		194976	DRAWN: AF	

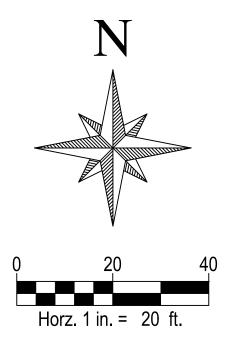
AERIAL MAP FROM NOVEMBER 2005



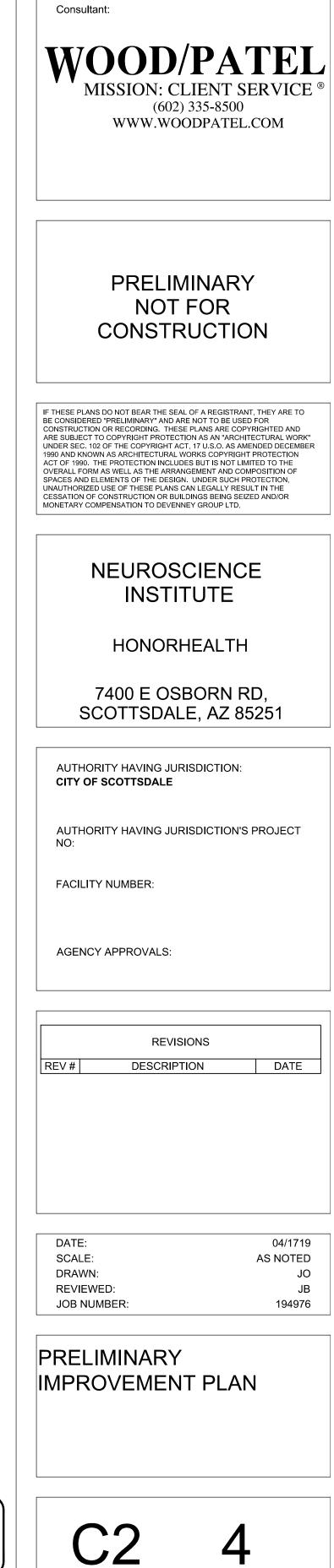

PRELIMINARY DRAINAGE MAP

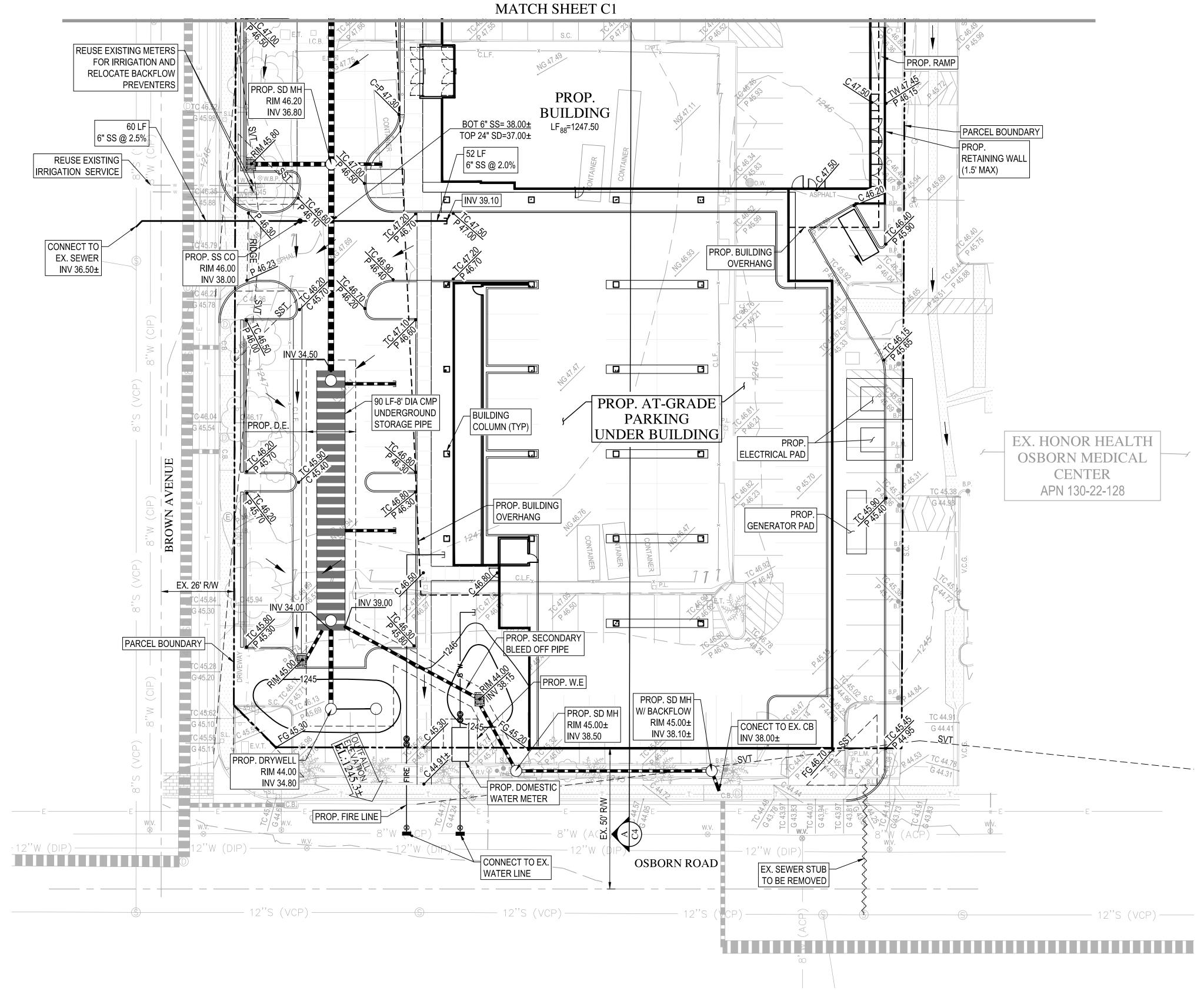
PRELIMINARY GRADING AND DRAINAGE PLAN


HONORHEALTH OSBORN PRELIMINARY IMPROVEMENT PLAN 7400 E. OSBORN RD, SCOTTSDALE, AZ 85251 A PORTION OF THE SOUTHEAST 1/4 OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA

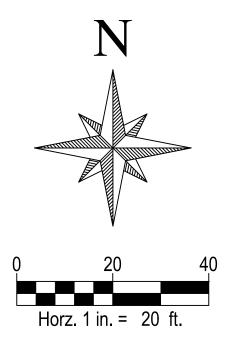


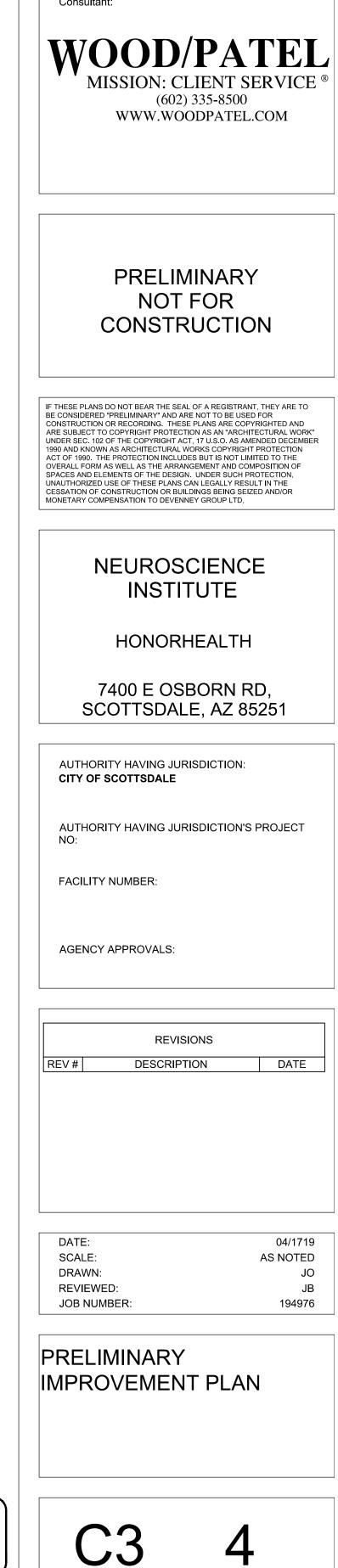
4


MATCH SHEET C2



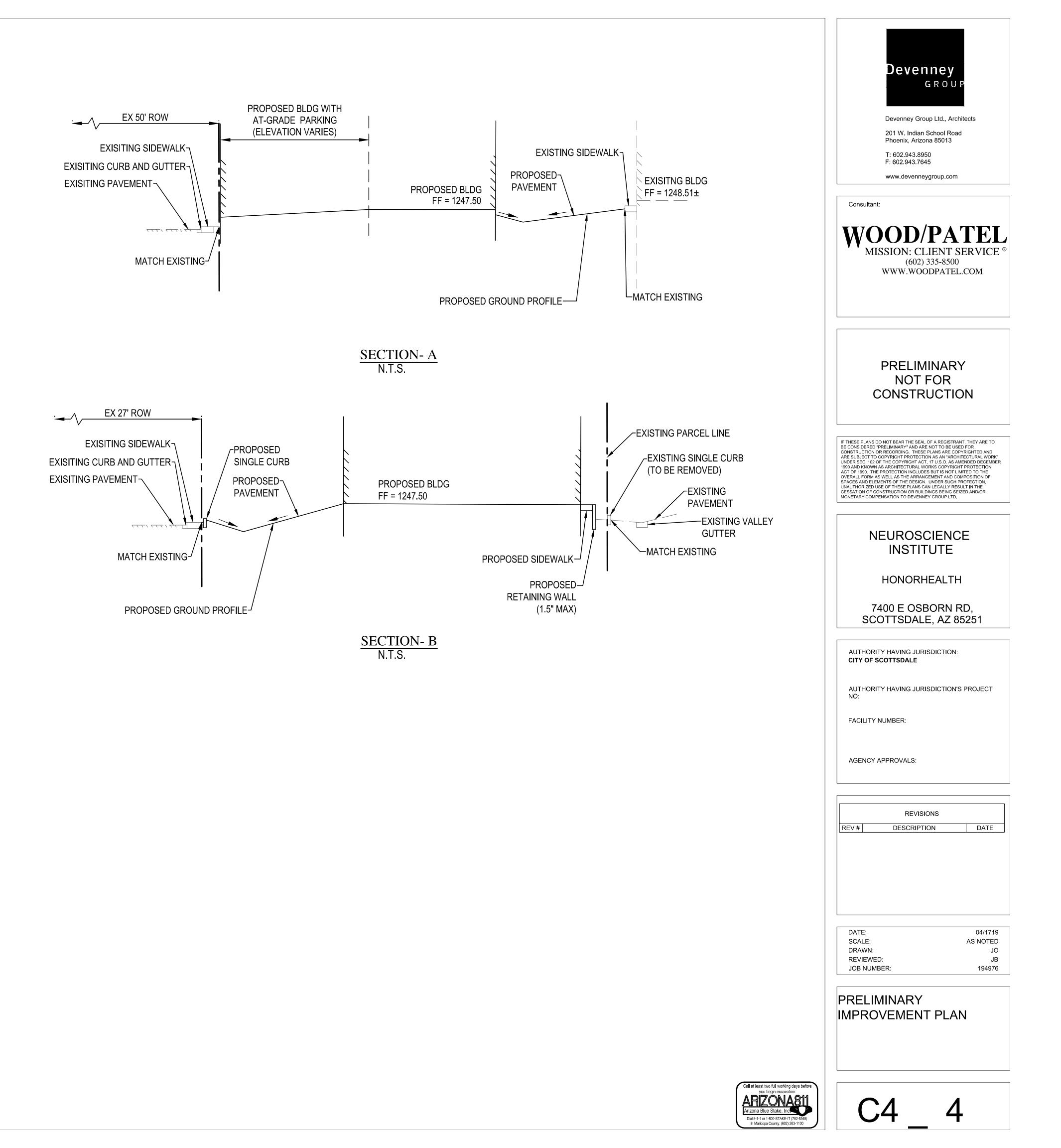
Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013


T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com



Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013

T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com


Consultant:

Call at least two full working days be

ARIZONA811 Arizona Blue Stake, Inc. Dia 8-1-1 or 1-800-STAKE-IT (782-5348)

In Maricopa County: (602) 263-1100

Add "FINAL"

WASTEWATER COLLECTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

FINAL Basis of Design Report	
	SCOTTSDA
APPROVED AS NOTED	
REVISE AND RESUBMIT	9379 E San Salvador Scottsdale, AZ 852
Disclaimer: If approved; the approval is granted i condition that the final construction documents su city review will match the information herein. Any changes in the water or sewer design that materi design criteria or standards will require re-analysi re-submittal, and approval of a revised basis of d prior to the plan review submission.; this approva guarantee of construction document acceptance. For questions or clarifications contact the Water I Planning and Engineering Department at 480-312	ubmitted for subsequent ally impact is, esign report il is not a Resources

DATE 7/3/2019

Address and resubmit:

BY Idillon

1) Sewer capacity on Osborn will not be available when already approved and allocated projects ahead of this project are complete. The City is in a study phase of a parallel sewer on Osborn Rd. An in-lieu of construction payment to the City to off-set the cost of this new sewer will be required so that capacity will be available for this development. This payment

Devenney Group Ltd., Architects will be proportional to the capacity impact and length of sewer impacted to Miller Rd. Coordinate with the Water Resources department on the determination of this payment prior to re-submittal. The details of this determination should be included in the re-submittal.

2) If sewer stub in southeast corner is not to be used it should be removed back to the main to make room for new parallel sewer in Osborn i.e. discharge onto Brown is likely preferred. Indicate stub removal on utility plan. 3) Address any applicable comments in email correspondence herein.

Prepared For:

Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: **City of Scottsdale** Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

Prepared By: Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

Dillon, Levi

From:	John Bulka <jbulka@woodpatel.com></jbulka@woodpatel.com>
Sent:	Wednesday, June 12, 2019 11:10 AM
То:	Dillon, Levi
Cc:	Cluff, Bryan; Hayes, Eliana; John "Gordy" Ritchie; Darin Moore
Subject:	RE: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi Dillion,

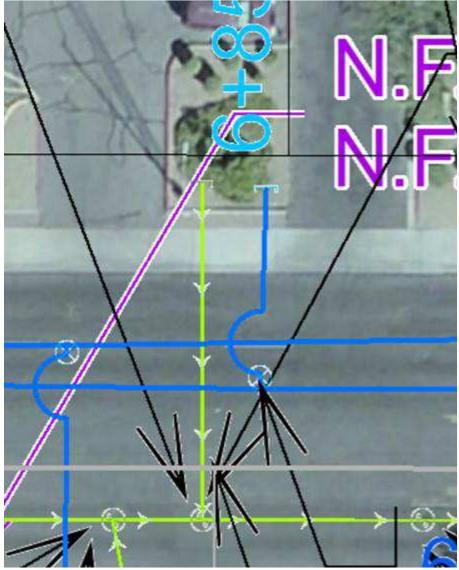
As discussed in our phone conversation, we've reviewed your comments and offer the following responses. Please call if you have any questions. Thanks,

John Bulka Project Manager

D: 602.336.7924 M: 602.695.5579 jbulka@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Monday, June 10, 2019 6:17 PM
To: John Bulka
Cc: Cluff, Bryan; Hayes, Eliana
Subject: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi John,


Before I made any basis of design comments formal I wanted to run these by you:

1. Please note a future parallel sewer on Osborn is already in the planning stages by the City so sewer capacity will not be an issue for this facility. The tentative plan is to have all hospital flows routed to this new sewer. However, this parallel sewer will not start construction until approximately summer 2020.

a. How does this schedule align with the schedule for this facility? *Construction is scheduled to start later*

- this year. We are planning on submitting CDs at the end of July.
- b. Given this we are interested in obtaining the most accurate projection of sewer demands for this facility possible. See items 2 below . *It's our understanding the building will just be an out-patient facility with offices.*
- 2. There is no reference in the BODs to the type of medical facility and water/sewer demand characteristics (the floor plan area nomenclature, i.e. infusion, ASC, SGA, etc, is not readily discernable)
 - a. Is this an in-patient or out-patient facility? (include in BODs) *Out-patient only.*
 - b. number of beds? No Beds.
 - c. Is there a cafeteria? *No Cafeteria*.
 - d. Is there a laundry? We believe they are using an offsite service, but will verify with the Architect.

- e. Are there rehabilitation or exercise pools or spas? *No pools or spas.*
- f. Is the future ambulatory facility included in this approval? *No Ambulatory*. Should it be considering the need for accurate water/sewer planning?
- 3. Why is the sewer being sent to Brown 8" sewer but the water supply is coming from Osborn 8"? *It's a shorter pipe run to route the sewer line in Brown Street. Plus there will be proposed electrical equipment in that area and we wanted to avoid conflicts. The site plan has changed since our submittal, so we will review again and see if it makes sense to use the existing sewer stub.* See question 4 below for follow-up question on this.
- 4. Water and sewer stub-outs appear to exist in the southeast corner of the parcel. Why are these not being used? The fire riser room is located on the west side of the building, so it just made sense to go to connect to the waterline further west in Osborn. We will review again and see if it makes sense to use the existing water stub. A Water Resources' consultant recently had a flow meter placed in the manhole where the stub out is shown below and there was no flow reported coming from the stub-out. Instead it was coming into the manhole to the east. Both the sewer and water stub outs show as 8" in City GIS. The water stub-out's source is the 12" Osborn main. The 12" Osborn main supplies the 8" on Osborn through a connection at Osborn and Drinkwater Blvd.

Thanks,

a.

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

Wastewater flowing from the proposed Honor Health Medical Office Building will discharge to a 6-inch private sewer line on the west side of the proposed building. The 6-inch private sewer line discharges into the City of Scottsdale's existing public 8-inch VCP sewer line in Brown Avenue.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Wastewater flows, Office:	0.4 gpd/sq. ft.
•	Peaking Factor, Office:	3
•	Minimum Mean Full Flow Velocity:	2.50 fps
•	Minimum Peak Full Flow Velocity:	10.0 fps
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	d/D = 0.65
	Abbreviations: gpd = gallons per day; fps = feet per second	

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Page 2

Mr. Levi Dillion, P.E. City of Scottsdale Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report WP# 194976

Based on the above design criteria, the projected average day flow for the proposed 117,000-sf Honor Health Medical Office Building project is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Wastewater Collection System Basis of Design Report provided for the Honor Health Medical Office Building development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John M. Bulka, P.E. Project Manager

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Wastewater Basis of Design Report.docx

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL WMISSION: CLIENT SERVICE[®] CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Medical Office Building

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Bulka, P.E. 4/17/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	Proposed 6"	Sewer Lir	ne (2.0%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02000	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.87	in
Flow Area		0.05	ft²
Wetted Perimeter		0.59	ft
Hydraulic Radius		1.06	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		31.2	%
Critical Slope		0.00445	ft/ft
Velocity		4.16	ft/s
Velocity Head		0.27	ft
Specific Energy		0.42	ft
Froude Number		2.18	
Maximum Discharge		1.11	ft³/s
Discharge Full		1.03	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		31.19	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

4/16/2019 8:47:27 AM

Proposed 6" Sewer Line (2.0%)

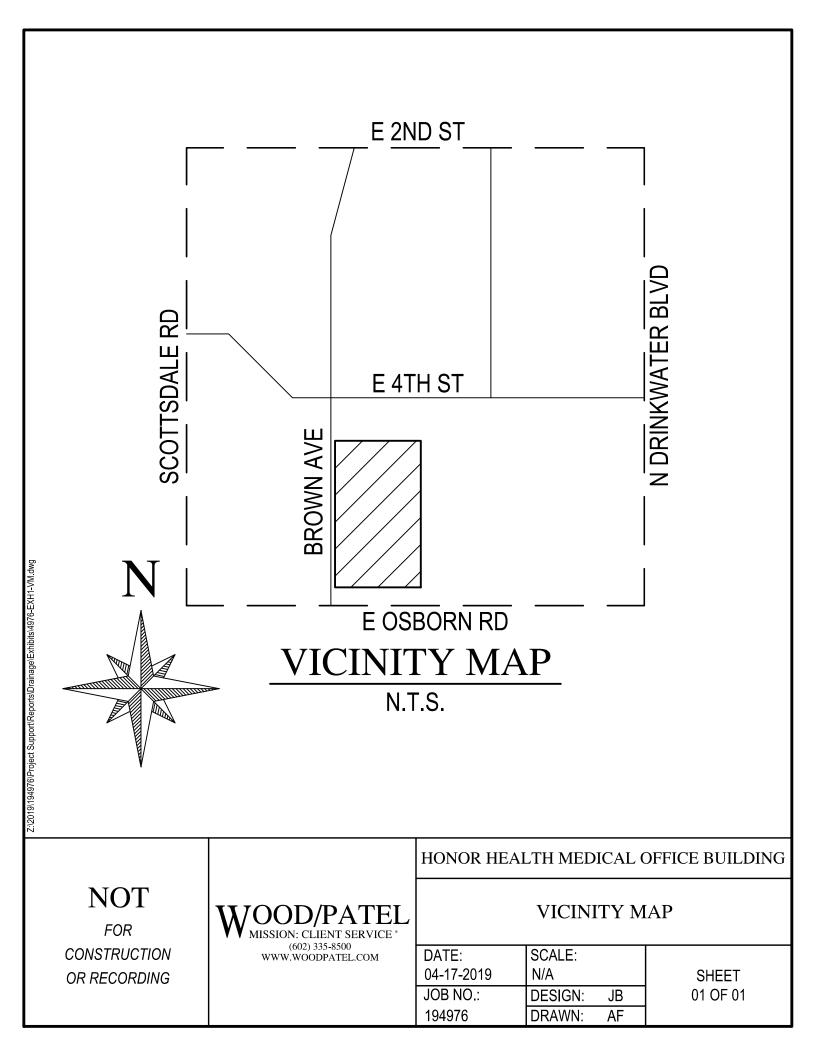
GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.87	in
Critical Depth	0.23	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.00445	ft/ft

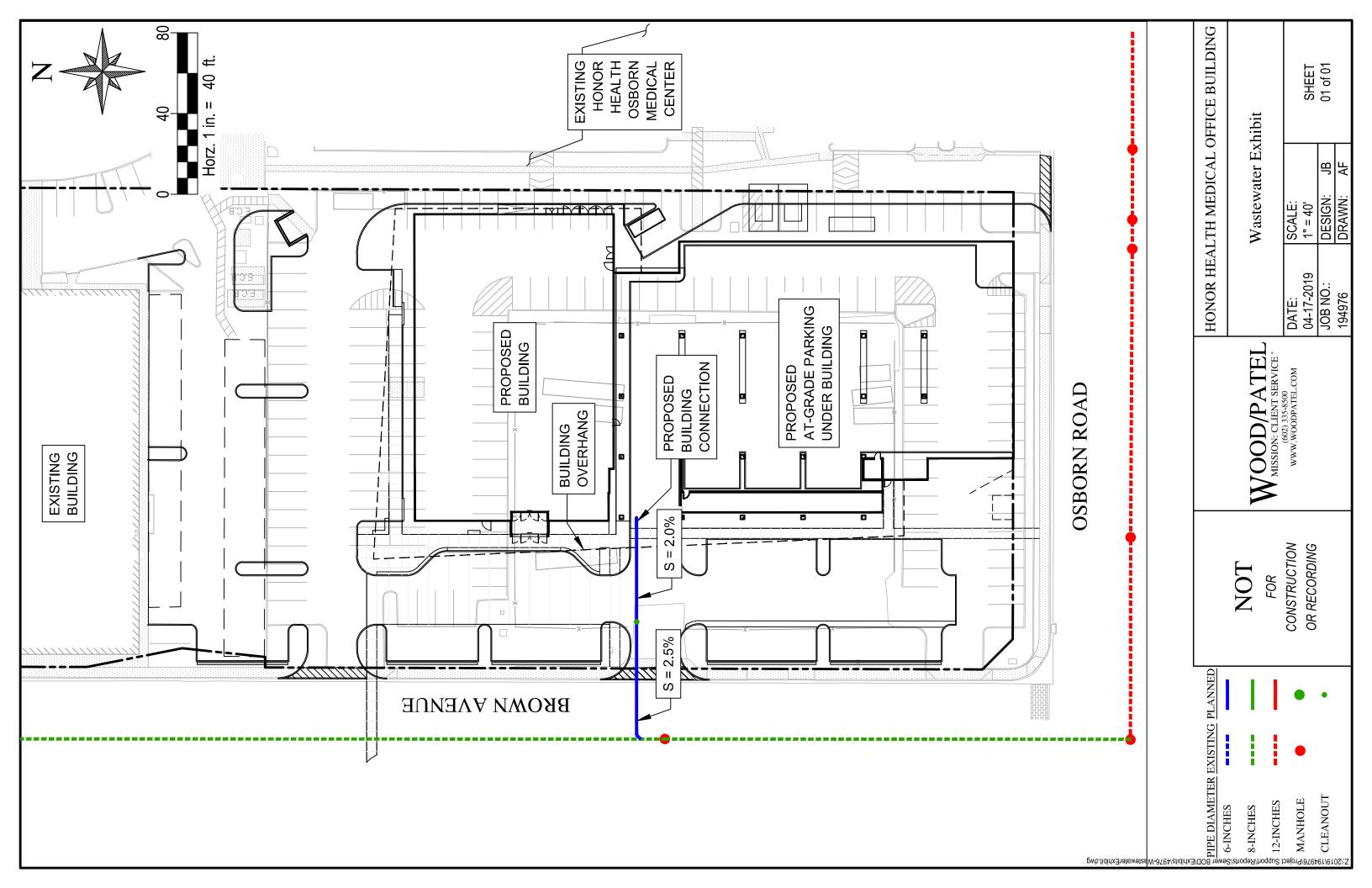
Project Description Friction Mathod Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.010 Channel Stope 0.22500 In/t Diameter 0.02500 In/t In/t Discharge 0.22500 In/t In/t Discharge 0.05 In/t In/t Discharge 0.05 R* Results Proverset 0.57 It Mydraulic Radius 1.01 in/t In/t Proverset Full Cytical Depth 0.03 It 0.23 It Protent Full Cytical Depth 0.0046 futter Protent Full Velocity Head 0.001 It Specific Energy Velocity Head Specific Energy Velocity Head Specific Energy Velocity = 2.44 Maximum Discharge It For Unput Data Specific Energy Vis Outpout In Prove Mase Vis Outpout Data Veroter Vise Outpout Data Veroter Nise Profie Descripton Profie Descripton Veroter Ri		Proposed 6"	' Sewer Lir	ne (2.5%)
Solve For Normal Depth Input Data 0.010 Channel Slope 0.02500 fr/ft Dianeter 6.00 in Discharge 1404000 gal/day Reutits 1177 in Flow Area 0.05 ft* Normal Depth 1.77 in Flow Area 0.05 ft* Wetted Perimeter 0.57 ft Vetted Perimeter 0.56 ft Vetter Vetter 1.55 ft Speefic E	Project Description			
Input Data 0.010 Roughness Coefficient 0.02500 ft/ft Diameter 6.00 in Discharge 140400.00 gal/day Results Normal Depth 1.77 in Flow Area 0.05 ft² Wetted Perimeter 0.57 ft Hydraulic Radius 1.01 in Top Width 0.46 ft Critical Depth 2.23 ft Percent Full 2.94 %o Critical Slope 0.00446 ft/ft Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 %o Slope Full 0.00089 ft/ft Slope Full 0.00089 ft/ft Slope Full 0.000 ft Slope Full 0.000 ft Slope Full 0.000 ft Slope Full 0.000 ft Number Of Sleps	Friction Method	Manning Formula		
Roughness Coefficient 0.010 Channel Slope 0.02500 ft/ft Diameter 6.00 in Discharge 140400.00 gal/day Results	Solve For	Normal Depth		
Channel Slope 0.02500 ft/ft Diameter 6.00 in Discharge 140400.00 gal/day Results Normal Depth 1.77 in Flow Area 0.05 ft² Wetted Perimeter 0.57 ft Hydraulic Radius 1.01 in Top Width 0.46 ft Optivitic Ragius 1.01 in Top Width 0.43 ft Percent Full 29.4 % Critical Stope 0.00446 ft/ft Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft/fs Discharge Full 1.15 ft/fs Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge Full 1.15 ft/fs Specific Energy 0.00 in L	Input Data			
Diameter 6.00 in Discharge 140400.00 gal/day Results 1.77 in In Normal Depth 1.77 in in Flow Area 0.05 ft ft Vetted Perimeter 0.57 ft ft Opt Width 0.46 ft ft Top Width 0.46 ft ft Opt Width 0.46 ft ft Percent Full 29.4 %t ft Velocity Head 0.00446 ft ft Velocity Head 0.31 ft ft Specific Energy 0.46 ft ft Specific Energy 0.46 ft ft Specific Energy 0.46 ft ft Specific Energy 0.40 ft ft Specific Energy 0.40 ft	Roughness Coefficient		0.010	
Bacharge 140400.00 gal/day Results 1.77 n f f	Channel Slope		0.02500	ft/ft
Results Normal Depth 1.77 n Flow Area 0.05 R ² Wetted Perimeter 0.57 ft Hydraulic Radius 1.11 in Top Width 0.46 ft Critical Depth 2.23 ft Percent Full 2.94 % Critical Slope 0.00446 ft/ft Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Slope Full 0.0008 ft/ft Flow Type SuperCritical Flow Type SuperCritical Downstream Depth 0.00 in Length 0.00 it Number Of Steps 0 Profile Description Profile Description	Diameter		6.00	in
Normal Depth 1.77 in Flow Area 0.05 ft Wetted Perimeter 0.57 ft Hydraulic Radius 1.01 in Top Width 0.46 ft Critical Depth 0.23 ft Percent Full 29.4 % Critical Slope 0.00446 ft/ft Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft/'s Discharge Full 1.15 ft/'s Slope Full 0.00089 ft/ft Flow Type SuperCritical Downstream Depth 0.00 in Length 0.00 ft Number Of Steps 0 Profile Description Profile Headloss 0.00 Profile Headloss 0.00 ft Average End Depth Over Rise 29.45 %	Discharge		140400.00	gal/day
Flow Area 0.05 ft Wetted Perimeter 0.57 ft Hydraulic Radius 1.01 in Top Width 0.46 ft Critical Depth 0.23 ft Percent Full 29.4 % Critical Slope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 % Stope Full 0.15 ft/s Slope Full 0.15 ft/s Slope Full 0.15 ft/s Slope Full 0.00049 ft/ft Protent Data 115 ft/s Slope Full 0.000 ft Length 0.000 ft Number Of Steps 0 if Profile Description 10 if Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 %	Results			
Wetted Perimeter 0.57 ft Hydraulic Radius 1.01 in Top Width 0.46 ft Ortical Depth 0.23 ft Percent Full 29.4 % Critical Slope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 ft/s Discharge Full 0.00446 ft/s Slope Full 0.00089 ft/ft Slope Full 0.00089 ft/ft Prow Type SuperCritical ft/s Pownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Vetfor Leta 0.00 ft Portile Description - - Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 %	Normal Depth		1.77	in
Hydraulic Radius 1.01 in Top Width 0.46 ft Critical Depth 0.23 ft Percent Full 29.4 % Critical Slope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 % Kaximum Discharge 1.45 ft/s Slope Full 0.00080 ft/ft Slope Full 0.00080 ft/ft Flow Type SuperCritical ft/s Slope Full 0.00080 ft/ft Flow Type SuperCritical ft/ft Pownstream Depth 0.00 ft Number Of Steps 0 ft Number Of Steps 0 ft Pofile Description rege rege Profile Headloss 0.00 ft Average End Depth Over Rise 20.45 %	Flow Area		0.05	ft²
Top Width 0.46 ft Critical Depth 0.23 ft Percent Full 29.4 % Critical Slope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft/s Discharge Full 1.15 ft/s Slope Full 0.00089 ft/ft Flow Type SuperCritical Downstream Depth 0.00 in Length 0.00 it Number Of Steps 0 it CVF Output Data it Upstream Depth 0.00 it Profile Description it Profile Headloss 0.00 it Average End Depth Over Rise 0.00 %	Wetted Perimeter		0.57	ft
Critical Depth 0.23 f Percent Full 29.4 % Critical Slope 0.00446 ht Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 % Naximum Discharge 1.24 f*/s Discharge Full 1.15 f*/s Slope Full 0.00089 ft/ft Flow Type SuperCritical f*/s Downstream Depth 0.00 in Length 0.00 ft Number Of Steps 0 ft Pofile Description 1 ft Profile Peadloss 0.00 ft Average End Depth Over Rise 0.00 ft Average End Depth Over Rise 0.00 %	Hydraulic Radius		1.01	in
Percent Pull 29.4 % Critical Stope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft%s Discharge Full 1.15 ft%s Stope Full 0.00089 ft/ft Flow Type SuperCritical Downstream Depth 0.00 in Length 0.00 ft Number Of Steps 0 ft Pofile Description in Profile Description ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 %	Top Width		0.46	ft
Critical Slope 0.00446 ft/ft Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft/s Discharge Full 1.15 ft/s Slope Full 0.00089 ft/ft Flow Type SuperCritical ft/s Downstream Depth 0.00 in Length 0.00 ft Number Of Steps 0 ft Pofile Description 0.00 in Profile Description ft ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft	Critical Depth		0.23	ft
Velocity 4.50 ft/s Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft's Discharge Full 1.15 ft's Slope Full 0.00089 ft/ft Flow Type SuperCritical Downstream Depth 0.00 ft Number Of Steps 0 ft QVF Output Data 0.00 ft Porfile Description 0.00 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Average End Depth Over Rise 29.45 %	Percent Full		29.4	%
Velocity Head 0.31 ft Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 ft*/s Discharge Full 1.15 ft*/s Slope Full 0.00089 ft/ft Flow Type SuperCritical ft Overstream Depth 0.00 Length 0.00 ft Number Of Steps 0 ft Overstream Depth 0.00 Discharge Full 0.00 Profile Description 0 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft	Critical Slope		0.00446	ft/ft
Specific Energy 0.46 ft Froude Number 2.44 Maximum Discharge 1.24 Discharge Full 1.24 Discharge Full 1.15 Slope Full 0.00089 Flow Type SuperCritical FURD Data Downstream Depth Length 0.00 Number Of Steps 0 Tofile Poscription Profile Description 1 Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Average End Depth Over Rise 29.45 %	Velocity		4.50	ft/s
Froue Number2.44Maximum Discharge1.24ft³/sDischarge Full1.15ft³/sSlope Full0.00089ft/ftFlow TypeSuperCriticalGVF Input DataDownstream Depth0.00inLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile Description0.00inProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise0.00%	Velocity Head		0.31	ft
Maximum Discharge1.24ft³/sDischarge Full1.15ft³/sSlope Full0.00089ft/ftFlow TypeSuperCritical GVF Input Data Downstream Depth0.00Length0.00Number Of Steps0 GVF Output Data Upstream Depth0.00Number Of Steps0Forfile DescriptioninProfile DescriptioninProfile Headloss0.00Average End Depth Over Rise0.00Normal Depth Over Rise29.45%%	Specific Energy		0.46	ft
Jischarge Full1.15ft*/sSlope Full0.00089ft/ftFlow TypeSuperCriticalGVF Input DataDownstream Depth0.00Length0.00Number Of Steps0GVF Output DataUpstream Depth0.00Input Data0.00Profile DescriptioninProfile Headloss0.00Nurnal Depth Over Rise0.00Stream Depth0.00Input Depth Over Rise0.00Stream Depth Over Rise0.00 <t< td=""><td>Froude Number</td><td></td><td>2.44</td><td></td></t<>	Froude Number		2.44	
Slope Full0.0089ft/ftFlow TypeSuperCriticalGVF Input DataDownstream Depth0.00inLength0.00ftNumber Of Steps0'GVF Output DataUpstream Depth0.00inProfile DescriptioninProfile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	Maximum Discharge		1.24	ft³/s
Flow TypeSuperCriticalGVF Input Data0.00inDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output Data0Upstream Depth0.00inProfile DescriptioninProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise29.45%	Discharge Full		1.15	ft³/s
GVF Input DataDownstream Depth0.00inLength0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00inProfile Description0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise29.45%	Slope Full		0.00089	ft/ft
Downstream Depth0.00inLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00Profile DescriptioninProfile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	Flow Type	SuperCritical		
Length0.00ftNumber Of Steps00GVF Output Data10Upstream Depth0.00inProfile Description10Profile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	GVF Input Data			
Number Of Steps0GVF Output Data0.00Upstream Depth0.00Profile DescriptioninProfile Headloss0.00Average End Depth Over Rise0.00Normal Depth Over Rise29.45	Downstream Depth		0.00	in
GVF Output DataUpstream Depth0.00inProfile DescriptionProfile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	Length		0.00	ft
Upstream Depth0.00inProfile DescriptionProfile Headloss0.00Average End Depth Over Rise0.00Normal Depth Over Rise29.45	Number Of Steps		0	
Profile DescriptionProfile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	GVF Output Data			
Profile Headloss0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise29.45%	Upstream Depth		0.00	in
Average End Depth Over Rise0.00%Normal Depth Over Rise29.45%	Profile Description			
Normal Depth Over Rise 29.45 %	Profile Headloss		0.00	ft
	Average End Depth Over Rise		0.00	%
Downstream Velocity Infinity ft/s	Normal Depth Over Rise		29.45	%
	Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2


4/16/2019 8:45:16 AM

Proposed 6" Sewer Line (2.5%)


GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	in
Critical Depth	0.23	ft
Channel Slope	0.02500	ft/ft
Critical Slope	0.00446	ft/ft

VICINITY MAP

WASTEWATER EXHIBIT

- Add "FINAL"

WATER DISTRIBUTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

FINAL Basis of D Report					
APPROVED AS NOT	ED .				
REVISE AND RESU	зміт	9379 E San Salvador Dr. Scottsdale, AZ 85258			
Disclaimer: If approved; the approval is granted under the condition that the final construction documents submitted for city review will match the information herein. Any subsequent changes in the water or sever design that materially impact design citrenia or standards will require re-analysis, re-submittal, and approval of a revised basis of design report prior to the plan review submission; this approval is not a guarantee of construction document acceptance. For questions or clarifications contact the Water Resources Planning and Engineering Department at 480-312-5685.					

Address and resubmit:

1) Evaluate using 8" water stub out located in southeast corner. This connects to a 12" main on Osborn. If not to be used (and not currently in use) remove stub back to main. Indicate on utility plan.

2) In final BOD show utility plan with meter and BFP. Provide meter and service line sizing per DS&PM and verify if meter vault is required.

3) Complete hydraulic analysis up to highest finished floor of building and show 15psi min concurrent with fire flow (associated with meter and service/supply line sizing)

4) Clarify required fire flow, both 1,250 and 1,500 are shown.

5) Address any applicable comments in the email correspondence herein.

Prepared For:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258

Prepared By:

Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

Phone: (480)-312-5319

Dillon, Levi

From:	John Bulka <jbulka@woodpatel.com></jbulka@woodpatel.com>
Sent:	Wednesday, June 12, 2019 11:10 AM
То:	Dillon, Levi
Cc:	Cluff, Bryan; Hayes, Eliana; John "Gordy" Ritchie; Darin Moore
Subject:	RE: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi Dillion,

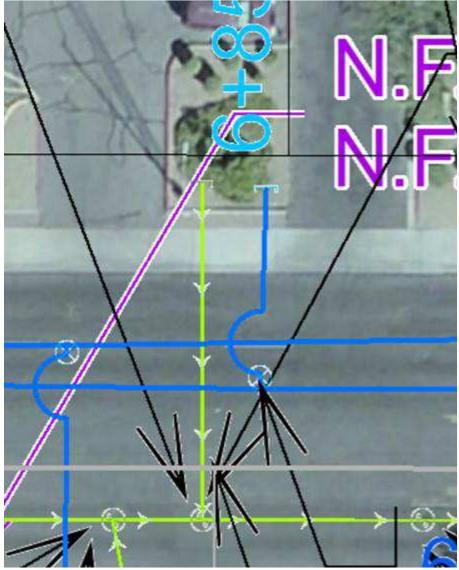
As discussed in our phone conversation, we've reviewed your comments and offer the following responses. Please call if you have any questions. Thanks,

John Bulka Project Manager

D: 602.336.7924 M: 602.695.5579 jbulka@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Monday, June 10, 2019 6:17 PM
To: John Bulka
Cc: Cluff, Bryan; Hayes, Eliana
Subject: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi John,


Before I made any basis of design comments formal I wanted to run these by you:

1. Please note a future parallel sewer on Osborn is already in the planning stages by the City so sewer capacity will not be an issue for this facility. The tentative plan is to have all hospital flows routed to this new sewer. However, this parallel sewer will not start construction until approximately summer 2020.

a. How does this schedule align with the schedule for this facility? *Construction is scheduled to start later*

- a. How does this schedule align with the schedule for this facility? Construction is scheduled to start late this year. We are planning on submitting CDs at the end of July.
- b. Given this we are interested in obtaining the most accurate projection of sewer demands for this facility possible. See items 2 below . *It's our understanding the building will just be an out-patient facility with offices.*
- 2. There is no reference in the BODs to the type of medical facility and water/sewer demand characteristics (the floor plan area nomenclature, i.e. infusion, ASC, SGA, etc, is not readily discernable)
 - a. Is this an in-patient or out-patient facility? (include in BODs) *Out-patient only.*
 - b. number of beds? No Beds.
 - c. Is there a cafeteria? *No Cafeteria*.
 - d. Is there a laundry? We believe they are using an offsite service, but will verify with the Architect.

- e. Are there rehabilitation or exercise pools or spas? *No pools or spas.*
- f. Is the future ambulatory facility included in this approval? *No Ambulatory*. Should it be considering the need for accurate water/sewer planning?
- 3. Why is the sewer being sent to Brown 8" sewer but the water supply is coming from Osborn 8"? *It's a shorter pipe run to route the sewer line in Brown Street. Plus there will be proposed electrical equipment in that area and we wanted to avoid conflicts. The site plan has changed since our submittal, so we will review again and see if it makes sense to use the existing sewer stub.* See question 4 below for follow-up question on this.
- 4. Water and sewer stub-outs appear to exist in the southeast corner of the parcel. Why are these not being used? The fire riser room is located on the west side of the building, so it just made sense to go to connect to the waterline further west in Osborn. We will review again and see if it makes sense to use the existing water stub. A Water Resources' consultant recently had a flow meter placed in the manhole where the stub out is shown below and there was no flow reported coming from the stub-out. Instead it was coming into the manhole to the east. Both the sewer and water stub outs show as 8" in City GIS. The water stub-out's source is the 12" Osborn main. The 12" Osborn main supplies the 8" on Osborn through a connection at Osborn and Drinkwater Blvd.

Thanks,

a.

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Water Distribution System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

The project site has public waterline infrastructure on three (3) sides of the site. There is one (1) 12-inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue. There is one (1) 6-inch CIP water main in 4^{th} Street. The Honor Health Medical Office Building site proposes two (2) private water connections that utilize the City's public waterline for domestic water and fire protection that connect to the existing public 8-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached *Water Exhibit* for a depiction of the existing water infrastructure surrounding the project.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the *City of Scottsdale Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Water Demand, Office:	8.34E-04 gpm/sq. ft.*
	Fire Flow Requirements:	min 1,500 gpm**
	Maximum Day Demand:	2.0 x ADD
	Peak Hour Demand:	3.5 x ADD
	Minimum Residual Pressure, Peak Hour:	50 psi
	Minimum Residual Pressure, Maximum Day + Fire Flow:	30 psi
Inc.	2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 •	(602) 335-8500 • Fax (602) 335-8580

Wood, Patel & Associates, Inc. 2051 West N

Maximum Pipe Head Loss, Maximum Day Demand:

Maximum System Pressure:

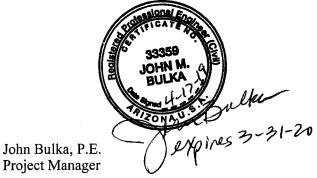
Not clear, 1,250 versus 1,500, which is it?

120 psi 8 ft / 1000 ft 10 ft / 1000 ft 8 inches

- Maximum Pipe Head Loss, Peak Hour Demand: 10
 Minimum Pipe Diameter, Public Water Line: Abbreviations: and = gallons per day: sf = square feet: ADD = average day demand: psi =
 - Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch
 - * Includes both inside and outside use per Figure 6-1.2, COS Design Standards and Policies
 - Manual
 ** Fire flow is based on 10% reduction to account for flow measurement inaccuracy (refer to attached calculations in the appendices)

Domestie water service will be provided by a proposed 3 inch private waterline and a 3-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 6-inch fire line for an automatic fire-sprinkler service. Irrigation water service will be provided by a suspected existing 1-inch irrigation line.

The average day water demand for the proposed 117,000-sf Honor Health Medical Office Building is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached calculations).


WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, was utilized to simulate the City of Scottsdale's water supply for the project (refer to attached modeling results).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Honor Health Medical Office Building project, with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the project site, with 2,500-gpm fire hydrant flows during maximum day demand. A 50-percent reduction was applied to the fire flow requirements due to the proposed sprinkler system. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

Thank you for your review of the Water Distribution System Basis of Design Report provided for the Honor Health Medical Office Building project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Water Basis of Design Report.docx

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Bulka, P.E. Date: 4/17/2019

LAND USE AND	DWELLING U	NIT BREAKDO	WN BY JUNCTION														
HYDRAULIC	ELEVATION PRESS	PRESSURE	LAND USE	DWELLING				GE DAILY D	EMAND	MAX	MUM DAY DEM	IAND			PEAK	HOUR DEMA	ND
MODEL NODE	(ft)	ZONE	LAND USE	UNITS	DEMAND VALUE	UNITS	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)
J-BLDG	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6

Notes:

1. Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 2. The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

Project Name: Project Address: Client Project No.: Arizona Flow Testing Projec Flow Test Permit No.: Date and time flow test cond Data is current and reliable to Conducted by: Witnessed by:	194976 t No.: 19131 C57857 ucted: April 12, 201 until: October 12, 2 Floyd Vaugh	sborn Road, Scottsdale, Arizona, 9 at 8:00 AM	(480-250-8154)
Raw Test Data		Data with 13 PSI Safety Fa	Scousuale requires a
Static Pressure: (Measured in pounds per sq	85.0 PSI uare inch)	Static Pressure: (Measured in pounds per so	72.0 PSI quare inch)maximum Static Pressure of 72 PSI for AFES Design.
Residual Pressure: (Measured in pounds per sq	75.0 PSI uare inch)	Residual Pressure: (Measured in pounds per so	62.0 PSI quare inch)
Pitot Pressure:	23.0 PSI		
(Measured in pounds per sq	uare inch)		
Diffuser Orifice Diameter: Or (Measured in inches)	ne 4-inch Hose Monster	Distance between hydrants: Main size: Not Provided	: Approx.: 290 feet
Coefficient of Diffuser: .7875	5		
Flowing GPM: (Measured in gallons per min	1,803 GPM nute)	Flowing GPM:	1,803 GPM
GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPM
Flow Test Location	Nor	th 🕇	
Flow Fire Hydrant			East 4 th Street
			East 4 th Street
Pressure Fire Hydrant			Project Site 7242 East Osborn Road
North Brown Avenue			East Osborn Road

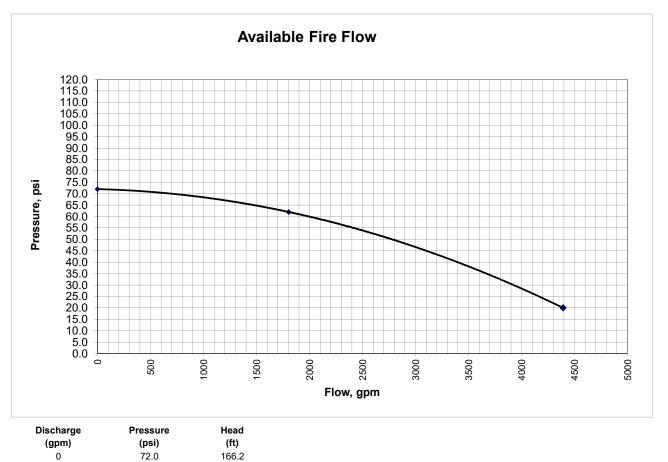
Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona


Flow Test Location:	7242 E Osborn Road, Scottsdale AZ
Date of Flow Test:	April 12, 2019

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

FlexTable: Pipe Table

Active Scenario: Calibration-Static

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	0	0.00
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	0	0.00
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-BLDG	1,245.00	0	1,412.70	73

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Start Node Stop Node Material Hazen-Williams Flow Label Diameter Velocity (in) С (gpm) (ft/s) EX P-1 8.0 EX J-1 EX J-2 Ductile Iron 130.0 0 0.00 8.0 EX P-6 EX FH-FLOW EX J-3 Ductile Iron 130.0 0 0.00 EX P-4 8.0 EX FH-TEST EX FH-1 Ductile Iron 130.0 0 0.00 EX P-5 EX FH-TEST EX FH-FLOW Ductile Iron 130.0 1,803 11.51 8.0 EX P-7 EX J-3 EX J-BLDG Ductile Iron 130.0 0.00 6.0 0 EX P-8 6.0 EX J-BLDG EX J-4 Ductile Iron 130.0 0 0.00 RES-1 PMP-1 130.0 1,803 0.32 P-RES 48.0 Ductile Iron EX FH-TEST P-PMP 48.0 PMP-1 Ductile Iron 130.0 1,803 0.32 EX P-2 8.0 EX J-2 J-BLDG Ductile Iron 130.0 0 0.00 EX P-3 8.0 J-BLDG EX FH-1 Ductile Iron 130.0 0 0.00

Active Scenario: Calibraion-Flow

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-BLDG	1,245.00	0	1,389.70	63

Active Scenario: Calibraion-Flow

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Calibraion-Max

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	4,392	28.03
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	4,392	0.78
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	4,392	0.78
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

Active Scenario: Calibraion-Max

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-BLDG	1,245.00	0	1,292.70	21

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Active Scenario: Average Day Demand

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-98	0.62

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Junction Table

			j_	
Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-BLDG	1,245.00	98	1,412.50	72

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-195	1.25

Active Scenario: Max Day

FlexTable: Junction Table

				-
Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.99	73
EX J-2	1,244.50	0	1,411.99	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-BLDG	1,245.00	195	1,411.99	72

Active Scenario: Max Day

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-342	2.18

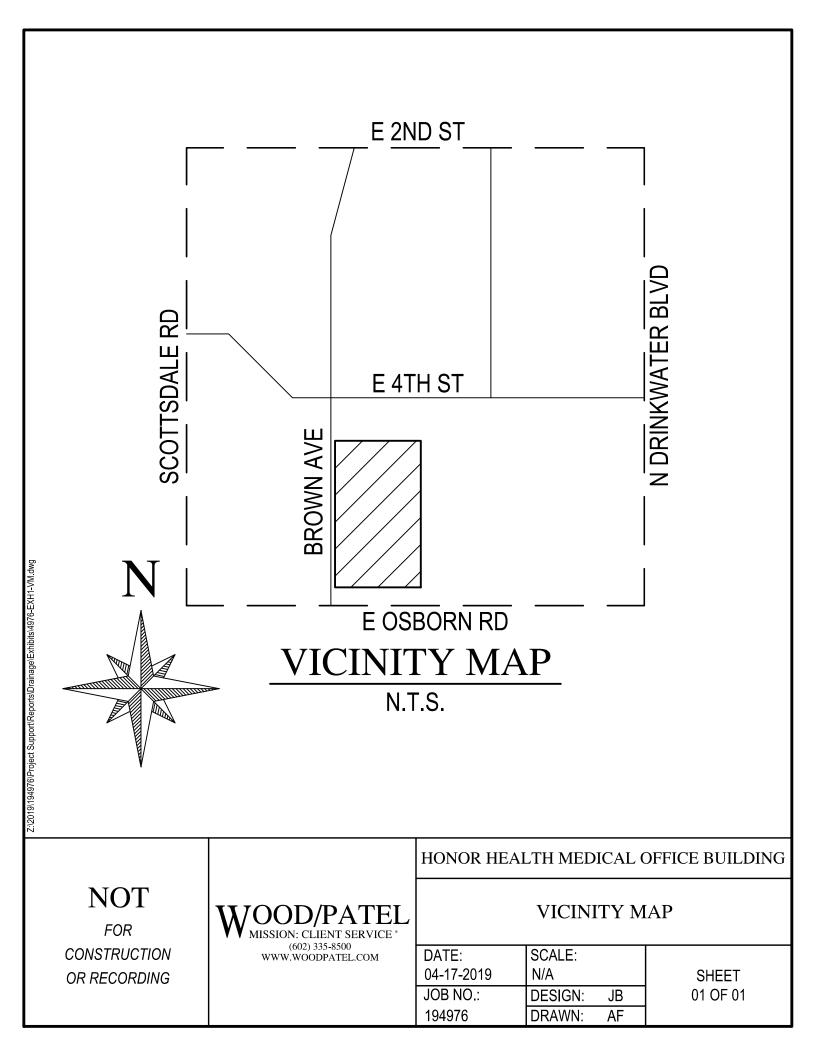
Active Scenario: Peak Hour

FlexTable: Junction Table

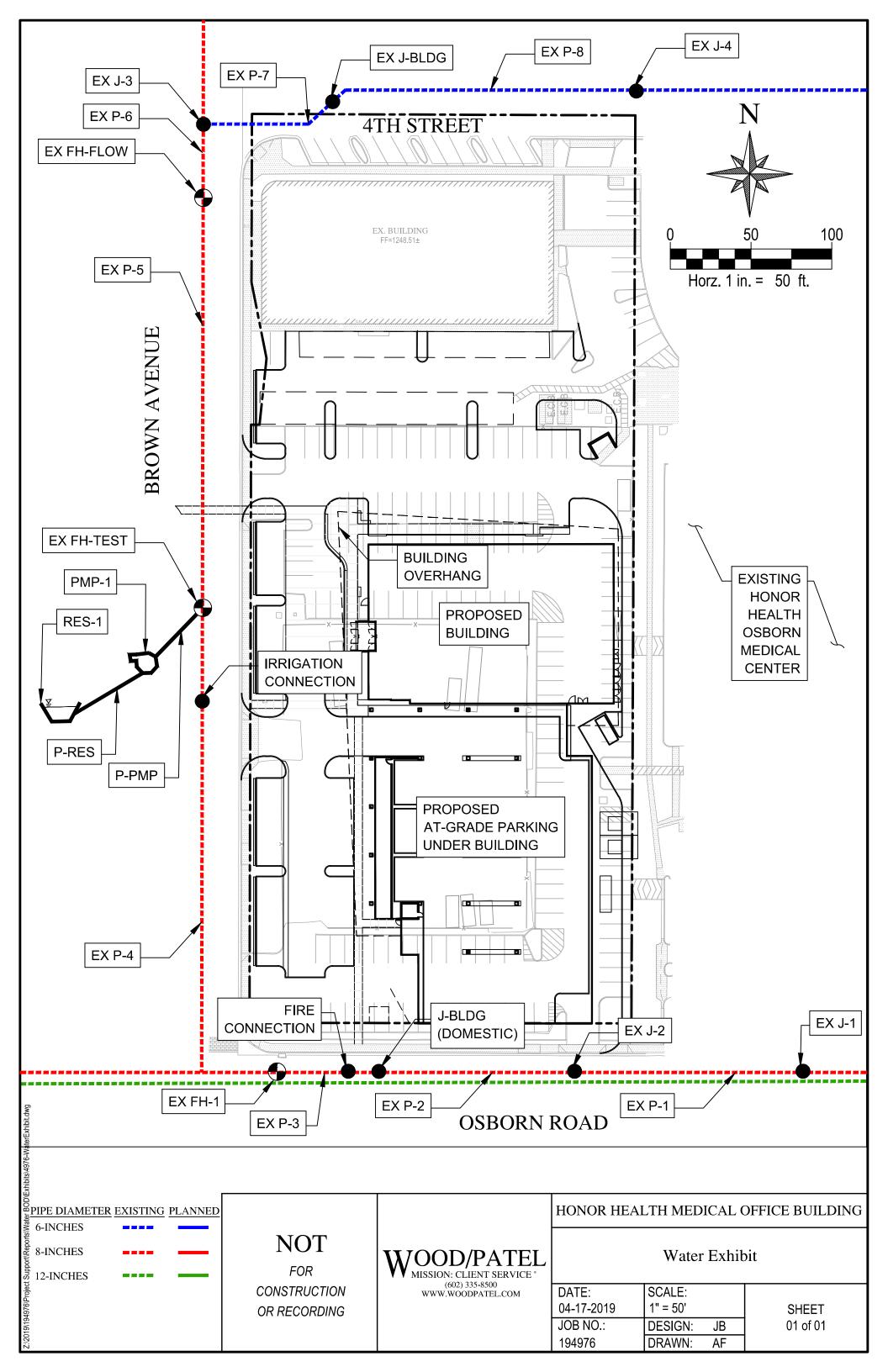
Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,410.71	72
EX J-2	1,244.50	0	1,410.71	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-BLDG	1,245.00	342	1,410.71	72

Active Scenario: Peak Hour

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


Fire Flow Node FlexTable: Fire Flow Report

Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (System)	Hydraulic Grade (ft)
EX J-1	1,244.00	2,500	2,330	30	EX J-2	1,411.99
EX J-2	1,244.50	2,500	2,406	30	EX J-1	1,411.99
EX FH-1	1,245.00	2,500	2,690	30	J-BLDG	1,412.03
EX FH-FLOW	1,247.50	2,500	2,888	30	EX J-BLDG	1,412.33
EX J-3	1,248.00	2,500	2,792	30	EX J-BLDG	1,412.33
EX FH-TEST	1,246.50	2,500	3,685	31	EX J-BLDG	1,412.33
EX J-BLDG	1,248.00	2,500	2,276	30	EX J-4	1,412.33
EX J-4	1,247.00	2,500	1,718	30	EX J-BLDG	1,412.33
J-BLDG	1,245.00	2,695	2,799	30	EX J-2	1,411.99


Active Scenario: Max Day + Fire Flow

4976-WaterCAD.wtg 4/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

VICINITY MAP

WATER EXHIBIT

Add "FINAL"

WASTEWATER COLLECTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

FINAL Basis of Design Report	
	SCOTTSDA
APPROVED AS NOTED	
REVISE AND RESUBMIT	9379 E San Salvador Scottsdale, AZ 852
Disclaimer: If approved; the approval is granted condition that the final construction documents si city review will match the information herein. Any changes in the water or sewer design that materi design criteria or standards will require re-analys re-submittal, and approval of a revised basis of d prior to the plan review submission.; this approva guarantee of construction document acceptance. For questions or clarifications contact the Water I Planning and Engineering Department at 480-31	ubmitted for subsequent ally impact is, esign report il is not a Resources

DATE 7/3/2019

Address and resubmit:

1) Sewer capacity on Osborn will not be available when already approved and allocated projects ahead of this project are complete. The City is in a study phase of a parallel sewer on Osborn Rd. An in-lieu of construction payment to the City to off-set the cost of this new sewer will be required so that capacity will be available for this development. This payment

BY Idillon

Devenney Group Ltd., Architects will be proportional to the capacity impact and length of sewer impacted to Miller Rd. Coordinate with the Water Resources department on the determination of this payment prior to re-submittal. The details of this determination should be included in the re-submittal.

> 2) If sewer stub in southeast corner is not to be used it should be removed back to the main to make room for new parallel sewer in Osborn i.e. discharge onto Brown is likely preferred. Indicate stub removal on utility plan. 3) Address any applicable comments in email correspondence herein.

Prepared For:

Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: **City of Scottsdale** Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

Prepared By: Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

Dillon, Levi

From:	John Bulka <jbulka@woodpatel.com></jbulka@woodpatel.com>
Sent:	Wednesday, June 12, 2019 11:10 AM
То:	Dillon, Levi
Cc:	Cluff, Bryan; Hayes, Eliana; John "Gordy" Ritchie; Darin Moore
Subject:	RE: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi Dillion,

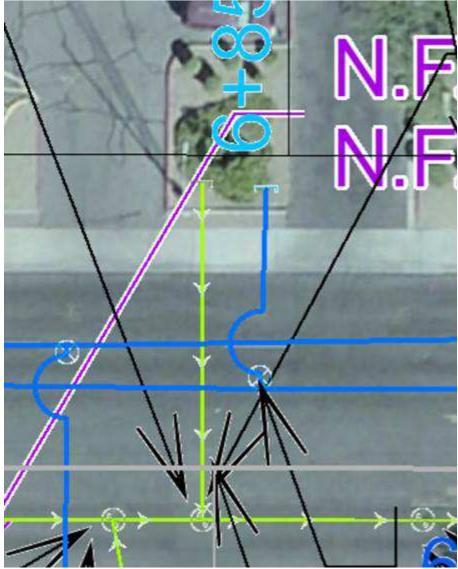
As discussed in our phone conversation, we've reviewed your comments and offer the following responses. Please call if you have any questions. Thanks,

John Bulka Project Manager

D: 602.336.7924 M: 602.695.5579 jbulka@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Monday, June 10, 2019 6:17 PM
To: John Bulka
Cc: Cluff, Bryan; Hayes, Eliana
Subject: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi John,


Before I made any basis of design comments formal I wanted to run these by you:

1. Please note a future parallel sewer on Osborn is already in the planning stages by the City so sewer capacity will not be an issue for this facility. The tentative plan is to have all hospital flows routed to this new sewer. However, this parallel sewer will not start construction until approximately summer 2020.

How does this schedule align with the schedule for this facility? Construction is schedule

- a. How does this schedule align with the schedule for this facility? *Construction is scheduled to start later this year. We are planning on submitting CDs at the end of July.*
- b. Given this we are interested in obtaining the most accurate projection of sewer demands for this facility possible. See items 2 below . *It's our understanding the building will just be an out-patient facility with offices.*
- 2. There is no reference in the BODs to the type of medical facility and water/sewer demand characteristics (the floor plan area nomenclature, i.e. infusion, ASC, SGA, etc, is not readily discernable)
 - a. Is this an in-patient or out-patient facility? (include in BODs) *Out-patient only.*
 - b. number of beds? No Beds.
 - c. Is there a cafeteria? *No Cafeteria*.
 - d. Is there a laundry? We believe they are using an offsite service, but will verify with the Architect.

- e. Are there rehabilitation or exercise pools or spas? *No pools or spas.*
- f. Is the future ambulatory facility included in this approval? *No Ambulatory*. Should it be considering the need for accurate water/sewer planning?
- 3. Why is the sewer being sent to Brown 8" sewer but the water supply is coming from Osborn 8"? *It's a shorter pipe run to route the sewer line in Brown Street. Plus there will be proposed electrical equipment in that area and we wanted to avoid conflicts. The site plan has changed since our submittal, so we will review again and see if it makes sense to use the existing sewer stub.* See question 4 below for follow-up question on this.
- 4. Water and sewer stub-outs appear to exist in the southeast corner of the parcel. Why are these not being used? The fire riser room is located on the west side of the building, so it just made sense to go to connect to the waterline further west in Osborn. We will review again and see if it makes sense to use the existing water stub. A Water Resources' consultant recently had a flow meter placed in the manhole where the stub out is shown below and there was no flow reported coming from the stub-out. Instead it was coming into the manhole to the east. Both the sewer and water stub outs show as 8" in City GIS. The water stub-out's source is the 12" Osborn main. The 12" Osborn main supplies the 8" on Osborn through a connection at Osborn and Drinkwater Blvd.

Thanks,

a.

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: Idillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

Wastewater flowing from the proposed Honor Health Medical Office Building will discharge to a 6-inch private sewer line on the west side of the proposed building. The 6-inch private sewer line discharges into the City of Scottsdale's existing public 8-inch VCP sewer line in Brown Avenue.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Wastewater flows, Office:	0.4 gpd/sq. ft.
•	Peaking Factor, Office:	3
•	Minimum Mean Full Flow Velocity:	2.50 fps
•	Minimum Peak Full Flow Velocity:	10.0 fps
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	d/D = 0.65
	Abbreviations: gpd = gallons per day; fps = feet per second	

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Mr. Levi Dillion, P.E. City of Scottsdale **Honor Health Medical Office Building** Wastewater Collection System, Basis of Design Report WP# 194976

Based on the above design criteria, the projected average day flow for the proposed 117,000-sf Honor Health Medical Office Building project is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Wastewater Collection System Basis of Design Report provided for the Honor Health Medical Office Building development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John M. Bulka, P.E. Project Manager

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Wastewater Basis of Design Report.docx

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE* CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Medical Office Building

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Bulka, P.E. 4/17/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	_		TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)	
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98	
Total					46,800		140,400	33	98	

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	Proposed 6"	Sewer Lin	ne (2.0%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02000	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.87	in
Flow Area		0.05	ft²
Wetted Perimeter		0.59	ft
Hydraulic Radius		1.06	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		31.2	%
Critical Slope		0.00445	ft/ft
Velocity		4.16	ft/s
Velocity Head		0.27	ft
Specific Energy		0.42	ft
Froude Number		2.18	
Maximum Discharge		1.11	ft³/s
Discharge Full		1.03	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		31.19	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBdititle@EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Proposed 6" Sewer Line (2.0%)

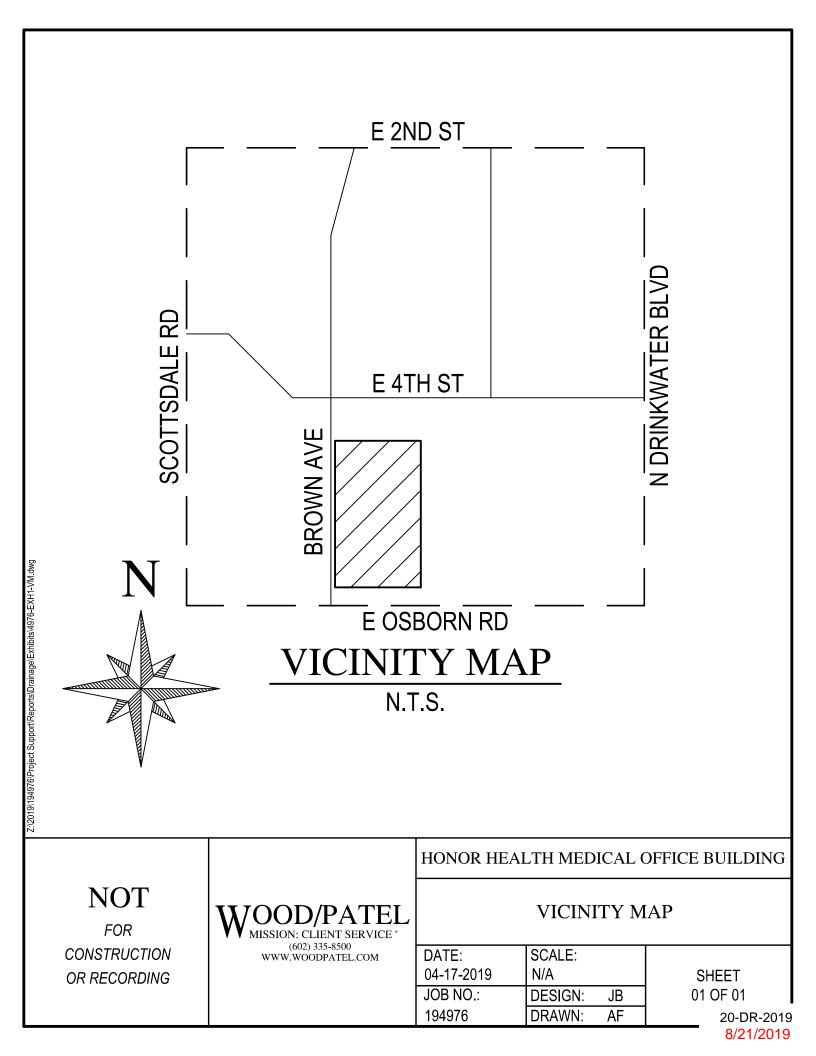
GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.87	in
Critical Depth	0.23	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.00445	ft/ft

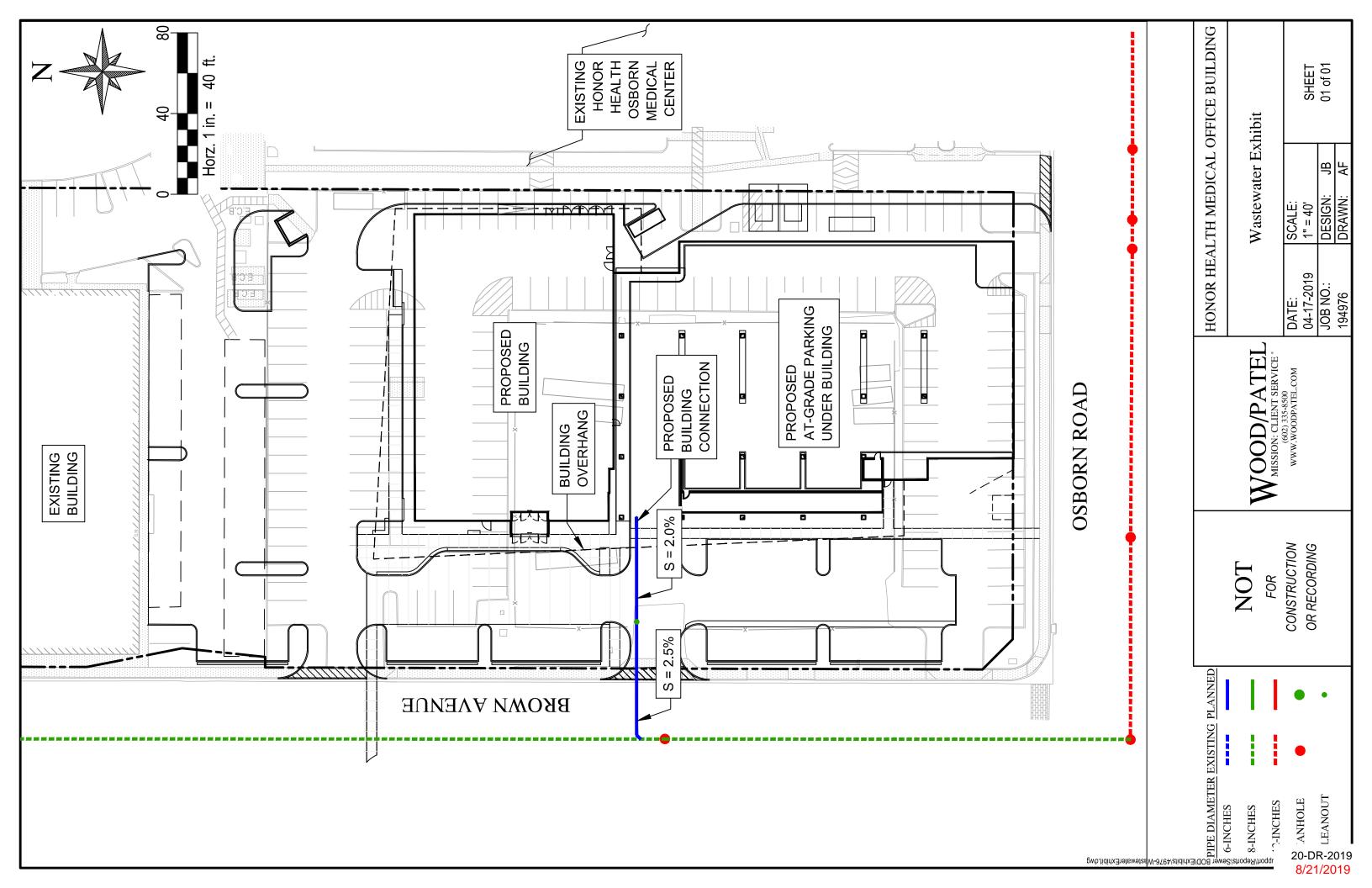
	Proposed 6"	Sewer Lin	ne (2.5%)
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02500	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.77	in
Flow Area		0.05	ft²
Wetted Perimeter		0.57	ft
Hydraulic Radius		1.01	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		29.4	%
Critical Slope		0.00446	ft/ft
Velocity		4.50	ft/s
Velocity Head		0.31	ft
Specific Energy		0.46	ft
Froude Number		2.44	
Maximum Discharge		1.24	ft³/s
Discharge Full		1.15	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		29.45	%
Downstream Velocity		Infinity	ft/s
-			

Bentley Systems, Inc. Haestad Methods SoBdititle CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

4/16/2019 8:45:16 AM


27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Proposed 6" Sewer Line (2.5%)


GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	in
Critical Depth	0.23	ft
Channel Slope	0.02500	ft/ft
Critical Slope	0.00446	ft/ft

VICINITY MAP

WASTEWATER EXHIBIT

- Add "FINAL"

WATER DISTRIBUTION SYSTEM

BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976

FINAL Basis of Report	Design		
APPROVED AS N	OTED		
REVISE AND RES	UBMIT		9379 E San Salvador Dr. Scottsdale, AZ 85258
Disclaimer: If approved; the a condition that the final constru- city review will match the infor changes in the water or sewe design criteria or standards w re-submittal, and approval of prior to the plan review subm	uction documer rmation herein. er design that m vill require re-an a revised basis	Any Any ateri alysi of d orova	ubmitted for subsequent ally impact is, esign report Il is not a

Address and resubmit:

1) Evaluate using 8" water stub out located in southeast corner. This connects to a 12" main on Osborn. If not to be used (and not currently in use) remove stub back to main. Indicate on utility plan.

2) In final BOD show utility plan with meter and BFP. Provide meter and service line sizing per DS&PM and verify if meter vault is required.

3) Complete hydraulic analysis up to highest finished floor of building and show 15psi min concurrent with fire flow (associated with meter and service/supply line sizing)

4) Clarify required fire flow, both 1,250 and 1,500 are shown.

5) Address any applicable comments in the email correspondence herein.

Prepared For: Dev Mr.

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 *Phone: (602) 943-7645*

Submitted To:

City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 *Phone: (480)-312-5319*

Prepared By:

Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

Dillon, Levi

From:	John Bulka <jbulka@woodpatel.com></jbulka@woodpatel.com>
Sent:	Wednesday, June 12, 2019 11:10 AM
То:	Dillon, Levi
Cc:	Cluff, Bryan; Hayes, Eliana; John "Gordy" Ritchie; Darin Moore
Subject:	RE: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi Dillion,

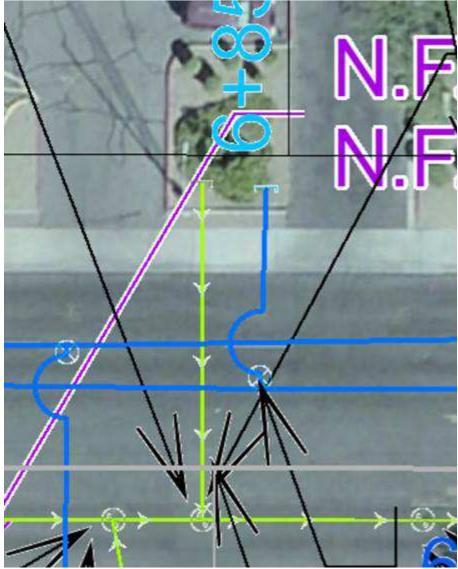
As discussed in our phone conversation, we've reviewed your comments and offer the following responses. Please call if you have any questions. Thanks,

John Bulka Project Manager

D: 602.336.7924 M: 602.695.5579 jbulka@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Monday, June 10, 2019 6:17 PM
To: John Bulka
Cc: Cluff, Bryan; Hayes, Eliana
Subject: water and sewer questions on 20-DR-2019, Neuroscience Institute

Hi John,


Before I made any basis of design comments formal I wanted to run these by you:

1. Please note a future parallel sewer on Osborn is already in the planning stages by the City so sewer capacity will not be an issue for this facility. The tentative plan is to have all hospital flows routed to this new sewer. However, this parallel sewer will not start construction until approximately summer 2020.

How does this schedule align with the schedule for this facility? Construction is schedule

- a. How does this schedule align with the schedule for this facility? *Construction is scheduled to start later this year. We are planning on submitting CDs at the end of July.*
- b. Given this we are interested in obtaining the most accurate projection of sewer demands for this facility possible. See items 2 below . *It's our understanding the building will just be an out-patient facility with offices.*
- 2. There is no reference in the BODs to the type of medical facility and water/sewer demand characteristics (the floor plan area nomenclature, i.e. infusion, ASC, SGA, etc, is not readily discernable)
 - a. Is this an in-patient or out-patient facility? (include in BODs) *Out-patient only.*
 - b. number of beds? No Beds.
 - c. Is there a cafeteria? *No Cafeteria*.
 - d. Is there a laundry? We believe they are using an offsite service, but will verify with the Architect.

- e. Are there rehabilitation or exercise pools or spas? *No pools or spas.*
- f. Is the future ambulatory facility included in this approval? *No Ambulatory*. Should it be considering the need for accurate water/sewer planning?
- 3. Why is the sewer being sent to Brown 8" sewer but the water supply is coming from Osborn 8"? *It's a shorter pipe run to route the sewer line in Brown Street. Plus there will be proposed electrical equipment in that area and we wanted to avoid conflicts. The site plan has changed since our submittal, so we will review again and see if it makes sense to use the existing sewer stub.* See question 4 below for follow-up question on this.
- 4. Water and sewer stub-outs appear to exist in the southeast corner of the parcel. Why are these not being used? The fire riser room is located on the west side of the building, so it just made sense to go to connect to the waterline further west in Osborn. We will review again and see if it makes sense to use the existing water stub. A Water Resources' consultant recently had a flow meter placed in the manhole where the stub out is shown below and there was no flow reported coming from the stub-out. Instead it was coming into the manhole to the east. Both the sewer and water stub outs show as 8" in City GIS. The water stub-out's source is the 12" Osborn main. The 12" Osborn main supplies the 8" on Osborn through a connection at Osborn and Drinkwater Blvd.

Thanks,

a.

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Water Distribution System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at the southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

The project site has public waterline infrastructure on three (3) sides of the site. There is one (1) 12-inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue. There is one (1) 6-inch CIP water main in 4^{th} Street. The Honor Health Medical Office Building site proposes two (2) private water connections that utilize the City's public waterline for domestic water and fire protection that connect to the existing public 8-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached *Water Exhibit* for a depiction of the existing water infrastructure surrounding the project.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the *City of Scottsdale Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Water Demand, Office:	8.34E-04 gpm/sq. ft.*
	Fire Flow Requirements:	min 1,500 gpm**
	Maximum Day Demand:	2.0 x ADD
	Peak Hour Demand:	3.5 x ADD
	Minimum Residual Pressure, Peak Hour:	50 psi
	Minimum Residual Pressure, Maximum Day + Fire Flow:	30 psi

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Maximum Pipe Head Loss, Maximum Day Demand:

Maximum Pipe Head Loss, Peak Hour Demand:

Maximum System Pressure:

Not clear, 1,250 versus 1,500, which is it?

120 psi 8 ft / 1000 ft 10 ft / 1000 ft 8 inches

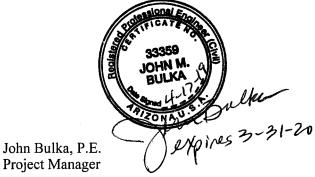
- Minimum Pipe Diameter, Public Water Line: 8 inc
 Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch
 - * Includes both inside and outside use per Figure 6-1.2, COS Design Standards and Policies

Manual

** Fire flow is based on 10% reduction to account for flow measurement inaccuracy (refer to attached calculations in the appendices)

Domestie water service will be provided by a proposed 3 inch private waterline and a 3-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 6-inch fire line for an automatic fire-sprinkler service. Irrigation water service will be provided by a suspected existing 1-inch irrigation line.

The average day water demand for the proposed 117,000-sf Honor Health Medical Office Building is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached calculations).


WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, was utilized to simulate the City of Scottsdale's water supply for the project (refer to attached modeling results).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Honor Health Medical Office Building project, with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the project site, with 2,500-gpm fire hydrant flows during maximum day demand. A 50-percent reduction was applied to the fire flow requirements due to the proposed sprinkler system. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

Thank you for your review of the Water Distribution System Basis of Design Report provided for the Honor Health Medical Office Building project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Water Basis of Design Report.docx

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Bulka, P.E. Date: 4/17/2019

LAND USE AND	DWELLING U	NIT BREAKDO	WN BY JUNCTION																
HYDRAULIC	ELEVATION	PRESSURE	LAND USE	DWELLING	DEMAND VALUE	EMAND VALUE UNITS AVERAGE DAILY DEMAND MAXIMUM DAY DEMAND		AVERAGE DAILY DEMAND		AVERAGE DAILY DEMAND		AVERAGE DAILY DEMAND		AVERAGE DAILY DEMAND MAXIMUM DAY DEMAND			PEAK HOUR DEMAND		
MODEL NODE	(ft)	ZONE	LAND USE	UNITS	UNITS DEMAND VALUE UNITS	UNITS	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)		
J-BLDG	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6		
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6		

Notes:

Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

Project Name: Project Address: Client Project No.: Arizona Flow Testing Project N Flow Test Permit No.: Date and time flow test conduc Data is current and reliable un Conducted by: Witnessed by:	194976 No.: 19131 C57857 cted: April 12, 201 til: October 12, 2 Floyd Vaugha	born Road, Scottsdale, Arizona 9 at 8:00 AM	(480-250-8154)
<u>Raw Test Data</u>		Data with 13 PSI Safety F	Scottsdale requires a maximum Static
Static Pressure: (Measured in pounds per squa	85.0 PSI are inch)	Static Pressure: (Measured in pounds per s	72.0 PSI Pressure of 72 PSI
Residual Pressure: (Measured in pounds per squa	75.0 PSI are inch)	Residual Pressure: (Measured in pounds per s	62.0 PSI square inch)
Pitot Pressure:	23.0 PSI		
(Measured in pounds per squa	re inch)		
Diffuser Orifice Diameter: One (Measured in inches)	4-inch Hose Monster	Distance between hydrants Main size: Not Provided	s: Approx.: 290 feet
Coefficient of Diffuser: .7875			
Flowing GPM: (Measured in gallons per minu	1,803 GPM ite)	Flowing GPM:	1,803 GPM
GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPM
Flow Test Location	Nor	th 🕇	
Flow Fire Hydrant		a contraction	Legend
			East 4th Street
Pressure Fire Hydrant			
			Project Site 7242 East Osborn Road
North Brown Avenue	the original second sec		East Osborn Road

Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona

Flow Test Location:	7242 E Osborn Road, Scottsdale AZ
Date of Flow Test:	April 12, 2019

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

FlexTable: Pipe Table

Active Scenario: Calibration-Static

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	0	0.00
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	0	0.00
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-BLDG	1,245.00	0	1,412.70	73

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	1,803	11.51
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	1,803	0.32
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	1,803	0.32
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

Active Scenario: Calibraion-Flow

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	l Hydraulic Grade Pressure (ft) (psi)	
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-BLDG	1,245.00	0	1,389.70	63

Active Scenario: Calibraion-Flow

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Pipe Table

Active Scenario: Calibraion-Max

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	0	0.00
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	4,392	28.03
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	4,392	0.78
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	4,392	0.78
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	0	0.00

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Junction Table

Active Scenario: Calibraion-Max

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-BLDG	1,245.00	0	1,292.70	21

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Pipe Table

Active Scenario: Average Day Demand

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-98	0.62

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Junction Table

				-
Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-BLDG	1,245.00	98	1,412.50	72

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Pipe Table

Label	Diameter	Start Node	Stop Node	Material	Hazen-Williams	Flow	Velocity
Laber	(in)	Start Note	Stop Node	Material	C	(gpm)	(ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-195	1.25

Active Scenario: Max Day

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Junction Table

Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.99	73
EX J-2	1,244.50	0	1,411.99	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-BLDG	1,245.00	195	1,411.99	72

Active Scenario: Max Day

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-BLDG	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-BLDG	EX FH-1	Ductile Iron	130.0	-342	2.18

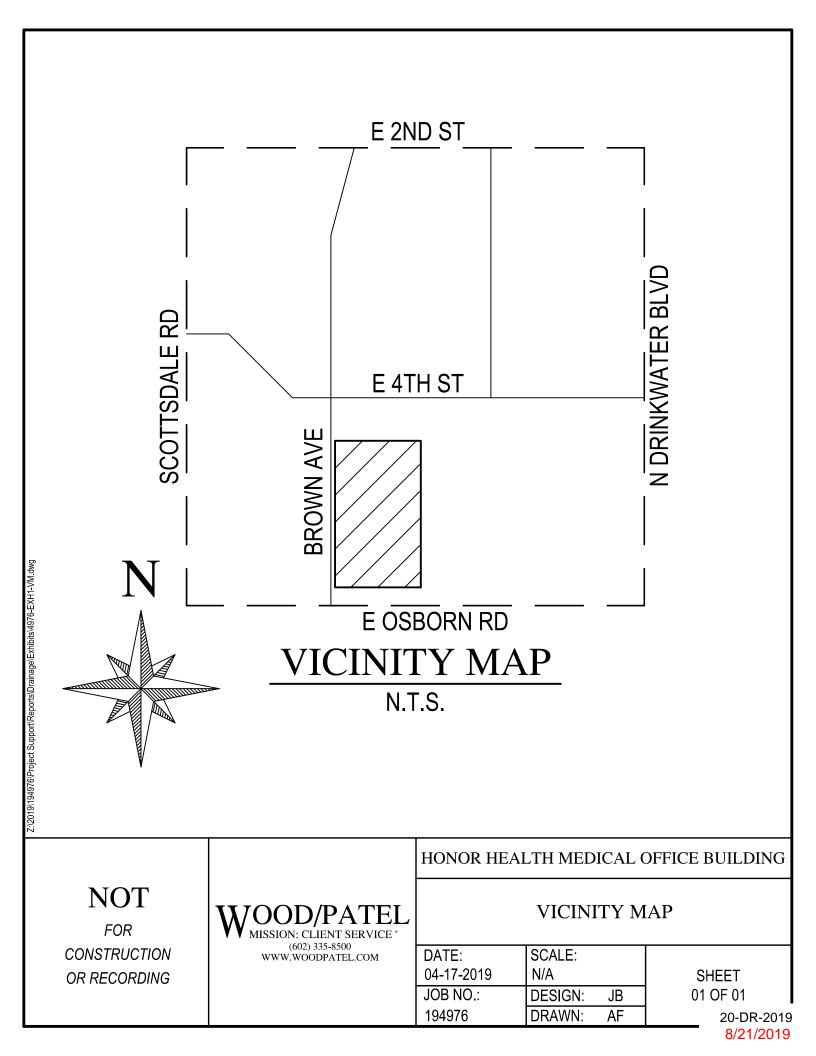
Active Scenario: Peak Hour

4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

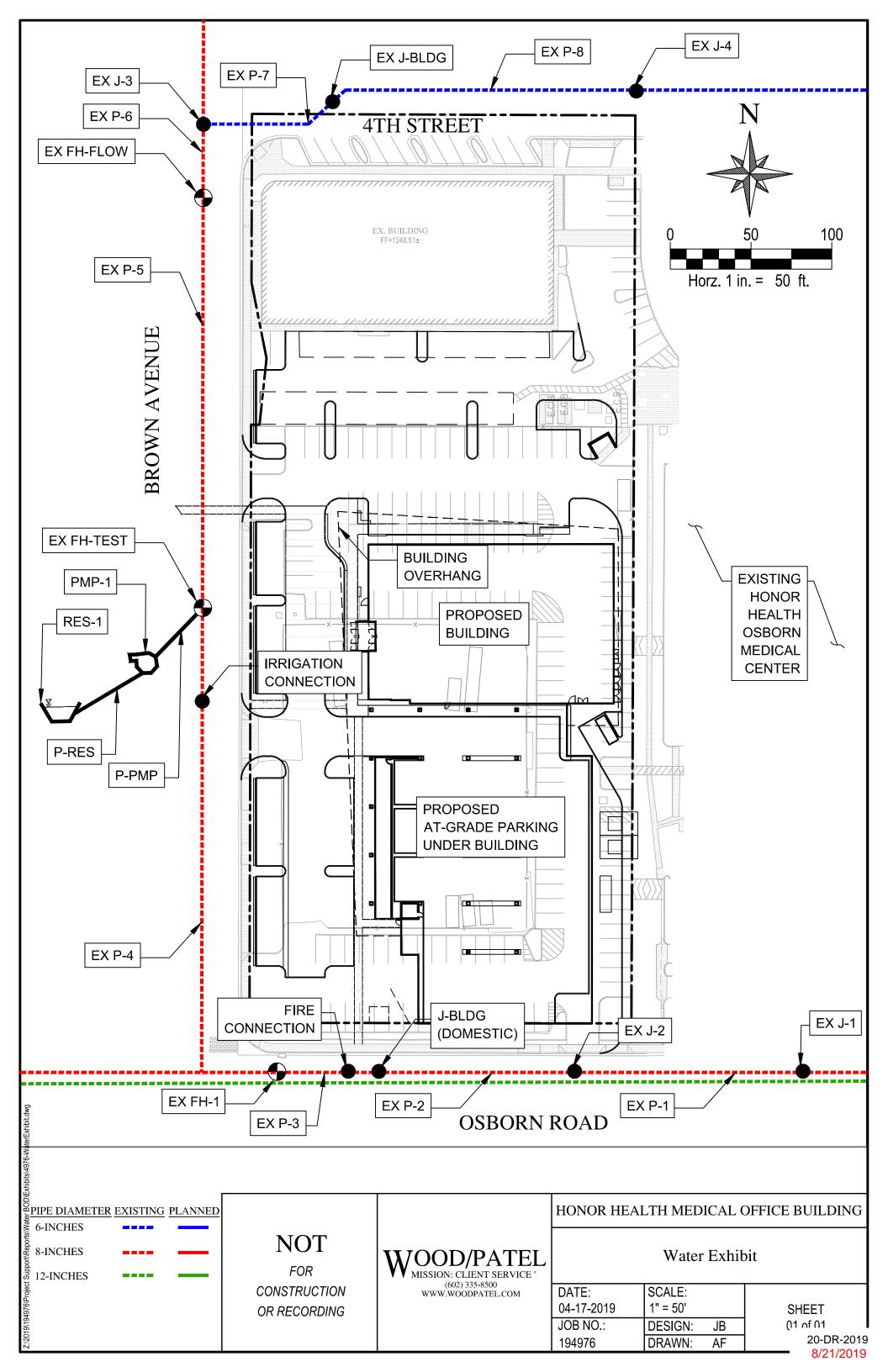
FlexTable: Junction Table

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,410.71	72
EX J-2	1,244.50	0	1,410.71	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-BLDG	1,245.00	342	1,410.71	72

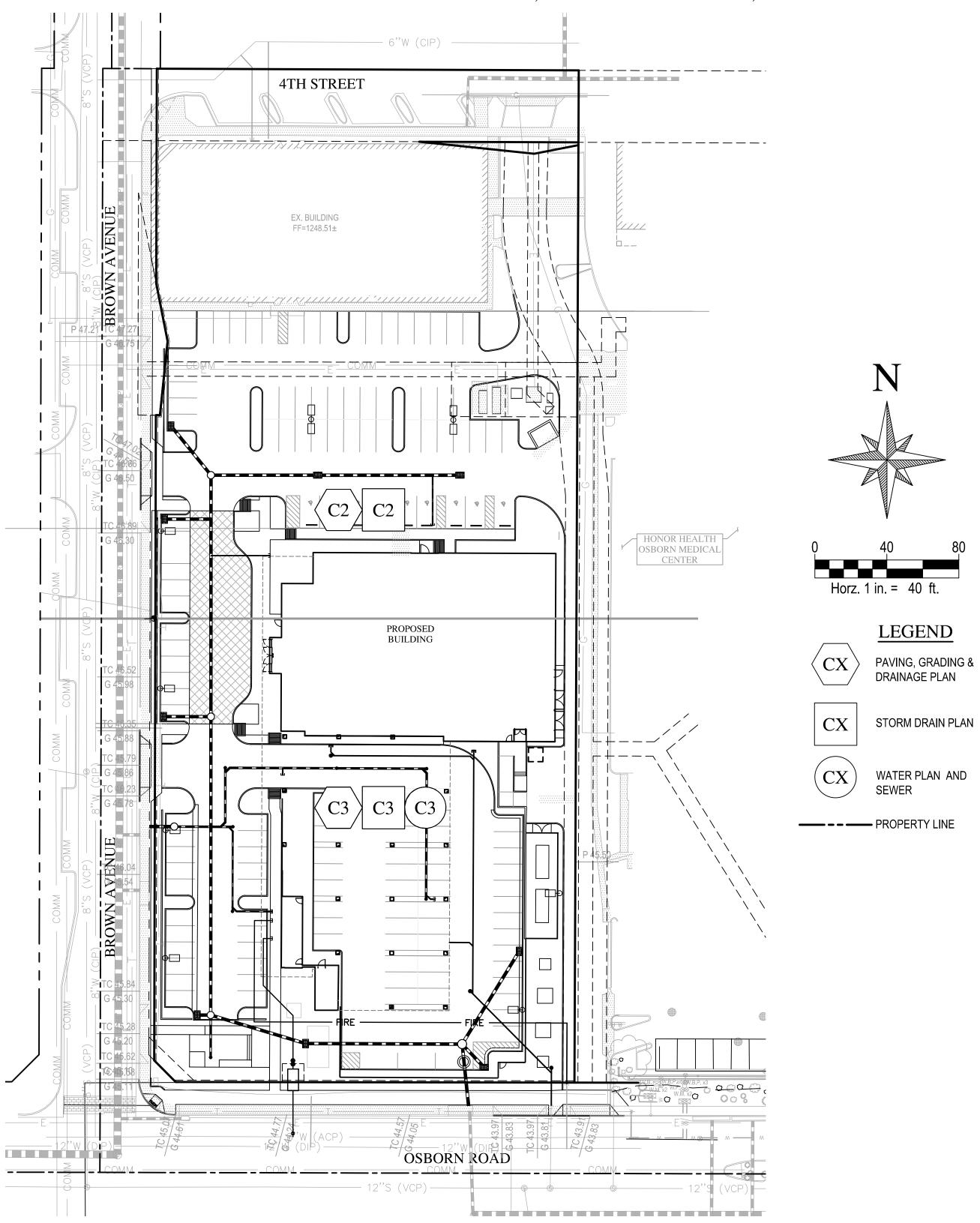
Active Scenario: Peak Hour


4976-WaterCAD.wtg 4/15/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

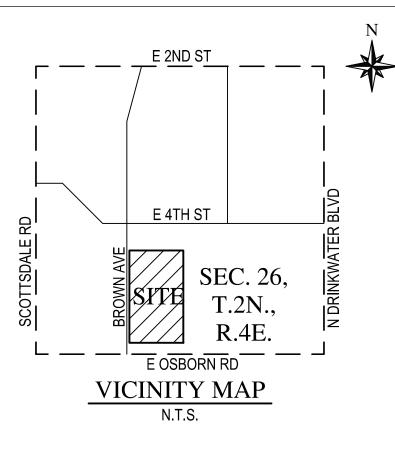
Fire Flow Node FlexTable: Fire Flow Report


Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Calculated Residual) (psi)	Junction w/ Minimum Pressure (System)	Hydraulic Grade (ft)
EX J-1	1,244.00	2,500	2,330	30	EX J-2	1,411.99
EX J-2	1,244.50	2,500	2,406	30	EX J-1	1,411.99
EX FH-1	1,245.00	2,500	2,690	30	J-BLDG	1,412.03
EX FH-FLOW	1,247.50	2,500	2,888	30	EX J-BLDG	1,412.33
EX J-3	1,248.00	2,500	2,792	30	EX J-BLDG	1,412.33
EX FH-TEST	1,246.50	2,500	3,685	31	EX J-BLDG	1,412.33
EX J-BLDG	1,248.00	2,500	2,276	30	EX J-4	1,412.33
EX J-4	1,247.00	2,500	1,718	30	EX J-BLDG	1,412.33
J-BLDG	1,245.00	2,695	2,799	30	EX J-2	1,411.99

Active Scenario: Max Day + Fire Flow


4976-WaterCAD.wtg 4/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1 VICINITY MAP

WATER EXHIBIT



HONORHEALTH NEUROSCIENCE INSTITUTE PRELIMINARY IMPROVEMENT PLAN 7400 E. OSBORN RD, SCOTTSDALE, AZ 85251 A PORTION OF THE SOUTHEAST 1/4 OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 4 EAST

OF THE GILA AND SALT RIVER MERIDIAN, MARICOPA COUNTY, ARIZONA

OWNER / DEVELOPER

HONOR HEALTH 2500 WEST UTOPIA ROAD PHOENIX, AZ 85027 CONTACT: PRESTON ALLRED PHONE: (480) 587-5085

ENGINEER

WOOD, PATEL & ASSOCIATES, INC. 1630 SOUTH STAPLEY DRIVE, SUITE 219 MESA, ARIZONA 85204 CONTACT: JOHN RITCHIE, P.E. PHONE: (602) 335-8500

ARCHITECT

NORRIS DESIGN 901 EAST MADISON STREET TEMPE, AZ 85281 CONTACT: JOEL THOMAS PHONE: (602)-254-9600

PROJECT SITE DATA

ASSESSOR PARCEL NUMBER(S): 130-22-128 PROJECT SITE ADDRESS: 7400 E. OSBORN RD, SCOTTSDALE AZ, 85251 PROJECT SITE AREA(S): NET AREA = 7.49 AC ZONING: D/M-2

SHEET INDEX

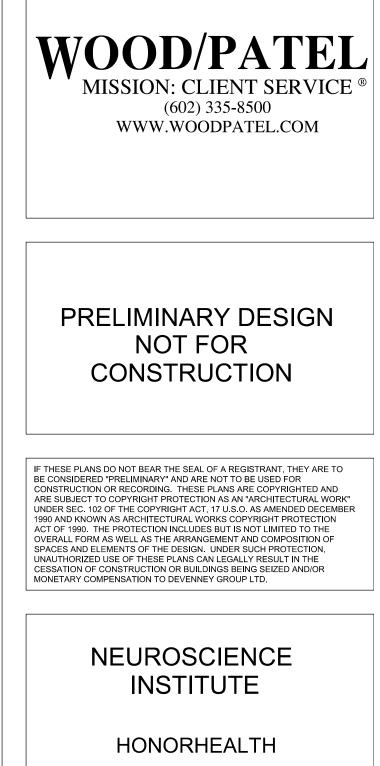
C1 COVER SHEET / SHEET INDEX C2-C3 PRELIMINARY IMPROVEMENT PLAN

LEGEND/ABBREVIATIONS

EXISTING SURVEY	PROPO	SED GRADING, DRAINAGE & PAVING
SECTION LINE	-	SLOPE ARROW
	F	PROPOSED WATER & SEWER
		Sewer LNE
	12'	W WATER LINE
- —— ROAD CENTERLINE		PLUG
— — — – EASEMENT	•	
🖻 🛆 🛛 SURVEY MARKER		
	Ē	
TELEPHONE		·
		STORM DRAIN PIPE
General GAS LINE	$ \ominus$	
S SEWER LINE		AREA LIGHT
V WATER LINE	A.L. C	CONCRETE ELEVATION
STORM DRAIN PIPE	C.B.	CATCH BASIN
SEWER MANHOLE	DE	DRAINAGE EASEMENT
STORM DRAIN MANHOLE	D.W.	DRYWELL
	E.O.L.	EDGE OF LANDSCAPE
NATURAL GROUND ELEVATION	J.B.	JUNCTION BOX
	FH	FIRE HYDRANT
	E.C.B.	ELECTRICAL CABINET BOX
TOP OF CURB ELEVATION	HW	HEAD WALL
JUNCTION BOX/RISER	INV	INVERT ELEVATION
FIRE HYDRANT	FF	FINISHED FLOOR ELEVATION
WATER VALVE	WE	WATER EASEMENT
STREET/PARKING LIGHT	LF88=	LOWEST FINISH FLOOR ELEVATION
	<u>TC 0.00</u>	
	<u>FG 0.00</u>	FINISH GRADE ELEVATION
	<u>, C 0.00</u> C.A	CONCRETE ELEVATION CROSS ACCESS
	E.S.A	EMERGENCY SERVICE ACCESS
	P.U.E	PUBLIC UTILITY EASEMENT
	U.E	UTILITY EASEMENT
	P.A.E	PUBLIC ACCESS EASEMENT
	S.S.T	SITE SAFETY TRIANGLE
	S.V.T	SITE VISIBILITY TRIANGLE

TW

TOP OF WALL



Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013

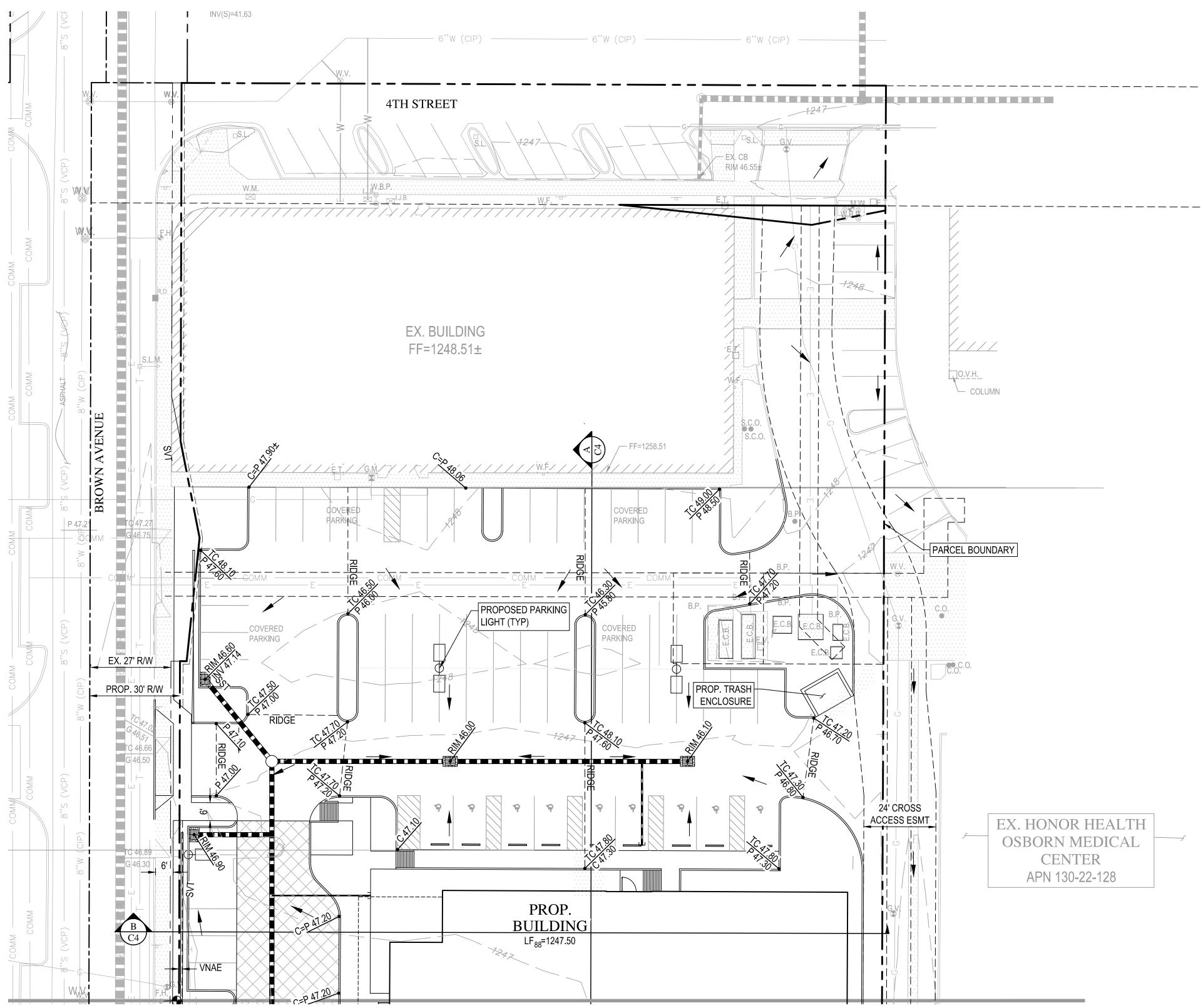
T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com

Consultant:

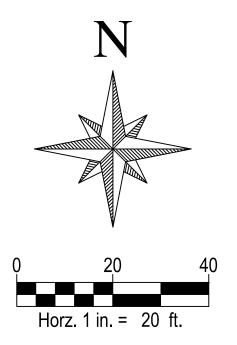
7400 E OSBORN RD, SCOTTSDALE, AZ 85251

AUTHORITY HAVING JURISDICTION: CITY OF SCOTTSDALE

AUTHORITY HAVING JURISDICTION'S PROJECT NO:

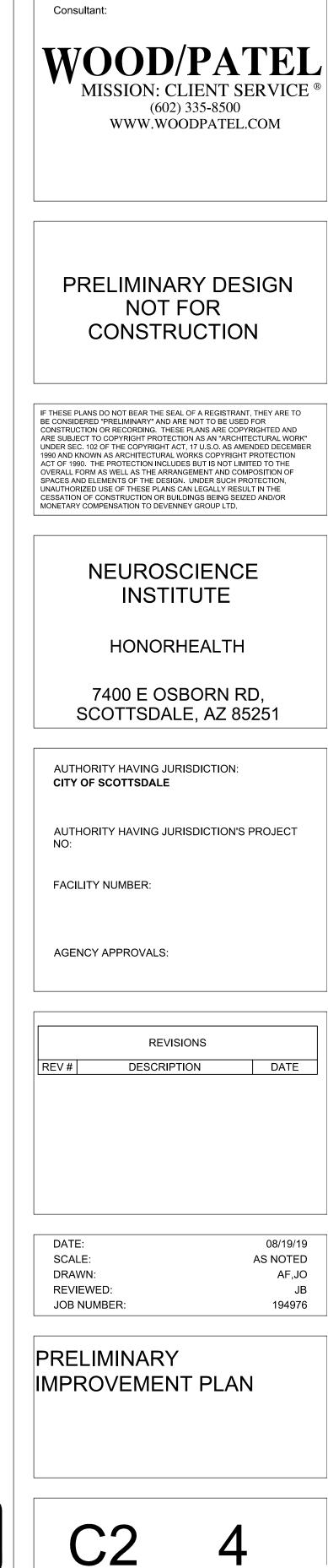

FACILITY NUMBER:

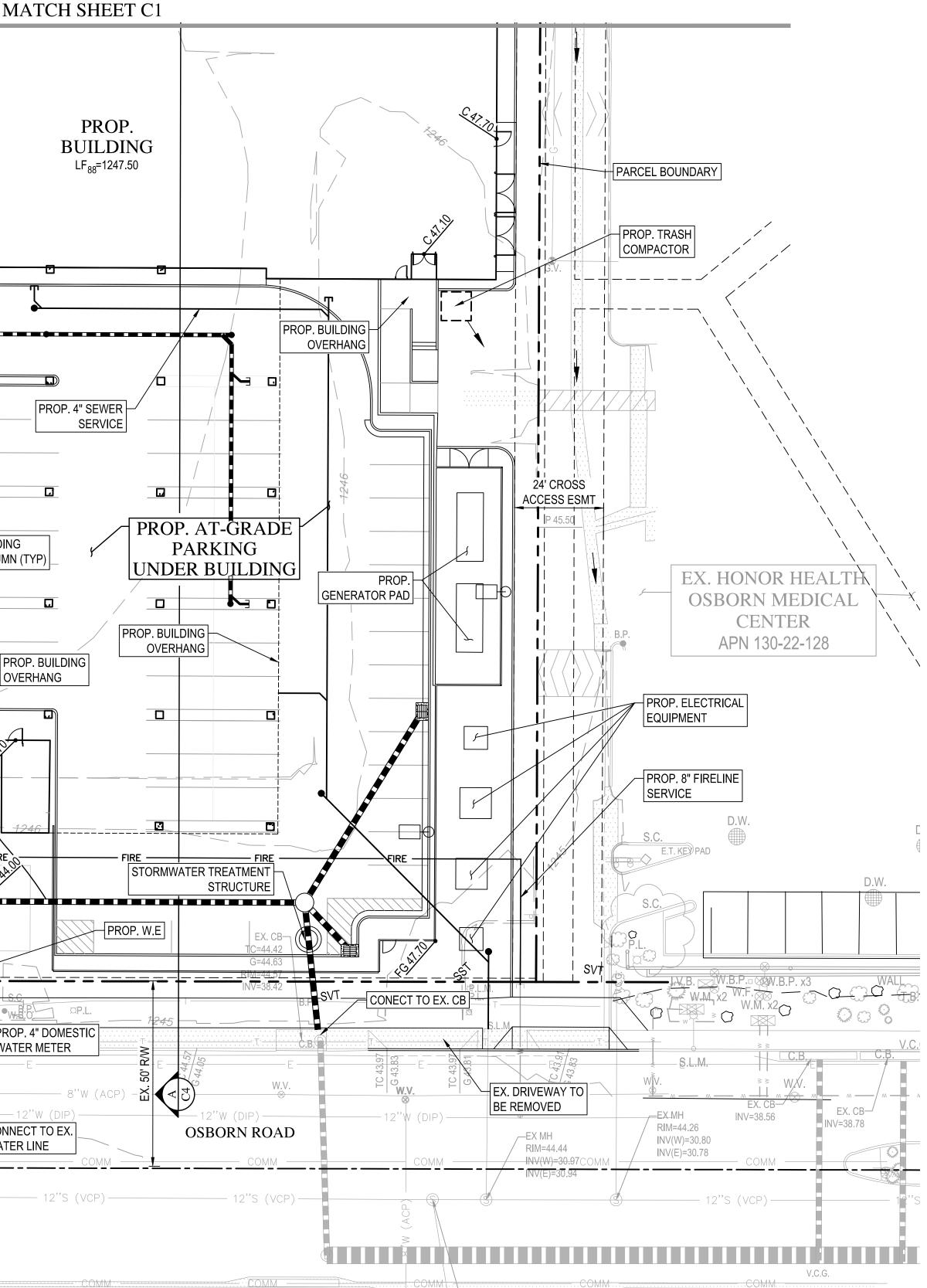
AGENCY APPROVALS:

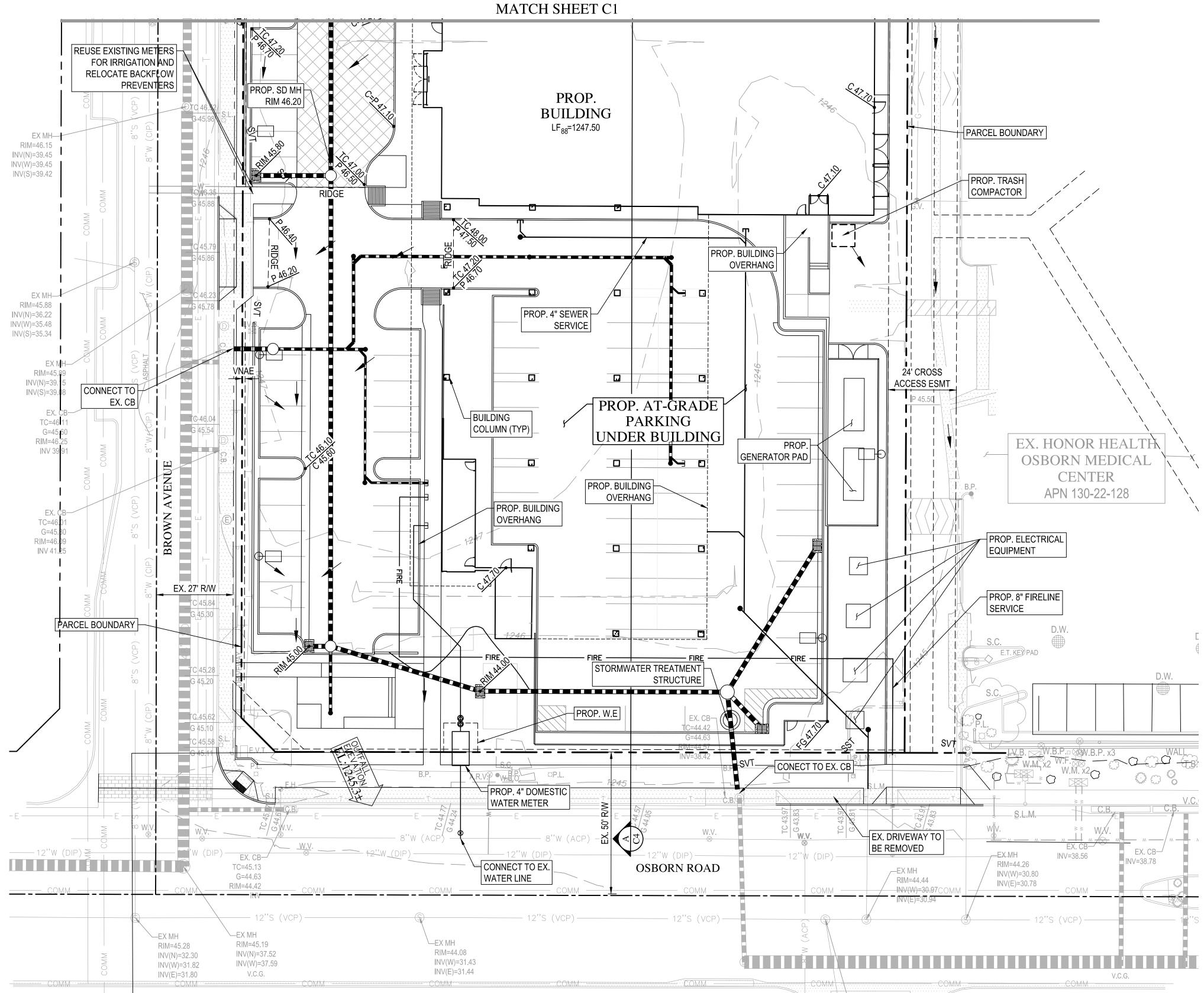

 \frown

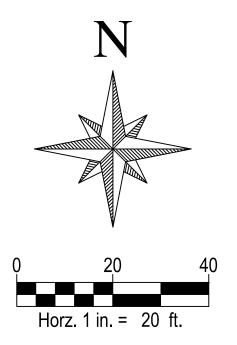
		
	REVISIONS	
REV #	DESCRIPTION	DATE
L		
DATE:		08/19/19
SCALE:		AS NOTED
DRAWN:		AF,JO
REVIEWE	D:	JB
JOB NUM	BER:	194976
COVE	R SHEET/	
SHEEL	- INDEX	

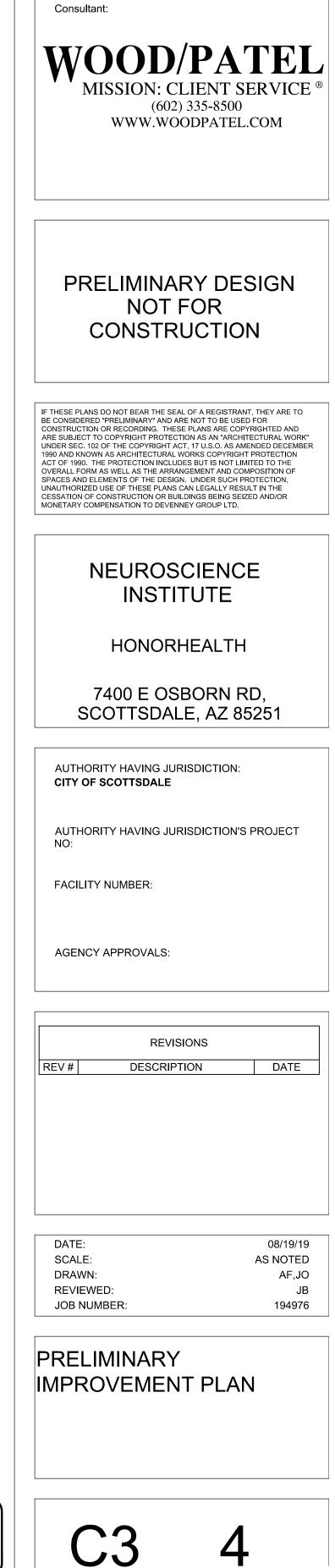
4


MATCH SHEET C2

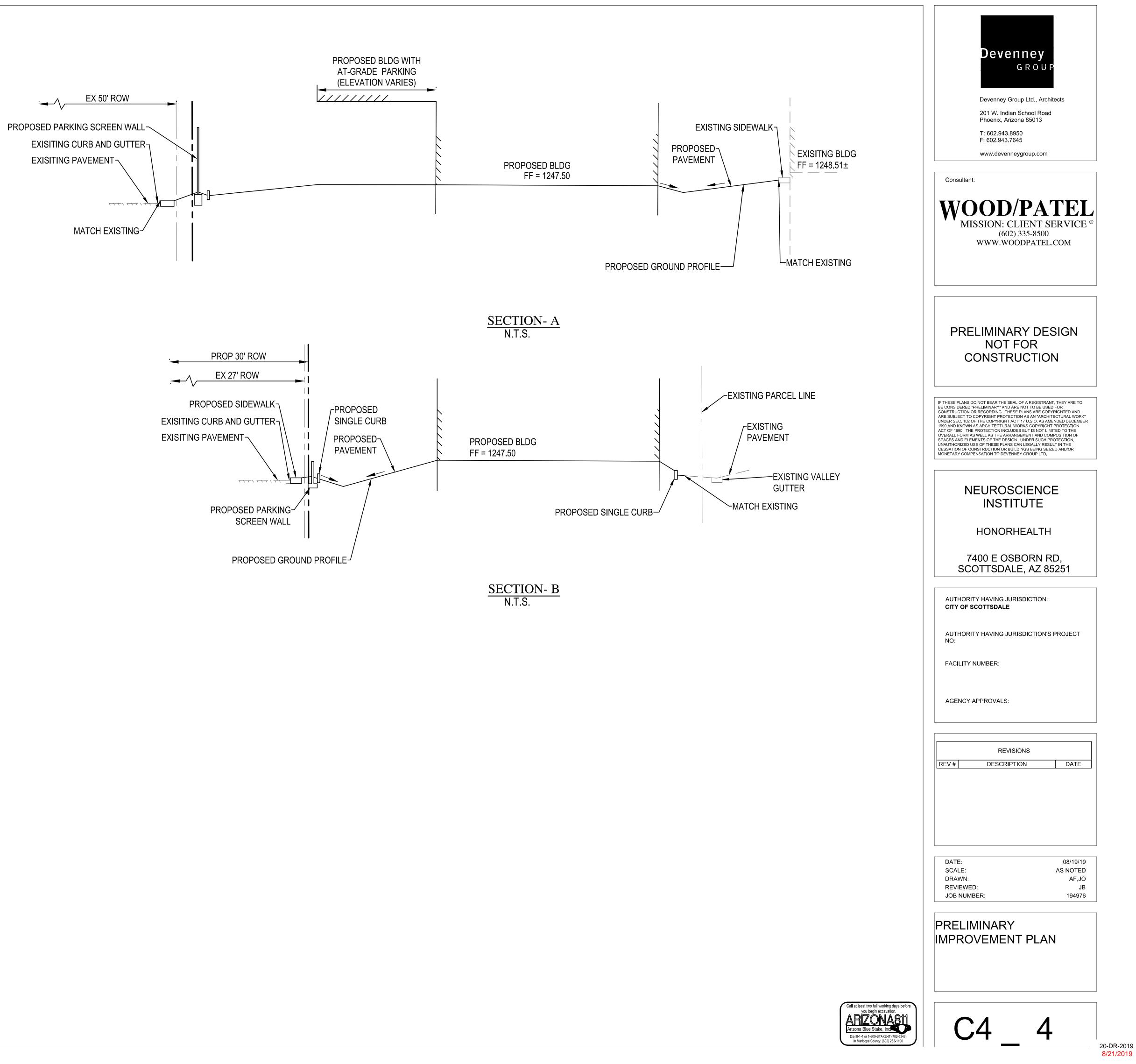



Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013


T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com



Devenney Group Ltd., Architects 201 W. Indian School Road Phoenix, Arizona 85013


T: 602.943.8950 F: 602.943.7645 www.devenneygroup.com

EX 50' ROW

EXISITING CURB AND GUTTER EXISITING PAVEMENT

FINAL WASTEWATER COLLECTION SYSTEM BASIS OF DESIGN REPORT FOR HONOR HEALTH NEUROSCIENCE INSTITUTE

August 19, 2019 WP# 194976

2051 W Northern Ave #100 Phoenix AZ 85021 P: 602.335.8500 F: 602.335.8580 www.woodpatel.com

Darrel E. Wood, PE, RLS Ashok C. Patel, PE, RLS, CFM Michael T. Young, PE, LEED AP James S. Campbell, PE, LEED GA Thomas R. Gettings, RLS Darin L. Moore, PE, LEED GA Jeffrey R. Minch, PE, CFM Robert D. Gofonia, PE, RLS August 19, 2019

Mr. Levi Dillion, PE Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

480.312.5319 Idillion@scottsdaleaz.gov

Re: Honor Health Neuroscience Institute Final Wastewater Collection System Basis of Design Report WP# 194976

Dear Mr. Dillion:

This Final Wastewater Collection System Basis of Design Report is prepared for Devenney Group Ltd., Architects and submitted to the City of Scottsdale. The proposed Honor Health Neuroscience Institute development (Site) is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the Site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian (refer to the attached *Vicinity Map*). The proposed 5-story office building is 117,000 square-feet and is anticipated to be outpatient only. Proposed improvements will include associated hardscape, parking, and landscaping.

Wastewater flowing from the Site will discharge to an 8-inch private sewer line on the south side of the proposed building. The 8-inch private sewer line will connect to an existing 8-inch stub south of the property and discharge into existing sewer main within Osborn. Per coordination with the City of Scottsdale, the existing sewer main will not have sufficient capacity at the time of project completion. An in-lieu-of construction payment to the City will be required proportional to the capacity impact and length of sewer impacted to Miller Road. Refer to the attached email from the Levi Dillion for a rough cost estimate. Final costs are to be determined by the Water Resources Department at a later date.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (WOODPATEL) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

٠	Average Day Wastewater Demand, Office:	0.4 gpd / sq. ft
	Peak Factor, Office:	
	Minimum Mean Full Flow Velocity:	
	Minimum Peak Full Flow Velocity:	
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	$d/D = 0.65$
	Abbreviations: gpd = gallons per day; fps = feet per second	

Based on the above design criteria, the projected average day flow for the proposed 117,000 square-foot Site is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Final Wastewater Collection System Basis of Design Report provided for the Honor Health Neuroscience Institute development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John "Gordy" Ritchie, PE Project Manager

JGR/se

Y:\WP\Reports\Commercial\194976 Honor Health Neuroscience Institute Final Wastewater BOD.docx

WOODPATEL Honor Health Neuroscience Institute August 19, 2019

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE* CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Neuroscience Institute

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Ritchie, P.E. 4/19/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	8" Se	wer Line	
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.05200	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.47	in
Flow Area		0.04	ft ²
Wetted Perimeter		0.52	ft
Hydraulic Radius		0.86	in
Top Width		0.43	ft
Critical Depth		0.23	ft
Percent Full		24.4	%
Critical Slope		0.00446	ft/ft
Velocity		5.84	ft/s
Velocity Head		0.53	ft
Specific Energy		0.65	ft
Froude Number		3.50	
Maximum Discharge		1.79	ft³/s
Discharge Full		1.66	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		24.45	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBditite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

8/12/2019 12:05:30 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

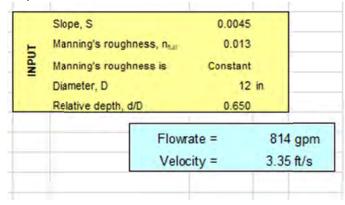
8" Sewer Line		
GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.47	in
Critical Depth	0.23	ft
Channel Slope	0.05200	ft/ft
Critical Slope	0.00446	ft/ft

From:	John "Gordy" Ritchie
Sent:	Wednesday, August 7, 2019 3:07 PM
То:	Aaron Fabian
Subject:	FW: Honor Health NSI MOB - Sewer Construction Fees
Follow Up Flag:	Follow up

Flag Status: Flagged

FYI for the Sewer BOD Report

John "Gordy" Ritchie, PE Project Manager


D: 602.336.7908 M: 520.907.7783 jritchie@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Thursday, July 25, 2019 7:19 PM
To: John "Gordy" Ritchie
Cc: Irene Clark (iclark@devenneygroup.com); Mars, Scott; Hayes, Eliana
Subject: RE: Honor Health NSI MOB - Sewer Construction Fees

Hello Mr. Ritchie,

Based on preliminary profile information the hydraulic design capacity of the new 12" Osborn sewer will be per below:

As a draft example only:

- New Osborn 12" parallel sewer cost: 3,000ft X \$400/ft= \$1.2M (note that a large portion of the sewer is 16 feet deep and there are many existing utilities, so the unit cost is only a placeholder as shown here).
- Length of new sewer impacted by this project: 2,220ft (2200/3000=74%)
- Portion of new 12" sewer peak capacity contributed by this development: 98gpm/ 814gpm = 12%
- Example of In-lieu capital cost attributable to the development: \$1.2M X 12% X 74%= \$107,000

Please note that the in-lieu cost portion will not be firmly set until the final cost basis of the project is set by Water Resources and the in-lieu amount is included in the respective agreement.

For the purposes of your basis of design report you can simply include this email as documentation within the report and clearly refer to it in the report text.

Hope this helps for now.

Levi C. Dillon, P.E. | Sr. Water Resources Engineer

"Water Sustainability through Stewardship, Innovation and People"

<u>Contact Info</u> Direct: (480) 312-5319 Main office: (480) 312-5685 Fax: (480) 312-5615 <u>Mailing/Office Address</u> Water Resources Administration 9379 E. San Salvador Dr. Scottsdale, AZ. 85258

Sending me an attachment over 5MB? Please use the link below: https://securemail.scottsdaleaz.gov/dropbox/ldillon@scottsdaleaz.gov

From: John "Gordy" Ritchie <<u>JRitchie@WoodPatel.com</u>>
Sent: Tuesday, July 23, 2019 10:37 AM
To: Dillon, Levi <<u>LDillon@Scottsdaleaz.gov</u>>
Cc: Irene Clark (<u>iclark@devenneygroup.com</u>) <<u>iclark@devenneygroup.com</u>>
Subject: Honor Health NSI MOB - Sewer Construction Fees

A EXTERNAL Email with links or attachments. Please use caution! Levi,

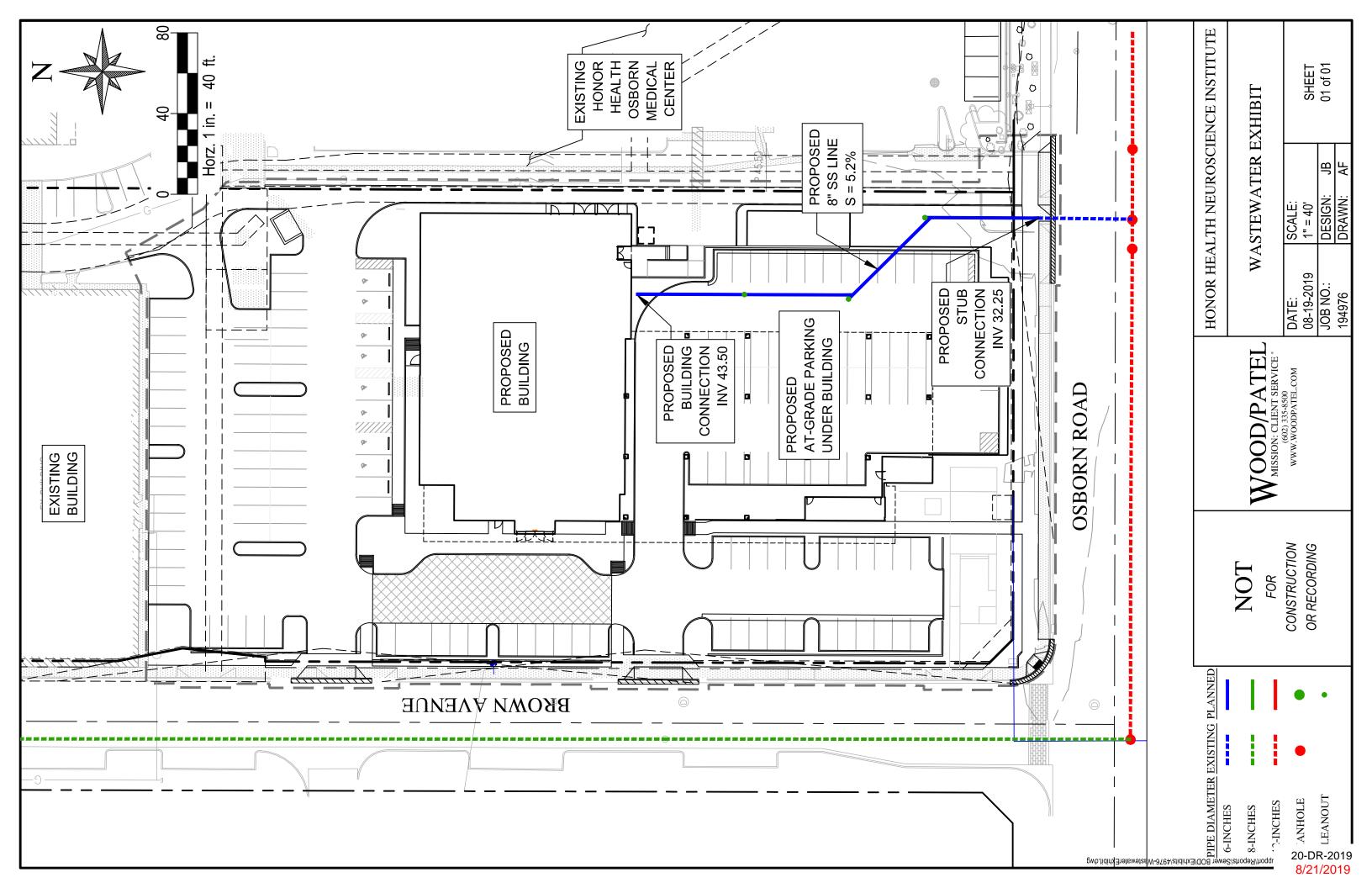
As requested, I wanted to follow up on our conversation this morning regarding the "in-lieu" construction fees as mentioned in your comments to our Wastwater BOD report. Per our discussion, I have the parameters for a rough estimate I can provide to the owner. However, we

would like to be able to get some more finalized fee parameters prior to our DRB resubmittal. Please let me know when you have some more firm numbers so we can provide an accurate calculation.

Thanks.

John "Gordy" Ritchie, PE Project Manager

D: 602.336.7908 M: 520.907.7783 jritchie@woodpatel.com www.woodpatel.com


IMPORTANT NOTICE: This e-mail message is intended to be received only by persons entitled to receive the confidential information it may contain. E-mail messages to clients of Wood/Patel may contain information that is confidential and legally privileged. Please do not read, copy, forward, or store this message unless you are an intended recipient of it. If you have received this message in error, please forward it to the sender and delete it completely from your computer system.

ELECTRONIC CORRESPONDENCE NOTICE: Please see <u>www.woodpatel.com/policies</u> for policies regarding this transmission.

VICINITY MAP

WASTEWATER EXHIBIT

FINAL WATER DISTRIBUTION SYSTEM BASIS OF DESIGN REPORT FOR HONOR HEALTH NEUROSCIENCE INSTITUTE

August 19, 2019 WP# 194976

2051 W Northern Ave #100 Phoenix AZ 85021 P: 602.335.8500 F: 602.335.8580 www.woodpatel.com

Darrel E. Wood, PE, RLS Ashok C. Patel, PE, RLS, CFM Michael T. Young, PE, LEED AP James S. Campbell, PE, LEED GA Thomas R. Gettings, RLS Darin L. Moore, PE, LEED GA Jeffrey R. Minch, PE, CFM Robert D. Gofonia, PE, RLS August 19, 2019

Mr. Levi Dillion, PE Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

480.312.5319 Idillion@scottsdaleaz.gov

Re: Honor Health Neuroscience Institute Final Water Distribution System Basis of Design Report WP# 194976

Dear Mr. Dillion:

This Final Water Distribution System Basis of Design Report is prepared for Devenney Group Ltd., Architects and submitted to the City of Scottsdale. The proposed Honor Health Neuroscience Institute development (Site) is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the Site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian (refer to the attached *Vicinity Map*). The proposed 5-story office building is 117,000 square-feet and is anticipated to be outpatient only. Proposed improvements will include associated hardscape, parking, and landscaping.

The Site has public waterline infrastructure on three (3) sides. There is one (1) 12inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue and one (1) 6-inch CIP water main in 4th Street. The Site proposes two (2) private water connections that utilize City of Scottsdale public waterline for domestic water to the existing public 8-inch waterline and fire protection that connect to the existing public 12-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached *Water Exhibit* for a depiction of the existing water infrastructure surrounding the Site.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (WOODPATEL) understanding of the requirements listed in the *City of Scottsdale Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

Average Day Water Demand, Office:	6 gpd*
Maximum Day Demand:	
Peak Hour Demand:	
Minimum Residual Pressure, Peak Hour:	50 psi
*	30 реі

 Maxir 	num System Pressure	
	num Pipe Head Loss, Maximum day Demand	
	num Pipe Head Loss, Peak Hour Demand	
	num Pipe Diameter, Public Water Line	

Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch *Includes both inside and outside use per Figure 6-1.2, COS Design Standards & Policies Manual

Domestic water service will be provided by a proposed 4-inch private waterline and a 4-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 8-inch fire line for an automatic fire-sprinkler service. Irrigation water service is anticipated to be provided by an existing 1-inch irrigation line.

The average day water demand for the proposed 117,000 square-foot Site is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached *Calculations*).

WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, were utilized to simulate the City of Scottsdale's water supply for the Site (refer to attached *Modeling Results*).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Site with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the Site, with 2,500-gpm fire hydrant flows during maximum day demand. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

At the request of the City of Scottsdale, WOODPATEL ran an additional scenario to model the pressures at the highest finished floor in the Fire Flow Scenario. Utilizing the headloss assumptions as included in the Design Standards and Policies Manual, we were unable to indicate that sufficient pressures at the highest finished floor were maintained in the fire flow condition. Additional investigation by the Fire Sprinkler designer will be required to confirm if a booster pump is needed.

Thank you for your review of the Final Water Distribution System Basis of Design Report provided for the Honor Health Neuroscience Institute project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John "Gordy" Ritchie, PE Project Manager

JGR/se

Y:\WP\Reports\Commercial\194976 Honor Health Neuroscience Institute Final Water BOD.docx

August 19, 2019

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Ritchie, P.E. Date: 4/19/2019

LAND USE AND	DWELLING U	NIT BREAKDO	WN BY JUNCTION														
HYDRAULIC	ELEVATION	PRESSURE	LAND USE	DWELLING	DEMAND VALUE	UNITS	AVERAG	GE DAILY D	DEMAND	MAX	MUM DAY DEM	IAND			PEAK	HOUR DEMA	
MODEL NODE	(ft)	ZONE	LAND USE	UNITS	DEMAND VALUE UNITS	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	
J-1	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6

Notes:

s: 1. Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 2. The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

	Project Name: Project Address: Client Project No.: Arizona Flow Testing Project Flow Test Permit No.: Date and time flow test condu Data is current and reliable un Conducted by: Witnessed by:	194976 No.: 19131 C57857 Intel: April 12, 201 October 12, 2 Floyd Vaugha	born Road, Scottsdale, Arizona 9 at 8:00 AM	(480-250-8154)			
	Raw Test Data	07 6 P.9	Data with 13 PSI Safety F		Scottsdale requires a maximum Static		
	Static Pressure: (Measured in pounds per squa	85.0 PSI are inch)	Static Pressure: (Measured in pounds per s	72.0 PSI quare inch)	Pressure of 72 PSI for AFES Design.		
	Residual Pressure: (Measured in pounds per squ	75.0 PSI are inch)	Residual Pressure: (Measured in pounds per s	62.0 PSI quare inch)			
	Pitot Pressure:	23.0 PSI					
	(Measured in pounds per squa	are inch)					
	Diffuser Orifice Diameter: One (Measured in inches)	e 4-inch Hose Monster	Distance between hydrants: Approx.: 290 feet Main size: Not Provided				
	Coefficient of Diffuser: .7875						
	Flowing GPM: (Measured in gallons per min	1,803 GPM ute)	Flowing GPM:	1,803 GPI	М		
	GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPI	м		
	Flow Test Location	Nort	h †				
FL			The second second	Legend L			
FIC	ow Fire Hydrant			Ea	st 4 th Street		
Pres	sure Fire Hydrant				roject Site ast Osborn Road		
Nort	th Brown Avenue			East	Osborn Road		
	Geogle Earth		Alter Statistics	No.			

Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona

Flow Test Location:	7242 E Osborn Road, Scottsdale AZ
Date of Flow Test:	April 12, 2019

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-1	1,245.00	0	1,412.70	73
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-1	1,245.00	0	1,389.70	63
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Flow

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-1	1,245.00	0	1,292.70	21
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Max

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

					-		
Label	Diameter	Start Node	Stop Node	Material	Hazen-Williams	Flow	Velocity
	(in)				Ĺ	(gpm)	(ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-98	0.62
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-1	1,245.00	98	1,412.50	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter	Start Node	Stop Node	Material	Hazen-Williams	Flow	Velocity
	(in)				С	(gpm)	(ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-195	1.25
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Max Day

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.98	73
EX J-2	1,244.50	0	1,411.98	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-1	1,245.00	195	1,411.98	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Max Day

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams	Flow (gpm)	Velocity (ft/s)
	(11)				C	(gpiii)	(143)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-342	2.18
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Peak Hour

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

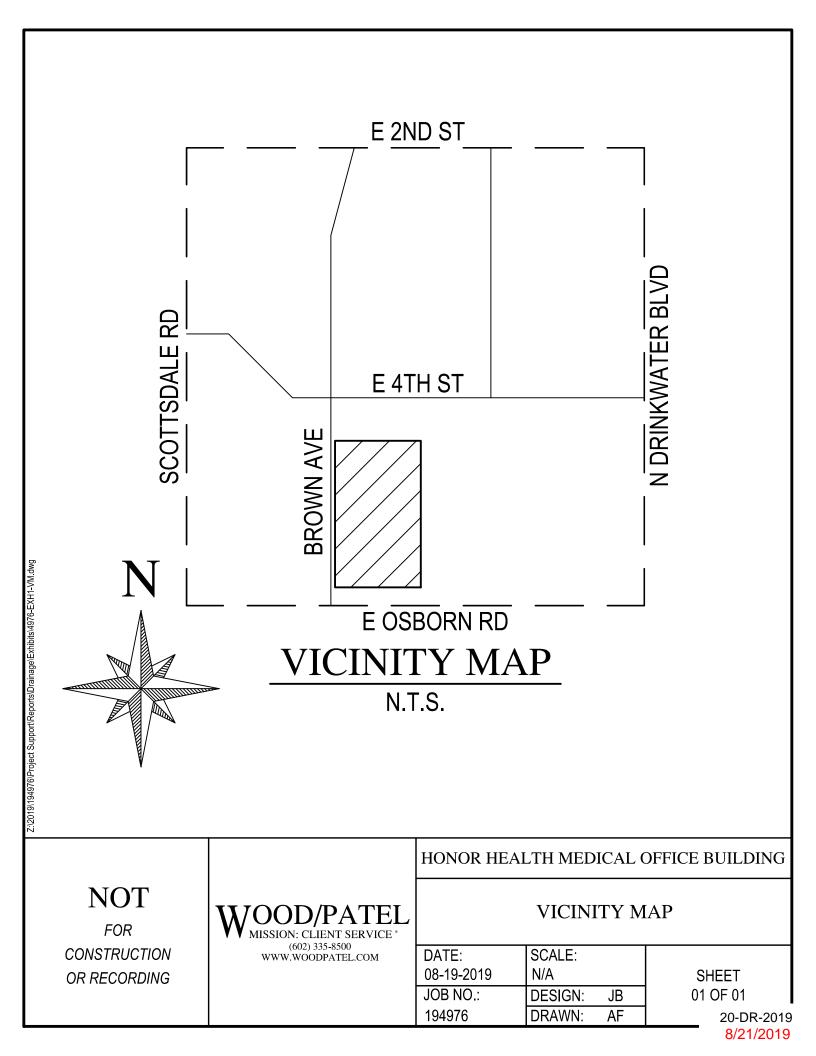
Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,410.66	72
EX J-2	1,244.50	0	1,410.66	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-1	1,245.00	342	1,410.66	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Peak Hour

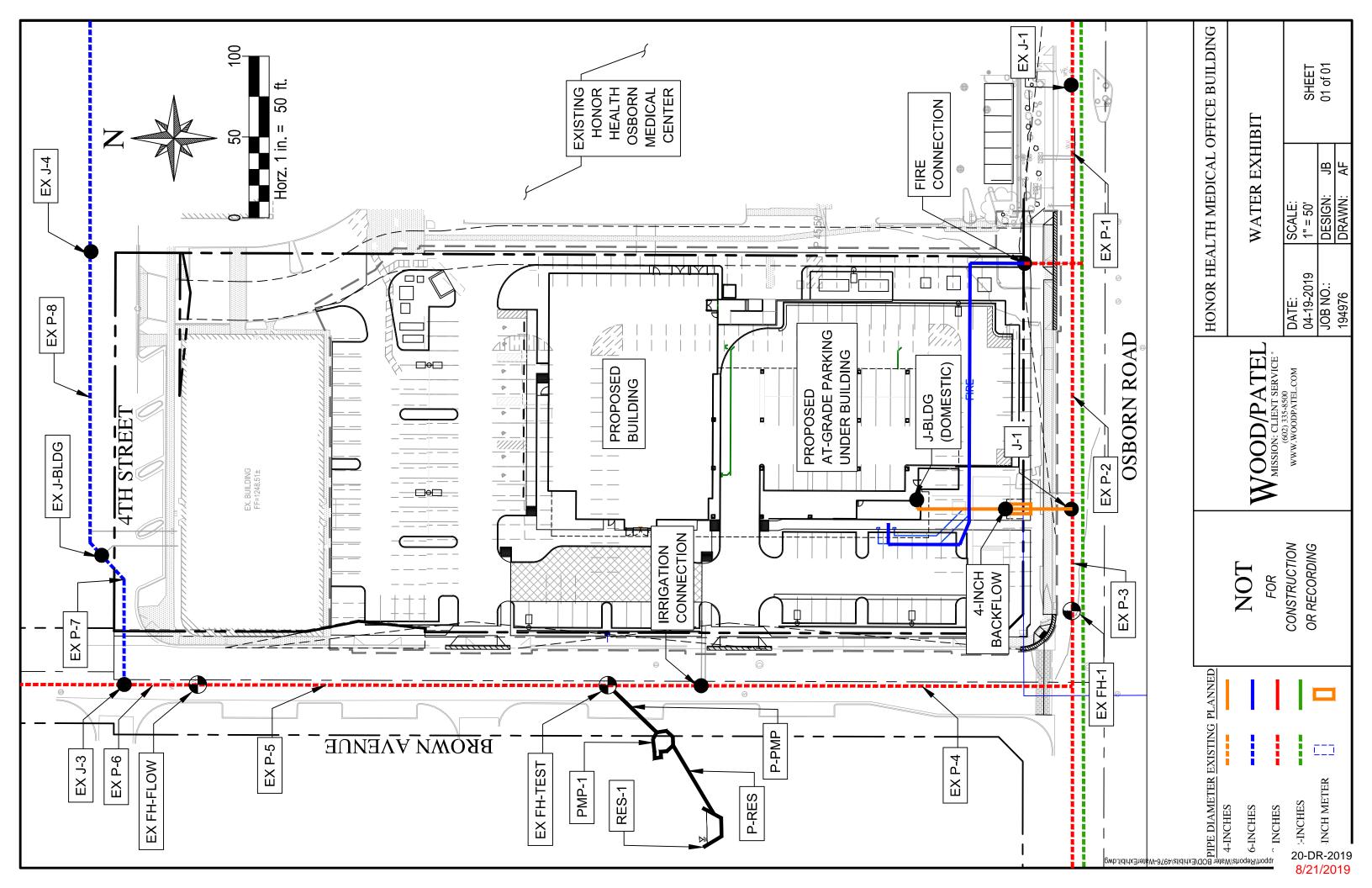
4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

	l l	Active Sce	nario: Ma	x Day + Fil	re Flow	
Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Hydraulic Grade (ft)
EX J-1	1,244.00	2,500	2,327	30	30	1,411.98
EX J-2	1,244.50	2,500	2,402	30	30	1,411.98
EX FH-1	1,245.00	2,500	2,690	30	30	1,412.03
EX FH-FLOW	1,247.50	2,500	2,888	30	30	1,412.33
EX J-3	1,248.00	2,500	2,792	30	30	1,412.33
EX FH-TEST	1,246.50	2,500	3,685	30	31	1,412.33
EX J-BLDG	1,248.00	2,500	2,276	30	30	1,412.33
EX J-4	1,247.00	2,500	1,718	30	30	1,412.33
J-1	1,245.00	2,695	2,764	30	30	1,411.98
J-BLDG	1,304.50	(N/A)	(N/A)	15	(N/A)	(N/A)

Fire Flow Node FlexTable: Fire Flow Report


4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: Model Scenario 3


Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,326.05	35
EX J-2	1,244.50	0	1,326.05	35
EX FH-1	1,245.00	2,500	1,326.10	35
EX FH-FLOW	1,247.50	0	1,364.21	50
EX J-3	1,248.00	0	1,364.21	50
EX FH-TEST	1,246.50	0	1,364.21	51
EX J-BLDG	1,248.00	0	1,364.21	50
EX J-4	1,247.00	0	1,364.21	51
J-1	1,245.00	0	1,326.05	35
J-BLDG	1,304.50	195	1,323.42	8

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

VICINITY MAP

WATER EXHIBIT

FINAL Basis of Design Report APPROVED APPROVED AS NOTED REVISE AND RESUBMIT	SCOTTSDALE SCOTTSDALE SCOTTSDALE B379 E San Salvador Dr. Scottsdale, A2 8528
Disclaimer: If approved; the approval is granted condition that the final construction documents si city review will match the information herein. Any changes in the water or sever design that materi design criteria or standards will require re-analys re-submittal, and approval of a revised basis of d prior to the plan review submission.; this approva guarantee of construction document acceptance. For questions or clarifications contact the Water Planning and Engineering Department at 480-31	ubmitted for subsequent ally impact is, lesign report al is not a Resources
BY Idillon DATE	9/24/2019

FINAL WATER DISTRIBUTION SYSTEM BASIS OF DESIGN REPORT FOR HONOR HEALTH NEUROSCIENCE INSTITUTE

August 19, 2019 WP# 194976 Round 2 comments LDillon 9/24/19

1) Verify that existing water service stub out is available and meets min 6-inch minimum requirement.

2) If meter is 3" or larger place in vault per COS detail 2345. 4-inch domestic meter proposed in text.

3) Meter needs to be in easement in visible, safe, and accessible location.

4) BFP needs to be in visible, safe, and accessible location.

FINAL WATER BOD CHECKLIST

Step	DS&PM Requirement	DS&PM Requirement Specifications	Name and Date 🗸
1	Design Policy	A Professional Engineer analyzed the new development's impact on the city's water system	\checkmark
	5. 1000 0	Table of contents	V
2	Final BOD Report Format	Maps and supporting materials are 11X17 and attached as an appendix	V .
	Guidelines	Reports are sealed, signed, and dated on the cover by a Professional Engineer	\checkmark
		Development's name, full address, and case number	V
	Papart Cover and Visinity Man	Developer/owner's name, address, and phone number	
3	Report Cover and Vicinity Map shall include:	Engineer or design firm's name, address, and phone number	\checkmark
	shall include:	The original BOD submittal date and any subsequent revision dates	V
		A map identifying the project's location, major cross streets and city quarter-section	\checkmark
		Summary of the proposed development including number of residential units, square	
4	Introduction	footages of non-residential developments, and related site improvements	V
		Summary of any previous development	
		Existing zoning and land use	
		Existing topography, vegetation, and landform features	
	Existing Conditions	Existing utilities in the vicinity	
5		Summary and attached results of recent certified hydrant flow test of existing water	\checkmark
		system List of existing site water meters including size, location, and use for fee credit purposes	
		Proposed connections to the city's water system and extension of any water lines	
6		Project's location within the appropriate water zone(s) and boundaries shown	
6	Proposed Conditions	Second sourcing for all water extensions when necessary	
		Required fire flow	
	Hydraulic Modeling	All relevant computations and hydraulic network diagrams listed for average day demand,	
7	Computations	peak hour demand, and maximum day demand	
8	Network Diagram	Shows all features and appurtenances related to the water distribution system	
		Summary of the proposed water improvements stating that all the city's design standards	
0	C	have been met or note why there is an exception	
9	Summary	Included a project schedule indicating proposed start and completion dates	
		Stated any intent to request a credit, oversize or payback agreement	
		Scaled site plan showing existing and proposed utility lines and improvements	
		Screen existing topography; labels existing and proposed contours	
10	Supporting Maps	Locations and sizes of meters, fire lines, hydrants	
		Labels and dimensions of property lines, right-of-ways, easement lines	
		Water boundary lines related to topography	

2051 W Northern Ave #100 Phoenix AZ 85021 P· 602 335 8500 F: 602.335.8580 www.woodpatel.com

Darrel E. Wood, PE, RLS Ashok C. Patel, PE, RLS, CFM Michael T. Young, PE, LEED AP James S. Campbell, PE, LEED GA Thomas R. Gettings, RLS Darin L. Moore, PE, LEED GA Jeffrey R. Minch, PE, CFM Robert D. Gofonia, PE, RLS August 19, 2019

Mr. Levi Dillion, PE Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

480.312.5319 Idillion@scottsdaleaz.gov

Re: **Honor Health Neuroscience Institute** Final Water Distribution System Basis of Design Report WP# 194976

Dear Mr. Dillion:

This Final Water Distribution System Basis of Design Report is prepared for Devenney Group Ltd., Architects and submitted to the City of Scottsdale. The proposed Honor Health Neuroscience Institute development (Site) is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the Site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian (refer to the attached Vicinity Map). The proposed 5story office building is 117,000 square-feet and is anticipated to be outpatient only. Proposed improvements will include associated hardscape, parking, and landscaping.

The Site has public waterline infrastructure on three (3) sides. There is one (1) 12inch DIP and one (1) 8-inch ACP water main in Osborn Road. There is one (1) 8-inch CIP water main in Brown Avenue and one (1) 6-inch CIP water main in 4th Street. The Site proposes two (2) private water connections that utilize City of Scottsdale public waterline for domestic water to the existing public 8-inch waterline and fire protection that connect to the existing public 12-inch waterline in Osborn Road. The existing irrigation meter will be reused. Refer to the attached Water Exhibit for a depiction of the existing water infrastructure surrounding the Site.

The design criteria used to estimate potable water demands and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (WOODPATEL) understanding of the requirements listed in the City of Scottsdale Design Standards and Policies Manual, 2018. The following is a summary of the primary design criteria utilized:

Average Day Water Demand, Office:	6 gpd*
Maximum Day Demand:	
Peak Hour Demand:	
Minimum Residual Pressure, Peak Hour:	50 psi
	30 реі

Your water exhibit shows 6"

- Minimum Pipe Diameter, Public Water Line
 8 inches

Abbreviations: gpd = gallons per day; sf = square feet; ADD = average day demand; psi = pounds per square inch *Includes both inside and outside use per Figure 6-1.2, COS Design Standards & Policies Manual

Domestic water service will be provided by a proposed 4-inch private waterline and a 4-inch domestic meter. Fire protection for the proposed building will be provided by one (1) proposed 8-inch fire line for an automatic fire-sprinkler service, Irrigation water service is anticipated to be provided by an existing 1-inch irrigation line.

The average day water demand for the proposed 117,000 square-foot Site is projected to be approximately 97.6 gallons per minute (gpm). Maximum day demands and peak hour demands are projected to be 195.2 gpm and 341.6 gpm, respectively (refer to the attached *Calculations*).

WaterCAD V8i, by Haestad Methods, was utilized to analyze the existing water distribution system and proposed improvements. Results from a fire hydrant flow test, conducted on April 12, 2019 by Arizona Flow Testing LLC, were utilized to simulate the City of Scottsdale's water supply for the Site (refer to attached *Modeling Results*).

The hydraulic modeling results indicate the proposed system is capable of delivering peak hour demands, totaling 342 gpm, to the proposed Site with pressures ranging from 71 to 72 pounds per square inch (psi). Fire flow results indicate residual pressures exceed 30 psi within the Site, with **2,500-gpm fire hydrant flows during maximum day demand**. Hydraulic modeling results, calculations, and exhibits involved in the water system analysis are attached.

At the request of the City of Scottsdale, WOODPATEL ran an additional scenario to model the pressures at the highest finished floor in the Fire Flow Scenario. Utilizing the headloss assumptions as included in the Design Standards and Policies Manual, we were unable to indicate that sufficient pressures at the highest finished floor were maintained in the fire flow condition. Additional investigation by the Fire Sprinkler designer will be required to confirm if a booster pump is needed.

Thank you for your review of the Final Water Distribution System Basis of Design Report provided for the Honor Health Neuroscience Institute project. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

if not met a domestic — booster pump may be needed

John "Gordy" Ritchie, PE Project Manager

JGR/se

Y:\WP\Reports\Commercial\194976 Honor Health Neuroscience Institute Final Water BOD.docx

August 19, 2019

CALCULATIONS AND HYDRAULIC MODELING RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WATER DEMAND DESIGN FLOWS

Project: Honor Health Medical Office Building Location: Scottsdale, Arizona References: City of Scottsdale Design Standards and Policies Manual (2018) Project Number: 194976 Project Engineer: John Ritchie, P.E. Date: 4/19/2019

LAND USE	AND DWELLING	UNIT BREAKDO	OWN BY JUNCTION														
HYDRAUL	IC ELEVATIO	C ELEVATION PRESSURE	RESSURE LAND USE I	DWELLING		UNITS	AVERA	GE DAILY [EMAND	MAXI	MUM DAY DEN	IAND			PEAK	HOUR DEMA	ND
MODEL NO	DE (ft)	ZONE		UNITS			(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)	Peaking Factor	(gpd)	(gpm)	Total (gpm)
J-1	1,245.00	-	Commercial (Office)	117,000	0.000834	gpm/sf	140,544.00	97.6	97.6	2.0	281,088.00	195.2	195.2	3.5	491,904.00	341.6	341.6
Total				117,000			140,544	97.6	97.6		281,088	195.2	195.2		491,904	341.6	341.6

Notes:

Per the City of Scottsdale Design Standards and Policies Manuel, dwelling units for an office building are measured in square feet.
 The proposed building water demand was estimated assuming 5th floor addition.

FIRE HYDRANT FLOW TEST

HYDRANT FLOW TEST REPORT

Project Name: Project Address: Client Project No.: Arizona Flow Testing Project N Flow Test Permit No.: Date and time flow test conduc Data is current and reliable un Conducted by: Witnessed by:	194976 No.: 19131 C57857 cted: April 12, 201 til: October 12, 2 Floyd Vaugha	born Road, Scottsdale, Arizona 9 at 8:00 AM	(480-250-8154)			
<u>Raw Test Data</u>		Data with 13 PSI Safety F	Scottsdale requires a maximum Static			
Static Pressure: (Measured in pounds per squa	85.0 PSI are inch)	Static Pressure: (Measured in pounds per s	72.0 PSI Pressure of 72 PSI			
Residual Pressure: (Measured in pounds per squa	75.0 PSI are inch)	Residual Pressure: (Measured in pounds per s	62.0 PSI square inch)			
Pitot Pressure:	23.0 PSI					
(Measured in pounds per squa	re inch)					
Diffuser Orifice Diameter: One (Measured in inches)	4-inch Hose Monster	Distance between hydrants: Approx.: 290 feet Main size: Not Provided				
Coefficient of Diffuser: .7875						
Flowing GPM: (Measured in gallons per minu	1,803 GPM ite)	Flowing GPM:	1,803 GPM			
GPM @ 20 PSI:	4,955 GPM	GPM @ 20 PSI:	4,392 GPM			
Flow Test Location	Nor	th 🕇				
Flow Fire Hydrant		a contraction	Legend			
			East 4th Street			
Pressure Fire Hydrant						
			Project Site 7242 East Osborn Road			
North Brown Avenue	the original second sec		East Osborn Road			

Arizona Flow Testing LLC 480-250-8154 www.azflowtest.com floyd@azflowtest.com

Project Number: 194976

Project Engineer: John Bulka, P.E.

EXISTING WATER SYSTEM PRESSURES

Project: Honor Health Medical Office Building **Location:** Scottsdale, Arizona

Flow Test Location:	7242 E Osborn Road, Scottsdale AZ
Date of Flow Test:	April 12, 2019

Pressure Hydrant

Static Pressure (psi) Residual Pressure (psi) Calculated Flow at 20 psi 72.0 62.0 4392 gpm

Flow Hydrant

Flow (gpm) Calculated Flow at 1803 20 psi

Notes:

1803

4392

1. Values provided from a flow test by the Arizona Flow Testing LLC

62.0

20

143.2

46.2

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.70	73
EX J-2	1,244.50	0	1,412.70	73
EX FH-1	1,245.00	0	1,412.70	73
EX FH-FLOW	1,247.50	0	1,412.70	71
EX J-3	1,248.00	0	1,412.70	71
EX FH-TEST	1,246.50	0	1,412.70	72
EX J-BLDG	1,248.00	0	1,412.70	71
EX J-4	1,247.00	0	1,412.70	72
J-1	1,245.00	0	1,412.70	73
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Static

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,389.70	63
EX J-2	1,244.50	0	1,389.70	63
EX FH-1	1,245.00	0	1,389.70	63
EX FH-FLOW	1,247.50	1,803	1,375.86	56
EX J-3	1,248.00	0	1,375.86	55
EX FH-TEST	1,246.50	0	1,389.70	62
EX J-BLDG	1,248.00	0	1,375.86	55
EX J-4	1,247.00	0	1,375.86	56
J-1	1,245.00	0	1,389.70	63
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Flow

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,292.70	21
EX J-2	1,244.50	0	1,292.70	21
EX FH-1	1,245.00	0	1,292.70	21
EX FH-FLOW	1,247.50	4,392	1,220.72	-12
EX J-3	1,248.00	0	1,220.72	-12
EX FH-TEST	1,246.50	0	1,292.70	20
EX J-BLDG	1,248.00	0	1,220.72	-12
EX J-4	1,247.00	0	1,220.72	-11
J-1	1,245.00	0	1,292.70	21
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Calibration-Max

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

					-		
Label	Diameter	Start Node	Stop Node	Material	Hazen-Williams	Flow	Velocity
	(in)				Ĺ	(gpm)	(ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	98	0.62
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	98	0.02
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	98	0.02
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-98	0.62
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,412.50	73
EX J-2	1,244.50	0	1,412.50	73
EX FH-1	1,245.00	0	1,412.52	72
EX FH-FLOW	1,247.50	0	1,412.60	71
EX J-3	1,248.00	0	1,412.60	71
EX FH-TEST	1,246.50	0	1,412.60	72
EX J-BLDG	1,248.00	0	1,412.60	71
EX J-4	1,247.00	0	1,412.60	72
J-1	1,245.00	98	1,412.50	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Average Day Demand

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlexTable: Pipe Table

Label	Diameter	Start Node	Stop Node	Material	Hazen-Williams	Flow	Velocity
	(in)				С	(gpm)	(ft/s)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	195	1.25
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	195	0.03
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	195	0.03
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-195	1.25
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Max Day

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Label	Elevation	Demand	Hydraulic Grade	Pressure
	(ft)	(gpm)	(ft)	(psi)
EX J-1	1,244.00	0	1,411.98	73
EX J-2	1,244.50	0	1,411.98	72
EX FH-1	1,245.00	0	1,412.03	72
EX FH-FLOW	1,247.50	0	1,412.33	71
EX J-3	1,248.00	0	1,412.33	71
EX FH-TEST	1,246.50	0	1,412.33	72
EX J-BLDG	1,248.00	0	1,412.33	71
EX J-4	1,247.00	0	1,412.33	72
J-1	1,245.00	195	1,411.98	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

Active Scenario: Max Day

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

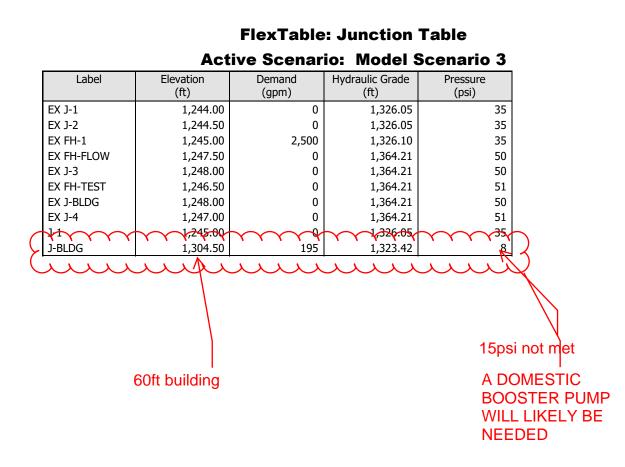
FlexTable: Pipe Table

Label	Diameter (in)	Start Node	Stop Node	Material	Hazen-Williams	Flow (gpm)	Velocity (ft/s)
	(11)				C	(gpiii)	(143)
EX P-1	8.0	EX J-1	EX J-2	Ductile Iron	130.0	0	0.00
EX P-6	8.0	EX FH-FLOW	EX J-3	Ductile Iron	130.0	0	0.00
EX P-4	8.0	EX FH-TEST	EX FH-1	Ductile Iron	130.0	342	2.18
EX P-5	8.0	EX FH-TEST	EX FH-FLOW	Ductile Iron	130.0	0	0.00
EX P-7	6.0	EX J-3	EX J-BLDG	Ductile Iron	130.0	0	0.00
EX P-8	6.0	EX J-BLDG	EX J-4	Ductile Iron	130.0	0	0.00
P-RES	48.0	RES-1	PMP-1	Ductile Iron	130.0	342	0.06
P-PMP	48.0	PMP-1	EX FH-TEST	Ductile Iron	130.0	342	0.06
EX P-2	8.0	EX J-2	J-1	Ductile Iron	130.0	0	0.00
EX P-3	8.0	J-1	EX FH-1	Ductile Iron	130.0	-342	2.18
P-1	4.0	J-1	J-BLDG	Ductile Iron	130.0	(N/A)	(N/A)

Active Scenario: Peak Hour

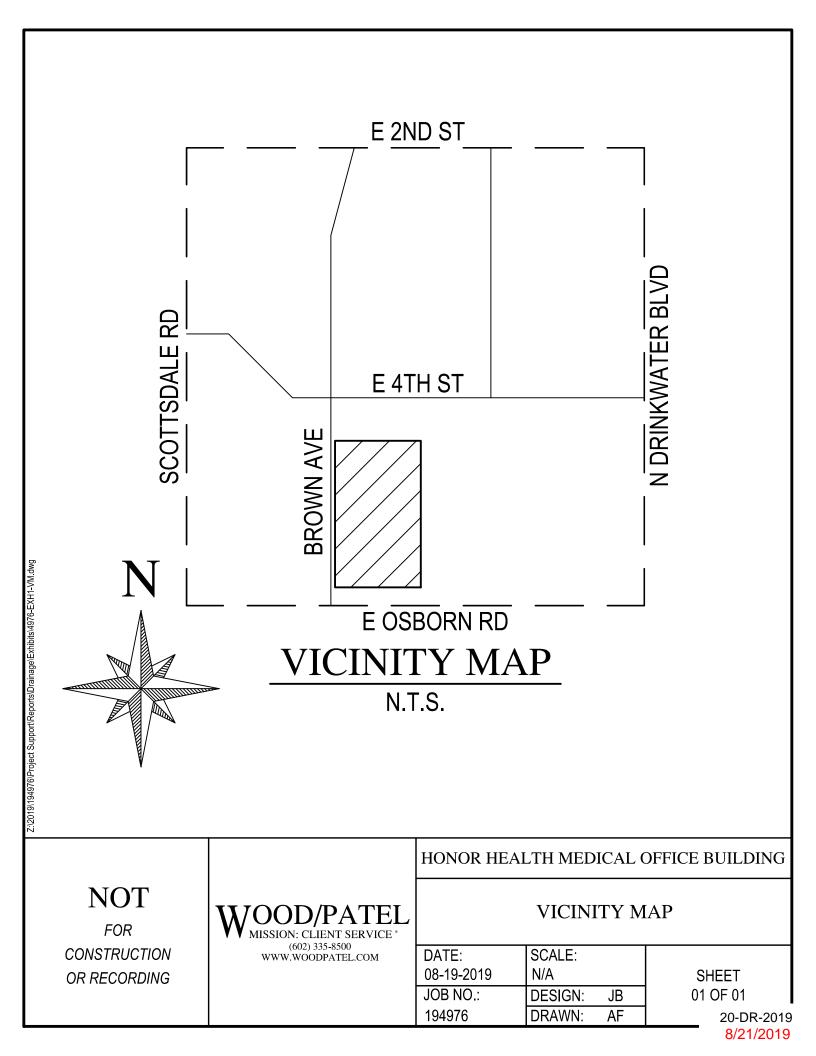
4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Label	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
EX J-1	1,244.00	0	1,410.66	72
EX J-2	1,244.50	0	1,410.66	72
EX FH-1	1,245.00	0	1,410.82	72
EX FH-FLOW	1,247.50	0	1,411.65	71
EX J-3	1,248.00	0	1,411.65	71
EX FH-TEST	1,246.50	0	1,411.65	71
EX J-BLDG	1,248.00	0	1,411.65	71
EX J-4	1,247.00	0	1,411.65	71
J-1	1,245.00	342	1,410.66	72
J-BLDG	1,304.50	(N/A)	(N/A)	(N/A)

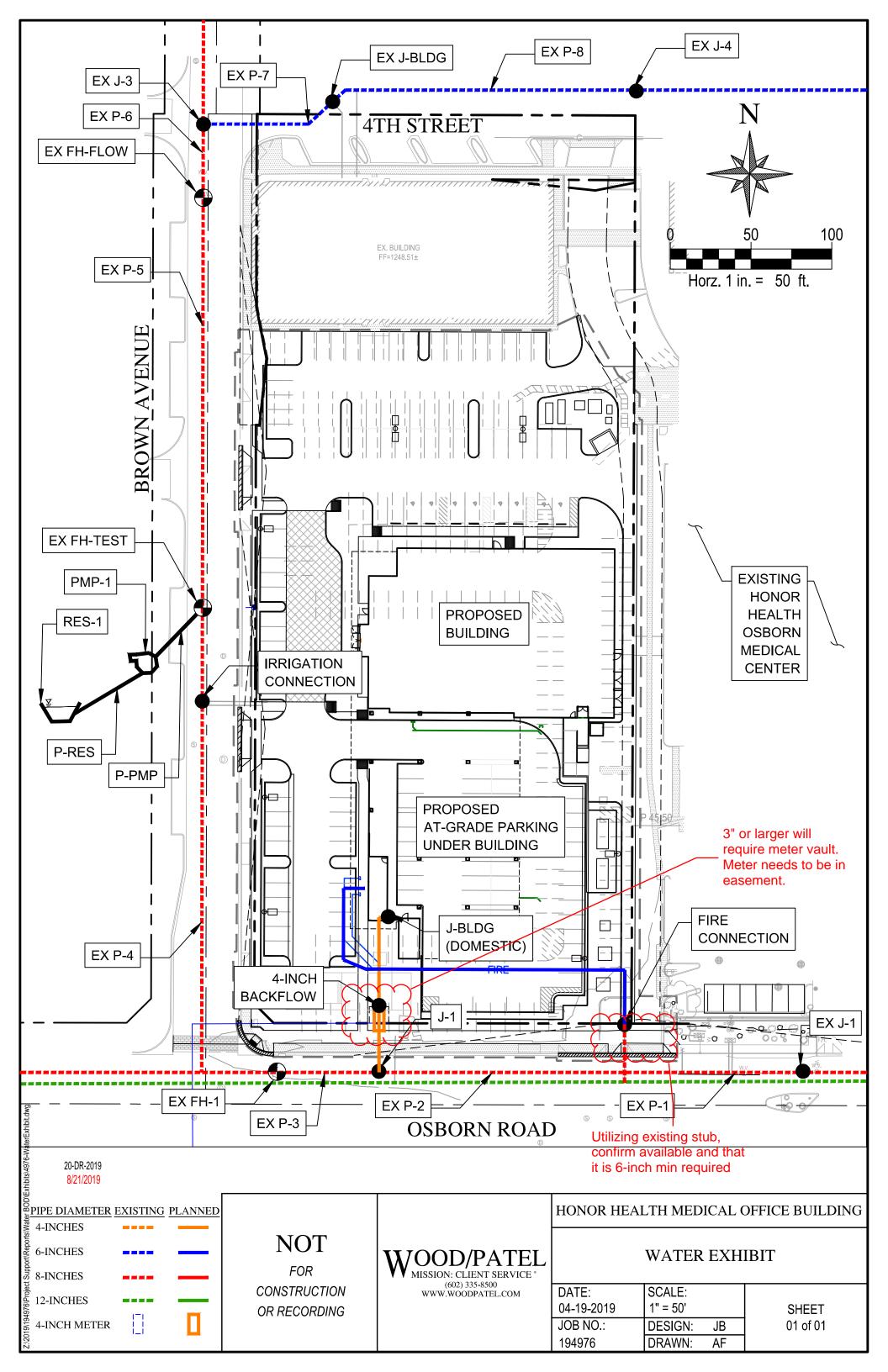

Active Scenario: Peak Hour

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

Active Scenario: Max Day + Fire Flow								
Label	Elevation (ft)	Flow (Total Needed) (gpm)	Flow (Total Available) (gpm)	Pressure (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)	Hydraulic Grade (ft)		
EX J-1	1,244.00	2,500	2,327	30	30	1,411.98		
EX J-2	1,244.50	2,500	2,402	30	30	1,411.98		
EX FH-1	1,245.00	2,500	2,690	30	30	1,412.03		
EX FH-FLOW	1,247.50	2,500	2,888	30	30	1,412.33		
EX J-3	1,248.00	2,500	2,792	30	30	1,412.33		
EX FH-TEST	1,246.50	2,500	3,685	30	31	1,412.33		
EX J-BLDG	1,248.00	2,500	2,276	30	30	1,412.33		
EX J-4	1,247.00	2,500	1,718	30	30	1,412.33		
J-1	1,245.00	2,695	2,764	30	30	1,411.98		
J-BLDG	1,304.50	(N/A)	(N/A)	15	(N/A)	(N/A)		


Fire Flow Node FlexTable: Fire Flow Report

4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666



4976-WaterCAD.wtg 8/16/2019 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD CONNECT Edition Update 1 [10.01.00.72] Page 1 of 1

VICINITY MAP

WATER EXHIBIT

WASTEWATER COLLECTION SYSTEM

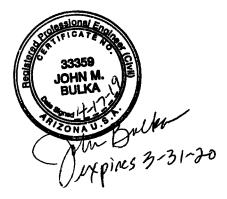
BASIS OF DESIGN REPORT

FOR

HONOR HEALTH

MEDICAL OFFICE BUIILDING

April 17, 2019 WP# 194976


Prepared For:

Prepared By:

Devenney Group Ltd., Architects Mr. Dudley Campbell 201 West Indian School Road Suite 102 Phoenix, Arizona 85013 Phone: (602) 943-7645

Submitted To: City of Scottsdale Mr. Levi Dillion, P.E. Water Resources Administration 9379 East San Salvador Drive Scottsdale, Arizona 85258 Phone: (480)-312-5319

> Wood, Patel & Associates, Inc. 2051 West Northern Avenue Suite 100 Phoenix, Arizona 85021 Phone: (602) 335-8500 Website: www.woodpatel.com

WOOD/PATEL MISSION: CLIENT SERVICE*

CIVIL ENGINEERS • HYDROLOGISTS • LAND SURVEYORS • CONSTRUCTION MANAGERS

Darrel E. Wood, P.E., R.LS. Ashok C. Patel, P.E., R.L.S., CFM Michael T. Young, P.E., LEED AP James S. Campbell, P.E., LEED GA Thomas R. Gettings, R.L.S. Darin L. Moore, P.E., LEED GA Jeffrey R. Minch, P.E., CFM Robert D. Gofonia, P.E., R.L.S. April 17, 2019

Mr. Levi Dillion, P.E. Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

Phone: (480)-312-5319 Email: ldillion@scottsdaleaz.gov

Re: Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report Scottsdale, Arizona WP# 194976

Dear Mr. Dillion:

The proposed Honor Health Medical Office Building development is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Road, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian. Refer to the attached *Vicinity Map* for the project location. The proposed 4-story office building will be 92,000 square feet (sf), with an option to add a 25,000-sf fifth floor. The proposed building is located at southeast corner of the site, with proposed parking lots on the north and west sides of the proposed building. At-grade parking will also be located under the south side of the building. The development will include associated hardscape and landscaping.

Wastewater flowing from the proposed Honor Health Medical Office Building will discharge to a 6-inch private sewer line on the west side of the proposed building. The 6-inch private sewer line discharges into the City of Scottsdale's existing public 8-inch VCP sewer line in Brown Avenue.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (Wood/Patel) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

•	Average Day Wastewater flows, Office:	0.4 gpd/sq. ft.
•	Peaking Factor, Office:	3
•	Minimum Mean Full Flow Velocity:	2.50 fps
•	Minimum Peak Full Flow Velocity:	10.0 fps
•	Minimum Peak Flow d/D Ratio (12" dia. Or less sewers):	d/D = 0.65
	Abbreviations: gpd = gallons per day; fps = feet per second	

Wood, Patel & Associates, Inc. 2051 West Northern Avenue, Suite 100 • Phoenix, Arizona 85021 • (602) 335-8500 • Fax (602) 335-8580

Page 2

Mr. Levi Dillion, P.E. City of Scottsdale Honor Health Medical Office Building Wastewater Collection System, Basis of Design Report WP# 194976

Based on the above design criteria, the projected average day flow for the proposed 117,000-sf Honor Health Medical Office Building project is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Wastewater Collection System Basis of Design Report provided for the Honor Health Medical Office Building development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John M. Bulka, P.E. Project Manager

JMB/km

Y:\WP\Reports\Commercial\194976 Honor Health Medical Office Building Wastewater Basis of Design Report.docx

WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL WMISSION: CLIENT SERVICE[®] CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Medical Office Building

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Bulka, P.E. 4/17/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	Proposed 6 "	Sewer Lir	ne (2.0%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02000	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.87	in
Flow Area		0.05	ft²
Wetted Perimeter		0.59	ft
Hydraulic Radius		1.06	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		31.2	%
Critical Slope		0.00445	ft/ft
Velocity		4.16	ft/s
Velocity Head		0.27	ft
Specific Energy		0.42	ft
Froude Number		2.18	
Maximum Discharge		1.11	ft³/s
Discharge Full		1.03	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		31.19	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

4/16/2019 8:47:27 AM

Proposed 6" Sewer Line (2.0%)

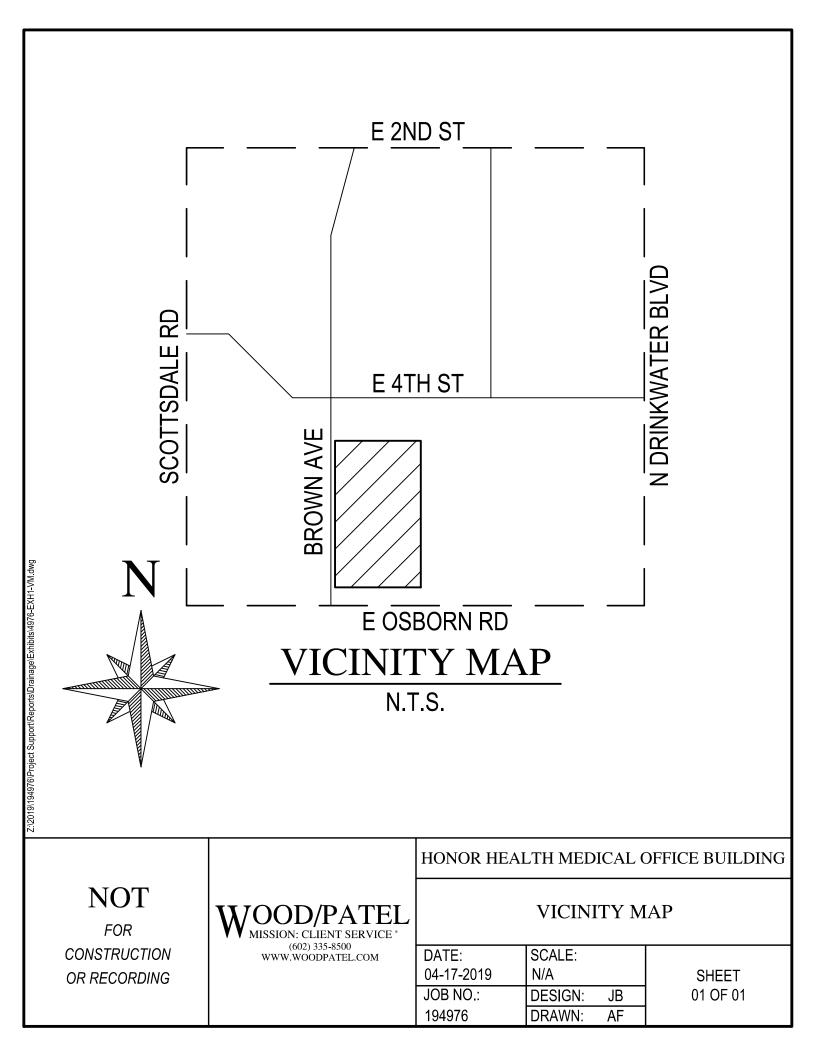
GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.87	in
Critical Depth	0.23	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.00445	ft/ft

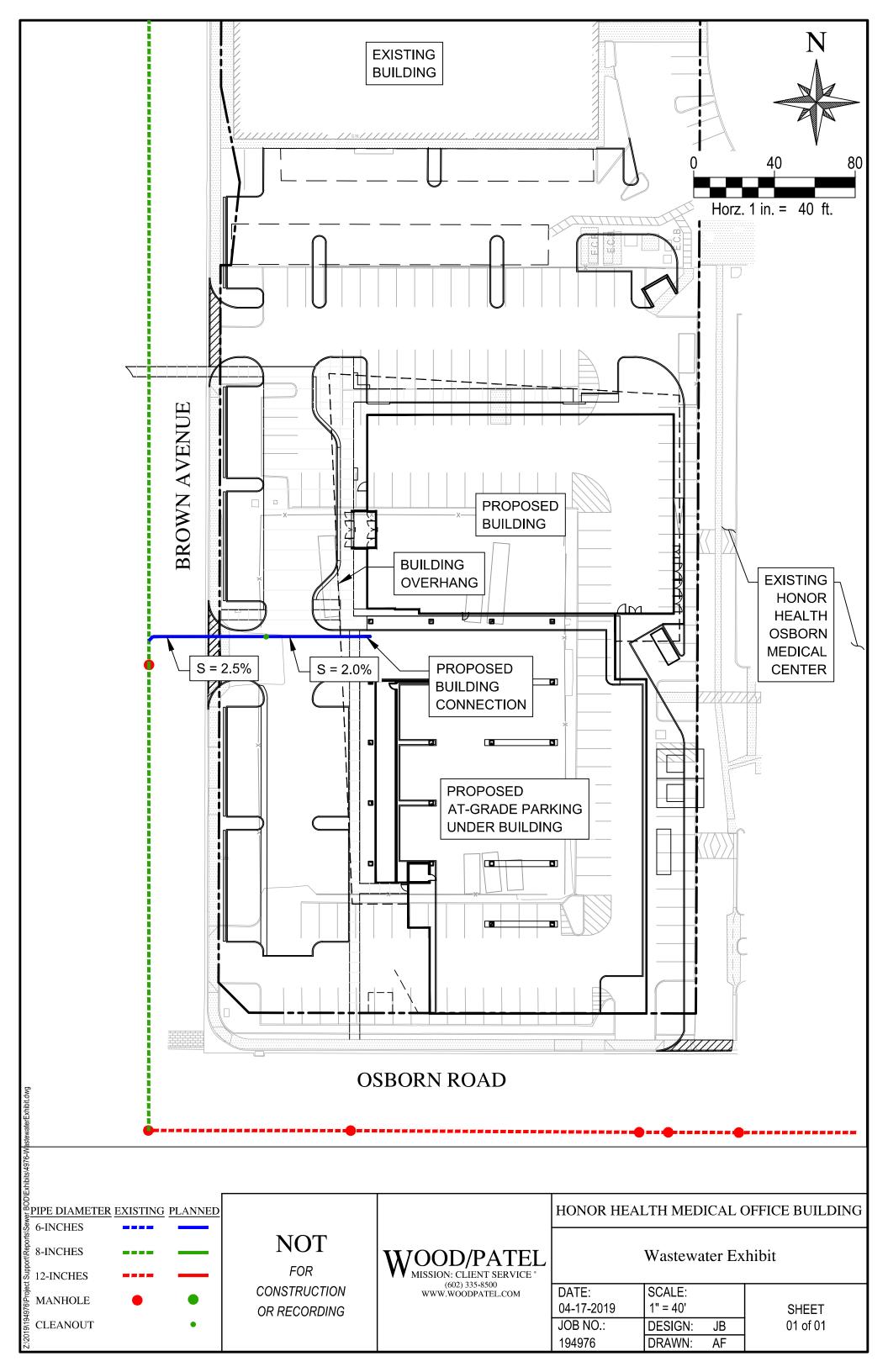
	Proposed 6"	Sewer Lir	ne (2.5%)
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010	
Channel Slope		0.02500	ft/ft
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.77	in
Flow Area		0.05	ft²
Wetted Perimeter		0.57	ft
Hydraulic Radius		1.01	in
Top Width		0.46	ft
Critical Depth		0.23	ft
Percent Full		29.4	%
Critical Slope		0.00446	ft/ft
Velocity		4.50	ft/s
Velocity Head		0.31	ft
Specific Energy		0.46	ft
Froude Number		2.44	
Maximum Discharge		1.24	ft³/s
Discharge Full		1.15	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		29.45	%
Downstream Velocity		Infinity	ft/s

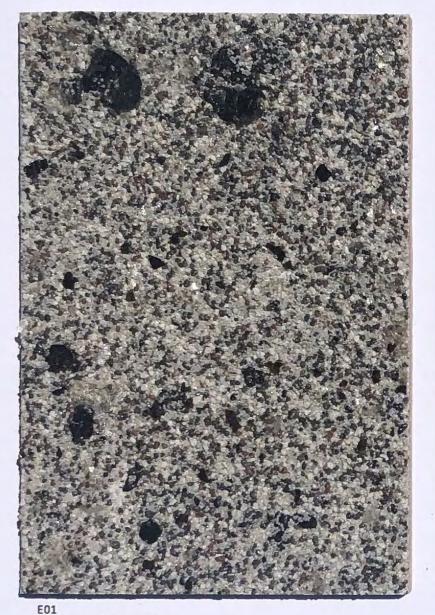
 Bentley Systems, Inc.
 Haestad Methods SoBditute @EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2


4/16/2019 8:45:16 AM

Proposed 6" Sewer Line (2.5%)


GVF Output Data


Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	in
Critical Depth	0.23	ft
Channel Slope	0.02500	ft/ft
Critical Slope	0.00446	ft/ft

VICINITY MAP

WASTEWATER EXHIBIT

PRODUCT: EIFS MANUFACTURER: DRYVIT FINISH: #200 GIBRALTAR TERRANEO M01

PRODUCT: METAL PANEL MANUFACTURER: PURE + FREEFORM FINISH: #MK-019

NEUROSCIENCE INSTITUTE

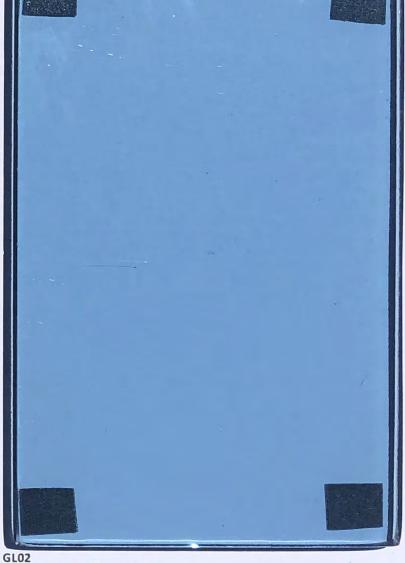
M02

PRODUCT: METAL PANEL MANUFACTURER: MORIN FINISH: BONE WHITE

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04:19:19

W:\635\63545 Honor Osborn Scottsdale MOB\7 Working Files\InDesign\190410_DRB EXTERIOR MATERIALS BOARD\190410_DRB EXTERIOR MATERIALS BOARD.indd

HONORHEALTH Devenney


PRODUCT: GLASS MANUFACTURER: VIRACON FINISH: VE3-2M, 1" INSULATING REFLECTIVITY: 6% EXTERIOR, 9% INTERIOR, 12% SOLAR

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04.19.19

GL01S

PRODUCT: SPANDREL GLASS **MANUFACTURER:** VIRACON **FINISH:**VE3-2M, 1" INSULATING WITH V175 HIGH OPACITY WHITE CERAMIC FRIT ON #4 SURFACE

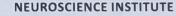
NEUROSCIENCE INSTITUTE

PRODUCT: GLASS MANUFACTURER: VIRACON FINISH: VUE 1-40 REFLECTIVITY: 15% EXTERIOR & INTERIOR, 27% SOLAR

EXTERIOR MULLION MANUFACTURER: ARCADIA FINISH: AB-7 STD. DARK BRONZE

EXTERIOR MULLION MANUFACTURER: ARCADIA FINISH: #11/CLEAR AC-2

PT01


EXTERIOR ELEVATION - WEST

PRODUCT: PAINT MANUFACTURER: SHERWIN WILLIAMS FINISH: SW 7069 IRON ORE GL02S

PRODUCT: GLASS SPANDREL MANUFACTURER: VIRACON FINISH: VUE1-40, 1" INSULATING, WITH V933 WARM GRAY #4

HONORHEALTH OSBORN 7400 E. OSBORN RD., SCOTTSDALE, AZ 85251 04.19.19

W:\635\63545 Honor Osborn Scottsdale MOB\7 Working Files\InDesign\190410_DRB EXTERIOR MATERIALS BOARD\190410_DRB EXTERIOR MATERIALS BOARD.indd

FINAL Basis of Design Report APPROVED	
APPROVED AS NOTED	
REVISE AND RESUBMIT	9379 E San Salvador Dr. Scottsdale, AZ 85258
Disclaimer: If approved; the approval is granted condition that the final construction documents s city review will match the information herein. Any changes in the water or sewer design that mater design criteria or standards will require re-analys re-submittal, and approval of a revised basis of prior to the plan review submission.; this approva guarantee of construction document acceptance For questions or clarifications contact the Water Planning and Engineering Department at 480-31	ubmitted for / subsequent ially impact is, lesign report al is not a Resources
BY Idillon DATE	9/24/2019

FINAL WASTEWATER COLLECTION SYSTEM BASIS OF DESIGN REPORT FOR HONOR HEALTH NEUROSCIENCE INSTITUTE

August 19, 2019 WP# 194976

Round 2 comments LDillon 9/24/19

 While it was initially questioned why the sewer was being routed to Brown the round 1 BOD comments stated that preferred sewer service line routing was indeed out to Brown as was shown. This was to avoid another connection for the new 12" Osborn sewer to deal with. If not large effort route to Brown.
 If utilizing existing sewer stub out, confirm available and that it is 6-inch min required.

3) An in-lieu agreement will need to be completed and executed prior to plan approval to cover the cost portion of the new parallel sewer. This shall be determined per the method outlined in my July 25th, 2019 email attached herein. The final cost basis shall be agreed upon with the Water Resources' Department and shall be based on the City design engineers' opinion of cost of the parallel sewer project or bids for similar City projects acceptable to Water Resources. STIPULATION

2051 W Northern Ave #100 Phoenix AZ 85021 P: 602.335.8500 F: 602.335.8580 www.woodpatel.com

Darrel E. Wood, PE, RLS Ashok C. Patel, PE, RLS, CFM Michael T. Young, PE, LEED AP James S. Campbell, PE, LEED GA Thomas R. Gettings, RLS Darin L. Moore, PE, LEED GA Jeffrey R. Minch, PE, CFM Robert D. Gofonia, PE, RLS August 19, 2019

Mr. Levi Dillion, PE Sr. Water Resources Engineer City of Scottsdale 9379 East San Salvador Drive Scottsdale, Arizona 85258

480.312.5319 Idillion@scottsdaleaz.gov

Re: Honor Health Neuroscience Institute Final Wastewater Collection System Basis of Design Report WP# 194976

material type

Dear Mr. Dillion:

This Final Wastewater Collection System Basis of Design Report is prepared for Devenney Group Ltd., Architects and submitted to the City of Scottsdale. The proposed Honor Health Neuroscience Institute development (Site) is a 3.30-acre site located at the northeast corner of Brown Avenue and Osborn Read, and is an expansion of the Honor Health Scottsdale Medical Center. More specifically, the Site is located in the northwest quarter of Section 26, Township 2 North, Range 4 East of the Gila and Salt River Meridian (refer to the attached *Vicinity Map*). The proposed 5-story office building is 117,000 square-feet and is anticipated to be outpatient only. Proposed improvements will include associated hardscape, parking, and landscaping.

Wastewater flowing from the Site will discharge to an 8-inch private sewer line on the south side of the proposed building. The 8-inch private sewer line will connect to an existing 8-inch stub south of the property and discharge into existing sewer main within Osborn. Per coordination with the City of Scottsdale, the existing sewer main will not have sufficient capacity at the time of project completion. An in-lieu-of construction payment to the City will be required proportional to the capacity impact and length of sewer impacted to Miller Road. Refer to the attached email from the Levi Dillion for a rough cost estimate. Final costs are to be determined by the Water Resources Department at a later date.

The design criteria used to estimate wastewater flows and evaluate system hydraulics are based on Wood, Patel & Associates, Inc.'s (WOODPATEL) understanding of the requirements listed in the City of Scottsdale's *Design Standards and Policies Manual*, 2018. The following is a summary of the primary design criteria utilized:

- <u>Minimum Peak Flow d/D Ratio (12</u> dia. Or less sewers):d/D =Abbreviations: gpd = gallons per day; fps = feet per second

Based on the above design criteria, the projected average day flow for the proposed 117,000 square-foot Site is approximately 44,800 gallons per day (gpd), or 33 gallons per minute (gpm). The peak flow is projected to be 140,400 gpd. The proposed sewer slopes, projected flow velocities, and pipe flow capacities are summarized on the attached spreadsheets.

It is assumed the infiltration and inflow from wet weather has been accounted for in the published design flow rates for the development and the maximum d/D. Therefore, those flows have not been added into the calculations. The proposed sanitary sewer collection system is designed to have adequate capacity to serve the proposed development.

Thank you for your review of the Final Wastewater Collection System Basis of Design Report provided for the Honor Health Neuroscience Institute development. Feel free to contact me if you have any questions.

Sincerely,

Wood, Patel & Associates, Inc.

John "Gordy" Ritchie, PE Project Manager

JGR/se

Y:\WP\Reports\Commercial\194976 Honor Health Neuroscience Institute Final Wastewater BOD.docx

WOODPATEL Honor Health Neuroscience Institute August 19, 2019

20-DR-2019 8/21/2019 WASTEWATER DESIGN FLOWS & FLOWMASTER RESULTS

WOOD/PATEL MISSION: CLIENT SERVICE* CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

TABLE 1 - WASTEWATER DESIGN FLOWS

Project: Honor Health Neuroscience Institute

Location: Scottsdale, Arizona

References: City of Scottsdale Design Standards and Policies Manual (2018)

Project Number: 194976 Project Manager: John Ritchie, P.E. 4/19/2019 Date:

UPSTREAM NODE	DOWNSTREAM NODE	APPLICABLE UNIT	NUMBER OF UNITS	ADF/ APPLICABLE UNIT (GPD) ¹	TOTAL ADF (GPD)	PEAKING FACTOR ²	PEAK FLOW (GPD)	TOTAL ADF (GPM)	PEAK FLOW (GPM)
Building Connection 1	Privite Sewer Connection	SF	117,000	0.4	46,800	3.00	140,400	33	98
Total					46,800		140,400	33	98

Average Daily Flow Demand based upon office building square footage per City of Scottsdale Design Standards and Policies Manual (2018)
 Peaking Factor per City of Scottsdale Design Standards and Policies Manual (2018)

	8" Se	wer Line	
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.010) 0.013
Channel Slope		0.05200	1/ft 0.013
Diameter		6.00	in
Discharge		140400.00	gal/day
Results			
Normal Depth		1.47	in
Flow Area		0.04	ft²
Wetted Perimeter		0.52	ft
Hydraulic Radius		0.86	in
Top Width		0.43	ft
Critical Depth		0.23	ft
Percent Full		24.4	%
Critical Slope		0.00446	ft/ft
Velocity		5.84	ft/s
Velocity Head		0.53	ft
Specific Energy		0.65	ft
Froude Number		3.50	
Maximum Discharge		1.79	ft³/s
Discharge Full		1.66	ft³/s
Slope Full		0.00089	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		24.45	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SoBditite CEnterMaster V8i (SELECTseries 1) [08.11.01.03]

8/12/2019 12:05:30 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

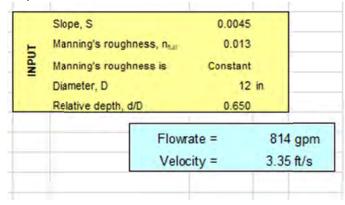
8" Sewer Line				
GVF Output Data				
Upstream Velocity	Infinity	ft/s		
Normal Depth	1.47	in		
Critical Depth	0.23	ft		
Channel Slope	0.05200	ft/ft		
Critical Slope	0.00446	ft/ft		

From:	John "Gordy" Ritchie
Sent:	Wednesday, August 7, 2019 3:07 PM
То:	Aaron Fabian
Subject:	FW: Honor Health NSI MOB - Sewer Construction Fees
Follow Up Flag:	Follow up

Flag Status: Flagged

FYI for the Sewer BOD Report

John "Gordy" Ritchie, PE Project Manager


D: 602.336.7908 M: 520.907.7783 jritchie@woodpatel.com www.woodpatel.com

From: Dillon, Levi [mailto:LDillon@Scottsdaleaz.gov]
Sent: Thursday, July 25, 2019 7:19 PM
To: John "Gordy" Ritchie
Cc: Irene Clark (iclark@devenneygroup.com); Mars, Scott; Hayes, Eliana
Subject: RE: Honor Health NSI MOB - Sewer Construction Fees

Hello Mr. Ritchie,

Based on preliminary profile information the hydraulic design capacity of the new 12" Osborn sewer will be per below:

As a draft example only:

- New Osborn 12" parallel sewer cost: 3,000ft X \$400/ft= \$1.2M (note that a large portion of the sewer is 16 feet deep and there are many existing utilities, so the unit cost is only a placeholder as shown here).
- Length of new sewer impacted by this project: 2,220ft (2200/3000=74%)
- Portion of new 12" sewer peak capacity contributed by this development: 98gpm/ 814gpm = 12%
- Example of In-lieu capital cost attributable to the development: \$1.2M X 12% X 74%= \$107,000

Please note that the in-lieu cost portion will not be firmly set until the final cost basis of the project is set by Water Resources and the in-lieu amount is included in the respective agreement.

For the purposes of your basis of design report you can simply include this email as documentation within the report and clearly refer to it in the report text.

Hope this helps for now.

Levi C. Dillon, P.E. | Sr. Water Resources Engineer

"Water Sustainability through Stewardship, Innovation and People"

<u>Contact Info</u> Direct: (480) 312-5319 Main office: (480) 312-5685 Fax: (480) 312-5615 <u>Mailing/Office Address</u> Water Resources Administration 9379 E. San Salvador Dr. Scottsdale, AZ. 85258

Sending me an attachment over 5MB? Please use the link below: https://securemail.scottsdaleaz.gov/dropbox/ldillon@scottsdaleaz.gov

From: John "Gordy" Ritchie <<u>JRitchie@WoodPatel.com</u>>
Sent: Tuesday, July 23, 2019 10:37 AM
To: Dillon, Levi <<u>LDillon@Scottsdaleaz.gov</u>>
Cc: Irene Clark (<u>iclark@devenneygroup.com</u>) <<u>iclark@devenneygroup.com</u>>
Subject: Honor Health NSI MOB - Sewer Construction Fees

A EXTERNAL Email with links or attachments. Please use caution! Levi,

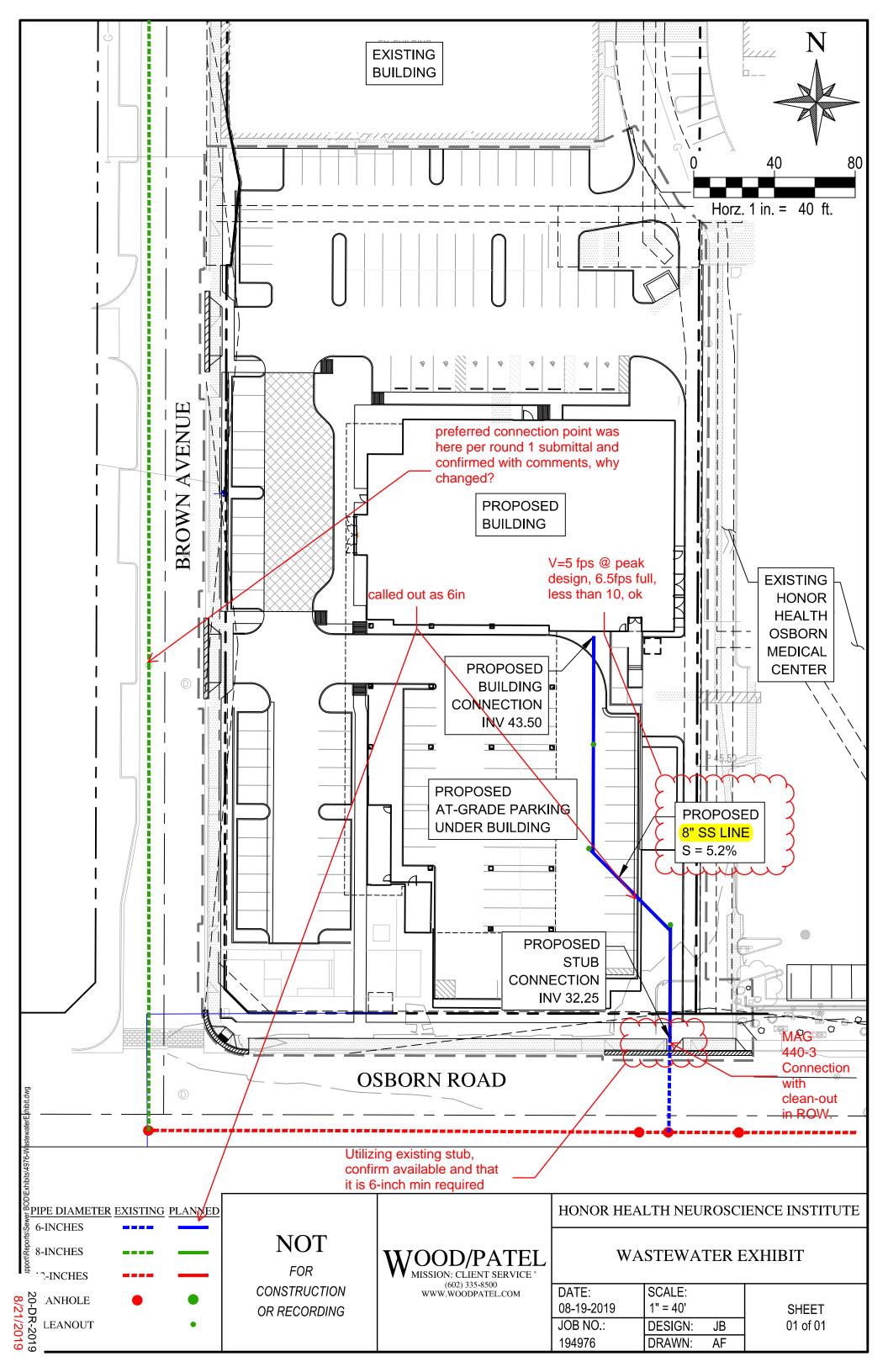
As requested, I wanted to follow up on our conversation this morning regarding the "in-lieu" construction fees as mentioned in your comments to our Wastwater BOD report. Per our discussion, I have the parameters for a rough estimate I can provide to the owner. However, we

would like to be able to get some more finalized fee parameters prior to our DRB resubmittal. Please let me know when you have some more firm numbers so we can provide an accurate calculation.

Thanks.

John "Gordy" Ritchie, PE Project Manager

D: 602.336.7908 M: 520.907.7783 jritchie@woodpatel.com www.woodpatel.com


IMPORTANT NOTICE: This e-mail message is intended to be received only by persons entitled to receive the confidential information it may contain. E-mail messages to clients of Wood/Patel may contain information that is confidential and legally privileged. Please do not read, copy, forward, or store this message unless you are an intended recipient of it. If you have received this message in error, please forward it to the sender and delete it completely from your computer system.

ELECTRONIC CORRESPONDENCE NOTICE: Please see <u>www.woodpatel.com/policies</u> for policies regarding this transmission.

VICINITY MAP

WASTEWATER EXHIBIT

