

Drainage Reports

Abbreviated Water and Sewer Needs

Water Study

Wastewater Study

Stormwater Waiver Application

CIVIL AND SURVEY

Final Design Report Sanitary Sewer For 75 ON 2ND 7502 E. 2ND STREET Scottsdale, Arizona

25-DR-2019 5/13/2019

HUNTER

Case #2-ZN-2019

April 2019

Prepared by: Hunter Engineering, Inc. 10450 N. 74th Street, Suite 200 Scottsdale, AZ 85258

FINAL DESIGN REPORT SANITARY SEWER FOR **75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA**

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, INC. 10450 N. 74th Street, SUITE 200 SCOTTSDALE, AZ 85258 (480) 991-3985

H.E. PROJECT NO.: KAIH013

HUNTER ENGINEERING

A B

TABLE OF CONTENTS

LOCATION

TITLE	LOCATION
Introduction	1
Existing Conditions	1
Proposed Sanitary Sewer System	1
Conclusions	2
References	2
TITLE	
Vicinity Map	Appendix A
Conceptual Utility Plan	Back Pocket
TITLE	
	Introduction Existing Conditions Proposed Sanitary Sewer System Conclusions References <u>TITLE</u> Vicinity Map Conceptual Utility Plan

Figures Calculations

BOTT

1.0 INTRODUCTION

This sewer report has been prepared under a contract from K&I Homes the architect for the 75 On 2nd project. The purpose of this report is to provide a sewer analysis, as required by the City of Scottsdale, to support this development. This report has been prepared according to the procedures detailed in Chapter 7 of the City of Scottsdale's Design Standards & Policies Manual dated January 2010.

This development project is located at 7502 E. 2nd Street Scottsdale, Arizona 85251. The site is specifically located in The Northwest Quarter of Section 26. Township 2 North, Range 4 East of The Gila And Salt River Base and Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 on 2^{nd} consisting of approximately $0.81\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING SITE CONDITIONS

The site is currently developed with existing single-story stucco buildings that were used as single-family residences with parking. The site is bordered by an alley way to the north, 75th street to the west, 2nd street to the south, and small apartment complexes to the east.

There is an existing 8-inch public sewer main in the alley way directly north of the property that runs parallel to 2^{nd} street. There are currently existing sanitary sewer service lines off this line for each existing parcel. There is also an existing 8-inch public sewer main on the south side of 2^{nd} Street. No services are extended to the site from this main. There is an existing 96" storm drain located on the north side of 2^{nd} Street. It is likely that this 96" main precludes the extension of useable services from the 2^{nd} Street sewer main to the site.

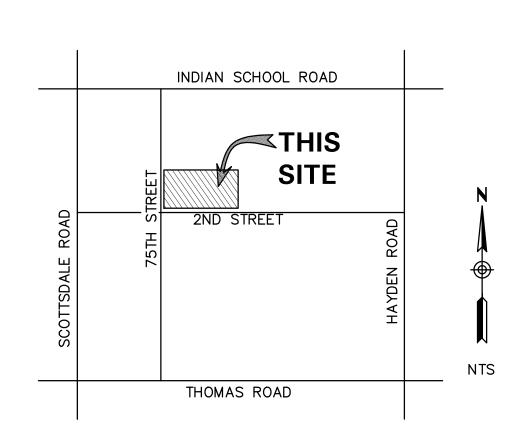
3.0 PROPOSED SANITARY SEWER SYSTEM

This development proposes to extend a 6" sewer service from the existing manhole located near the northeast corner of the site. The proposed Building A will have an estimated Average Daily Flow of 6,280 GPD and a Peak Hour Flow of 13 GPM. Wastewater flows were calculated in accordance with the City of Scottsdale Design Standards and Policy Manual (Reference 1). A demand of 0.40gpd per square feet was used for the commercial/retail portion of the building with a peaking factor of 3.0. See the demand calculations in Appendix B.

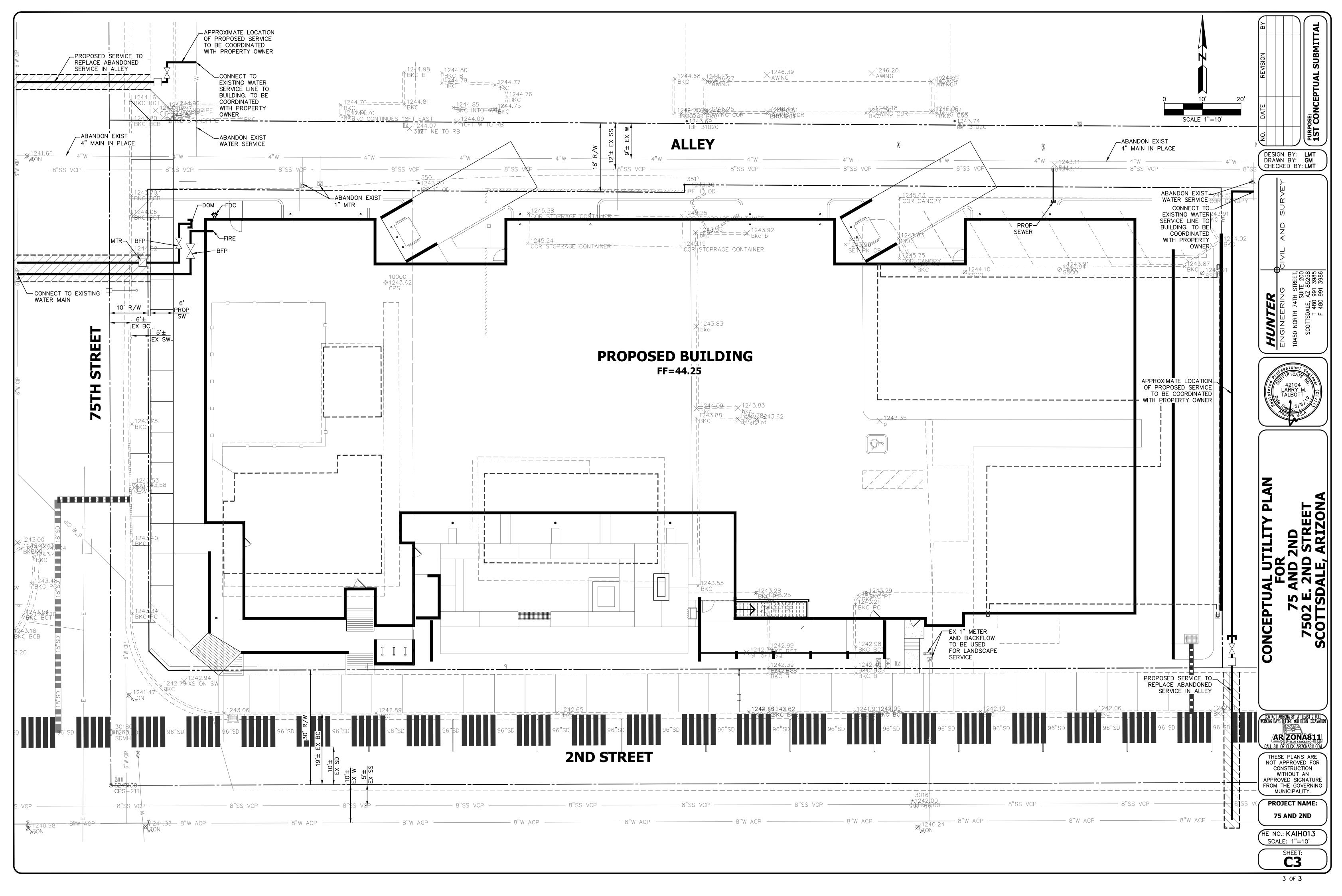
The calculated proposed flow is well below the available flow of 195 gpm for a 6" service at the minimum slope of 1% and a 0.65 d/D ratio.

4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:


• The proposed sewer system is adequate to service the development.

5.0 **REFERENCES**


1) *City of Scottsdale Design Standards & Policies Manual*, January 2010.

> APPENDIX A FIGURES

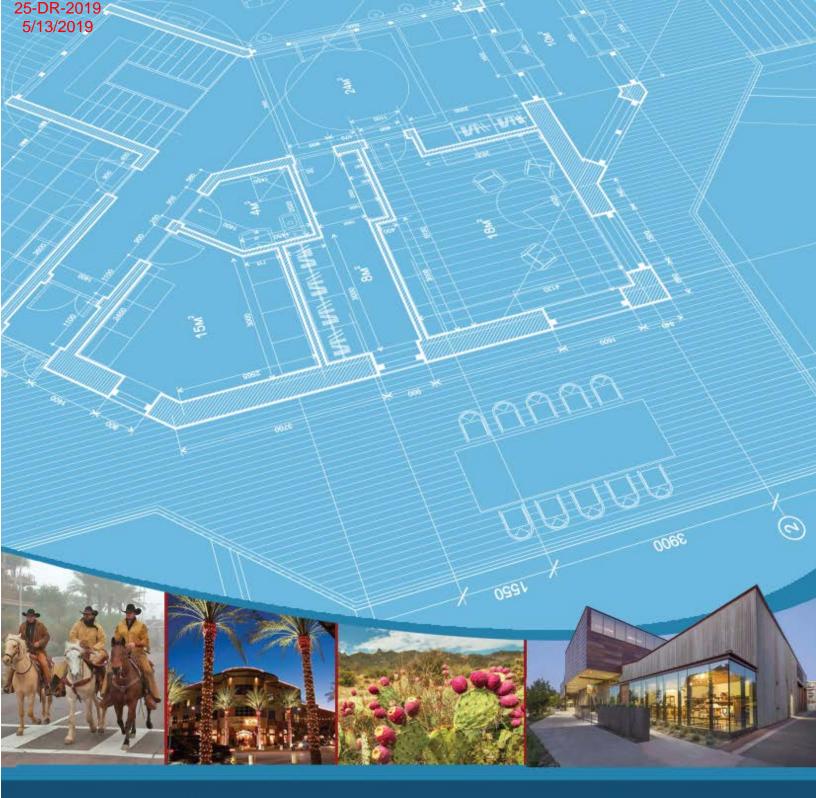
VICINITY MAP FIGURE 1

G:\KAIH013\Concept\KA13CONUTL.dwg, 5/8/2019 11:22:18 AM,

APPENDIX B CALCULATIONS

Project:75 and 2ndProject No.:KAIH013City:SCOTTSDALE, AZDate:1/22/2019

PROJECTED MAXIMUM SANITARY SEWER LOADS


I.D.	Land Use	Building Area or Units	Average Day Sewer		Peaking	Average	Average	Peak
		sq.ft.	Demands in Gallons		Factor	Daily Flow	Daily Flow	Flow
		Units	Figur	e 7.1-2	Figure 7.1-2	gpd	gpm	gpm
Building Area A	Comm/Retail	20,002	0.50	per sq.ft.	3	10,001	6.9	20.7
	Condo	39	140.00	per unit	4.5	5,460	3.8	17.1
	Sub-Total					15,461	11	38

Worksheet Worksheet for Circular Channel

Project Description	n		
Worksheet	6" Se	rvice	
Flow Element	Circu	lar Char	n
Method	Mann	ning's Fo	orr
Solve For	Disch	narge	
Input Data			
Mannings Coeff	ic 0.013		
Channel Slope	010000 f	t/ft	
Depth	0.33 f	t d/D	=0.65
Diameter	6.0 i	n	
Results			
Discharge	195	gpm >	38 gpm OK
Flow Area	0.1		01
Wetted Perime	0.95	ft	
Top Width	0.00	ft	
Critical Depth	0.34	ft	
Percent Full	66.0	%	
Critical Slope	0.009559	ft/ft	
Velocity	3.15	ft/s	
Velocity Head	0.15	ft	
Specific Energy	0.48	ft	
Froude Numbe	1.03		
Maximum Disc	271	gpm	
Discharge Full	252	gpm	
Slope Full	0.005974	ft/ft	
Flow Type	upercritical		

DESIGN STANDARDS & POLICIES MANUAL

WASTEWATER

LAND USE	DEMAND	DESIGN PEAKING
	(gpd)	FACTOR
Commercial/Retail	0.5 per sq. ft.	3
Office	0.4 per sq. ft.	3
Restaurant	1.2 per sq. ft.	6
High Density	140 per unit	4.5
Condominium (Condo)		
Resort Hotel (includes site	380 per room.	4.5
amenities)		
School: without cafeteria	30 per student	6
School: with cafeteria	50 per student	6
Cultural	0.1 per sq. ft.	3
Clubhouse for Subdivision	100 per patron x 2	4.5
Golf Course	patrons per du per day	
Fitness Center/ Spa/ Health	0.8 per sq. ft.	3.5
club		

FIGURE 7-1.2 AVERAGE DAY SEWER DEMAND IN GALLONS PER DAY & PEAKING FACTORS BY LAND USE

HYDRAULIC DESIGN

No public SS lines will be less than 8 inches in diameter unless permission is received in writing from the Water Resources Department.

SS lines shall be designed and constructed to give mean full flow velocities equal to or greater than 2.5 fps, based upon Manning's Formula, using an "n" value of 0.013. To prevent abrasion and erosion of the pipe material, the maximum velocity will be limited to 10 fps at estimated peak flow. Where velocities exceed this maximum figure, submit a hydraulic analysis along with construction recommendations to the Water Resources Department for consideration. In no case will velocities greater than 15 fps be allowed.

Actual velocities shall be analyzed for minimum, average day and peak day design flow conditions for each reach of pipe.

The SS system shall be designed to achieve uniform flow velocities through consistent slopes. Abrupt changes in slope shall be evaluated for hydraulic jump.

The depth to diameter ratio (d/D) for gravity SS pipes <u>12 inches in diameter and less</u> shall not exceed 0.65 in the ultimate peak flow condition. This d/D ratio includes an allowance for system infiltration and inflow.

The d/D for gravity drains greater than 12 inches diameter shall not exceed 0.70 for the ultimate peak flow condition. This d/D includes an allowance for system infiltration and inflow.

Measures to mitigate hydrogen sulfide shall be analyzed at manhole drops, abrupt changes in pipe slope or direction and at changes in pipe diameter.

MANHOLES AND CLEAN OUTS

Manholes in city streets shall be located near the center of the inside traffic lane, rather than on or near the line separating traffic lanes. Manholes shall not be in bike trails, equestrian trails, sidewalks, crosswalks or wash crossings. Manholes are required at all

7-1.404

7-1.405

Design Standards & Policies Manual

CIVIL AND SURVEY

Final Water Design Report For 75 on 2ND 7502 E. 2ND Street Scottsdale, Arizona

25-DR-2019 5/13/2019

HUNTER

Case No. 2-ZN-2019

May 2019

Prepared by: Hunter Engineering, Inc. 10450 North 74th Street, Suite 200 Scottsdale, AZ 85258

FINAL WATER DESIGN REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, INC. 10450 NORTH 74TH STREET, SUITE 200 SCOTTSDALE, AZ 85258 (480) 991-3985

H.E. PROJECT NO. LGEC202

TABLE OF CONTENTS

SECTION TITLE

PAGE

1.0	Introduction	1
2.0	Existing Site Conditions	1
3.0	Existing Water Distribution System	1
4.0	Proposed Domestic Water Demand	
5.0	Proposed Fire Flow Demand	2
6.0	Conclusions	3

FIGURES <u>TITLE</u>

LOCATION

1	Vicinity Map	Appendix A
2	Conceptual Utility Plan	. Back Pocket

APPENDIX TITLE

А	Figures
В	Calculations and Data
С	Fire Flow Test Results
D	Reference Information

1.0 INTRODUCTION

This water report has been prepared under a contract from K&I Homes the architect for the 75 On 2nd project. The purpose of this report is to provide a water analysis, as required by the City of Scottsdale, to support this development. This report has been prepared according to the procedures detailed in Chapter 6 of the City of Scottsdale's Design Standards & Policies Manual dated January 2018.

This development project is located at 7502 E. 2nd Street Scottsdale, Arizona 85251. The site is specifically located in The Northwest Quarter of Section 26. Township 2 North, Range 4 East of The Gila And Salt River Base and Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 on 2^{nd} consisting of approximately $0.81\pm$ acres. Improvements to be made on-site include a new apartment building, parking, and the construction of landscaped areas. The proposed apartment building will also include a parking garage, leasing office and gym. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING SITE CONDITIONS

The site is currently developed with existing single-story stucco buildings that were used as single-family residences with parking. The site is bordered by an alley way to the north, 75th street to the west, 2nd street to the south, and small apartment complexes to the east.

There is an existing 4-inch public water main in the alley way directly north of the property that runs parallel to 2nd street. There is also an existing 6-inch public water main in 75th Street and an 8-inch public water main in 2nd Street. There is an existing water service to the site in the alley approximately 50' east of 75th Street and an existing water service off 2nd Street approximately 200' east of 75th Street. Any unused services shall be removed by City staff with the appropriate fees paid.

In addition to the project site services off the existing 4" alley water main there is also a service to the adjacent parcel to the east and another across the alley to the northwest that are service from this 4" main. The 4" main does not meet city minimum line size standards.

3.0 EXISTING WATER DISTRIBUTION SYSTEM

Since the 4" main in the alley is too small in diameter this development will bring new domestic and fire services off of 75^{th} Street. The existing 4" main in the alley will be abandoned in place and the existing service off 2^{nd} Street will be utilized for landscape irrigation.

A new service will be provided for the adjacent eastern property from 2nd Street and for the west property north of the alley off 75th Street. Per coordination with Levi Dillon, Sr. Water Resources Engineer, the city will work the developer and the other property owners to help facilitate the new services and line abandonment. See email in Appendix D.

4.0 PROPOSED DOMESTIC WATER DEMAND

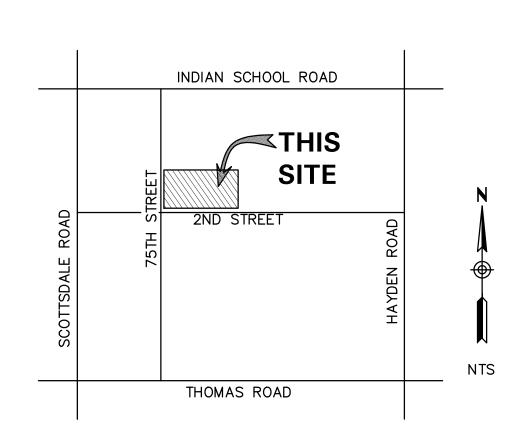
The average day, maximum day and peak hour demands for this development were derived using unit flow requirements out of the City of Scottsdale Design Standards & Policies Manual for Water, Figure 6.1-2. Refer to Appendix D in this report. Average Day Demand (ADD), Maximum Day Demand (MDD) and Peak Hour Demand (PHD) for domestic water usage for each building are located in Appendix B. Maximum Day Demand is 2 times the ADD and Peak Hour Demand is 3.5 times the ADD.

Land Use	Building			Average Daily	Average Daily	Maximum Daily	Peak
	Area or	by Land Use		Flow	Flow	Flow	Flow (ADF *
	Units	Table 6. 1-2 Avg Daily Flows		(ADF)	(ADF)	(ADF * 2)	(ADF 3.5)
	sf	•	ards Manual For				
	Units	Water and Wastewater Systems		gpd	gpm	gpm	gpm
Comm/Retail	20,002	0.00111	gals per s.f.	31,971	22.2	44.4	77.7
Condo	39	0.27000	gals per s.f.	15,1653	10.5	21.1	36.9
TOTAL:				47,134	32.7	65.5	114.6

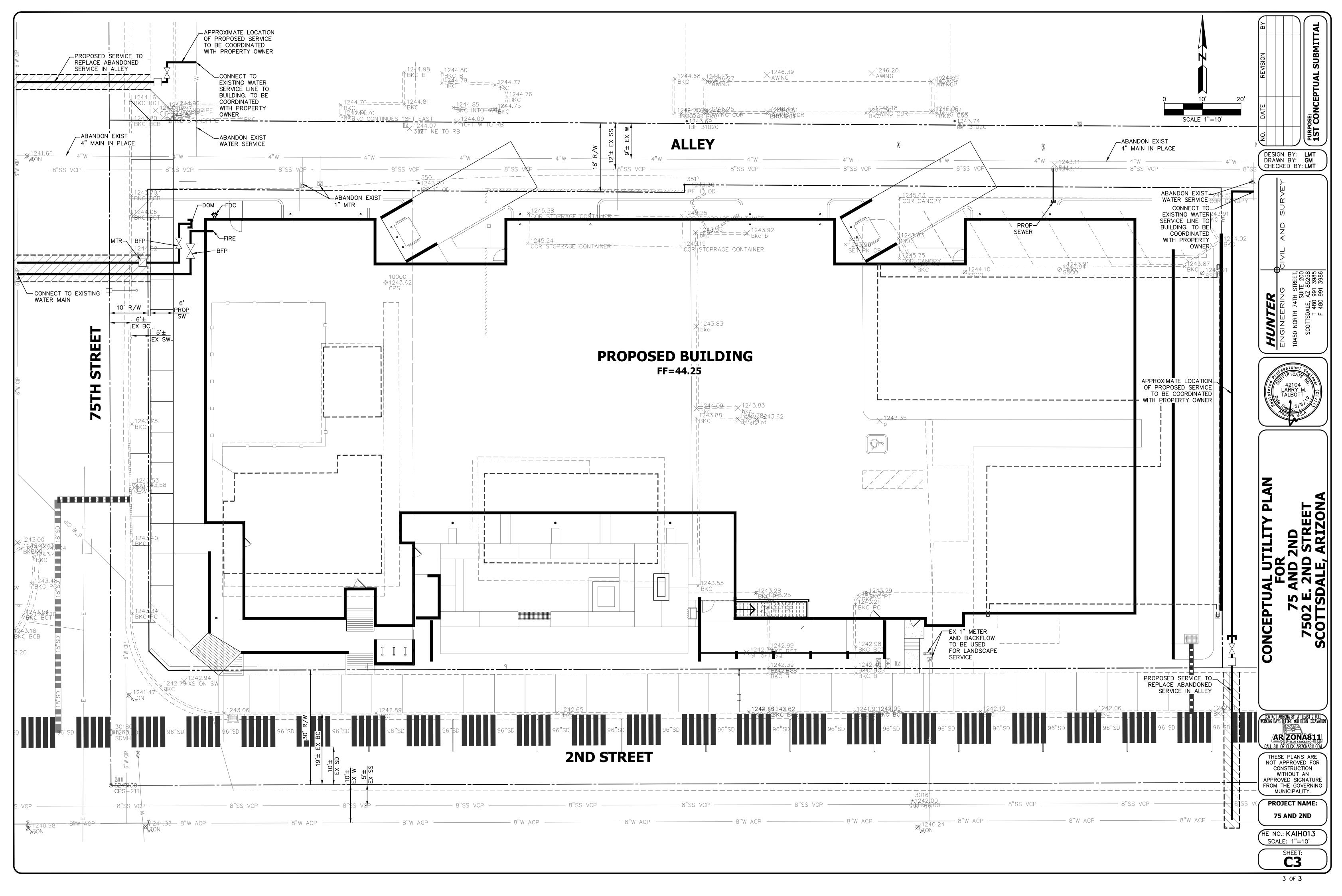
5.0 **PROPOSED FIRE FLOW DEMAND**

The proposed system was modeled using WATERCAD, a pipe network analysis program by Haestad Methods. A reservoir and pump were added to the model near the hydrant flow test location to simulate the pressure versus flow curve. The model has been calibrated to match the results of the hydrant test. Note that the pipe (Model pipes connecting the pump and reservoir are not a part of the system and are oversized to 120-inch to minimize system losses. Pipes and junctions were added to the network model matching the pipe sizes, materials and elevations of the proposed system.

The model is completed as a closed system without extensive information from the entire city pipe network, which is not feasible for the requirements of this report. A closed system is conservative having one-point source of water supply and pressure whereas the existing system can have multiple supply sources feeding the pipe network surrounding the development. The flow test should be representative of the demand adjacent properties have on the system. The hydrant flow test results reflect the time and location of the test. Refer to Appendix C for Fire Flow Test results.


The proposed Occupancy Class is S-2 for the Parking Garage, B for the leasing and gym and R-2 for the Apartments. Per the International Fire Code (IFC), the maximum fire flow is based on the construction type of the building and its square footage. The total building area is 70,065 sf. The building construction type is V-A. This requires a fire flow of 4,750 GPM be achieved at a minimum pressure of 20 PSI. The proposed building will be sprinklered. Therefore, a 50% reduction in the fire flow requirement may be applied. This reduces the required fire flow to 2,375 GPM. The resultant pressure for the fire flow is 62 psi which is more than the minimum required 20 psi. Results from the WaterCAD analysis are summarized below with calculations and detailed results in Appendix B.

6.0 CONCLUSIONS


Based on the results of this study, it can be concluded that:

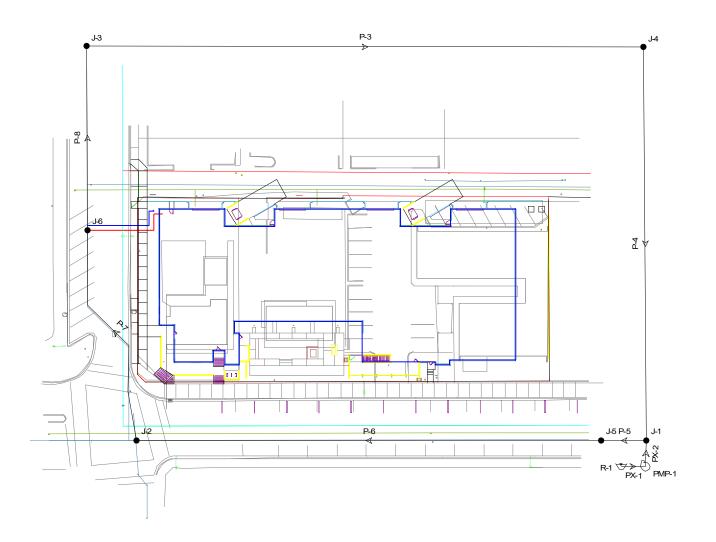
- The proposed water network meets the requirements to support this development.
- Results of the WaterCAD model indicate that the proposed water network does provide the needed fire flow and pressure to service this development.
- All domestic water lines and firelines shall be privately owned and maintained.

> APPENDIX A FIGURES

VICINITY MAP FIGURE 1

G:\KAIH013\Concept\KA13CONUTL.dwg, 5/8/2019 11:22:18 AM,

APPENDIX B CALCULATIONS AND DATA SHEET


Project:	75 on 2nd
Project Number:	KAIH013
City:	Scottsdale
Date:	1/31/2019

PROJECTED MAXIMUM DOMESTIC WATER DEMANDS

I.D.	Land Use	Building Area or Units	Average Daily Flows by Land Use Table 6-1.2 Avg Day Water Dem Design Standards Manual For		Average Daily Flow (ADF)	Average Daily Flow (ADF)	Maximum Daily Flow (ADF * 2)	Peak Flow (ADF * 3.5)
		sf Unit	Water and Wastewater Systems		gpd	gpm	gpm	gpm
Building A	Mixed Use	20,002	0.00111	gals per s.f.	31,971	22.2	44.4	77.7
	Condo	39	0.27000	gals per unit	15,163	10.5	21.1	36.9
	TOTAL:				47,134	32.7	65.5	114.6

FIRE FLOW SUMMARY

I.D.	Proposed Building Type	Building Area squate feet	Estimated Construction Type	Minimum Required Fire Flow, Table B105.1 2009 Internation Fire Code	50% Sprinklered Fire Flow	Building Sprinklered
				(gpm)	(gpm)	
Building A	Mixed Use	70,065	V-A	4,750	2,375	YES

Scenario: Peak Steady State Analysis Pipe Report

Label	Length (ft)	Diameter (in)	Material	Hazen- Williams C		Jpstream Structur t Hydraulic Grade (ft)	Downstream Structure Hydraulic Grade (ft)
P-3	690.00	6.0	Cast iron	130.0	-44.35	246.63	246.79
P-4	350.00	12.0	Cast iron	130.0	-44.35	246.79	246.80
PX-1	1.00	120.0	Ductile Iron	130.0	114.60	39.00	39.00
PX-2	1.00	120.0	Ductile Iron	130.0	114.60	246.80	246.80
P-5	335.00	8.0	Asphalted cast iron (r	130.0	70.25	246.80	246.75
P-6	340.00	8.0	Asphalted cast iron (r	130.0	70.25	246.75	246.70
P-7	198.00	6.0	Cast iron	130.0	70.25	246.70	246.60
P-8	152.00	6.0	Cast iron	130.0	-44.35	246.60	246.63

Scenario: Peak Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.80	89.90
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.70	88.99
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.63	88.53
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.79	89.47
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.75	89.02
J-6	44.00	Zone	Demand	114.60	Fixed	114.60	246.60	87.65
								> <i>Г</i> (

> 50 psi OK

Scenario: Fire Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	216.63	76.85
J-2	41.03	Zone	Demand	1,000.00	Fixed	1,000.00	189.75	64.34
J-3	42.00	Zone	Demand	1,000.00	Fixed	1,000.00	186.95	62.71
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.12	76.20
J-5	41.00	Zone	Demand	375.00	Fixed	375.00	200.24	68.90
J-6	44.00	Zone	Demand	65.50	Fixed	65.50	187.89	62.26

> 20 psi OK

Scenario: Hydrant Test 1 Steady State Analysis Junction Report

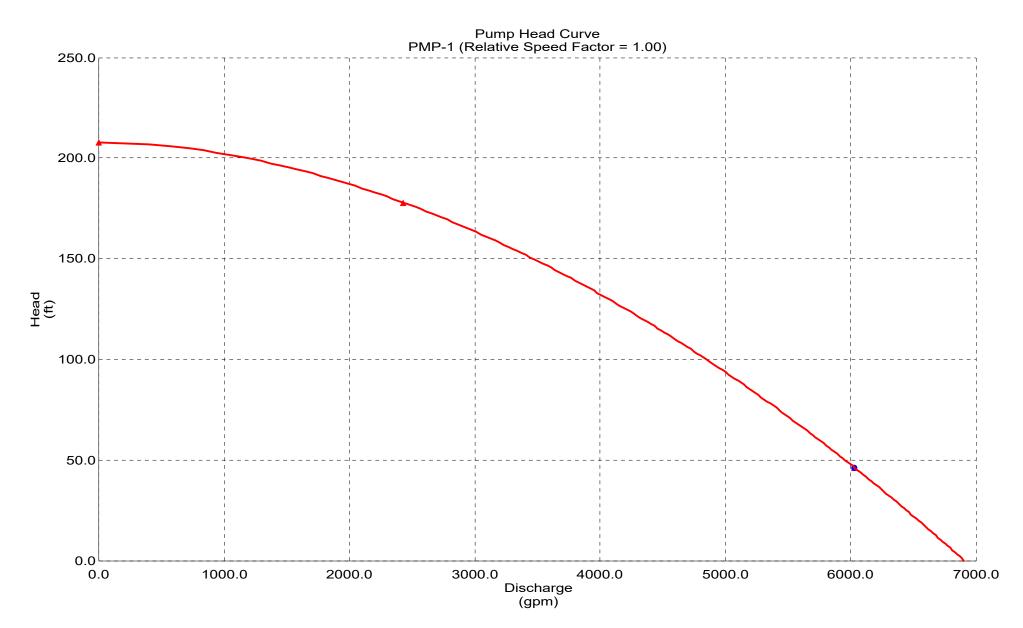
Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.95	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.90	89.07	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.90	88.65	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.08	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	246.90	87.79	

Scenario: Hydrant Test 2 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattem	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	2,430.00	Fixed	2,430.00	216.87	76.96	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	216.87	76.08	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	216.87	75.66	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.09	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	216.87	74.79	

Scenario: Hydrant Test 3 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	6,031.00	Fixed	6,031.00	85.20	19.99	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	85.20	19.11	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	85.20	18.69	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.56	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.12	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	85.20	17.83	


Detailed Report for Pump: PMP-1

Note: The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

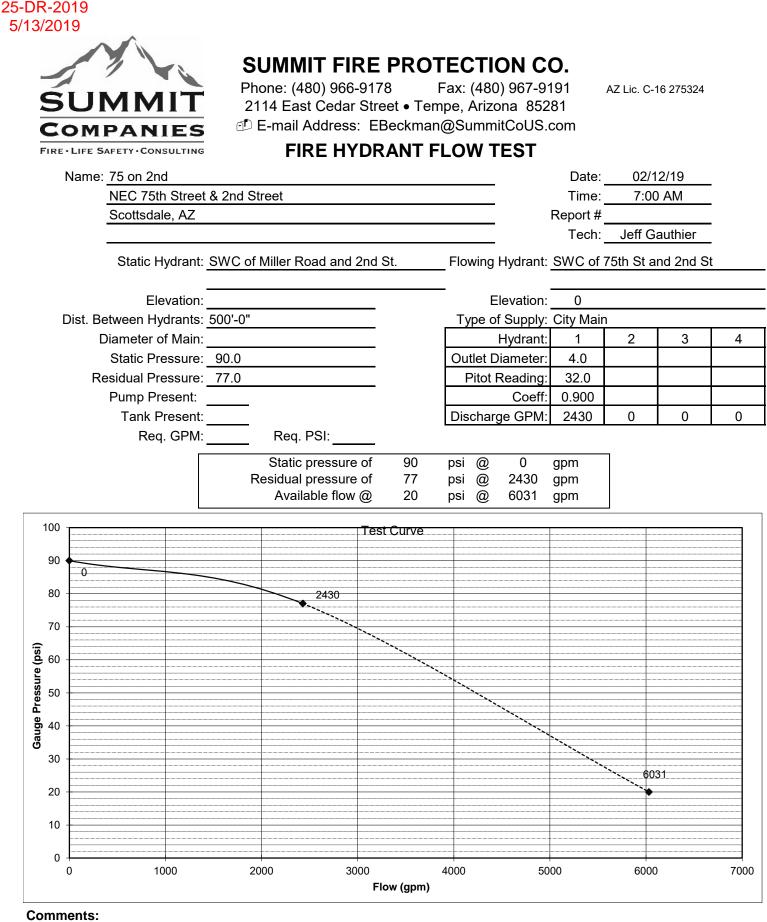
Scenario	Hydrant Tes	st 3		
Active Topology Alternative	Base-Active	e Topolog	ЭУ	
Physical Alternative	Base-Physi	cal		
Demand Alternative	Demand-Hy	/drant Te	est 3	
Initial Settings Alternative	Base-Initial	Settings		
Operational Alternative	Base-Opera	ational		
Age Alternative	Base-Age A	Iternativ	e	
Constituent Alternative	Base-Const	ituent		
Trace Alternative	Base-Trace	Alternat	ive	
Fire Flow Alternative	Base-Fire F	low		
Capital Cost Alternative	Base-Capita	al Cost		
Energy Cost Alternative	Base-Energ	y Cost		
User Data Alternative	Base-User I	Data		
Global Adjustments Summary				
Demand	<none></none>		Roughness	<none></none>
Geometric Summary				
Х	699,451.47	ft	Upstream Pipe	PX-1
Y	906,247.77	ft	Downstream Pipe	PX-2
Elevation	39.00	ft		
Pump Definition Summary				
Pump Definition	Default Pun	np Defini	tion	
Initial Status				4.00
Initial Status	0			
Initial Status Initial Pump Status	On		Initial Relative Speed Facto	1.00

Time Control Intake DischargeDischarge Pump Relative Calculated
(hr) Status Pump Pump (gpm) Head Speed Water
Grade Grade (ft) (ft) (ft) (Hp)0.00 On 39.0085.20 3,031.00 46.201.0070.35

Detailed Report for Pump: PMP-1

Detailed Report for Reservoir: R-1

Note: The input data may have been modified since the last calculation was performed. The calculated results may be outdated.


Scenario Summary Scenario	Hydrant Test 3					
	5					
Active Topology Alternative		biogy				
Physical Alternative	Base-Physical	T+0				
Demand Alternative	Demand-Hydrant					
Initial Settings Alternative	Base-Initial Settir	•				
Operational Alternative	Base-Operationa					
Age Alternative	Base-Age Alterna					
Constituent Alternative	Base-Constituent	-				
Trace Alternative	Base-Trace Alternative					
Fire Flow Alternative	Base-Fire Flow					
Capital Cost Alternative	Base-Capital Cost					
Energy Cost Alternative	Base-Energy Cost					
User Data Alternative	Base-User Data					
Global Adjustments Summary						
Demand	<none></none>	Roughness	<none></none>			
Geometric Summary						
Х	699,435.02 ft	Elevation	39.00 ft			
Y	906,248.15 ft	Zone	Zone			

Time Calculated Inflow Outflow (hr) Hydraulic Grade (gpm) (gpm) (ft)	La	iculated Resu	its Sun	nmary
		lydraulic Grade		Outflow (gpm)

.

0.00 39.00 3,031.00 ,031.00

APPENDIX C FIRE HYDRANT TEST

NOTES:

- 1. Flowing hydrant is assumed to be on a circulating main or downstream of the pressure test hydrant on a dead-end system.
- 2. Flow analysis assumes a gravity flow system with no distribution pumps and having no demand, other than the test
- 3. The distance between hydrants, elevations & main diameters are for information only.

APPENDIX D REFERENCE INFORMATION

Larry Talbott

Subject: FW: 690-PA-2018 75 on 2nd

From: Dillon, Levi <<u>LDillon@Scottsdaleaz.gov</u>>
Sent: Tuesday, May 7, 2019 4:57 PM
To: Kristjan Sigurdsson <<u>kristjans@kandihomes.com</u>>; Larry Talbott <<u>ltalbott@hunterengineeringpc.com</u>>
Subject: RE: 690-PA-2018 75 on 2nd

Hello Larry and Kristjan,

I've discussed all of this with Water Resources' management. Current standards require that a water service be brought directly (perpendicular) from the water main and it cannot cross other private property. This means that your proposal to use the existing landscape meter will not be acceptable. **However**, I think you'll find that the proposal below takes this portion of the work entirely out of the discussion.

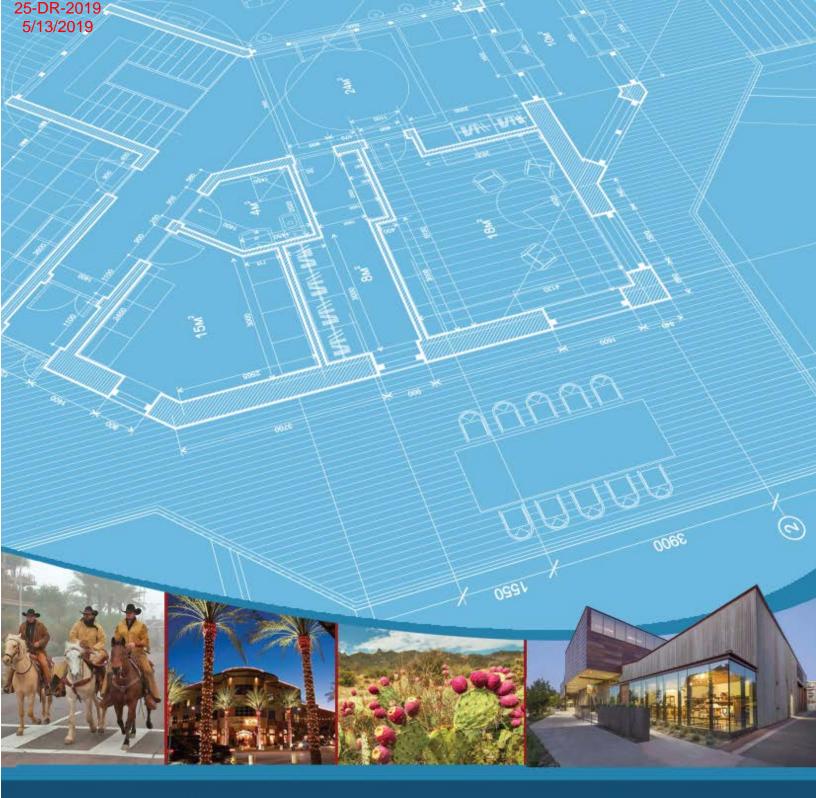
Water Resources proposes the following work division for relocating the water services so that the 4" dead-end line can be removed from service:

- 1. Pending all 4" line service relocations: Water Resources will allow for the 4" line to be properly abandoned in place. 75 on 2nd will be responsible for the abandonment of the portions along their alley frontage.
- 2. Water Resources will address the tee and valve associated with the 4" water line.
- 3. Water Resources will take responsibility for providing new water service connections for the two-remaining services on the 4" line <u>up to the property lines</u>.
 - a. 7503 E 1st street: Water Resources will install new tap and service line off of 75th Street and connect to the existing meter.
 - b. 7526 E 2nd Street: Water Resources will install a tap and service line for from the water main on 2nd street north across the street <u>up to the property line</u>. The City will also set the new meter on the south side of the property (if this location is possible, see item 4).
- 4. Water Resources requests that 75 on 2nd evaluate and address only the private property segment of the work associated with relocating the water service line/or building supply line for 7526 E 2nd. The City will perform initial coordination with the homeowner to inform them of the need to relocate the service and obtain consent. Following this, 75 on 2nd would need to coordinate with the homeowner and provide the evaluation, design, planning, permitting, and contractor services required to effectively relocate the private property portion of either the building supply line(s) or the service line for 7526 by one of the following methods:
 - a. **Method#1**: Running the building supply line from the new City supplied meter on the south side of the property to the alley side of the property and connecting to the existing building supply connection. Note: If it not feasible to place a new meter on the south side then the new service line will need to be routed through private property to the existing or new meter on the north side. OR;
 - b. **Method #2:** Running the building supply line from the new meter on the south side through private property and making a new building connection on the property that will ensure water service equivalent to existing. Note: this could involve external landscape irrigation mods and internal plumbing mods.
 - c. Notes:
 - i. The service line is defined as the line from main to meter
 - ii. The building supply line is from meter to building
 - iii. The City would need to review and approve either proposed modifications through the typical permit application and review/approval process.

Hopefully with this approach we can effectively achieve compliance with current design standards. Let me know when possible if you and your client agree to proceed as described above.

Thank you,

Levi C. Dillon, P.E. | Sr. Water Resources Engineer


"Water Sustainability through Stewardship, Innovation and People"

Contact Info Direct: (480) 312-5319 Main office: (480) 312-5685 Fax: (480) 312-5615 Mailing/Office Address Water Resources Administration 9379 E. San Salvador Dr. Scottsdale, AZ. 85258

Sending me an attachment over 5MB? Please use the link below: https://securemail.scottsdaleaz.gov/dropbox/ldillon@scottsdaleaz.gov

DESIGN STANDARDS & POLICIES MANUAL

DESIGN FLOW & HEAD LOSS

The ultimate design flow within the city's water transmission and distribution system will be based on the city's current Integrated Water Master Plan. Water demand for each development will be calculated using the average day demands, as shown in Figure 6-1.2, to ensure that the existing distribution supply is sufficient. Designs will include all necessary improvements, including booster pumping stations, reservoirs, lines and appurtenances to meet the system's ultimate demand.

- A. The four hydraulic modeling scenarios detailed in 6-1.202 will demonstrate that the system is adequately designed.
- B. Select model scenario flows and their respective peaking factors are as follows:
 - 1. Maximum day: Defined as 2 times the average day total use flow as determined per Figure 6-1.2 (use gpm value).
 - 2. Peak hour: Defined as 3.5 times the average day total use as determined per Figure 6-1.2 (use gpm value).
 - 3. <u>Note:</u> These peaking factors shall be appropriately increased for restaurants and high-demand water users, or as designated by the Water Resources Department after review.
- C. The maximum allowable pipe head loss for the various water pipelines is as follows:
 - 1. Transmission mains: 8 feet per 1,000 feet (3.5 psi per 1,000 feet)
 - 2. Distribution lines: 10 feet per 1,000 feet (4.3 psi per 1,000 feet)
 - 3. Service lines domestic, dedicated fire, or combined domestic/fire: size as required to satisfy both hydraulic modeling requirements and Fire Code. Generally, velocities of more than 5 feet per second are undesirable. Velocities more than 7.5 feet per second are not allowed.
 - 4. As otherwise designated by the Water Resources Department

SYSTEM FLOW TEST REQUIREMENTS & USE OF RESULTS

Pressure and available flow information for existing water lines must be obtained by having a fire hydrant flow test performed on the system. Hydrant flow tests are required for the following situations:

- A. On all commercial projects, multi-family residential projects, and public extensions of the city's water distribution system.
- B. For any proposed system connecting to the existing distribution system, the design capacity of the existing system (flow versus pressure) will need to be determined by the engineer.
- C. Prior to acceptance by the city, all platted subdivisions shall conduct an additional flow test at the lowest and highest elevation available in which the development is constructed.
- D. Developments that cross pressure zone boundaries must conduct a flow test within each pressure zone.

A private fire protection company shall perform the tests and certify the results. A right-of-way permit issued by the One Stop Shop is required for a flow test and the Inspection Services Division will be notified a minimum of 48 hours before performing the flow test. The permit is also available <u>online</u>. Refer to the <u>flow test design form</u>.

CHAPTER 6

6-1.404

6-1.405

WATER

- d. Pipe flow velocity in feet per second (fps)
- e. Each pipe segment's head loss rate (ft. /1,000ft or psi/ft.)
- f. PRVs: Upstream and downstream pressures (psi or HGL elevation)
- g. Tanks: Inflow and outflow (gpm)
- h. Shows all units for the values presented or provide a legend on the diagram page that indicates the units used

AVERAGE DAY WATER DEMANDS (1)

IN GALLONS PER D	AY (GPD) (2)		IN GALLONS PER MINUTE (GPM) ⁽²⁾⁽³⁾				
Land Use	Inside Use	Outside Use	Total Use	Inside Use	Outside Use	Total Use	Units	
Residential Demar	nd per D	welling Ur	nit				<u>.</u>	
< 2 dwelling unit per acre (DU/ac)	208.9	276.7	485.6	0.30	0.39	0.69	per unit	
2 – 2.9 DU/ac	193.7	276.7	470.4	0.27	0.39	0.66	per unit	
3 – 7.9 DU/ac	175.9	72.3	248.2	0.25	0.11	0.36	per unit	
8 – 11.9 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit	
12 – 22 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit	
High Density Condominium (condo)	155.3	30	185.3	0.22	0.05	0.27	per unit	
Resort Hotel (includes site amenities)	401.7	44.6	446.3	0.56	0.07	0.63	per room	
Service and Emplo	yment				1		1	
Restaurant	1.2	0.1	1.3	1.67E-03	1.39E-04	1.81E-03	per square foot (sq.ft.)	
Commercial/ Retail	0.7	0.1	0.8	9.73E-04	1.39E-04	1.11E-03	per sq.ft.	
Commercial High Rise	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.	

AVERAGE DAY WA	TER DEM	ANDS ⁽¹⁾					
IN GALLONS PER D	AY (GPD)) ⁽²⁾		IN GALLON	NS PER MINU	TE (GPM) ⁽²)(3)
Office	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.
Institutional	670	670	1340	0.94	0.94	1.88	per acre
Industrial	873	154	1027	1.22	0.22	1.44	per acre
Research and Development	1092	192	1284	1.52	0.27	1.79	per acre
Special Use Areas							
Natural Area Oper Space	0	0	0	0.0	0.0	0.0	per acre
Developed Open Space – Parks	0	1786	1786	0.0	2.49	2.49	per acre
Developed Open Space – Golf Course	0	4285	4285	0.0	5.96	5.96	per acre

Notes:

(1) These values shall not be used directly for service line or water meter sizing.

(2) Gallon per day values are provided for reference only. The instantaneous gallon per minute flow rates presented are intended for use in the required hydraulic modeling scenarios. The gpm values assume a 12-hour active water use period per 24-hour day. In large or specialty developments or master plans the hydraulic analysis criteria and parameters should be discussed with the Water Resources Department. Seasonal peaking should also be considered. Upon review, the Water Resources Department reserves the right to designate flows to be used in hydraulic modeling scenarios that may be different from those presented here.

(3) The hydraulic modeling peaking factors used in select modeling scenarios are to be applied to the gpm values shown here. Max day and peak hour peaking factors can be found in Section 6-1.404.

FIGURE 6-1.2 AVERAGE DAY WATER DEMANDS

SECTION B101 GENERAL

B101.1 Scope.

The procedure for determining fire-flow requirements for buildings or portions of buildings hereafter constructed shall be in accordance with this appendix. This appendix does not apply to structures other than buildings.

SECTION B102 DEFINITIONS

B102.1 Definitions.

For the purpose of this appendix, certain terms are defined as follows:

FIRE FLOW. The flow rate of a water supply, measured at 20 pounds per square inch (psi) (138 kPa) residual pressure, that is available for fire fighting.

APPENDIX BFIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

FIRE-FLOW CALCULATION AREA. The floor area, in square feet (m²), used to determine the required fire flow.

SECTION B103 MODIFICATIONS

B103.1 Decreases.

The *fire code official* is authorized to reduce the *fire-flow* requirements for isolated buildings or a group of buildings in rural areas or small communities where the development of full *fire-flow* requirements is impractical.

B103.2 Increases.

The *fire code official* is authorized to increase the *fire-flow* requirements where conditions indicate an unusual susceptibility to group fires or conflagrations. An increase shall be not more than twice that required for the building under consideration.

B103.3 Areas without water supply systems.

For information regarding water supplies for fire-fighting purposes in rural and suburban areas in which adequate and reliable water supply systems do not exist, the *fire code official* is authorized to utilize NFPA 1142 or the *International Wildland-Urban Interface Code*.

SECTION B104 FIRE-FLOW CALCULATION AREA

B104.1 General.

The *fire-flow calculation area* shall be the total floor area of all floor levels within the *exterior walls*, and under the horizontal projections of the roof of a building, except as modified in Section B104.3.

B104.2 Area separation.

Portions of buildings that are separated by *fire walls* without openings, constructed in accordance with the *International Building Code*, are allowed to be considered as separate *fire-flow calculation areas*.

B104.3 Type IA and Type IB construction.

The *fire-flow calculation area* of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors.

Exception: *Fire-flow calculation area* for open parking garages shall be determined by the area of the largest floor.

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration requirements for one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.1(1) and B105.1(2).

TABLE B105.1(1)

REQUIRED FIRE FLOW FOR ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

A²PENDIX ²⁶FIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURAT (hours)
0–3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B at the required fire-
0–3,600	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	500	1/2
3,601 and greater	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	¹ / ₂ value in Table B105.1(2)	1

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m.

TABLE B105.1(2)REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

FI	RE-FLOW CAL		FLOW			
Type IA and IB ^a	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Туре V-В ^а	FIRE-FLOW (gallons per minute) ^b	DURATION (hours)
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	
22,701- 30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201- 38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	
38,701- 48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2
48,301- 59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001- 70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401- 11,300	2,750	
70,901- 83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301- 13,400	3,000	
83,701- 97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401- 15,600	3,250	
97,701- 112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601- 18,000	3,500	3
112,701- 128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001- 20,600	3,750	
128,701- 145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601- 23,300	4,000	
145,901-	82,101-92,400	52,501-59,100	37,901-42,700	23,301-	4,250	

164,200				26,300	
164,201- 183,400	92,401- 103,100	59,101-66,000	42,701-47,700	26,301- 29,300	4,500
183,401- 203,700	103,101- 114,600	66,001-73,300	47,701-53,000	29,301- 32,600	4,750
203,701- 225,200	114,601- 126,700	73,301-81,100	53,001-58,600	32,601- 36,000	5,000
225,201- 247,700	126,701- 139,400	81,101-89,200	58,601-65,400	36,001- 39,600	5,250
247,701- 271,200	139,401- 152,600	89,201-97,700	65,401-70,600	39,601- 43,400	5,500
271,201- 295,900	152,601- 166,500	97,701- 106,500	70,601-77,000	43,401- 47,400	5,750
295,901- Greater	166,501- Greater	106,501- 115,800	77,001-83,700	47,401- 51,500	6,000
_	_	115,801- 125,500	83,701-90,600	51,501- 55,700	6,250
_	_	125,501- 135,500	90,601-97,900	55,701- 60,200	6,500
_	_	135,501- 145,800	97,901- 106,800	60,201- 64,800	6,750
_	_	145,801- 156,700	106,801- 113,200	64,801- 69,600	7,000
_		156,701- 167,900	113,201- 121,300	69,601- 74,600	7,250
_		167,901- 179,400	121,301- 129,600	74,601- 79,800	7,500
_		179,401- 191,400	129,601- 138,300	79,801- 85,100	7,750
_	_	191,401- Greater	138,301- Greater	85,101- Greater	8,000

4

APPENDIX 8 FIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

a. Types of construction are based on the *International Building Code*.b.Measured at 20 psi residual pressure.

B105.2 Buildings other than one- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration for buildings other than one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.2 and B105.1(2).

TABLE B105.2

REQUIRED FIRE FLOW FOR BUILDINGS OTHER THAN ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURATION (hours)
No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2)
Section 903.3.1.1 of the <i>International</i> <i>Fire Code</i>	25% of the value in Table B105.1(2) ^a	Duration in Table B105.1(2) at the reduced flow rate
Section 903.3.1.2 of the International Fire Code	25% of the value in Table B105.1(2) ^b	Duration in Table B105.1(2) at the reduced flow rate

For SI: 1 gallon per minute = 3.785 L/m.

a. The reduced fire flow shall be not less than 1,000 gallons per minute.

b. The reduced fire flow shall be not less than 1,500 gallons per minute.

B105.3 Water supply for buildings equipped with an automatic sprinkler system.

For buildings equipped with an *approved automatic sprinkler system*, the water supply shall be capable of providing the greater of:

1. The *automatic sprinkler system* demand, including hose stream allowance.

2. The required *fire flow*.

SECTION B106 REFERENCED STANDARDS

ICC IBC—18	International Building Code	B104.2
ICC IWUIC—18	International WildlandUrban Interface Code	B103.3
ICC IRC—18	International Residential Code	Table B105.1(1)
NFPA 1142—17	Standard on Water Supplies for Suburban and Rural Fire Fighting	B103.3

HUNTER

ENGINEERING

CIVIL AND SURVEY

PRELIMINARY DRAINAGE REPORT For 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

CASE NO. 2-ZN-2019

Prepared by: Hunter Engineering, P.C. 10450 North 74th Street, #200 Scottsdale, AZ 85258

PRELIMINARY DRAINAGE REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, AZ.

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, P.C. 10450 NORTH 74TH STREET, #200 SCOTTSDALE, AZ 85258 (480) 991-3985

MAY 2019 H.E. PROJECT NO. KAIH013

> HUNTER ENGINEERING

TABLE OF CONTENTS

<u>SECTION</u> 1.0 2.0 3.0 4.0 5.0	TITLEIntroduction.Existing Drainage Conditions.Proposed Drainage Concept.Conclusions.References.	<u>PAGE NO.</u> 1 1 4 4
<u>FIGURES</u>	<u>TITLE</u>	LOCATION
1	Vicinity Map	Appendix A
2	FEMA Flood Map	Appendix A
<u>EXHIBITS</u>	<u>TITLE</u>	LOCATION
A	Drainage Exhibit 'A' (Basin Map)	Back Pocket
<u>APPENDIX</u> A B	<u>TITLE</u> Figures Drainage Calculations	Appendix A Appendix B

1.0 INTRODUCTION

This final drainage report has been prepared under a contract from K&Q Homes, owner/developer of 75 On 2nd site. The purpose of this report is to provide a final drainage analysis, required by the City of Scottsdale, to support this development. Preparation of this report has been done according to the procedures detailed in Chapter 4 of the City of Scottsdale's Design Standard & Policies Manual dated January 2010.

This development project is located at 7502 E. 2ND Street Scottsdale, Arizona 85251.The site is specifically located in The Northwest Quarter Of Section 26. Township 2 North, Range 4 East Of The Gila And Salt River Base And Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 and 2^{nd} consisting of approximately $0.60\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING DRAINAGE CONDITIONS

The proposed site is located on a developed parcel with existing ground cover consisting of small buildings, sparse vegetation with shrubs and short grasses. In its developed condition, the project site drains primarily to the south at an average slope of 1%-2%.

The current FEMA Flood Insurance Rate Map (FIRM) for this area, map number 04013C2235 L (Revision date December 7th, 2018) shows the entire project site is in a flood hazard Zone X. Zone X is defined as, "*Area of minimal flood hazard*."

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: on-site drainage conveyance, offsite drainage conveyance, and storm water retention. These three sections make up sections 3.1, 3.2, and 3.3 respectively. Exhibit A, located in the back pocket, provides a graphical illustration of the proposed drainage concept.

3.1 On-site Drainage Conveyance

The proposed onsite drainage improvements for the site will be graded in a way that water will be draining away from the street. Water on the west side of the building will be directed through sheet flow onto 75th street where it will curb flow into an existing curb inlet leading it to and existing 90" storm sewer. Water from the south side of the building will be directed through sheet flow onto 2nd street where it will curb flow into an existing street inlet leading it to and existing 90" storm sewer. The north side of the building will sheet flow water way from the building into an existing alley way gutter where the water will be conveyed into a proposed two-foot-deep retention basin located within landscape area on the east side of the building. On the east side of the building water will be conveyed through sheet flow into the proposed two-foot-deep retention basin. Not catch basins, storm drain piping or underground retention are proposed for this site.

3.2 Off-site Drainage Conveyance

There are not currently any off-site drainage impacts to this site

3.3 Storm Water Retention

The City of Scottsdale requires retention for the Pre versus Post development runoff for the 100-year, 2-hour storm event. The disturbed area is less than 1 acre therefore no first flush is required.

To calculate Pre versus Post required retention, a weighted C-value was calculated for existing and proposed conditions. A weighted drainage area was determined, and volume required for the 100-year, 2-hour storm was calculated. See Below.

Total Site Area= 0.81 acres

C= Runoff Coefficient C= 0.95 Hardscape area (pavement, building, sidewalk) C= 0.45 landscape area Delta C= increase in weighted runoff P= 2.2 precipitation depth (inches) HA= hardscape area (pavement, building, sidewalk) LA= landscape area Vr= required retention volume (CF) =Delta C*P/12*A

Pre-Development Weighted C

HA=0.4495 AC LA=0.3578AC C(weighted) = ((0.95)*(0.4495)+(0.45)*(0.3578))/(0.8071)=0.7284 <u>Post-Development Weighted C</u> HA=0.6656 AC LA=0.1444 AC C(weighted) = ((0.95)*(0.6656)+(0.45)*(0.1444))/(0.8071)=0.8609

Delta C= 0.8609-0.7284=0.1325 Required Retention Volume (Vr)= 0.1325*2.2/12*0.8071 AC=854 (cf)

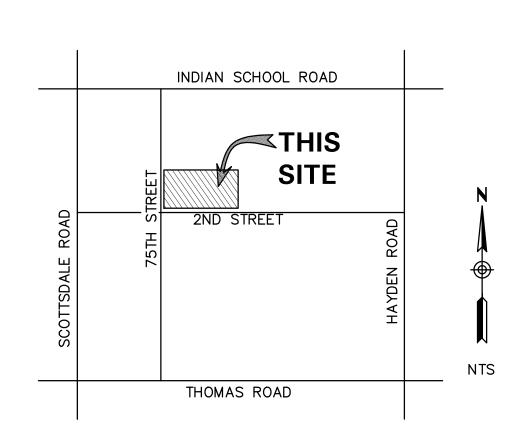
The volume requirement of 854 cubif-feet will be satisfied by a single on-site surface retention basin. The basin will be bled-off in the required 36 hours via a gravity bleed-off pipe through an orifice to the existing public storm drain in 2^{nd} Street.

The 100-year high water surface elevation for the retention basin is going to be set at 1042.00, which is 2.25 lower than the adjacent proposed building finished floor which is set at 1044.25.

The proposed outfall for this site is set at 1042.17 located at the south east corner of the property flowing onto 2^{nd} street. The outfall elevation is below the 14" minimum elevation difference than the proposed finished floor of 1044.25.

4.0 CONCLUSIONS

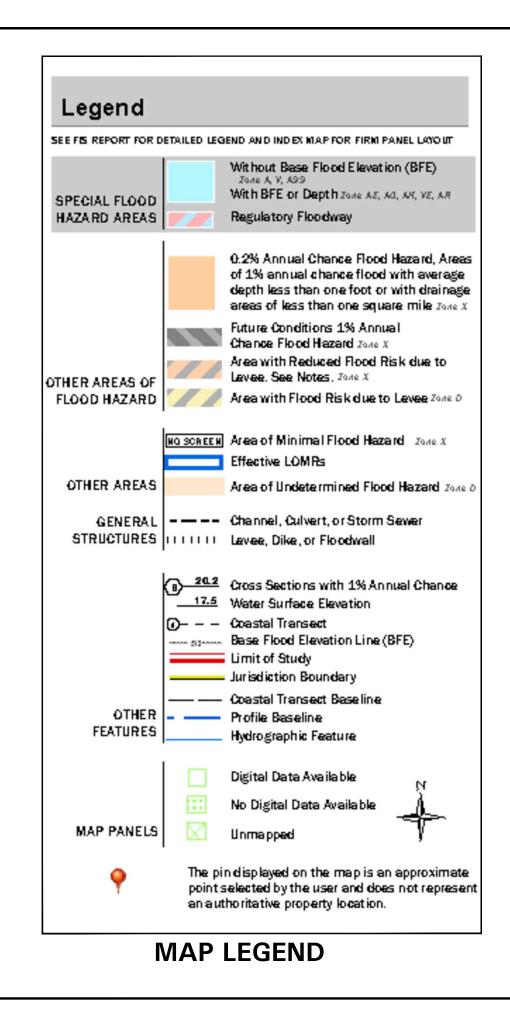
Based on the results of this study, it can be concluded that:


- The site will retain the Pre versus Post run-off for the 100-year, 2-hour storm event.
- The proposed finished floor elevation is a minimum of 14" feet above the 100-year water surface elevation in the proposed retention basin.

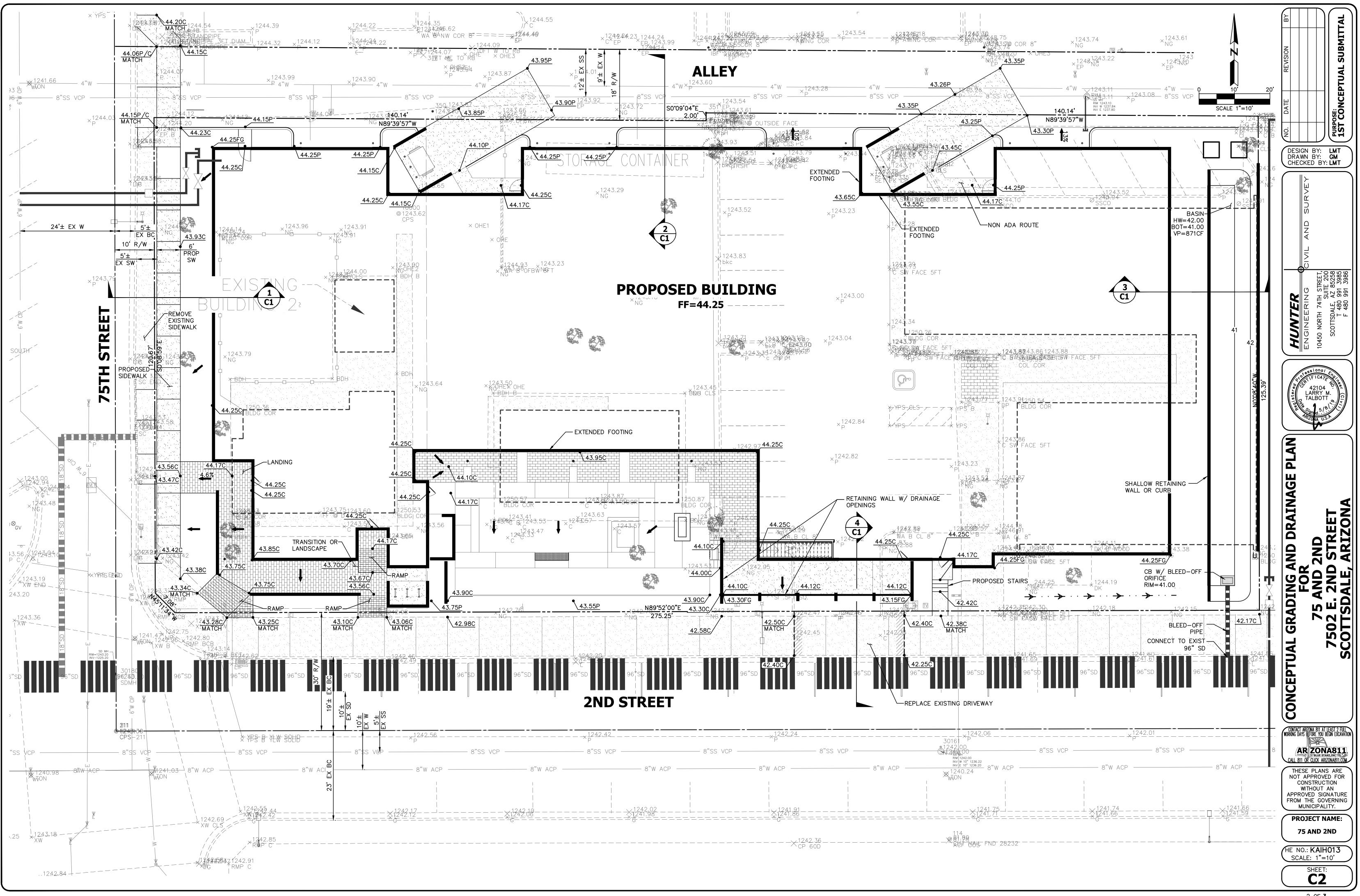
5.0 **REFERENCES**

- 1) City of Scottsdale Standards and Policies manual, February 7,2010.
- 2) Drainage Design Manual for Maricopa County, Arizona, Hydrology, February 2011.
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydraulics, June 2010.

> APPENDIX A FIGURES

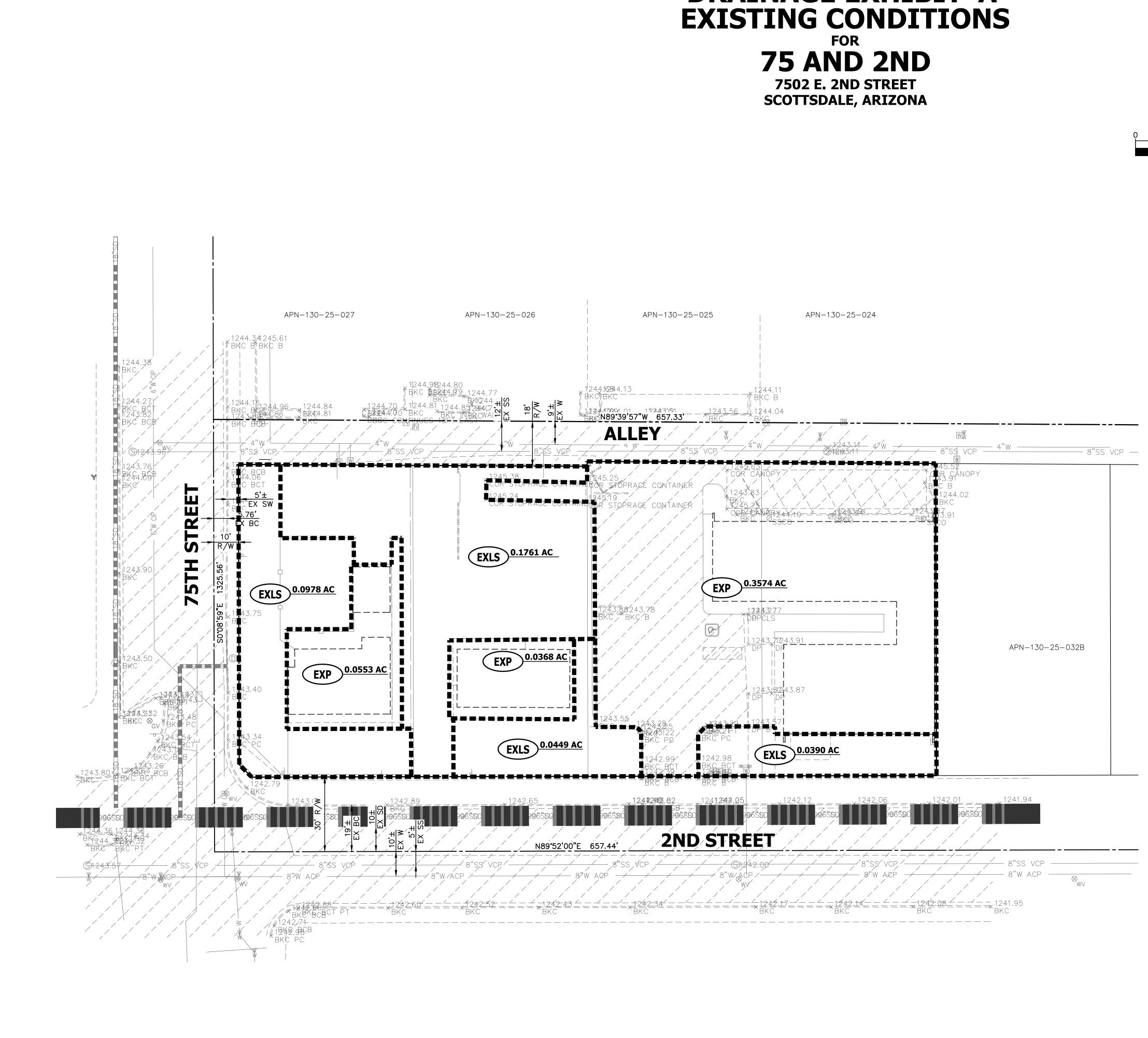


VICINITY MAP FIGURE 1



Ν

PORTION OF PANEL SHOWING SITE FIGURE 2





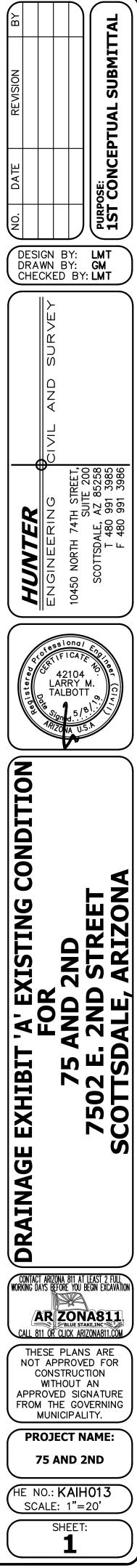
G:\KAIH013\Concept\KA13CONGRD.dwg, 5/8/2019 11:23:28 AM, Ita

2 OF **3**

DRAINAGE EXHIBIT 'A'

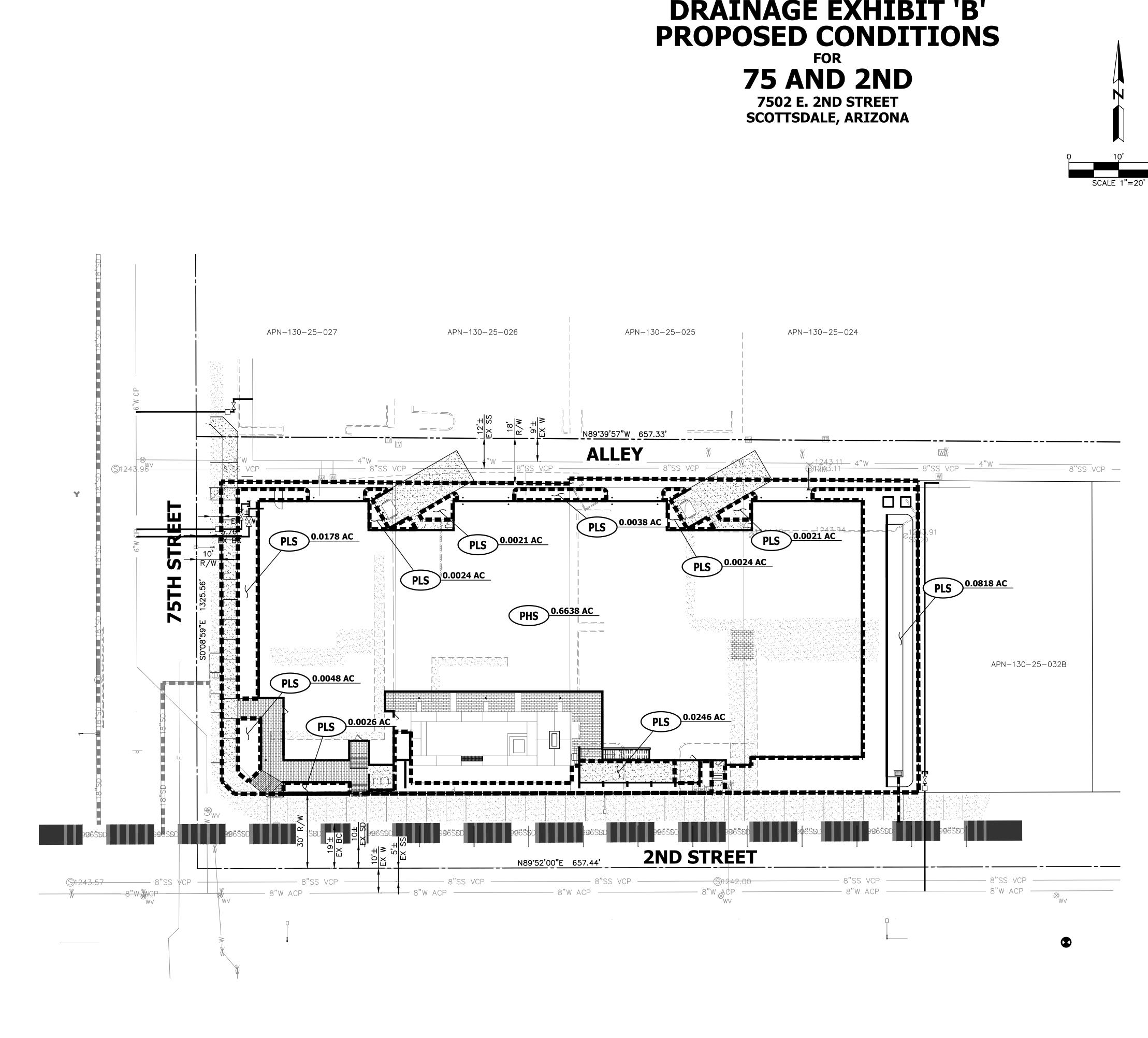
OWNER

SCALE 1"=20'

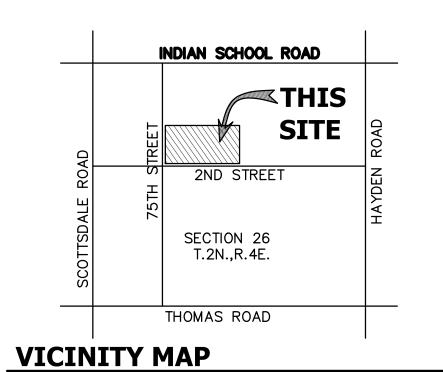

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM

CIVIL ENGINEER

HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991-3985 CONTACT: LARRY TALBOTT, P.E EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM


LEGEND

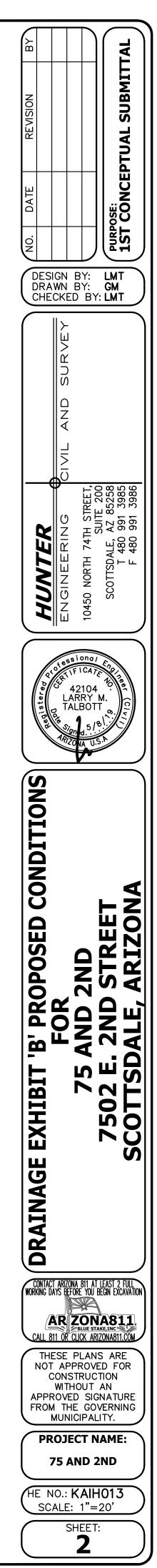
43	PROPOSED CONTOUR
	PROPOSED STORM LINE
	PROPOSED CATCH BASIN
$\rightarrow \cdots \rightarrow \cdots -$	PROPOSED FLOW LINE
\rightarrow \diamond \diamond \diamond	PROPOSED GRADE BREAK
-	PROPOSED FLOW ARROW
	DRAINAGE AREA BOUNDARY
EXLS 0.000AC	EXISTING LANDSCAPE
EXP 0.000AC	EXISTING PAVEMENT, CONCRETE OR ROOF AREA



NT?

DRAINAGE EXHIBIT 'B'

OWNER


K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM

CIVIL ENGINEER

HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991–3985 CONTACT: LARRY TALBOTT, P.E. EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM

LEGEND

43	PROPOSED CONTOUR
	PROPOSED STORM LINE
	PROPOSED CATCH BASIN
$\rightarrow \cdot \cdot \rightarrow \cdot \cdot -$	PROPOSED FLOW LINE
\rightarrow \diamond \diamond \diamond	PROPOSED GRADE BREAK
-	PROPOSED FLOW ARROW
	DRAINAGE AREA BOUNDARY
PLS 0.000AC	PROPOSED LANDSCAPE
PHS 0.000AC	PROPOSED HARDSCAPE

APPENDIX B DRAINAGE CALCULATIONS

Retention Basin Calculations

Vr=C*D*A*43,560, C=0.9, D=2.2 Design Storm: 100-year, 2-hour

С	=	0.90	
D	=	2.20	inches
А	=	0.81	Site acres
Vr	=	5,822	cubic feet

Pre Vs. Post Analysis

Required

Pre							
	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	
-	Pre	Weighted	0.8071	0.7284	2.20	4,695	
			0.8071			4,695	
Post							
_	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	
-	Post	Weighted	0.8071	0.8609	2.20	5,549	
			0.8071			5,549	
					Post	5,549	
					Pre	4,695	
					Required	854	cf Req

Volume Provided

Retention Basin

Elevation	Area (sf)	Avg. Area (sf)	Depth (ft)	Volume (cf)	Σ Volume (cf)
42.0	1,113				
		871	1.00	871	871
41.0	628				

871 cf Prov

Total Retention				
871 cf Prov				
854 cf Req				
17 cf Excess				

Weighted Runoff Coefficient Calculation

Cw=[(C1*A1)+(C2*A2)+(C3*A3)...+(Cn*An)] / Total Area

Project:	KAIH013	Calc'd By: LMT
Date:	5/8/2019	Chck'd By: LMT

Pre-Development Conditions

C ₁ =	0.95	Paving/Roof	$A_1 =$	0.45	Acres
C ₂ =	0.45	Existing Landsape	A ₂ =	0.36	Acres
			Total=	0.81	Acres

Cw= <u>0.73</u>

Proposed Conditions

Cw=	<u>0.86</u>				
			Total=	0.81	Acres
C ₂ =	0.45	Existing Landsape	$A_2 =$	0.14	Acres
C ₁ =	0.95	Paving/Roof	$A_1 =$	0.67	Acres

CIVIL AND SURVEY

Final Water Design Report For 75 on 2ND 7502 E. 2ND Street Scottsdale, Arizona

25-DR-2019 5/13/2019

HUNTER

January 2019

Prepared by: Hunter Engineering, Inc. 10450 North 74th Street, Suite 200 Scottsdale, AZ 85258

FINAL WATER DESIGN REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, INC. 10450 NORTH 74TH STREET, SUITE 200 SCOTTSDALE, AZ 85258 (480) 991-3985

H.E. PROJECT NO. LGEC202

HUNTER ENGINEERING

TABLE OF CONTENTS

SECTION TITLE

PAGE

1.0	Introduction1
2.0	Existing Site Conditions1
3.0	Existing Water Distribution System1
4.0	Proposed Domestic Water Demand1
5.0	Proposed Fire Flow Demand2
6.0	Conclusions

FIGURES TITLE

LOCATION

1	Vicinity Map	Appendix A
2	Conceptual Utility Plan	Back Pocket

APPENDIX TITLE

А	Figures
В	Calculations and Data
С	Fire Flow Test Results
D	Reference Information

1.0 INTRODUCTION

This water report has been prepared under a contract from K&I Homes the architect for the 75 On 2nd project. The purpose of this report is to provide a water analysis, as required by the City of Scottsdale, to support this development. This report has been prepared according to the procedures detailed in Chapter 6 of the City of Scottsdale's Design Standards & Policies Manual dated January 2018.

This development project is located at 7502 E. 2nd Street Scottsdale, Arizona 85251. The site is specifically located in The Northwest Quarter of Section 26. Township 2 North, Range 4 East of The Gila And Salt River Base and Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 on 2^{nd} consisting of approximately $0.81\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING SITE CONDITIONS

The site is currently developed with existing single-story stucco buildings that were used as single-family residences with parking. The site is bordered by an alley way to the north, 75th street to the west, 2nd street to the south, and small apartment complexes to the east.

There is an existing 4-inch public water main in the alley way directly north of the property that runs parallel to 2nd street. There is also an existing 6-inch public water main in 75th Street and an 8-inch public water main in 2nd Street. There is an existing water service in the alley approximately 50' east of 75th Street and an existing water service off 2nd Street approximately 200' east of 75th Street. Any unused services shall be abandoned at the main.

3.0 EXISTING WATER DISTRIBUTION SYSTEM

Since the 4" main in the alley is too small in diameter this development will bring new domestic and fire services off of 75^{th} Street. The existing service in the alley will be abandoned and the existing service off 2^{nd} Street will be utilized for landscape irrigation.

4.0 PROPOSED DOMESTIC WATER DEMAND

The average day, maximum day and peak hour demands for this development were derived using unit flow requirements out of the City of Scottsdale Design Standards & Policies Manual for Water, Figure 6.1-2. Refer to Appendix D in this report. Average Day Demand (ADD), Maximum Day Demand (MDD) and Peak Hour Demand (PHD) for domestic water usage for each building are located in Appendix B. Maximum Day Demand is 2 times the ADD and Peak Hour Demand is 3.5 times the ADD.

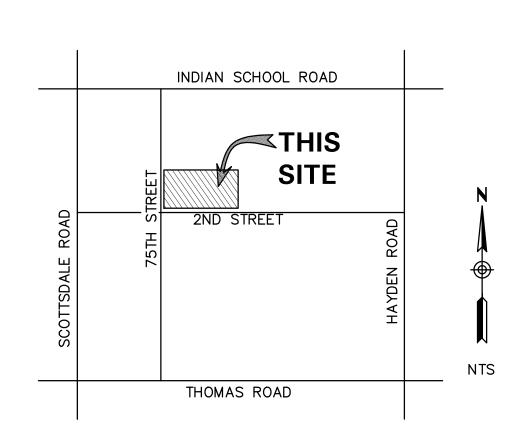
Land Use	Building Area or	Average Daily Flows by Land Use		Average Daily Flow	Average Daily Flow	Maximum Daily Flow	Peak Flow
	Units	Table 6. 1-2 Avg Daily Flows		(ADF)	(ADF)	(ADF * 2)	(ADF * 3.5)
	sf Units	Water an	dards Manual For d Wastewater /stems	gpd	gpm	gpm	gpm
Comm/Retail	20,002	0.8	gals per s.f.	16,002	11.1	22.2	38.85
Condo	39	185.3	gals per s.f.	7,227	5.0	10	17.5
TOTAL:				23,228	16.1	32.2	56.4

5.0 **PROPOSED FIRE FLOW DEMAND**

The proposed system was modeled using WATERCAD, a pipe network analysis program by Haestad Methods. A reservoir and pump were added to the model near the hydrant flow test location to simulate the pressure versus flow curve. The model has been calibrated to match the results of the hydrant test. Note that the pipe (Model pipes connecting the pump and reservoir are not a part of the system and are oversized to 120-inch to minimize system losses. Pipes and junctions were added to the network model matching the pipe sizes, materials and elevations of the proposed system.

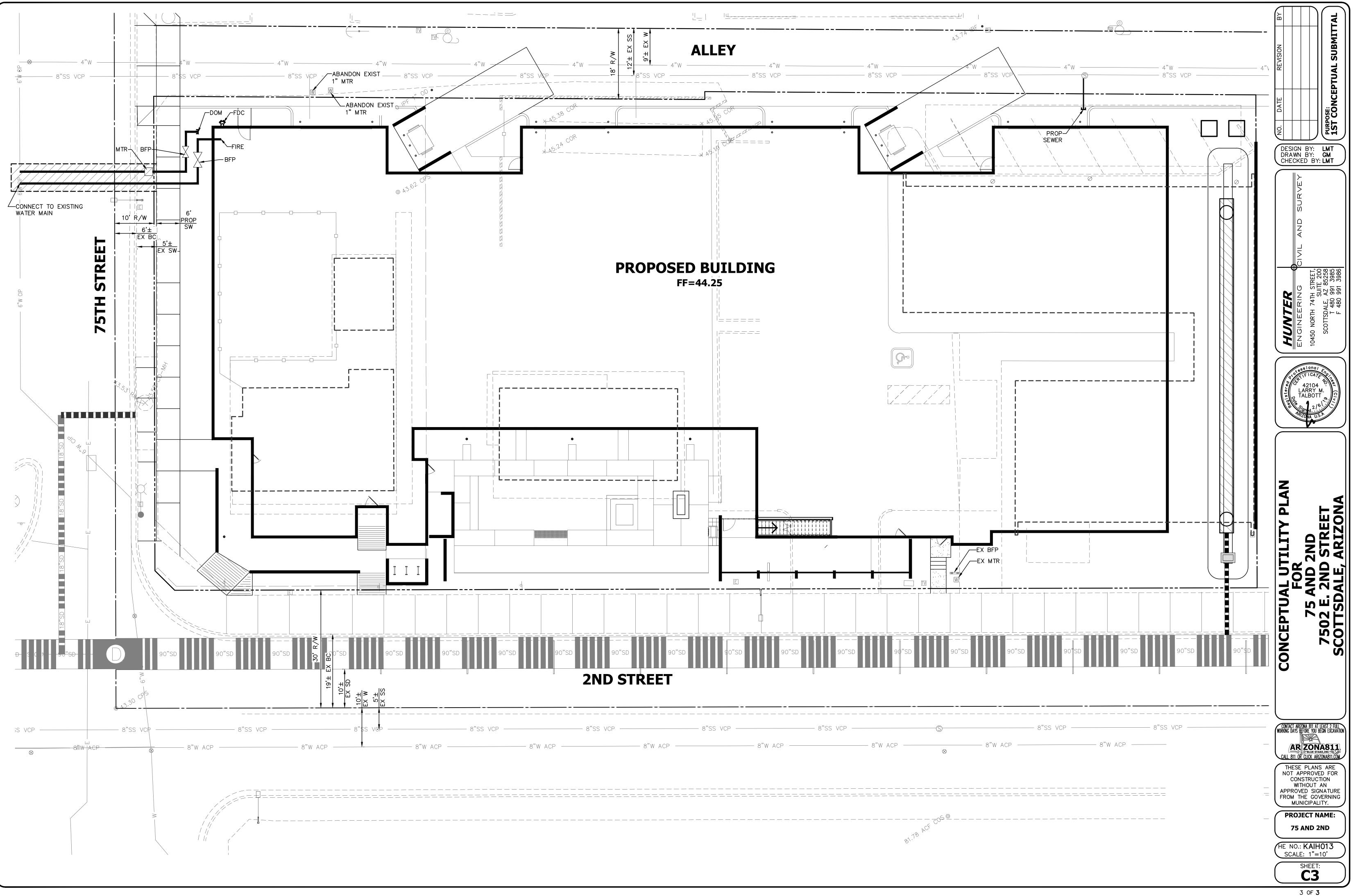
The model is completed as a closed system without extensive information from the entire city pipe network, which is not feasible for the requirements of this report. A closed system is conservative having one-point source of water supply and pressure whereas the existing system can have multiple supply sources feeding the pipe network surrounding the development. The flow test should be representative of the demand adjacent properties have on the system. The hydrant flow test results reflect the time and location of the test. Refer to Appendix C for Fire Flow Test results.

Per the International Fire Code (IFC), the maximum fire flow is based on the construction type of the building and its square footage. The total building area is 70,065 sf. The building type is V-A. This requires a fire flow of 4,750 GPM be achieved at a minimum pressure of 20 PSI. The proposed building will be sprinklered. Therefore, a 50% reduction in the fire flow requirement may be applied. This reduces the required fire flow to 2,375 GPM. The resultant pressure for the fire flow is 62 psi which is more than the minimum required 20 psi. Results from the WaterCAD analysis are summarized below with calculations and detailed results in Appendix B.


6.0 CONCLUSIONS

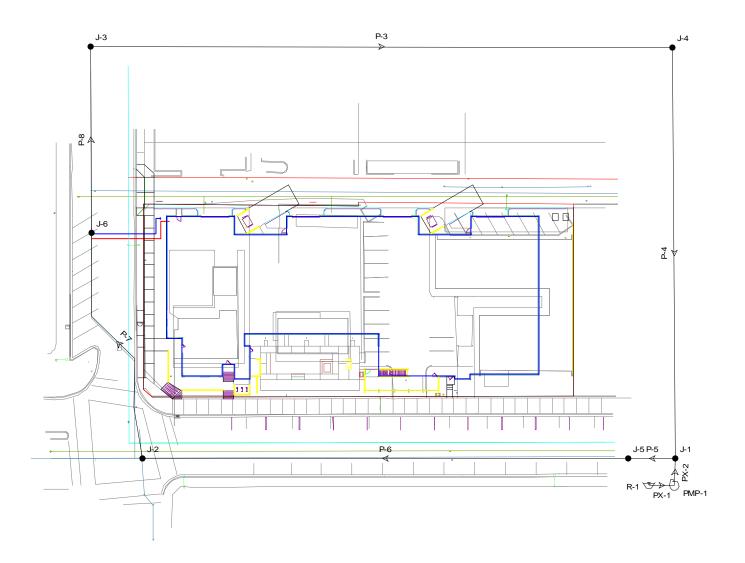
Based on the results of this study, it can be concluded that:

- The proposed water network meets the requirements to support this development.
- Results of the WaterCAD model indicate that the proposed water network does provide the needed fire flow and pressure to service this development.
- All domestic water lines and firelines shall be privately owned and maintained.


> APPENDIX A FIGURES

VICINITY MAP FIGURE 1

APPENDIX B CALCULATIONS AND DATA SHEET


Project:	75 on 2nd
Project Number:	KAIH013
City:	Scottsdale
Date:	1/31/2019
DDO JEOTED MAVIMUM D	OMENTIN WATER DEM

PROJECTED MAXIMUM DOMESTIC WATER DEMANDS

I.D.	Land Use	Building	Average Daily Flows		Average	Average	Maximum	Peak
		Area or	by Land Use		Daily Flow	Daily Flow	Daily Flow	Flow
		Units	Table 6. 1-2 Avg Daily Flows		(ADF)	(ADF)	(ADF * 2)	(ADF * 3.5)
		sf	Design Standards Manual For					
		Units	Water and Wastewater Systems		gpd	gpm	gpm	gpm
Building A	Comm/Retail	20,002	0.8	gals per s.f.	16,002	11.1	22.2	38.85
	Condo	39	185.3	gals per s.f.	7,227	5.0	10	17.5
	TOTAL:				23,228	16.1	32.2	56.4

FIRE FLOW SUMMARY

I.D.	Proposed Building Type	Building Area squate feet	Estimated Construction Type	Minimum Required Fire Flow, Table B105.1 2009 Internation Fire Code	50% Sprinklered Fire Flow	Building Sprinklered
				(gpm)	(gpm)	
Building A	Mixed Use	70,065	V-A	4,750	2,375	YES

Scenario: Peak Steady State Analysis Pipe Report

Label	Length (ft)	Diameter (in)		Hazen- Williams C		Jpstream Structu E Hydraulic Grade (ft)	eownstream Structure Hydraulic Grade (ft)
P-3	690.00	6.0	Cast iron	130.0	-21.82	246.83	246.87
P-4	350.00	12.0	Cast iron	130.0	-21.82	246.87	246.87
PX-1	1.00	120.0	Ductile Iron	130.0	56.40	39.00	39.00
PX-2	1.00	120.0	Ductile Iron	130.0	56.40	246.87	246.87
P-5	335.00	8.0	Asphalted cast iron (r	130.0	34.58	246.87	246.86
P-6	340.00	8.0	Asphalted cast iron (r	130.0	34.58	246.86	246.85
P-7	198.00	6.0	Cast iron	130.0	34.58	246.85	246.82
P-8	152.00	6.0	Cast iron	130.0	-21.82	246.82	246.83

Scenario: Peak Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grad (ft)	Pressure e (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.87	89.94
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.85	89.05
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.83	88.62
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.87	89.50
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.86	89.07
J-6	44.00	Zone	Demand	56.40	Fixed	56.40	246.82	87.75

> 50 psi OK

Scenario: Fire Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grad (ft)	Pressure e (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	216.84	76.94
J-2	41.03	Zone	Demand	1,000.00	Fixed	1,000.00	190.15	64.52
J-3	42.00	Zone	Demand	1,000.00	Fixed	1,000.00	187.39	62.91
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.34	76.29
J-5	41.00	Zone	Demand	375.00	Fixed	375.00	200.55	69.03
J-6	44.00	Zone	Demand	56.40	Fixed	56.40	188.36	62.46

> 20 psi OK

Scenario: Hydrant Test 1 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated i (gpm)	Calculated Hydraulic Grad (ft)	Pressure e (psi)	
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.95	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.90	89.07	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.90	88.65	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.08	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	246.90	87.79	

Scenario: Hydrant Test 2 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated i (gpm)	Calculated Hydraulic Grade (ft)	Pressure e (psi)	
J-1	39.00	Zone	Demand	2,430.00	Fixed	2,430.00	216.87	76.96	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	216.87	76.08	, , , , , , , , , ,
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	216.87	75.66	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.09	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	216.87	74.79	

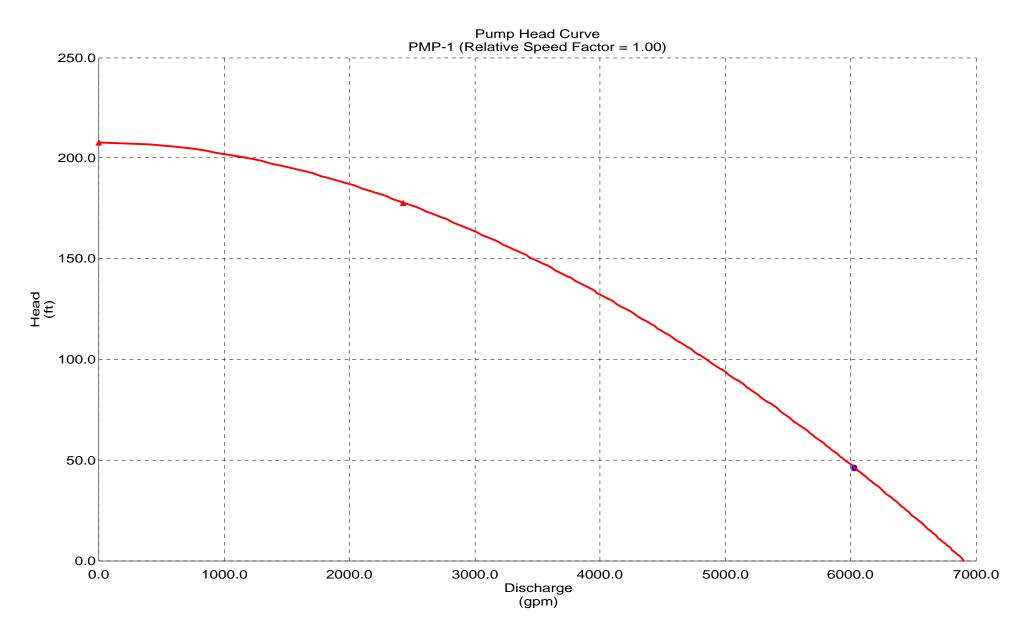
Scenario: Hydrant Test 3 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated i (gpm)	Calculated Hydraulic Grad (ft)	Pressure e (psi)	
J-1	39.00	Zone	Demand	6,031.00	Fixed	6,031.00	85.20	19.99	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	85.20	19.11	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	85.20	18.69	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.56	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.12	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	85.20	17.83	

Detailed Report for Pump: PMP-1

Scenario Summary								
Scenario	Hydrant Test 3							
Active Topology Alternative	Base-Active Topolo	ду						
Physical Alternative	Base-Physical							
Demand Alternative	Demand-Hydrant Te	est 3						
Initial Settings Alternative	Base-Initial Settings	5						
Operational Alternative	Base-Operational	Base-Operational						
Age Alternative	Base-Age Alternativ	/e						
Constituent Alternative	Base-Constituent							
Trace Alternative	Base-Trace Alterna	tive						
Fire Flow Alternative	Base-Fire Flow							
Capital Cost Alternative	Base-Capital Cost							
Energy Cost Alternative	Base-Energy Cost	Base-Energy Cost						
User Data Alternative	Base-User Data							
Global Adjustments Summar	у							
Demand	<none></none>	Roughness	<none></none>					
Geometric Summary								
Х	699,451.47 ft	Upstream Pipe	PX-1					
Y	906,247.77 ft	Downstream Pipe	PX-2					
Elevation	39.00 ft							
Pump Definition Summary								
Pump Definition	Default Pump Defin	ition						
Initial Status								
Initial Pump Status	On	Initial Relative Speed Facto	1.00					
Calculated I	Results Summary							
Time Control IntakeDischarg (hr) Status Pump Pump Grade Grade (ft) (ft)	DischargePump Rela (gpm) Head Sp (ft)							

1.00


70.35

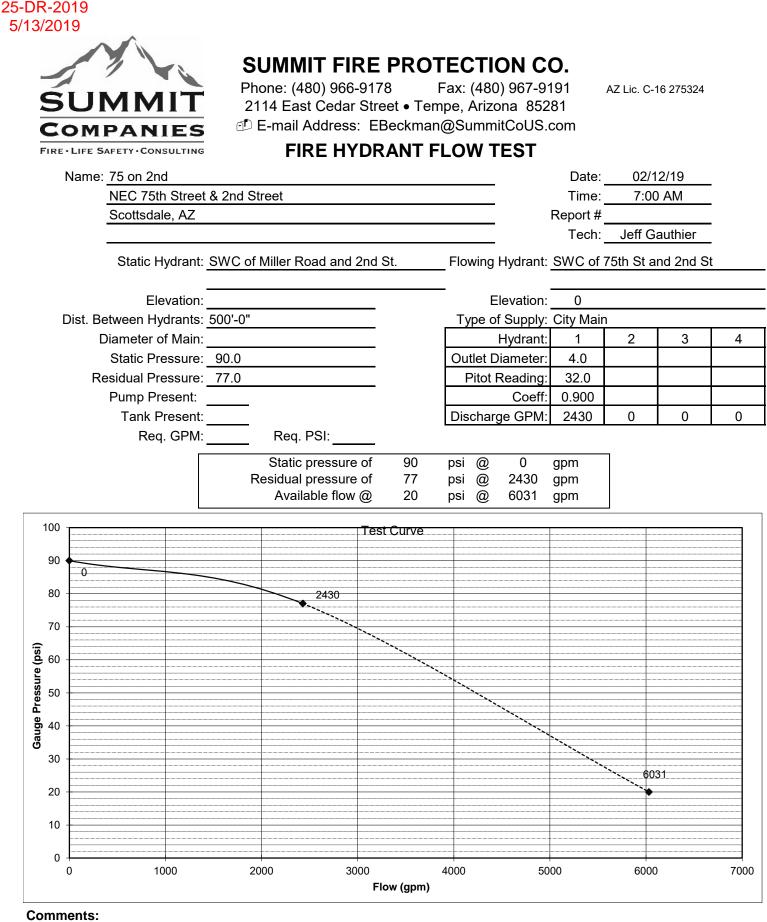
85.20 3,031.00 46.20

39.00

0.00 On

Detailed Report for Pump: PMP-1

Detailed Report for Reservoir: R-1

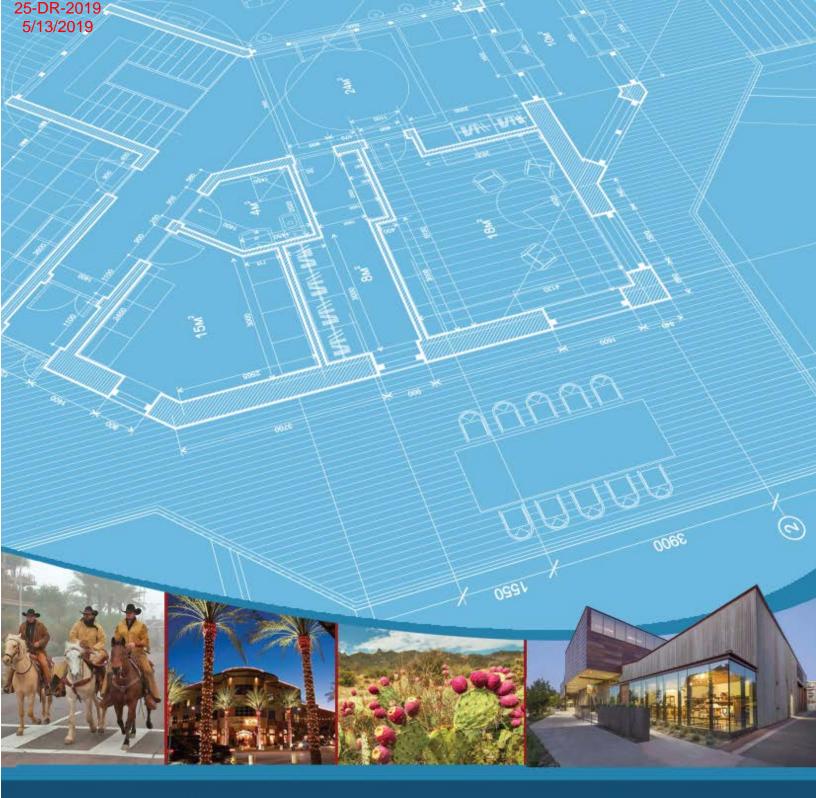

Note: The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

Scenario Summary						
Scenario	Hydrant Test 3					
Active Topology Alternative	Base-Active Top	ology				
Physical Alternative	Base-Physical					
Demand Alternative	Demand-Hydrant	t Test 3				
Initial Settings Alternative	Base-Initial Settir	ngs				
Operational Alternative	Base-Operationa	Base-Operational				
Age Alternative	Base-Age Alternative					
Constituent Alternative	Base-Constituen	t				
Trace Alternative	Base-Trace Alter					
Fire Flow Alternative	Base-Fire Flow					
Capital Cost Alternative	Base-Capital Cos	st				
Energy Cost Alternative	Base-Energy Cos	st				
User Data Alternative	Base-User Data					
Global Adjustments Summar	ý					
Demand	<none></none>	Roughness	<none></none>			
Geometric Summary						
Х	699,435.02 ft	Elevation	39.00 ft			
Y	906,248.15 ft	Zone	Zone			

Calculated Results Summary

	Calculated ydraulic Grade (ft)	Inflow (gpm)	Outflow (gpm)
0.00	39.00 3	,031.00	,031.00

APPENDIX C FIRE HYDRANT TEST


NOTES:

- 1. Flowing hydrant is assumed to be on a circulating main or downstream of the pressure test hydrant on a dead-end system.
- 2. Flow analysis assumes a gravity flow system with no distribution pumps and having no demand, other than the test
- 3. The distance between hydrants, elevations & main diameters are for information only.

APPENDIX D REFERENCE INFORMATION

DESIGN STANDARDS & POLICIES MANUAL

DESIGN FLOW & HEAD LOSS

The ultimate design flow within the city's water transmission and distribution system will be based on the city's current Integrated Water Master Plan. Water demand for each development will be calculated using the average day demands, as shown in Figure 6-1.2, to ensure that the existing distribution supply is sufficient. Designs will include all necessary improvements, including booster pumping stations, reservoirs, lines and appurtenances to meet the system's ultimate demand.

- A. The four hydraulic modeling scenarios detailed in 6-1.202 will demonstrate that the system is adequately designed.
- B. Select model scenario flows and their respective peaking factors are as follows:
 - 1. Maximum day: Defined as 2 times the average day total use flow as determined per Figure 6-1.2 (use gpm value).
 - 2. Peak hour: Defined as 3.5 times the average day total use as determined per Figure 6-1.2 (use gpm value).
 - 3. <u>Note:</u> These peaking factors shall be appropriately increased for restaurants and high-demand water users, or as designated by the Water Resources Department after review.
- C. The maximum allowable pipe head loss for the various water pipelines is as follows:
 - 1. Transmission mains: 8 feet per 1,000 feet (3.5 psi per 1,000 feet)
 - 2. Distribution lines: 10 feet per 1,000 feet (4.3 psi per 1,000 feet)
 - 3. Service lines domestic, dedicated fire, or combined domestic/fire: size as required to satisfy both hydraulic modeling requirements and Fire Code. Generally, velocities of more than 5 feet per second are undesirable. Velocities more than 7.5 feet per second are not allowed.
 - 4. As otherwise designated by the Water Resources Department

SYSTEM FLOW TEST REQUIREMENTS & USE OF RESULTS

Pressure and available flow information for existing water lines must be obtained by having a fire hydrant flow test performed on the system. Hydrant flow tests are required for the following situations:

- A. On all commercial projects, multi-family residential projects, and public extensions of the city's water distribution system.
- B. For any proposed system connecting to the existing distribution system, the design capacity of the existing system (flow versus pressure) will need to be determined by the engineer.
- C. Prior to acceptance by the city, all platted subdivisions shall conduct an additional flow test at the lowest and highest elevation available in which the development is constructed.
- D. Developments that cross pressure zone boundaries must conduct a flow test within each pressure zone.

A private fire protection company shall perform the tests and certify the results. A right-of-way permit issued by the One Stop Shop is required for a flow test and the Inspection Services Division will be notified a minimum of 48 hours before performing the flow test. The permit is also available <u>online</u>. Refer to the <u>flow test design form</u>.

CHAPTER 6

6-1.404

6-1.405

WATER

- d. Pipe flow velocity in feet per second (fps)
- e. Each pipe segment's head loss rate (ft. /1,000ft or psi/ft.)
- f. PRVs: Upstream and downstream pressures (psi or HGL elevation)
- g. Tanks: Inflow and outflow (gpm)
- h. Shows all units for the values presented or provide a legend on the diagram page that indicates the units used

AVERAGE DAY WATER DEMANDS (1)

IN GALLONS PER DAY (GPD) ⁽²⁾				IN GALLONS PER MINUTE (GPM) (2)(3)				
Land Use	Inside Use	Outside Use	Total Use	Inside Use	Outside Use	Total Use	Units	
Residential Demar	nd per D	welling Ur	nit				<u>.</u>	
< 2 dwelling unit per acre (DU/ac)	208.9	276.7	485.6	0.30	0.39	0.69	per unit	
2 – 2.9 DU/ac	193.7	276.7	470.4	0.27	0.39	0.66	per unit	
3 – 7.9 DU/ac	175.9	72.3	248.2	0.25	0.11	0.36	per unit	
8 – 11.9 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit	
12 – 22 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit	
High Density Condominium (condo)	155.3	30	185.3	0.22	0.05	0.27	per unit	
Resort Hotel (includes site amenities)	401.7	44.6	446.3	0.56	0.07	0.63	per room	
Service and Emplo	yment				1		-	
Restaurant	1.2	0.1	1.3	1.67E-03	1.39E-04	1.81E-03	per square foot (sq.ft.)	
Commercial/ Retail	0.7	0.1	0.8	9.73E-04	1.39E-04	1.11E-03	per sq.ft.	
Commercial High Rise	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.	

AVERAGE DAY WA	TER DEM	ANDS ⁽¹⁾						
IN GALLONS PER DAY (GPD) ⁽²⁾				IN GALLONS PER MINUTE (GPM) ⁽²⁾⁽³⁾				
Office	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.	
Institutional	670	670	1340	0.94	0.94	1.88	per acre	
Industrial	873	154	1027	1.22	0.22	1.44	per acre	
Research and Development	1092	192	1284	1.52	0.27	1.79	per acre	
Special Use Areas								
Natural Area Oper Space	0	0	0	0.0	0.0	0.0	per acre	
Developed Open Space – Parks	0	1786	1786	0.0	2.49	2.49	per acre	
Developed Open Space – Golf Course	0	4285	4285	0.0	5.96	5.96	per acre	

Notes:

(1) These values shall not be used directly for service line or water meter sizing.

(2) Gallon per day values are provided for reference only. The instantaneous gallon per minute flow rates presented are intended for use in the required hydraulic modeling scenarios. The gpm values assume a 12-hour active water use period per 24-hour day. In large or specialty developments or master plans the hydraulic analysis criteria and parameters should be discussed with the Water Resources Department. Seasonal peaking should also be considered. Upon review, the Water Resources Department reserves the right to designate flows to be used in hydraulic modeling scenarios that may be different from those presented here.

(3) The hydraulic modeling peaking factors used in select modeling scenarios are to be applied to the gpm values shown here. Max day and peak hour peaking factors can be found in Section 6-1.404.

FIGURE 6-1.2 AVERAGE DAY WATER DEMANDS

TABLE B105.1 MINIMUM REQUIRED FIRE-FLOW AND FLOW DURATION FOR BUILDINGS

	FIRE-FLOW					
Type IA and IB ^a	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Type V-B ^a	FIRE-FLOW (gallons per minute) ^b	FLOW DURATION (hours)
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	2
38,701-48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	2,750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3,000	
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250	2
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	3
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000	
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250	
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750	

HUNTER

ENGINEERING

FINAL Basis of Design

Disclaimer: If approved: the approval is granted under the

As this BOD has the same

seal date it is assumed to be identical in content to the approved as noted zoning case BOD and the same comments to address on plans apply per below.

Call out on plans to coordinate

removals/abandonments with City.

MAG 440-3 clean-out needed on sewer service line. Call out on

existing service line

condition that the final construction documents submitted for city review will match the information herein. Any subsequent changes in the water or sewer design that materially impact design criteria or standards will require re-analysis, re-submittal, and approval of a revised basis of design report prior to the plan review submission.; this approval is not a guarantee of construction document acceptance. For questions or clarifications contact the Water Resources Planning and Engineering Department at 480-312-5685.

APPROVED AS NOTED

SCOTTSDALE

DATE 7/25/2019

Report

BY Idillon

plans.

APPROVED

Final Design Report Sanitary Sewer For 75 ON 2ND 7502 E. 2ND STREET Scottsdale, Arizona

Case #2-ZN-2019

April 2019

Prepared by: Hunter Engineering, Inc. 10450 N. 74th Street, Suite 200 Scottsdale, AZ 85258

FINAL DESIGN REPORT SANITARY SEWER FOR **75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA**

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, INC. 10450 N. 74th Street, SUITE 200 SCOTTSDALE, AZ 85258 (480) 991-3985

H.E. PROJECT NO.: KAIH013

HUNTER ENGINEERING

A B

TABLE OF CONTENTS

LOCATION

TITLE	LOCATION
Introduction	1
Existing Conditions	1
Proposed Sanitary Sewer System	1
Conclusions	2
References	2
TITLE	
Vicinity Map	Appendix A
Conceptual Utility Plan	Back Pocket
TITLE	
	Introduction Existing Conditions Proposed Sanitary Sewer System Conclusions References <u>TITLE</u> Vicinity Map Conceptual Utility Plan

Figures Calculations

BOTT

1.0 INTRODUCTION

This sewer report has been prepared under a contract from K&I Homes the architect for the 75 On 2nd project. The purpose of this report is to provide a sewer analysis, as required by the City of Scottsdale, to support this development. This report has been prepared according to the procedures detailed in Chapter 7 of the City of Scottsdale's Design Standards & Policies Manual dated January 2010.

This development project is located at 7502 E. 2nd Street Scottsdale, Arizona 85251. The site is specifically located in The Northwest Quarter of Section 26. Township 2 North, Range 4 East of The Gila And Salt River Base and Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 on 2^{nd} consisting of approximately $0.81\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING SITE CONDITIONS

The site is currently developed with existing single-story stucco buildings that were used as single-family residences with parking. The site is bordered by an alley way to the north, 75th street to the west, 2nd street to the south, and small apartment complexes to the east.

There is an existing 8-inch public sewer main in the alley way directly north of the property that runs parallel to 2^{nd} street. There are currently existing sanitary sewer service lines off this line for each existing parcel. There is also an existing 8-inch public sewer main on the south side of 2^{nd} Street. No services are extended to the site from this main. There is an existing 96" storm drain located on the north side of 2^{nd} Street. It is likely that this 96" main precludes the extension of useable services from the 2^{nd} Street sewer main to the site.

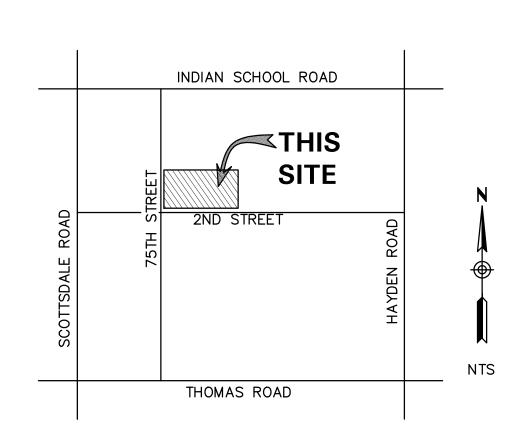
3.0 PROPOSED SANITARY SEWER SYSTEM

This development proposes to extend a 6" sewer service from the existing manhole located near the northeast corner of the site. The proposed Building A will have an estimated Average Daily Flow of 6,280 GPD and a Peak Hour Flow of 13 GPM. Wastewater flows were calculated in accordance with the City of Scottsdale Design Standards and Policy Manual (Reference 1). A demand of 0.40gpd per square feet was used for the commercial/retail portion of the building with a peaking factor of 3.0. See the demand calculations in Appendix B.

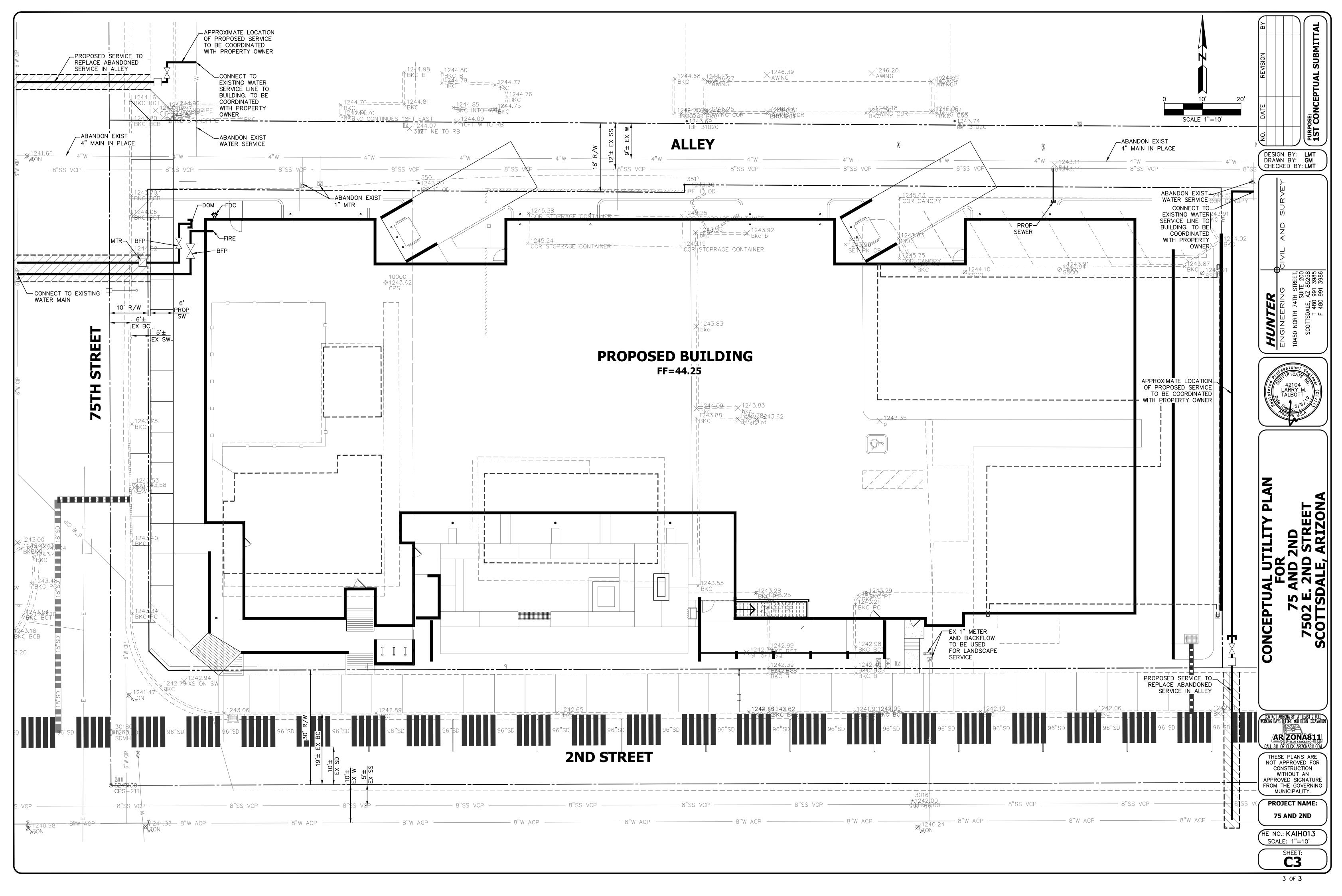
The calculated proposed flow is well below the available flow of 195 gpm for a 6" service at the minimum slope of 1% and a 0.65 d/D ratio.

4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:


• The proposed sewer system is adequate to service the development.

5.0 **REFERENCES**


1) *City of Scottsdale Design Standards & Policies Manual*, January 2010.

> APPENDIX A FIGURES

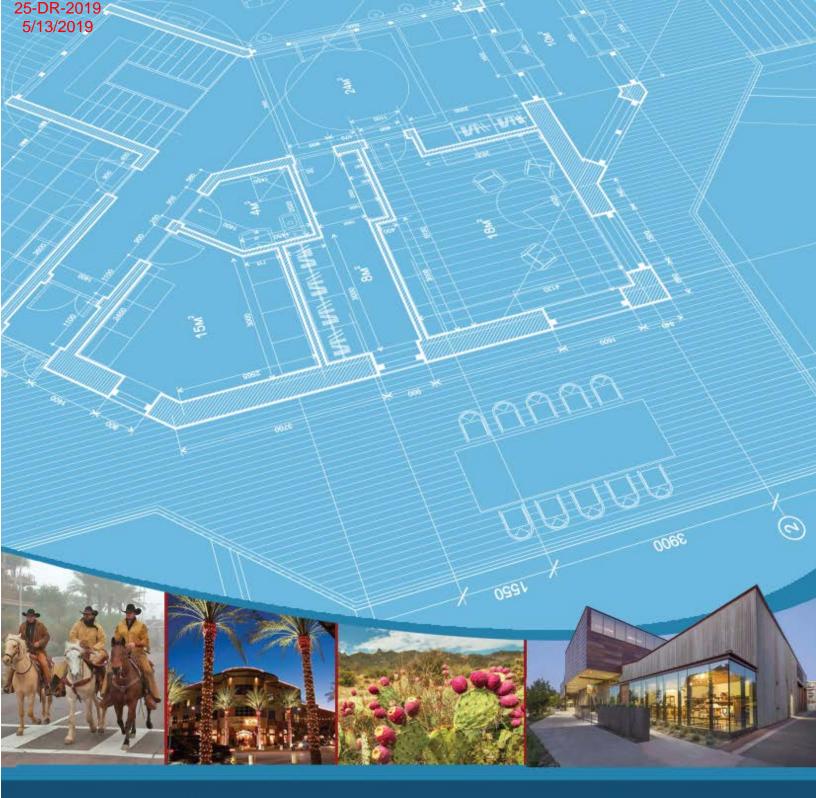
VICINITY MAP FIGURE 1

G:\KAIH013\Concept\KA13CONUTL.dwg, 5/8/2019 11:22:18 AM,

APPENDIX B CALCULATIONS

Project:75 and 2ndProject No.:KAIH013City:SCOTTSDALE, AZDate:1/22/2019

PROJECTED MAXIMUM SANITARY SEWER LOADS


I.D.	Land Use	Building Area or Units	Average	Day Sewer	Peaking	Average	Average	Peak
		sq.ft.	Demands in Gallons		Factor	Daily Flow	Daily Flow	Flow
		Units	Figur	e 7.1-2	Figure 7.1-2	gpd	gpm	gpm
Building Area A	Comm/Retail	20,002	0.50	per sq.ft.	3	10,001	6.9	20.7
	Condo	39	140.00	per unit	4.5	5,460	3.8	17.1
	Sub-Total					15,461	11	38

Worksheet Worksheet for Circular Channel

Project Description	n			
Worksheet	6" Service			
Flow Element	Circu	lar Chai	nn	
Method	Manr	ing's Fo	orr	
Solve For	Disch	arge		
			_	
Input Data				
Mannings Coeff	ic 0.013			
Channel Slope	010000 f			
Depth	0.33 f	t d/D	=0.	65
Diameter	6.0 i	n		
Results				
Discharge	195	gpm >	38	gpm OK
Flow Area	0.1	ft²		01
Wetted Perime	0.95	ft		
Top Width	0.00	ft		
Critical Depth	0.34	ft		
Percent Full	66.0	%		
Critical Slope	0.009559	ft/ft		
Velocity	3.15	ft/s		
Velocity Head	0.15	ft		
Specific Energy	0.48	ft		
Froude Numbe	1.03			
Maximum Disc	271	gpm		
Discharge Full	252	gpm		
Slope Full	0.005974	ft/ft		
Flow Type	upercritical			

DESIGN STANDARDS & POLICIES MANUAL

WASTEWATER

LAND USE	DEMAND	DESIGN PEAKING
	(gpd)	FACTOR
Commercial/Retail	0.5 per sq. ft.	3
Office	0.4 per sq. ft.	3
Restaurant	1.2 per sq. ft.	6
High Density	140 per unit	4.5
Condominium (Condo)		
Resort Hotel (includes site	380 per room.	4.5
amenities)		
School: without cafeteria	30 per student	6
School: with cafeteria	50 per student	6
Cultural	0.1 per sq. ft.	3
Clubhouse for Subdivision	100 per patron x 2	4.5
Golf Course	patrons per du per day	
Fitness Center/ Spa/ Health	0.8 per sq. ft.	3.5
club		

FIGURE 7-1.2 AVERAGE DAY SEWER DEMAND IN GALLONS PER DAY & PEAKING FACTORS BY LAND USE

HYDRAULIC DESIGN

No public SS lines will be less than 8 inches in diameter unless permission is received in writing from the Water Resources Department.

SS lines shall be designed and constructed to give mean full flow velocities equal to or greater than 2.5 fps, based upon Manning's Formula, using an "n" value of 0.013. To prevent abrasion and erosion of the pipe material, the maximum velocity will be limited to 10 fps at estimated peak flow. Where velocities exceed this maximum figure, submit a hydraulic analysis along with construction recommendations to the Water Resources Department for consideration. In no case will velocities greater than 15 fps be allowed.

Actual velocities shall be analyzed for minimum, average day and peak day design flow conditions for each reach of pipe.

The SS system shall be designed to achieve uniform flow velocities through consistent slopes. Abrupt changes in slope shall be evaluated for hydraulic jump.

The depth to diameter ratio (d/D) for gravity SS pipes <u>12 inches in diameter and less</u> shall not exceed 0.65 in the ultimate peak flow condition. This d/D ratio includes an allowance for system infiltration and inflow.

The d/D for gravity drains greater than 12 inches diameter shall not exceed 0.70 for the ultimate peak flow condition. This d/D includes an allowance for system infiltration and inflow.

Measures to mitigate hydrogen sulfide shall be analyzed at manhole drops, abrupt changes in pipe slope or direction and at changes in pipe diameter.

MANHOLES AND CLEAN OUTS

Manholes in city streets shall be located near the center of the inside traffic lane, rather than on or near the line separating traffic lanes. Manholes shall not be in bike trails, equestrian trails, sidewalks, crosswalks or wash crossings. Manholes are required at all

7-1.404

7-1.405

25-DR-2019

BY Idillon

7502 E. 2ND Street Scottsdale, Arizona DATE 7/25/2019

As this BOD has the same seal date it is assumed to be identical in content to the approved as noted zoning case BOD and the same comments to address on plans apply per below.

Case No. 2-ZN-2019

Final Water Design Report

For

75 on 2ND

Call out on plans to coordinate existing service line removals/abandonments with City.

Proper abandonment of the 4" water main will be required. Call out on plans.

Addtionally, the following zoning case stipulation is highlighted:

25.WATER LINE. Prior to any permit issuance for the development project, the owner shall submit and obtain approval of construction documents to abandon existing waterline within alley adjacent to project development. The owner shall relocate existing water services from this waterline, including any on-site building line relocation for adjacent effected parcels. Associated city water service abandonment and installation fees shall not be applicable.

May 2019

er Water Resources coordination with the homeowner (Noel McDonnell) at 7526 E 2nd Street, His strong preference/direction is to directionally drill Prepared by: for his service line from new City installed meter on the south side of the property and reconnect to the Hunter Engineering, Inc. existing building service connection at the nor10450 North 74th Street, Suite 200 side. Per the stipulation this service line relocation Scottsdale, AZ 85258 would be the responsibility of applicant/developer and their associated contractor. Mr. McDonnell can be reached at 480-429-1122 or rtmi@msn.com for necessary coordination. Coordination with City fornew water meter box should be through Levi Dillor 480-312-5319.

.

CIVIL AND SURVEY

FINAL WATER DESIGN REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, INC. 10450 NORTH 74TH STREET, SUITE 200 SCOTTSDALE, AZ 85258 (480) 991-3985

H.E. PROJECT NO. LGEC202

TABLE OF CONTENTS

SECTION TITLE

PAGE

1.0	Introduction	1
2.0	Existing Site Conditions	1
3.0	Existing Water Distribution System	1
4.0	Proposed Domestic Water Demand	
5.0	Proposed Fire Flow Demand	2
6.0	Conclusions	3

FIGURES <u>TITLE</u>

LOCATION

1	Vicinity Map	Appendix A
2	Conceptual Utility Plan	

APPENDIX TITLE

А	Figures
В	Calculations and Data
С	Fire Flow Test Results
D	Reference Information

1.0 INTRODUCTION

This water report has been prepared under a contract from K&I Homes the architect for the 75 On 2nd project. The purpose of this report is to provide a water analysis, as required by the City of Scottsdale, to support this development. This report has been prepared according to the procedures detailed in Chapter 6 of the City of Scottsdale's Design Standards & Policies Manual dated January 2018.

This development project is located at 7502 E. 2nd Street Scottsdale, Arizona 85251. The site is specifically located in The Northwest Quarter of Section 26. Township 2 North, Range 4 East of The Gila And Salt River Base and Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 on 2^{nd} consisting of approximately $0.81\pm$ acres. Improvements to be made on-site include a new apartment building, parking, and the construction of landscaped areas. The proposed apartment building will also include a parking garage, leasing office and gym. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING SITE CONDITIONS

The site is currently developed with existing single-story stucco buildings that were used as single-family residences with parking. The site is bordered by an alley way to the north, 75th street to the west, 2nd street to the south, and small apartment complexes to the east.

There is an existing 4-inch public water main in the alley way directly north of the property that runs parallel to 2nd street. There is also an existing 6-inch public water main in 75th Street and an 8-inch public water main in 2nd Street. There is an existing water service to the site in the alley approximately 50' east of 75th Street and an existing water service off 2nd Street approximately 200' east of 75th Street. Any unused services shall be removed by City staff with the appropriate fees paid.

In addition to the project site services off the existing 4" alley water main there is also a service to the adjacent parcel to the east and another across the alley to the northwest that are service from this 4" main. The 4" main does not meet city minimum line size standards.

3.0 EXISTING WATER DISTRIBUTION SYSTEM

Since the 4" main in the alley is too small in diameter this development will bring new domestic and fire services off of 75^{th} Street. The existing 4" main in the alley will be abandoned in place and the existing service off 2^{nd} Street will be utilized for landscape irrigation.

A new service will be provided for the adjacent eastern property from 2nd Street and for the west property north of the alley off 75th Street. Per coordination with Levi Dillon, Sr. Water Resources Engineer, the city will work the developer and the other property owners to help facilitate the new services and line abandonment. See email in Appendix D.

4.0 PROPOSED DOMESTIC WATER DEMAND

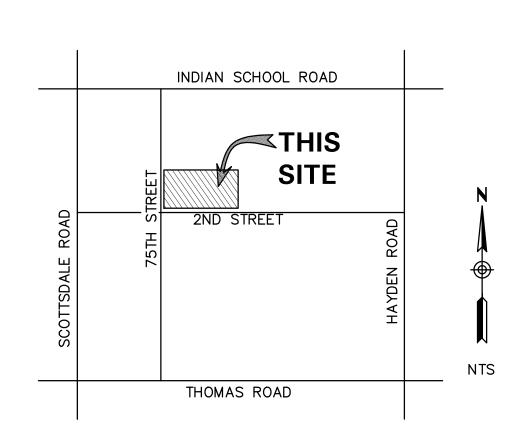
The average day, maximum day and peak hour demands for this development were derived using unit flow requirements out of the City of Scottsdale Design Standards & Policies Manual for Water, Figure 6.1-2. Refer to Appendix D in this report. Average Day Demand (ADD), Maximum Day Demand (MDD) and Peak Hour Demand (PHD) for domestic water usage for each building are located in Appendix B. Maximum Day Demand is 2 times the ADD and Peak Hour Demand is 3.5 times the ADD.

Land Use	Building		Daily Flows	Average Daily	Average Daily	Maximum Daily	Peak
	Area or	by Land Use		Flow	Flow	Flow	Flow (ADF *
	Units	Table 6. 1-2 Avg Daily Flows		(ADF)	(ADF)	(ADF * 2)	(ADF 3.5)
	sf	Design Standards Manual For Water and Wastewater					
	Units	_	stems	gpd	gpm	gpm	gpm
Comm/Retail	20,002	0.00111	0.00111 gals per s.f.		22.2	44.4	77.7
Condo	39	0.27000	gals per s.f.	15,1653	10.5	21.1	36.9
TOTAL:				47,134	32.7	65.5	114.6

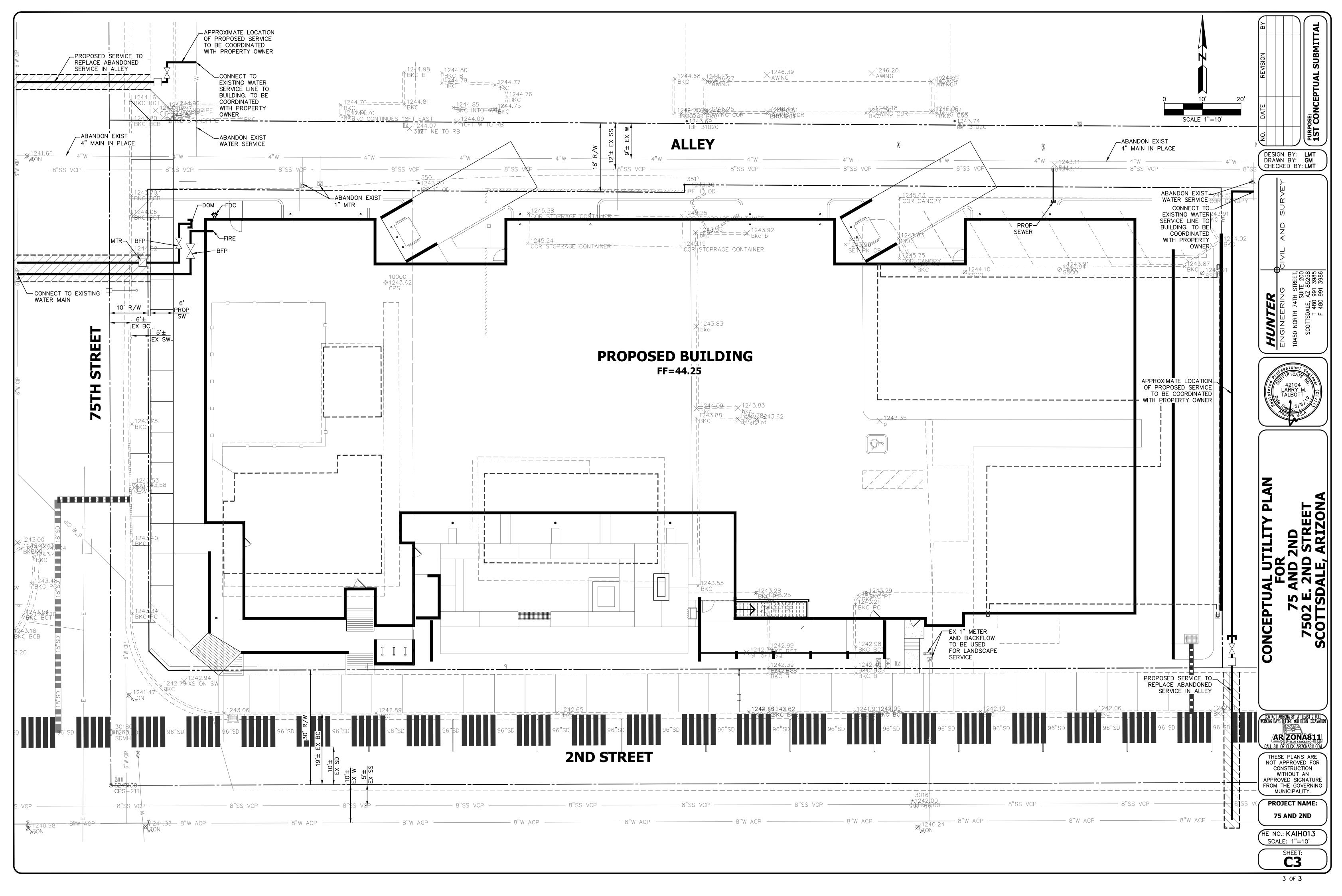
5.0 **PROPOSED FIRE FLOW DEMAND**

The proposed system was modeled using WATERCAD, a pipe network analysis program by Haestad Methods. A reservoir and pump were added to the model near the hydrant flow test location to simulate the pressure versus flow curve. The model has been calibrated to match the results of the hydrant test. Note that the pipe (Model pipes connecting the pump and reservoir are not a part of the system and are oversized to 120-inch to minimize system losses. Pipes and junctions were added to the network model matching the pipe sizes, materials and elevations of the proposed system.

The model is completed as a closed system without extensive information from the entire city pipe network, which is not feasible for the requirements of this report. A closed system is conservative having one-point source of water supply and pressure whereas the existing system can have multiple supply sources feeding the pipe network surrounding the development. The flow test should be representative of the demand adjacent properties have on the system. The hydrant flow test results reflect the time and location of the test. Refer to Appendix C for Fire Flow Test results.


The proposed Occupancy Class is S-2 for the Parking Garage, B for the leasing and gym and R-2 for the Apartments. Per the International Fire Code (IFC), the maximum fire flow is based on the construction type of the building and its square footage. The total building area is 70,065 sf. The building construction type is V-A. This requires a fire flow of 4,750 GPM be achieved at a minimum pressure of 20 PSI. The proposed building will be sprinklered. Therefore, a 50% reduction in the fire flow requirement may be applied. This reduces the required fire flow to 2,375 GPM. The resultant pressure for the fire flow is 62 psi which is more than the minimum required 20 psi. Results from the WaterCAD analysis are summarized below with calculations and detailed results in Appendix B.

6.0 CONCLUSIONS


Based on the results of this study, it can be concluded that:

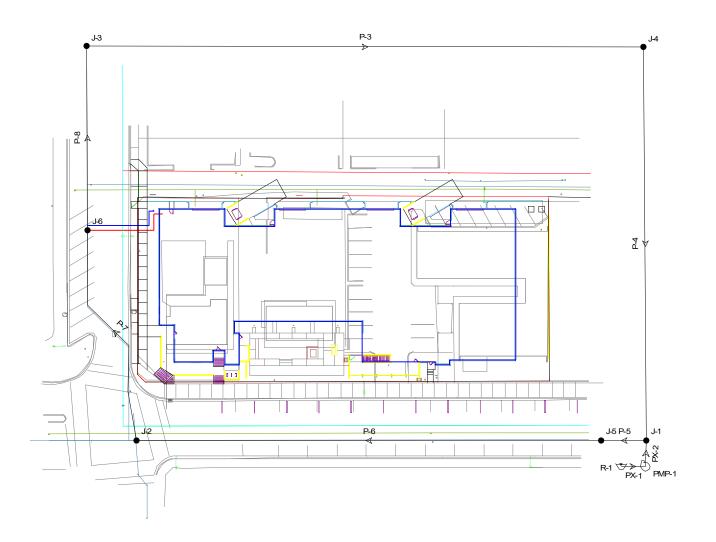
- The proposed water network meets the requirements to support this development.
- Results of the WaterCAD model indicate that the proposed water network does provide the needed fire flow and pressure to service this development.
- All domestic water lines and firelines shall be privately owned and maintained.

> APPENDIX A FIGURES

VICINITY MAP FIGURE 1

G:\KAIH013\Concept\KA13CONUTL.dwg, 5/8/2019 11:22:18 AM,

APPENDIX B CALCULATIONS AND DATA SHEET


Project:	75 on 2nd
Project Number:	KAIH013
City:	Scottsdale
Date:	1/31/2019

PROJECTED MAXIMUM DOMESTIC WATER DEMANDS

I.D.	Land Use	Building Area or Units	Average Daily Flows by Land Use Table 6-1.2 Avg Day Water Dem Design Standards Manual For		Average Daily Flow (ADF)	Average Daily Flow (ADF)	Maximum Daily Flow (ADF * 2)	Peak Flow (ADF * 3.5)
		sf Unit	Water and Wastewater Systems		gpd	gpm	gpm	gpm
Building A	Mixed Use	20,002	0.00111	0.00111 gals per s.f.		22.2	44.4	77.7
	Condo	39	0.27000	gals per unit	15,163	10.5	21.1	36.9
	TOTAL:					32.7	65.5	114.6

FIRE FLOW SUMMARY

I.D.	Proposed Building Type	Building Area squate feet	Estimated Construction Type	Minimum Required Fire Flow, Table B105.1 2009 Internation Fire Code	50% Sprinklered Fire Flow	Building Sprinklered
				(gpm)	(gpm)	
Building A	Mixed Use	70,065	V-A	4,750	2,375	YES

Scenario: Peak Steady State Analysis Pipe Report

Label	Length (ft)	Diameter (in)	Material	Hazen- Williams C		Jpstream Structur t Hydraulic Grade (ft)	Downstream Structure Hydraulic Grade (ft)
P-3	690.00	6.0	Cast iron	130.0	-44.35	246.63	246.79
P-4	350.00	12.0	Cast iron	130.0	-44.35	246.79	246.80
PX-1	1.00	120.0	Ductile Iron	130.0	114.60	39.00	39.00
PX-2	1.00	120.0	Ductile Iron	130.0	114.60	246.80	246.80
P-5	335.00	8.0	Asphalted cast iron (r	130.0	70.25	246.80	246.75
P-6	340.00	8.0	Asphalted cast iron (r	130.0	70.25	246.75	246.70
P-7	198.00	6.0	Cast iron	130.0	70.25	246.70	246.60
P-8	152.00	6.0	Cast iron	130.0	-44.35	246.60	246.63

Scenario: Peak Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.80	89.90
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.70	88.99
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.63	88.53
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.79	89.47
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.75	89.02
J-6	44.00	Zone	Demand	114.60	Fixed	114.60	246.60	87.65
								> <i>Г</i> (

> 50 psi OK

Scenario: Fire Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	216.63	76.85
J-2	41.03	Zone	Demand	1,000.00	Fixed	1,000.00	189.75	64.34
J-3	42.00	Zone	Demand	1,000.00	Fixed	1,000.00	186.95	62.71
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.12	76.20
J-5	41.00	Zone	Demand	375.00	Fixed	375.00	200.24	68.90
J-6	44.00	Zone	Demand	65.50	Fixed	65.50	187.89	62.26

> 20 psi OK

Scenario: Hydrant Test 1 Steady State Analysis Junction Report

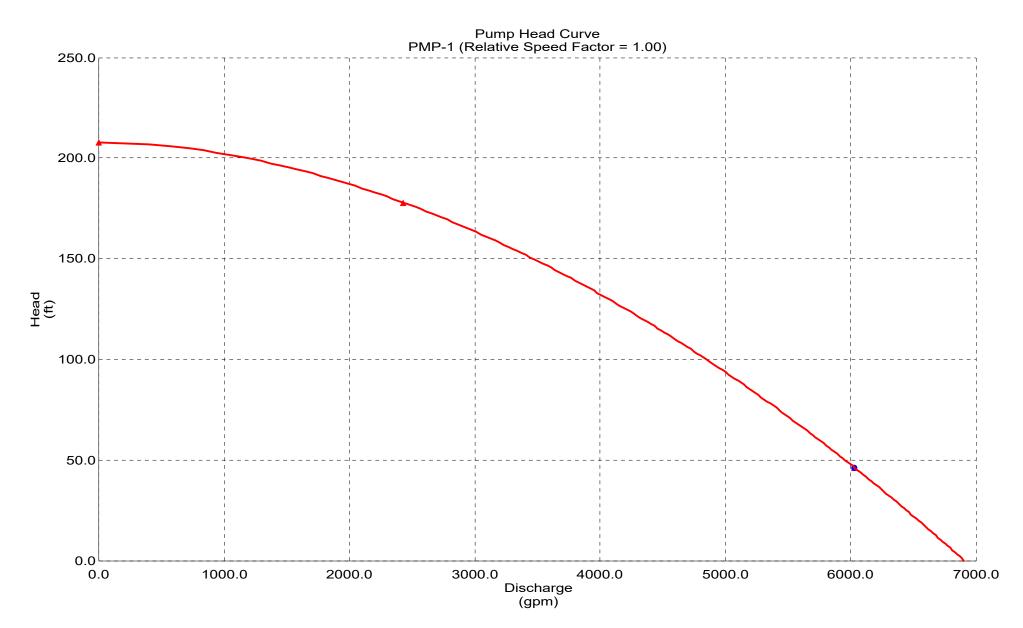
Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.95	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	246.90	89.07	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	246.90	88.65	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	246.90	89.08	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	246.90	87.79	

Scenario: Hydrant Test 2 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattem	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	2,430.00	Fixed	2,430.00	216.87	76.96	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	216.87	76.08	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	216.87	75.66	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.52	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	216.87	76.09	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	216.87	74.79	

Scenario: Hydrant Test 3 Steady State Analysis Junction Report

Label	Elevation (ft)	Zone	Туре	Base Flow (gpm)	Pattern	Demand (Calculated) (gpm)	Calculated Hydraulic Grade (ft)	Pressure (psi)	
J-1	39.00	Zone	Demand	6,031.00	Fixed	6,031.00	85.20	19.99	Matches Hydrant Test OK
J-2	41.03	Zone	Demand	0.00	Fixed	0.00	85.20	19.11	-
J-3	42.00	Zone	Demand	0.00	Fixed	0.00	85.20	18.69	
J-4	40.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.56	
J-5	41.00	Zone	Demand	0.00	Fixed	0.00	85.20	19.12	
J-6	44.00	Zone	Demand	0.00	Fixed	0.00	85.20	17.83	


Detailed Report for Pump: PMP-1

Note: The input data may have been modified since the last calculation was performed. The calculated results may be outdated.

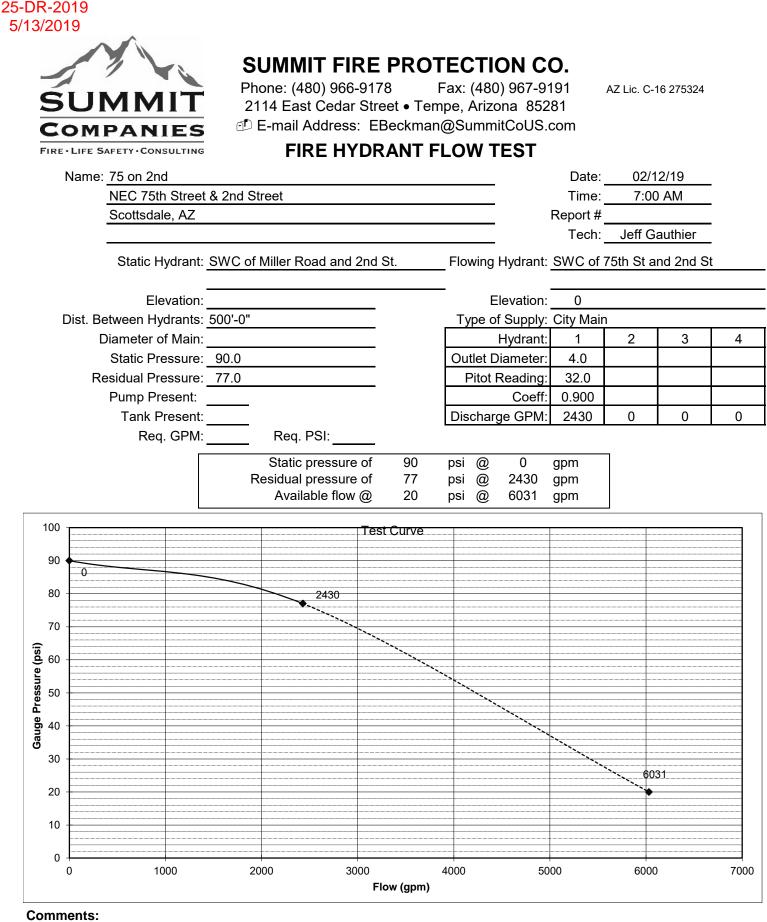
Scenario Summary				
Scenario	Hydrant Tes	st 3		
Active Topology Alternative	Base-Active	e Topolo	ЭУ	
Physical Alternative	Base-Physi	cal		
Demand Alternative	Demand-Hy	/drant Te	est 3	
Initial Settings Alternative	Base-Initial	Settings		
Operational Alternative	Base-Opera	ational		
Age Alternative	Base-Age A	lternativ	e	
Constituent Alternative	Base-Const	ituent		
Trace Alternative	Base-Trace	Alternat	ive	
Fire Flow Alternative	Base-Fire F	low		
Capital Cost Alternative	Base-Capita	al Cost		
Energy Cost Alternative	Base-Energ	y Cost		
User Data Alternative	Base-User	Data		
Global Adjustments Summary				
Demand	<none></none>		Roughness	<none></none>
Geometric Summary				
Х	699,451.47	ft	Upstream Pipe	PX-1
Y	906,247.77	ft	Downstream Pipe	PX-2
Elevation	39.00	ft		
Pump Definition Summary				
Pump Definition	Default Pun	np Defini	tion	
Initial Status				
	On		Initial Relative Speed Facto	1.00
Initial Pump Status			1	
Initial Pump Status				

Time Control Intake DischargeDischarge Pump Relative Calculated
(hr) Status Pump Pump (gpm) Head Speed Water
Grade Grade (ft) (ft) (ft) (Hp)0.00 On 39.0085.20 3,031.00 46.201.0070.35

Detailed Report for Pump: PMP-1

Detailed Report for Reservoir: R-1

Note: The input data may have been modified since the last calculation was performed. The calculated results may be outdated.


Scenario Summary			
Scenario	Hydrant Test 3		
Active Topology Alternative	Base-Active Top	ology	
Physical Alternative	Base-Physical		
Demand Alternative	Demand-Hydrant	t Test 3	
Initial Settings Alternative	Base-Initial Settin	ngs	
Operational Alternative	Base-Operationa	l	
Age Alternative	Base-Age Alterna	ative	
Constituent Alternative	Base-Constituent	t	
Trace Alternative	Base-Trace Alter	native	
Fire Flow Alternative	Base-Fire Flow		
Capital Cost Alternative	Base-Capital Cos	st	
Energy Cost Alternative	Base-Energy Cos	st	
User Data Alternative	Base-User Data		
Global Adjustments Summary			
Demand	<none></none>	Roughness	<none></none>
Geometric Summary			
Х	699,435.02 ft	Elevation	39.00 ft
Y	906,248.15 ft	Zone	Zone

Time Calculated Inflow Outflow (hr) Hydraulic Grade (gpm) (gpm) (ft)	La	iculated Resu	its Sun	nmary
		lydraulic Grade		Outflow (gpm)

.

0.00 39.00 3,031.00 ,031.00

APPENDIX C FIRE HYDRANT TEST

NOTES:

- 1. Flowing hydrant is assumed to be on a circulating main or downstream of the pressure test hydrant on a dead-end system.
- 2. Flow analysis assumes a gravity flow system with no distribution pumps and having no demand, other than the test
- 3. The distance between hydrants, elevations & main diameters are for information only.

APPENDIX D REFERENCE INFORMATION

Larry Talbott

Subject: FW: 690-PA-2018 75 on 2nd

From: Dillon, Levi <<u>LDillon@Scottsdaleaz.gov</u>>
Sent: Tuesday, May 7, 2019 4:57 PM
To: Kristjan Sigurdsson <<u>kristjans@kandihomes.com</u>>; Larry Talbott <<u>ltalbott@hunterengineeringpc.com</u>>
Subject: RE: 690-PA-2018 75 on 2nd

Hello Larry and Kristjan,

I've discussed all of this with Water Resources' management. Current standards require that a water service be brought directly (perpendicular) from the water main and it cannot cross other private property. This means that your proposal to use the existing landscape meter will not be acceptable. **However**, I think you'll find that the proposal below takes this portion of the work entirely out of the discussion.

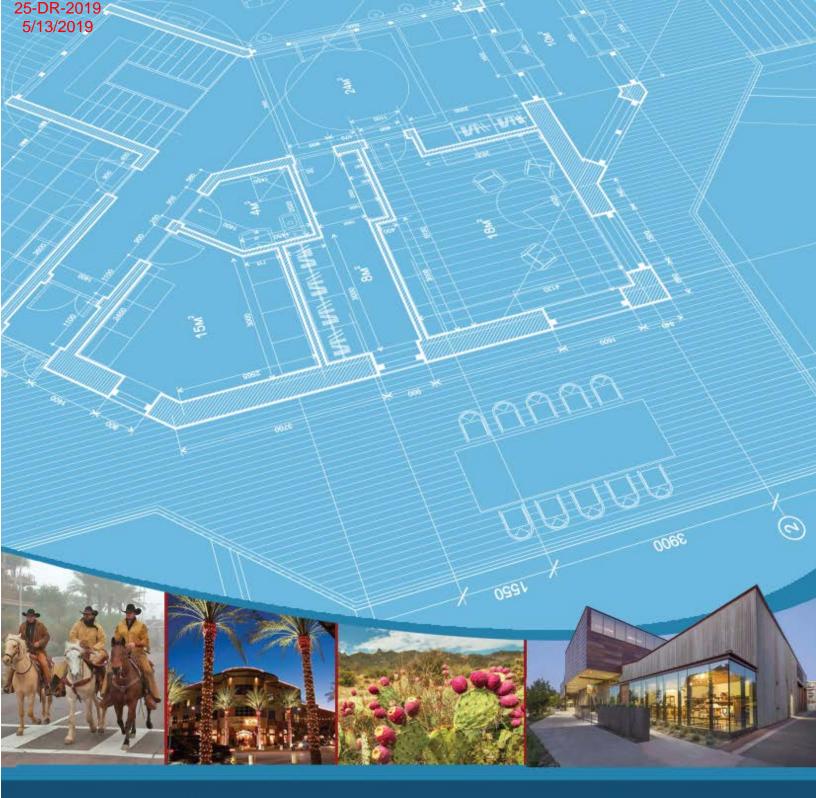
Water Resources proposes the following work division for relocating the water services so that the 4" dead-end line can be removed from service:

- 1. Pending all 4" line service relocations: Water Resources will allow for the 4" line to be properly abandoned in place. 75 on 2nd will be responsible for the abandonment of the portions along their alley frontage.
- 2. Water Resources will address the tee and valve associated with the 4" water line.
- 3. Water Resources will take responsibility for providing new water service connections for the two-remaining services on the 4" line <u>up to the property lines</u>.
 - a. 7503 E 1st street: Water Resources will install new tap and service line off of 75th Street and connect to the existing meter.
 - b. 7526 E 2nd Street: Water Resources will install a tap and service line for from the water main on 2nd street north across the street <u>up to the property line</u>. The City will also set the new meter on the south side of the property (if this location is possible, see item 4).
- 4. Water Resources requests that 75 on 2nd evaluate and address only the private property segment of the work associated with relocating the water service line/or building supply line for 7526 E 2nd. The City will perform initial coordination with the homeowner to inform them of the need to relocate the service and obtain consent. Following this, 75 on 2nd would need to coordinate with the homeowner and provide the evaluation, design, planning, permitting, and contractor services required to effectively relocate the private property portion of either the building supply line(s) or the service line for 7526 by one of the following methods:
 - a. **Method#1**: Running the building supply line from the new City supplied meter on the south side of the property to the alley side of the property and connecting to the existing building supply connection. Note: If it not feasible to place a new meter on the south side then the new service line will need to be routed through private property to the existing or new meter on the north side. OR;
 - b. **Method #2:** Running the building supply line from the new meter on the south side through private property and making a new building connection on the property that will ensure water service equivalent to existing. Note: this could involve external landscape irrigation mods and internal plumbing mods.
 - c. Notes:
 - i. The service line is defined as the line from main to meter
 - ii. The building supply line is from meter to building
 - iii. The City would need to review and approve either proposed modifications through the typical permit application and review/approval process.

Hopefully with this approach we can effectively achieve compliance with current design standards. Let me know when possible if you and your client agree to proceed as described above.

Thank you,

Levi C. Dillon, P.E. | Sr. Water Resources Engineer


"Water Sustainability through Stewardship, Innovation and People"

Contact Info Direct: (480) 312-5319 Main office: (480) 312-5685 Fax: (480) 312-5615 Mailing/Office Address Water Resources Administration 9379 E. San Salvador Dr. Scottsdale, AZ. 85258

Sending me an attachment over 5MB? Please use the link below: https://securemail.scottsdaleaz.gov/dropbox/ldillon@scottsdaleaz.gov

DESIGN STANDARDS & POLICIES MANUAL

DESIGN FLOW & HEAD LOSS

The ultimate design flow within the city's water transmission and distribution system will be based on the city's current Integrated Water Master Plan. Water demand for each development will be calculated using the average day demands, as shown in Figure 6-1.2, to ensure that the existing distribution supply is sufficient. Designs will include all necessary improvements, including booster pumping stations, reservoirs, lines and appurtenances to meet the system's ultimate demand.

- A. The four hydraulic modeling scenarios detailed in 6-1.202 will demonstrate that the system is adequately designed.
- B. Select model scenario flows and their respective peaking factors are as follows:
 - 1. Maximum day: Defined as 2 times the average day total use flow as determined per Figure 6-1.2 (use gpm value).
 - 2. Peak hour: Defined as 3.5 times the average day total use as determined per Figure 6-1.2 (use gpm value).
 - 3. <u>Note:</u> These peaking factors shall be appropriately increased for restaurants and high-demand water users, or as designated by the Water Resources Department after review.
- C. The maximum allowable pipe head loss for the various water pipelines is as follows:
 - 1. Transmission mains: 8 feet per 1,000 feet (3.5 psi per 1,000 feet)
 - 2. Distribution lines: 10 feet per 1,000 feet (4.3 psi per 1,000 feet)
 - 3. Service lines domestic, dedicated fire, or combined domestic/fire: size as required to satisfy both hydraulic modeling requirements and Fire Code. Generally, velocities of more than 5 feet per second are undesirable. Velocities more than 7.5 feet per second are not allowed.
 - 4. As otherwise designated by the Water Resources Department

SYSTEM FLOW TEST REQUIREMENTS & USE OF RESULTS

Pressure and available flow information for existing water lines must be obtained by having a fire hydrant flow test performed on the system. Hydrant flow tests are required for the following situations:

- A. On all commercial projects, multi-family residential projects, and public extensions of the city's water distribution system.
- B. For any proposed system connecting to the existing distribution system, the design capacity of the existing system (flow versus pressure) will need to be determined by the engineer.
- C. Prior to acceptance by the city, all platted subdivisions shall conduct an additional flow test at the lowest and highest elevation available in which the development is constructed.
- D. Developments that cross pressure zone boundaries must conduct a flow test within each pressure zone.

A private fire protection company shall perform the tests and certify the results. A right-of-way permit issued by the One Stop Shop is required for a flow test and the Inspection Services Division will be notified a minimum of 48 hours before performing the flow test. The permit is also available <u>online</u>. Refer to the <u>flow test design form</u>.

CHAPTER 6

6-1.404

6-1.405

WATER

- d. Pipe flow velocity in feet per second (fps)
- e. Each pipe segment's head loss rate (ft. /1,000ft or psi/ft.)
- f. PRVs: Upstream and downstream pressures (psi or HGL elevation)
- g. Tanks: Inflow and outflow (gpm)
- h. Shows all units for the values presented or provide a legend on the diagram page that indicates the units used

AVERAGE DAY WATER DEMANDS (1)

IN GALLONS PER D	AY (GPD) (2)		IN GALLON	IS PER MIN	UTE (GPM) ⁽²	?)(3)
Land Use	Inside Use	Outside Use	Total Use	Inside Use	Outside Use	Total Use	Units
Residential Demar	nd per D	welling Ur	nit				<u>.</u>
< 2 dwelling unit per acre (DU/ac)	208.9	276.7	485.6	0.30	0.39	0.69	per unit
2 – 2.9 DU/ac	193.7	276.7	470.4	0.27	0.39	0.66	per unit
3 – 7.9 DU/ac	175.9	72.3	248.2	0.25	0.11	0.36	per unit
8 – 11.9 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit
12 – 22 DU/ac	155.3	72.3	227.6	0.22	0.11	0.33	per unit
High Density Condominium (condo)	155.3	30	185.3	0.22	0.05	0.27	per unit
Resort Hotel (includes site amenities)	401.7	44.6	446.3	0.56	0.07	0.63	per room
Service and Emplo	yment				1		1
Restaurant	1.2	0.1	1.3	1.67E-03	1.39E-04	1.81E-03	per square foot (sq.ft.)
Commercial/ Retail	0.7	0.1	0.8	9.73E-04	1.39E-04	1.11E-03	per sq.ft.
Commercial High Rise	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.

AVERAGE DAY WA	TER DEM	ANDS ⁽¹⁾					
IN GALLONS PER D	AY (GPD)) ⁽²⁾		IN GALLON	NS PER MINU	TE (GPM) ⁽²)(3)
Office	0.5	0.1	0.6	6.95E-04	1.39E-04	8.34E-04	per sq.ft.
Institutional	670	670	1340	0.94	0.94	1.88	per acre
Industrial	873	154	1027	1.22	0.22	1.44	per acre
Research and Development	1092	192	1284	1.52	0.27	1.79	per acre
Special Use Areas							
Natural Area Oper Space	0	0	0	0.0	0.0	0.0	per acre
Developed Open Space – Parks	0	1786	1786	0.0	2.49	2.49	per acre
Developed Open Space – Golf Course	0	4285	4285	0.0	5.96	5.96	per acre

Notes:

(1) These values shall not be used directly for service line or water meter sizing.

(2) Gallon per day values are provided for reference only. The instantaneous gallon per minute flow rates presented are intended for use in the required hydraulic modeling scenarios. The gpm values assume a 12-hour active water use period per 24-hour day. In large or specialty developments or master plans the hydraulic analysis criteria and parameters should be discussed with the Water Resources Department. Seasonal peaking should also be considered. Upon review, the Water Resources Department reserves the right to designate flows to be used in hydraulic modeling scenarios that may be different from those presented here.

(3) The hydraulic modeling peaking factors used in select modeling scenarios are to be applied to the gpm values shown here. Max day and peak hour peaking factors can be found in Section 6-1.404.

FIGURE 6-1.2 AVERAGE DAY WATER DEMANDS

SECTION B101 GENERAL

B101.1 Scope.

The procedure for determining fire-flow requirements for buildings or portions of buildings hereafter constructed shall be in accordance with this appendix. This appendix does not apply to structures other than buildings.

SECTION B102 DEFINITIONS

B102.1 Definitions.

For the purpose of this appendix, certain terms are defined as follows:

FIRE FLOW. The flow rate of a water supply, measured at 20 pounds per square inch (psi) (138 kPa) residual pressure, that is available for fire fighting.

APPENDIX BFIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

FIRE-FLOW CALCULATION AREA. The floor area, in square feet (m²), used to determine the required fire flow.

SECTION B103 MODIFICATIONS

B103.1 Decreases.

The *fire code official* is authorized to reduce the *fire-flow* requirements for isolated buildings or a group of buildings in rural areas or small communities where the development of full *fire-flow* requirements is impractical.

B103.2 Increases.

The *fire code official* is authorized to increase the *fire-flow* requirements where conditions indicate an unusual susceptibility to group fires or conflagrations. An increase shall be not more than twice that required for the building under consideration.

B103.3 Areas without water supply systems.

For information regarding water supplies for fire-fighting purposes in rural and suburban areas in which adequate and reliable water supply systems do not exist, the *fire code official* is authorized to utilize NFPA 1142 or the *International Wildland-Urban Interface Code*.

SECTION B104 FIRE-FLOW CALCULATION AREA

B104.1 General.

The *fire-flow calculation area* shall be the total floor area of all floor levels within the *exterior walls*, and under the horizontal projections of the roof of a building, except as modified in Section B104.3.

B104.2 Area separation.

Portions of buildings that are separated by *fire walls* without openings, constructed in accordance with the *International Building Code*, are allowed to be considered as separate *fire-flow calculation areas*.

B104.3 Type IA and Type IB construction.

The *fire-flow calculation area* of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors.

Exception: *Fire-flow calculation area* for open parking garages shall be determined by the area of the largest floor.

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration requirements for one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.1(1) and B105.1(2).

TABLE B105.1(1)

REQUIRED FIRE FLOW FOR ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

A²PENDIX ²⁶FIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURAT (hours)
0–3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B at the required fire-
0–3,600	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	500	1/2
3,601 and greater	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	¹ / ₂ value in Table B105.1(2)	1

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m.

TABLE B105.1(2)REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

FI	RE-FLOW CAL		FLOW			
Type IA and IB ^a	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Туре V-В ^а	FIRE-FLOW (gallons per minute) ^b	DURATION (hours)
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	
22,701- 30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201- 38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	
38,701- 48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2
48,301- 59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001- 70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401- 11,300	2,750	
70,901- 83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301- 13,400	3,000	
83,701- 97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401- 15,600	3,250	
97,701- 112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601- 18,000	3,500	3
112,701- 128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001- 20,600	3,750	
128,701- 145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601- 23,300	4,000	
145,901-	82,101-92,400	52,501-59,100	37,901-42,700	23,301-	4,250	

164,200				26,300	
164,201- 183,400	92,401- 103,100	59,101-66,000	42,701-47,700	26,301- 29,300	4,500
183,401- 203,700	103,101- 114,600	66,001-73,300	47,701-53,000	29,301- 32,600	4,750
203,701- 225,200	114,601- 126,700	73,301-81,100	53,001-58,600	32,601- 36,000	5,000
225,201- 247,700	126,701- 139,400	81,101-89,200	58,601-65,400	36,001- 39,600	5,250
247,701- 271,200	139,401- 152,600	89,201-97,700	65,401-70,600	39,601- 43,400	5,500
271,201- 295,900	152,601- 166,500	97,701- 106,500	70,601-77,000	43,401- 47,400	5,750
295,901- Greater	166,501- Greater	106,501- 115,800	77,001-83,700	47,401- 51,500	6,000
_	_	115,801- 125,500	83,701-90,600	51,501- 55,700	6,250
_	_	125,501- 135,500	90,601-97,900	55,701- 60,200	6,500
_	_	135,501- 145,800	97,901- 106,800	60,201- 64,800	6,750
_	_	145,801- 156,700	106,801- 113,200	64,801- 69,600	7,000
_		156,701- 167,900	113,201- 121,300	69,601- 74,600	7,250
_		167,901- 179,400	121,301- 129,600	74,601- 79,800	7,500
_		179,401- 191,400	129,601- 138,300	79,801- 85,100	7,750
_	_	191,401- Greater	138,301- Greater	85,101- Greater	8,000

4

APPENDIX 8 FIRE-FLOW REQUIREMENTS FOR BUILDINGS | 2018 International Fire Code | ICC premiumACCESS 5/13/2019

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

a. Types of construction are based on the *International Building Code*.b.Measured at 20 psi residual pressure.

B105.2 Buildings other than one- and two-family dwellings, Group R-3 and R-4 buildings and townhouses.

The minimum *fire-flow* and flow duration for buildings other than one- and two-family *dwellings*, Group R-3 and R-4 buildings and *townhouses* shall be as specified in Tables B105.2 and B105.1(2).

TABLE B105.2

REQUIRED FIRE FLOW FOR BUILDINGS OTHER THAN ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE FLOW (gallons per minute)	FLOW DURATION (hours)
No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2)
Section 903.3.1.1 of the <i>International</i> <i>Fire Code</i>	25% of the value in Table B105.1(2) ^a	Duration in Table B105.1(2) at the reduced flow rate
Section 903.3.1.2 of the International Fire Code	25% of the value in Table B105.1(2) ^b	Duration in Table B105.1(2) at the reduced flow rate

For SI: 1 gallon per minute = 3.785 L/m.

a. The reduced fire flow shall be not less than 1,000 gallons per minute.

b. The reduced fire flow shall be not less than 1,500 gallons per minute.

B105.3 Water supply for buildings equipped with an automatic sprinkler system.

For buildings equipped with an *approved automatic sprinkler system*, the water supply shall be capable of providing the greater of:

1. The *automatic sprinkler system* demand, including hose stream allowance.

2. The required *fire flow*.

SECTION B106 REFERENCED STANDARDS

ICC IBC—18	International Building Code	B104.2
ICC IWUIC—18	International WildlandUrban Interface Code	B103.3
ICC IRC—18	International Residential Code	Table B105.1(1)
NFPA 1142—17	Standard on Water Supplies for Suburban and Rural Fire Fighting	B103.3

ENGINEERING

GIVIL AND SURVEY

PRELIMINARY DRAINAGE REPORT For 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

CASE NO. 25-DR-2019

Plan #					
Case #25-	DR-2019				
Q-S #					
X Accepted					
Corrections					
A. Menez	09/09/2019				
Reviewed By	Date				

Prepared by: Hunter Engineering, P.C. 10450 North 74th Street, #200 Scottsdale, AZ 85258

PRELIMINARY DRAINAGE REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, AZ.

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, P.C. 10450 NORTH 74TH STREET, #200 SCOTTSDALE, AZ 85258 (480) 991-3985

AUGUST 2019 H.E. PROJECT NO. KAIH013

> HUNTER ENGINEERING

> > 25-DR-2019 08/20/19

TABLE OF CONTENTS

<u>SECTION</u> 1.0 2.0 3.0 4.0 5.0	TITLEIntroduction.Existing Drainage Conditions.Proposed Drainage Concept.Conclusions.References.	<u>PAGE NO.</u> 1 1 4 4
<u>FIGURES</u>	<u>TITLE</u>	LOCATION
1	Vicinity Map	Appendix A
2	FEMA Flood Map	Appendix A
<u>EXHIBITS</u>	<u>TITLE</u>	LOCATION
A	Drainage Exhibit 'A' (Existing Conditions)	Back Pocket
B	Drainage Exhibit 'B' (Proposed Conditions)	Back Pocket
C	Conceptual Grading and Drainage Plans	Back Pocket
<u>APPENDIX</u> A B	<u>TITLE</u> Figures Drainage Calculations	Appendix A Appendix B

1.0 INTRODUCTION

This preliminary drainage report has been prepared under a contract from K&Q Homes, owner/developer of 75 On 2nd site. The purpose of this report is to provide a preliminary drainage analysis, required by the City of Scottsdale, to support this development. Preparation of this report has been done according to the procedures detailed in Chapter 4 of the City of Scottsdale's Design Standard & Policies Manual dated January 2010.

This development project is located at 7502 E. 2ND Street Scottsdale, Arizona 85251.The site is specifically located in The Northwest Quarter Of Section 26. Township 2 North, Range 4 East Of The Gila And Salt River Base And Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 and 2^{nd} consisting of approximately $0.60\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING DRAINAGE CONDITIONS

The proposed site is located on a developed parcel with existing ground cover consisting of small buildings, sparse vegetation with shrubs and short grasses. In its developed condition, the project site drains primarily to the south at an average slope of 1%-2%.

The current FEMA Flood Insurance Rate Map (FIRM) for this area, map number 04013C2235 L (Revision date December 7th, 2018) shows the entire project site is in a flood hazard Zone X. Zone X is defined as, "*Area of minimal flood hazard*."

There are existing catch basins along the roadway frontage. One is located on 75th Avenue to the west and another on 2nd Street to the south near the southwest corner of the site. Both of these catch basins drain into an existing 96" storm drain along the north side of 2nd Street. These basins convey the stormwater from 75th and 2nd. There is an existing alley along the north property line. This alley is currently an inverted crown that slopes to the east. The adjacent property to the east is fully developed.

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: on-site drainage conveyance, offsite drainage conveyance, and storm water retention. These three sections make up sections 3.1, 3.2, and 3.3 respectively. Exhibit A, located in the back pocket, provides a graphical illustration of the proposed drainage concept.

> HUNTER ENGINEERING

3.1 On-site Drainage Conveyance

The proposed onsite drainage improvements for the site will be graded as follows. Stormwater on the west side of the building will be directed through sheet flow onto 75th street where it will be collected via curb flow into an existing curb inlet leading it to the existing 96" storm sewer. Stormwater from the south side of the building will be directed through sheet flow onto 2nd street where it will be collected via curb flow into an existing street inlet leading into the existing 96" storm sewer.

The north side of the building will sheet flow away from the building into the existing alley where it will be conveyed to the east as it has historically. On the east side of the building water will be conveyed via sheet flow into the proposed shallow 12" retention basin. Not catch basins, storm drain piping or underground retention are proposed for this site.

The building finish floor elevations will step down from the west to the east in order to better accommodate ADA requirements and the existing site grades. Since the building footprint encumbers the majority of the parcel and there are several points of access the building needed finish floor needed to be set high enough to maintain positive flow for the rear garages from the alley, but low enough to maintain ADA access from both 75th Avenue and 2nd Street. The floors we stepped so the eastern garage entrance grades did not become too steep.

3.2 Off-site Drainage Conveyance

There are not currently any off-site drainage impacts to this site

3.3 Storm Water Retention

The City of Scottsdale requires retention for the Pre versus Post development runoff for the 100-year, 2-hour storm event. The disturbed area is less than 1 acre therefore no first flush is required.

To calculate Pre versus Post required retention, a weighted C-value was calculated for existing and proposed conditions. A weighted drainage area was determined, and volume required for the 100-year, 2-hour storm was calculated. See Below.

Total Site Area= 0.81 acres C= Runoff Coefficient C= 0.95 Hardscape area (pavement, building, sidewalk) C= 0.45 landscape area Delta C= increase in weighted runoff

P=2.2 precipitation depth (inches)

HA= hardscape area (pavement, building, sidewalk)

LA= landscape area

Vr= required retention volume (CF) =Delta C*P/12*A

Pre-Development Weighted C

HA=0.4495 AC LA=0.3578AC C(weighted) = ((0.95)*(0.4495)+(0.45)*(0.3578))/(0.8071)=0.7284

<u>Post-Development Weighted C</u> HA=0.6656 AC LA=0.1444 AC C(weighted) = ((0.95)*(0.6656)+(0.45)*(0.1444))/(0.8071)=0.8609

Delta C= 0.8609-0.7284=0.1325 Required Retention Volume (Vr)= 0.1325*2.2/12*0.8071 AC=854 (cf)

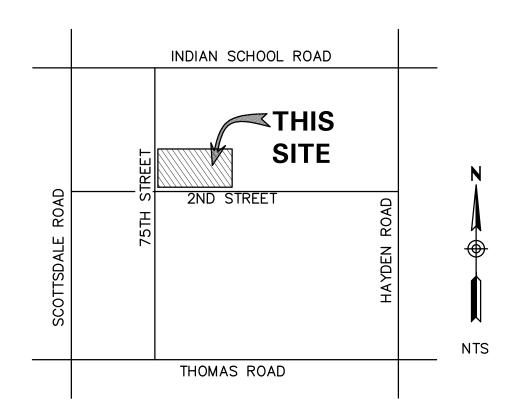
The volume requirement of 854 cubif-feet will be satisfied by a single shallow on-site surface retention basin. The basin will be bled-off in the required 36 hours via a gravity bleed-off pipe through an orifice to the existing public storm drain in 2^{nd} Street.

The 100-year high water surface elevation for the retention basin is going to be set at 1042.00, which is 2.25 lower than the adjacent proposed building finished floor which is set at 1044.25.

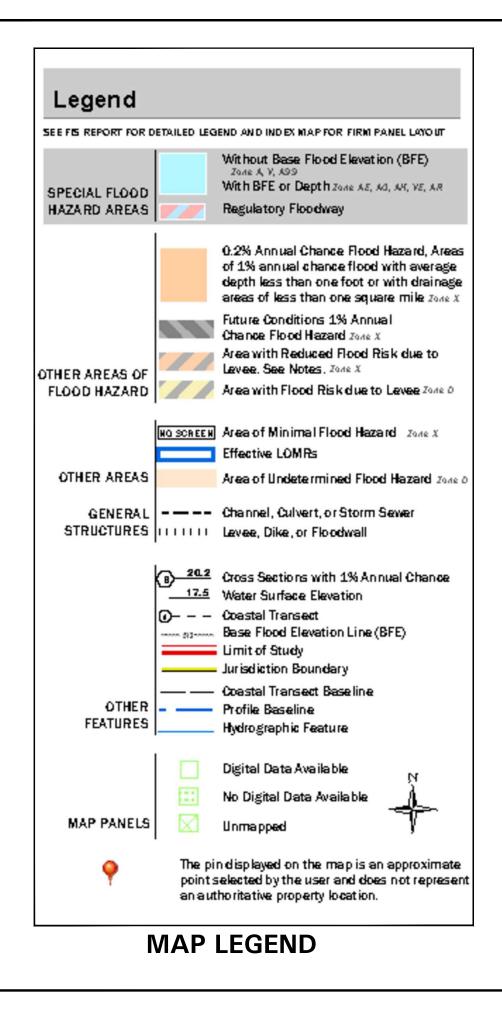
The proposed outfall for this site is set at 1042.17 located at the south east corner of the property flowing onto 2^{nd} street. The outfall elevation is below the 14" minimum elevation difference than the proposed finished floor of 1044.25.

4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:


- The site will retain the Pre versus Post run-off for the 100-year, 2-hour storm event.
- The proposed finished floor elevation is a minimum of 14" feet above the 100-year water surface elevation in the proposed retention basin.

5.0 **REFERENCES**


- 1) City of Scottsdale Standards and Policies manual, February 7,2010.
- 2) Drainage Design Manual for Maricopa County, Arizona, Hydrology, February 2011.
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydraulics, June 2010.

APPENDIX A FIGURES

VICINITY MAP FIGURE 1

PORTION OF PANEL SHOWING SITE FIGURE 2

Ν

APPENDIX B DRAINAGE CALCULATIONS

Retention Basin Calculations

Vr=C*D*A*43,560, C=0.9, D=2.2 Design Storm: 100-year, 2-hour

С	=	0.90	
D	=	2.20	inches
А	=	0.81	Site acres
Vr	=	5,822	cubic feet

Pre Vs. Post Analysis

Required

Pre							
	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	
	Pre	Weighted	0.8071	0.7284	2.20	4,695	_
			0.8071			4,695	
Post							
_	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	_
	Post	Weighted	0.8071	0.8609	2.20	5,549	_
			0.8071			5,549	
					Post	5,549	
					Pre	4,695	
					Required	854	cf Req

Volume Provided

Retention Basin

Elevation	Area (sf)	Avg. Area (sf)	Depth (ft)	Volume (cf)	Σ Volume (cf)
42.0	1,353				
		1,102	1.00	1,102	1,102
41.0	851				

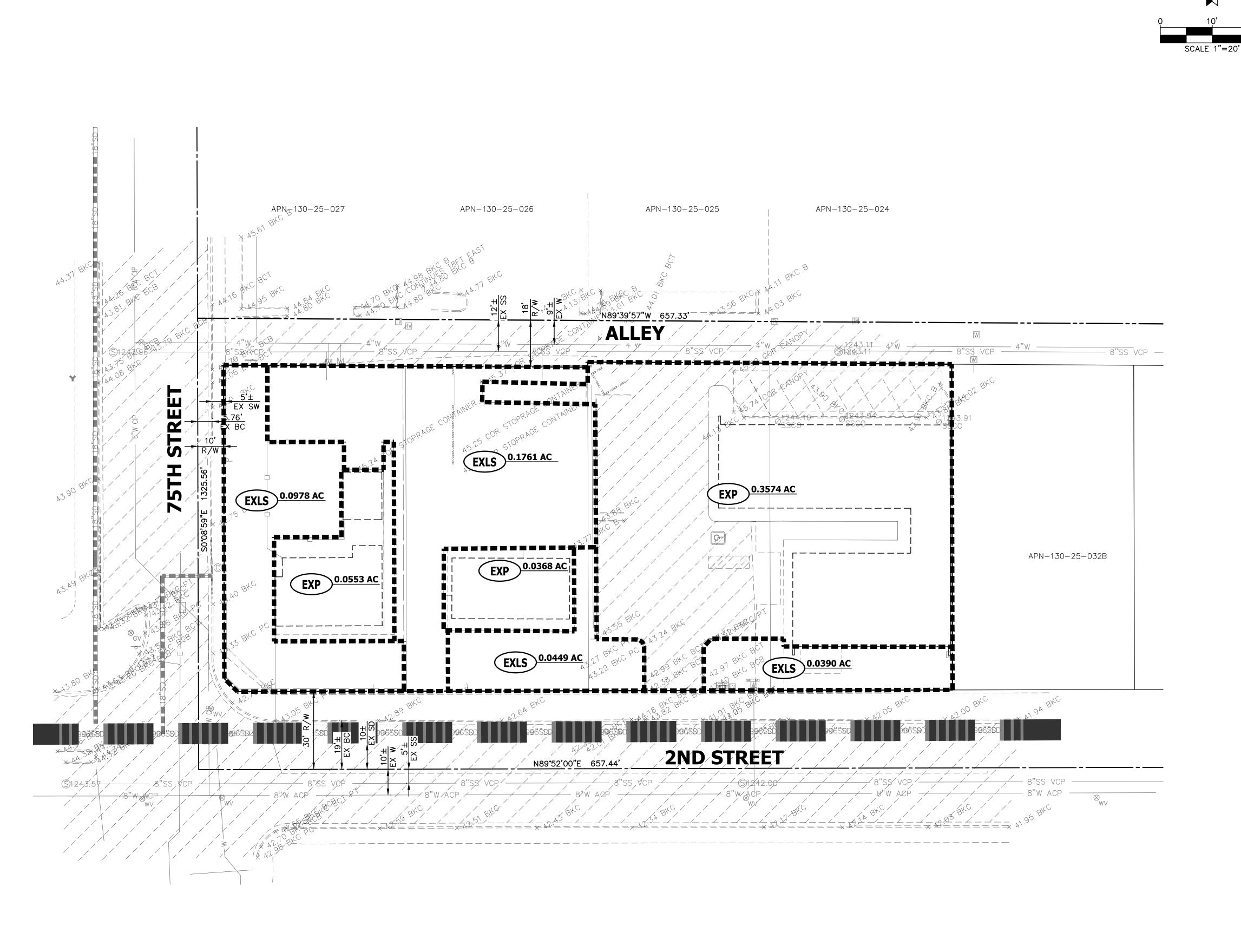
1,102 cf Prov

Total Retention
1,102 cf Prov
854 cf Req
248 cf Excess

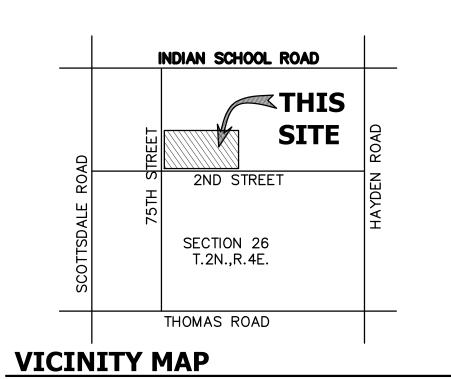
Weighted Runoff Coefficient Calculation

Cw=[(C1*A1)+(C2*A2)+(C3*A3)...+(Cn*An)] / Total Area

Project:	KAIH013	Calc'd By: LMT
Date:	8/14/2019	Chck'd By: LMT


Pre-Development Conditions

C ₁ =	0.95	Paving/Roof	A ₁ =	0.45	Acres
C ₂ =	0.45	Existing Landsape	$A_2 =$	0.36	Acres
			Total=	0.81	Acres

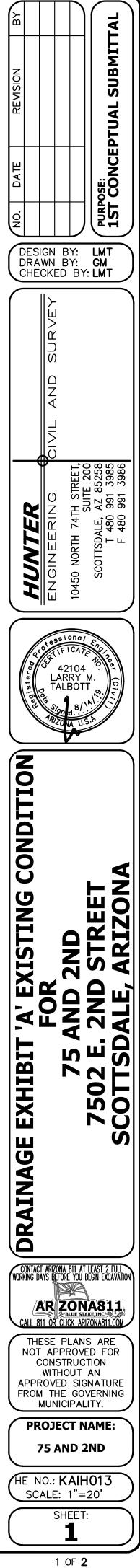

Cw= <u>0.73</u>

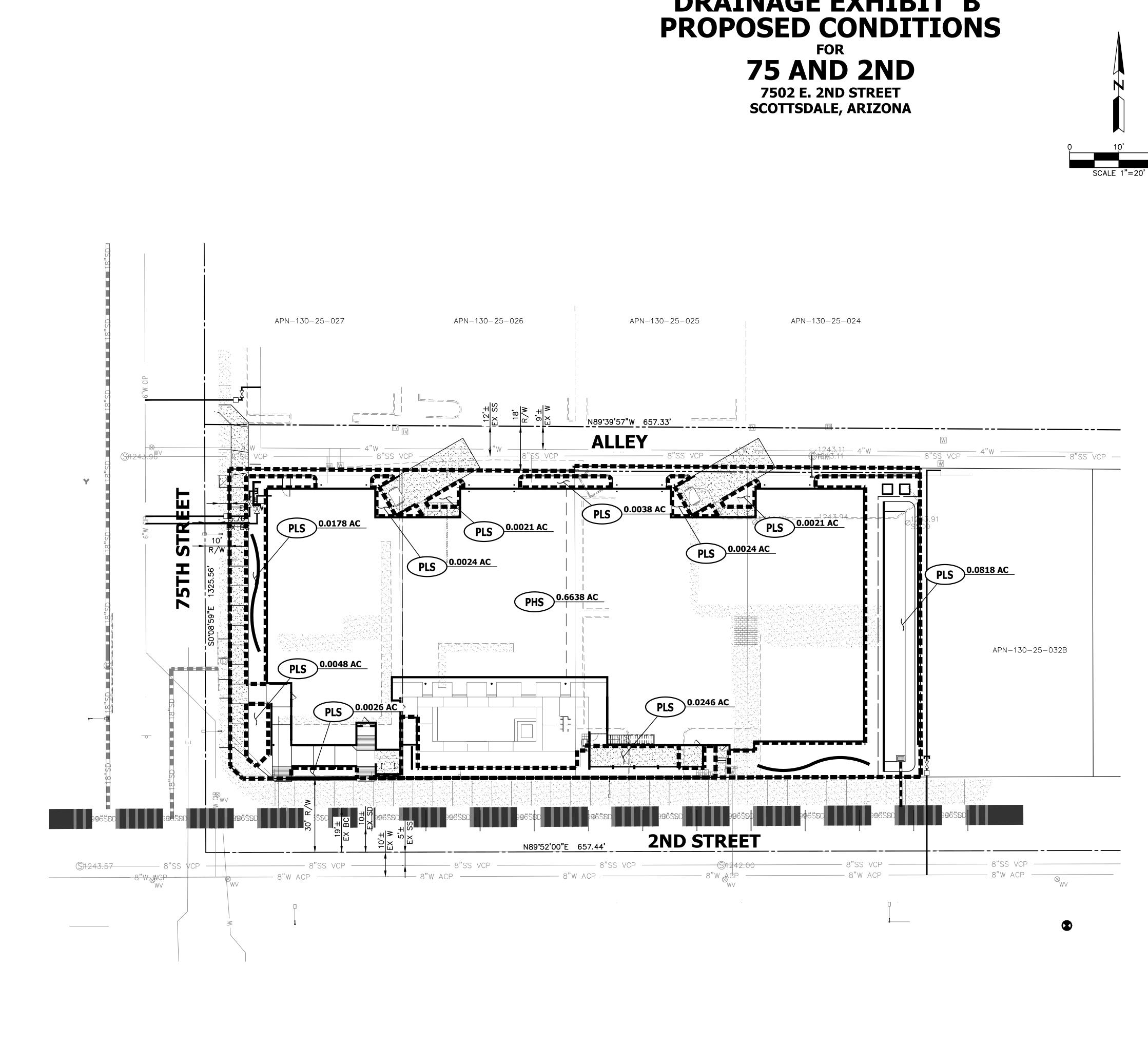
Proposed Conditions

C ₁ =	0.95	Paving/Roof	$A_1 =$	0.67	Acres
C ₂ =	0.45	Existing Landsape	$A_2 =$	0.14	Acres
			Total=	0.81	Acres
Cw=	<u>0.86</u>				

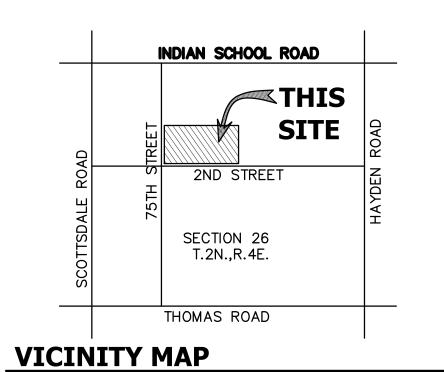
DRAINAGE EXHIBIT 'A' EXISTING CONDITIONS FOR 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

OWNER


K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505–2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


CIVIL ENGINEER

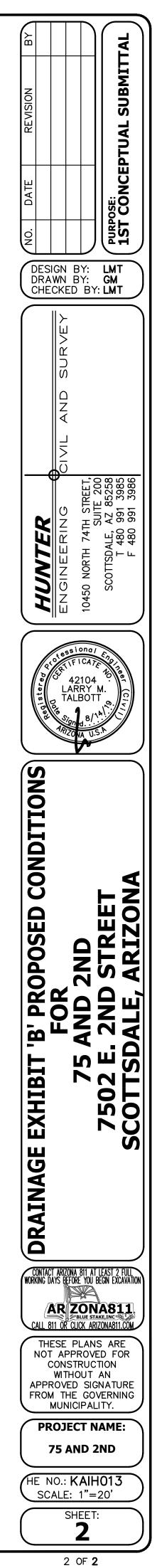
HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991–3985 CONTACT: LARRY TALBOTT, P.E EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM

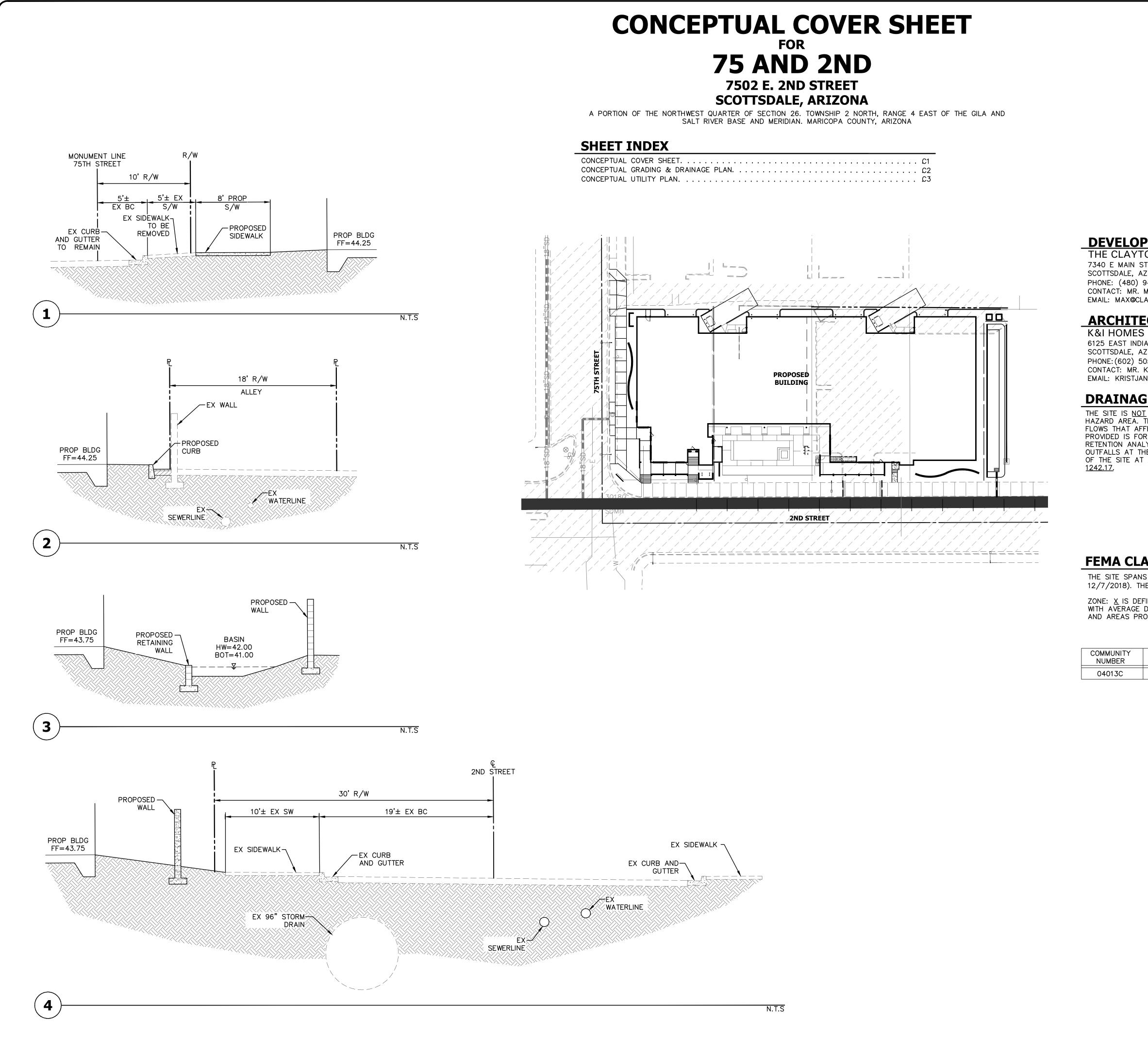

LEGEND

43	PROPOSED CONTOUR
	PROPOSED STORM LINE
	PROPOSED CATCH BASIN
$\rightarrow \cdot \cdot \rightarrow \cdot \cdot -$	PROPOSED FLOW LINE
\rightarrow \diamond \diamond \diamond	PROPOSED GRADE BREAK
	PROPOSED FLOW ARROW
	DRAINAGE AREA BOUNDARY
EXLS 0.000AC	EXISTING LANDSCAPE
EXP 0.000AC	EXISTING PAVEMENT, CONCRETE OR ROOF AREA

DRAINAGE EXHIBIT 'B'

OWNER


K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


CIVIL ENGINEER

HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991–3985 CONTACT: LARRY TALBOTT, P.E. EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM

LEGEND

43	PROPOSED CONTOUR
	PROPOSED STORM LINE
	PROPOSED CATCH BASIN
$\rightarrow \cdot \cdot \rightarrow \cdot \cdot -$	PROPOSED FLOW LINE
\rightarrow \diamond \diamond \diamond	PROPOSED GRADE BREAK
-	PROPOSED FLOW ARROW
	DRAINAGE AREA BOUNDARY
PLS 0.000AC	PROPOSED LANDSCAPE
PHS 0.000AC	PROPOSED HARDSCAPE

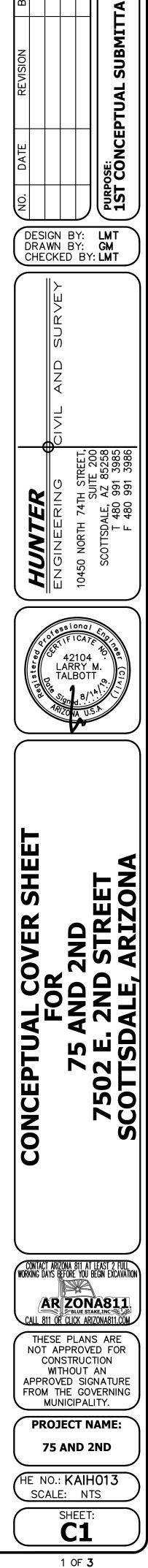
COMML NUME

BASIS OF BEARING

BASIS OF BEARING FOR THIS SURVEY IS A BEARING OF NORTH 89'52' EAST, ALONG THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE NORTHEAST QUARTER OF THE NORTHWEST QUARTER OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER BASE AND MERIDIAN, MARICOPA COUNTY, ARIZONA, ACCORDING TO THE PLAT OF REDELL MANOR, RECORDED IN BOOK 49, PAGE 27, MARICOPA

APN: 130-25-28B, 130-25-29A

130-25-30A AND 130-25-31A


COUNTY RECORDS, ARIZONA.

FEMA CLASSIFICATION

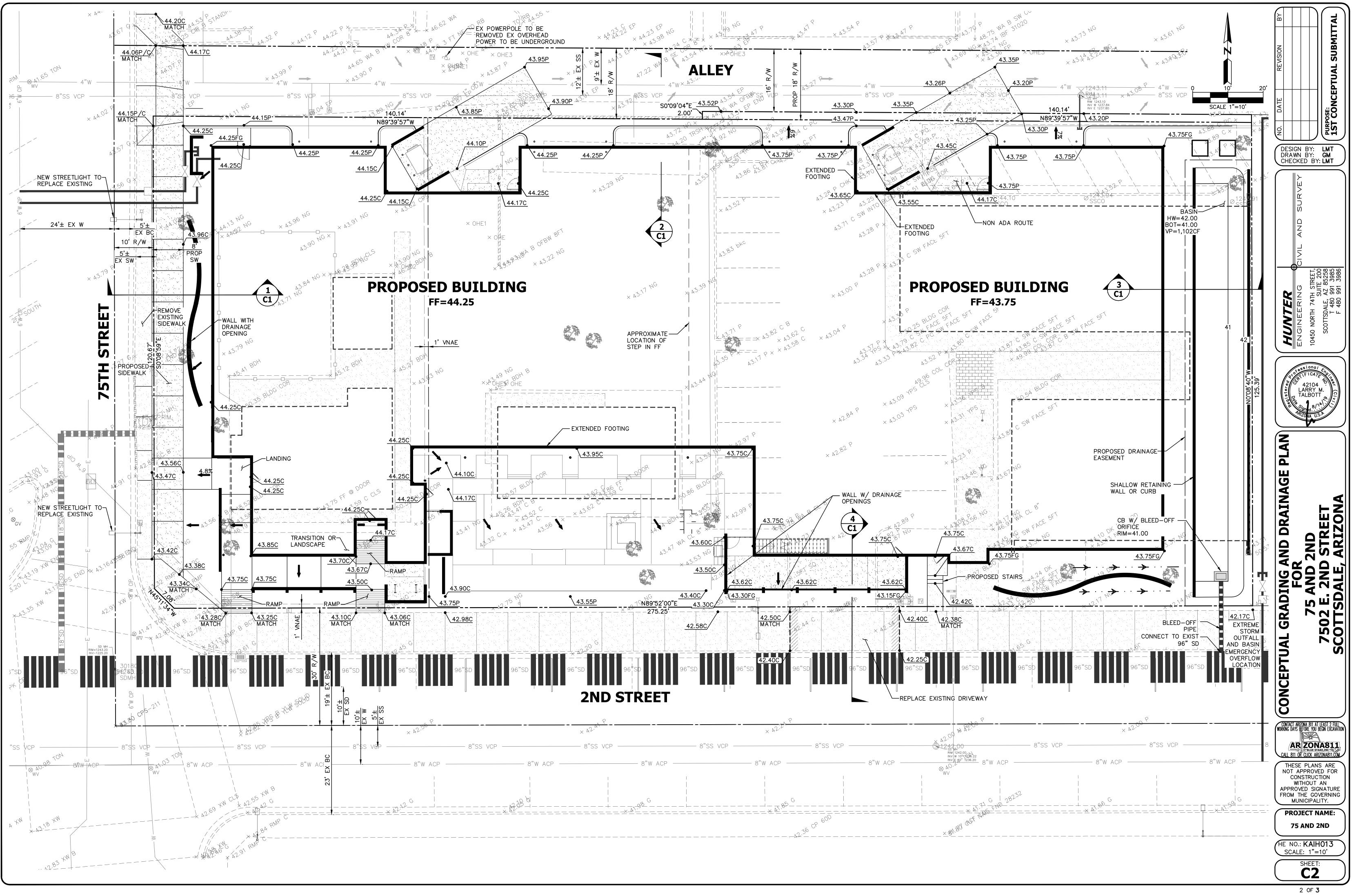
THE SITE SPANS TWO FEMA FLOOD INSURANCE RATE MAP (FIRM) PANELS; 04013C2235L (EFFECTIVE 12/7/2018). THE PROJECT SITE IS SHOWN AS ZONE X.

ZONE: X IS DEFINED AS AREAS OF 0.2% ANNUAL CHANCE FLOOD; AREAS OF 1% ANNUAL CHANCE FLOOD WITH AVERAGE DEPTHS OF LESS THAN 1 FOOT, OR WITH DRAINAGE AREAS LESS THAN 1 SQUARE MILE; AND AREAS PROTECTED BY LEVEES FROM 1% ANNUAL CHANCE FLOOD.

IUNITY IBER	PANEL # PANEL DATE	SUFFIX	DATE OF FIRM (INDEX DATE)	FIRM ZONE	BASE FLOOD ELEVATION (IN AO ZONE USE DEPTH)
)13C	2235	L	12/7/2018	ZONE X	DEPTHS OF LESS THAN 1'

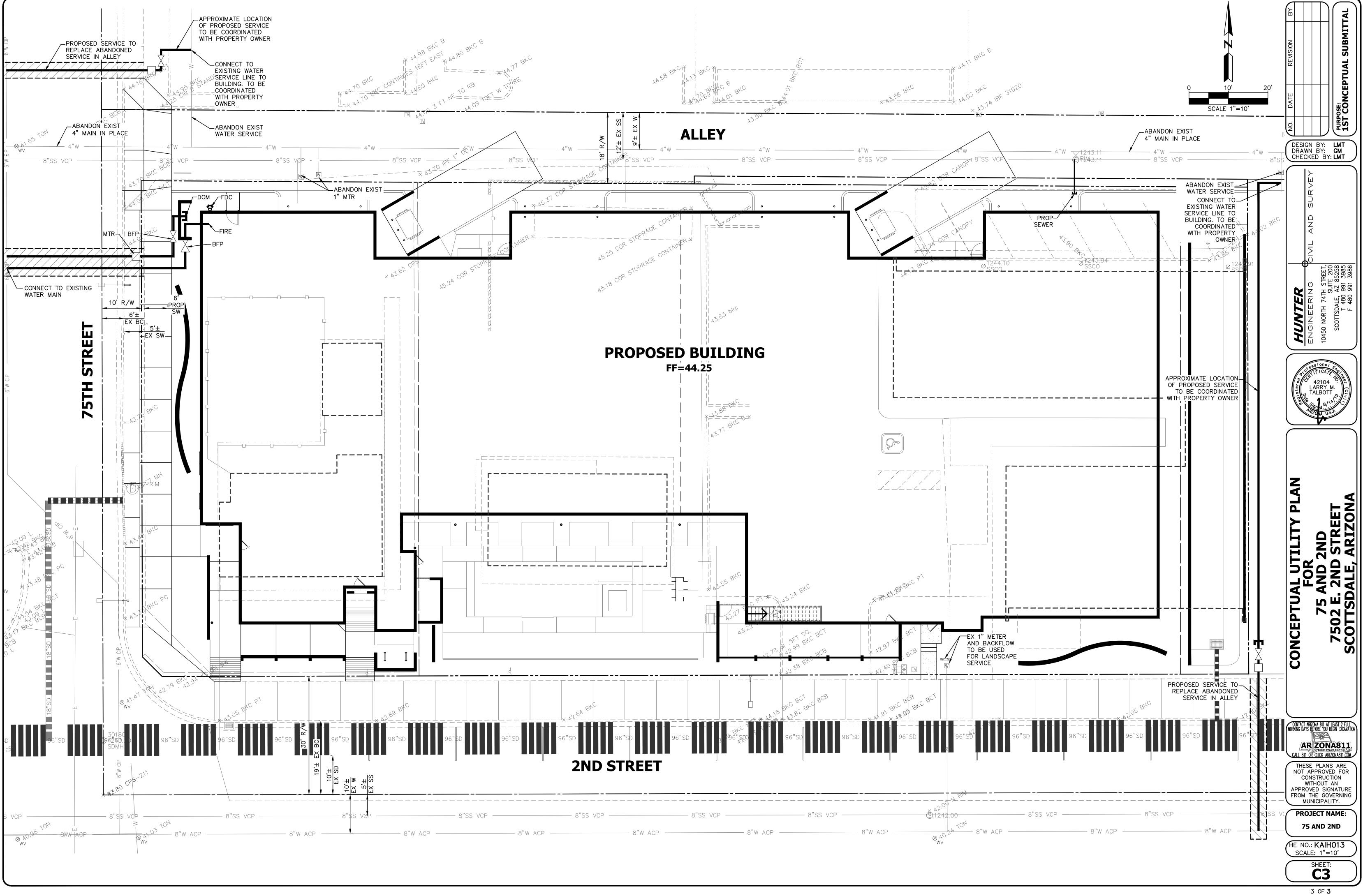
25-DR-2019 08/20/19

DEVELOPER


THE CLAYTON COMPANIES 7340 E MAIN STREET ST #200 SCOTTSDALE, AZ 85251 PHONE: (480) 941-2260 CONTACT: MR. MAX FRENKEL EMAIL: MAX@CLAYTONCOMPANIES.COM

ARCHITECT

6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


DRAINAGE STATEMENT

THE SITE IS <u>NOT</u> IN A SPECIAL FLOOD HAZARD AREA. THERE <u>ARE NO</u> OFFSITE FLOWS THAT AFFECT THE SITE. RETENTION PROVIDED IS FOR THE PRE VS POST RETENTION ANALYSIS. EXTREME STORM OUTFALLS AT THE SOUTHEAST CORNER OF THE SITE AT AN ELEVATION OF

25-DR-2019 08/20/19

25-L 08

08/20/19

²⁵⁻DR-2019

ENGINEERING

CIVIL AND SURVEY

PRELIMINARY DRAINAGE REPORT For 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

CASE NO. 25-DR-2019

Prepared by: Hunter Engineering, P.C. 10450 North 74th Street, #200 Scottsdale, AZ 85258

PRELIMINARY DRAINAGE REPORT FOR 75 ON 2ND 7502 E. 2ND STREET SCOTTSDALE, AZ.

PREPARED FOR

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD, #2005 SCOTTSDALE, AZ 85251

PREPARED BY

HUNTER ENGINEERING, P.C. 10450 NORTH 74TH STREET, #200 SCOTTSDALE, AZ 85258 (480) 991-3985

AUGUST 2019 H.E. PROJECT NO. KAIH013

> HUNTER ENGINEERING

TABLE OF CONTENTS

<u>SECTION</u> 1.0 2.0 3.0 4.0 5.0	TITLEIntroduction.Existing Drainage Conditions.Proposed Drainage Concept.Conclusions.References.	<u>PAGE NO.</u> 1 1 4 4
<u>FIGURES</u>	<u>TITLE</u>	LOCATION
1	Vicinity Map	Appendix A
2	FEMA Flood Map	Appendix A
<u>EXHIBITS</u>	<u>TITLE</u>	LOCATION
A	Drainage Exhibit 'A' (Existing Conditions)	Back Pocket
B	Drainage Exhibit 'B' (Proposed Conditions)	Back Pocket
C	Conceptual Grading and Drainage Plans	Back Pocket
<u>APPENDIX</u> A B	<u>TITLE</u> Figures Drainage Calculations	Appendix A Appendix B

1.0 INTRODUCTION

This preliminary drainage report has been prepared under a contract from K&Q Homes, owner/developer of 75 On 2nd site. The purpose of this report is to provide a preliminary drainage analysis, required by the City of Scottsdale, to support this development. Preparation of this report has been done according to the procedures detailed in Chapter 4 of the City of Scottsdale's Design Standard & Policies Manual dated January 2010.

This development project is located at 7502 E. 2ND Street Scottsdale, Arizona 85251.The site is specifically located in The Northwest Quarter Of Section 26. Township 2 North, Range 4 East Of The Gila And Salt River Base And Meridian. Maricopa County, Arizona. Figure 1, in Appendix A, illustrates the location of the project site in relation to the City of Scottsdale street system.

The development is for a proposed 75 and 2^{nd} consisting of approximately $0.60\pm$ acres. Improvements to be made on-site include a new building, parking lot, and the construction of landscaped areas. Exhibit A, located in the back pocket, illustrates the proposed improvements for the project.

2.0 EXISTING DRAINAGE CONDITIONS

The proposed site is located on a developed parcel with existing ground cover consisting of small buildings, sparse vegetation with shrubs and short grasses. In its developed condition, the project site drains primarily to the south at an average slope of 1%-2%.

The current FEMA Flood Insurance Rate Map (FIRM) for this area, map number 04013C2235 L (Revision date December 7th, 2018) shows the entire project site is in a flood hazard Zone X. Zone X is defined as, "*Area of minimal flood hazard*."

There are existing catch basins along the roadway frontage. One is located on 75th Avenue to the west and another on 2nd Street to the south near the southwest corner of the site. Both of these catch basins drain into an existing 96" storm drain along the north side of 2nd Street. These basins convey the stormwater from 75th and 2nd. There is an existing alley along the north property line. This alley is currently an inverted crown that slopes to the east. The adjacent property to the east is fully developed.

3.0 PROPOSED DRAINAGE CONCEPT

The proposed drainage concept is presented in three parts: on-site drainage conveyance, offsite drainage conveyance, and storm water retention. These three sections make up sections 3.1, 3.2, and 3.3 respectively. Exhibit A, located in the back pocket, provides a graphical illustration of the proposed drainage concept.

> HUNTER ENGINEERING

3.1 On-site Drainage Conveyance

The proposed onsite drainage improvements for the site will be graded as follows. Stormwater on the west side of the building will be directed through sheet flow onto 75th street where it will be collected via curb flow into an existing curb inlet leading it to the existing 96" storm sewer. Stormwater from the south side of the building will be directed through sheet flow onto 2nd street where it will be collected via curb flow into an existing street inlet leading into the existing 96" storm sewer.

The north side of the building will sheet flow away from the building into the existing alley where it will be conveyed to the east as it has historically. On the east side of the building water will be conveyed via sheet flow into the proposed shallow 12" retention basin. Not catch basins, storm drain piping or underground retention are proposed for this site.

The building finish floor elevations will step down from the west to the east in order to better accommodate ADA requirements and the existing site grades. Since the building footprint encumbers the majority of the parcel and there are several points of access the building needed finish floor needed to be set high enough to maintain positive flow for the rear garages from the alley, but low enough to maintain ADA access from both 75th Avenue and 2nd Street. The floors we stepped so the eastern garage entrance grades did not become too steep.

3.2 Off-site Drainage Conveyance

There are not currently any off-site drainage impacts to this site

3.3 Storm Water Retention

The City of Scottsdale requires retention for the Pre versus Post development runoff for the 100-year, 2-hour storm event. The disturbed area is less than 1 acre therefore no first flush is required.

To calculate Pre versus Post required retention, a weighted C-value was calculated for existing and proposed conditions. A weighted drainage area was determined, and volume required for the 100-year, 2-hour storm was calculated. See Below.

Total Site Area= 0.81 acres C= Runoff Coefficient C= 0.95 Hardscape area (pavement, building, sidewalk) C= 0.45 landscape area Delta C= increase in weighted runoff

P=2.2 precipitation depth (inches)

HA= hardscape area (pavement, building, sidewalk)

LA= landscape area

Vr= required retention volume (CF) =Delta C*P/12*A

Pre-Development Weighted C

HA=0.4495 AC LA=0.3578AC C(weighted) = ((0.95)*(0.4495)+(0.45)*(0.3578))/(0.8071)=0.7284

<u>Post-Development Weighted C</u> HA=0.6656 AC LA=0.1444 AC C(weighted) = ((0.95)*(0.6656)+(0.45)*(0.1444))/(0.8071)=0.8609

Delta C= 0.8609-0.7284=0.1325 Required Retention Volume (Vr)= 0.1325*2.2/12*0.8071 AC=854 (cf)

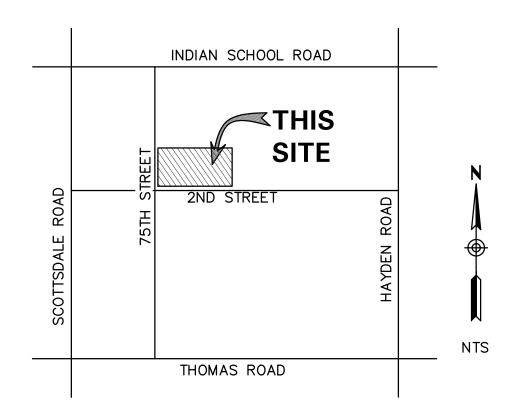
The volume requirement of 854 cubif-feet will be satisfied by a single shallow on-site surface retention basin. The basin will be bled-off in the required 36 hours via a gravity bleed-off pipe through an orifice to the existing public storm drain in 2^{nd} Street.

The 100-year high water surface elevation for the retention basin is going to be set at 1042.00, which is 2.25 lower than the adjacent proposed building finished floor which is set at 1044.25.

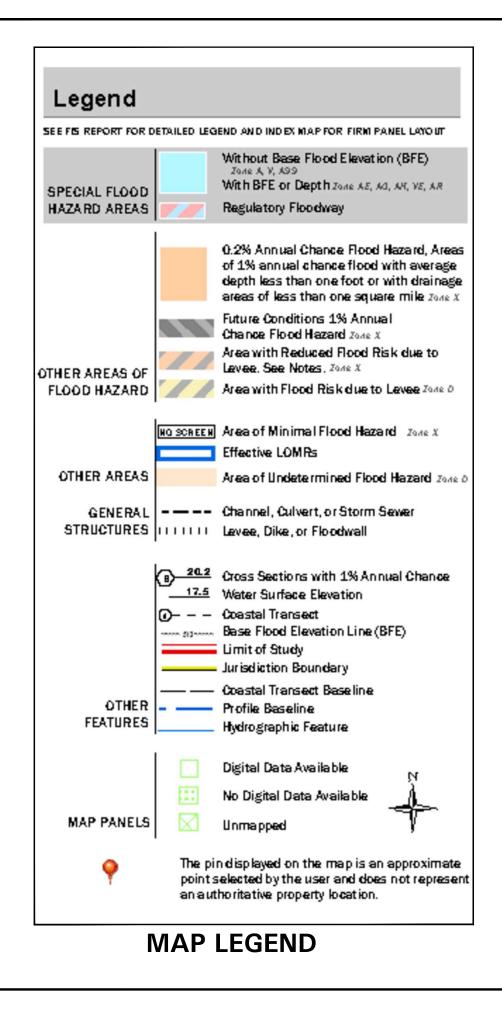
The proposed outfall for this site is set at 1042.17 located at the south east corner of the property flowing onto 2^{nd} street. The outfall elevation is below the 14" minimum elevation difference than the proposed finished floor of 1044.25.

4.0 CONCLUSIONS

Based on the results of this study, it can be concluded that:


- The site will retain the Pre versus Post run-off for the 100-year, 2-hour storm event.
- The proposed finished floor elevation is a minimum of 14" feet above the 100-year water surface elevation in the proposed retention basin.

5.0 **REFERENCES**


- 1) City of Scottsdale Standards and Policies manual, February 7,2010.
- 2) Drainage Design Manual for Maricopa County, Arizona, Hydrology, February 2011.
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydraulics, June 2010.

APPENDIX A FIGURES

VICINITY MAP FIGURE 1

PORTION OF PANEL SHOWING SITE FIGURE 2

Ν

APPENDIX B DRAINAGE CALCULATIONS

Retention Basin Calculations

Vr=C*D*A*43,560, C=0.9, D=2.2 Design Storm: 100-year, 2-hour

С	=	0.90	
D	=	2.20	inches
А	=	0.81	Site acres
Vr	=	5,822	cubic feet

Pre Vs. Post Analysis

Required

Pre							
	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	
	Pre	Weighted	0.8071	0.7284	2.20	4,695	_
			0.8071			4,695	
Post							
_	Location	Туре	Area (ac)	C' Coefficient	Depth	Required (cf)	_
	Post	Weighted	0.8071	0.8609	2.20	5,549	_
			0.8071			5,549	
					Post	5,549	
					Pre	4,695	
					Required	854	cf Req

Volume Provided

Retention Basin

Elevation	Area (sf)	Avg. Area (sf)	Depth (ft)	Volume (cf)	Σ Volume (cf)
42.0	1,353				
		1,102	1.00	1,102	1,102
41.0	851				

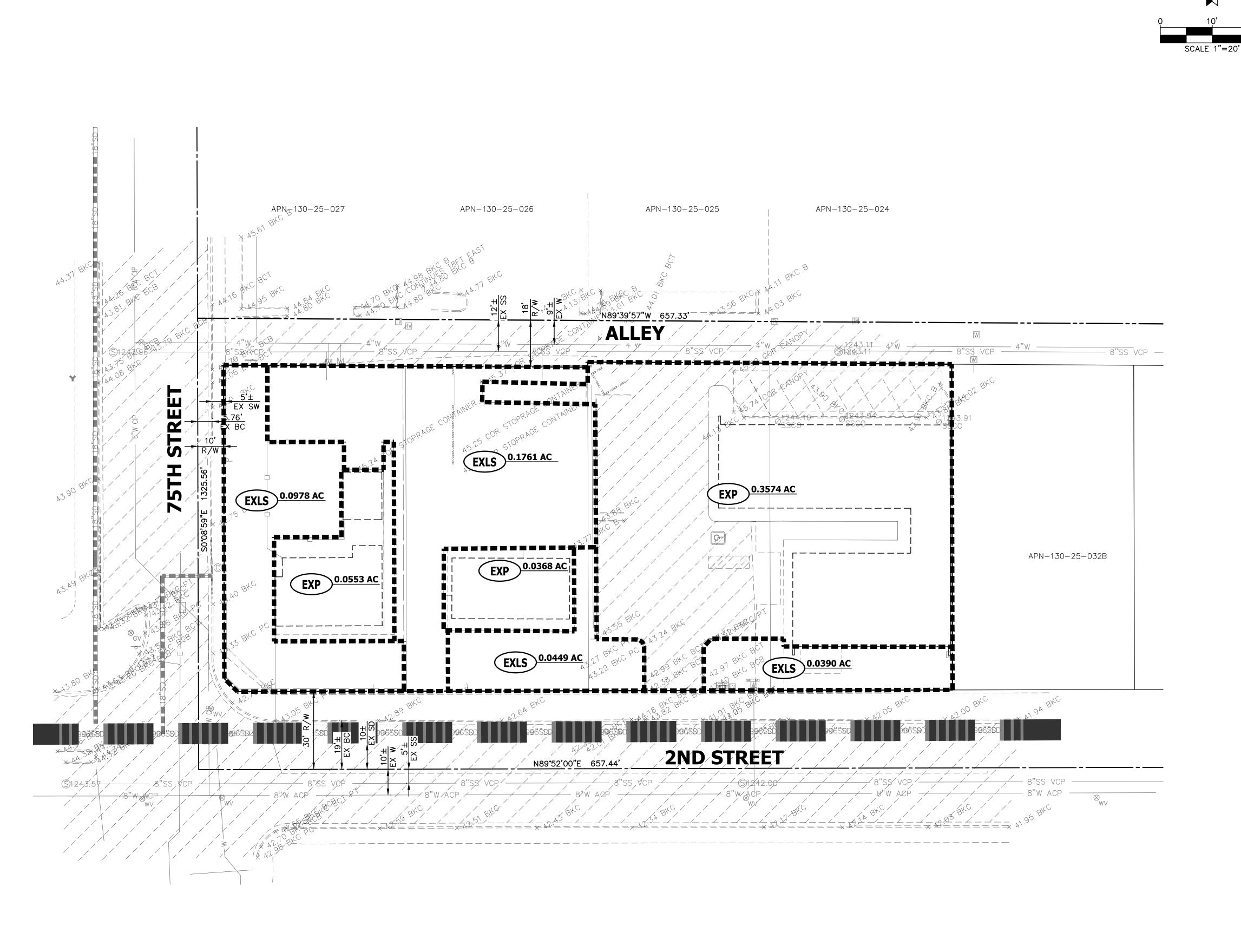
1,102 cf Prov

Total Retention					
1,102 cf Prov					
854 cf Req					
248 cf Excess					

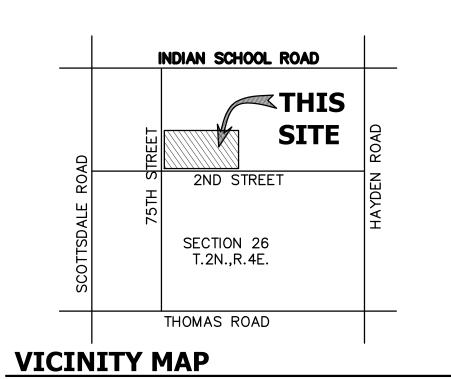
Weighted Runoff Coefficient Calculation

Cw=[(C1*A1)+(C2*A2)+(C3*A3)...+(Cn*An)] / Total Area

Project:	KAIH013	Calc'd By: LMT
Date:	8/14/2019	Chck'd By: LMT


Pre-Development Conditions

C ₁ =	0.95	Paving/Roof	A ₁ =	0.45	Acres
C ₂ =	0.45	Existing Landsape	$A_2 =$	0.36	Acres
			Total=	0.81	Acres

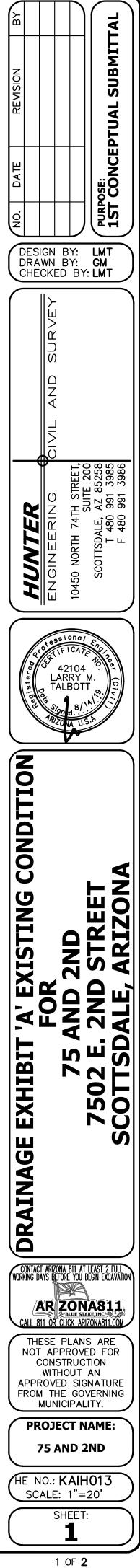

Cw= <u>0.73</u>

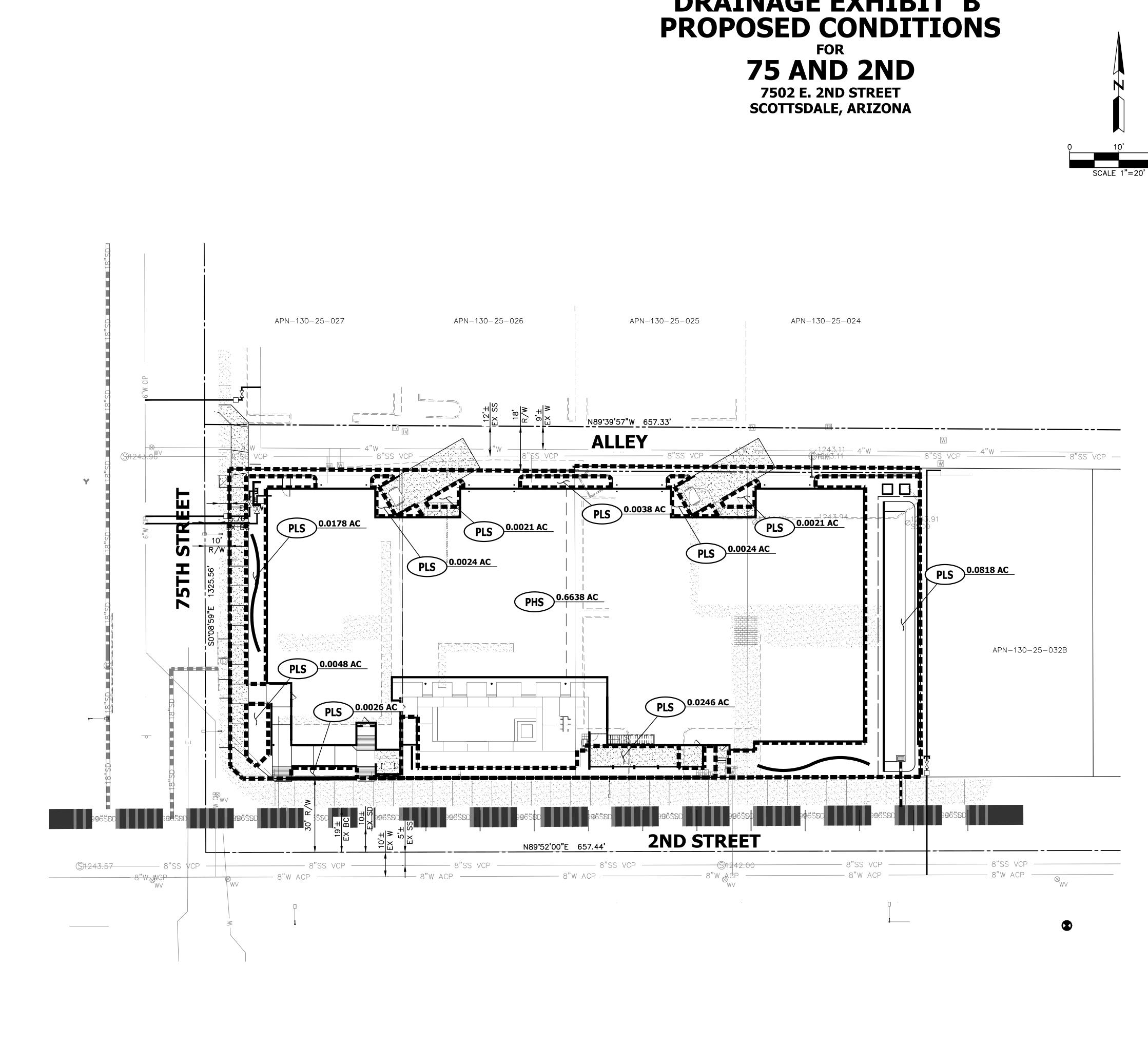
Proposed Conditions

C ₁ =	0.95	Paving/Roof	$A_1 =$	0.67	Acres
C ₂ =	0.45	Existing Landsape	$A_2 =$	0.14	Acres
			Total=	0.81	Acres
Cw=	<u>0.86</u>				

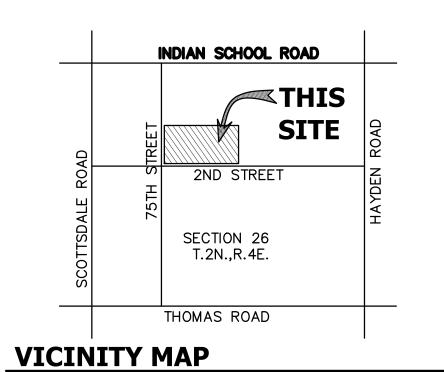
DRAINAGE EXHIBIT 'A' EXISTING CONDITIONS FOR 7502 E. 2ND STREET SCOTTSDALE, ARIZONA

OWNER


K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505–2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


CIVIL ENGINEER

HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991–3985 CONTACT: LARRY TALBOTT, P.E EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM

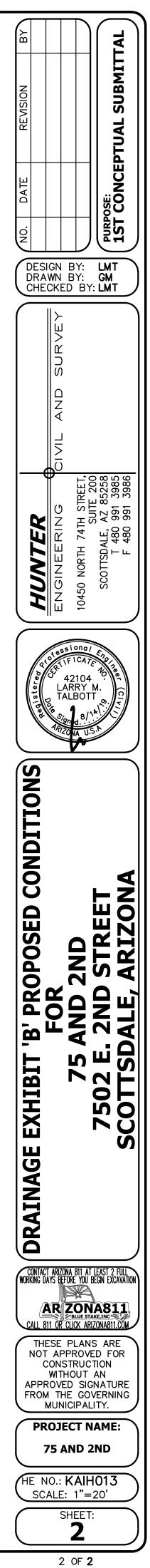

LEGEND

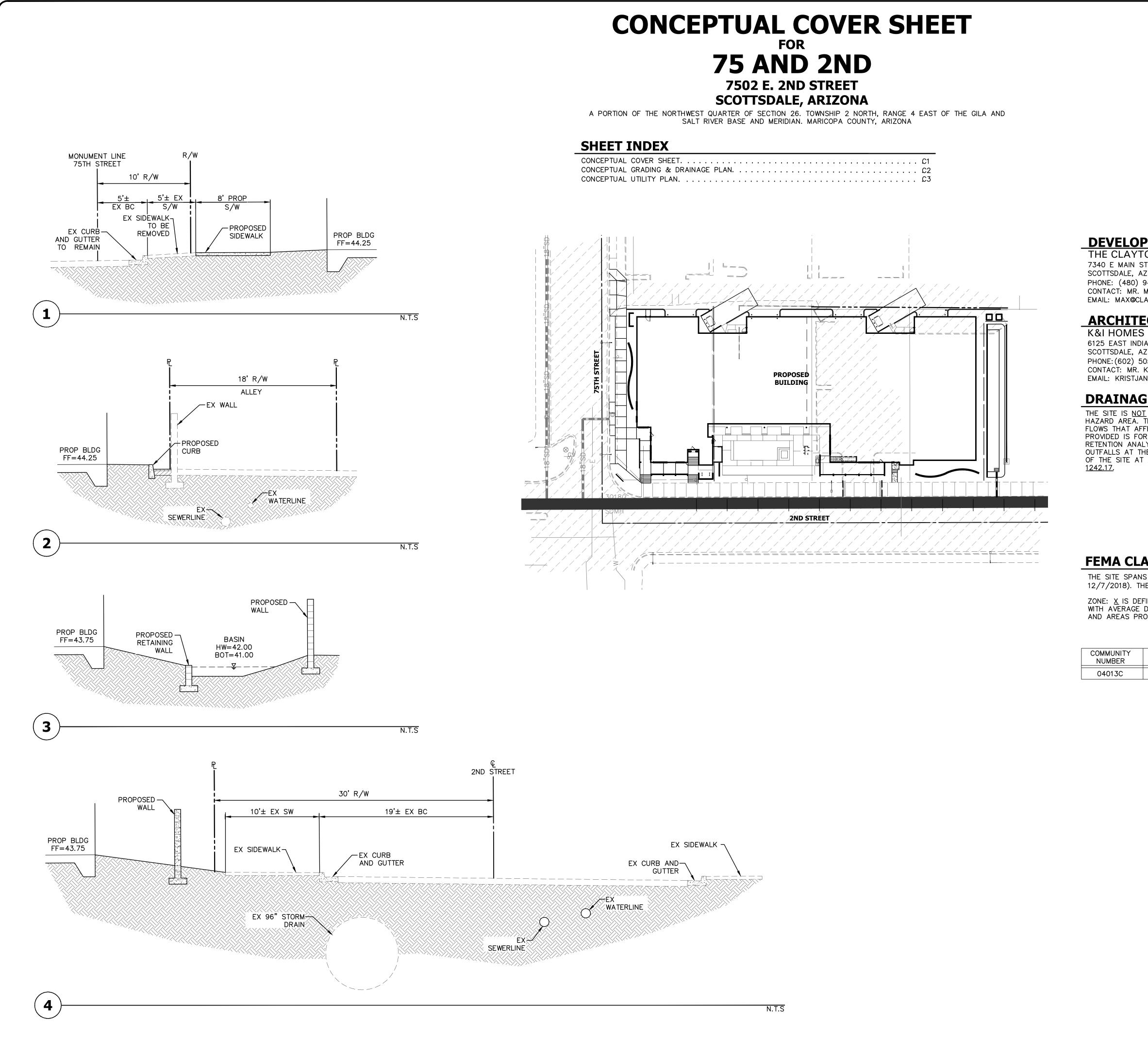
43	PROPOSED CONTOUR
	PROPOSED STORM LINE
	PROPOSED CATCH BASIN
$\rightarrow \cdot \cdot \rightarrow \cdot \cdot -$	PROPOSED FLOW LINE
\rightarrow \diamond \diamond \diamond	PROPOSED GRADE BREAK
-	PROPOSED FLOW ARROW
	DRAINAGE AREA BOUNDARY
EXLS 0.000AC	EXISTING LANDSCAPE
EXP 0.000AC	EXISTING PAVEMENT, CONCRETE OR ROOF AREA

DRAINAGE EXHIBIT 'B'

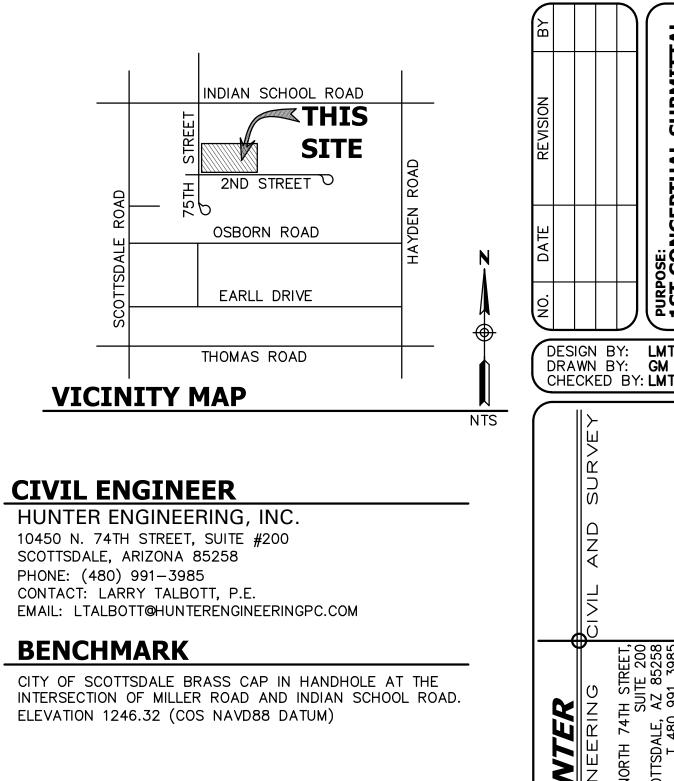
OWNER

K&I HOMES 6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


CIVIL ENGINEER


HUNTER ENGINEERING, INC. 10450 N. 74TH STREET, SUITE #200 SCOTTSDALE, ARIZONA 85258 PHONE: (480) 991–3985 CONTACT: LARRY TALBOTT, P.E. EMAIL: LTALBOTT@HUNTERENGINEERINGPC.COM

LEGEND


43	PROPOSED	CONTO
	PROPOSED	STORM
	PROPOSED	CATCH
$\rightarrow \cdot \cdot \rightarrow \cdot \cdot -$	PROPOSED	FLOW L
	PROPOSED	GRADE
-	PROPOSED	FLOW A
	DRAINAGE	AREA B
PLS 0.000AC	PROPOSED	LANDSC
PHS 0.000AC	PROPOSED	HARDS

PROPOSED CONTOUR
PROPOSED STORM LINE
PROPOSED CATCH BASIN
PROPOSED FLOW LINE
PROPOSED GRADE BREAK
PROPOSED FLOW ARROW
DRAINAGE AREA BOUNDARY
PROPOSED LANDSCAPE
PROPOSED HARDSCAPE

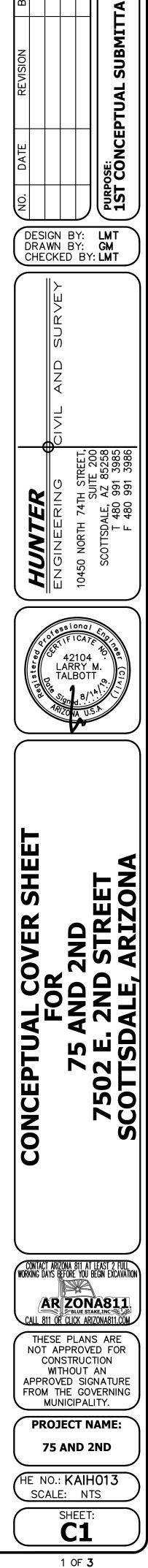
COMML NUME

BASIS OF BEARING

BASIS OF BEARING FOR THIS SURVEY IS A BEARING OF NORTH 89'52' EAST, ALONG THE SOUTH LINE OF THE SOUTHEAST QUARTER OF THE NORTHEAST QUARTER OF THE NORTHWEST QUARTER OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 4 EAST OF THE GILA AND SALT RIVER BASE AND MERIDIAN, MARICOPA COUNTY, ARIZONA, ACCORDING TO THE PLAT OF REDELL MANOR, RECORDED IN BOOK 49, PAGE 27, MARICOPA

APN: 130-25-28B, 130-25-29A

130-25-30A AND 130-25-31A


COUNTY RECORDS, ARIZONA.

FEMA CLASSIFICATION

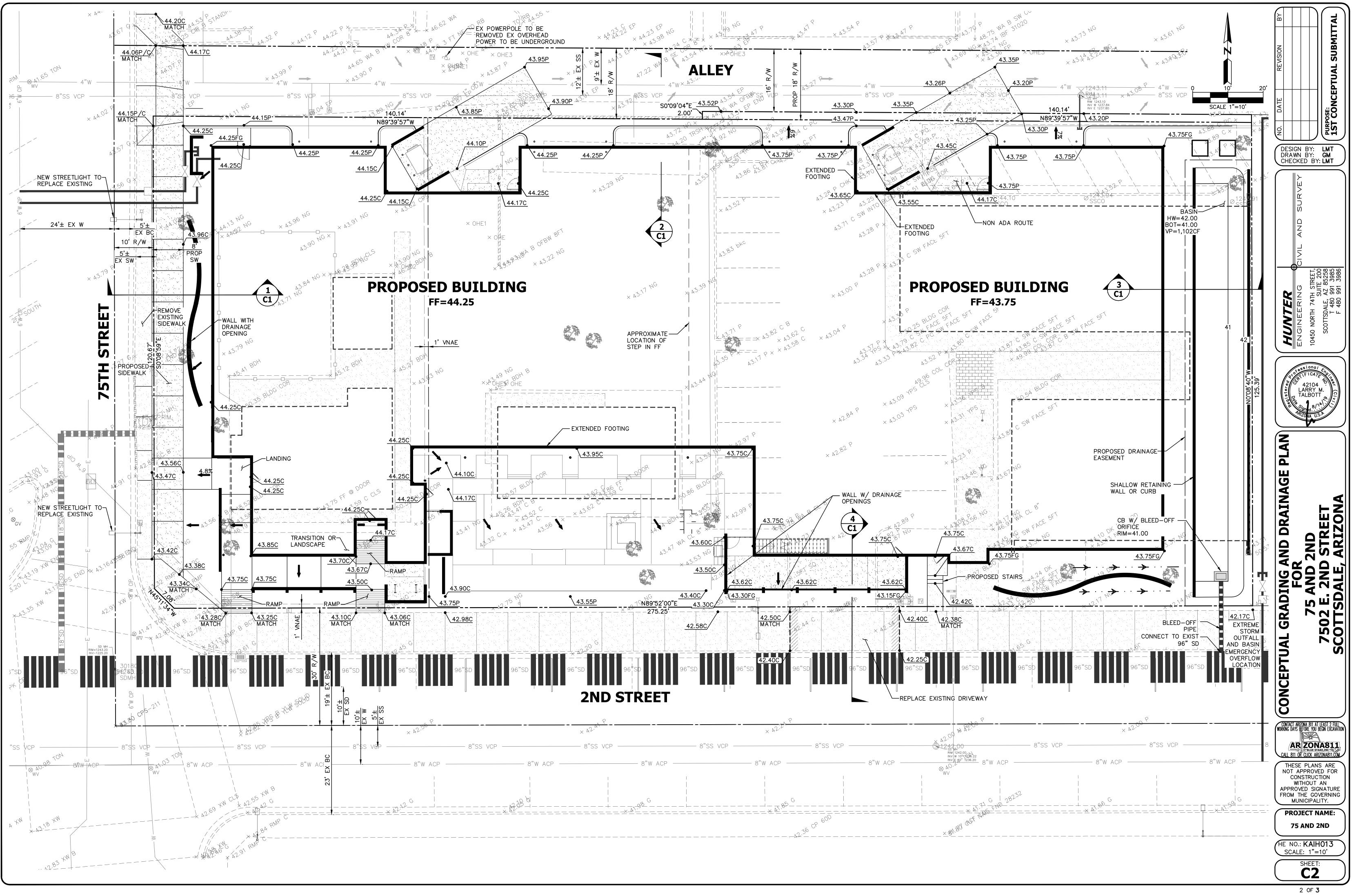
THE SITE SPANS TWO FEMA FLOOD INSURANCE RATE MAP (FIRM) PANELS; 04013C2235L (EFFECTIVE 12/7/2018). THE PROJECT SITE IS SHOWN AS ZONE X.

ZONE: X IS DEFINED AS AREAS OF 0.2% ANNUAL CHANCE FLOOD; AREAS OF 1% ANNUAL CHANCE FLOOD WITH AVERAGE DEPTHS OF LESS THAN 1 FOOT, OR WITH DRAINAGE AREAS LESS THAN 1 SQUARE MILE; AND AREAS PROTECTED BY LEVEES FROM 1% ANNUAL CHANCE FLOOD.

IUNITY IBER	PANEL # PANEL DATE	SUFFIX	DATE OF FIRM (INDEX DATE)	FIRM ZONE	BASE FLOOD ELEVATION (IN AO ZONE USE DEPTH)
)13C	2235	L	12/7/2018	ZONE X	DEPTHS OF LESS THAN 1'

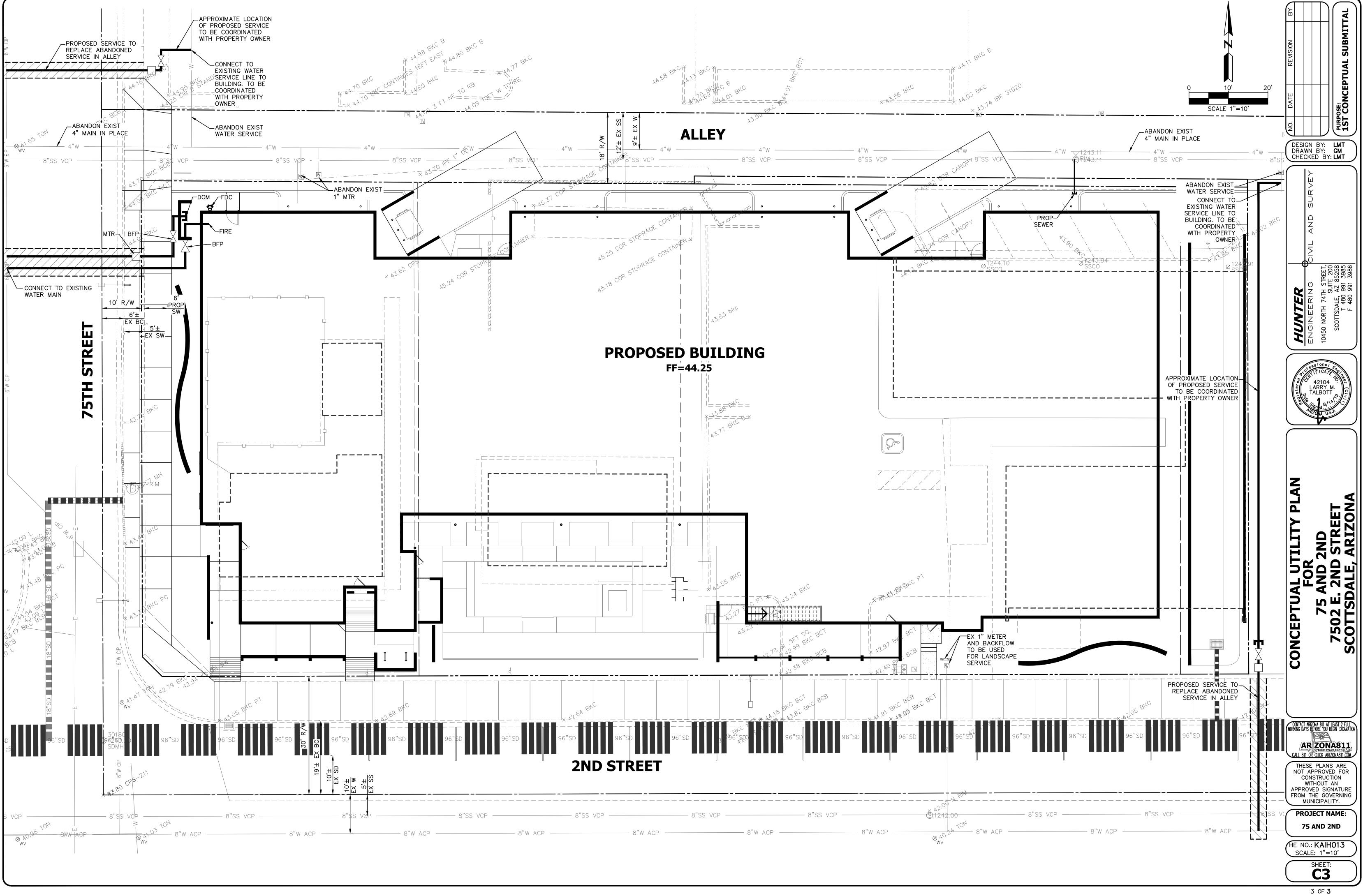
25-DR-2019 08/20/19

DEVELOPER


THE CLAYTON COMPANIES 7340 E MAIN STREET ST #200 SCOTTSDALE, AZ 85251 PHONE: (480) 941-2260 CONTACT: MR. MAX FRENKEL EMAIL: MAX@CLAYTONCOMPANIES.COM

ARCHITECT

6125 EAST INDIAN SCHOOL ROAD #2005 SCOTTSDALE, AZ 85251 PHONE: (602) 505-2525 CONTACT: MR. KRISTJAN SIGURDSSON EMAIL: KRISTJANS@KANDIHOMES.COM


DRAINAGE STATEMENT

THE SITE IS <u>NOT</u> IN A SPECIAL FLOOD HAZARD AREA. THERE <u>ARE NO</u> OFFSITE FLOWS THAT AFFECT THE SITE. RETENTION PROVIDED IS FOR THE PRE VS POST RETENTION ANALYSIS. EXTREME STORM OUTFALLS AT THE SOUTHEAST CORNER OF THE SITE AT AN ELEVATION OF

25-DR-2019 08/20/19

25-L 08

08/20/19

²⁵⁻DR-2019