

Water Study

SOUTHBRIDGE EXPANSION PRELIMINARY WATER BASIS OF DESIGN REPORT

SCOTTSDALE, ARIZONA

Please see the next page(s) for the Water BOD review comments

By:

Gookin Engineers, Ltd. 4203 N. Brown Avenue Scottsdale, AZ 85251

September 21, 2018

Revised July 25, 2019

22-ZN-2018

PRELIMINARY Basis of Design Report

ACCEPTED
ACCEPTED AS NOTED

REVISE AND RESUBMIT

Reviewed by

On behalf of the Scottsdale
Water Resources Planning
and Engineering Department

DISCLAIMER: If accepted, the preliminary approval is granted under the condition that a final basis of design report will also be submitted for city review and approval (Typically during the DR and PP case). The final report shall incorporate further water or sewer design and analysis requirements as defined in the city design standards and policy manual and address those items noted in the preliminary review comments)both separate and included herein). The final report shall be submitted and approved prior to the plan review submission. For questions and clarifications contact the Water Resources Planning and Engineering Department at 480-321-5685

REVIEWER: Brian Bernard EMAIL: Bbernard@carollo.com

DATE 08/16/19

SOUTHBRIDGE EXPANSION

CASE FILE 22-ZN-2018 - WATER BOD REPORT

CAROLLO ENGINEER'S CASE FILE REVIEW COMMENTS - 08/16/2019

Ordinance Issues:

- 1. Developers are required to install at their expense, all improvements necessary to provide water service to their development. This includes any water mains, booster pump stations, pressure reducing stations, surge tanks, valves and appurtenances, or other facilities, and the payment of all required fees. Refer to the Scottsdale Revised Code (SRC), Section 49-73.
- 2. Water line extensions (all property for which water service is desired shall, as a minimum requirement of service, be provided with, as a portion of the City system, a minimum of one-half of an six inch water main for the entire frontage of the parcel, which will require providing lines on both frontages of the property if the property is a corner parcel, or all frontages of the property if multiple frontages occur per SRC Sec. 49-212/219 and DSPM Sec. 6-1.400.) may be required along the property's frontages.

Policy and Design Related Issues:

- 3. The Infrastructure Phasing Plan description on page 4 of the Water BOD report is not sufficient. Per DSPM Section 6-1.200, a Master Plan (Water) is required for phased developments and was submitted separately. As a minimum, specify how the phased construction will be conducted in more specific detail in both the Proposed Conditions (page 3) and Infrastructure Phasing (page 4) sections and include the project Master Plan in the final BOD through an Appendix.
- 4. The Water BOD report included water demand and fire flow analysis per DSPM Sections 6-1.201/202 for off-site flows (estimated off-site water uses). Any off-site improvements that may be required shall be the responsibility of the developer. Detailed information of the proposed off-site improvements is to be included in the final wastewater BOD.
- 5. Each phase of development must provide a looped/second source of water distribution to comply with DSPM Section 6-1.402.
- 6. Coordinate with Fire Department on the requirement of any on-site fire hydrant per DSPM Section 6-1.502 and/or if any redundant water source is be required for the fire line. Include written correspondence from Fire Department personnel in the final BOD confirming hydrant requirements and source redundancy.
- 7. Include site information pertaining to the corresponding fire hydrant tests (example Test #4 performed at FH 100 feet southeast of Rose Garden site) in the final BOD report
- 8. Per DSPM 6-1.000 a Professional Engineer (civil or sanitary) currently registered in the State of Arizona is required to analyze the fire flow and water demand from a proposed development (analyze all proposed development for the impact on the water distribution system and effects of various flow scenarios on sizing and layout of the proposed water system) and determine its impact on the city's water distribution system. The BOD engineer's seal does not indicate an expiration date.
- 9. Include written permission from the COS Water Resources staff confirming that permission has been granted to model fire demand as only one of the four fire demands, specifically the fire demand for the Triangle Site as stated on page 11 of the BOD.
- 10. Report Covers must include the Developer/Owner's name, address, and phone number.

- 11. Page 3 of the BOD, revise text in the Introduction narrative to accurately reflect that average and peak volumes of water demand per the current design standards can be met within the existing City sewer infrastructure in accordance with the City of Scottsdale Standards and Policies.
- 12. Page 3 of the BOD Existing Conditions and Proposed Conditions, state the existing and proposed pipeline sizes, material types, and strength classes per DSPM 6-1.201/202.
- 13. Page 3 of the BOD Proposed Conditions, describe in more detail, and also reference the project phasing on page 4 and the Master Plan Appendix.
- 14. Page 3 of the BOD Proposed Conditions, state if the proposed fire service lines are going to be looped or redundant.
- 15. Page 4 of the BOD Proposed Conditions, include an Exhibit that confirms no new fire hydrants are required, state the hydrant spacing requirements per DSPM, and note the existing fire hydrant locations on all Exhibits.
- 16. Page 10 of the BOD, consider revising the Hazen-Williams roughness coefficient to 130 for DIP.

Technical Corrections to be Resolved:

- 17. For all Exhibits, clearly indicate any new or existing utility easements within the limits of the proposed development site
- 18. Exhibit 2 give approximate sizes in acres for each designated site and clearly show the location of all existing/proposed fire hydrants
- 19. Exhibit 3 6 the Fire Hydrant Flow Tests are lacking in detail and include graphs that lack relevant data points to determine the Water Curve Data. Revise graphs and callouts to reflect the information collected and determined.
- 20. Exhibit 7 denote areas/sub-areas (A1 A3) to match with Exhibit 2. Include square footage of each principal area of the proposed development. Include Key Notes to respond to callout boxes #1 #10 or remove them from the Exhibit.
- 21. Exhibit 8 explain the importance or purpose of the red dashed line through Site A. If the dashed line is meant to represent a proposed utility (water main) denote pipe sizes, bends, tees, valves, services, and connections. Show the location of existing/proposed fire hydrants.
- 22. Exhibit 9 Indicate the proposed utilities (water main) denote pipe sizes, bends, tees, valves, services, and connections. Show the location of existing/proposed fire hydrants.
- 23. Exhibit 10 Indicate the proposed utilities (water main) denote pipe sizes, bends, tees, valves, services, and connections. Show the location of existing/proposed fire hydrants.
- 24. Exhibit 11 include the new (updated) water demand information from the proposed Craftsman Court development in the new water demand calculations.
- 25. Exhibit 12 provide Key Notes to callout proposed facilities, tees, valve vaults, valves, air release and vacuum valves, services, vault rim/invert information, benchmarks, etc.
- 26. Exhibit 12 for proposed fire lines, include isolation valves on both sides of the mainline tee.
- 27. Exhibit 12 if water meter and BFP have above-ground facilities, coordinate with parking/street areas for the requirement of traffic bollards.
- 28. Exhibit 12 for the 3-inch water service to the Office/Retail space, show the location of the tap at least 4-feet away from the water main bend.
- 29. Exhibit 12 in the Key Notes, call out the minimum required sewer/water separation both in horizontal and vertical distances.
- 30. Exhibit 13 provide Key Notes to callout proposed facilities, tees, valve vaults, valves, air release and vacuum valves, services, vault rim/invert information, benchmarks, etc.
- 31. Exhibit 13 for proposed fire lines, include isolation valves on both sides of the mainline tee.
- 32. Exhibit 13 if water meter and BFP have above-ground facilities, coordinate with parking/street areas for the requirement of traffic bollards.

- 33. Exhibit 13 in the Key Notes, call out the minimum required sewer/water separation both in horizontal and vertical distances.
- 34. Exhibit 14 provide Key Notes to callout proposed facilities, tees, valve vaults, valves, air release and vacuum valves, services, vault rim/invert information, benchmarks, etc.
- 35. Exhibit 14 for proposed fire lines, include isolation valves on both sides of the mainline tee.
- 36. Exhibit 14 if water meter and BFP have above-ground facilities, coordinate with parking/street areas for the requirement of traffic bollards.
- 37. Exhibit 14 in the Key Notes, call out the minimum required sewer/water separation both in horizontal and vertical distances.
- 38. Exhibit 15 provide Key Notes to callout proposed facilities, tees, valve vaults, valves, air release and vacuum valves, services, vault rim/invert information, benchmarks, etc.
- 39. Exhibit 15 for proposed fire lines, include isolation valves on both sides of the mainline tee.
- 40. Exhibit 15 if water meter and BFP have above-ground facilities, coordinate with parking/street areas for the requirement of traffic bollards.
- 41. Exhibit 15 in the Key Notes, call out the minimum required sewer/water separation both in horizontal and vertical distances.
- 42. Exhibits 12 15 provide faded back fire hose pull distances in circular arcs denoted the area covered from each hydrant.
- 43. Exhibits 12 15 provide faded back fire truck turning radii if applicable for the roadway and parking areas.
- 44. Exhibit 12 15 what DIP pipe material is being proposed for the water main, state pressure or strength class and type of internal lining.

TABLE OF CONTENTS

Table of Contents	2
INTRODUCTION	3
EXISTING CONDITIONS	
PROPOSED CONDITIONS	
INFRASTRUCTURE PHASING	
FIRE HYDRANT FLOW TESTS	
REQUIRED FIRE FLOWPROPOSED WATER DEMAND CALCULATIONS	4 5
EXISTING OFFSITE WATER DEMAND CALCULATIONS	
HYDRAULIC ANALYSIS	
VICINITY MAP – EXHIBIT 1	
WATER QUARTER SECTION MAP – EXHIBIT 2	
HYDRANT TEST $1 - 7007$ E. 5^{TH} AVENUE – EXHIBIT 3	
HYDRANT TEST 2 – 7133 E. STETSON DRIVE - EXHIBIT 4	
HYDRANT TEST $3 - 7124$ E. 5^{TH} AVENUE - EXHIBIT 5	
HYDRANT TEST $4-6941$ E. 5^{TH} AVENUE - EXHIBIT 6	
AERIAL PHOTOGRAPH – OVERALL SITE PLAN – EXHIBIT 7	
AERIAL PHOTOGRAPH -TRIANGLE AND MARKETPLACE SITES- EXHIBIT 8	
AERIAL PHOTOGRAPH – SOUTHBRIDGE WEST SITE - EXHIBIT 9	
AERIAL PHOTOGRAPH – ROSE GARDEN SITE - EXHIBIT 10	
OFFSITE WATER DEMAND AREAS MAP – EXHIBIT 11	
TRIANGLE SITE PRELIMINARY WATER PLAN – EXHIBIT 12	
MARKETPLACE SITE PRELIMINARY WATER PLAN – EXHIBIT 13	
SOUTHBRIDGE WEST SITE PRELIMINARY WATER PLAN – EXHIBIT 14	
ROSE GARDEN SITE PRELIMINARY WATER PLAN – EXHIBIT 15	
APPENDIX 1 – EPANET OUTPUT FOR CONDITION 1	
APPENDIX 2 – EPANET OUTPUT FOR CONDITION 2	
APPENDIX 3 – EPANET OUTPUT FOR CONDITION 3	
APPENDIX 4 – EPANET PIPE DETAILS FOR ALL CONDITIONS	

SOUTHBRIDGE EXPANSION **PRELIMINARY** WATER BASIS OF DESIGN REPORT

INTRODUCTION

The Southbridge Expansion Project is a mixed use development project generally located between Scottsdale Road and just west of Goldwater Boulevard, along the south side of the Arizona Canal and along the north side of 5th Avenue. The total area is approximately 6.5 acres.

This report will provide calculations to determine the average and peak volumes of water demand that can be expected from the project site and if it can be handled by the current infrastructure to a level that is satisfactory to the City of Scottsdale.

EXISTING CONDITIONS

water demand can be met with the existing infrastructure in accordance with City of Scottsdale Standards and Policies

The Triangle, Marketplace and Southbridge West sites are currently occupied by a combination of office, retail, commercial, and restaurant use. The easterly side of the Rose Garden site is a public parking lot. There is a small vacant parcel on the west end. Exhibit 1 is a vicinity map of the site.

Existing water infrastructure includes recent upgrades to the system by the City of Scottsdale to accommodate large anticipated uses in this area. This includes a 20 inch main along 5th Avenue and Stetson Drive between Goldwater Boulevard and Scottsdale Road and a 12 inch main on 5th Avenue west of Goldwater Boulevard. See Exhibit 2 for a quarter section map with improvement areas shown.

PROPOSED CONDITIONS

State the material type and class for the proposed water main

This mixed use development is laid out as 4 separate sites with various uses. These uses are summarized below under the proposed water demand tables. The use categories are taken from the City of Scottsdale DS&PM, Figure 6-1.2. Add any proposed construction phasing in the background project narrative

Exhibits 7 - 10 show the various buildings overland on an aerial photograph. New water appurtenances will be located adjacent to the street. Each site will have one or more separate water meters with backflow prevention and fire service taps. To service the Triangle Site, a private 12" DIP waterline will be tapped off the existing 20 inch line in Stetson and loop into the 8" waterline on 6th Avenue. These utility connections are shown in Exhibits 12-15. Water meter sizing was determined based on the DSPM and proposed water demands. Landscape water will be metered with the remainder of the

building. Are the fire service

llines looped or

nt has been initiated and will be ongoing and requires 20-feet of Coordinatid redundant? individual building, and mirastructure fire requirements. Fire Department inpuleasement for the waterline. before and during the building design phase of construction. Final fire protect

be provided by the Fire Department This is 6-inch AC pipe per City

mission of construction GIS map. Per DSPM 6-1.408,

fittings installed into AC or PVC Southbridge Expansion Water Design pipe within 6-feet of another fitting or joint will require that section of pipe to be removed and replaced with DIP

7/25/2019

Looped waterline cannot be

private. Required to be public

documents for building permits.

State the hydrant spacing requirements per DS&PM

A minimum of 1 existing hydrant is adjacent to each site. Each hydrant tested is capable of sustaining the required fire flows for the buildings. The sites are fairly small, and within the required hose lay distances. No new fire hydrants are proposed at this time. As the project progresses to DRB fire requirements will be continually evaluated.

INFRASTRUCTURE PHASING

Add the project phasing to the initial background description narrative

Any required water improvements will be constructed during the development of each individual site simultaneously with the demolition of the existing structures. No water improvements are proposed that will impact any other sites. This phasing will limit the disruption to local businesses, causing road restrictions to the least number of businesses.

FIRE HYDRANT FLOW TESTS

On Fire Flow Tests/Exhibits - show which FH relates to which development area

Pressure and available flow information for existing water lines has been obtained by having fire hydrant flow tests performed on the existing system. Metro Fire Equipment, Inc. has conducted tests at four locations to verify if the existing water system is adequate for the entire project limits. The locations are shown on Exhibit 2. The results are shown in Exhibit 3 through Exhibit 6.

REQUIRED FIRE FLOW

According to Section 6-1.501 of the DS&PM, a minimum fire flow of 1500 gpm is required for commercial, industrial, and multi-family residential properties and a minimum of 2500 gpm is required for high rise structures. The IBC defines high rise as buildings taller than 75 feet. This will include the hotel site and the residential site 1.

SITE	REQ, FIRE FLOW (GPM)
Triangle Site	2500
Marketplace Site	1500
Southbridge West Site	2500
Rose Garden Site	1500

PROPOSED WATER DEMAND CALCULATIONS

This mixed use development is laid out as 4 separate sites with various uses. These sites are further broken down based on water connections to determine water meter sizes, and effects on hydraulic calculations. These uses are summarized below under the proposed water demand tables. The use categories are taken from the City of Scottsdale DS&PM, Figure 6-1.2.

1A. Triangle Site	,			Average Day Water Demands						
(Hotel Tower)	(Hotel Tower)					in Gallons Per Day				
(220002 20 1/02)				(GPD)			in Gallons Per Minute (GPM)			
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Restaurant	9,700	SF	3.5	1.3	12,610	44,135	1.81e-03	17.56	61.45	
Hotel Rooms	200	Units	3.5	446.3	89,260	312,410	0.63	126.00	441.00	
TOTAL	4" meter				101,870	356,545		143.56	502.45	

1B. Triangle Site				Average Day Water Demands						
(Residential Tow	er)			in Gallons Per Day in Gallons Per Min				s Per Minut	e (GPM)	
(Trestational To);	` ,				(GPD)					
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Residential 184 Units 3.5				185.3	34,095	119,333	0.27	49.68	173.88	
TOTAL	AL 3" meter				34,095	119,333		49.68	173.88	

1C. Triangle Site	<u> </u>				Average Day Water Demands						
(Mixed Use Site)				in Gallons Per Day			in Gallons Per Minute (GPM)				
(======================================				(GPD)							
1 111	37.1		Peak	Total	Total	Peak	Total	Total	Peak		
Land Use	Values	ı	Factors	Use	Demand	Use	Use	Demand	Use		
Retail/Commercial	25,820	SF	3.5	0.8	20,656	72,296	1.11e-03	28.66	100.31		
Office	119,040	SF	3.5	0.6	71,424	249,984	8.34e-04	99.28	347.48		
TOTAL	4" meter				92,080	322,280		127.94	447.79		

2. Marketplace S	Site				Av	erage Day	Water Den	nands		
•				in (Gallons Per	Per Minut	e (GPM)			
					(GPD)					
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Retail/Commercial	13,170	SF	3.5	0.8	10,536	38,876	1.11e-03	14.62	51.17	
Residential	21	Units	3.5	185.3	3,891	13,620	0.27	5.67	19.85	
TOTAL	1.5" meter				14,427	50,496		20.29	71.01	

3A. Southbridge	West Site -	East T	lower	Average Day Water Demands						
				in Gallons Per Day			in Gallons Per Minute (GPM)			
I and I lan	Volume		Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Retail/Commercial	19,390	SF	3.5	0.8	15,512	54,292	1.11e-03	21.52	75.33	
Residential	3.5	185.3	25,201	88,203	0.27	36.72	128.52			
TOTAL			40,713	142,495		58.24	203.85			

3B. Southbridge	West Site -	West '	Tower	Average Day Water Demands						
				in Gallons Per Day in Gallons F				Per Minut	e (GPM)	
		(GPD)								
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Retail/Commercial	8,310	SF	3.5	0.8	6,648	23,268	1.11e-03	9.22	32.28	
Residential	3.5	185.3	10,747	37,616	0.27	15.66	54.81			
TOTAL			17,395	60,884		24.88	87.09			

4. Rose Garden S	Site			Average Day Water Demands						
				in (in Gallons Per Day in Gallons Pe				e (GPM)	
				(GPD)						
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Retail/Commercial	10,427	SF	3.5	0.8	8,342	29,196	1.11e-03	11.57	40.51	
Residential	171	3.5	185.3	31,686	110,902	0.27	46.17	161.60		
TOTAL	3" meter			40,028	140,098		57.74	202.10		

Outline estimates in more detail and include updated Craftsman Court development flows into model

EXISTING OFFSITE WATER DEMAND CALCULATIONS

To provide hydraulic calculations, Gookin Engineers made an estimate of offsite existing water uses. Existing off-site water uses are laid out as 11 separate sites with various uses. These uses are summarized below under the off-site existing water demand tables. The node listed corresponds to the node in the EPANET model representing where the water use is occurring. Land uses are taken from the Maricopa County Assessor. A map of the existing uses is attached as Exhibit 11. The use categories are taken from the City of Scottsdale DS&PM, Figure 6-1.2.

GOLDWATER OF	FSITE				Average Day Water Demands							
NODE GWs1				in Gallons Per Day i				in Gallons Per Minute				
				(GPD)			(GPM)					
			Peak	Total	Total	Peak	Total	Total	Peak			
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use			
Restaurant	4,224	SF	3.5	1.3	5,491	19,219	1.81e-03	7.65	26.76			
Retail/Commercial	9,455	SF	3.5	0.8	7,564	26,474	1.11e-03	10.50	36.73			
Office	4,610	SF	3.5	0.6	2,766	9,681	8.34e-04	3.84	13.46			
TOTAL					15,821	55,374		21.99	76.95			

ROSE GARDEN O	FFSITE				Average Day Water Demands							
NODE RG1				in	in Gallons Per Day in Ga				inute			
				(GPD)				(GPM)				
			Peak	Total	Total	Peak	Total	Total	Peak			
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use			
Restaurant	2,333	SF	3.5	1.3	3,033	10,615	1.81e-03	4.22	14.78			
Retail/Commercial	35,088	SF	3.5	0.8	28,070	98,246	1.11e-03	38.95	136.32			
Office	11,499	SF	3.5	0.6	6,899	24,148	8.34e-04	9.59	33.57			
Hotel Rooms	60	Units	3.5	446.3	26,778	93,723	0.63	37.8	132.30			
TOTAL					64,781	226,732		90.56	316.96			

5 TH AVENUE OFF					Ave	erage Day V	Water Dema	ınds	
NODE 5A OFFSIT	E			,			lons Per Minute		
			T	(GPD) (GPM)					
Land Use	Values Peak Factors			Total Use	Total Demand	Peak Use	Total Use	Total Demand	Peak Use
Retail/Commercial	7,920	SF	3.5	0.8	6,336	22,176	1.11e-03	8.79	30.77
Office	2,152	SF	3.5	0.6	1,291	4,519	8.34e-04	1.79	6.28
TOTAL					7,627	26,695		10.59	37.05

	MARSHALL WAY OFFSITE NODE MW1					Average Day Water Demands						
NODE MW1	in Gallons Per Day in Gallons Per Minute											
	(GPD)			(GPM)								
	Peak					Peak	Total	Total	Peak			
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use			
Retail/Commercial	57,235	SF	3.5	0.8	45,788	160,258	1.11e-03	65.53	222.36			
TOTAL					45,788	160,258		65.53	222.36			

CRAFTSMAN CO	URT SOU	JTH OF	FSITE	Average Day Water Demands						
NODE CC2				in	in Gallons Per Day in Gallons Per Min				inute	
		(GPD)	Т		(GPM)	Т				
Land Use	Values		Peak Factors	Total Use	Total Demand	Peak Use	Total Use	Total Demand	Peak Use	
Restaurant	28,353	SF	3.5	1.3	36,859	129,006	1.81e-03	51.32	179.62	
Retail/Commercial	66,885	SF	3.5	0.8	53,508	187,278	1.11e-03	74.24	259.85	
Office	3,443	SF	3.5	0.6	2,066	7,230	8.34e-04	2.87	10.05	
TOTAL				92,433 323,514 128.43						

SCOTTSDALE SO		FSITE		Average Day Water Demands						
NODE SCOTTSDA	ALE I			in Gallons Per Day in G				allons Per Minute		
			(GPD)			(GPM)				
			Peak	Total	Total	Total	Total	Peak		
Land Use	Values		Factors	Use	Demand	Use	Demand	Use		
Restaurant	12,086	SF	3.5	1.3	15,712	54,991	1.81e-03	21.88	76.56	
Retail/Commercial	11,065	SF	3.5	0.8	8,852	30,982	1.11e-03	12.28	42.99	
Office	2,740	SF	3.5	0.6	1,644	5,754	8.34e-04	2.29	8.00	
TOTAL				26,208 91,727 36.44 12						

MARKETPLACE	WEST O	FFSITE	1		Average Day Water Demands					
NODE S4				in Gallons Per Day in				Gallons Per Minute		
	(GPD) (GPM)				(GPM)					
			Peak	Total	Total	Peak	Total	Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Restaurant	5,484	SF	3.5	1.3	7,129	24,952	1.81e-03	9.93	34.74	
Retail/Commercial	4,418	SF	3.5	0.8	3,534	12,370	1.11e-03	4.90	17.16	
TOTAL					10,644	37,323		14.83	51.91	

SCOTTSDALE M		TE		Average Day Water Demands						
NODE SCOTTSDA	ALE 3			J				lons Per Minute		
		(GPD)				(GPM)				
			Peak Total Total Peak					Total	Peak	
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use	
Restaurant	8,593	SF	3.5	1.3	11,171	39,098	1.81e-03	15.55	54.44	
Retail/Commercial	9,410	SF	3.5	0.8	7,528	26,348	1.11e-03	10.45	36.56	
Office	11,160	SF	3.5	0.6	9.31	32.58				
TOTAL				25,395 88,882 35.31 12						

	SCOTTSDALE NORTH OFFSITE NODE SCOTTSDALE 6				Average Day Water Demands						
NODE SCOTTSDA	in Gallons Per Day in Gallons Per Mir				inute						
				(GPD)			(GPM)				
			Peak	Total	Total	Peak	Total	Total	Peak		
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use		
Office	16,376	SF	3.5	0.6	9,826	34,390	8.34e-04	13.66	47.80		
TOTAL				9,826 34,390 13.66					47.80		

STETSON OFFSI	ГЕ				Average Day Water Demands						
NODE Ss1				in	Gallons Per	r Day	in Gallons Per Minute				
	(GPD) (GI				(GPM)						
			Peak	Total	Total	Peak	Total	Total	Peak		
Land Use	Values		Factors	Factors Use Demand Use				Demand	Use		
Restaurant	13,112	SF	3.5	1.3	17,046	59,660	1.81e-03	23.73	83.06		
Office	53,437	SF	3.5	0.6	32,062	112,218	8.34e-04	44.57	155.98		
TOTAL				49,108 171,877 68.30					239.05		

CRAFTSMAN CO	URT NO	RTH O	FFSITE		Average Day Water Demands						
NODE 5As5				in Gallons Per Day in				in Gallons Per Minute			
		(GPD) (GPI			(GPM)						
			Peak	Total	Total	Peak	Total	Total	Peak		
Land Use	Values		Factors	Use	Demand	Use	Use	Demand	Use		
Retail/Commercial	8,067	SF	3.5	0.8	6,454	22,588	1.11e-03	8.95	31.34		
TOTAL					6,454	22,588		8.95	31.34		

HYDRAULIC ANALYSIS

A hydraulic analysis of the water system was performed using EPANET to determine flows throughout the system. The pipes were a mixture of ACP and DIP pipes, ranging from 6" diameter to 20" diameter. The flow network was graphically simplified in order to reduce total pipes to be analyzed. Each pipe has notes in the attached sheets that describe which minor losses were attributed to that pipe.

Existing/Proposed

The vast majority of the network is existing. The only proposed sections for the Marketplace Site, Southbridge West Site and Rose Garden Site are the individual taps. There is a proposed 12" line leading into the Triangle Site, narrowing to an 8 inch line after the first 2 service and fire taps, before looping into the 8" line in the Avenue. 6-inch AC line per

Description of Nodes

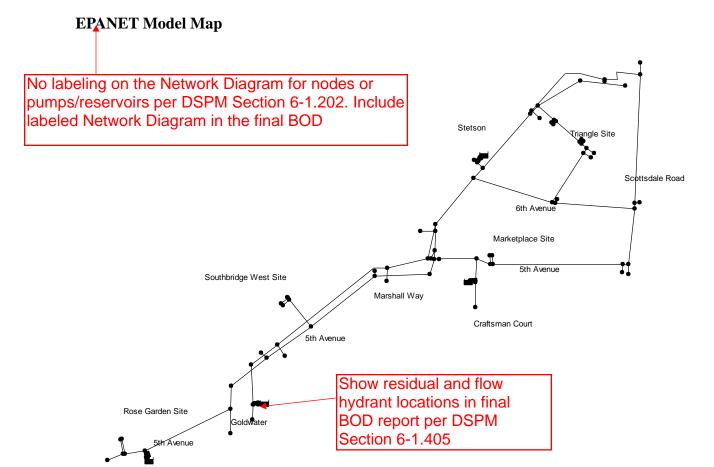
MANAGE

The nodes in the project represent either intersections of pipes or locations where water can be removed or added to the system. Individual bends and fittings were included in the minor losses for each pipe. Naming of nodes was based dNo labeling on the Network Diagram for nodes or le, a use (such as FH for fire hydrant), and a pumps/reservoirs per DSPM Section 6-1.202. Include first node on Goldwater Avenue. 5As2 is t labeled Network Diagram in the final BOD

City GIS map

The proposed nodes use the same format, but use the location and use. For example, HotelFire1 is the first fire tap for the proposed hotel site. PH1 is the first node on the proposed hotel water extension.

Description of Pipes


Consider H-W Coeff of 130 for DIP

Pipes in this area are either Ductile Iron (DIP) or Asbestos Cement (ACP). Both pipes have similar Hazen-Williams roughness coefficients. All pipes were set with a Hazen Williams roughness coefficient of 140.

Minor Losses can occur in a number of fittings throughout the area. Number and type of fittings were estimated based on the quarter section maps. The following is a list of the fittings and their associated minor losses.

Gate Valve	0.2
Tee Inline (Equal Size)	0.35
Tee Branch (Any Size)	1
Tee Inline (smaller	
branch)	0.25
Tap Inline	0.15
90 degree elbow	0.5
45 degree elbow	0.2
22.5 degree elbow	0.1
11.25 degree elbow	0.05

Pipes are named in a similar convention to the nodes. It uses street first, size of water line, use of waterline and an identifying number. For example 5A20Main1 is the 1st pipe of the 20" main in 5th Avenue. These descriptions are included, along with the minor losses associated with each pipe, as Appendix 4.

Description of Water Source

Water servicing this project was modeled as a reservoir at each of the 4 fire hydrant test locations. The pressure in the hydrant was represented by a pump curve and a pump object corresponding to the fire hydrant test.

Conditions Modeled

Based on discussions with City Staff, 3 conditions were modeled, corresponding to Conditions 1, 2 and 3 in the DS&PM, 6-1.200. Condition 1 is all sites using average daily demand at all demand nodes. Condition 2 is all sites using peak daily demand at all demand nodes. Condition 3 is all sites using peak daily demand including fire flow demand.

Existing and proposed demands are shown in the above tables. Based on discussions with City Staff, Gookin Engineers modeled fire demand as only 1 of the 4 fire demands, specifically the fire demand for the Triangle Site. To simulate worst case pressure drops, Gookin Engineers chose the fire hydrant

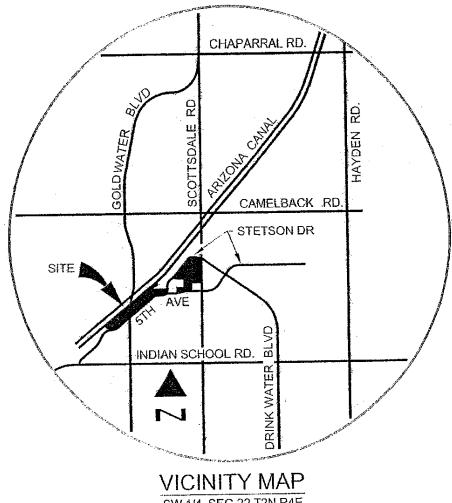
Page 11 of 12

Submit written confirmation that this was acceptable to WR

on 6th Avenue to apply a 2500 GPM demand in Condition 3. This fire hydrant is located on the smallest waterline, and will lead to the largest pressure drops at any point in the system.

Model Results

Condition 1

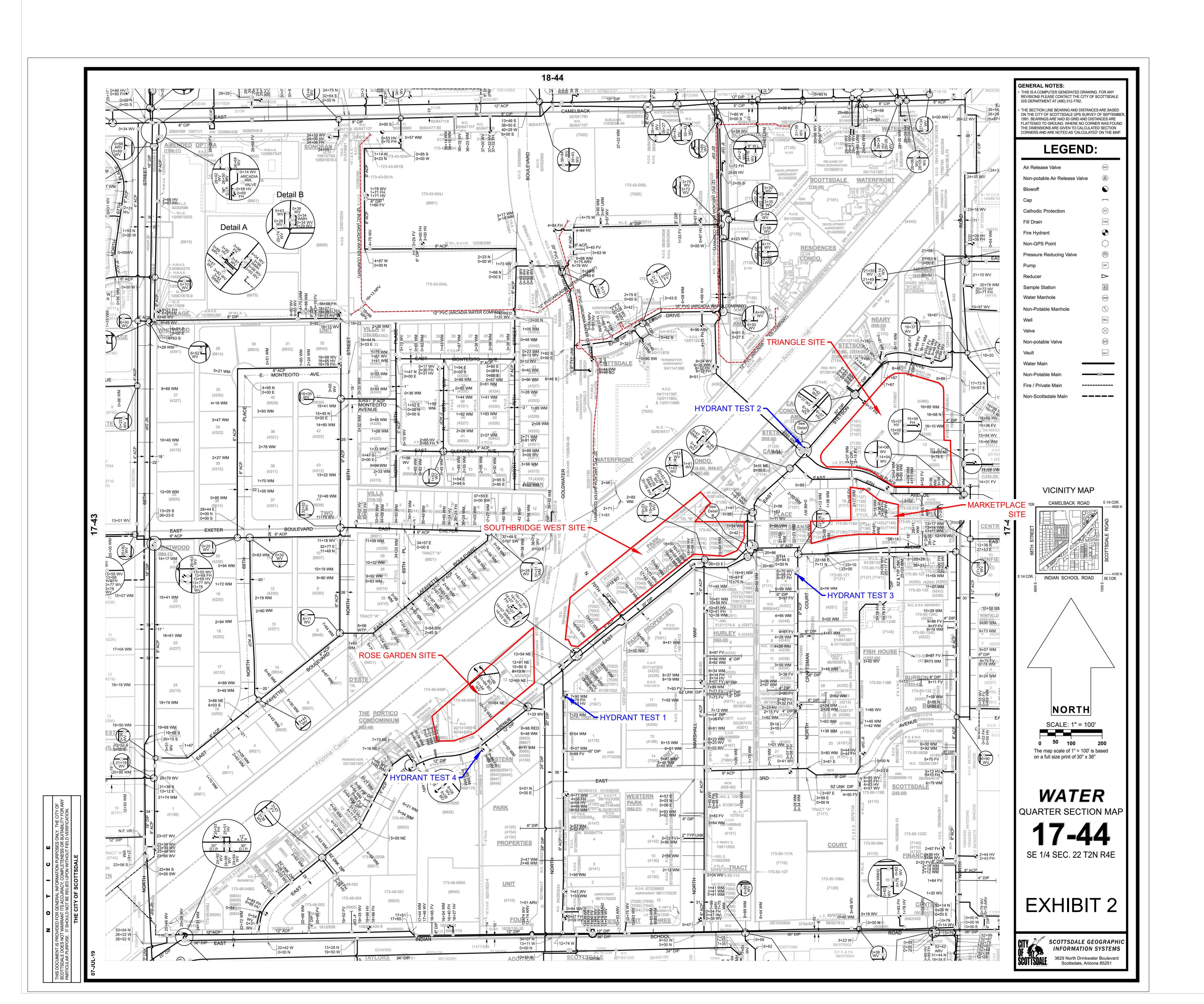

This model resulted in sufficient pressure throughout the system. Attached Appendix 1 is the Full Output Report for EPANET condition 1. To summarize, pressures throughout the system vary from a high of 101.72 psi to a low of 100.49 psi.

Condition 2

This model resulted in sufficient pressure throughout the system. Attached Appendix 2 is the Full Output Report for EPANET condition 2. To summarize, pressures throughout the system vary from a high of 99.37 psi to a low of 88.15 psi.

Condition 3

This model resulted in sufficient pressure throughout the system. Attached Appendix 3 is the Full Output Report for EPANET condition 3. To summarize, pressures throughout the system vary from a high of 95.47 psi to a low of 76.64 psi.



SW 1/4 SEC 22 T2N R4E NOT TO SCALE

SOUTHBRIDGE EXPANSION

EXHIBIT 1 LOCATION OF THE PROJECT

VICINITY MAP EXHIBIT 1

Show residual and flow hydrant locations in final BOD report per DSPM Section 6-1.405 (Typ).

METRO FIRE EQUIPMENT, INC.

63 S. Hamilton Place, Gilbert, AZ 85233 • 3851 N. Oracle Road, Tucson, AZ 85705

Main (480) 464-0509 • Fax (480) 962-5372 • Tucson (520) 888-0694 • www.metrofireaz.com

AZ ROC# C-16:111021 • CR-67:103313 • CR-5: 213027 • CR-80:295875 • R-16:166777

Hydrant Flow Test Report LOCATION 7007 E. 5th Ave. DATE: 8/24/2018 TEST BY: Metro Fire Equipment TIME: 7:20 AM WATER SUPPLIED BY: City of Scottsdale PURPOSE OF TEST: Water Curve Data **DATA** FLOW HYDRANT(S) Α1 A2 SIZE OPENING: 2.5 2.5 COEFFICIENT: 0.9 PITOT READING: 55 0 GPM: 1244 0 TOTAL FLOW DURING TEST: 1244 **GPM** STATIC READING: 102 **PSI RESIDUAL:** 79 PSI **ADJ. STATIC:** 102 **PSI RESIDUAL: 79 PSI** 2472 ADJ. FLOW: AT 20 PSI RESIDUAL **GPM** AT 0 PSI 2781 GPM

Results of this flow test identify water system characteristics for the date, time, and locations of this test only. Pressure and flows within the water system vary of time, it is expected and should be considered when preparing designs based upon fire flow test data. Numerous factors affect the water system, such as water level fluctuations in reservoirs, operating pressure ranges at booster pump stations, elevations at point of use, daily demand fluctuations, seasonal demands, emergency demands, water treatment plant availability, increased demands due to growth, operation/maintenance schedules, etc.

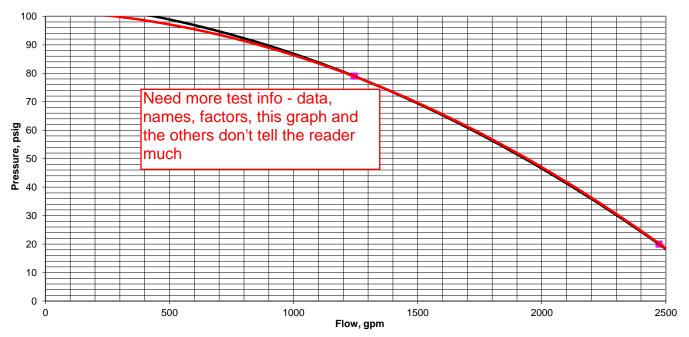
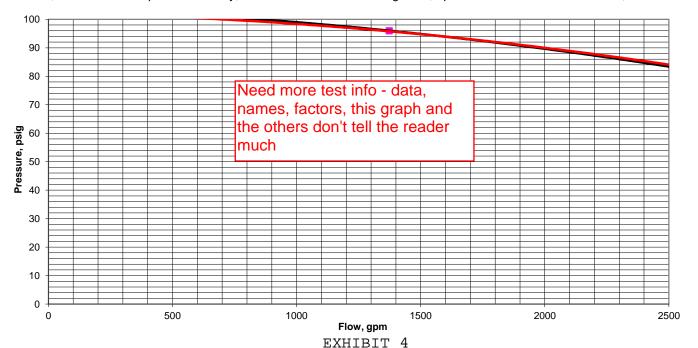


EXHIBIT 3
HYDRANT TEST 1
C.O.S. WITNESS: BRIAN DICK
INSPECTION SERVICES
602-228-2187

METRO FIRE EQUIPMENT, INC.


63 S. Hamilton Place, Gilbert, AZ 85233 • 3851 N. Oracle Road, Tucson, AZ 85705

Main (480) 464-0509 • Fax (480) 962-5372 • Tucson (520) 888-0694 • www.metrofireaz.com

AZ ROC# C-16:111021 • CR-67:103313 • CR-5: 213027 • CR-80:295875 • R-16:166777

	Hydrant Flow Test Report											
LOCATION	7133 E Stetson Dr.					DATE: 8/24/2018						
TEST BY:	Metro Fire Equipme			TIME:	7:50 AM	DITTE: 0/2 //2010						
WATER SUPPLIED BY:	City of Scottsdale											
PURPOSE OF TEST:	Water Curve Data											
FLOW HYDRANT(S) TOTAL FLOW DURING 1	SIZE OPENING: COEFFICIENT: PITOT READING: GPM: TEST:		A1 2.5 0.9 67 1373 1373	DATA A2 2.5 0 0 GPM								
STATIC READING:		102	PSI	RESIDUAL:	96	PSI						
ADJ. STATIC:		102	_PSI	RESIDUAL:	96	_PSI						
AD L FLOW:	AT 20 PSI RESI	IDHAL	5637	GPM	AT 0 PSI	63/12 CPM						

Results of this flow test identify water system characteristics for the date, time, and locations of this test only. Pressure and flows within the water system vary of time, it is expected and should be considered when preparing designs based upon fire flow test data. Numerous factors affect the water system, such as water level fluctuations in reservoirs, operating pressure ranges at booster pump stations, elevations at point of use, daily demand fluctuations, seasonal demands, emergency demands, water treatment plant availability, increased demands due to growth, operation/maintenance schedules, etc.

HYDRANT TEST 2
C.O.S. WITNESS: BRIAN DICK
INSPECTION SERVICES
602-228-2187

METRO FIRE EQUIPMENT, INC.

63 S. Hamilton Place, Gilbert, AZ 85233 • 3851 N. Oracle Road, Tucson, AZ 85705

Main (480) 464-0509 • Fax (480) 962-5372 • Tucson (520) 888-0694 • www.metrofireaz.com

AZ ROC# C-16:111021 • CR-67:103313 • CR-5: 213027 • CR-80:295875 • R-16:166777

	Hydrant Flow Test Report											
LOCATION	7124 E. 5th Ave.						DATE: 8/24/2018					
TEST BY:	Metro Fire Equipmen	nt			TIME:	7:35 AM						
WATER SUPPLIED BY:	City of Scottsdale											
PURPOSE OF TEST:	Water Curve Data											
FLOW HYDRANT(S) TOTAL FLOW DURING 1	SIZE OPENING: COEFFICIENT: PITOT READING: GPM: TEST:		A1 2.5 0.9 56 1256	DATA GPM	A2 2.5 0 0							
STATIC READING:		101	PSI	<u> </u>	RESIDUAL:	78	PSI					
ADJ. STATIC:	_	101	PSI		RESIDUAL:	78	PSI					
AD L FLOW:	AT 20 PSI PESIC	MIAI	2/178	CDM		AT 0 PSI	2702 CPM					

Results of this flow test identify water system characteristics for the date, time, and locations of this test only. Pressure and flows within the water system vary of time, it is expected and should be considered when preparing designs based upon fire flow test data. Numerous factors affect the water system, such as water level fluctuations in reservoirs, operating pressure ranges at booster pump stations, elevations at point of use, daily demand fluctuations, seasonal demands, emergency demands, water treatment plant availability, increased demands due to growth, operation/maintenance schedules, etc.

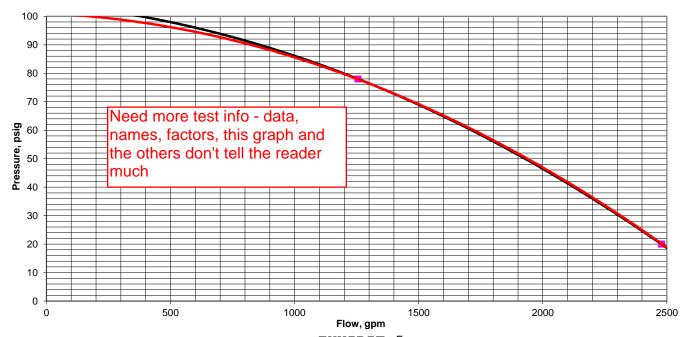
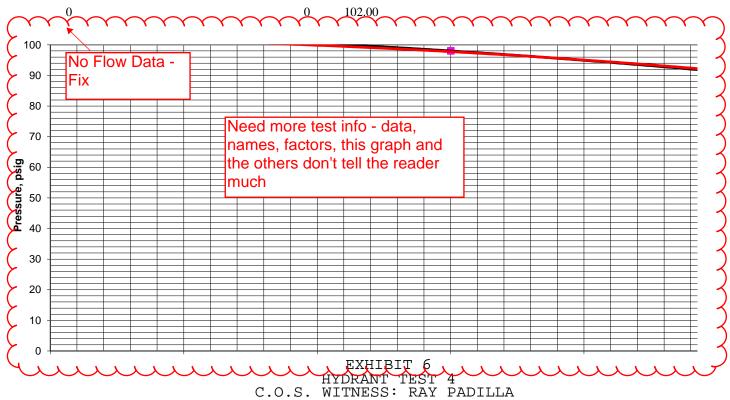


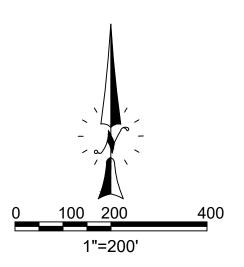
EXHIBIT 5
HYDRANT TEST 3
C.O.S. WITNESS: BRIAN DICK
INSPECTION SERVICES
602-228-2187

METRO FIRE EQUIPMENT, INC.

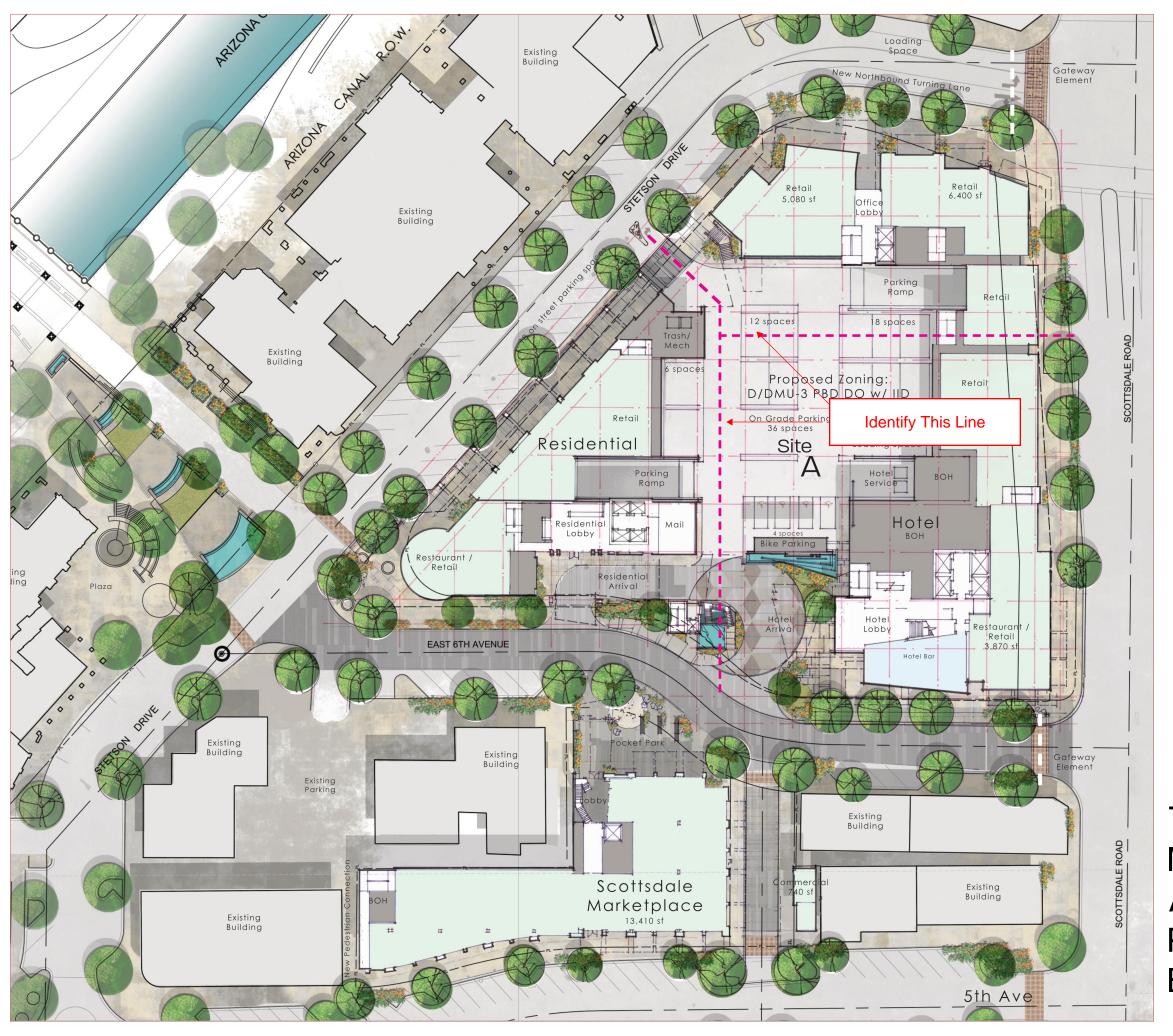

63 S. Hamilton Place, Gilbert, AZ 85233 • 3851 N. Oracle Road, Tucson, AZ 85705

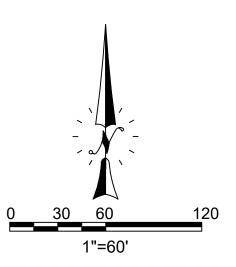
Main (480) 464-0509 • Fax (480) 962-5372 • Tucson (520) 888-0694 • www.metrofireaz.com

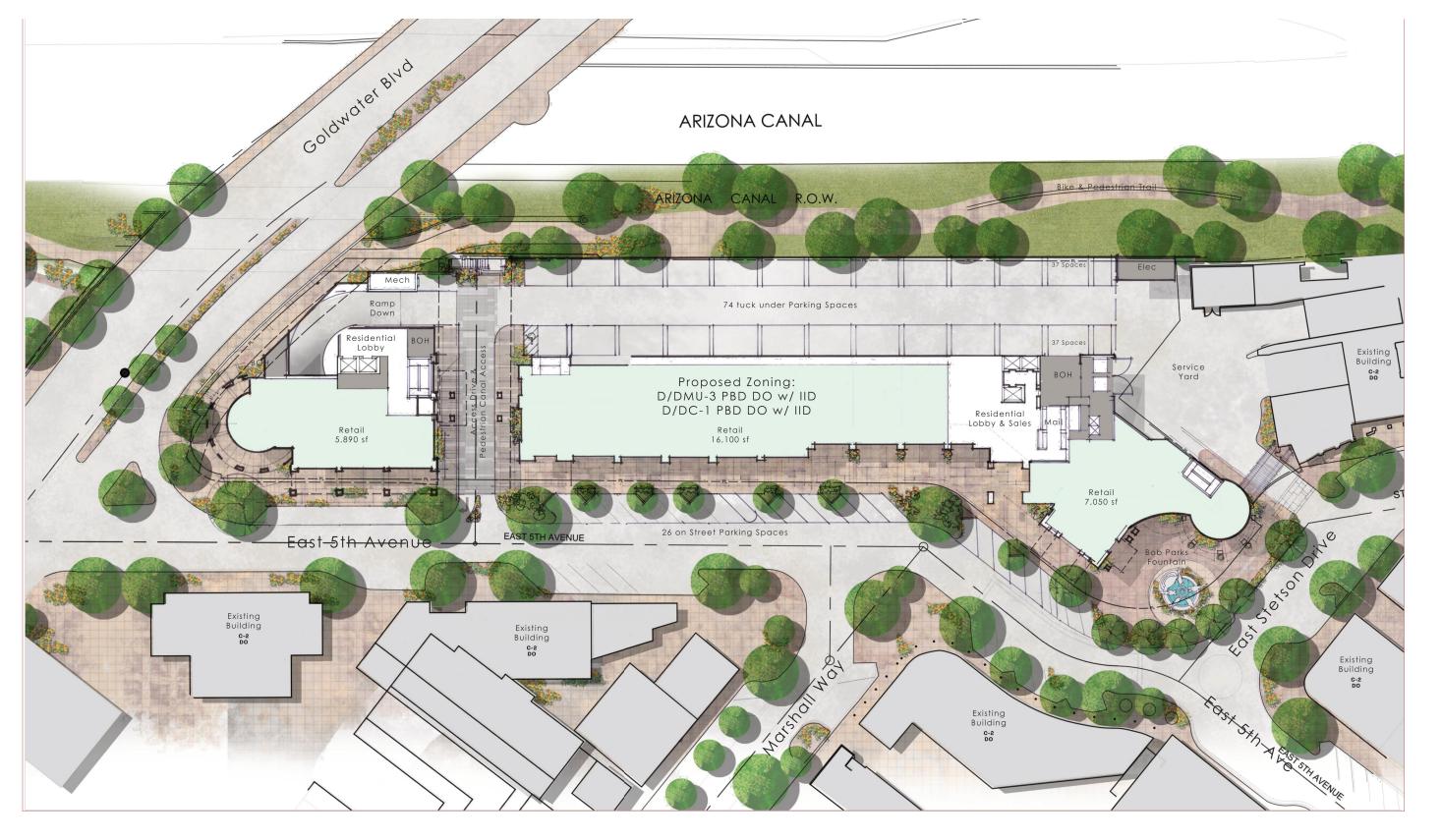
AZ ROC# C-16:111021 • CR-67:103313 • CR-5: 213027 • CR-80:295875 • R-16:166777

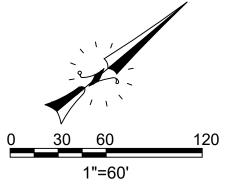

	Ну	drant	Flow Te	st Re	Hydrant Flow Test Report											
LOCATION	6941 E. 5th Ave.						DATE: 3/21/2019									
TEST BY:	Metro Fire Equipment				TIME:	7:00 AM										
WATER SUPPLIED BY:	City of Scottsdale															
PURPOSE OF TEST:	Water Curve Data					Ī										
FLOW HYDRANT(S)	SIZE OPENING: COEFFICIENT: PITOT READING: GPM:		A1 2.5 0.9 80 1501	DATA	A2 2.5 0 0	i										
TOTAL FLOW DURING T STATIC READING:	TEST:	102	1501 PSI	GPM	I RESIDUAL:	98	PSI									
ADJ. STATIC:	_	102	_PSI		RESIDUAL:	98	PSI									
ADJ. FLOW:	AT 20 PSI RESIDI	UAL	7668	GPM	Л	AT 0 PSI	8627 GPM									

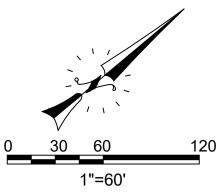
Results of this flow test identify water system characteristics for the date, time, and locations of this test only. Pressure and flows within the water system vary of time, it is expected and should be considered when preparing designs based upon fire flow test data. Numerous factors affect the water system, such as water level fluctuations in reservoirs, operating pressure ranges at booster pump stations, elevations at point of use, daily demand fluctuations, seasonal demands, emergency demands, water treatment plant availability, increased demands due to growth, operation/maintenance schedules, etc.

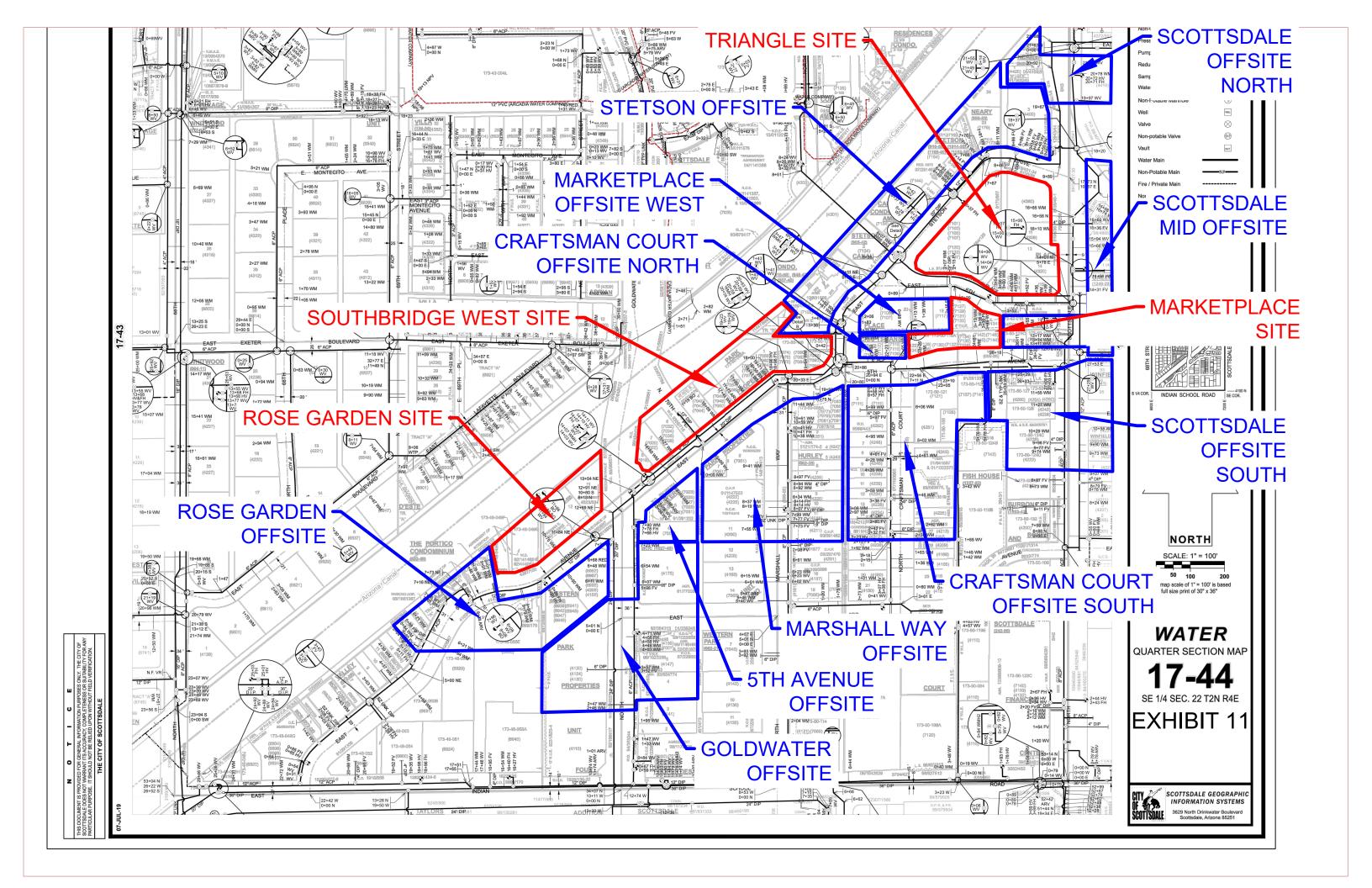


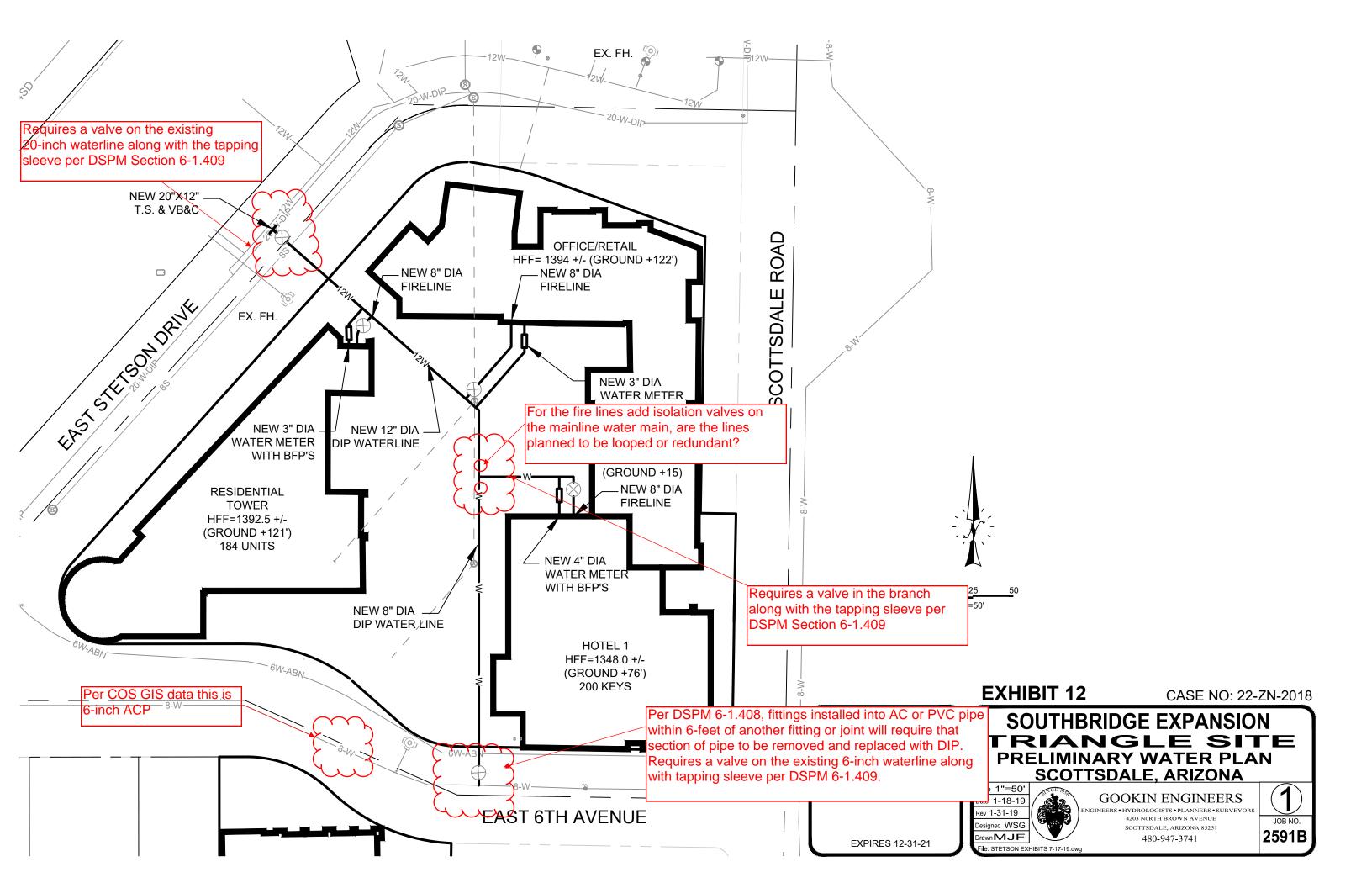

C.O.S. WITNESS: RAY PADILLA INSPECTION SERVICES 602-228-2187

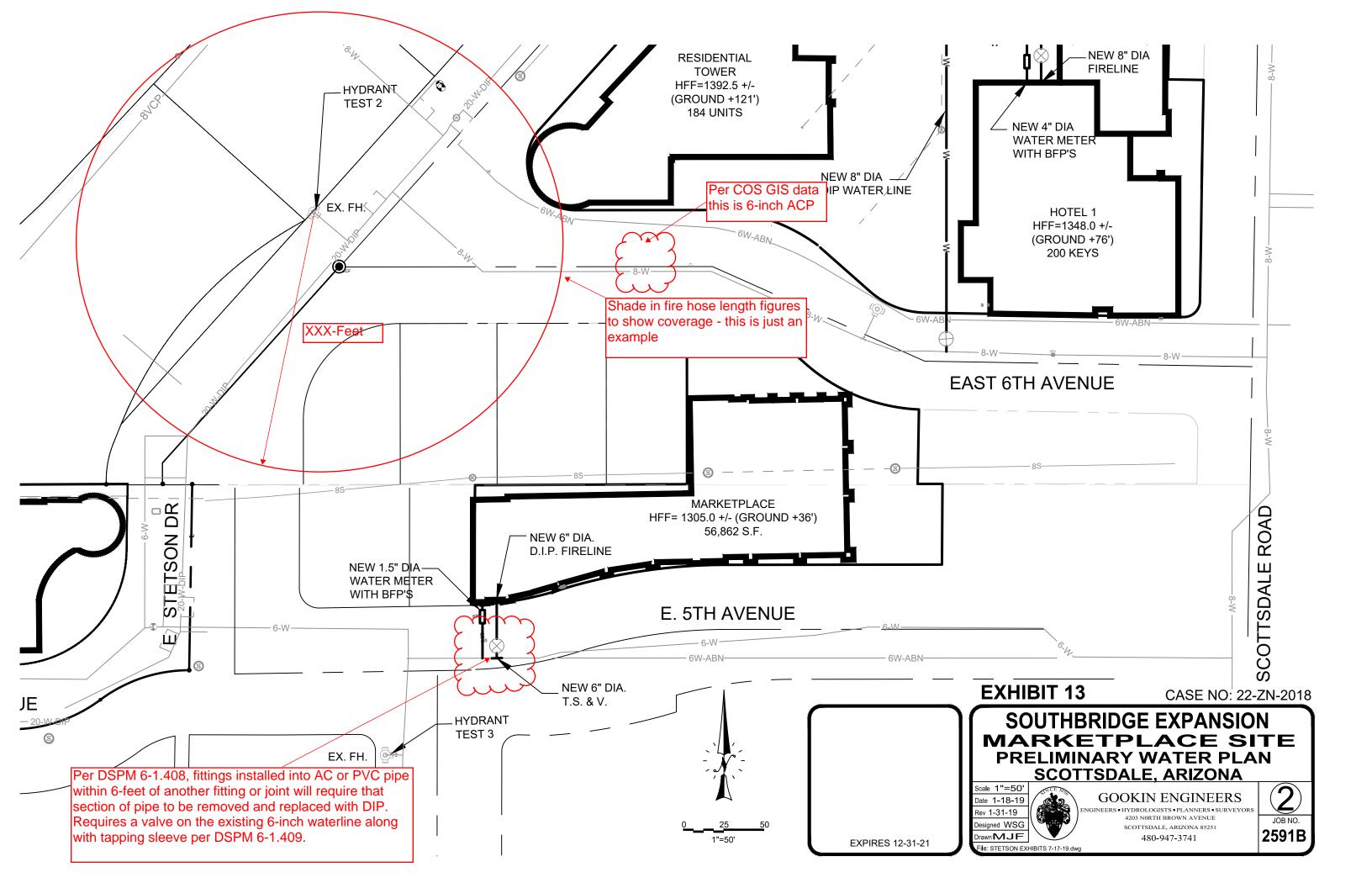


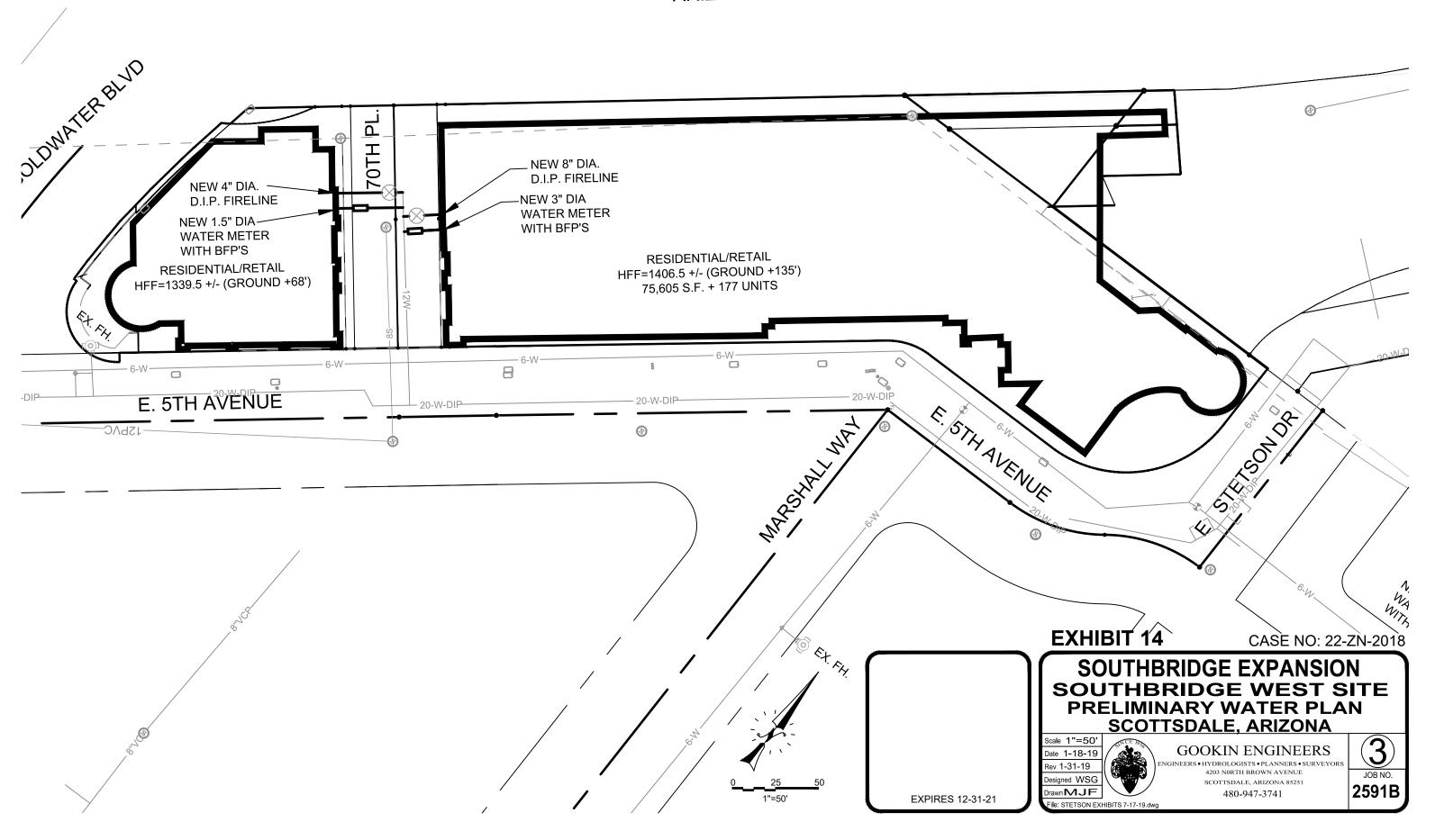

OVERALL SITE PLAN
AERIAL PHOTOGRAPH
PROPOSED CONDITION
EXHIBIT 7


TRIANGLE AND
MARKETPLACE SITES
AERIAL PHOTOGRAPH
PROPOSED CONDITION
EXHIBIT 8




SOUTHBRIDGE WEST AERIAL PHOTOGRAPH PROPOSED CONDITION EXHIBIT 9




ROSE GARDEN
AERIAL PHOTOGRAPH
PROPOSED CONDITION
EXHIBIT 10

ARIZONA CANAL

APPENDIX 1

Page 1	7/11/	2019 9:33:00 AM					

*	EPANET	*					
*	Hydraulic and Water Quality	*					
*	Analysis for Pipe Networks	*					
*	Version 2.0	*					
******	* * * * * * * * * * * * * * * * * * * *	*****					

Input File: SouthBridge_Condition 1.net

Southbridge Expansion

Link - Node Table:

Link	Start	End	Length Diam	
ID	Node	Node	ft	in
Scottsdale8Mai	.n1Scottsdale1	Scottsdale2	33.32	8
Scottsdale8Mai	.n5Scottsdale5	Scottsdale6	39.34	8
5A6Main1	GWs3	5As1	120	6
	RG2	RG3	5.28	12
5A6Main5	5As4	5As5	169.99	6
5A20Main3	5A3	5A2	273.5	20
S20MAIN5	S4	S5	46.89	20
GW6Main1	GWs2	GWs1	50.71	6
GWMain2	GW3	GW2	78.21	20
GWMain1	GW1	GW2	50	20
5A6Main7	5As6	5As7	8.792	6
PROPOSED12HOTE	CL4PH4	PH3	8.288	12
PROPOSED12HOTE	L3PH3	PH2	106.3	12
PROPOSED12HOTE	L2PH2	PH1	7.324	12
PROPOSED8HOTEI	L2PH5	PH6	8.792	8
PROPOSEDHOTELE	TIRE3PH6	HOTELFIRE3	15	8
PROPOSEDHOTELE	FIRE1PH2	HOTELFIRE1	15	8
PROPOSEDHOTELS	SERVICE1HOTELSE	RVICE1 PH1	15	5
PROPOSEDHOTELE	TIRE2PH3	HOTELFIRE2	45	8
PROPOSEDHOTELS	SERVICEHOTELSER	JICE2 PH4	45	3
CC6Main2	CC1	CC2	20	6
MarketplaceFir	reTap5As7	MarketplaceE	FireTap 30.29) (
MarketplaceSer	rviceTap5As6	Marketpla	aceServiceTap	29.91
. 5				
ResidenBuildin	ngFireTap170th2	Resider	ntialFireTap1	3.264
ResidentialServiceTap170th1		ResidentialServiceTap1		28.68
	RG3	RGFire	50.31	0
RGFIRETAP		RGService	50.88	8
RGServiceTap				
5A20MAIN6	5A5	5A6	16.68	20
GWFireHydrant		GWFH2	3.64	6
CCHydrant 70th12Main3		CCFH	4.16	6
		70th2	3.233	12
70th12Main2		70th2	8.793	12
70th12Main1		70th1	114.43	12
Scottsdale8Main3Scottsdale3		Scottsdale4	20.20	8

Canal20Main2	Canal1	Canal2	12	20
S20Main2	S1	S2	66.65	20
S20MAIN3	S3	S2	24	20

Page 2
Link - Node Table: (continued)

6

______ Link Start End ID Node Node Length Diameter ft in _____ RGFireHydrantLineRG4 RGFH 10.04 6
RGMain1 RG1 RG2 58.062 12
RGMain3 RG3 RG4 69.24 12
RGMain4 RG4 GW2 332.54 12
5A20Main1 GW3 5A1 151.16 20
GWFireHydrant1 5A1 GWFH1 26.01 6
GW6Main2 GWs3 GWs2 133.56 6
5A20Main2 5A1 5A2 188.5 20
5A20MAIN4 5A3 5A4 202.302 20
5A20MAIN5 5A4 5A5 15.55 20

 RGMain3
 RG3
 RG4

 RGMain4
 RG4
 GW2

 5A20Main1
 GW3
 5A1

 GWFireHydrant1
 5A1
 GWFH1

 GW6Main2
 GWs3
 GWs2

 5A20Main2
 5A1
 5A2

 5A20MAIN4
 5A3
 5A4

 5A20MAIN5
 5A4
 5A5

 5A6Main4
 5As4
 5as3

 S20main1
 S1
 5A5

 BYPASS1
 S1
 5As4

 5AStub
 S2
 5AStub1

 S6Main1
 S3
 5aS3

 S20MAIN4
 S3
 S4

 S20MAIN6
 S5
 S6

 StetsonHydrant1Ss1
 StetsonFH1

 S20MAIN7
 S6
 S7

 PROPOSEDHOTELSERVICE3HOTELSERVICE3
 PH5

 15.55 11.58 6 28.67 37.85 60 118.31 215.68 20 251.96 20 37.17 6 37.16 20 15 1000 177.31 151.44 20 15 7.95 6 PROPOSEDHOTELSERVICE3HOTELSERVICE3 PH5 PROPOSED12HOTEL1PH1 S7
 PROPOSED12HOTEL1PH1
 S7
 1000
 1

 S20MAIN8
 S7
 S8
 177.31
 20

 S20MAIN9
 S8
 S9
 151.44
 20

 MWFIREHYDRANTLINE5A3
 MWFH
 15

 CanalFireHydrantCanal1
 CanalFH
 7.95

 Canal20Main1
 Canal1
 S5
 51.89
 20

 MW6Main1
 5As2
 MW1
 45.19
 6

 5A6Main3
 5As2
 5aS3
 139.60
 6

 CC6Main1
 5As5
 CC1
 78.06
 6

 5A6Main6
 5As5
 5As6
 49.44
 6

 5A6Main8
 5As7
 5As8
 558.78
 6

 5A6Main9
 5As8
 Scottsdale2
 19.32
 6

 ScottsdaleFireHydrant15As8
 ScottsdaleRoadFH1
 27.63
 12 20 6A8Main3Scottsdale36A1267.2186AFireHydrant6A16AFH1012Scottsdale8Main2Scottsdale3Scottsdale2195.88Scottsdale8Main4Scottsdale5Scottsdale4489.948 ScottsdaleFireHydrant2Scottsdale4 ScottsdaleRoadFH2 17.42 Ss2 S12Main2 Ss1 373.82 12 Scottsdale5 142.75 Socisdale5 Ss1 StetsonFH2 5As2 S12Main3 Ss2 S12Main1 S6 12 12.8 12 StetsonHydrant2Ss2 5.48 6 5A6Main2 5As1 450 5AOffsiteUse 1000 5AOffsite 5As1 6A8MAIN1 S4 6A8MAIN2 6A2 6A2 267 6A1 10

Link - N	Node Tab	ole: (co	ontinued)
----------	----------	----------	-----------

Link	Start	End	Length D	iameter
ID	Node	Node	ft	in
PROPOSED8HOTEL	3PH5	6A2	150	8
HYDRANT1	RES1	GWFH2	#N/A	#N/A Pump
Hydrant2	RES2	CanalFH	#N/A	#N/A Pump
Hydrant3	RES3	CCFH	#N/A	#N/A Pump
hydrant4	res4	RGFH	#N/A	#N/A Pump

Energy Usage:

Pump	Usage	Avg.	Kw-hr	Avg.	Peak	Cost
	Factor	Effic.	/Mgal	Kw	Kw	/day
HYDRANT1	100.00	75.00	983.36	7.93	7.93	0.00
Hydrant2	100.00	75.00	981.14	23.39	23.39	0.00
Hydrant3	0.00	0.00	0.00	0.00	0.00	0.00
hydrant4	100.00	75.00	981.47	26.65	26.65	0.00

Demand Charge: 0.00 Total Cost: 0.00

Node Results:

Node ID	Demand GPM			_	
Ss1					
StetsonFH1 5As5	0.00 8.95				
Scottsdale1					
	0.00				
Scottsdale4					
Scottsdale5	0.00	233.92	101.36	0.00	
Scottsdale6	13.66	233.92	101.36	0.00	
	0.00			0.00	
	0.00				
RG1	90.56				
RG2	0.00			0.00	
RG3		234.07			
5As4		233.94			
GW3		233.97			
5A1	0.00	233.97			
5A2	0.00	233.96	101.38	0.00	
5A3		233.96			
5A4	0.00				
5A5	0.00	233.96	101.37	0.00	
S3	0.00	233.96	101.37	0.00	
S4			101.37		
S6	0.00	233.94	101.37	0.00	

Page 4
Node Results: (continued)

Node ID	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi	_	
S7 S8 S9 GWs1 GWs2 GWs3 GW2 GW1 5As6 5As7	0.00	233.94	101.37	0.00	
S8	0.00	233.94	101.37	0.00	
S9	0.00	233.94	101.37	0.00	
GWs1	21.99	234.74	101.71	0.00	
GWs2	0.00	234.74	101.71	0.00	
GWs3	0.00	234.57	101.64	0.00	
GW2	0.00	233.98	101.38	0.00	
GW1	0.00	233.98	101.38 101.26 101.26 101.32	0.00	
5As6	0.00	233.69	101.26	0.00	
5As7	0.00	233.69	101.26	0.00	
6A1	0.00	233.84	101.32	0.00	
Scottsdale3	35.31	233.83	101.32	0.00	
Ss2	0.00 0.00 65.53	233.92	101.36		
5aS3	0.00	233.95	101.37	0.00	
MW1	65.53	233.95	101.37	0.00	
PH4	0.00	233.80	101.31	0.00	
582 5aS3 MW1 PH4 PH3 PH2 PH1 PH5	0.00	233.81	101.31	0.00	
PH2	0.00	233.82	101.31	0.00	
PH1	0.00 0.00 0.00	233.82	101.31	0.00	
PH5	0.00	233.80	101.31	0.00	
PNO	0.00	233.80	101.31	0.00	
HOTELFIRE3	0.00	233.80	101.31	0.00	
HOTELSERVICE2	127.94	231.91	100.49	0.00	
HOTELFIRE1	0.00	233.82	101.31	0.00	
HOTELFIRE1 HOTELSERVICE1	49.68	233.71	101.27	0.00	
HOTELFIRE2	0.00	233.81	101.31	0.00	
CC1	0.00	233.55	101.20	0.00	
HOTELFIRE2 CC1 CC2	128.43	233.52	101.19	0.00	
MarketplaceFireTap	U.	.00 233.	.69 101.	.26	00
MarketplaceService7	Гар	20.29	232.47 1	.00.73	0.00
S2	0.00	233.96	101.37	0.00	
ResidentialFireTap1	L (0.00 233	3.96 101	.38 0	.00
S2 ResidentialFireTap1 70th1	0.00	233.96	101.38	0.00	
ResidentialServiceT	Гар1	83.12	233.42	101.14	0.00
RGFire	0.00	234.07	101.42	0.00	
RGService	65.04	233.46	101.16	0.00	
Canal2	0.00	233.96	101.37		
S5	0.00	233.95	101.37	0.00	
CanalFH	0.00	234.22	101.49	0.00	
Canal1	0.00	233.96	101.37	0.00	
5A6	0.00	233.96	101.37	0.00	
S1	0.00	233.96	101.37	0.00	
GWFH2	0.00	234.76	101.72	0.00	
CCFH	0.00	233.55	101.20	0.00	
70th3	0.00	233.96	101.38	0.00	
70th2	0.00	233.96	101.38	0.00	
RG4	0.00	234.07	101.42	0.00	

Page 5
Node Results: (continued)

Node	Demand GPM	Head ft	Pressure psi	Quality
MWFH 5As8 ScottsdaleRoadFH1 6AFH ScottsdaleRoadFH2 StetsonFH2 5AOffsiteUse 6A2	0.00 0.00 0.00 143.56 0.00 0.00 0.00 0.00 0.00 10.59 0.00 -134.46	233.61 233.96 233.79 233.84 233.84 233.92 234.21 233.84	101.38 101.37 101.22 101.38 101.30 101.30 101.32 101.32 101.36 101.48	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RES2 RES3 res4	-397.29 0.00 -452.48	0.00 0.00 0.00	0.00 0.00 0.00	0.00 Reservoir 0.00 Reservoir 0.00 Reservoir

Link Results:

		Velocity fps			Status	
Scottsdale8Main1					Open	
Scottsdale8Main5	13.66	0.0	9 0.0	01 (Open	
5A6Main1	112.47	1.28	1.46	rO 6	oen	
RGMain2	-155.60	0.44	0.16	rO 6	oen	
5A6Main5	117.78	1.34	1.50	ro c	oen	
5A20Main3	-213.76	0.22	0.01	1 Or	oen	
S20MAIN5	-23.36	0.02	0.00	ro c	pen	
GW6Main1	21.99	0.25	0.0	7 O <u>r</u>	pen	
GWMain2	-296.88	0.30	0.03	3 O ₁	oen	
GWMain1	0.00	0.00	0.00	ro c	oen	
5A6Main7	-39.90	0.45	0.29	10 e	oen	
PROPOSED12HOTEL4	-163.46	0.4	6 0.1	18 (Open	
PROPOSED12HOTEL3	-163.46	0.4	6 0.0) 9 (Open	
PROPOSED12HOTEL2	-163.46	0.4	6 0.1	19 (Open	
PROPOSED8HOTEL2	-35.52	0.23	0.06	rO 6	oen	
PROPOSEDHOTELFIRE3	0.	00 0	.00	0.00	Open	
PROPOSEDHOTELFIRE1 PROPOSEDHOTELSERVIO	0.	00 0	.00	0.00	Open	
PROPOSEDHOTELSERVIO	CE1 -	49.68	2.25	7.28	Open	
PROPOSEDHOTELFIRE2	0.	00 0	.00	0.00	Open	
PROPOSEDHOTELSERVIO						
CC6Main2	128.43	1.46	1.45	įO č	pen	
MarketplaceFireTap	0.	00 0	.00	0.00	Open	
MarketplaceService	Гар	20.29	3.68	40.58	Open	
ResidenBuildingFire	eTap1	0.00	0.00	0.00	Open	
ResidentialService	Tap1	83.12	3.77	18.89	Open	

Page 6
Link Results: (continued)

Link ID	Flow GPM	_	it Headloss ft/Kft	Status	
				·	
RGFIRETAP	0.00	0.00	0.00	Open	
RGServiceTap	65.04	2.95	11.99	Open	
5A20MAIN6	0.00	0.00	0.00	Open	
GWFireHydrant		1.53	3.56	Open	
CCHydrant	0.00	0.00	0.00	Open	
70th12Main3	0.00	0.00	0.00	Open	
70th12Main2	0.00	0.00	0.00	Open	
70th12Main1	83.12	0.24	0.02	Open	
Scottsdale8Main3	-78.82	0.50	0.21	Open	
Canal20Main2	0.00	0.00	0.00	Open	
S20Main2	156.28	0.16	0.01	Open	
S20MAIN3	-156.28	0.16	0.01	Open	
	-452.48		23.04	Open	
RGMain1	-90.56	0.26	0.04	Open	
RGMain3	-155.60	0.44	0.09	Open	
RGMain4	296.88	0.84	0.29	Open	
5A20Main1	296.88	0.30	0.03	Open	
GWFireHydrant1	0.00	0.00	0.00	Open	
GW6Main2	-112.47	1.28	1.26	Open	
5A20Main2	296.88	0.30	0.02	Open	
5A20MAIN4	213.76	0.22	0.01	Open	
5A20MAIN5	213.76	0.22	0.03	Open	
5A6Main4	-60.29	0.68	0.70	Open	
S20main1	-213.76	0.22	0.04	Open	
BYPASS1	57.48	0.65	0.48	Open	
5AStub	0.00	0.00	0.00	Open	
S6Main1	23.95	0.27	0.08	Open	
S20MAIN4	132.33	0.14	0.01	Open	
S20MAIN6	373.93	0.38	0.04	Open	
StetsonHydrant1	0.00	0.00	0.00	Open	
S20MAIN7	213.14	0.22	0.02	Open	
PROPOSEDHOTELSERVI				2.80 Open	
PROPOSED12HOTEL1			0.13	Open	
		0.00		Open	
S20MAIN9	0.00	0.00	0.00	Open	
MWFIREHYDRANTLINE	0.00		0.00	Open	
CanalFireHydrant	-397.29	4.51	33.53	Open	
Canal20Main1	397.29	0.41	0.07	Open	
MW6Main1	65.53	0.74	0.45	Open	
5A6Main3	36.35	0.41	0.16	Open	
CC6Main1	128.43	1.46	1.68	-	
	-19.61	0.22		Open	
5A6Main6			0.05	Open	
5A6Main8	-39.90	0.45	0.18	Open	
5A6Main9	-39.90	0.45	0.33	Open	
ScottsdaleFireHydr		0.00	0.00	0.00 Open	1
6A8Main3	-32.82	0.21	0.04	Open	
6AFireHydrant	0.00	0.00	0.00	Open	

Page 7
Link Results: (continued)

Link ID	Flow GPM	-	it Headloss ft/Kft	s Stat	cus
Scottsdale8Main2	76.34	0.49	0.18	Oper	 1
Scottsdale8Main4	78.82	0.50	0.17	Oper	l
ScottsdaleFireHyd:	rant2	0.00	0.00	0.00	Open
S12Main2	92.48	0.26	0.03	Open	_
S12Main3	92.48	0.26	0.04	Open	
S12Main1	160.78	0.46	0.54	Open	
StetsonHydrant2	0.00	0.00	0.00	Open	
5A6Main2	101.88	1.16	0.96	Open	
5AOffsite	10.59	0.27	0.19	Open	
6A8MAIN1	140.86	0.90	0.42	Open	
6A8MAIN2	32.82	0.21	0.03	Open	
PROPOSED8HOTEL1	35.52	0.23	0.03	Open	
PROPOSED8HOTEL3	-108.04	0.69	0.26	Open	
HYDRANT1	134.46	0.00	-234.76	Open	Pump
Hydrant2	397.29	0.00	-234.22	Open	Pump
Hydrant3	0.00	0.00	0.00	Closed	Pump
hydrant4	452.48	0.00	-234.30	Open	Pump

APPENDIX 2

Page 1	7/11/201	.9 9:39:57 AM			
*****	******	*****			
*	EPANET	*			
*	Hydraulic and Water Quality	*			
*	Analysis for Pipe Networks	*			
*	Version 2.0	*			

Input File: SouthBridge_Condition 2.net

Southbridge Expansion

Link - Node Table:

Link	Start	End	Length Dia	meter
ID	Node	Node	ft	in
Scottsdale8Mai	in1Scottsdale1	Scottsdale2	33.32	8
Scottsdale8Mai	in5Scottsdale5	Scottsdale6	39.34	8
5A6Main1	GWs3	5As1	120	6
RGMain2	RG2	RG3	5.28	12
5A6Main5	5As4	5As5	169.99	6
5A20Main3	5A3	5A2	273.5	20
S20MAIN5	S4	S5	46.89	20
GW6Main1	GWs2	GWs1	50.71	6
GWMain2	GW3	GW2	78.21	20
GWMain1	GW1	GW2	50	20
5A6Main7	5As6	5As7	8.792	6
PROPOSED12HOTE	EL4PH4	PH3	8.288	12
PROPOSED12HOTE	EL3PH3	PH2	106.3	12
PROPOSED12HOTE	EL2PH2	PH1	7.324	12
PROPOSED8HOTEI	L2PH5	PH6	8.792	8
PROPOSEDHOTELE	FIRE3PH6	HOTELFIRE3	15	8
PROPOSEDHOTELE	FIRE1PH2	HOTELFIRE1	15	8
PROPOSEDHOTELS	SERVICE1HOTELSE	RVICE1 PH1	1	.5
PROPOSEDHOTELE	FIRE2PH3	HOTELFIRE2	45	8
PROPOSEDHOTELS	SERVICEHOTELSER'	VICE2 PH4	45	3
CC6Main2	CC1	CC2	20	6
MarketplaceFin	reTap5As7	Marketplace	eFireTap 30.2	:9
	cviceTap5As6		laceServiceTap	
ResidenBuildir	ngFireTap70th2	Resider	ntialFireTap	3.264
ResidentialSe	rviceTap70th1	Resident	cialServiceTap	28.68
RGFIRETAP	RG3	RGFire	50.31	8
RGServiceTap	RG2	RGService	50.88	3
5A20MAIN6	5A5	5A6	16.68	20
GWFireHydrant	GWs2	GWFH2	3.64	6
CCHydrant	CC1	CCFH	4.16	6
70th12Main3	70th3	70th2	3.233	12
70th12Main2	70th1	70th2	8.793	12
/ U CII				
70th12Main1	5A2	70th1	114.43	12

Canal20Main2	Canal1	Canal2	12	20
S20Main2	S1	S2	66.65	20
S20MAIN3	S3	S2	24	20

6

6

Page 2 Link - Node Table: (continued)

Link - Node Ta.	ble: (continued	1) 			
Link	Start	End	Length I	Diameter	
ID	Node	Node	ft	in	
RGFireHydrantL	ineRG4	RGFH	10.04	6	
RGMain1	RG1	RG2	58.062	12	
RGMain3	RG3	RG4	69.24	12	
RGMain4	RG4	GW2	332.54	12	
5A20Main1	GW3	5A1	151.16	20	
GWFireHydrant1	5A1	GWFH1	26.01	6	
GW6Main2	GWs3	GWs2	133.56	6	
5A20Main2	5A1	5A2	188.5	20	
5A20MAIN4	5A3	5A4	202.302	20	
5A20MAIN5	5A4	5A5	15.55	20	
5A6Main4	5As4	5aS3	11.58	6	
S20main1	S1	5A5	28.67	20	
BYPASS1	S1	5As4	37.85	6	
5AStub	S2	5AStub1	60	8	
S6Main1	S3	5aS3	118.31	6	
S20MAIN4	S3	S4	215.68	20	
S20MAIN6	S5	S6	251.96	20	
StetsonHydrant		StetsonFH1	37.17	6	
S20MAIN7	S6	S7	37.16	20	
	ERVICE3HOTELSEF			15	4
PROPOSED12HOTE		S7	1000	12	
S20MAIN8	S7	S8	177.31	20	
S20MAIN9	S8	S9	151.44	20	
MWFIREHYDRANTL		MWFH	15	6	
CanalFireHydra		CanalFH	7.95	6	
Canal20Main1		S5	51.89	20	
MW6Main1	5As2	MW1	45.19	6	
5A6Main3	5As2	5aS3	139.60	6	
	5As5	CC1	78.06	6	
	5As5	5As6	49.44	6	
5A6Main8	5As7	5As8	558.78	6	
5A6Main9	5As8	Scottsdale2	19.32	6	
ScottsdaleFire	Hydrant15As8	Scottsdal	eRoadFH1	27.63	
6A8Main3	Scottsdale3	6A1	267.21	8	
6AFireHydrant	6A1	6AFH	10	12	
Scottsdale8Mai	-	Scottsdale2	195.8	8	
Scottsdale8Mai		Scottsdale4	489.94	8	
	Hydrant2Scottsc			17.42	
beotesdaterile	nyaranczococcoc	alet beoresual	enoadriiz	17.42	
S12Main2	Ss1	Ss2	373.82	12	
S12Main3	Ss2	Scottsdale5	142.75	12	
S12Main1	S6	Ss1	12.8	12	
StetsonHydrant	2Ss2	StetsonFH2	5.48	6	
5A6Main2	5As1	5As2	450	6	
5AOffsite	5As1	5AOffsiteUse	1000	4	
6A8MAIN1	S4	6A2	267	8	
6A8MAIN2	6A2	6A1	10	8	

Link	_	Node	Table:	(continued)
		IVOGC	TUDIC.	(COLLCELLIACA)

Link ID	Start Node	End Node	Length ft	Diameter	
PROPOSED8HOTI	RES1	6A2 GWFH2	150 #N/A	8 #N/A	_
Hydrant2 Hydrant3 hydrant4	RES2 RES3 res4	CanalFH CCFH RGFH	#N/A #N/A #N/A	#N/A #N/A #N/A	Pump

Energy Usage:

Pump	Usage	Avg.	Kw-hr	Avg.	Peak	Cost
	Factor	Effic.	/Mgal	Kw	Kw	/day
HYDRANT1	100.00	75.00	960.61	22.65	22.65	0.00
Hydrant2	100.00	75.00	946.81	63.92	63.92	0.00
Hydrant3	100.00	75.00	937.65	27.85	27.85	0.00
hydrant4	100.00	75.00	950.66	81.26	81.26	0.00

Demand Charge: 0.00 Total Cost: 0.00

Node Results:

Demand	Head	Pressure	Quality	
GPM	ft	psi	_	
0.00	224.82	97.41	0.00	
0.00	223.98	97.05	0.00	
0.00	224.12	97.11	0.00	
0.00	224.09	97.10	0.00	
0.00	224.05	97.08	0.00	
0.00	224.03	97.07	0.00	
0.00	224.01	97.06	0.00	
0.00	224.01	97.06	0.00	
51.91	223.97	97.05	0.00	
0.00	223.88	97.01	0.00	
	GPM 239.05 0.00 31.34 127.55 0.00 0.00 47.80 0.00 0.00 316.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00	GPM ft 239.05 223.82 0.00 223.82 31.34 223.65 127.55 223.15 0.00 223.20 0.00 223.70 47.80 223.69 0.00 226.83 0.00 224.04 316.96 224.78 0.00 224.81 0.00 224.82 0.00 224.82 0.00 224.82 0.00 224.82 0.00 224.02 0.00 224.03 0.00 224.03 0.00 224.01 0.00 224.01 0.00 223.99 51.91 223.97	GPM ft psi 239.05 223.82 96.98 0.00 223.82 96.98 31.34 223.65 96.91 127.55 223.15 96.69 0.00 223.16 96.70 0.00 223.20 96.71 0.00 223.70 96.93 47.80 223.69 96.93 0.00 226.83 98.29 0.00 224.04 97.08 316.96 224.78 97.40 0.00 224.81 97.41 0.00 224.81 97.41 0.00 224.82 97.41 0.00 224.82 97.41 0.00 224.82 97.41 0.00 224.09 97.05 0.00 224.09 97.10 0.00 224.05 97.08 0.00 224.01 97.06 0.00 224.01 97.06 0.00 223.99 97.06 51.91 223.97 97.05	127.55 223.15 96.69 0.00 0.00 223.16 96.70 0.00 0.00 223.20 96.71 0.00 0.00 223.70 96.93 0.00 47.80 223.69 96.93 0.00 0.00 226.83 98.29 0.00 0.00 224.04 97.08 0.00 316.96 224.78 97.40 0.00 0.00 224.81 97.41 0.00 0.00 224.82 97.41 0.00 0.00 223.98 97.05 0.00 0.00 224.12 97.11 0.00 0.00 224.09 97.00 0.00 0.00 224.05 97.08 0.00 0.00 224.03 97.07 0.00 0.00 224.01 97.06 0.00 0.00 223.99 97.06 0.00 51.91 223.97 97.05 0.00

Page 4
Node Results: (continued)

Node	Demand	Head	Pressure	Quality	
Node ID	GPM	ft	psi		
S7 S8 S9 GWs1 GWs2 GWs3 GW2 GW1 5As6 5As7	0.00	223.88	97.01	0.00	
S8	0.00	223.88	97.01	0.00	
S9	0.00	223.88	97.01	0.00	
GWs1	76.95	229.18	99.31	0.00	
GWs2	0.00	229.22	99.32	0.00	
GWs3	0.00	228.06	98.82	0.00	
GW2	0.00	224.14	97.12	0.00	
GW1	0.00	224.14	97.12	0.00	
5As6	0.00	223.54	96.86	0.00	
5As7	0.00	223.54	96.86	0.00	
6A1	0.00	223.17			
Scottsdale3	123.71	223.18	96.70		
Ss2	0.00	223.73	96.94		
5aS3	0.00	223.99	97.05	0.00	
Scottsdale3 Ss2 5aS3 MW1 PH4 PH3 PH2 PH1 PH5	222.36	223.84	96.99		
PH4	0.00	222.66	96.48	0.00	
PH3	0.00	222.67	96.48	0.00	
PH2	0.00	222.75	96.52	0.00	
PH1	0.00	222.76	96.52	0.00	
PH5	0.00	222.65	96.48	0.00	
	0.00	222.65 222.65	96.48	0.00	
HOTELFIRE3		203.43	96.48 88.15	0.00	
HOTELSERVICE2 HOTELFIRE1	447.79	203.43			
HOTELFIREI	0.00	222.75	96.52	0.00	
HOTELSERVICEI	1/3.88	221.65	96.04	0.00	
HOTELFIREZ	0.00	222.67	96.48	0.00	
	0.00	223.67	96.92	0.00	
Maniatula a Rinaman	449.51	223.38	96.79	0.00	
HOTELFIRE1 HOTELFIRE2 CC1 CC2 MarketplaceFireTap MarketplaceService	U.UU	223.3	4 96.8 1 10 0	0.00 1 51 0.00	<u> </u>
S2	0.00	223 99	97.06	0.00)
Residential FireTan	0.00	224 0	2 97 0	0.00	
ResidentialFireTap 70th1	0.00	224.0	97 N7	0.00	
ResidentialService	Tap 290	94 21	8 51 °	94.68 0.00)
RGFire	0.00	224.82	97.41	0.00	
RGService	227.65	218.60	94.72	0.00	
Canal2	0.00	224.00	97.06	0.00	
S5	0.00	223.97	97.05	0.00	
CanalFH	0.00	226.03	97.94	0.00	
Canal1	0.00	224.00	97.06	0.00	
5A6	0.00	224.01	97.06		
S1	0.00	224.00	97.06	0.00	
GWFH2	0.00	229.32	99.37		
CCFH	0.00	223.84	96.99	0.00	
70th3	0.00	224.02	97.07		
70th2	0.00	224.02	97.07		
RG4	0.00	224.89	97.44	0.00	
			-	-	

Page 5
Node Results: (continued)

Node	Demand	Head	Pressure	Quality
ID	GPM	ft	psi	
RGFH GWFH1 5AStub1 HOTELSERVICE3 MWFH 5As8 ScottsdaleRoadFH1 6AFH ScottsdaleRoadFH2 StetsonFH2 5AOffsiteUse 6A2	0.00	224.03 223.18 223.18 223.17 223.20 223.73 224.89	96.70	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RES1	-393.05		0.00	0.00 Reservoir
RES2	-1125.26		0.00	0.00 Reservoir
RES3	-495.06		0.00	0.00 Reservoir
res4	-1424.55		0.00	0.00 Reservoir

Link Results:

Link ID	Flow GPM	Velocity fps	Jnit Head ft/Kft	 loss t	Status	
Scottsdale8Main1	-127.55	0.83	1 0.4	46	Open	
Scottsdale8Main5						
5A6Main1	316.10	3.59	10.2	4 ()pen	
RGMain2	-544.61	1.54	1.7	7 C)pen	
5A6Main5	133.87	1.52	1.93	1 0)pen	
5A20Main3	-589.00	0.60	0.08	3 C)pen	
S20MAIN5	52.93	0.05	0.00) ()pen	
GW6Main1	76.95	0.87	0.72	2 0)pen	
GWMain2	-879.94	0.90	0.23	3 C)pen	
		0.00)pen	
5A6Main7	77.07	0.87	1.03	3 C)pen	
PROPOSED12HOTEL4	-512.94	1.46	6 1.0	63	Open	
PROPOSED12HOTEL3						
PROPOSED12HOTEL2	-512.95	1.46	5 1. ⁻	76	Open	
PROPOSED8HOTEL2	-65.15	0.42	0.23	1 0)pen	
PROPOSEDHOTELFIRE3	0.0	0.0	.00	0.00	Open	
PROPOSEDHOTELFIRE1	0.0	0.0	.00	0.00	Open	
PROPOSEDHOTELSERVIO	CE1 -1	73.88	7.89	74.11	Open	ı
PROPOSEDHOTELFIRE2	0.0	0.0	.00	0.00	Open	
PROPOSEDHOTELSERVIO						
CC6Main2	449.51	5.10	14.71	1 0)pen	
MarketplaceFireTap						
MarketplaceService	ſap '	71.01	12.89	412.95	Open	ı
ResidenBuildingFire	еТар	0.00	0.00	0.00) Ope	:n
ResidentialService	Tap 2:	90.94	13.21	192.26	Open	

Page 6
Link Results: (continued)

______ Link Flow VelocityUnit Headloss Status GPM fps ft/Kft RGFIRETAP 0.00 0.00 0.00 0pen
RGServiceTap 227.65 10.33 122.07 0pen
5A20MAIN6 0.00 0.00 0.00 0pen
GWFireHydrant -393.05 4.46 28.44 0pen
CCHydrant -495.06 5.62 41.14 0pen
70th12Main3 0.00 0.00 0.00 0pen
70th12Main1 290.94 0.83 0.24 0pen
70th12Main1 290.94 0.83 0.24 0pen
Scottsdale8Main3 -204.51 1.31 1.30 0pen
Canal20Main2 0.00 0.00 0.00 0pen
S20Main2 524.73 0.54 0.10 0pen
S20MAIN3 -524.73 0.54 0.10 0pen
RGFireHydrantLine -1424.55 16.16 205.33 0pe
RGMain1 -316.96 0.90 0.49 0pen
RGMain3 -544.61 1.54 0.98 0pen
RGMain4 879.94 2.50 2.25 0pen
SA20Main1 879.94 0.90 0.22 0pen
GWFireHydrant1 0.00 0.00 0.00 0pen
GW6Main2 -316.10 3.59 8.71 0pen
SA20Main2 879.94 0.90 0.19 0pen
SA20Main4 589.00 0.60 0.20 0pen
SA20MAIN5 589.00 0.60 0.20 0pen
SA20Main4 -69.60 0.79 0.92 0pen ______ Open Open

 5A20MAIN5
 589.00
 0.60
 0.20
 Open

 5A6Main4
 -69.60
 0.79
 0.92
 Open

 S20main1
 -589.00
 0.60
 0.25
 Open

 BYPASS1
 64.27
 0.73
 0.60
 Open

 5AStub
 0.00
 0.00
 0.00
 Open

 S6Main1
 12.91
 0.15
 0.02
 Open

 S20MAIN4
 511.82
 0.52
 0.08
 Open

 S20MAIN6
 1178.19
 1.20
 0.36
 Open

 StetsonHydrant1
 0.00
 0.00
 0.00
 Open

 S20MAIN7
 686.83
 0.70
 0.14
 Open

 PROPOSEDHOTELSERVICE3 -502.45 12.83 130.25 Open
 PROPOSEDHOTELSERVICE3
 -502.45
 12.83
 130.25
 C

 PROPOSED12HOTEL1
 -686.83
 1.95
 1.12
 Open

 \$20MAIN8
 0.00
 0.00
 0.00
 Open

 \$20MAIN9
 0.00
 0.00
 0.00
 Open

 MWFIREHYDRANTLINE
 0.00
 0.00
 0.00
 Open

 CanalFireHydrant
 -1125.26
 12.77
 255.57
 Open

 Canal20Main1
 1125.26
 1.15
 0.50
 Open

 MW6Main1
 222.36
 2.52
 4.43
 Open

 5A6Main3
 56.69
 0.64
 0.36
 Open

 5A6Main6
 148.08
 1.68
 2.19
 Open

 5A6Main8
 77.07
 0.87
 0.63
 Open

 5A6Main9
 77.07
 0.87
 1.18
 Open

 ScottsdaleFireHydrant1
 0.00
 0.00
 0.00
 0.00
 ScottsdaleFireHydrant1 0.00 0.00 0.00

 6A8Main3
 30.32
 0.19
 0.03
 Open

 6AFireHydrant
 0.00
 0.00
 0.00
 Open

Page 7
Link Results: (continued)

Link ID	Flow GPM	-	it Headloss ft/Kft	s Stat	us
Scottsdale8Main2	50.48	0.32	0.08	Open	
Scottsdale8Main4	204.51	1.31	1.01	Open	
ScottsdaleFireHyd	rant2	0.00	0.00	0.00	Open
S12Main2	252.31	0.72	0.23	Open	
S12Main3	252.31	0.72	0.26	Open	
S12Main1	491.36	1.39	4.95	Open	
StetsonHydrant2	0.00	0.00	0.00	Open	
5A6Main2	279.05	3.17	6.20	Open	
5AOffsite	37.05	0.95	1.94	Open	
6A8MAIN1	406.97	2.60	3.01	Open	
6A8MAIN2	-30.32	0.19	0.02	Open	
PROPOSED8HOTEL1	65.15	0.42	0.10	Open	
PROPOSED8HOTEL3	-437.30	2.79	3.44	Open	
HYDRANT1	393.05	0.00	-229.32	Open	Pump
Hydrant2	1125.26	0.00	-226.03	Open	Pump
Hydrant3	495.06	0.00	-223.84	Open	Pump
hydrant4	1424.55	0.00	-226.95	Open	Pump

APPENDIX 3

Page 1	7/	11/2019 9:40:10 AM
*****	**********	*****
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
+++++++++++++		+++++++++++++++

Input File: SouthBridge_Condition 3.net

Southbridge Expansion

Link - Node Table:

Link	Start	End	Length Dia	meter
ID	Node	Node	ft	in
Scottsdale8Mai	in1Scottsdale1	Scottsdale2	33.32	8
Scottsdale8Mai	in5Scottsdale5	Scottsdale6	39.34	8
5A6Main1	GWs3	5As1	120	6
RGMain2	RG2	RG3	5.28	12
5A6Main5	5As4	5As5	169.99	6
5A20Main3	5A3	5A2	273.5	20
S20MAIN5	S4	S5	46.89	20
GW6Main1	GWs2	GWs1	50.71	6
GWMain2	GW3	GW2	78.21	20
GWMain1	GW1	GW2	50	20
5A6Main7	5As6	5As7	8.792	6
PROPOSED12HOTE	EL4PH4	PH3	8.288	12
PROPOSED12HOTE	EL3PH3	PH2	106.3	12
PROPOSED12HOTE	EL2PH2	PH1	7.324	12
PROPOSED8HOTEI	L2PH5	PH6	8.792	8
PROPOSEDHOTELE	FIRE3PH6	HOTELFIRE3	15	8
PROPOSEDHOTELE	FIRE1PH2	HOTELFIRE1	15	8
PROPOSEDHOTELS	SERVICE1HOTELSE	RVICE1 PH1	1	.5
PROPOSEDHOTELE	FIRE2PH3	HOTELFIRE2	45	8
PROPOSEDHOTELS	SERVICEHOTELSER'	VICE2 PH4	45	3
CC6Main2	CC1	CC2	20	6
MarketplaceFin	reTap5As7	Marketplace	eFireTap 30.2	:9
	cviceTap5As6		laceServiceTap	
ResidenBuildir	ngFireTap70th2	Resider	ntialFireTap	3.264
ResidentialSe	rviceTap70th1	Resident	cialServiceTap	28.68
RGFIRETAP	RG3	RGFire	50.31	8
RGServiceTap	RG2	RGService	50.88	3
5A20MAIN6	5A5	5A6	16.68	20
GWFireHydrant	GWs2	GWFH2	3.64	6
CCHydrant	CC1	CCFH	4.16	6
70th12Main3	70th3	70th2	3.233	12
70th12Main2	70th1	70th2	8.793	12
/ U CII				
70th12Main1	5A2	70th1	114.43	12

Canal20Main2	Canal1	Canal2	12	20
S20Main2	S1	S2	66.65	20
S20MAIN3	S3	S2	24	20

Page 2
Link - Node Table: (continued)

6

______ Link Start End ID Node Node Length Diameter ft in _____ RGFireHydrantLineRG4 RGFH 10.04 6
RGMain1 RG1 RG2 58.062 12
RGMain3 RG3 RG4 69.24 12
RGMain4 RG4 GW2 332.54 12
5A20Main1 GW3 5A1 151.16 20
GWFireHydrant1 5A1 GWFH1 26.01 6
GW6Main2 GWs3 GWs2 133.56 6
5A20Main2 5A1 5A2 188.5 20
5A20MAIN4 5A3 5A4 202.302 20
5A20MAIN5 5A4 5A5 15.55 20

 RGMain3
 RG3
 RG4

 RGMain4
 RG4
 GW2

 5A20Main1
 GW3
 5A1

 GWFireHydrant1
 5A1
 GWFH1

 GW6Main2
 GWs3
 GWs2

 5A20Main2
 5A1
 5A2

 5A20MAIN4
 5A3
 5A4

 5A20MAIN5
 5A4
 5A5

 5A6Main4
 5As4
 5as3

 S20main1
 S1
 5A5

 BYPASS1
 S1
 5As4

 5AStub
 S2
 5AStub1

 S6Main1
 S3
 5aS3

 S20MAIN4
 S3
 S4

 S20MAIN6
 S5
 S6

 StetsonHydrant1Ss1
 StetsonFH1

 S20MAIN7
 S6
 S7

 PROPOSEDHOTELSERVICE3HOTELSERVICE3
 PH5

 15.55 11.58 6 28.67 37.85 60 118.31 215.68 20 251.96 20 37.17 6 37.16 20 15 1000 177.31 151.44 20 15 7.95 6 PROPOSEDHOTELSERVICE3HOTELSERVICE3 PH5 PROPOSED12HOTEL1PH1 S7
 PROPOSED12HOTEL1PH1
 S7
 1000
 1

 S20MAIN8
 S7
 S8
 177.31
 20

 S20MAIN9
 S8
 S9
 151.44
 20

 MWFIREHYDRANTLINE5A3
 MWFH
 15

 CanalFireHydrantCanal1
 CanalFH
 7.95

 Canal20Main1
 Canal1
 S5
 51.89
 20

 MW6Main1
 5As2
 MW1
 45.19
 6

 5A6Main3
 5As2
 5aS3
 139.60
 6

 CC6Main1
 5As5
 CC1
 78.06
 6

 5A6Main6
 5As5
 5As6
 49.44
 6

 5A6Main8
 5As7
 5As8
 558.78
 6

 5A6Main9
 5As8
 Scottsdale2
 19.32
 6

 ScottsdaleFireHydrant15As8
 ScottsdaleRoadFH1
 27.63
 12 20 6A8Main3Scottsdale36A1267.2186AFireHydrant6A16AFH1012Scottsdale8Main2Scottsdale3Scottsdale2195.88Scottsdale8Main4Scottsdale5Scottsdale4489.948 ScottsdaleFireHydrant2Scottsdale4 ScottsdaleRoadFH2 17.42 Ss2 S12Main2 Ss1 373.82 12 Scottsdale5 142.75 Socisdale5 Ss1 StetsonFH2 5As2 S12Main3 Ss2 S12Main1 S6 12 12.8 12 StetsonHydrant2Ss2 5.48 6 5A6Main2 5As1 450 5AOffsiteUse 1000 5AOffsite 5As1 6A8MAIN1 S4 6A8MAIN2 6A2 6A2 267 6A1 10

Page 3

Link -	Node	Table:	(continued)
--------	------	--------	-------------

Link	Start	End	Length I	Diameter
ID	Node	Node		in
PROPOSED8HOTEL	3PH5	6A2	150	8 #N/A Pump #N/A Pump #N/A Pump #N/A Pump
HYDRANT1	RES1	GWFH2	#N/A	
Hydrant2	RES2	CanalFH	#N/A	
Hydrant3	RES3	CCFH	#N/A	
hydrant4	res4	RGFH	#N/A	

Energy Usage:

Pump	Usage	Avg.	Kw-hr	Avg.	Peak	Cost
	Factor	Effic.	/Mgal	Kw	Kw	/day
HYDRANT1	100.00	75.00	922.93	35.15	35.15	0.00
Hydrant2	100.00	75.00	874.20	103.08	103.08	0.00
Hydrant3	100.00	75.00	858.60	46.09	46.09	0.00
hydrant4	100.00	75.00	890.55	130.55	130.55	0.00

Demand Charge: 0.00 Total Cost: 0.00

Node Results:

Node	Demand			_	
ID	GPM	ft	psi		
Ss1	239.05	202.00	87.53	0.00	
StetsonFH1	0.00	202.00	87.53	0.00	
5As5	31.34	203.09	88.00	0.00	
Scottsdale1	127.55	197.39	85.53	0.00	
Scottsdale2	0.00	197.41	85.54	0.00	
Scottsdale4	0.00	197.44	85.55	0.00	
Scottsdale5	0.00	201.25	87.20	0.00	
Scottsdale6	47.80	201.24	87.20	0.00	
5As1	0.00	213.11	92.34	0.00	
5As2	0.00	204.22	88.49	0.00	
RG1	316.96	206.71	89.57	0.00	
RG2	0.00	206.74	89.58	0.00	
RG3	0.00	206.75	89.58	0.00	
5As4	0.00	203.06	87.99	0.00	
GW3	0.00	203.54	88.19	0.00	
5A1	0.00	203.40	88.13	0.00	
5A2	0.00	203.24	88.07	0.00	
5A3	0.00	203.09	88.00	0.00	
5A4	0.00	202.97	87.95	0.00	
5A5	0.00	202.95	87.94	0.00	
S3	0.00	202.80	87.87	0.00	
S4	51.91	202.58	87.78	0.00	
S6	0.00	202.20	87.62	0.00	

Page 4
Node Results: (continued)

Node ID					
Node	Demand	Head	Pressure	Quality	
ID	GPM	ft	psi		
S7	0.00	202.18	87.60		
S8	0.00	202.18	87.60		
S9	0.00	202.18	87.60		
GWs1	76.95	220.03	95.34		
GWs2	0.00	220.07	95.35		
GWs3	0.00	216.70	93.90		
GW2	0.00	203.62	88.23		
GW1 5As6	0.00	203.62	88.23		
5As7	0.00	202.47	87.73		
6A1	0.00	104 52	87.67		
Caottadalo3	122 71	194.32	84.28		
Scottsdale3 Ss2	0.00	201 /8	85.46 87.30		
5aS3	0.00	201.40	88.00		
MW1	222 36	204.02	88.40		
Scottsdale3 Ss2 5aS3 MW1 PH4 PH3 PH2 PH1 PH5	0 00	196.10	84.97		
PH3	0.00	196.20	85.01		
PH2	0.00	196.74	85.25	0.00	
PH1	0.00	196.84	85.29	0.00	
PH5	0.00	195.61	84.76	0.00	
PH6	0.00	195.95	84.91	0.00	
HOTELETRE 3		195 95	84.91	() . () ()	
HOTELFIRES HOTELFIRE1	447.79	176.87		0.00	
HOTELFIRE1	0.00	196.74	85.25	0.00	
HOTELSERVICE1	173.88	195.72	84.81	0.00	
HOTELFIRE2	0.00	196.20	85.01	0.00	
CC1	0.00	204.43	88.58	0.00	
CC2	449.51	204.14	88.45	0.00	
HOTELFIRE1 HOTELSERVICE1 HOTELFIRE2 CC1 CC2 MarketplaceFireTap MarketplaceService	0.00	202.3	4 87.6	0.00	
MarketplaceService'	Гар 71	.01 19	0.11 8	32.38 0.00)
SZ	0.00	ZUZ.8Z	8/.88	0.00	
ResidentialFireTap 70th1	0.00	203.2	2 88.0	0.00	
70th1	0.00	203.22	88.05	0.00	
ResidentialService'	Гар 290			35.66 0.00)
RGFire	0.00	206.75	89.58	0.00	
RGService	227.65	200.53	86.89	0.00	
Canal2	0.00	202.65	87.81	0.00	
S5	0.00	202.58	87.78	0.00	
CanalFH	0.00	208.70	90.43	0.00	
Canal1	0.00	202.65	87.81	0.00	
5A6	0.00	202.95	87.94	0.00	
S1	0.00	202.89	87.91	0.00	
GWFH2	0.00	220.33	95.47	0.00	
CCFH	0.00	204.97	88.81	0.00	
70th3	0.00	203.22	88.05	0.00	
70th2	0.00	203.22	88.05		
RG4	0.00	206.82	89.61	0.00	

Page 5
Node Results: (continued)

Node	Demand	Head	Pressure	Quality
ID	GPM	ft	psi	
RGFH	0.00	212.60	92.12	0.00
GWFH1	0.00	203.40	88.13	0.00
5AStub1	0.00	202.82	87.88	0.00
HOTELSERVICE3	502.45	193.65	83.91	0.00
MWFH	0.00	203.09	88.00	0.00
5As8	0.00	197.73	85.68	0.00
ScottsdaleRoadFH1	0.00	197.73	85.68	0.00
6AFH	2500.00	194.24	84.16	0.00
ScottsdaleRoadFH2	0.00	197.44	85.55	0.00
StetsonFH2	0.00	201.48	87.30	0.00
5AOffsiteUse	37.05	211.16	91.50	0.00
6A2	0.00	195.01	84.50	0.00
RES1	-634.79	0.00	0.00	0.00 Reservoir
RES2	-1965.30	0.00	0.00	0.00 Reservoir
RES3	-894.65	0.00	0.00	0.00 Reservoir
res4	-2443.18	0.00	0.00	0.00 Reservoir

Link Results:

	Flow GPM					Statı	ıs
Scottsdale8Main1							
Scottsdale8Main5	47.8	0 0	.31	0.	06	Open	
5A6Main1			33	29.9	7	Open	
RGMain2	-544.61	1.	54	1.7	7	Open	
5A6Main5	-37.36	0.	42	0.1	.7	Open	
5A6Main5 5A20Main3	-1607.63	1.	64	0.5	55	Open	
S20MAIN5	525.80	0.	54	0.0	19	Open	
GW6Main1	76.95	0.	87	0.7	2	Open	
GWMain2	-1898.57	1.	94	1.0	1	Open	
GWMain1	0.00	0.	00	0.0	0	Open	
5A6Main7	305.44	3.	47	14.6	51	Open	
PROPOSED12HOTEL4	-1423.7	6 4	.04	11.	89	Open	
PROPOSED12HOTEL3	-1423.7	6 4	.04	5.	08	Open	
PROPOSED12HOTEL2	-1423.7	6 4	.04	12.	90	Open	
PROPOSED8HOTEL2	-975.97	6.	23	39.2	21	Open	
PROPOSEDHOTELFIRE	3 0	.00	0.00		0.00	Ope	en
PROPOSEDHOTELFIRE PROPOSEDHOTELSERV	1 0	.00	0.00		0.00	Ope	en
PROPOSEDHOTELSERV	ICE1 -	173.88	7.	89	74.1	1	Open
PROPOSEDHOTELFIRE	2 0	.00	0.00		0.00	Ope	en
PROPOSEDHOTELSERV							
CC6Main2	449.51	5.	10	14.7	1	Open	
MarketplaceFireTa	р 0	.00	0.00		0.00	Ope	en
MarketplaceServic							
ResidenBuildingFi	reTap	0.00	0	.00	0.0	0.0	Open
ResidentialServic	еТар :	290.94	13.	21	192.2	5	Open

Page 6
Link Results: (continued)

ID .	Flow V GPM	fps	ft/Kft	s Statu	S
 RGFIRETAP	0.00	0.00		Open	
RGServiceTap	227.65		122.07	Open	
SA20MAIN6	0.00	0.00	0.00	Open	
GWFireHydrant	-634.79		72.13	Open	
CCHydrant	-894.65	10.15		Open	
0th12Main3	0.00	0.00	0.00	Open	
0th12Main2	0.00	0.00	0.00	Open	
0th12Main1	290.94	0.83	0.24	Open	
Scottsdale8Main3	-606.61	3.87	10.34	Open	
Canal20Main2	0.00	0.00	0.00	Open	
S20Main2	1790.26	1.83	1.05	Open	
S20MAIN3	-1790.26	1.83	1.08	Open	
GFireHydrantLine				Open	
GMain1	-316.96	0.90	0.49	Open	
GMain3	-544.61	1.54	0.98	Open	
GMain4	1898.57	5.39	9.61	Open	
A20Main1	1898.57	1.94	0.97	Open	
GWFireHydrant1	0.00	0.00	0.00	Open	
GW6Main2	-557.84	6.33		Open	
A20Main2	1898.57	1.94	0.80	Open	
SA20MAIN4	1607.63	1.64	0.63	Open	
SA20MAIN5	1607.63	1.64	1.38	Open	
	-145.27	1.65	3.82	Open	
320main1	-1607.63	1.64	1.83	Open	
	-182.63	2.07	4.36	Open	
AStub	0.00	0.00	0.00	Open	
66Main1	-153.15	1.74	2.58	Open	
320MAIN4	1943.41	1.98	1.01	Open	
20MAIN6	2491.10	2.54	1.47	Open	
	0.00	0.00	0.00	Open	
320MAIN7		1.63		Open	
ROPOSEDHOTELSERVI				-	Open
ROPOSED12HOTEL1				Open	open
20MAIN8	0.00	0.00	0.00	Open	
20MAIN9	0.00	0.00	0.00	Open	
WFIREHYDRANTLINE	0.00	0.00	0.00	Open	
CanalFireHydrant	-1965.30	22.30	760.15	Open	
Canal20Main1	1965.30	2.01	1.49	Open	
W6Main1	222.36	2.52	4.43	Open	
A6Main3	298.43	3.39	8.03	Open	
CC6Main1	-445.14	5.05	17.23	Open	
A6Main6	376.45	4.27	12.59	Open	
A6Main8	305.44	3.47	8.24	Open	
A6Main9	305.44	3.47	16.84	Open	
ScottsdaleFireHydr		0.00	0.00	0.00	Open
-		4.22	10.18		oben
SA8Main3	660.78	4 7	111 1 ×	Open	

Page 7
Link Results: (continued)

Link ID	Flow GPM	-	it Headloss ft/Kft	s Stat	us
Scottsdale8Main2	-177 . 89	1.14	0.87	Open	
Scottsdale8Main4	606.61	3.87	7.76	Open	
ScottsdaleFireHyd	rant2	0.00	0.00	0.00	Open
S12Main2	654.41	1.86	1.39	Open	
S12Main3	654.41	1.86	1.61	Open	
S12Main1	893.46	2.53	16.21	Open	
StetsonHydrant2	0.00	0.00	0.00	Open	
5A6Main2	520.79	5.91	19.74	Open	
5AOffsite	37.05	0.95	1.94	Open	
6A8MAIN1	1365.70	8.72	28.36	Open	
6A8MAIN2	1839.22	11.74	49.22	Open	
PROPOSED8HOTEL1	975.97	6.23	15.22	Open	
PROPOSED8HOTEL3	473.52	3.02	3.99	Open	
HYDRANT1	634.79	0.00	-220.33	Open	Pump
Hydrant2	1965.30	0.00	-208.70	Open	Pump
Hydrant3	894.65	0.00	-204.97	Open	Pump
hydrant4	2443.18	0.00	-212.60	Open	Pump

APPENDIX 4

	$\sim\sim$	\sim		1	ı		_	
[PIPES]		 						
ID	Node1	Node2	Length	Diameter	Roughness	MinorLoss	Status	
1	سسس	5A1						20" DIP Water Main from elbow to Fire Hydrant tap. Includes losses for ARV tap,
5A20Main1	GW3	5A1	151.16			0.95	Open	Bypass Tee, Gate Valve and Fire Hydrant Tee
				Network Diagra				20" DIP Water Main from Fire Hydrant tap to 70th place tee. Includes losses for 70th
5A20Main2	5A1	5A2		voirs labels and	•	r 0.65	Open	street Tee and 2 x 45 degree elbows.
			DSPM Section	on 6-1.202 in th	e final BOD			
				1	1			20" DIP Water Main from 70th place tee to intersection of Marshall Way and 5th
5A20Main3	5A3	5A2	273.5	20	140	0.7	Open	Avenue. Includes losses for ARV Tee, 45 degree elbow and tee for fire hydrant.
								20" DIP Water Main from intersection of Marshall Way and 5th Avenue TO
								INERSECTION OF 5TH AVE AND STETSON . Includes losses for 2 x 22.5 degree elbow
5A20MAIN4	5A3	5A4	202.302	20	140	0.9	Open	and 2 tee for water manhole, and gate valve .
								20" DIP Water Main from INERSECTION OF 5TH AVE AND STETSON to 20 inch tee.
5A20MAIN5	5A4	5A5	15.55	20	140	0.35	Open	Includes losses for tee.
5A20MAIN6	5A5	5A6	16.68				Open	20" DIP stub out
							'	6" ACP Main in 5th Avenue from Goldwater to Marshall Way. Includes losses for 9
5A6Main1	GWs3	5As1	523.31	6	140	1.55	Open	taps and a 45 degree elbow
				_			- Form	6" ACP main from Marshall Way to Marshall Way Tee. Includes losses for Marshall
5A6Main2	5As1	5As2	48.54	6	140	0.35	Open	Way Tee.
3/10/1/11/12	57.01	37.52	10.54		110	0.33	Орен	6" ACP main from Marshall Way Tee to Stetson Tee. Includes losses for 2 x 45 degree
5A6Main3	5As2	5aS3	139.6	6	140	n o	Open	elbows, 1 Tee and 1 tap.
SAUVIAITIS	JASZ	3833	139.0	0	140	0.3	Ореп	6" ACP Main from Stetson Tee to Stetson Bypass Tee. Includes losses for gate valve
E A C Main 4	E A c 4	EnC2	11 50		140	0.55	Onon	and Bypass Tee.
5A6Main4	5As4	5aS3	11.58	0	140	0.55	Open	· ·
EACAA-: v.E	E A - 4	50.5	160.00	_	140	4.65		6" ACP Main from Bypass tee to Craftsman Court Tee. Includes losses for 2 taps and
5A6Main5	5As4	5As5	169.99	6	140	1.65	Open	2 tees.
								6" ACP Main from Craftsman Court Tee to proposed Marketplace Service Tap.
5A6Main6	5As5	5As6	49.44	6	140	0.35	Open	Includes gate valve and tap losses.
				_				6" ACP Main from Proposed Marketplace Service tap to Proposed Marketplace Fire
5A6Main7	5As6	5As7	8.792	6	140	0.35	Open	Tap. Includes 6" tee losses.
								6" ACP Main from Proposed Fire Tap to Fire Hydrant Tee. Includes losses for 4 taps, 1
5A6Main8	5As7	5As8	558.78	6	140	3.15	Open	valve, and 3 6 inch tees. 2 x 45, 2 x 11.25.
								6" ACP main from Fire Hydrant Tee to Scottsdale Road Tee. Includes losses for 6" tee
5A6Main9	5As8	Scottsdale2	19.32	6	140	1	Open	in Scottsdale Road.
5AStub	S2	5AStub1	60	8	140	0.2	Open	This is an 8" stubbed water line. Includes Gate valve losses.
								8" Main from Stetson to 6th Avenue Fire Hydrant Tee. Includes losses for 1 gate vale,
6A8Main1	S4	6A1	287.77	8	140	1.95	Open	3" Tee, 5 taps, 6" Fire Hydrant Tee, 2x45 degree elbow.
								8" Main from 6th Avenue Fire Hydrant Tee to Scottsdale Road Tee. Includes losses
6A8Main2	Scottsdale3	6A1	267.21	8	140	2.7	Open	for 2 gate valves, 7 taps, 4" tee, and 8" Scottsdale Road Tee.
6AFireHydrant	6A1	6AFH	10	12	140	0.2	Open	Service line for 6th Avenue Fire Hydrant. Includes losses for gate valve.
70th12Main1	5A2	70th1	114.43	12	140	0.15	Open	70th Street main from Tee to proposed service tap. Includes losses for service tap.
70th12Main2	70th1	70th2	8.793				Open	70th street main from service tap to fire tap. Includes losses for fire tap.
70th12Main3	70th3	70th2	3.233				Open	70th street main from fire tap to blowoff - end of line.
BYPASS1	S1	5As4	37.85		140		Open	6" Bypass. Includes losses for 2 gate valves and 90 degree elbow.
	-					5.5		20" Main crossing canal from 5th avenue 20" tee to fire hydrant tee. Includes losses
Canal20Main1	Canal1	S5	51.89	20	140	0.7	Open	for 2 x 6" tee and gate valve.
			31.03	20	140	5.7		20" Main crossing canal from fire hydrant tee starting across canal TO END OF
Canal20Main2	Canal1	Canal2	12	20	140	, ا	Open	MODEL.
CariaizOiviaiiiZ	Carrait	Carraiz	1 12		140	١	Johen	IMODEL

CanalFireHydrant	Canal1	CanalFH	7.95	6	140	0.55 Open	Service Line for Canal Crossing Fire Hydrant. Includes losses for gate valve and tee.
							6" Main from Craftsman Court to Fire Hydrant Tee. Includes gate valve and Tee
CC6Main1	5As5	CC1	78.06	6	140	0.55 Open	losses.
							6" Main in Craftsman Court from Fire Hydrant Tee to edge of model. No Minor
CC6Main2	CC1	CC2	20	6	140	0 Open	losses.
CCHydrant	CC1	CCFH	4.16	6	140	0.2 Open	Includes losses for gate valve.
GW6Main1	GWs2	GWs1	50.71	6	140	0.35 Open	6" main in Goldwater to Fire Hydrant. Includes losses for fire hydrant tee.
						·	6" main in Goldwater from Fire Hydrant Tee to 5th Avenue Tee. Includes losses for
GW6Main2	GWs3	GWs2	133.56	6	140	0.7 Open	5th avenue tee, gate valve and tap.
GWFireHydrant	GWs2	GWFH2	3.64	6	140	0.2 Open	Service line for Goldwater fire hydrant. Includes Gate Valve
GWFireHydrant1	5A1	GWFH1	26.01	6	140	0.75 Open	Fire Hydrant service line. Includes losses for 2 gate valves and Bypass Tee
GWMain1	GW1	GW2	50	20	140	0 Open	Water Main from Tee to Expander in Goldwater. Expander is beyond limits of model.
GWMain2	GW3	GW2	78.21	20	140	0.55 Open	Pipe includes losses from 45 degree elbow and Tee
MarketplaceFireTap	5As7	MarketplaceFireTap	30.29	6	140	0.2 Open	Marketplace fire tap. Includes gate valve losses.
MarketplaceServiceTap	5As6	MarketplaceServiceTap	29.91	2	140	0 Open	Marketplace Service Tap
MW6Main1	5As2	MW1	45.19	6	140	0.2 Open	6" Main from 5th Avenue along Marshall Way. Includes losses for water Valve
MWFIREHYDRANTLINE	5A3	MWFH	15	6	140	0.2 Open	FIRE HYDRANT SERVICE TAP. INCLUDES LOSSES FOR GATE VALVE.
							12" PROPOSED HOTEL WATER MAIN FROM 20" TEE TO 6" TEE. INCLUDES 6" TEE
PROPOSED12HOTEL1	PH1	S7	1000	12	140	0.25 Open	LOSSES.
							12" PROPOSED HOTEL WATER MAIN FROM 6" TEE TO 8" TEE. INCLUDES 8" TEE
PROPOSED12HOTEL2	PH2	PH1	7.324	12	140	0.25 Open	LOSSES.
							12" PROPOSED HOTEL WATER MAIN FROM 8" TEE TO 8" TEE. INCLUDES 8" TEE
PROPOSED12HOTEL3	PH3	PH2	106.3	12	140	0.35 Open	LOSSES.
							12" PROPOSED HOTEL WATER MAIN FROM 8" TEE TO 4" TEE. INCLUDES 4" TEE
PROPOSED12HOTEL4	PH4	РН3	8.288	12	140	0.25 Open	LOSSES.
							8" PROPOSED HOTEL WATER MAIN FROM 4" TEE TO 4" TEE. INCLUDES 4" TEE
PROPOSED8HOTEL1	PH4	PH5	1000	8	140	0.35 Open	LOSSES.
							8" PROPOSED HOTEL WATER MAIN FROM 4" TEE TO 8" TEE. INCLUDES 8" TEE
PROPOSED8HOTEL2	PH5	РН6	8.792	8	140	0.35 Open	LOSSES.
PROPOSEDHOTELFIRE1	PH2	HOTELFIRE1	15	8	140	0.2 Open	8" PROPOSED FIRE TAP. Includes 8" Gate Valve.
PROPOSEDHOTELFIRE2	PH3	HOTELFIRE2	45	8	140	0.2 Open	8" PROPOSED FIRE TAP. Includes 8" Gate Valve.
PROPOSEDHOTELFIRE3	PH6	HOTELFIRE3	15	8	140	0.2 Open	8" PROPOSED FIRE TAP. Includes 8" Gate Valve.
PROPOSEDHOTELSERVICE	HOTELSERVICE2	PH4	45	4	140	0 Open	4" PROPOSE SERVICE TAP
PROPOSEDHOTELSERVICE1	HOTELSERVICE1	PH1	15	6	140	0 Open	6" PROPOSED SERVICE
PROPOSEDHOTELSERVICE3	HOTELSERVICE3	PH5	15	4	140	0 Open	4" PROPOSED SERVICE TAP
ResidentialBuildingFireTap	70th2	ResidentialFireTap	3.264	4	140	0.2 Open	4" Fire Tap for Residential Building. Includes Gate Valve.
ResidentialServiceTap	70th1	ResidentialServiceTap	28.68	3	140	0 Open	3" tap for Residential Building
RGFireHydrantLine	RG4	RGFH	10.04	6	140	0.2 Open	Fire Hydran Service Line. Includes loss for gate valve.
RGFIRETAP	RG3	RGFire	50.31	8	140	0.2 Open	Proposed Rose Garden Fire Tap. Includes loss for gate valve.
							This pipe was simplified to eliminate curvature. Total length as shown, plus minor
							losses from 5 water taps and a tee for an air relief valve. Model stops at transition
RGMain1	RG1	RG2	58.062	12	140	1.05 Open	from 12" to 6" pipe on west end. Stops at Rose Garden Water tap on East End.
RGMain2	RG2	RG3	5.28	12	140	0.15 Open	Water main between Rose Garden water tap and Rose Garden Fire Tap
						·	Water main between Rose Garden Fire Tap and Fire Hydrant Tee. Includes losses for
RGMain3	RG3	RG4	69.24	12	140	0.5 Open	2 water taps and curvature.

						T		5th Avenue Water Main connecting Fire Hydrant to Goldwater Main. Length
								adjusted to account for Fire Hydrant Tee, 2 water taps 2 Blow Off taps, a 45 degree
RGMain4	RG4	GW2	332.54	12	140	1.75	Onen	bend, and a gate valve
RGServiceTap	RG2	RGService	50.88	2	140		Open	Proposed Rose Garden Service Tap
Noservicerap	NOZ	NGSETVICE	30.88	2	140		Ореп	12" Main from 20" tee to fire hydrant cosss. Includes gate valve, 90 degree elbow
S12Main1	S6	Ss1	12.8	12	140	1.85	Onon	and cross.
3121VId1111	30	351	12.0	12	140	1.85	Ореп	and cross.
								12 inch main from fire hydrant cross to fire hydrant tee. includes 3 taps, 2x 4" tee,
S12Main2	Ss1	Ss2	373.82	12	140	2.7	Onon	2x6" tee, 90 degree elbow, 2x 45 degree elbow, 2 x 22.5 degree elbow
31210101112	331	332	373.82	12	140	2.7	Ореп	12" main from fire hydrant tee to Scottsdale Road main. Includes losses for gate
S12Main3	Ss2	Scottsdale5	142.75	12	140	1.6	Onon	valve, tee, 2 x 45 degee elbow
SIZIVIAIIIS	332	Scottsdales	142.73	12	140	1.0	Ореп	valve, tee, 2 x 43 degee elbow
S20main1	S1	5A5	28.67	20	140	0.95	Onon	Stetson 20" main to 6" cross connect. Include gate valve and 3 tees for losses
32011la1111	31	JAJ	28.07	20	140	0.93	Ореп	Stetsoff 20 Main to 0 cross connect. Include gate valve and 3 tees for losses
S20Main2	S1	S2	66.65	20	140	0.65	Onen	Stetson 20" main from 6" cross connect to 8" tee. Include losses for tee and 2 taps.
32014101112	31	32	00.03	20	140	0.03	Орсп	Stetson 20" main from 8" tee to 6" cross connect. Include losses for cross connect
S20MAIN3	S3	S2	24	20	140	0.25	Onen	tee.
320WAINS	33	32	27	20	140	0.23	Орен	Stetson 20" main from 6" cross connect to 8" tee. Include losses for 3 x 22.5 degree
S20MAIN4	S3	S4	215.68	20	140	1.35	Onen	elbows, 2 tees, 1 gate valve, 1 tap and 8" tee.
S20MAIN5	S4	S5	46.89	20	140	0.35 (Stetson 20" main from 8" tee to 20" tee. Include losses for 20" tee.
32017111113	31		10.05	20	110	0.33	Орен	Stetson 20" main from 20" tee to 12" tee. Include losses for gate valve, 3 x 8" tees, 2
S20MAIN6	S5	S6	251.96	20	140	1.2	Onen	x 12.5 elbows, and 12" tee.
320WAIN0	33	30	251.50	20	140	1.2	Орен	X 12.5 Clooks, and 12 ccc.
S20MAIN7	S6	S7	37.16	20	140	0.25	Onen	Stetson 20" main from 12" tee to proposed 12" tee. Include losses for 12" tee.
3201711117			37.10		110	0.23	Орен	Stetson 20" main from proposed 12" tee to alley. Include losses for 3 x 22.5 degree
S20MAIN8	S7	S8	177.31	20	140	0.3	Onen	elbow.
32017111110			177.51		110	0.5	Орен	CIDOW.
S20MAIN9	S8	S9	151.44	20	140	0.1	Open	Stetson 20" main from Alley to Scottsdale Road. Include losses for 22.5 degree elbow.
ezerri irre			131.11		1.0	0.1	Орен	Steed of the main from the process and from morage 1835es for 2215 acgree cisewi
S6Main1	S3	5aS3	118.31	6	140	1.45	Open	6" Main from Tee in 5th Avenue to Tee in Stetson. Includes 3 Tee, 1 tap, 1 gate valve.
Scottsdale8Main1	Scottsdale1	Scottsdale2	33.32	8	140	0.35 (•	8" Main in Scottsdale Road to 6" tee at 5th avenue. Includes losses for tee.
								8" Main in Scottsdale Road from 6" tee at 5th avenue to 8" tee at 6th Avenue.
Scottsdale8Main2	Scottsdale3	Scottsdale2	195.8	8	140	2.15	Open	Includes losses for tee, 3 taps, 3 gate valves, 2 x 45 degree bends.
							-	8" Main in Scottsdale Road from 8" tee at 5th avenue to fire hydrant tee. Includes
Scottsdale8Main3	Scottsdale3	Scottsdale4	20.2	8	140	0.35	Open	losses for tee.
							-	8" Main from fire hydran tee to Stetson 8" tee. Includes losses for 2 gate valve, 4 x
Scottsdale8Main4	Scottsdale5	Scottsdale4	489.94	8	140	3.05	Open	45 degree elbow, 5 taps, 2 x 4" tees, 1x8" tee.
Scottsdale8Main5	Scottsdale5	Scottsdale6	39.34	8	140		Open	8" main from Stetson tee to end of model
ScottsdaleRoadFireHydrant1	5As8	ScottsdaleRoadFH1	27.63	6	140		Open	Service Line for Hydrant on Scottsdale Road. Includes Gate Valve.
ScottsdaleRoadFireHydrant2	Scottsdale4	ScottsdaleRoadFH2	17.42	6	140		Open	Service Line for Scottsdale Road Fire Hydrant. Includes Gate Valve.
StetsonHydrant1	Ss1	StetsonFH1	37.17	6	140		Open	Service Line for Stetson Fire Hydrant. Includes Gate Valve.
StetsonHydrant2	Ss2	StetsonFH2	5.48	6	140		Open	Service line for Stetson Fire Hydrant. Includes gate valve.