

Drainage Reports

MULTI-USE SPORTS FIELDS NWC of Bell Road \& 94 ${ }^{\text {th }}$ Street

PRELIMINARY DESIGN DATA REPORT

Project No. PA75200538

SEPTEMBER, 2020

Prepared For:
City of Scottsdale
7447 East Indian School Road Scottsdale, Arizona 85251

Prepared By:
Gavan \& Barker, Inc. 3030 North Central Avenue, Suite 1530 Phoenix, Arizona 85012 Phone: (602) 200-0031

Fax: (602) 200-0032
Job No. 2003

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 PROJECT DESCRIPTION/BACKGROUND 1
1.2 PROJECT LOCATION 1
2.0 STORM WATER RETENTION BASIN ANALYSIS 2
2.1 APPROACH 2
2.2 RETENTION BASIN DESIGN 2
2.3 BASIN DRAIN TIMES 4
3.0 HYDROLOGIC ANALYSIS 4
3.1 APPROACH 4
3.2 EXISTING CONDITIONS HEC-1 MODEL 5
3.3 PROPOSED CONDITIONS HEC-1 MODEL 6
$3.494^{\text {TH }}$ STREET WASH HYDROLOGIC ANALYSIS 8
4.0 STORM DRAIN DESIGN AND ANALYSIS 10
4.1 OFFSITE STORM DRAIN DESIGN 10
4.2 MAIN PARKING LOT STORM DRAIN DESIGN 11
5.0 CULVERT DESIGN \& WASH HYDRUALIC ANALYSIS 11
5.1 APPROACH 11
$5.294^{\text {TH }}$ STREET WASH HYDRAULIC ANALYSIS 12
$5.3 \quad 91^{\text {ST }}$ STREET WASH HYDRAULIC ANALYSIS 13
LIST OF FIGURES
Figure 1: Vicinity Map 1

LIST OF APPENDICES

Appendix A:

\qquadRetention Basin Design Calculations

Appendix B: \qquad Hydrologic Analysis
Appendix C: \qquad Storm Drain Design Calculations
Appendix D: \qquad Culvert Design \& Wash Hydraulic Analysis
Appendix E: \qquad Digital Data

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION/BACKGROUND

The purpose of this drainage study is to provide a basis of design for the drainage infrastructure associated with the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street. The proposed complex will primarily consist of six lighted multi-use fields, two parking lots, restroom and maintenance buildings with potable water and sewer connections, sidewalks, offsite street improvements and a non-potable water connection for field and landscaping irrigation purposes. The improvements are located on a 40 -acre undisturbed natural desert parcel that is situated within the Lower Desert Environmentally Sensitive Lands (ESL) zoning district. The sports complex site improvements will be designed to meet the drainage and ESL design requirements as outlined in the City of Scottsdale Design Standards \& Policies Manual (DSPM).

1.2 PROJECT LOCATION

The project is located within the City of Scottsdale on the northwest corner of Bell Road and $94^{\text {th }}$ Street. It is bound by Bell Road on the south, $94^{\text {th }}$ Street on the east, the powerline corridor on the west and the existing Desert Parks Vista Apartments/Corporate Center at DC Ranch on the north. Refer to Figure 1 below for a detailed vicinity map.

Figure 1: Vicinity Map

2.0 STORM WATER RETENTION BASIN ANALYSIS

2.1 APPROACH

The storm water retention basin system for the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street was designed in accordance with the City of Scottsdale Drainage Policies and Standards Manual (DSPM).

The grading plan for the sports fields complex includes, four (4) shallow retention basins as well as one 3-foot deep detention basin. Three of the retention basins are located adjacent to the new $94^{\text {th }}$ Street parking lot with the fourth located on the north end of the main parking lot underneath the powerline corridor. Each of these basins is graded in such a manner as to not appear "basinlike" but instead blend in with the surroundings. The maximum basin depth of these basins is less than 1 foot, with gentler basin side slopes. Each of these basins was also designed to retain the higher of either the first flush volume or the increase in the pre vs post 100-year, 2-hour runoff volume. The largest basin on the project site is located just north of Bell Road, east of the entrance drive. This detention basin is 3.0 feet deep, with $4 \mathrm{H}: 1 \mathrm{~V}$ side slopes that is partially drained through an outlet pipe to the existing dual 6'x3' concrete box culvert underneath Bell Road. The detention basin was designed to store the first flush volume as well as reduce the post development peak discharges through the existing culvert underneath Bell Road below the pre development peak discharge for the 2-, 10- and 100-year, 6-hour storm events.

2.2 RETENTION BASIN DESIGN

The Multi-Use Sports Fields at the NWC of Bell Road \& $94^{\text {th }}$ Street consist of new maintenance and restroom buildings, parking lots, hardscaped plaza area and six new multi-use sand-based sports fields. Excluding the sports fields, the project area is graded into five separate drainage areas, each draining into one of the new retention/detention basins. Since the project area is in an ESL zoning district where disturbance to the natural desert is to be minimized, the four new retention basins were not designed to store the full 100-year, 2-hour runoff volume. Instead they were designed to store the greater of either the 1) first flush volume or 2) the increase in runoff volume from the 100-year, 2-hour storm event from pre-development conditions. Refer to Appendix A for the retention basin design drainage area maps as well as the first flush and increase in pre vs post runoff volume calculation spreadsheets.

A slightly different approach was taken for the design of the basin adjacent to Bell Road at the south side of the project area. This basin was designed to store the first flush volume from the main parking lot as well as the hardscaped plaza areas adjacent to the restroom building. However, instead of storing the increase in runoff volume due to the conversion of natural desert into impervious asphalt, concrete and roof area, the basin was designed as a detention basin with two outlet structures that drain through a 24 -inch pipe to the existing dual 6' x 3 ' concrete box culvert underneath Bell Road, just west of the entrance drive. The low-level outlet structure consists of a standard grated catch basin that is located 0.5 feet above the basin bottom and is used to drain the basin volume through a 3 -inch orifice plate to a 15 -inch drainpipe. The high-level outlet structure consists of a raised grate catch basin that is less susceptible to clogging and is located 2.2 feet above the basin bottom. This basin outlet configuration allows the basin to function as a retention basin up to a depth of 2.2 feet, with the low-level outlet structure serving as a basin bleed-off. During large storm events, once depths of ponding in the basin exceed 2.2 feet, the basin becomes a detention basin with water spilling through the high-level outlet structure. This configuration allows the basin to not only store the first flush runoff volume from the parking lot and plaza areas below a depth of 2.2 feet, but also reduces the post-development peak discharges below the predevelopment peak discharges for the 2 -, 10- and 100-year, 6-hour storm events. Refer to Appendix A for the retention basin design drainage area map and first flush volume calculations as well as Appendix B for the HEC-1 hydrologic modeling of the existing and proposed conditions.

The six multi-use sports fields were not included in the first flush or pre vs post runoff volume calculations because they will not generate any surface runoff. The two primary reasons why the sports fields will not generate any surface runoff is that they are flat and that the underlying soil stratification consist of a 12-inch sand-based root mix surface layer above a 4-inch gravel layer in conjunction with a subgrade drainage system that consists of 4 -inch perforated pipes and a 12 -inch drain pipe. The sand-based fields with the advanced subgrade drainage system are designed to infiltrate the rainfall efficiently through the sand layer and convey it through the coarse gravel layer to the 4 -inch perforated pipes before eventually discharging it to the spinal 12 -inch drain pipe. Since the rainfall onto the fields, as well as the small surrounding pathway and plaza areas that drain into the fields get filtered through the 12 -inch sand layer, the water is already naturally filtered and no first flush storage is necessary. The 12 -inch subgrade drainpipe is discharged

September 2020
directly to the detention basin high-level outlet structure where it bypasses the detention basin and flows out into the existing Bell Road culvert.

2.3 BASIN DRAIN TIMES

The basins were designed to dispose of the stored runoff volume in the allowable 36 hours. In order to meet this criteria; Double Ring Infiltration Tests were performed at the site of the proposed basins. The three, one-foot deep retention basins adjacent to the $94^{\text {th }}$ Street parking lot were found to infiltrate the stored runoff volume in under 10 hours. A basin drain was not calculated for the new retention basin on the north side of the main parking lot because it is only 0.3 feet deep and the DSPM allows for basins less than 0.5 feet to be disposed of through infiltration without showing basin drain time calculations.

The basin drain time for the detention basin was calculated by determining the time required for the low-level bleed off catch basin to lower the depth of ponding in the basin to 6 inches, with the bottom 6-inches calculated to dissipate through infiltration. As can be seen in the proposed conditions model in Appendix B, during the 100-year, 6-hour storm event it takes the 3-inch orifice plate in the low-level grated catch basin a little over 17 hours to drain the basin to a depth of ponding of 0.5 feet. The remaining depth was found to infiltrated into the ground in about 7 hours. Therefore, the total basin drain time for the large detention basin is approximately 24 hours. Refer to Appendix A for the detailed basin drain time calculations.

3.0 HYDROLOGIC ANALYSIS

3.1 APPROACH

The hydrologic analysis for the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street was performed in accordance with the $D S P M$ utilizing the hydrologic methods outlined in the Flood Control District of Maricopa County (District) Drainage Design Manual for Maricopa County - Hydrology (Volume I).

There are two separate hydrologic models that are used to determine design peak discharges throughout the project site. The first hydrologic model is the "Pinnacle Peak South Area Drainage Master Study" (PPS ADMS) FLO-2D model that was prepared by TY Lin International for the City of Scottsdale in 2013. The primary purpose of the FLO-2D model was to determine the $94^{\text {th }}$ Street Wash inflows that enter the project site. The second hydrologic model is a new HEC-1
model that was developed for the 2-, 10- and 100-year, 6-hour storm events utilizing the Districts' DDMSW software. The HEC-1 model was used to determine additional offsite inflows from the north into the project area as well as peak discharges that are generated within the project site under existing and proposed conditions.

3.2 EXISTING CONDITIONS HEC-1 MODEL

The existing conditions HEC-1 hydrologic model was developed to determine the pre development peak discharges that are currently impacting the project site. In order to determine drainage area boundaries and main flow paths within the project area, as well as the upstream offsite area that contributes to the project area; the latest aerial photography and topographic mapping that was developed for the design of the project was used. To supplement the new topographic mapping, the one-foot contour mapping that was developed for the Pinnacle Peak South ADMS was obtained from the City of Scottsdale and utilized in areas that were developed prior to the contour mapping flight date in 2007. For areas that have been recently developed, any available as-built plans were inspected, and site visits were made to determine the appropriate flow paths and drainage area boundaries.

The existing conditions HEC-1 model includes the entire project area west of the $94^{\text {th }}$ Street Wash. As will be discussed in greater detail in Section 3.4 below, the PPS ADMS FLO-2D model was used to determine the peak discharges for upstream watershed area of the $94^{\text {th }}$ Street Wash. However, two of the offsite watershed areas were included in the existing conditions HEC-1 model. The first one, identified with the HEC-1 Subbasin ID of ODA1 is the contributing drainage area for the $91^{\text {st }}$ Street Wash that crosses the project area on the northwest corner. The second, much smaller one is identified with the HEC-1 Subbasin ID of ODA2 and is the contributing drainage area for the wash that concentrates at the northern boundary of the project area between the Corporate Center at DC Ranch and the Desert Parks Vista Condominium Complex. Refer to the existing condition HEC-1 Schematic and Drainage Area Map in Appendix B for the location and extents of the two main offsite watershed areas.

In addition to the three major washes that enter the site, there are several other minor washes that traverse the project area. These washes generally flow in a southwesterly direction leaving the project area and discharging to the Arizona State Land parcel immediately west of the project boundary and eventually discharging underneath Bell Road through either the dual 6 'x3' box
culvert at the new entrance drive or the triple barrel 8'x3' concrete box culvert at $91^{\text {st }}$ Street. Refer to Appendix B for the existing conditions HEC-1 Schematic as well as the 100-year, 6-hour HEC1 hydrologic model. The Digital Data in Appendix E contains the 2-year and 10-year HEC-1 models.

3.3 PROPOSED CONDITIONS HEC-1 MODEL

The proposed conditions HEC-1 hydrologic model was developed by incorporating the proposed Multi-Use Sports Fields improvements into the existing conditions hydrologic model. The offsite drainage area boundaries remained the same, but new onsite drainage area boundaries were drawn based on the grading and drainage design of the main parking lot and the adjacent hardscape plaza areas. Due to the conversion of natural desert to impervious parking and hardscaped area, the runoff volumes, and discharges for the western half of the project area increased significantly under the proposed conditions as compared to the existing conditions. In order to meet the ESL ordinance requirements of keeping the post development peak discharges below the predevelopment conditions, the proposed conditions HEC-1 model incorporated a onsite storm drain and detention basin that is used to attenuate the flows before they leave the project site below the existing conditions for the $2-, 10-$ and 100 -year, 6 -hour storm events. In addition to the onsite, main parking lot storm drain, an offsite storm drain was included that will convey the offsite flows from the north project boundary through the project site, outletting to the same location where the wash currently leaves the project site. Refer to the proposed conditions HEC-1 Schematic and Drainage Area Map in Appendix B for the updated drainage area boundaries.

Within the project area, the proposed conditions HEC-1 hydrology model serves two primary purposes. The first is to design the main parking lot storm drain and size the new detention basin north of Bell Road to attenuate the increased peak discharges below the existing conditions peak discharges that leave the site. The grading of the main parking lot underneath the powerline corridor was done in such a manner as to crate four shallow sump locations where new storm drain catch basin will intercept the 100-year, 6-hour design peak discharges and convey them through a new storm drain to the detention basin at Bell Road. As was previously mentioned, the detention basin was designed to store the first flush runoff volume from the parking lot area, while larger flows were designed to spill through the high-level outlet structure and discharge through the existing dual 6'x3' Bell Road culvert. Even with the larger contributing drainage area (i.e. under

September 2020
existing conditions, the northwest part of the project area is not part of the drainage area to the dual 6'x3' Bell Road box culvert), the design of the detention basin with its low- and high-level outlet structures achieved the desired goal of reducing the peak discharges through the Bell Road culvert under the proposed conditions to be equal or less than the existing conditions for all three storm events. Refer to the Appendix B for the HEC-1 Schematic and the 100-year, 6-hour HEC-1 model as well as the digital data folder in Appendix E for 2- and 10-year, 6-hour HEC-1 models.

The second purpose of the proposed conditions HEC-1 hydrologic model was to determine the amount of runoff from the multi-use sports fields drainage system during the $2-10$ - and 100 -year, 6 -hour storm events. Since the sports fields are designed to be flat and consist of a 12 -inch deep sand-based root zone mix, there will be no surface runoff generated during even the most intense part of a the 100 -year storm event. The first step in determining how much water infiltrates through the sand-based root zone mix was to determine how much available pore space the sand layer has to store water. Recommended root zone mixes for sand-based fields call for the sand to have a total porosity between $35 \%-55 \%$, this is the total void space between the sand particles. However, not all of this void space has the ability to store water that infiltrates through the surface. The ideal root zone mix has a capillary porosity, which is defined as the amount of the void space that is capable of storing water, between $15 \%-25 \%$. Assuming an average capillary porosity of 20% we can calculate that the 12 -sand layer has a storage capacity of 2.4 inches (12 in $\mathrm{x} 0.20=2.4 \mathrm{in}$) over the surface area of field. However, this 2.4 inches was further reduced by applying a 50% safety factor to account for potentially wet antecedent moisture conditions that could be a result of recent irrigation or a storm event. Therefore, for the flat portion of the multi-use sports fields an Initial Abstraction value of 1.2 inches was applied to represent the available storage associated with the 20% capillary porosity within the 12 -inch sand-based root zone mix.

Once the storm event exceeds the storage capacity of root zone mix associated with the capillary porosity, water will drain into the underlying 4-inch thick gravel layer. The gravel layer has larger voids that are not conducive to "storing" water, but allow it to freely flow through the layer and into the 4-inch diameter perforated pipes that are located 20 feet on center underneath the sports fields. Once water enters these perforated pipes it is conveyed to a 12 -inch subgrade drain and out underneath the fields to the high-level outlet structure at the detention basin on the north side of Bell Road. From there the outflow is piped directly to the dual 6'x3' box culvert under Bell Road.

The total open void space within the gravel layer was calculated based on a conservative total porosity of 35%. To utilize the storage capacity within the 4 -inch and 12 -inch pipes as well as the large open void space in the gravel layer, orifice plates were designed to limit the flow out from underneath each of the fields. The orifice plates will meter the flow out from underneath each of the fields thereby allowing water to pond in the pipes and within the gravel layer to limit the flow out from underneath each one of the fields. This approach to the design of the subgrade drainage system will utilize the full available storage capacity underneath each of the sports fields before discharging directly to the dual 6 'x3' Bell Road box culvert via the detention basin outlet pipe.

$3.4 \quad 94^{\text {TH }}$ STREET WASH HYDROLOGIC ANALYSIS

The $94^{\text {th }}$ Street Wash is located on the east side of the project site, paralleling $94^{\text {th }}$ Street and discharging under Bell Road in a five barrel $8^{\prime} \times 3$ ' concrete box culvert. As can be seen in the $94^{\text {th }}$ Street Wash Drainage Area Map in Appendix B, the wash is comprised of a major confluence at the northeast corner of the project site, with two main wash forks entering from the north and three inflows from $94^{\text {th }}$ Street. The main (western) wash fork extends upstream to Legacy Drive, roughly paralleling $94^{\text {th }}$ Street on the west before turning and extending to the existing dual 8 ' $\times 2$ ' concrete box culvert that penetrates the Reata Wash levee at Hualapai Drive. The secondary (eastern) wash fork extends upstream to $94^{\text {th }}$ Street before meandering through the Desert Haciendas subdivision to a second 10 'x2' concrete box culvert that penetrates the Reata Wash levee. The two culvert crossings underneath $94^{\text {th }}$ Street have relatively small drainage areas and do not receive split flows from Reata Wash.

The total contributing drainage area to the $94^{\text {th }}$ Street Wash at the project site is 185 acres. In addition to the runoff form the contributing drainage area, there are the two locations described above where runoff enters the watershed from Reata Wash. There is also one location, just downstream of Hualapai Drive where water from the main $94^{\text {th }}$ Street Wash out of the contributing drainage area during large storm events. To analyze this complex hydrologic condition, the PPS ADMS 100-year, 24-hour FLO-2D model was reviewed and modified to better represent existing flow conditions. Upstream of the project site, within the contributing drainage area to the $94^{\text {th }}$ Street Wash at the project location, the modifications primarily consisted of adjusting grid elevations to 1) prevent flows from breaking out of the two main washes and 2) directing the runoff generated in the contributing drainage area to the correct location based on inspection of contour

September 2020
mapping, aerial photography and as-built plans. These modifications removed any erroneous flow splits or diversions that can easily occur as part of a large regional drainage master study. The modeling of the two Reata Pass levee penetration box culverts was not modified from the original PPS ADMS study model.

As can be seen in the drainage area map in Appendix B, there is approximately 285 cfs that enters the west fork of the $94^{\text {th }}$ Street Wash through the northern dual $8^{\prime} \times 2$ ' concrete box culvert from Reata Wash. Just downstream of the culvert, approximately 200 cfs stays within the wash while approximately 85 cfs splits out in a southwesterly direction. With the addition of the runoff from the contributing drainage area, the peak inflow for the west fork of the $94^{\text {th }}$ Street Wash at the project site is 260 cfs . For the east fork of the $94^{\text {th }}$ Street Wash there is approximately 205 cfs that enters through the 10 'x2' concrete box culvert from Reata Wash. This flow increases with the addition of the runoff generated from the contributing watershed area to 245 cfs that enters the project site.

The largest inflow from $94^{\text {th }}$ Street occurs through an existing 36 -inch pipe culvert that conveys flows from the Desert Haciendas subdivision underneath $94^{\text {th }}$ Street. According to the modified FLO-2D model the peak inflow through the pipe culvert into the $94^{\text {th }}$ Street Wash is 35 cfs. The remaining two inflow locations, just south of the 36 -inch culvert, consist of a side-by-side 18 -inch storm drain and pipe culvert as well as a scupper that drains the west half of $94^{\text {th }}$ Street to the wash. The contributing drainage area to the existing 18 -inch culvert was cut off by the development of the Desert Haciendas subdivision and the runoff generated from the small $94^{\text {th }}$ Street watershed that is intercepted by the 18 -inch storm drain and scupper would not have a meaningful impact on the peak discharge of the $94^{\text {th }}$ Street Wash through the project area. Refer to Appendix B for the $94^{\text {th }}$ Street Wash Drainage Area Map that shows the pertinent offsite drainage infrastructure as well as the location of the three main inflows to the $94^{\text {th }}$ Street wash through the project area. Appendix B also includes the three main inflow hydrographs that were obtained from the modified FLO-2D model, which in turn can be found in the Digital Data folder in Appendix E.

The three main inflows were used as direct hydrograph inputs to a two-dimensional HEC-RAS hydraulics model that was used to determine the existing and proposed conditions water surface elevation of the $94^{\text {th }}$ Street Wash through the project area as well as the design of the proposed
triple barrel 10 'x5' concrete box culvert crossing. The routing of the three main inflows through the project area using the HEC-RAS model resulted in a combined peak discharge through the existing Bell Road culvert of 480 cfs . For a more detailed discussion of the hydraulic analysis refer to Section 5.0 of this report.

4.0 STORM DRAIN DESIGN AND ANALYSIS

Two new storm drains were designed as part of the Multi-Use Sports Fields project. The first is a new storm drain that conveys the offsite flows that enter the project site from the north between the Corporate Center at DC Rand and the Desert Parks Vista Condominium Complex. The second storm drain is a new onsite storm drain that is located along the western edge of the main parking lot underneath the powerline corridor. This storm drain intercepts the runoff from the parking lot and adjacent hardscaped plaza areas with four new combination catch basins and conveys it to the new detention basin on the north side of Bell Road, east of the entrance drive. Refer to Appendix C for the Storm Drain Location Map showing the extents of the offsite and main parking lot storm drains in relationship to the proposed improvements.

4.1 OFFSITE STORM DRAIN DESIGN

The proposed offsite storm drain was designed to intercept the calculated 100-year, 6-hour peak discharge that concentrates at the northern boundary between the Corporate Center at DC Ranch and the Desert Parks Vista Condominiums Complex and convey it through the site to its existing outfall location on the southwest corner of the project area. As can be seen in the HEC-1 model in Appendix B, the design peak discharge at this location is 42 cfs (HEC-1 Subbasin ID: ODA2). Under existing conditions, the alignment of the offsite storm drain roughly follows the alignment of the existing wash that flows through the project area discharging at the same location as the existing wash.

At the upstream end, the offsite storm drain intercepts the design discharge with a headwall inlet. The proposed 36 -inch storm drain traverses under the two northern most multi-use fields before entering the main parking lot just west of the new public restroom building. From there it traverses the parking lot at a diagonal before discharging through a headwall outlet structure into the existing wash. Refer to the Storm Drain Location Map in Appendix C for the location of the offsite storm drain as well as the Offsite Storm Drain Hydraulic Grade Line (HGL) design calculations.

4.2 MAIN PARKING LOT STORM DRAIN DESIGN

The main parking lot storm drain was designed to intercept the calculated 100-year, 6-hour peak discharges from the main parking lot underneath the powerline corridor as well as the adjacent hardscape plaza areas. The storm drain starts at the new detention basin north of Bell Road, west of the entrance drive and extends north along the western edge of the new parking lot. The proposed grading of the parking lot was done in such a manner as to create four shallow sumps where four new combination catch basins were designed to intercept the entire 100-year, 6-hour peak discharges from the new parking lot.

The proposed storm drain and catch basins were designed to prevent any water from overtopping the new western curb and flowing into the adjacent Arizona State Land parcel located immediately west of the project area. This approach ensures that all of the runoff generated from the proposed parking lot and adjacent hardscape areas will be intercepted by the new storm drain and routed through the new detention basin before discharging to the existing dual 6'x3' Bell Road box culvert just west of the entrance drive. Refer to the Storm Drain Location Map in Appendix C for the location of the main parking lot storm drain as well as the Storm Drain Hydraulic Grade Line (HGL) design and Catch Basin sizing calculations.

5.0 CULVERT DESIGN \& WASH HYDRUALIC ANALYSIS

5.1 APPROACH

The hydraulic analysis for the two main washes that impact the project site was performed using the latest US Army Corps of Engineers HEC-RAS modeling software with two-dimensional surface flow capability. The hydraulic analysis was done in accordance with the City's DSPM as well as the District's Hydraulics Manual.

The two-dimensional HEC-RAS hydraulics model was developed to determine the water surface elevations for the two main washes that cross the project site. The $94^{\text {th }}$ Street Wash traverses the project site by paralleling $94^{\text {th }}$ Street, while the $91^{\text {st }}$ Street Wash bisects the project site on the northwest corner. In addition to determining the water surface elevations under existing conditions, the two-dimensional hydraulics model was also used to design two new culvert crossings and calculated the proposed conditions water surface elevations.

$5.2 \quad 94^{\mathrm{TH}}$ STREET WASH HYDRAULIC ANALYSIS

For the existing conditions analysis, the detailed topographic survey that was prepared as part of the project was used to generate the required HEC-RAS geometry files. For the 94th Street Wash model, the HEC-RAS computational domain mesh extends from the Desert Parks Vista Condominium Complex downstream past the existing five barrel 8'x3' Bell Road culvert. The extents of the computational domain incorporate the existing Bell Road culvert as well as the three main inflow locations within the project area for a peak discharge of 480 cfs . The hydraulic analysis of the existing conditions showed that the wash as well as the existing Bell Road box culvert have sufficient capacity to convey the combined peak discharge through the project area, with no water spilling over Bell Road or splitting out of the 94th Street Wash to the west. Refer to the 94th Street Wash Hydraulic Analysis Map in Appendix D for the hydraulic modeling extents, existing conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model.

The design of the Multi-Use Sports Fields and associated infrastructure leaves the $94^{\text {th }}$ Street Wash mostly undisturbed. The main impact to the wash occurs at the proposed culvert crossing from the new $94^{\text {th }}$ Street parking lot to the pathway system that traverses the sports fields. This culvert was designed to convey the entire combined upstream 100-year, 24-hour peak discharge of 480 cfs with no overtopping or spilling into the adjacent fields or into the new parking lot. In order to achieve this, a triple barrel 10 'x5' concrete box culvert is recommended to be installed that will have sufficient capacity to convey the entire design peak discharge underneath the pathway connections. Even though the culyert has a 5 -foot height, the bottom 12 -inches of the culvert will be buried below the existing sandy wash bottom to allow for free movement of sediment though the culvert during storm events. In addition to burring the bottom 12 -inches, the proposed 30 -foot culvert width will span the exiting 25 -foot jurisdictional wash bottom. The combination of burring the bottom 12-inches and spanning the entire sandy wash bottom will make the new culvert less susceptible to clogging due to sediment depositions.

The new culvert will raise the water surface elevations in the wash by about 2.0 feet from 1578.5 feet to 1580.5 feet. However due to the relative steep nature of the area, the increase in water surface elevation only propagates upstream for about 200 feet, well within the project limits. Therefore, the proposed improvements, including the construction of the new culvert crossing will
not have a detrimental impact on the water surface elevation upstream within the Desert Parks Vista Condominium Complex or downstream of the Bell Road box culvert. Refer to the $94^{\text {th }}$ Street Culvert Hydraulics Analysis Map in Appendix D for the proposed conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS twodimensional hydraulics model.

$5.3 \quad 91^{\text {ST }}$ STREET WASH HYDRAULIC ANALYSIS

For the $91^{\text {st }}$ Street Wash model, the HEC-RAS computational domain mesh extends upstream and downstream to the boundary of the topographic survey that was obtained as part of the project area. As calculated with the HEC-1 Hydrologic Model, the 100-year, 6-hour design peak discharge for the $91^{\text {st }}$ Street Wash that enters the project site is 140 cfs . The hydraulic analysis of the existing conditions showed that the wash has sufficient capacity to convey the upstream design peak discharge with no water splitting out from the $91^{\text {st }}$ Street Wash. Refer to the $91^{\text {st }}$ Street Wash Hydraulic Analysis Map in Appendix D for the hydraulic modeling extents, existing conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model

The only impact of the Multi-Use Sports Fields project on the $91^{\text {st }}$ Street Wash is the construction of the $91^{\text {st }}$ Street entrance driveway. The driveway which connects the new main parking lot on the northwest corner of the project site to $91^{\text {st }}$ Street must cross the existing jurisdictional wash. Like the $94^{\text {th }}$ Street Wash culvert, this culvert was designed to convey the entire 100-year, 6-hour design peak discharge of 140 cfs. To achieve this, a single 10 ' $\times 5$ ' concrete box culvert is recommended to be installed at the wash crossing. To reduce the clogging potential of the new culvert, the bottom foot of the culvert will be buried and the width of the culvert will span the existing 8 -foot wide sandy wash bottom to allow for free movement of the sediment through the culvert thereby reducing its clogging potential.

The new crossing will raise the water surface elevations in the wash upstream of the culvert by about 0.8 feet from 1580.0 feet to 1580.8 feet. However due to the relative steep nature of the area, the increase in water surface elevation only propagates upstream for about 50 feet, raising the water surface elevation at the property boundary by less than 0.5 feet and at the existing dual 36inch culvert outfall by less than 0.1 foot. Therefore, the proposed entrance driveway as well as the new concrete box culvert will span the existing jurisdictional wash bottom and only slightly
increase the water surface elevation within $91^{\text {st }}$ Wash in the Corporate Center at DC Ranch. Refer to the $91^{\text {st }}$ Street Culvert Hydraulics Analysis Map in Appendix D for the proposed conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model.

Appendix A: Retention Basin Design Calculations

Gavan Barker

94th STREET PARKING LOT

100-yr, 2-hr PRE vs. POST \& FIRST FLUSH RUNOFF VOLUME SUMMARY TABLE

SUBBASIN	Contributing Drainage Area (sq/ft)	$\begin{gathered} \text { Pre Development } \\ \text { Runoff Volume } \\ \text { (cu.ft.) } \\ \hline \end{gathered}$	Post Development Runoff Volume (cu.ft.)	$\begin{gathered} \text { Increase in } \\ \text { Runoff Volume } \\ \text { (cu.ft.) } \end{gathered}$	First Flush Volume (cu.ft.)
RB\#1	35,490	3,128	5,400	2,273	1,149
RB\#2	24,100	3,355	3,582	227	762
RB\#3	27,580	2,430	4,114	1,683	875

LEGEND
Drainage Area Boundary
Major Flow Paths

91 st STREET ${ }^{\text {an }}$
91st \$TREET (FUTURE EXTENSION)

100-yr, 2-hr PRE vs. POST \& FIRST FLUSH RUNOFF VOLUME SUMMARY TABLE

SUBBASIN	$\begin{gathered} \hline \text { Contributing } \\ \text { Drainage Area } \\ \text { (sq/ft) } \\ \hline \hline \end{gathered}$	Pre Development Runoff Volume (cu.ft.)	Post Development Runoff Volume (cu.ft.)	$\begin{gathered} \text { Increase in } \\ \text { Runoff Volume } \\ \text { (cu.ft.) } \\ \hline \hline \end{gathered}$	First Flush Volume (cu.ft.)
RB\#4	17,980	1,584	1,584	0	337
DB	329,710	NA*	NA*	NA*	11,286

MAIN PARKING LOT
PRE vs. POST \& FIRST FLUSH DRAINAGE AREA MAP

LEGEND

Drainage Area Boundary

-_- Major Flow Paths
Local Flow Direction

- Natin New Storm Drain

$$
\stackrel{-}{0}-90^{\prime} \quad 180^{\prime}
$$

$$
\text { SCALE: } 1 \text { " = 180' }
$$

${ }^{\text {NOTESS }}$ *Refert the HEC-1 Hydrology Model in Appendix B for the Pre vs. Post Runoff Analys

First Flush Volume Calculation

First Flush Volume Calculation

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

North 94th Street Parking Lot First-Flush Volume Calculation (Retention Basin \#1)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	23,210	0.95	22,049.5	0.5	918.7
Desert Landscaping	12,280	0.45	5,526.0	0.5	230.3
Total Contributing Drainage Area:	35,490	Total First Flush Runoff Volume: 1,149			

94th Street Scupper First-Flush Volume Calculation (Retention Basin \#2)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	14,890	0.95	14,145.5	0.5	589.4
Desert Landscaping	9,210	0.45	4,144.5	0.5	172.7
Total Contributing Drainage Area:	24,100	Total First Flush Runoff Volume: 762			

South 94th Street Parking Lot First-Flush Volume Calculation (Retention Basin \#3)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	17,190	0.95	16,330.5	0.5	680.4
Desert Landscaping	10,390	0.45	4,675.5	0.5	194.8
Total Contributing Drainage Area:	27,580	Total First Flush Runoff Volume: 875			

First Flush Volume Calculation

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
City of Scottsdale Contract No.: 2020-068-COS

North Main Parking Lot First-Flush Volume Calculation (Retention Basin \#4)

Cover Type	Area (A) (sq.ft)	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Desert Landscaping	17,980	0.45	8,091.0	0.5	337.1
Total Contributing Drainage Area:	17,980	Total First Flush Runoff Volume: 337			

Main Parking Lot \& Sports Complex Plaza Areas First-Flush Volume Calculation (Retention Basin \#5)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	244,990	0.95	232,740.5	0.5	9,697.5
Desert Landscaping	84,720	0.45	38,124.0	0.5	1,588.5
Total Contributing Drainage Area:	329,710	Total First Flush Runoff Volume: 11,286			

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

Pre vs. Post 100-year, 2-hour Runoff Volume Calculation

North 94th Street Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
andscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

North 94th Street Parking Lot Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#1)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	35,490	0.45	15,970.5	2.35	3,127.6
Total Contributing Drainage Area:	35,490	Total Pre Development Runoff Volume 3,12			

North 94th Street Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#1)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	23,210	0.95	22,049.5	2.35	4,318.0
Desert Landscaping	12,280	0.45	5,526.0	2.35	1,082.2
Total Contributing Drainage Area:	35,490	Total Post Development Runoff Volume			5,400
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				2,273
	Total First Flush Volume Required:				1,149
	Retention Basin \#1 Provided Retention Volume:				2,597

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

94th Street Scupper Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

94th Street Scupper Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#2)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	12,570	0.95	11,941.5	2.35	2,338.5
Undeveloped Desert	11,530	0.45	5,188.5	2.35	1,016.1
Total Contributing Drainage Area:	24,100	Total Pre Development Runoff Volume 3,355			

94th Street Scupper Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#2)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	14,890	0.95	14,145.5	2.35	2,770.2
Desert Landscaping	9,210	0.45	4,144.5	2.35	811.6
Total Contributing Drainage Area:	24,100	Total Post Development Runoff Volume			3,582
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				$\underline{\underline{227}}$ $\underline{762}$
	Retention Basin \#2 Provided Retention Volume:				1,121

[^0]
South 94th Street Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

South 94th Street Parking Lot Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#3)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	27,580	0.45	12,411.0	2.35	2,430.5
Total Contributing Drainage Area:	27,580	Total Pre Development Runoff Volume $\quad \mathbf{2 , 4 3 0}$			

South 94th Street Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#3)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	17,190	0.95	16,330.5	2.35	3,198.1
Desert Landscaping	10,390	0.45	4,675.5	2.35	915.6
Total Contributing Drainage Area:	27,580	Total Post Development Runoff Volume			4,114
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				1,683
	Total First Flush Volume Required:				875
	Retention Basin \#3 Provided Retention Volume:				2,223

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

North Main Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

North Main Parking Lot Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#4)

Cover Type	Area (A) (sq.ft)	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	17,980	0.45	8,091.0	2.35	1,584.5
Total Contributing Drainage Area:	17,980	Total Pre Development Runoff Volume 1,584			

North Main Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#4)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Desert Landscaping	17,980	0.45	8,091.0	2.35	1,584.5
Total Contributing Drainage Area:	17,980	Total Post Development Runoff Volume			1,584
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				$\underline{\underline{0}}$
		Total First Flush Volume Required:			337
		Retention Basin \#4 Provided Retention Volume (0.5 ft Depth):			560

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

Main Parking Lot \& Sports Complex Plaza Areas Pre vs Post Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Givil Engineoring \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

Main Parking Lot \& Sports Complex Plaza Areas Pre 100-yr 2-hr Runoff Volume (Detention Basin)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Refer to the HEC-1 Hydrology Model in Appendix B for the Pre vs. Post Runoff Analysis					

Total Contributing Drainage Area: $329,710 \quad$ Total Pre Development Runoff Volume 0

Main Parking Lot \& Sports Complex Plaza Areas Post 100-yr 2-hr Runoff Volume (Detention Basin)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Refer to the HEC-1 Hydrology Model in Appendix B for the Pre vs. Post Runoff Analysis					
Total Contributing Drainage Area:	329,710		Total Post	ent Runoff Volu	0
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				$\underline{\underline{0}}$
	Total First Flush Volume Required:				11,286
	Retention Basin \#5 Provided Retention Volume ${ }^{\text {: }}$				21,344

${ }^{\sim}$ The provided retention basin \#5 volume is calculated to the primary basin outlet spill elevation of 1567.20 ft .

Retention Basin Drain Time Calculation

Basin Drain Times

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture

City of Scottsdale Contract No.: 2020-068-COS

Retention Basin	Depth of Ponding (ft)	Tested Perc. Rate* (in/hr)	Safty Factor^	Effective Perc. Rate (ft/hr)	Basin Drain Time (hr)
Retention Basin \#1	1.00	2.50	0.5	0.1042	9.6
Retention Basin \#2	1.00	2.50	0.5	0.1042	9.6
Retention Basin \#3	1.00	3.25	0.5	0.1354	7.4
Retention Basin \#4	0.30	Depth of ponding less than 6 inches, therefore no drain time calculation performed			
Detention Basin ${ }^{\text {~ }}$	0.50	1.75	0.5	0.0729	6.9

*The tested percolation rate was obtained from a Double Ring Infiltration Test performed by Speedie and Associates at the location of the four proposed basins. Refer to the letter by Speedie and Associates in the Digital Data folder for the location and results of the infiltration test.
${ }^{\wedge}$ In accordance with the City of Scottsdale Drainage Policies and Standards Manual a safty factor of 50% was applied to the tested percolation rate to obtain the effective percolation rate.
~Depths of ponding in the detention basin greater than 0.50 feet are drained through the basin bleed-off inlet and 3-inch orifice plate. During the 100-year, 6-hour storm event, the bleed-off inlet will reduce the basin depth to 0.50 feet in approximately 17.3 hours. The additional 0.50 feet, below the bleed-off inlet invert will drain in an additional 6.9 hours, for a total basin drain time of 24.2 hours.

Appendix B: Hydrologic Analysis

Existing Conditions: HEC-1 Schematic w/100-year, 6-hour Model

LEGEND \& HEC-1 SYMBOLOGY

Drainage Area Boundar

\rightarrow Major Flow Paths

Offsite Inflow Location

OOA1) HEC-1 Subbasin Identifier
 (NWHEH) HEC-1 Combine
 HEC-1 Route

 The existing 94th Street 18 -inch p pipe culvert, 18 -inch storm drain and scuppers were not modeded in the FLO-2D model. The

Gavan Barker

```
1*********************************************
FLOOD HYDROGRAPH PACKAGE (HEC-1)
    JUN 1998
* VERSION 4.1
RUN DATE 06SEP20 TIME 12:51:11
* *********************************************
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

X	X	XXXXXXX	XXXXX		
X	X	X	X	X	
X	X	X	X		XX
XXXXXXX	XXXX	X		XXXXX	X
X	X	X	X		
X	X	X	X	X	
X	X	XXXXXXX	XXXXX		X
					XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS: READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	

HEC-1 INPUT
\qquad

KK	RWASH	ROUTE						
RS	1	FLOW						
RC	0.045	0.030	0.045	1020	0.0168	3.00		
RX	0.00	10.00	20.00	25.00	30.00	35.00	45.00	55.00
RY	3.00	2.00	1.00	0.00	0.00	1.00	2.00	3.00
ZW	A=RWASH	B=ROUTE	C=FLOW	F=CALC				
\star								

KK PDA6 BASIN
BA 0.010

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION
$1 *) ~$

* U.S. ARMY CORPS OF ENGINEERS
U.S. ARMY CORPS OF ENGINEERS 609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

City of Scottsdale
MULTI-USE FIELDS - Multi-Use Sports Fields NWC Bell Rd \& 94th St
100 YEAR
6 Hour Storm
Unit Hydrograph: Clark
Storm: Single
06/02/2020
9 IO
OUTPUT CONTROL VARIABLE
IPRNT 5 PRINT CONTROL
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

IT
HYDROGRAPH TIME DATA

NMIN	2	MINUTES IN COMPUTATION INTERVAL
IDATE	1JAN99	STARTING DATE

ITIME 0000 STARTING TIME
360 NUMBER OF HYDROGRAPH ORDINATES
NDDATE 1JAN99 ENDING DATE
NDTIME 1158 ENDING TIME
ICENT 19 CENTURY MARK
COMPUTATION INTERVAL . 03 HOURS TOTAL TIME BASE 11.97 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION
FEET

$$
\begin{aligned}
& \text { FLOW } \\
& \text { STORAGE VOLUME } \\
& \text { SURFACE AREA }
\end{aligned}
$$

TEMPERATURE

	OPERATION	STATION	$\begin{aligned} & \text { PEAK } \\ & \text { FLOW } \end{aligned}$	TIME OF PEAK			FOR MAXIMUM		$\begin{array}{r} \text { BASIN } \\ \text { AREA } \end{array}$	$\begin{gathered} \text { MAXIMUM } \\ \text { STAGE } \end{gathered}$	TIME OF MAX STAGE
+					6-HOUR		24 -HOUR	72-HOUR			
	HYDROGRAPH AT										
+		ODA3	2.	4.07	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA7	39.	4.13	3.		1.	1.	. 02		
	2 COMBINED AT										
+		CC6X3	41.	4.13	3.		1.	1.	. 03		
	HYDROGRAPH AT										
+		ODA2	42.	4.03	3.		2.	2.	. 02		
	ROUTED TO										
+		RWASH	40.	4.07	3.		2.	2.	. 02		
+										. 90	4.07
	HYDROGRAPH AT										
+		PDA6	12.	4.17	1.		1.	1.	. 01		
	2 COMBINED AT										
+		CWASH1	49.	4.07	4.		2.	2.	. 03		
	ROUTED TO										
+		RWASH1	44.	4.13	4.		2.	2.	. 03		
+										. 79	4.13
	HYDROGRAPH AT										
+		PDA5	3.	4.17	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA4	6.	4.13	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA3	2.	4.07	0.		0.	0.	. 00		
	3 COMBINED AT										
+		CWASH2	11.	4.13	1.		0.	0.	. 01		

*** NORMAL END OF HEC-1 ***
Number of Records:
File Size: 209.4 Kbytes

$$
\text { Percent Inactive: . } 0
$$

Proposed Conditions: HEC-1 Schematic w/100-year, 6-hour Model

LEGEND \& HEC-1 SYMBOLOGY

Drainage Area Boundary

Major Flow Paths

$-: \cdot \rightarrow$ Offsite Inflow Location

(O041) HEC-1 Subbasin Identifier

 HEC-1 Combine
 HEC-1 Route

The existing 94 th Street 18 -inch pipe culvert, 18 -inch storm drain and scuppers were not modeled in the FLO-2D model. The

Gavan Barker

```
1*********************************************
FLOOD HYDROGRAPH PACKAGE (HEC-1)
    JUN 1998
* VERSION 4.1
RUN DATE 06SEP20 TIME 12:51:11
* *********************************************
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

X	X	XXXXXXX	XXXXX		
X	X	X	X	X	
X	X	X	X		XX
XXXXXXX	XXXX	X		XXXXX	X
X	X	X	X		
X	X	X	X	X	
X	X	XXXXXXX	XXXXX		X
					XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS: READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	

HEC-1 INPUT
\qquad

KK	RWASH	ROUTE						
RS	1	FLOW						
RC	0.045	0.030	0.045	1020	0.0168	3.00		
RX	0.00	10.00	20.00	25.00	30.00	35.00	45.00	55.00
RY	3.00	2.00	1.00	0.00	0.00	1.00	2.00	3.00
ZW	A=RWASH	B=ROUTE	C=FLOW	F=CALC				
\star								

KK PDA6 BASIN
BA 0.010

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION
$1 *) ~$

* U.S. ARMY CORPS OF ENGINEERS
U.S. ARMY CORPS OF ENGINEERS 609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

City of Scottsdale
MULTI-USE FIELDS - Multi-Use Sports Fields NWC Bell Rd \& 94th St
100 YEAR
6 Hour Storm
Unit Hydrograph: Clark
Storm: Single
06/02/2020
9 IO
OUTPUT CONTROL VARIABLE
IPRNT 5 PRINT CONTROL
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

IT
HYDROGRAPH TIME DATA

NMIN	2	MINUTES IN COMPUTATION INTERVAL
IDATE	1JAN99	STARTING DATE

ITIME 0000 STARTING TIME
360 NUMBER OF HYDROGRAPH ORDINATES
NDDATE 1JAN99 ENDING DATE
NDTIME 1158 ENDING TIME
ICENT 19 CENTURY MARK
COMPUTATION INTERVAL . 03 HOURS TOTAL TIME BASE 11.97 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION
FEET

$$
\begin{aligned}
& \text { FLOW } \\
& \text { STORAGE VOLUME } \\
& \text { SURFACE AREA }
\end{aligned}
$$

TEMPERATURE

	OPERATION	STATION	$\begin{aligned} & \text { PEAK } \\ & \text { FLOW } \end{aligned}$	TIME OF PEAK			FOR MAXIMUM		$\begin{array}{r} \text { BASIN } \\ \text { AREA } \end{array}$	$\begin{gathered} \text { MAXIMUM } \\ \text { STAGE } \end{gathered}$	TIME OF MAX STAGE
+					6-HOUR		24 -HOUR	72-HOUR			
	HYDROGRAPH AT										
+		ODA3	2.	4.07	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA7	39.	4.13	3.		1.	1.	. 02		
	2 COMBINED AT										
+		CC6X3	41.	4.13	3.		1.	1.	. 03		
	HYDROGRAPH AT										
+		ODA2	42.	4.03	3.		2.	2.	. 02		
	ROUTED TO										
+		RWASH	40.	4.07	3.		2.	2.	. 02		
+										. 90	4.07
	HYDROGRAPH AT										
+		PDA6	12.	4.17	1.		1.	1.	. 01		
	2 COMBINED AT										
+		CWASH1	49.	4.07	4.		2.	2.	. 03		
	ROUTED TO										
+		RWASH1	44.	4.13	4.		2.	2.	. 03		
+										. 79	4.13
	HYDROGRAPH AT										
+		PDA5	3.	4.17	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA4	6.	4.13	0.		0.	0.	. 00		
	HYDROGRAPH AT										
+		PDA3	2.	4.07	0.		0.	0.	. 00		
	3 COMBINED AT										
+		CWASH2	11.	4.13	1.		0.	0.	. 01		

*** NORMAL END OF HEC-1 ***
Number of Records:
File Size: 209.4 Kbytes

$$
\text { Percent Inactive: . } 0
$$

94 ${ }^{\text {th }}$ Street Wash Drainage Area Map \& Inflow Hydrographs

94th STREET WASH DRAINAGE AREA MAP

US BC1 - Inflow Hydrograph (FP XSEC: 188)

US BC2 - Inflow Hydrograph (FP XSEC: 191)

US BC3 - Inflow Hydrograph (FP XSEC: 198)

10-UP-2020
9/30/2020

Appendix C: Storm Drain Design Calculations

Offsite Storm Drain Hydraulic Grade Line (HGL) Summary Table

Location	Type of Headloss		Headloss				
		HGL Elevation					
Headwall Inlet	Junction Loss (Entrance Headloss)^	(ft)					
Offsite MH\#3 to Headwall Inlet	Storm Drain Friction Headloss*	0.11	1587.70				
Offsite MH\#3	Junction Loss (Straight-Through Headloss)^	0.14	1585.88				
Offsite MH\#2 to Offsite MH\#3	Storm Drain Friction Headloss*	0.03	1582.40				
Offsite MH\#2	Junction Loss (Bend Headloss)	1.19	1580.43				
Offsite MH\#1 to Offsite MH\#2	Storm Drain Friction Headloss	0.04	1575.62				
Offsite MH\#1	Junction Loss (Straight-Through Headloss)	1.46	1575.58				
Outlet HW to Offsite MH\#1	Storm Drain Friction Headloss	0.03	1574.12				
Outlet Headwall	Junction Loss (Exit Headloss)	1.04	1574.09				
Tailwater Elevation @ Outlet Headwall = $=$							1572.50

* The pipe segments between Offsite MH\#2 and the Headwall Inlet are in open channel flow conditions with the hydraulic grade line governed by the 36" Offsite Storm Drain normal depth capacity. Refer to the Channel Reports at the end of these calculations for the proposed storm drain normal depth analysis.
\wedge The hydraulic grade line elevation at Offsite MH\#3 and at the Headwall Inlet are governed by the inlet control interception capacity of the 36" Offsite Storm Drain. Refer to the Inlet Control Nomograph calculation at the end of these calculations for the proposed storm drain interception capacity calculation.

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 1 of 10

Offsite Storm Drain - Hydraulic Grade Line Calculation

The procedures outlined in Chapter 4 of the Hydraulics Drainage Design Manual for Maricopa County were used in order to compute the Hydraulic Grade Line (HGL) for the Offsite Storm Drain. The equations and figures used henceforth were also taken from the manual.

The new offsite storm drain was designed to intercept the 100-year 6-hour peak discharge of 42 cfs from the ODA2 HEC-1 sub-basin area. The ODA2 sub-basin concentrates at the northern boundary of the project site. Under existing conditions, the flow is conveyed in a natural wash through the project area in the southwesterly direction. Under proposed conditions, the offsite storm drain is designed to intercept the 100 -year peak discharge and convey it underneath the new multi-use fields, plaza area and parking lot. The offsite storm drain is discharged in the same location where the existing wash leaves the project site. No additional flows are added to the offsite storm drain from the onsite watershed area. Refer to Appendix B for the HEC-1 Hydrologic Model Results.

Determine Tailwater Elevation:

Since the offiste storm drian discharges into a natural wash, with no backwater effects, the starting tailwater elevation will not be impacted by the hydraulics of the natural wash. Therefore, the soffit elevation of the proposed 36 -inch offsite strom drain at the outlet headwall is the starting tailwater elevation. The invert of the 36 -inch offsite storm drain is 1569.50 ft , which translates to a starting tailwater elevaton of 1572.50 ft .

Tailwater Elevation @ Outlet Headwall $=1572.50 \mathrm{ft}$
Compute the Storm Drain Outlet Headloss at Outlet Headwall
Exit Loss:
$h_{o}=1.0 \frac{V^{2}}{2 g}$ (Equation 4.16)
where;
$h_{o}=$ Outlet Headloss at Manhole
$Q=$ Storm Drain Design Discharge

$$
Q=42.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42.0}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road $\& 94^{\text {th }}$ Street
Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 2 of 10
$h_{o}=1.0 \frac{V^{2}}{2 g}$
$h_{o}=1.0 \frac{5.94^{2}}{2 \times 32.2}$
$h_{o}=0.55 \mathrm{ft}$
$\mathbf{h}_{o}=0.55 \mathrm{ft}$ @ Outlet Headwall

Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Outlet Headwall to Offsite MH\#1)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=267 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' } s \text { Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039
$$

$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 267$
$h_{f}=1.04 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.04 \mathrm{ft}(\text { Outlet Headwall to Offsite MH\#1) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 4 of 10

Compute the Headloss at Manhole (Offsite MH \#1)
Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$
$\mathrm{h}_{\mathrm{mh}}=0.03 \mathrm{ft}$ @ Offsite MH \#1

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 5 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#1 to Offsite MH\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=375 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge

$$
Q=42.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039$
$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 375$
$h_{f}=1.46 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.46 \mathrm{ft}(\text { Offsite MH\#1 to Offsite MH\#2) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 6 of 10

Compute the Bend Headloss at Manhole (Offsite MH\#2)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=11^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.08 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=42 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.08 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.04 \mathrm{ft}$

$$
\mathbf{h}_{m h}=\mathbf{0 . 0 4} \mathrm{ft} @ \text { Offsite MH\#2 }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 7 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#2 to Offsite MH\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=304 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$$
V=\text { Velocity of Flow }
$$

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039
$$

$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 304$
$h_{f}=1.19 \mathrm{ft}$

$$
\mathrm{h}_{\mathrm{f}}=1.19 \mathrm{ft}(\text { Offsite } M H \# 2 \text { to Offsite MH\#3) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 8 of 10

Compute the Headloss at Manhole (Offsite MH \#3)
Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=42 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$
$h_{m h}=0.03 \mathrm{ft}$ @ Offsite MH\#3

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 9 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#3 to Headwall Inlet)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=35 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

K = Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039$
$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 35$
$h_{f}=0.14 f t$

$$
\mathrm{h}_{f}=0.14 \mathrm{ft}(\text { Offs ite } \text { MH\#3 to Headwall Inlet })
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 10 of 10

Compute the Entrance Headloss at Headwall (Headwall Inlet)
Entrance Loss:
$h_{i}=k_{e n} \frac{V^{2}}{2 g} \quad($ Equation 4.15)
where;
$h_{i}=$ Headloss at Pipe Entrance
$k_{\text {en }}=$ Entrance Loss Coefficient $k_{\text {en }}=0.20$ (Table 5.1)
$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{i}=k_{e n} \frac{V^{2}}{2 g}$
$h_{i}=0.20 \frac{5.94^{2}}{2 \times 32.2}$
$h_{i}=0.11 \mathrm{ft}$

$$
\mathbf{h}_{i}=0.11 \mathrm{ft} @ \text { Headwall Inlet }
$$

Channel Report

36" Offsite Storm Drain Normal Depth Analysis (Offsite MH\#2 to Offsite MH\#3)

Circular
Diameter $(\mathrm{ft}) \quad=3.00$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
Known Q
$=42.00$

Highlighted

Depth (ft)	$=1.53$
Q (cfs)	$=42.00$
Area (sqft)	$=3.64$
Velocity (ft/s)	$=11.53$
Wetted Perim (ft)	$=4.78$
Crit Depth, Yc (ft)	$=2.12$
Top Width (ft)	$=3.00$
EGL (ft)	$=3.60$

Elev (ft)

Reach (ft)

Channel Report

36" Offsite Storm Drain Normal Depth Analysis (Offsite MH\#3 to Headwall Inlet)

Circular
Diameter $(\mathrm{ft}) \quad=3.00$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=1585.00$
= 1.10
$=0.013$

Known Q
$=42.00$

Highlighted

Depth (ft)	$=1.68$
Q (cfs)	$=42.00$
Area (sqft)	$=4.09$
Velocity (ft/s)	$=10.27$
Wetted Perim (ft)	$=5.08$
Crit Depth, Yc (ft)	$=2.12$
Top Width (ft)	$=2.98$
EGL (ft)	$=3.32$

Elev (ft)

Reach (ft)

Figure 5.20
Inlet Control Headwater Depth for Concrete Pipe Culverts
(USDOT, FHWA, HDS-5, 1985)

Main Parking Lot Storm Drain Design Calculations

Main Parking Lot Storm Drain Hydraulic Grade Line (HGL) Summary Table			
Location	Type of Headloss	Headloss	HGL Elevation
		(ft)	(ft)
CB\#4	Junction Loss (Entrance Headloss)^	0.04	1576.00
CB\#3 to CB\#4	Storm Drain Friction Headloss*	0.92	1575.29
CB\#3	Junction Loss (Straight-Through Catch Basin)	0.01	1573.61
CB\#2 to CB\#3	Storm Drain Friction Headloss	3.03	1573.60
CB\#2	Junction Loss (Straight-Through Catch Basin)	0.03	1570.57
MH\#4 to CB\#2	Storm Drain Friction Headloss	1.74	1570.54
MH\#4	Junction Loss (Combined Junction Loss)	0.22	1568.80
MH\#3 to MH\#4	Storm Drain Friction Headloss	0.18	1568.58
MH\#3	Junction Loss (Bend Headloss)	0.02	1568.40
MH\#2 to MH\#3	Storm Drain Friction Headloss	0.18	1568.38
MH\#2	Junction Loss (Bend Headloss)	0.02	1568.20
MH\#1 to MH\#2	Storm Drain Friction Headloss	0.19	1568.18
MH\#1	Junction Loss (Bend Headloss)	0.05	1567.99
Outlet Headwall to MH\#1	Storm Drain Friction Headloss	0.02	1567.94
Outlet Headwall	Junction Loss (Exit Headloss)	0.19	1567.92
Tailwater Elevation @ Outlet Headwall =			1567.73

* The pipe segment between CB\#3 and CB\#4 is in open channel flow conditions with the hydraulic grade line governed by the proposed 18" Storm Drain normal depth capacity. Refer to the Channel Reports at the end of these calculations for the proposed storm drain normal depth analysis.
${ }^{\wedge}$ The hydraulic grade line elevation at Catch Basin \#4 is governed by the inlet control interception capacity of the 18" Storm Drain. Refer to the Inlet Control Nomograph calculation at the end of these calculations for the proposed storm drain interception capacity calculation.

Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 1 of 18

Storm Drain - Hydraulic Grade Line Calculation

The procedures outlined in Chapter 4 of the Hydraulics Drainage Design Manual for Maricopa County were used in order to compute the Hydraulic Grade Line (HGL) for the Offsite Storm Drain. The equations and figures used henceforth were also taken from the manual.

The new storm drain was designed to intercept the 100-year 6-hour peak discharge from the main parking lot and plaza areas and convey it to the proposed detention basin north of Bell Road, just east of the entrance drive. The main parking lot was graded to drain to 4 shallow lot spots where new combination curb opening and grate catch basins will be designed to intercept peak discharge from the upstream contributing drainage area. The proposed storm drain is designed to convey the 100 -year, 6 -hour peak discharge of 6 cfs from the most upstream Catch Basin \#1 (HEC-1 Sub-basin ID: NDA1). Further downstream, the storm drain is designed to convey a combined 11 cfs from the Catch Basin \#2 (HEC-1 Combine: CSD1), a combined 19 cfs from Catch Basin \#3 (HEC-1 Combine: CSD2) and finally 25 cfs from Manhole \#4 (HEC-1 Combine: CSD3). No offsite flows are added to the main parking lot storm drain. Refer to Appendix B for the HEC-1 Hydrologic Model Results.

Determine Tailwater Elevation:

The new storm drain discharges into the proposed new detention basin. The starting tailwater elevation for the design of the strom drain was taken as the stage in the new detention basin at the time the 100 -year, 6 -hour peak discharge enters the detention basin through the storm drain. From the Proposed Conditions HEC-1 Model it was found that at a time of $4: 02 \mathrm{hr}$ a peak flow of 25 cfs enters the basin with the water level in the detention basin at 1567.73 ft . Therefore, the starting tailwater elevation for the proposed storm drain is 1567.73 ft .

Tailwater Elevation @ Outlet Headwall = 1567.73 ft
(Water Level in Detention Basin @ Peak Inflow)

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 2 of 18

Compute the Storm Drain Outlet Headloss at Outlet Headwall

Exit Loss:

$h_{o}=1.0 \frac{V^{2}}{2 g}($ Equation 4.16)
where;
$h_{o}=$ Outlet Headloss at Manhole
$Q=$ Storm Drain Design Discharge

$$
Q=25.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25.0}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{f t}{\mathrm{~s}}
$$

$h_{o}=1.0 \frac{V^{2}}{2 g}$
$h_{o}=1.0 \frac{3.54^{2}}{2 \times 32.2}$
$h_{o}=0.19 \mathrm{ft}$

$$
h_{o}=0.19 \mathrm{ft} @ \text { Outlet Headwall }
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (Outlet Headwall to MH\#1)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=16 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$$
V=\text { Velocity of Flow }
$$

$$
V=\frac{Q}{A}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning 's Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 16$
$h_{f}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{f}=0.02 \mathrm{ft}(\text { Outle t Headwall to MH\#1) }
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 4 of 18

Compute the Bend Headloss at Manhole (MH\#1)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=39^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.24 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.24 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.05 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.05 \mathrm{ft} @ M H \# 1
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#1 to MH\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=139 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=25.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 139$
$h_{f}=0.19 f t$

$$
\mathrm{h}_{f}=0.19 \mathrm{ft}(M H \# 1 \text { to } M H \# 2)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 6 of 18

Compute the Bend Headloss at Manhole (MH\#2)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=25^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.12 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.12 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.02 \mathrm{ft} @ M H \# 2
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#2 to MH\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=127 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 127$
$h_{f}=0.18 \mathrm{ft}$

$$
\mathrm{h}_{f}=0.18 \mathrm{ft}(\mathrm{MH} \# 2 \text { to } \mathrm{MH} \# 3)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 8 of 18

Compute the Bend Headloss at Manhole (MH\#3)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=28^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.12 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.12 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.02 \mathrm{ft} @ M H \# 3
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#3 to MH\#4)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=126 f t
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$$
V=\text { Velocity of Flow }
$$

$$
V=\frac{Q}{A}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 126$
$h_{f}=0.18 \mathrm{ft}$

$$
h_{f}=0.18 \mathrm{ft}(\mathrm{MH} \# 3 \text { to MH\#4)}
$$

Compute the Combined Headloss at Manhole (MH\#4)
At this junction, compute the headloss associated with the Straight-Through Manhole and the lateral inflow at the manhole. The combined headloss is the total headloss at this Manhole (MH\#4).

Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.01 \mathrm{ft}$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003

Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Junction Loss (Lateral Inflow):

$$
\begin{equation*}
h_{j}=\frac{2\left(Q_{2} V_{2}-Q_{1} V_{1}-Q_{3} V_{3} \cos \theta\right)}{\left(A_{1}+A_{2}\right) g}+\frac{V_{1}^{2}}{2 g}-\frac{V_{2}^{2}}{2 g} \tag{4.10b}
\end{equation*}
$$

where;
$h_{j}=$ Headloss at Junction with lateral inflow
$A_{1}=$ Upstream Flow Area

$$
A_{1}=\pi \frac{d^{2}}{4}=\pi \frac{2.0^{2}}{4}=3.14 f t^{2}
$$

$A_{2}=$ Downstream Flow Area

$$
A_{2}=\pi \frac{d^{2}}{4}=\pi \frac{3.0^{2}}{4}=7.07 f t^{2}
$$

$Q_{1}=$ Upstream Flow Rate
$Q_{1}=19 c f s$
$Q_{2}=$ Downstream Flow Rate
$Q_{2}=25 c f s$
$Q_{3}=Q_{2}-Q_{1}=$ Lateral Flow Rate
$Q_{3}=6 c f s$
NOTE: The lateral flow rate represents the flow rate in the 18 -inch Catch Basin \#1 connector pipe.
$V_{1}=$ Upstream Flow Velocity

$$
V_{1}=\frac{Q_{1}}{A_{1}}=\frac{19}{3.14}=6.05 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$V_{2}=$ Downstream Flow Velocity

$$
V_{2}=\frac{Q_{2}}{A_{2}}=\frac{25}{7.07}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$V_{3}=$ Lateral Flow Velocity

$$
V_{3}=\frac{Q_{3}}{A_{3}}=\frac{6}{\pi \times\left(\frac{1.50^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\theta=$ Angle between lateral and main storm drain line $\theta=90^{\circ}$ (Figure 4.7)
$h_{j}=\frac{2(25 \times 3.54-19 \times 6.05-6 \times 3.40 \times \cos (90))}{(3.14+7.07) 32.2}+\frac{6.05^{2}}{2 \times 32.2}-\frac{3.54^{2}}{2 \times 32.2}$
$h_{j}=0.21 \mathrm{ft}$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 12 of 18

Total Combined Headloss at Manhole (MH\#4)
$h_{m h_{\text {TOTAL }}}=h_{m h}+h_{j}$
$h_{m h_{\text {TOTAL }}}=0.01+0.21$
$h_{\text {mh }}^{\text {TOTАL }}=0.22 \mathrm{ft}$
$h_{m h}=0.22 \mathrm{ft}$ @ MH\#4

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003

Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Compute the Friction Headloss - Proposed 24" Storm Drain (MH\#4 to CB\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=249 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=19 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=2.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$$
V=\text { Velocity of Flow }
$$

$$
V=\frac{Q}{A}=\frac{19}{\pi \times\left(\frac{2.0^{2}}{4}\right)}=6.05 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

n = Manning ' s Roughness

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{2.0}{4}=0.500 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{6.05^{2}}{2 \times 32.2 \times 0.500^{\frac{4}{3}}}=0.0070$
$h_{f}=S_{f} L$
$h_{f}=0.0070 \times 248$
$h_{f}=1.74 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.74 \text { ft }(\mathrm{MH} \# 4 \text { to CB } \# 2)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 14 of 18

Compute the Headloss at Catch Basin (CB \#2)
Straight-Through Catch Basin Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss at catch basin
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=11 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{11}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=6.22 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{6.22^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$

$$
\mathbf{h}_{m h}=\mathbf{0 . 0 3 ~ f t} @ C B \# 2
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 18" Storm Drain (CB\#2 to CB\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=278 f t
$$

$Q=$ Storm Drain Design Discharge
$Q=11 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{11}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=6.22 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning 's Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

K = Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{1.5}{4}=0.375 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{6.22^{2}}{2 \times 32.2 \times 0.375^{\frac{4}{3}}}=0.0109$
$h_{f}=S_{f} L$
$h_{f}=0.0109 \times 278$
$h_{f}=3.03 \mathrm{ft}$

$$
\mathrm{h}_{f}=3.03 \mathrm{ft}(C B \# 2 \text { to CB\#3 })
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 16 of 18

Compute the Headloss at Catch Basin (CB \#3)
Straight-Through Catch Basin Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g}($ Equation 4.11$)$
where;
$h_{m h}=$ Headloss at catch basin
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=6 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{f t}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{3.40^{2}}{2 \times 32.2}$
$h_{m h}=0.01 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.01 \mathrm{ft} @ C B \# 3
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 17 of 18

Compute the Friction Headloss - Proposed 18" Storm Drain (CB\#3 to CB\#4)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=278 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=6 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=1.5 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{f t}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{1.5}{4}=0.375 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.40^{2}}{2 \times 32.2 \times 0.375^{\frac{4}{3}}}=0.0033$
$h_{f}=S_{f} L$
$h_{f}=0.0033 \times 278$
$h_{f}=0.92 \mathrm{ft}$

$$
\mathrm{h}_{f}=0.92 \text { ft }(C B \# 3 \text { to CB\#4) }
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 18 of 18

Compute the Entrance Headloss at Catch Basin (CB\#4)
Entrance Loss:
$h_{i}=k_{e n} \frac{V^{2}}{2 g} \quad($ Equation 4.15)
where;
$h_{i}=$ Headloss at Pipe Entrance
$k_{\text {en }}=$ Entrance Loss Coefficient $k_{\text {en }}=0.20$ (Table 5.1)
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{i}=k_{e n} \frac{V^{2}}{2 g}$
$h_{i}=0.20 \frac{3.40^{2}}{2 \times 32.2}$
$h_{i}=0.04 \mathrm{ft}$

$$
\mathbf{h}_{i}=0.04 \mathrm{ft} @ \mathrm{CB} \# 4
$$

Channel Report

18" Storm Drain Normal Depth Analysis (CB\#3 to CB\#4)

Circular
Diameter (ft) $\quad=1.50$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=1575.00$
$=1.10$
$=0.013$

Known Q
$=6.00$

Highlighted
Depth (ft)
$=0.79$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=6.000$
$=0.94$
$=6.35$
$=2.44$
$=0.95$
$=1.50$
$=1.42$

Elev (ft)

Section

Figure 5.20
Inlet Control Headwater Depth for Concrete Pipe Culverts
(USDOT, FHWA, HDS-5, 1985)

Main Parking Lot Storm Drain Inlet Sizing Calculations

Main Parking Lot - Catch Basin Design Calculations

The main parking at the Multi-Use Fields NWC of Bell Road \& $94^{\text {th }}$ Street sports complex is a $1 / 4$ mile long, linear parking lot located underneath the powerline corridor. The parking long is graded to drain to four shallow sumps that are drained by four catch basins connected to the proposed parking lot storm drain. The storm drain is discharged to the new detention basin located north of Bell Road, east of the entrance drive. The four sumps and corresponding catch basins are located approximately equidistant to each other, each designed to intercept the 100-year, 6-hour peak discharge from the parking lot and adjacent plaza area.

The four proposed inlets are located along the western edge of the main parking lot and are identified as Catch Basin \#1 (CB\#1) as the southernmost inlet, with Catch Basin \#4 (CB\#4) being the northernmost inlet. The remaining two inlets, Catch Basin \#2 (CB\#2) and Catch Basin \#3 $(\mathrm{CB} \# 3)$ located in the middle of the parking lot. The 100-year, 6-hour design peak discharges and the corresponding HEC-1 Sub-Basin IDs for each inlet are as follows:

- Catch Basin \#1 (CB\#1) - Q $100=6$ cfs (NDA4)
- Catch Basin \#2 (CB\#2) - Q $100=8$ cfs (NDA3)
- Catch Basin \#3 (CB\#3) - Q100=5 cfs (NDA2)
- Catch Basin \#4 (CB\#4) - Q100=6 cfs (NDA1)

Refer to the Storm Drain Design Location Map at the beginning of these calculations for the exact location of the proposed catch basins as well as Appendix B for the HEC-1 Hydrologic Model.

It is recommended to install a City of Phoenix Type "Q" (Triple) combination catch basin (Std. Det. No P1572) with a total curb opening and grate length of 10 feet at each of the four sump locations. As can be seen in the following catch basin design calculations, the proposed catch basins have the capacity to intercept the entire 100-year, 6-hour design peak discharge. With the proposed catch basins located on the west curb line of the proposed parking lot, the additional benefit of using the Type "Q" catch basins is that it has the maintenance basin underneath the gutter, which will not protrude behind the back of curb into the fill slope

Date:

 September, 2020Prepared By: Omer Karovic
Page 2 of 11

Catch Basin Design@CB\#1
Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev Spill Elev = Low Point in the Curb Elevation at Catch Basin $=1570.10 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1570.10 \mathrm{ft}$
Weir Elev $=1570.10 \mathrm{ft}-4.75 \mathrm{in}=1569.70 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1570.10-1569.70$
$[d=0.40 \mathrm{ft}]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.40 f t<0.42 f t$

Weir Flow

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.40$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table $6.8-$ FCDMC Drainage Policies and Standards Manual)

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 f t\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \text { ft (Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.40^{1.5}$
$Q_{i}=9.16$

$$
Q_{i}=9 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#1 has an interception capacity of 9 cfs , which is greater than the 100-year, 6-hour design peak discharge of 6 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Project No. 2003 Subject: Main Parking Lot Catch Basin Design Calculations
Date: September, 2020
Prepared By: Omer Karovic
Page 4 of 11

Connector Pipe Sizing:

Determine the total (friction + inlet) headloss:

$$
\begin{aligned}
& h_{f}=S_{f} L \quad \text { Equation } 4.6-\text { Drainage Design Manual for Maricopa County, Hydraulics) } \\
& h_{i}=\left(1+k_{e n}\right)\left(\frac{V^{2}}{2 g}\right)
\end{aligned}
$$

Try a 18 inch $(\mathrm{d}=1.50 \mathrm{ft})$ Pipe:
$S_{f}=$ Pipe Friction Slope $=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}($ Equation 4.4 - Design Manual for Maricopa County, Hydraulics)
$K=$ Roughness Coefficient $=\frac{2 g n^{2}}{2.21}$ (Equation 4.5 - Design Manual for Maricopa County, Hydraulics)
$n=$ Manning' s roughness coefficient $=0.013$ (Typ)
$g=$ Acceleration due to Gravity $=32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$V=$ Velocity in Pipe $=\frac{Q}{A}$
$Q=$ Flow Rate in Pipe $=6 c f s$
$A=$ Cross - Section area of Pipe $=\pi \frac{d^{2}}{4}=\pi \frac{1.50^{2}}{4}=1.77 \mathrm{ft}^{2}$
$R_{h}=$ Hydraulic Radius $=\frac{A}{W_{p}}=\frac{\pi \frac{d^{2}}{4}}{\pi d}=\frac{d}{4}=\frac{1.50}{4}=0.375 \mathrm{ft}$
$L=$ Length of Pipe $=28 \mathrm{ft}$
$k_{\text {en }}=$ Entrance Loss Coefficient $=0.2$ (Table 5.1 - Design Manual for Maricopa County, Hydraulics)
$K=\frac{2 g n^{2}}{2.21}=\frac{2(32.2)(0.013)^{2}}{2.21}$
[$K=0.0049$]
$V=\frac{Q}{A}=\frac{6}{1.77}$
$\left[V=3.39 \frac{\mathrm{ft}}{\mathrm{s}}\right]$

Project No. 2003 Subject: Main Parking Lot Catch Basin Design Calculations
Date: September, 2020
Prepared By: Omer Karovic
Page 5 of 11
$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=(0.0049) \frac{3.39^{2}}{2(32.2)(0.375)^{\frac{4}{3}}}$
$\left[S_{f}=0.0032\right]$
Friction Headloss:
$h_{f}=S_{f} L$
$h_{f}=(0.0032)(28)$
$\left[h_{f}=0.09 f t\right]$
Inlet and Manhole Headloss:
$h_{i}=\left(1+k_{e n}\right)\left(\frac{V^{2}}{2 g}\right)$
$h_{i}=(1+0.2)\left(\frac{3.39^{2}}{2(32.2)}\right)$
$\left[h_{i}=0.21 \mathrm{ft}\right]$
Total Headloss:
$h_{t}=h_{f}+h_{i}$
$h_{t}=0.09+0.21$
$h_{t}=0.30$

$$
h_{t}=0.3 \mathrm{ft}
$$

Available Head: \mathbf{h}_{a}
Upstream HW Elevation: 1569.10 ft (Six inches below the proposed catch basin gutter elevation)
Per the City of Scottsdale Drainage Standards and Policies Manual, the hydraulic grade line (HGL) shall be a minimum of 6 " below the gutter elevation at the inlet. The gutter elevation of Catch Basin \#1 is 1569.60 ft .
Downstream HW Elevation: 1568.80 ft (Storm Drain HGL at Connection Manhole (MH\#4))
$h_{a}=$ Upstream HW - Downstream HW
$h_{a}=1569.10-1568.80$
$h_{a}=0.30$

$$
h_{a}=0.3 \mathrm{ft}
$$

The available head is equal to the total catch basin connector pipe headloss, therefore:
The 18-inch connector pipes have sufficient capacity to convey the intercepted flow

Catch Basin Design @ CB\#2

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev
Spill Elev = Low Point in the Curb Elevation at Catch Basin $=1573.50 \mathrm{ft}$
Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in
The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det.
P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.
Top of Curb Elevation at Catch Basin $=1573.50 \mathrm{ft}$
Weir Elev $=1573.50 \mathrm{ft}-4.75 \mathrm{in}=1573.10 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1573.50-1573.10$
$[d=0.40 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.40 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.40$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8-FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 \mathrm{ft}\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \mathrm{ft}(\text { Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 \mathrm{~W}\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.40^{1.5}$
$Q_{i}=9.16$

$$
Q_{i}=9 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#2 has an interception capacity of 9 cfs , which is greater than the 100 -year, 6 -hour design peak discharge of 8 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Catch Basin Design @ CB\#3

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev Spill Elev $=$ Low Point in the sump, gutter elevation at landscaped island $=1575.40 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1575.50 \mathrm{ft}$
Weir Elev $=1575.50 \mathrm{ft}-4.75 \mathrm{in}=1575.10 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1575.40-1575.10$
$[d=0.30 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.30 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.30$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8-FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 \mathrm{ft}\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \mathrm{ft}(\text { Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.30^{1.5}$
$Q_{i}=5.95$

$$
Q_{i}=6 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#3 has an interception capacity of 6 cfs , which is greater than the 100-year, 6-hour design peak discharge of 5 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Catch Basin Design@ CB\#4

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev Spill Elev $=$ Low Point in the sump, gutter elevation at landscaped island $=1578.90 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1579.00 \mathrm{ft}$
Weir Elev $=1579.00 \mathrm{ft}-4.75 \mathrm{in}=1578.60 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1578.90-1578.60$
$[d=0.30 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.30 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.30$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8-FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 \mathrm{ft}\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \mathrm{ft}(\text { Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.30^{1.5}$
$Q_{i}=5.95$

$$
Q_{i}=6 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#4 has an interception capacity of 6 cfs , which is greater than the 100-year, 6 -hour design peak discharge of 6 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Appendix D: Culvert Design \& Wash Hydraulic Analysis

- LEGEND

Proposed Condition Inundation Boundary
\int Proposed Condition Water Surface Elevation
-_ Existing Condition Inundation Boundary
Existing Condition Water Surface Elevation
$Q=260 C$ CFs M Max Peak Discharge \& Flow Direction

94th STREET WASH
Culvert Hydraulic Analysis

There are thre main wash inflows that enter the project site. The two largest ones enter foom the Deseet Parks Vista Condominium Comple

 flow rom the 18 -inch culvert and the flow intercepted by the cuil

LEGEND
—— Proposed Condition Inundation Boundary Proposed Condition Water Surface Elevation

- Existing Condition Inundation Boundary

Existing Condition Water Surface Elevation
$Q=140 \subset F S$ Max Peak Discharge \& Flow Direction

91st STREET WASH
Hydraulic Analysis

10-UP-2020 9/30/2020

Appendix E: Digital Data

> Please plan on providing a complete color hard copy of the report with next case submittal with full size exhibits.

MULTI-USE SPORTS FIELDS NWC of Bell Road \& 94 ${ }^{\text {th }}$ Street

PRELIMINARY DESIGN DATA REPORT

Based on direction from planning, this review was to be treated as a conceptual submittal, similar to a zoning case, and our review of the report was consistent with a zoning level case or conceptual submittal review and did not consist of a more detailed review of some aspects of the report (such as the HEC-1 model). A zoning level review is a 50% level of design and analysis review. The submittal is acceptable for the zoning level submittal. Additionally, based on direction from planning, there will be a subsequent submittal on the project which will be similar to the development review submittal a 75% level of design and analysis review. This review does, however, identify issues we will need addressed or need more information on in the subsequent case submittal. The report will need to be updated to meet the 75\% requirement at the next case submittal.

Project No. PA75200538

SEPTEMBER, 2020

Prepared For:
City of Scottsdale
7447 East Indian School Road Scottsdale, Arizona 85251

Provide engineering seal.

Prepared By:

Gavan \& Barker, Inc. 3030 North Central Avenue, Suite 1530

Phoenix, Arizona 85012
Phone: (602) 200-0031
Fax: (602) 200-0032
Job No. 2003

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 PROJECT DESCRIPTION/BACKGROUND 1
1.2 PROJECT LOCATION 1
2.0 STORM WATER RETENTION BASIN ANALYSIS 2
2.1 APPROACH 2
2.2 RETENTION BASIN DESIGN 2
2.3 BASIN DRAIN TIMES 4
3.0 HYDROLOGIC ANALYSIS 4
3.1 APPROACH 4
3.2 EXISTING CONDITIONS HEC-1 MODEL 5
3.3 PROPOSED CONDITIONS HEC-1 MODEL 6
$3.494^{\text {TH }}$ STREET WASH HYDROLOGIC ANALYSIS 8
4.0 STORM DRAIN DESIGN AND ANALYSIS 10
4.1 OFFSITE STORM DRAIN DESIGN 10
4.2 MAIN PARKING LOT STORM DRAIN DESIGN 11
5.0 CULVERT DESIGN \& WASH HYDRUALIC ANALYSIS 11
5.1 APPROACH 11
$5.294^{\text {TH }}$ STREET WASH HYDRAULIC ANALYSIS 12
$5.3 \quad 91^{\text {ST }}$ STREET WASH HYDRAULIC ANALYSIS 13
LIST OF FIGURES
Figure 1: Vicinity Map 1

LIST OF APPENDICES

Appendix A:

\qquadRetention Basin Design Calculations

Appendix B: \qquad Hydrologic Analysis
Appendix C: \qquad Storm Drain Design Calculations
Appendix D: \qquad Culvert Design \& Wash Hydraulic Analysis
Appendix E: \qquad Digital Data

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION/BACKGROUND

The purpose of this drainage study is to provide a basis of design for the drainage infrastructure associated with the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street. The proposed complex will primarily consist of six lighted multi-use fields, two parking lots, restroom and maintenance buildings with potable water and sewer connections, sidewalks, offsite street improvements and a non-potable water connection for field and landscaping irrigation purposes. The improvements are located on a 40 -acre undisturbed natural desert parcel that is situated within the Lower Desert Environmentally Sensitive Lands (ESL) zoning district. The sports complex site improvements will be designed to meet the drainage and ESL design requirements as outlined in the City of Scottsdale Design Standards \& Policies Manual (DSPM).

1.2 PROJECT LOCATION

The project is located within the City of Scottsdale on the northwest corner of Bell Road and $94^{\text {th }}$ Street. It is bound by Bell Road on the south, $94^{\text {th }}$ Street on the east, the powerline corridor on the west and the existing Desert Parks Vista Apartments/Corporate Center at DC Ranch on the north. Refer to Figure 1 below for a detailed vicinity map.

Figure 1: Vicinity Map

2.0 STORM WATER RETENTION BASIN ANALYSIS

2.1 APPROACH

The storm water retention basin system for the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street was designed in accordance with the City of Scottsdale Drainage Policies and Standards Manual (DSPM).

The grading plan for the sports fields complex includes, four (4) shallow retention basins as well as one 3-foot deep detention basin. Three of the retention basins are located adjacent to the new $94^{\text {th }}$ Street parking lot with the fourth located on the north end of the main parking lot underneath the powerline corridor. Each of these basins is graded in such a manner as to not appear "basinlike" but instead blend in with the surroundings. The maximum basin depth of these basins is less than 1 foot, with gentler basin side slopes. Each of these basins was also designed to retain the higher of either the first flush volume or the increase in the pre vs post 100-year, 2-hour runoff volume. The largest basin on the project site is located just north of Bell Road, east of the entrance drive. This detention basin is 3.0 feet deep, with $4 \mathrm{H}: 1 \mathrm{~V}$ side slopes that is partially drained through an outlet pipe to the existing dual 6'x3' concrete box culvert underneath Bell Road. The detention basin was designed to store the first flush volume as well as reduce the post development peak discharges through the existing culvert underneath Bell Road below the pre development peak discharge for the 2-, 10- and 100-year, 6-hour storm events.

2.2 RETENTION BASIN DESIGN

The Multi-Use Sports Fields at the NWC of Bell Road \& $94^{\text {th }}$ Street consist of new maintenance and restroom buildings, parking lots, hardscaped plaza area and six new multi-use sand-based sports fields. Excluding the sports fields, the project area is graded into five separate drainage areas, each draining into one of the new retention/detention basins. Since the project area is in an ESL zoning district where disturbance to the natural desert is to be minimized, the four new retention basins were not designed to store the full 100-year, 2-hour runoff volume. Instead they were designed to store the greater of either the 1) first flush volume or 2) the increase in runoff volume from the 100-year, 2-hour storm event from pre-development conditions. Refer to Appendix A for the retention basin design drainage area maps as well as the first flush and increase in pre vs post runoff volume calculation spreadsheets.

A slightly different approach was taken for the design of the basin adjacent to Bell Road at the south side of the project area. This basin was designed to store the first flush volume from the main parking lot as well as the hardscaped plaza areas adjacent to the restroom building. However, instead of storing the increase in runoff volume due to the conversion of natural desert into impervious asphalt, concrete and roof area, the basin was designed as a detention basin with two outlet structures that drain through a 24 -inch pipe to the existing dual 6'x3' concrete box culvert underneath Bell Road, just west of the entrance drive. The low-level outlet structure consists of a standard grated catch basin that is located 0.5 feet above the basin bottom and is used to drain the basin volume through a 3 -inch orifice plate to a 15-inch drainpipe. The high-level outlet structure consists of a raised grate catch basin that is less susceptible to clogging and is located 2.2 feet above the basin bottom. This basin outlet configuration allows the basin to function as a retention basin up to a depth of 2.2 feet, with the low-level outlet structure serving as a basin bleed-off. During large storm events, once depths of ponding in the basin exceed 2.2 feet, the basin becomes a detention basin with water spilling through the high-level outlet structure. This configuration allows the basin to not only store the first flush runoff volume from the parking lot and plaza areas below a depth of 2.2 feet, but also reduces the post-development peak discharges below the predevelopment peak discharges for the 2-, 10- and 100-year, 6-hour storm events. Refer to Appendix A for the retention basin design drainage area map and first flush volume calculations as well as Appendix B for the HEC-1 hydrologic modeling of the existing and proposed conditions.

The six multi-use sports fields were not included in the first flush or pre vs post runoff volume calculations because they will not generate any surface runoff. The two primary reasons why the sports fields will not generate any surface runoff is that they are flat and that the underlying soil stratification consist of a 12 -inch sand-based root mix surface layer above a 4-inch gravel layer in conjunction with a subgrade drainage system that consists of 4-inch perforated pipes and a 12-inch drain pipe. The sand-based fields with the advanced subgrade drainage system are designed to infiltrate the rainfall efficiently through the sand layer and convey it through the coarse gravel layer to the 4 -inch perforated pipes before eventually discharging it to the spinal 12 -inch drain pipe. Since the rainfall onto the fields, as well as the small surrounding pathway and plaza areas that drain into the fields get filtered through the 12 -inch sand layer, the water is already naturally filtered and no first flush storage is necessary. The 12 -inch subgrade drainpipe is discharged
directly to the detention basin high-level outlet structure where it bypasses the detention basin and flows out into the existing Bell Road culvert.

2.3 BASIN DRAIN TIMES

The basins were designed to dispose of the stored runoff volume in the allowable 36 hours. In order to meet this criteria; Double Ring Infiltration Tests were performed at the site of the proposed basins. The three, one-foot deep retention basins adjacent to the $94^{\text {th }}$ Street parking lot were found to infiltrate the stored runoff volume in under 10 hours. A basin drain was not calculated for the new retention basin on the north side of the main parking lot because it is only 0.3 feet deep and the DSPM allows for basins less than 0.5 feet to be disposed of through infiltration without showing basin drain time calculations.

The basin drain time for the detention basin was calculated by determining the time required for the low-level bleed off catch basin to lower the depth of ponding in the basin to 6 inches, with the bottom 6-inches calculated to dissipate through infiltration. As can be seen in the proposed conditions model in Appendix B, during the 100-year, 6-hour storm event it takes the 3-inch orifice plate in the low-level grated catch basin a little over 17 hours to drain the basin to a depth of ponding of 0.5 feet. The remaining depth was found to infiltrated into the ground in about 7 hours. Therefore, the total basin drain time for the large detention basin is approximately 24 hours. Refer to Appendix A for the detailed basin drain time calculations.

3.0 HYDROLOGIC ANALYSIS

3.1 APPROACH

The hydrologic analysis for the new Multi-Use Sports Fields at the northwest corner of Bell Road and $94^{\text {th }}$ Street was performed in accordance with the $D S P M$ utilizing the hydrologic methods outlined in the Flood Control District of Maricopa County (District) Drainage Design Manual for Maricopa County - Hydrology (Volume I).

There are two separate hydrologic models that are used to determine design peak discharges throughout the project site. The first hydrologic model is the "Pinnacle Peak South Area Drainage Master Study" (PPS ADMS) FLO-2D model that was prepared by TY Lin International for the City of Scottsdale in 2013. The primary purpose of the FLO-2D model was to determine the $94^{\text {th }}$ Street Wash inflows that enter the project site. The second hydrologic model is a new HEC-1
model that was developed for the 2-, 10- and 100-year, 6-hour storm events utilizing the Districts' DDMSW software. The HEC-1 model was used to determine additional offsite inflows from the north into the project area as well as peak discharges that are generated within the project site under existing and proposed conditions.

3.2 EXISTING CONDITIONS HEC-1 MODEL

The existing conditions HEC-1 hydrologic model was developed to determine the pre development peak discharges that are currently impacting the project site. In order to determine drainage area boundaries and main flow paths within the project area, as well as the upstream offsite area that contributes to the project area; the latest aerial photography and topographic mapping that was developed for the design of the project was used. To supplement the new topographic mapping, the one-foot contour mapping that was developed for the Pinnacle Peak South ADMS was obtained from the City of Scottsdale and utilized in areas that were developed prior to the contour mapping flight date in 2007. For areas that have been recently developed, any available as-built plans were inspected, and site visits were made to determine the appropriate flow paths and drainage area boundaries.

The existing conditions HEC-1 model includes the entire project area west of the $94^{\text {th }}$ Street Wash. As will be discussed in greater detail in Section 3.4 below, the PPS ADMS FLO-2D model was used to determine the peak discharges for upstream watershed area of the $94^{\text {th }}$ Street Wash. However, two of the offsite watershed areas were included in the existing conditions HEC-1 model. The first one, identified with the HEC-1 Subbasin ID of ODA1 is the contributing drainage area for the $91^{\text {st }}$ Street Wash that crosses the project area on the northwest corner. The second, much smaller one is identified with the HEC-1 Subbasin ID of ODA2 and is the contributing drainage area for the wash that concentrates at the northern boundary of the project area between the Corporate Center at DC Ranch and the Desert Parks Vista Condominium Complex. Refer to the existing condition HEC-1 Schematic and Drainage Area Map in Appendix B for the location and extents of the two main offsite watershed areas.

In addition to the three major washes that enter the site, there are several other minor washes that traverse the project area. These washes generally flow in a southwesterly direction leaving the project area and discharging to the Arizona State Land parcel immediately west of the project boundary and eventually discharging underneath Bell Road through either the dual 6 'x3' box
culvert at the new entrance drive or the triple barrel 8'x3' concrete box culvert at $91^{\text {st }}$ Street. Refer to Appendix B for the existing conditions HEC-1 Schematic as well as the 100 -year, 6 -hour HEC1 hydrologic model. The Digital Data in Appendix E contains the 2-year and 10-year HEC-1 models.

3.3 PROPOSED CONDITIONS HEC-1 MODEL

The proposed conditions HEC-1 hydrologic model was developed by incorporating the proposed Multi-Use Sports Fields improvements into the existing conditions hydrologic model. The offsite drainage area boundaries remained the same, but new onsite drainage area boundaries were drawn based on the grading and drainage design of the main parking lot and the adjacent hardscape plaza areas. Due to the conversion of natural desert to impervious parking and hardscaped area, the runoff volumes, and discharges for the western half of the project area increased significantly under the proposed conditions as compared to the existing conditions. In order to meet the ESL ordinance requirements of keeping the post development peak discharges below the predevelopment conditions, the proposed conditions HEC-1 model incorporated a onsite storm drain and detention basin that is used to attenuate the flows before they leave the project site below the existing conditions for the $2-, 10-$ and 100 -year, 6 -hour storm events. In addition to the onsite, main parking lot storm drain, an offsite storm drain was included that will convey the offsite flows from the north project boundary through the project site, outletting to the same location where the wash currently leaves the project site. Refer to the proposed conditions HEC-1 Schematic and Drainage Area Map in Appendix B for the updated drainage area boundaries.

Within the project area, the proposed conditions HEC-1 hydrology model serves two primary purposes. The first is to design the main parking lot storm drain and size the new detention basin north of Bell Road to attenuate the increased peak discharges below the existing conditions peak discharges that leave the site. The grading of the main parking lot underneath the powerline corridor was done in such a manner as to crate four shallow sump locations where new storm drain catch basin will intercept the 100-year, 6-hour design peak discharges and convey them through a new storm drain to the detention basin at Bell Road. As was previously mentioned, the detention basin was designed to store the first flush runoff volume from the parking lot area, while larger flows were designed to spill through the high-level outlet structure and discharge through the existing dual 6'x3' Bell Road culvert. Even with the larger contributing drainage area (i.e. under

September 2020
existing conditions, the northwest part of the project area is not part of the drainage area to the dual 6'x3' Bell Road box culvert), the design of the detention basin with its low- and high-level outlet structures achieved the desired goal of reducing the peak discharges through the Bell Road culvert under the proposed conditions to be equal or less than the existing conditions for all three storm events. Refer to the Appendix B for the HEC-1 Schematic and the 100 -year, 6-hour HEC-1 model as well as the digital data folder in Appendix E for 2- and 10-year, 6-hour HEC-1 models.

The second purpose of the proposed conditions HEC-1 hydrologic model was to determine the amount of runoff from the multi-use sports fields drainage system during the $2-10$ - and 100 -year, 6 -hour storm events. Since the sports fields are designed to be flat and consist of a 12 -inch deep sand-based root zone mix, there will be no surface runoff generated during even the most intense part of a the 100 -year storm event. The first step in determining how much water infiltrates through the sand-based root zone mix was to determine how much available pore space the sand layer has to store water. Recommended root zone mixes for sand-based fields call for the sand to have a total porosity between $35 \%-55 \%$, this is the total void space between the sand particles. However, not all of this void space has the ability to store water that infiltrates through the surface. The ideal root zone mix has a capillary porosity, which is defined as the amount of the void space that is capable of storing water, between $15 \%-25 \%$. Assuming an average capillary porosity of 20% we can calculate that the 12 -sand layer has a storage capacity of 2.4 inches (12 in $\mathrm{x} 0.20=2.4 \mathrm{in}$) over the surface area of field. However, this 2.4 inches was further reduced by applying a 50% safety factor to account for potentially wet antecedent moisture conditions that could be a result of recent irrigation or a storm event. Therefore, for the flat portion of the multi-use sports fields an Initial Abstraction value of 1.2 inches was applied to represent the available storage associated with the 20% capillary porosity within the 12 -inch sand-based root zone mix.

Once the storm event exceeds the storage capacity of root zone mix associated with the capillary porosity, water will drain into the underlying 4-inch thick gravel layer. The gravel layer has larger voids that are not conducive to "storing" water, but allow it to freely flow through the layer and into the 4-inch diameter perforated pipes that are located 20 feet on center underneath the sports fields. Once water enters these perforated pipes it is conveyed to a 12 -inch subgrade drain and out underneath the fields to the high-level outlet structure at the detention basin on the north side of Bell Road. From there the outflow is piped directly to the dual 6'x3' box culvert under Bell Road.

The total open void space within the gravel layer was calculated based on a conservative total porosity of 35%. To utilize the storage capacity within the 4 -inch and 12 -inch pipes as well as the large open void space in the gravel layer, orifice plates were designed to limit the flow out from underneath each of the fields. The orifice plates will meter the flow out from underneath each of the fields thereby allowing water to pond in the pipes and within the gravel layer to limit the flow out from underneath each one of the fields. This approach to the design of the subgrade drainage system will utilize the full available storage capacity underneath each of the sports fields before discharging directly to the dual 6 'x3' Bell Road box culvert via the detention basin outlet pipe.

$3.4 \quad 94^{\text {TH }}$ STREET WASH HYDROLOGIC ANALYSIS

The $94^{\text {th }}$ Street Wash is located on the east side of the project site, paralleling $94^{\text {th }}$ Street and discharging under Bell Road in a five barrel $8^{\prime} \times 3$ ' concrete box culvert. As can be seen in the $94^{\text {th }}$ Street Wash Drainage Area Map in Appendix B, the wash is comprised of a major confluence at the northeast corner of the project site, with two main wash forks entering from the north and three inflows from $94^{\text {th }}$ Street. The main (western) wash fork extends upstream to Legacy Drive, roughly paralleling $94^{\text {th }}$ Street on the west before turning and extending to the existing dual 8 ' $\times 2$ ' concrete box culvert that penetrates the Reata Wash levee at Hualapai Drive. The secondary (eastern) wash fork extends upstream to $94^{\text {th }}$ Street before meandering through the Desert Haciendas subdivision to a second 10 'x2' concrete box culvert that penetrates the Reata Wash levee. The two culvert crossings underneath $94^{\text {th }}$ Street have relatively small drainage areas and do not receive split flows from Reata Wash.

The total contributing drainage area to the $94^{\text {th }}$ Street Wash at the project site is 185 acres. In addition to the runoff form the contributing drainage area, there are the two locations described above where runoff enters the watershed from Reata Wash. There is also one location, just downstream of Hualapai Drive where water from the main $94^{\text {th }}$ Street Wash out of the contributing drainage area during large storm events. To analyze this complex hydrologic condition, the PPS ADMS 100-year, 24-hour FLO-2D model was reviewed and modified to better represent existing flow conditions. Upstream of the project site, within the contributing drainage area to the $94^{\text {th }}$ Street Wash at the project location, the modifications primarily consisted of adjusting grid elevations to 1) prevent flows from breaking out of the two main washes and 2) directing the runoff generated in the contributing drainage area to the correct location based on inspection of contour

September 2020
mapping, aerial photography and as-built plans. These modifications removed any erroneous flow splits or diversions that can easily occur as part of a large regional drainage master study. The modeling of the two Reata Pass levee penetration box culverts was not modified from the original PPS ADMS study model.

As can be seen in the drainage area map in Appendix B, there is approximately 285 cfs that enters the west fork of the $94^{\text {th }}$ Street Wash through the northern dual $8^{\prime} \times 2$ ' concrete box culvert from Reata Wash. Just downstream of the culvert, approximately 200 cfs stays within the wash while approximately 85 cfs splits out in a southwesterly direction. With the addition of the runoff from the contributing drainage area, the peak inflow for the west fork of the $94^{\text {th }}$ Street Wash at the project site is 260 cfs . For the east fork of the $94^{\text {th }}$ Street Wash there is approximately 205 cfs that enters through the 10 ' 22^{\prime} concrete box culvert from Reata Wash. This flow increases with the addition of the runoff generated from the contributing watershed area to 245 cfs that enters the project site.

The largest inflow from $94^{\text {th }}$ Street occurs through an existing 36 -inch pipe culvert that conveys flows from the Desert Haciendas subdivision underneath $94^{\text {th }}$ Street. According to the modified FLO-2D model the peak inflow through the pipe culvert into the $94^{\text {th }}$ Street Wash is 35 cfs. The remaining two inflow locations, just south of the 36 -inch culvert, consist of a side-by-side 18 -inch storm drain and pipe culvert as well as a scupper that drains the west half of $94^{\text {th }}$ Street to the wash. The contributing drainage area to the existing 18 -inch culvert was cut off by the development of the Desert Haciendas subdivision and the runoff generated from the small $94^{\text {th }}$ Street watershed that is intercepted by the 18 -inch storm drain and scupper would not have a meaningful impact on the peak discharge of the $94^{\text {th }}$ Street Wash through the project area. Refer to Appendix B for the $94^{\text {th }}$ Street Wash Drainage Area Map that shows the pertinent offsite drainage infrastructure as well as the location of the three main inflows to the $94^{\text {th }}$ Street wash through the project area. Appendix B also includes the three main inflow hydrographs that were obtained from the modified FLO-2D model, which in turn can be found in the Digital Data folder in Appendix E.

The three main inflows were used as direct hydrograph inputs to a two-dimensional HEC-RAS hydraulics model that was used to determine the existing and proposed conditions water surface elevation of the $94^{\text {th }}$ Street Wash through the project area as well as the design of the proposed
triple barrel 10 'x5' concrete box culvert crossing. The routing of the three main inflows through the project area using the HEC-RAS model resulted in a combined peak discharge through the existing Bell Road culvert of 480 cfs . For a more detailed discussion of the hydraulic analysis refer to Section 5.0 of this report.

4.0 STORM DRAIN DESIGN AND ANALYSIS

Two new storm drains were designed as part of the Multi-Use Sports Fields project. The first is a new storm drain that conveys the offsite flows that enter the project site from the north between the Corporate Center at DC Rand and the Desert Parks Vista Condominium Complex. The second storm drain is a new onsite storm drain that is located along the western edge of the main parking lot underneath the powerline corridor. This storm drain intercepts the runoff from the parking lot and adjacent hardscaped plaza areas with four new combination catch basins and conveys it to the new detention basin on the north side of Bell Road, east of the entrance drive. Refer to Appendix C for the Storm Drain Location Map showing the extents of the offsite and main parking lot storm drains in relationship to the proposed improvements.

4.1 OFFSITE STORM DRAIN DESIGN

The proposed offsite storm drain was designed to intercept the calculated 100-year, 6-hour peak discharge that concentrates at the northern boundary between the Corporate Center at DC Ranch and the Desert Parks Vista Condominiums Complex and convey it through the site to its existing outfall location on the southwest corner of the project area. As can be seen in the HEC-1 model in Appendix B, the design peak discharge at this location is 42 cfs (HEC-1 Subbasin ID: ODA2). Under existing conditions, the alignment of the offsite storm drain roughly follows the alignment of the existing wash that flows through the project area discharging at the same location as the existing wash.

At the upstream end, the offsite storm drain intercepts the design discharge with a headwall inlet. The proposed 36 -inch storm drain traverses under the two northern most multi-use fields before entering the main parking lot just west of the new public restroom building. From there it traverses the parking lot at a diagonal before discharging through a headwall outlet structure into the existing wash. Refer to the Storm Drain Location Map in Appendix C for the location of the offsite storm drain as well as the Offsite Storm Drain Hydraulic Grade Line (HGL) design calculations.

4.2 MAIN PARKING LOT STORM DRAIN DESIGN

The main parking lot storm drain was designed to intercept the calculated 100-year, 6-hour peak discharges from the main parking lot underneath the powerline corridor as well as the adjacent hardscape plaza areas. The storm drain starts at the new detention basin north of Bell Road, west of the entrance drive and extends north along the western edge of the new parking lot. The proposed grading of the parking lot was done in such a manner as to create four shallow sumps where four new combination catch basins were designed to intercept the entire 100-year, 6-hour peak discharges from the new parking lot.

The proposed storm drain and catch basins were designed to prevent any water from overtopping the new western curb and flowing into the adjacent Arizona State Land parcel located immediately west of the project area. This approach ensures that all of the runoff generated from the proposed parking lot and adjacent hardscape areas will be intercepted by the new storm drain and routed through the new detention basin before discharging to the existing dual 6'x3' Bell Road box culvert just west of the entrance drive. Refer to the Storm Drain Location Map in Appendix C for the location of the main parking lot storm drain as well as the Storm Drain Hydraulic Grade Line (HGL) design and Catch Basin sizing calculations.

5.0 CULVERT DESIGN \& WASH HYDRUALIC ANALYSIS

5.1 APPROACH

The hydraulic analysis for the two main washes that impact the project site was performed using the latest US Army Corps of Engineers HEC-RAS modeling software with two-dimensional surface flow capability. The hydraulic analysis was done in accordance with the City's DSPM as well as the District's Hydraulics Manual.

The two-dimensional HEC-RAS hydraulics model was developed to determine the water surface elevations for the two main washes that cross the project site. The $94^{\text {th }}$ Street Wash traverses the project site by paralleling $94^{\text {th }}$ Street, while the $91^{\text {st }}$ Street Wash bisects the project site on the northwest corner. In addition to determining the water surface elevations under existing conditions, the two-dimensional hydraulics model was also used to design two new culvert crossings and calculated the proposed conditions water surface elevations.

$5.2 \quad 94^{\mathrm{TH}}$ STREET WASH HYDRAULIC ANALYSIS

For the existing conditions analysis, the detailed topographic survey that was prepared as part of the project was used to generate the required HEC-RAS geometry files. For the 94th Street Wash model, the HEC-RAS computational domain mesh extends from the Desert Parks Vista Condominium Complex downstream past the existing five barrel 8'x3' Bell Road culvert. The extents of the computational domain incorporate the existing Bell Road culvert as well as the three main inflow locations within the project area for a peak discharge of 480 cfs . The hydraulic analysis of the existing conditions showed that the wash as well as the existing Bell Road box culvert have sufficient capacity to convey the combined peak discharge through the project area, with no water spilling over Bell Road or splitting out of the 94th Street Wash to the west. Refer to the 94th Street Wash Hydraulic Analysis Map in Appendix D for the hydraulic modeling extents, existing conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model.

The design of the Multi-Use Sports Fields and associated infrastructure leaves the $94^{\text {th }}$ Street Wash mostly undisturbed. The main impact to the wash occurs at the proposed culvert crossing from the new $94^{\text {th }}$ Street parking lot to the pathway system that traverses the sports fields. This culvert was designed to convey the entire combined upstream 100-year, 24-hour peak discharge of 480 cfs with no overtopping or spilling into the adjacent fields or into the new parking lot. In order to achieve this, a triple barrel 10 'x5' concrete box culvert is recommended to be installed that will have sufficient capacity to convey the entire design peak discharge underneath the pathway connections. Even though the culyert has a 5 -foot height, the bottom 12 -inches of the culvert will be buried below the existing sandy wash bottom to allow for free movement of sediment though the culvert during storm events. In addition to burring the bottom 12 -inches, the proposed 30 -foot culvert width will span the exiting 25 -foot jurisdictional wash bottom. The combination of burring the bottom 12-inches and spanning the entire sandy wash bottom will make the new culvert less susceptible to clogging due to sediment depositions.

The new culvert will raise the water surface elevations in the wash by about 2.0 feet from 1578.5 feet to 1580.5 feet. However due to the relative steep nature of the area, the increase in water surface elevation only propagates upstream for about 200 feet, well within the project limits. Therefore, the proposed improvements, including the construction of the new culvert crossing will

September 2020
not have a detrimental impact on the water surface elevation upstream within the Desert Parks Vista Condominium Complex or downstream of the Bell Road box culvert. Refer to the $94^{\text {th }}$ Street Culvert Hydraulics Analysis Map in Appendix D for the proposed conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS twodimensional hydraulics model.

$5.3 \quad 91^{\text {ST }}$ STREET WASH HYDRAULIC ANALYSIS

For the $91^{\text {st }}$ Street Wash model, the HEC-RAS computational domain mesh extends upstream and downstream to the boundary of the topographic survey that was obtained as part of the project area. As calculated with the HEC-1 Hydrologic Model, the 100-year, 6-hour design peak discharge for the $91^{\text {st }}$ Street Wash that enters the project site is 140 cfs . The hydraulic analysis of the existing conditions showed that the wash has sufficient capacity to convey the upstream design peak discharge with no water splitting out from the $91^{\text {st }}$ Street Wash. Refer to the $91^{\text {st }}$ Street Wash Hydraulic Analysis Map in Appendix D for the hydraulic modeling extents, existing conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model

The only impact of the Multi-Use Sports Fields project on the $91^{\text {st }}$ Street Wash is the construction of the $91^{\text {st }}$ Street entrance driveway. The driveway which connects the new main parking lot on the northwest corner of the project site to $91^{\text {st }}$ Street must cross the existing jurisdictional wash. Like the $94^{\text {th }}$ Street Wash culvert, this culvert was designed to convey the entire 100-year, 6-hour design peak discharge of 140 cfs . To achieve this, a single 10 ' $\times 5$ ' concrete box culvert is recommended to be installed at the wash crossing. To reduce the clogging potential of the new culvert, the bottom foot of the culvert will be buried and the width of the culvert will span the existing 8 -foot wide sandy wash bottom to allow for free movement of the sediment through the culvert thereby reducing its clogging potential.

The new crossing will raise the water surface elevations in the wash upstream of the culvert by about 0.8 feet from 1580.0 feet to 1580.8 feet. However due to the relative steep nature of the area, the increase in water surface elevation only propagates upstream for about 50 feet, raising the water surface elevation at the property boundary by less than 0.5 feet and at the existing dual 36inch culvert outfall by less than 0.1 foot. Therefore, the proposed entrance driveway as well as the new concrete box culvert will span the existing jurisdictional wash bottom and only slightly
increase the water surface elevation within $91^{\text {st }}$ Wash in the Corporate Center at DC Ranch. Refer to the $91^{\text {st }}$ Street Culvert Hydraulics Analysis Map in Appendix D for the proposed conditions inundation boundary and corresponding water surface elevations as well as Appendix E for the HEC-RAS two-dimensional hydraulics model.

Appendix A: Retention Basin Design Calculations

Gavan Barker

94th STREET PARKING LOT

100-yr, 2-hr PRE vs. POST \& FIRST FLUSH RUNOFF VOLUME SUMMARY TABLE

SUBBASIN	Contributing Drainage Area (sq/ft)	$\begin{gathered} \text { Pre Development } \\ \text { Runoff Volume } \\ \text { (cu.ft.) } \\ \hline \end{gathered}$	Post Development Runoff Volume (cu.ft.)	$\begin{gathered} \text { Increase in } \\ \text { Runoff Volume } \\ \text { (cu.ft.) } \end{gathered}$	First Flush Volume (cu.ft.)
RB\#1	35,490	3,128	5,400	2,273	1,149
RB\#2	24,100	3,355	3,582	227	762
RB\#3	27,580	2,430	4,114	1,683	875

LEGEND
Drainage Area Boundary
——— Major Flow Paths
100-yr, 2-hr PRE vs. POST \& FIRST FLUSH RUNOFF VOLUME SUMMARY TABLE

SUBBASIN	$\begin{array}{\|c} \hline \text { Contributing } \\ \text { Drainage Area } \\ \text { (sq/ft) } \end{array}$	Pre Developmen Runoff Volume (cu.ft.)	Post Development Runoff Volume (cu.ft.)	\qquad	First Flush Volume (cu.ft.)
RB\#4	17,980	1,584	1,584	0	337
DB	329,710	NA*	NA*	NA*	11,286

${ }^{\text {NOTESS }}$ *Referto the HEC-1 Hydrology Model in Appendix B for the Pre vs. Post Runoff Analysis
91 st STREET ${ }^{\circ}$
91st \$TREET (FUTURE EXTENSION)

MAIN PARKING LOT
PRE vs. POST \& FIRST FLUSH DRAINAGE AREA MAP

LEGEND

Drainage Area Boundary

- - Major Flow Paths

Local Flow Direction

- Newn Storm Drain

$$
\underset{0}{-} \longrightarrow 0^{\prime} \quad 180^{\prime}
$$

$$
\text { SCALE: } 1^{\prime \prime}=180^{\prime}
$$

First Flush Volume Calculation

First Flush Volume Calculation

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003 Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

North 94th Street Parking Lot First-Flush Volume Calculation (Retention Basin \#1)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	23,210	0.95	22,049.5	0.5	918.7
Desert Landscaping	12,280	0.45	5,526.0	0.5	230.3
Total Contributing Drainage Area:	35,490	Total First Flush Runoff Volume: 1,149			

94th Street Scupper First-Flush Volume Calculation (Retention Basin \#2)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	14,890	0.95	14,145.5	0.5	589.4
Desert Landscaping	9,210	0.45	4,144.5	0.5	172.7
Total Contributing Drainage Area:	24,100	Total First Flush Runoff Volume: 762			

South 94th Street Parking Lot First-Flush Volume Calculation (Retention Basin \#3)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	17,190	0.95	16,330.5	0.5	680.4
Desert Landscaping	10,390	0.45	4,675.5	0.5	194.8
Total Contributing Drainage Area:	27,580	Total First Flush Runoff Volume: 875			

First Flush Volume Calculation

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
City of Scottsdale Contract No.: 2020-068-COS

North Main Parking Lot First-Flush Volume Calculation (Retention Basin \#4)

Cover Type	Area (A) (sq.ft)	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Desert Landscaping	17,980	0.45	8,091.0	0.5	337.1
Total Contributing Drainage Area:	17,980	Total First Flush Runoff Volume: 337			

Main Parking Lot \& Sports Complex Plaza Areas First-Flush Volume Calculation (Retention Basin \#5)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	244,990	0.95	232,740.5	0.5	9,697.5
Desert Landscaping	84,720	0.45	38,124.0	0.5	1,588.5
Total Contributing Drainage Area:	329,710	Total First Flush Runoff Volume: 11,286			

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

Pre vs. Post 100-year, 2-hour Runoff Volume Calculation

North 94th Street Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
andscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

North 94th Street Parking Lot Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#1)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	35,490	0.45	15,970.5	2.35	3,127.6
Total Contributing Drainage Area:	35,490	Total Pre Development Runoff Volume 3,12			

North 94th Street Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#1)

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

94th Street Scupper Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS

94th Street Scupper Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#2)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	12,570	0.95	11,941.5	2.35	2,338.5
Undeveloped Desert	11,530	0.45	5,188.5	2.35	1,016.1
Total Contributing Drainage Area:	24,100	Total Pre Development Runoff Volume 3,35			

94th Street Scupper Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#2)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	14,890	0.95	14,145.5	2.35	2,770.2
Desert Landscaping	9,210	0.45	4,144.5	2.35	811.6
Total Contributing Drainage Area:	24,100	Total Post Development Runoff Volume			3,582
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				$\underline{\underline{227}}$ $\underline{762}$
	Retention Basin \#2 Provided Retention Volume:				1,121

[^1]
South 94th Street Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture
City of Scottsdale Contract No.: 2020-068-COS
South 94th Street Parking Lot Pre Development 100-yr 2-hr Runoff Volume (Retention Basin \#3)

Cover Type	$\begin{gathered} \hline \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	27,580	0.45	12,411.0	2.35	2,430.5
Total Contributing Drainage Area:	27,580	Total Pre Development Runoff Volume			

South 94th Street Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#3)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Impermeable (Sidewalk, Parking, etc)	17,190	0.95	16,330.5	2.35	3,198.1
Desert Landscaping	10,390	0.45	4,675.5	2.35	915.6
Total Contributing Drainage Area:	27,580	Total Post Development Runoff Volume			4,114
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				1,683
	Total First Flush Volume Required:				875
	Retention Basin \#3 Provided Retention Volume:				2,223

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

North Main Parking Lot Pre vs Post 100-year, 2-hour Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \& Landscape Architecture

North Main Parking Lot Pre Development 100	Runof	(Retention Basin			
Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area x C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Undeveloped Desert	17,980	0.45	8,091.0	2.35	1,584.5
Total Contributing Drainage Area:	17,980	Total Pre Development Runoff Volume 1,584			

North Main Parking Lot Post Development 100-yr 2-hr Runoff Volume (Retention Basin \#4)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficien** (C)	Area \times C	Rainfall Depth^ (inches)	Runoff Volume (cu.ft)
Desert Landscaping	17,980	0.45	8,091.0	2.35	1,584.5
Total Contributing Drainage Area:	17,980	Total Post Development Runoff Volume			1,584
	Total Pre vs. Post Runoff Volume Increase (Required Retention Volume):				$\underline{\underline{0}}$
		Total First Flush Volume Required:			337
		Retention Basin \#4 Provided Retention Volume (0.5 ft Depth):			560

${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
*The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

Main Parking Lot \& Sports Complex Plaza Areas Pre vs Post Runoff Volume Calculations

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \& Landscape Architecture

Main Parking Lot \& Sports Complex Plaza Areas Pre 100-yr 2-hr Runoff Volume (Detention Basin)

Cover Type	$\begin{gathered} \text { Area (A) } \\ \text { (sq.ft) } \end{gathered}$	Runoff Coefficient* (C)	Area C C	Rainfall Depth \wedge (inches)	Runoff Volume (cu.ft)
Refer to the HEC-1 Hydrology Model in Appendix B for the Pre vs. Post Runoff Analysis					

Total Contributing Drainage Area: $329,710 \quad$ Total Pre Development Runoff Volume 0

Main Parking Lot \& Sports Complex Plaza Areas Post 100-yr 2-hr Runoff Volume (Detention Basin)

${ }^{\sim}$ The provided retention basin \#5 volume is calculated to the primary basin outlet spill elevation of 1567.20 ft .

Retention Basin Drain Time Calculation

Basin Drain Times

Multi-Use Sports Fields
NWC of Bell Road \& 94th Street
Gavan \& Barker No. 2003

Civil Engineering \&
Landscape Architecture

City of Scottsdale Contract No.: 2020-068-COS

Retention Basin	Depth of Ponding (ft)	Tested Perc. Rate* (in/hr)	Safty Factor^	Effective Perc. Rate (ft/hr)	Basin Drain Time (hr)
Retention Basin \#1	1.00	2.50	0.5	0.1042	9.6
Retention Basin \#2	1.00	2.50	0.5	0.1042	9.6
Retention Basin \#3	1.00	3.25	0.5	0.1354	7.4
Retention Basin \#4	0.30	Depth of ponding less than 6 inches, therefore no drain time calculation performed			
Detention Basin ${ }^{\text {~ }}$	0.50	1.75	0.5	0.0729	6.9

*The tested percolation rate was obtained from a Double Ring Infiltration Test performed by Speedie and Associates at the location of the four proposed basins. Refer to the letter by Speedie and Associates in the Digital Data folder for the location and results of the infiltration test.
${ }^{\wedge}$ In accordance with the City of Scottsdale Drainage Policies and Standards Manual a safty factor of 50% was applied to the tested percolation rate to obtain the effective percolation rate.
~Depths of ponding in the detention basin greater than 0.50 feet are drained through the basin bleed-off inlet and 3-inch orifice plate. During the 100-year, 6-hour storm event, the bleed-off inlet will reduce the basin depth to 0.50 feet in approximately 17.3 hours. The additional 0.50 feet, below the bleed-off inlet invert will drain in an additional 6.9 hours, for a total basin drain time of 24.2 hours.

Appendix B: Hydrologic Analysis

Existing Conditions: HEC-1 Schematic w/100-year, 6-hour Model

LEGEND \& HEC-1 SYMBOLOGY

Drainage Area Boundary

\rightarrow Major Flow Paths

Offsite Inflow Location

O011)	HEC-1 Subbasin Identifier
(OWMH)	HEC-1 Combine
RHMSN	HEC-1 Route
NOTES: 年 FLO-2D model prepared by TY Lin Int. and modified by Gavan \& Barker Inc to better represent the upstream flow conditions	
The existing 9 4th Street 18 -inch pipe culvert, 18 - inch storm drain and scuppers were not modeded in the FLO-2D model. The culvert and the flow intercepted by the curb opening catch basins and suppers will not directly add to the peak discharge of the three main inflows and therefore increase the desisg discharge throught the project site.	


```
1*********************************************
    FLOOD HYDROGRAPH PACKAGE (HEC-1)
    JUN 1998
* VERSION 4.1
RUN DATE 06SEP20 TIME 12:51:11
*********************************************
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

X	X	XXXXXXX	XXXXX		
X	X	X	X	X	
X	X	X	X		XX
XXXXXXX	XXXX	X		XXXXX	X
X	X	X	X		
X	X	X	X	X	
X	X	XXXXXXX	XXXXX		X
					XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS: READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	

12

HEC-1 INPUT
\qquad

KK	RWASH	ROUTE						
RS	1	FLOW						
RC	0.045	0.030	0.045	1020	0.0168	3.00		
RX	0.00	10.00	20.00	25.00	30.00	35.00	45.00	55.00
RY	3.00	2.00	1.00	0.00	0.00	1.00	2.00	3.00
ZW	A=RWASH	B=ROUTE	C=FLOW	F=CALC				
\star								
KK	PDA6	BASIN						

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION
$1 *) ~$

* U.S. ARMY CORPS OF ENGINEERS
U.S. ARMY CORPS OF ENGINEERS 609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

City of Scottsdale
MULTI-USE FIELDS - Multi-Use Sports Fields NWC Bell Rd \& 94th St
100 YEAR
6 Hour Storm
Unit Hydrograph: Clark
Storm: Single
06/02/2020
9 IO
OUTPUT CONTROL VARIABLE
IPRNT 5 PRINT CONTROI
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE
IT
HYDROGRAPH TIME DATA

NMIN	2	MINUTES IN COMPUTATION INTERVAL
IDATE	1JAN99	STARTING DATE

ITIME 0000 STARTING TIME
360 NUMBER OF HYDROGRAPH ORDINATES
NDDATE 1JAN99 ENDING DATE
NDTIME 1158 ENDING TIME
ICENT 19 CENTURY MARK
COMPUTATION INTERVAL . 03 HOURS TOTAL TIME BASE 11.97 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION

FEET

FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

STORAGE VOLUM TEMPERATURE

OPERATION	STATION
HYDROGRAPH AT	
	ODA3
HYDROGRAPH AT	
	PDA7
2 COMBINED AT	
	CC6X3
HYDROGRAPH AT	
	ODA2
ROUTED TO	
	RWASH
HYDROGRAPH AT	
	PDA6
2 COMBINED AT	
	CWASH1
ROUTED TO	
	RWASH1
HYDROGRAPH AT	
	PDA5
HYDROGRAPH AT	
	PDA4
HYDROGRAPH AT	
	PDA3
3 COMBINED AT	
	CWASH2

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

PEAK	TIME OF	AVERAGE FLOW FOR MAXIMUM PERIOD	BASIN	MAXIMUM	TIME OF		
FLOW	PEAK				AREA	STAGE	MAX STAGE

*** NORMAL END OF HEC-1 ***
Number of Records:
File Size: 209.4 Kbytes

$$
\text { Percent Inactive: . } 0
$$

Proposed Conditions: HEC-1 Schematic w/100-year, 6-hour Model

LEGEND \& HEC-1 SYMBOLOGY

\square Drainage Area Boundary

Major Flow Paths

$-: \cdot \rightarrow$ Offsite Inflow Location

(O041) HEC-1 Subbasin Identifier

 HEC-1 Combine
 HEC-1 Route

The existing 94 th Street 18 -inch pipe culvert, 18 -inch storm drain and suppers were not modeled in the FLO-2D model. The

```
1*********************************************
    FLOOD HYDROGRAPH PACKAGE (HEC-1)
    JUN 1998
* VERSION 4.1
RUN DATE 06SEP20 TIME 12:51:11
*********************************************
```

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

X	X	XXXXXXX	XXXXX		
X	X	X	X	X	
X	X	X	X		XX
XXXXXXX	XXXX	X		XXXXX	X
X	X	X	X		
X	X	X	X	X	
X	X	XXXXXXX	XXXXX		X
					XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS: READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	

12

HEC-1 INPUT
\qquad

KK	RWASH	ROUTE						
RS	1	FLOW						
RC	0.045	0.030	0.045	1020	0.0168	3.00		
RX	0.00	10.00	20.00	25.00	30.00	35.00	45.00	55.00
RY	3.00	2.00	1.00	0.00	0.00	1.00	2.00	3.00
ZW	A=RWASH	B=ROUTE	C=FLOW	F=CALC				
\star								
KK	PDA6	BASIN						

(***) RUNOFF ALSO COMPUTED AT THIS LOCATION
$1 *) ~$

* U.S. ARMY CORPS OF ENGINEERS
U.S. ARMY CORPS OF ENGINEERS 609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

City of Scottsdale
MULTI-USE FIELDS - Multi-Use Sports Fields NWC Bell Rd \& 94th St
100 YEAR
6 Hour Storm
Unit Hydrograph: Clark
Storm: Single
06/02/2020
9 IO
OUTPUT CONTROL VARIABLE
IPRNT 5 PRINT CONTROI
IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE
IT
HYDROGRAPH TIME DATA

NMIN	2	MINUTES IN COMPUTATION INTERVAL
IDATE	1JAN99	STARTING DATE

ITIME 0000 STARTING TIME
360 NUMBER OF HYDROGRAPH ORDINATES
NDDATE 1JAN99 ENDING DATE
NDTIME 1158 ENDING TIME
ICENT 19 CENTURY MARK
COMPUTATION INTERVAL . 03 HOURS TOTAL TIME BASE 11.97 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION

FEET

FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

STORAGE VOLUM TEMPERATURE

OPERATION	STATION
HYDROGRAPH AT	
	ODA3
HYDROGRAPH AT	
	PDA7
2 COMBINED AT	
	CC6X3
HYDROGRAPH AT	
	ODA2
ROUTED TO	
	RWASH
HYDROGRAPH AT	
	PDA6
2 COMBINED AT	
	CWASH1
ROUTED TO	
	RWASH1
HYDROGRAPH AT	
	PDA5
HYDROGRAPH AT	
	PDA4
HYDROGRAPH AT	
	PDA3
3 COMBINED AT	
	CWASH2

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

PEAK	TIME OF	AVERAGE FLOW FOR MAXIMUM PERIOD	BASIN	MAXIMUM	TIME OF		
FLOW	PEAK				AREA	STAGE	MAX STAGE

*** NORMAL END OF HEC-1 ***
Number of Records:
File Size: 209.4 Kbytes

$$
\text { Percent Inactive: . } 0
$$

94 ${ }^{\text {th }}$ Street Wash Drainage Area Map \& Inflow Hydrographs

94th STREET WASH DRAINAGE AREA MAP

US BC1 - Inflow Hydrograph (FP XSEC: 188)

US BC2 - Inflow Hydrograph (FP XSEC: 191)

US BC3 - Inflow Hydrograph (FP XSEC: 198)

Appendix C: Storm Drain Design Calculations

Offsite Storm Drain Hydraulic Grade Line (HGL) Summary Table

Location	Type of Headloss	Headloss	HGL Elevation
		(ft)	(ft)
Headwall Inlet	Junction Loss (Entrance Headloss)^	0.11	1587.70
Offsite MH\#3 to Headwall Inlet	Storm Drain Friction Headloss*	0.14	1585.88
Offsite MH\#3	Junction Loss (Straight-Through Headloss)^	0.03	1582.40
Offsite MH\#2 to Offsite MH\#3	Storm Drain Friction Headloss*	1.19	1580.43
Offsite MH\#2	Junction Loss (Bend Headloss)	0.04	1575.62
Offsite MH\#1 to Offsite MH\#2	Storm Drain Friction Headloss	1.46	1575.58
Offsite MH\#1	Junction Loss (Straight-Through Headloss)	0.03	1574.12
Outlet HW to Offsite MH\#1	Storm Drain Friction Headloss	1.04	1574.09
Outlet Headwall	Junction Loss (Exit Headloss)	0.55	1573.05
Tailwater Elevation @ Outlet Headwall =			1572.50

* The pipe segments between Offsite MH\#2 and the Headwall Inlet are in open channel flow conditions with the hydraulic grade line governed by the 36" Offsite Storm Drain normal depth capacity. Refer to the Channel Reports at the end of these calculations for the proposed storm drain normal depth analysis.
\wedge The hydraulic grade line elevation at Offsite MH\#3 and at the Headwall Inlet are governed by the inlet control interception capacity of the 36" Offsite Storm Drain. Refer to the Inlet Control Nomograph calculation at the end of these calculations for the proposed storm drain interception capacity calculation.

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 1 of 10

Offsite Storm Drain - Hydraulic Grade Line Calculation

The procedures outlined in Chapter 4 of the Hydraulics Drainage Design Manual for Maricopa County were used in order to compute the Hydraulic Grade Line (HGL) for the Offsite Storm Drain. The equations and figures used henceforth were also taken from the manual.

The new offsite storm drain was designed to intercept the 100-year 6-hour peak discharge of 42 cfs from the ODA2 HEC-1 sub-basin area. The ODA2 sub-basin concentrates at the northern boundary of the project site. Under existing conditions, the flow is conveyed in a natural wash through the project area in the southwesterly direction. Under proposed conditions, the offsite storm drain is designed to intercept the 100 -year peak discharge and convey it underneath the new multi-use fields, plaza area and parking lot. The offsite storm drain is discharged in the same location where the existing wash leaves the project site. No additional flows are added to the offsite storm drain from the onsite watershed area. Refer to Appendix B for the HEC-1 Hydrologic Model Results.

Determine Tailwater Elevation:

Since the offiste storm drian discharges into a natural wash, with no backwater effects, the starting tailwater elevation will not be impacted by the hydraulics of the natural wash. Therefore, the soffit elevation of the proposed 36 -inch offsite strom drain at the outlet headwall is the starting tailwater elevation. The invert of the 36 -inch offsite storm drain is 1569.50 ft , which translates to a starting tailwater elevaton of 1572.50 ft .

Tailwater Elevation@ Outlet Headwall = 1572.50 ft
Compute the Storm Drain Outlet Headloss at Outlet Headwall
Exit Loss:
$h_{o}=1.0 \frac{V^{2}}{2 g}$ (Equation 4.16)
where;
$h_{o}=$ Outlet Headloss at Manhole
$Q=$ Storm Drain Design Discharge

$$
Q=42.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42.0}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 2 of 10
$h_{o}=1.0 \frac{V^{2}}{2 g}$
$h_{o}=1.0 \frac{5.94^{2}}{2 \times 32.2}$
$h_{o}=0.55 \mathrm{ft}$
$\mathbf{h}_{\mathrm{o}}=0.55 \mathrm{ft}$ @ Outlet Headwall

Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Outlet Headwall to Offsite MH\#1)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=267 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' } s \text { Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039
$$

$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 267$
$h_{f}=1.04 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.04 \mathrm{ft}(\text { Outlet Headwall to Offsite MH\#1) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 4 of 10

Compute the Headloss at Manhole (Offsite MH \#1)
Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$
$\mathrm{h}_{\mathrm{mh}}=0.03 \mathrm{ft}$ @ Offsite MH \#1

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 5 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#1 to Offsite MH\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=375 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge

$$
Q=42.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039
$$

$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 375$
$h_{f}=1.46 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.46 \mathrm{ft}(\text { Offsite MH\#1 to Offsite MH\#2) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 6 of 10

Compute the Bend Headloss at Manhole (Offsite MH\#2)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=11^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.08 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=42 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.08 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.04 \mathrm{ft}$

$$
\mathbf{h}_{m h}=\mathbf{0 . 0 4} \mathrm{ft} @ \text { Offsite MH\#2 }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 7 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#2 to Offsite MH\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=304 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039$
$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 304$
$h_{f}=1.19 \mathrm{ft}$

$$
\mathrm{h}_{\mathrm{f}}=1.19 \mathrm{ft}(\text { Offsite } M H \# 2 \text { to Offsite MH\#3) }
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 8 of 10

Compute the Headloss at Manhole (Offsite MH \#3)
Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=42 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{5.94^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$
$h_{m h}=0.03 \mathrm{ft}$ @ Offsite MH\#3

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 9 of 10

Compute the Friction Headloss - Proposed 36" Offsite Storm Drain (Offsite MH\#3 to Headwall Inlet)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=35 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=42 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

K = Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0039
$$

$h_{f}=S_{f} L$
$h_{f}=0.0039 \times 35$
$h_{f}=0.14 f t$

$$
\mathrm{h}_{f}=0.14 \mathrm{ft}(\text { Offs ite } M H \# 3 \text { to Headwall Inle })
$$

Project No. 2003 Subject: Offsite Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 10 of 10

Compute the Entrance Headloss at Headwall (Headwall Inlet)
Entrance Loss:
$h_{i}=k_{e n} \frac{V^{2}}{2 g} \quad($ Equation 4.15)
where;
$h_{i}=$ Headloss at Pipe Entrance
$k_{\text {en }}=$ Entrance Loss Coefficient $k_{\text {en }}=0.20$ (Table 5.1)
$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=5.94 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{i}=k_{e n} \frac{V^{2}}{2 g}$
$h_{i}=0.20 \frac{5.94^{2}}{2 \times 32.2}$
$h_{i}=0.11 \mathrm{ft}$

$$
\mathbf{h}_{i}=0.11 \mathrm{ft} @ \text { Headwall Inlet }
$$

Channel Report

36" Offsite Storm Drain Normal Depth Analysis (Offsite MH\#2 to Offsite MH\#3)

Circular
Diameter $(\mathrm{ft}) \quad=3.00$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
Known Q
$=42.00$

Highlighted
Depth (ft)
$=1.53$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=42.00$
$=3.64$
$=11.53$
$=4.78$
$=2.12$
$=3.00$
$=3.60$

Elev (ft)

Channel Report

36" Offsite Storm Drain Normal Depth Analysis (Offsite MH\#3 to Headwall Inlet)

Circular
Diameter $(\mathrm{ft}) \quad=3.00$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=1585.00$
= 1.10
$=0.013$

Known Q
$=42.00$

Highlighted

Depth (ft)	$=1.68$
Q (cfs)	$=42.00$
Area (sqft)	$=4.09$
Velocity (ft/s)	$=10.27$
Wetted Perim (ft)	$=5.08$
Crit Depth, Yc (ft)	$=2.12$
Top Width (ft)	$=2.98$
EGL (ft)	$=3.32$

Elev (ft)

Figure 5.20
Inlet Control Headwater Depth for Concrete Pipe Culverts
(USDOT, FHWA, HDS-5, 1985)

Main Parking Lot Storm Drain Design Calculations

Main Parking Lot Storm Drain Hydraulic Grade Line (HGL) Summary Table			
Location	Type of Headloss	Headloss	HGL Elevation
		(ft)	(ft)
CB\#4	Junction Loss (Entrance Headloss)^	0.04	1576.00
CB\#3 to CB\#4	Storm Drain Friction Headloss*	0.92	1575.29
CB\#3	Junction Loss (Straight-Through Catch Basin)	0.01	1573.61
CB\#2 to CB\#3	Storm Drain Friction Headloss	3.03	1573.60
CB\#2	Junction Loss (Straight-Through Catch Basin)	0.03	1570.57
MH\#4 to CB\#2	Storm Drain Friction Headloss	1.74	1570.54
MH\#4	Junction Loss (Combined Junction Loss)	0.22	1568.80
MH\#3 to MH\#4	Storm Drain Friction Headloss	0.18	1568.58
MH\#3	Junction Loss (Bend Headloss)	0.02	1568.40
MH\#2 to MH\#3	Storm Drain Friction Headloss	0.18	1568.38
MH\#2	Junction Loss (Bend Headloss)	0.02	1568.20
MH\#1 to MH\#2	Storm Drain Friction Headloss	0.19	1568.18
MH\#1	Junction Loss (Bend Headloss)	0.05	1567.99
Outlet Headwall to MH\#1	Storm Drain Friction Headloss	0.02	1567.94
Outlet Headwall	Junction Loss (Exit Headloss)	0.19	1567.92
Tailwater Elevation @ Outlet Headwall =			1567.73

* The pipe segment between CB\#3 and CB\#4 is in open channel flow conditions with the hydraulic grade line governed by the proposed 18" Storm Drain normal depth capacity. Refer to the Channel Reports at the end of these calculations for the proposed storm drain normal depth analysis.
\wedge The hydraulic grade line elevation at Catch Basin \#4 is governed by the inlet control interception capacity of the 18" Storm Drain. Refer to the Inlet Control Nomograph calculation at the end of these calculations for the proposed storm drain interception capacity calculation.

Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 1 of 18

Storm Drain - Hydraulic Grade Line Calculation

The procedures outlined in Chapter 4 of the Hydraulics Drainage Design Manual for Maricopa County were used in order to compute the Hydraulic Grade Line (HGL) for the Offsite Storm Drain. The equations and figures used henceforth were also taken from the manual.

The new storm drain was designed to intercept the 100-year 6-hour peak discharge from the main parking lot and plaza areas and convey it to the proposed detention basin north of Bell Road, just east of the entrance drive. The main parking lot was graded to drain to 4 shallow lot spots where new combination curb opening and grate catch basins will be designed to intercept peak discharge from the upstream contributing drainage area. The proposed storm drain is designed to convey the 100 -year, 6 -hour peak discharge of 6 cfs from the most upstream Catch Basin \#1 (HEC-1 Sub-basin ID: NDA1). Further downstream, the storm drain is designed to convey a combined 11 cfs from the Catch Basin \#2 (HEC-1 Combine: CSD1), a combined 19 cfs from Catch Basin \#3 (HEC-1 Combine: CSD2) and finally 25 cfs from Manhole \#4 (HEC-1 Combine: CSD3). No offsite flows are added to the main parking lot storm drain. Refer to Appendix B for the HEC-1 Hydrologic Model Results.

Determine Tailwater Elevation:

The new storm drain discharges into the proposed new detention basin. The starting tailwater elevation for the design of the strom drain was taken as the stage in the new detention basin at the time the 100 -year, 6 -hour peak discharge enters the detention basin through the storm drain. From the Proposed Conditions HEC-1 Model it was found that at a time of $4: 02 \mathrm{hr}$ a peak flow of 25 cfs enters the basin with the water level in the detention basin at 1567.73 ft . Therefore, the starting tailwater elevation for the proposed storm drain is 1567.73 ft .

Tailwater Elevation @ Outlet Headwall = 1567.73 ft
(Water Level in Detention Basin @ Peak Inflow)

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 2 of 18

Compute the Storm Drain Outlet Headloss at Outlet Headwall

Exit Loss:

$h_{o}=1.0 \frac{V^{2}}{2 g} \quad$ (Equation 4.16)
where;
$h_{o}=$ Outlet Headloss at Manhole
$Q=$ Storm Drain Design Discharge

$$
Q=25.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25.0}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{o}=1.0 \frac{V^{2}}{2 g}$
$h_{o}=1.0 \frac{3.54^{2}}{2 \times 32.2}$
$h_{o}=0.19 \mathrm{ft}$

$$
h_{o}=0.19 \mathrm{ft} @ \text { Outlet Headwall }
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (Outlet Headwall to MH\#1)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=16 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation } 4.4)
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014$
$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 16$
$h_{f}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{f}=0.02 \mathrm{ft}(\text { Outle t Headwall to MH\#1) }
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 4 of 18

Compute the Bend Headloss at Manhole (MH\#1)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=39^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.24 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.24 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.05 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.05 \mathrm{ft} @ M H \# 1
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#1 to MH\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=139 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=25.0 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 139$
$h_{f}=0.19 f t$

$$
\mathrm{h}_{f}=0.19 \mathrm{ft}(M H \# 1 \text { to } M H \# 2)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 6 of 18

Compute the Bend Headloss at Manhole (MH\#2)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=25^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.12 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.12 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.02 \mathrm{ft} @ M H \# 2
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#2 to MH\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=127 \mathrm{ft}
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{42}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{5.94^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014
$$

$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 127$
$h_{f}=0.18 \mathrm{ft}$

$$
\mathrm{h}_{f}=0.18 \mathrm{ft}(\mathrm{MH} \# 2 \text { to } \mathrm{MH} \# 3)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 8 of 18

Compute the Bend Headloss at Manhole (MH\#3)
Bend Loss (no laterals):
$h_{m h}=k_{b} \frac{V^{2}}{2 g}$ (Equation 4.12)
where;
$h_{m h}=$ Headloss due to bend at manhole
$\gamma=$ Deflection Angle

$$
\gamma=28^{\circ}
$$

$k_{b}=$ Bend loss coefficient

$$
k_{b}=0.12 \quad(\text { Figure } 4.10)
$$

$Q=$ Upstream Storm Drain Design Discharge

$$
Q=25 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter

$$
D=3.0 \mathrm{ft}
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=k_{b} \frac{V^{2}}{2 g}$
$h_{m h}=0.12 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.02 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.02 \mathrm{ft} @ M H \# 3
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003

Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 9 of 18

Compute the Friction Headloss - Proposed 36" Storm Drain (MH\#3 to MH\#4)
$h_{f}=S_{f} L \quad($ Equation 4.6$)$
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=126 f t
$$

$Q=$ Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{3.0}{4}=0.750 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.54^{2}}{2 \times 32.2 \times 0.750^{\frac{4}{3}}}=0.0014$
$h_{f}=S_{f} L$
$h_{f}=0.0014 \times 126$
$h_{f}=0.18 \mathrm{ft}$

$$
h_{f}=0.18 \mathrm{ft}(\mathrm{MH} \# 3 \text { to MH\#4)}
$$

Compute the Combined Headloss at Manhole (MH\#4)
At this junction, compute the headloss associated with the Straight-Through Manhole and the lateral inflow at the manhole. The combined headloss is the total headloss at this Manhole (MH\#4).

Straight-Through Manhole Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g} \quad($ Equation 4.11)
where;
$h_{m h}=$ Headloss due to bend at manhole
$Q=$ Upstream Storm Drain Design Discharge
$Q=25 c f s$
$D=$ Upstream Storm Drain Pipe Diameter
$D=3.0 \mathrm{ft}$
$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{25}{\pi \times\left(\frac{3.0^{2}}{4}\right)}=3.54 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{3.54^{2}}{2 \times 32.2}$
$h_{m h}=0.01 \mathrm{ft}$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003

Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Junction Loss (Lateral Inflow):

$$
\begin{equation*}
h_{j}=\frac{2\left(Q_{2} V_{2}-Q_{1} V_{1}-Q_{3} V_{3} \cos \theta\right)}{\left(A_{1}+A_{2}\right) g}+\frac{V_{1}^{2}}{2 g}-\frac{V_{2}^{2}}{2 g} \tag{4.10b}
\end{equation*}
$$

where;
$h_{j}=$ Headloss at Junction with lateral inflow
$A_{1}=$ Upstream Flow Area

$$
A_{1}=\pi \frac{d^{2}}{4}=\pi \frac{2.0^{2}}{4}=3.14 f t^{2}
$$

$A_{2}=$ Downstream Flow Area

$$
A_{2}=\pi \frac{d^{2}}{4}=\pi \frac{3.0^{2}}{4}=7.07 f t^{2}
$$

$Q_{1}=$ Upstream Flow Rate
$Q_{1}=19 c f s$
$Q_{2}=$ Downstream Flow Rate
$Q_{2}=25 c f s$
$Q_{3}=Q_{2}-Q_{1}=$ Lateral Flow Rate
$Q_{3}=6 c f s$
NOTE: The lateral flow rate represents the flow rate in the 18 -inch Catch Basin \#1 connector pipe.
$V_{1}=$ Upstream Flow Velocity

$$
V_{1}=\frac{Q_{1}}{A_{1}}=\frac{19}{3.14}=6.05 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$V_{2}=$ Downstream Flow Velocity

$$
V_{2}=\frac{Q_{2}}{A_{2}}=\frac{25}{7.07}=3.54 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$V_{3}=$ Lateral Flow Velocity

$$
V_{3}=\frac{Q_{3}}{A_{3}}=\frac{6}{\pi \times\left(\frac{1.50^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$\theta=$ Angle between lateral and main storm drain line $\theta=90^{\circ}$ (Figure 4.7)
$h_{j}=\frac{2(25 \times 3.54-19 \times 6.05-6 \times 3.40 \times \cos (90))}{(3.14+7.07) 32.2}+\frac{6.05^{2}}{2 \times 32.2}-\frac{3.54^{2}}{2 \times 32.2}$
$h_{j}=0.21 \mathrm{ft}$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 12 of 18

Total Combined Headloss at Manhole (MH\#4)
$h_{m h_{\text {TOTAL }}}=h_{m h}+h_{j}$
$h_{m h_{\text {TOTAL }}}=0.01+0.21$
$h_{\text {mh }}^{\text {TOTАL }}=0.22 \mathrm{ft}$
$h_{m h}=0.22 \mathrm{ft}$ @ MH\#4

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003

Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020

Compute the Friction Headloss - Proposed 24" Storm Drain (MH\#4 to CB\#2)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;

$$
h_{f}=\text { Friction Headloss }
$$

$L=$ Length of Storm Drain

$$
L=249 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=19 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=2.0 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{19}{\pi \times\left(\frac{2.0^{2}}{4}\right)}=6.05 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

n = Manning ' s Roughness

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{2.0}{4}=0.500 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{6.05^{2}}{2 \times 32.2 \times 0.500^{\frac{4}{3}}}=0.0070$
$h_{f}=S_{f} L$
$h_{f}=0.0070 \times 248$
$h_{f}=1.74 \mathrm{ft}$

$$
\mathrm{h}_{f}=1.74 \text { ft }(\mathrm{MH} \# 4 \text { to CB } \# 2)
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020
Prepared By: Omer Karovic
Page 14 of 18

Compute the Headloss at Catch Basin (CB \#2)
Straight-Through Catch Basin Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g}($ Equation 4.11$)$
where;
$h_{m h}=$ Headloss at catch basin
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=11 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{11}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=6.22 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{6.22^{2}}{2 \times 32.2}$
$h_{m h}=0.03 \mathrm{ft}$

$$
\mathbf{h}_{m h}=\mathbf{0 . 0 3 ~ f t} @ C B \# 2
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020

Compute the Friction Headloss - Proposed 18" Storm Drain (CB\#2 to CB\#3)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=278 f t
$$

$Q=$ Storm Drain Design Discharge
$Q=11 c f s$
$D=$ Proposed Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{11}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=6.22 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning 's Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{1.5}{4}=0.375 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{6.22^{2}}{2 \times 32.2 \times 0.375^{\frac{4}{3}}}=0.0109$
$h_{f}=S_{f} L$
$h_{f}=0.0109 \times 278$
$h_{f}=3.03 \mathrm{ft}$

$$
\mathrm{h}_{f}=3.03 \mathrm{ft}(C B \# 2 \text { to CB\#3 })
$$

Date: September, 2020
Prepared By: Omer Karovic
Page 16 of 18

Compute the Headloss at Catch Basin (CB \#3)
Straight-Through Catch Basin Loss:
$h_{m h}=0.05 \frac{V^{2}}{2 g}($ Equation 4.11$)$
where;
$h_{m h}=$ Headloss at catch basin
$Q=$ Upstream Storm Drain Design Discharge

$$
Q=6 c f s
$$

$D=$ Upstream Storm Drain Pipe Diameter
$D=1.5 \mathrm{ft}$
$V=$ Velocity of Flow

$$
V=\frac{Q}{A}=\frac{Q}{\pi \times\left(\frac{D^{2}}{4}\right)}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$h_{m h}=0.05 \frac{V^{2}}{2 g}$
$h_{m h}=0.05 \frac{3.40^{2}}{2 \times 32.2}$
$h_{m h}=0.01 \mathrm{ft}$

$$
\mathbf{h}_{m h}=0.01 \mathrm{ft} @ C B \# 3
$$

Project Title: Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation

Date: September, 2020
Prepared By: Omer Karovic
Page 17 of 18

Compute the Friction Headloss - Proposed 18" Storm Drain (CB\#3 to CB\#4)
$h_{f}=S_{f} L \quad($ Equation 4.6)
where;
$h_{f}=$ Friction Headloss
$L=$ Length of Storm Drain

$$
L=278 f t
$$

$Q=$ Storm Drain Design Discharge

$$
Q=6 c f s
$$

$D=$ Proposed Storm Drain Pipe Diameter

$$
D=1.5 \mathrm{ft}
$$

$S_{f}=$ Friction Slope

$$
S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}(\text { Equation 4.4) }
$$

$$
V=\text { Velocity of Flow }
$$

$$
V=\frac{Q}{A}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

$$
n=\text { Manning ' s Roughness }
$$

$$
n=0.013 \quad \text { (Table } 4.1-\text { Smooth Plastic Pipe })
$$

$K=$ Pipe Roughness Coefficient

$$
K=\frac{2 g n^{2}}{2.21}=\frac{2 \times 32.2 \times 0.013^{2}}{2.21}=0.0049
$$

$R=$ Hydraulic Radius

$$
R=\frac{D}{4}=\frac{1.5}{4}=0.375 \mathrm{ft}
$$

$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=0.0049 \frac{3.40^{2}}{2 \times 32.2 \times 0.375^{\frac{4}{3}}}=0.0033$
$h_{f}=S_{f} L$
$h_{f}=0.0033 \times 278$
$h_{f}=0.92 \mathrm{ft}$

$$
\mathrm{h}_{f}=0.92 \text { ft }(C B \# 3 \text { to CB\#4) }
$$

Project Title: \quad Multi-Use Sports Fields NWC of Bell Road \& $94^{\text {th }}$ Street
Project No. 2003 Subject: Storm Drain Hydraulic Grade Line Calculation
Date: September, 2020 Prepared By: Omer Karovic Page 18 of 18

Compute the Entrance Headloss at Catch Basin (CB\#4)
Entrance Loss:
$h_{i}=k_{e n} \frac{V^{2}}{2 g} \quad($ Equation 4.15)
where;
$h_{i}=$ Headloss at Pipe Entrance
$k_{\text {en }}=$ Entrance Loss Coefficient $k_{\text {en }}=0.20$ (Table 5.1)
$V=$ Velocity of Flow
$V=\frac{Q}{A}=\frac{6}{\pi \times\left(\frac{1.5^{2}}{4}\right)}=3.40 \frac{\mathrm{ft}}{\mathrm{s}}$
$h_{i}=k_{e n} \frac{V^{2}}{2 g}$
$h_{i}=0.20 \frac{3.40^{2}}{2 \times 32.2}$
$h_{i}=0.04 \mathrm{ft}$

$$
\mathbf{h}_{i}=0.04 \mathrm{ft} @ \mathbf{C B H}
$$

Channel Report

18" Storm Drain Normal Depth Analysis (CB\#3 to CB\#4)

Circular
Diameter (ft) $\quad=1.50$

Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=1575.00$
$=1.10$
$=0.013$

Known Q
$=6.00$

Highlighted
Depth (ft)
$=0.79$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=6.000$
$=0.94$
$=6.35$
$=2.44$
$=0.95$
$=1.50$
$=1.42$

Elev (ft)

Section

Figure 5.20
Inlet Control Headwater Depth for Concrete Pipe Culverts
(USDOT, FHWA, HDS-5, 1985)

Main Parking Lot Storm Drain Inlet Sizing Calculations

Main Parking Lot - Catch Basin Design Calculations

The main parking at the Multi-Use Fields NWC of Bell Road \& $94^{\text {th }}$ Street sports complex is a $1 / 4$ mile long, linear parking lot located underneath the powerline corridor. The parking long is graded to drain to four shallow sumps that are drained by four catch basins connected to the proposed parking lot storm drain. The storm drain is discharged to the new detention basin located north of Bell Road, east of the entrance drive. The four sumps and corresponding catch basins are located approximately equidistant to each other, each designed to intercept the 100-year, 6-hour peak discharge from the parking lot and adjacent plaza area.

The four proposed inlets are located along the western edge of the main parking lot and are identified as Catch Basin \#1 (CB\#1) as the southernmost inlet, with Catch Basin \#4 (CB\#4) being the northernmost inlet. The remaining two inlets, Catch Basin \#2 (CB\#2) and Catch Basin \#3 (CB\#3) located in the middle of the parking lot. The 100-year, 6-hour design peak discharges and the corresponding HEC-1 Sub-Basin IDs for each inlet are as follows:

- Catch Basin \#1 (CB\#1) - Q $100=6$ cfs (NDA4)
- Catch Basin \#2 (CB\#2) - Q $100=8$ cfs (NDA3)
- Catch Basin \#3 (CB\#3) - Q100=5 cfs (NDA2)
- Catch Basin \#4 (CB\#4) - Q100=6 cfs (NDA1)

Refer to the Storm Drain Design Location Map at the beginning of these calculations for the exact location of the proposed catch basins as well as Appendix B for the HEC-1 Hydrologic Model.

It is recommended to install a City of Phoenix Type "Q" (Triple) combination catch basin (Std. Det. No P1572) with a total curb opening and grate length of 10 feet at each of the four sump locations. As can be seen in the following catch basin design calculations, the proposed catch basins have the capacity to intercept the entire 100-year, 6-hour design peak discharge. With the proposed catch basins located on the west curb line of the proposed parking lot, the additional benefit of using the Type " Q " catch basins is that it has the maintenance basin underneath the gutter, which will not protrude behind the back of curb into the fill slope

Catch Basin Design @ CB\#1

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
d = Depth of Sump at Proposed Catch Basin Inlet = Spill Elev - Weir Elev Spill Elev = Low Point in the Curb Elevation at Catch Basin $=1570.10 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1570.10 \mathrm{ft}$
Weir Elev $=1570.10 \mathrm{ft}-4.75 \mathrm{in}=1569.70 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1570.10-1569.70$
$[d=0.40 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.40 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.40$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8 - FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 f t\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \text { ft (Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.40^{1.5}$
$Q_{i}=9.16$

$$
Q_{i}=9 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#1 has an interception capacity of 9 cfs , which is greater than the 100-year, 6-hour design peak discharge of 6 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Project No. 2003 Subject: Main Parking Lot Catch Basin Design Calculations
Date: September, 2020
Prepared By: Omer Karovic
Page 4 of 11

Connector Pipe Sizing:

Determine the total (friction + inlet) headloss:

$$
\begin{aligned}
& h_{f}=S_{f} L \quad \text { Equation } 4.6-\text { Drainage Design Manual for Maricopa County, Hydraulics) } \\
& h_{i}=\left(1+k_{e n}\right)\left(\frac{V^{2}}{2 g}\right)
\end{aligned}
$$

Try a 18 inch $(\mathrm{d}=1.50 \mathrm{ft})$ Pipe:
$S_{f}=$ Pipe Friction Slope $=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}($ Equation 4.4 - Design Manual for Maricopa County, Hydraulics)
$K=$ Roughness Coefficient $=\frac{2 g n^{2}}{2.21}$ (Equation 4.5 - Design Manual for Maricopa County, Hydraulics)
$n=$ Manning' s roughness coefficient $=0.013$ (Typ)
$g=$ Acceleration due to Gravity $=32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$V=$ Velocity in Pipe $=\frac{Q}{A}$
$Q=$ Flow Rate in Pipe $=6 c f s$
$A=$ Cross - Section area of Pipe $=\pi \frac{d^{2}}{4}=\pi \frac{1.50^{2}}{4}=1.77 \mathrm{ft}^{2}$
$R_{h}=$ Hydraulic Radius $=\frac{A}{W_{p}}=\frac{\pi \frac{d^{2}}{4}}{\pi d}=\frac{d}{4}=\frac{1.50}{4}=0.375 \mathrm{ft}$
$L=$ Length of Pipe $=28 \mathrm{ft}$
$k_{\text {en }}=$ Entrance Loss Coefficient $=0.2$ (Table 5.1 - Design Manual for Maricopa County, Hydraulics)
$K=\frac{2 g n^{2}}{2.21}=\frac{2(32.2)(0.013)^{2}}{2.21}$
[$K=0.0049$]
$V=\frac{Q}{A}=\frac{6}{1.77}$
$\left[V=3.39 \frac{\mathrm{ft}}{\mathrm{s}}\right]$

Project No. 2003 Subject: Main Parking Lot Catch Basin Design Calculations
Date: September, 2020
Prepared By: Omer Karovic
Page 5 of 11
$S_{f}=K \frac{V^{2}}{2 g R^{\frac{4}{3}}}=(0.0049) \frac{3.39^{2}}{2(32.2)(0.375)^{\frac{4}{3}}}$
$\left[S_{f}=0.0032\right]$
Friction Headloss:
$h_{f}=S_{f} L$
$h_{f}=(0.0032)(28)$
$\left[h_{f}=0.09 f t\right]$
Inlet and Manhole Headloss:
$h_{i}=\left(1+k_{e n}\right)\left(\frac{V^{2}}{2 g}\right)$
$h_{i}=(1+0.2)\left(\frac{3.39^{2}}{2(32.2)}\right)$
$\left[h_{i}=0.21 \mathrm{ft}\right]$
Total Headloss:
$h_{t}=h_{f}+h_{i}$
$h_{t}=0.09+0.21$
$h_{t}=0.30$

$$
h_{t}=0.3 \mathrm{ft}
$$

Available Head: \mathbf{h}_{a}
Upstream HW Elevation: 1569.10 ft (Six inches below the proposed catch basin gutter elevation)
Per the City of Scottsdale Drainage Standards and Policies Manual, the hydraulic grade line (HGL) shall be a minimum of 6 " below the gutter elevation at the inlet. The gutter elevation of Catch Basin \#1 is 1569.60 ft .
Downstream HW Elevation: 1568.80 ft (Storm Drain HGL at Connection Manhole (MH\#4))
$h_{a}=$ Upstream HW - Downstream HW
$h_{a}=1569.10-1568.80$
$h_{a}=0.30$

$$
h_{a}=0.3 \mathrm{ft}
$$

The available head is equal to the total catch basin connector pipe headloss, therefore:
The 18-inch connector pipes have sufficient capacity to convey the intercepted flow

Catch Basin Design@CB\#2

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev Spill Elev = Low Point in the Curb Elevation at Catch Basin $=1573.50 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1573.50 \mathrm{ft}$
Weir Elev $=1573.50 \mathrm{ft}-4.75 \mathrm{in}=1573.10 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1573.50-1573.10$
$[d=0.40 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.40 \mathrm{ft}<0.42 \mathrm{ft}$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$ where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.40$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8 - FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 f t\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \text { ft (Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.40^{1.5}$
$Q_{i}=9.16$

$$
Q_{i}=9 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#2 has an interception capacity of 9 cfs , which is greater than the 100-year, 6 -hour design peak discharge of 8 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Catch Basin Design @ CB\#3

$\underline{\text { Determine if Catch Basin operates as a Weir or as an Orifice: }}$

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet $=$ Spill Elev - Weir Elev Spill Elev = Low Point in the sump, gutter elevation at landscaped island $=1575.40 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1575.50 \mathrm{ft}$
Weir Elev $=1575.50 \mathrm{ft}-4.75 \mathrm{in}=1575.10 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1575.40-1575.10$
$[d=0.30 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.30 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$

where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.30$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8-FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 f t\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \text { ft (Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 \mathrm{~W}\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.30^{1.5}$
$Q_{i}=5.95$

$$
Q_{i}=6 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#3 has an interception capacity of 6 cfs , which is greater than the 100-year, 6 -hour design peak discharge of 5 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Catch Basin Design@CB\#4

Determine if Catch Basin operates as a Weir or as an Orifice:

$d \leq h$	\Rightarrow Weir Flow
$h \geq d \geq 1.4 h$	\Rightarrow Transitional Flow
$d \geq 1.4 h$	\Rightarrow Orifice Flow

where;
$d=$ Depth of Sump at Proposed Catch Basin Inlet = Spill Elev - Weir Elev Spill Elev $=$ Low Point in the sump, gutter elevation at landscaped island $=1578.90 \mathrm{ft}$ Weir Elev = Catch Basin Weir Elevation = Top of Curb Elevation at Catch Basin -4.75 in The catch basin weir elevation is located at the lip of the modified gutter pan. Per COP Std. Det. P1572 the gutter pan lip elevation is $4.75^{\prime \prime}$ below the catch basin top of curb elevation.

Top of Curb Elevation at Catch Basin $=1579.00 \mathrm{ft}$
Weir Elev $=1579.00 \mathrm{ft}-4.75 \mathrm{in}=1578.60 \mathrm{ft}$
$d=$ Spill Elev - Lip Elev
$d=1578.90-1578.60$
$[d=0.30 f t]$
$h=$ Height of Curb Opening portion of the Catch Basin
$h=5$ in
$[h=0.42 f t]$
$d<h$
$0.30 f t<0.42 f t$

Weir How

Weir Flow, Sump Condition, Curb Opening Catch Basin Sizing:

$$
Q_{t}=C_{w}\left(L_{f}+1.8 W\right) d^{1.5} \quad \text { (Equation } 3.11 \text { - Drainage Design Manual for Maricopa County, Hydraulics) }
$$

where;

$$
Q_{i}=\text { Combination Basin Flow Interception Capacity }
$$

$C_{w}=$ Weir Flow Coefficient $=2.3$
$d=$ Depth of Sump at Proposed Catch Basin $=0.30$
$L=$ Length of Proposed Combination Catch Basin $=10.0 \mathrm{ft}$
$L_{f}=$ Effective Length of Catch Basin $=C_{f} \times L$
$C_{f}=$ Clogging Factor $=0.80($ Table 6.8-FCDMC Drainage Policies and Standards Manual $)$

$$
L_{f}=0.80 \times L
$$

$$
L_{f}=0.80 \times 10.0
$$

$$
\left[L_{f}=8.0 f t\right]
$$

$$
W=\text { Width of Depressed Gutter }=4.3 \text { ft (Modified per COP Std Det P1572) }
$$

$Q_{i}=C_{w}\left(L_{f}+1.8 \mathrm{~W}\right) d^{1.5}$
$Q_{i}=2.3(8.0+1.8 \times 4.3) 0.30^{1.5}$
$Q_{i}=5.95$

$$
Q_{i}=6 c f s
$$

The proposed City of Phoenix Type "Q" combination catch basin (Std. Det. P1572) at CB \#4 has an interception capacity of 6 cfs , which is greater than the 100-year, 6 -hour design peak discharge of 6 cfs . Due to the high clogging potential of grates in sump locations, the interception capacity of the grate portion of the catch basin has been ignored.

Appendix D: Culvert Design \& Wash Hydraulic Analysis

- LEGEND

Proposed Condition Inundation Boundary
Proposed Condition Water Surface Elevation
-_ Existing Condition Inundation Boundary
Existing Condition Water Surface Elevation
$Q=260 C$ CFs $M a x$ Peak Discharge \& Flow Direction

94th STREET WASH
Culvert Hydraulic Analysis

There are three main wash inflows that enter the project site. The two largest ones enter foom the Desert Parks Vista Condominium Comple,

 enine mani nifow loations. Therefore, it an b be concluded dat the

Appendix E: Digital Data

[^0]: ${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
 *The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

[^1]: ${ }^{\wedge}$ The first-flush rainfall depth was obtained from Section 4-1.201 (C)(2)(a) of the City of Scottsdale Drainage Policies and Standards Manual.
 *The runoff coefficients were obtained from Figure 4-1.5 of the City of Scottsdale Drainage Policies and Standards Manual.

