

LOCATED NEAR THE SOUTHWEST CORNER OF NORTH HAYDEN ROAD AND EAST LEGACY BOULEVARD

PRELIMINARY DRAINAGE REPORT- GRAYHAWK RESIDENCES AT CAVASSON

Basis of Design

Plan # 24-DR-202	21
Case #	
Q-S#	
× Accepted	
Corrections	
N.Baronas	1/4/2022
Reviewed By	Date

June 14, 2021 Revised: August 30, 2021 Revised: December 2, 2021

Project No.: 18114-601

PREPARED FOR:

GDI ML CAVASSON, LLC
7377 E. DOUBLETREE RANCH ROAD, SUITE 100
SCOTTSDALE, AZ 85258
(480) 998-2661

PREPARED BY:

MICHAEL S

HUBBARD ENGINEERING
1201 S. ALMA SCHOOL ROAD, SUITE 12000
MESA, AZ 85210
(480) 892-3313
MICHAEL S. WOLF, PE

TABLE OF CONTENTS

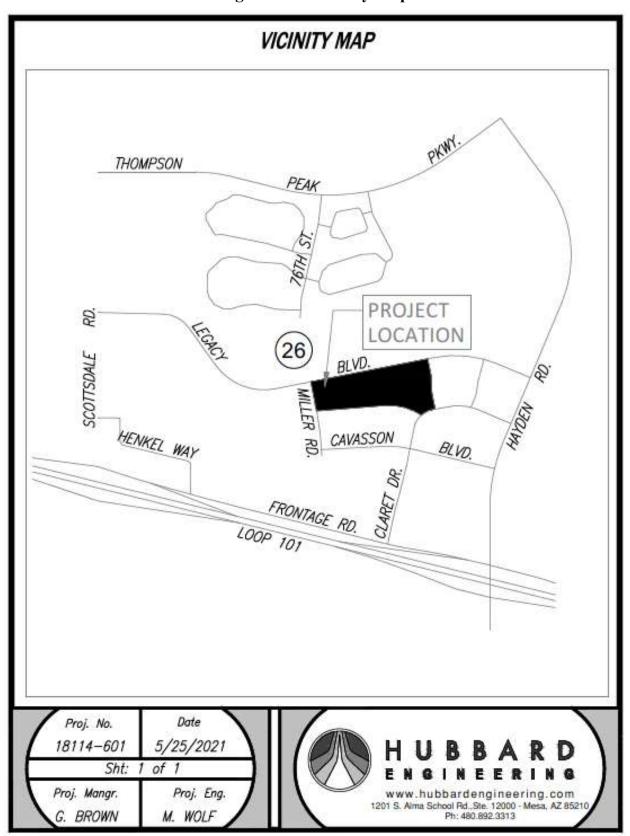
1. INTRODUCTION	1
1.1 PROJECT SCO	DPE
1.2 SITE DESCRI	PTION1
	PE3
	IDITIONS- 404 WASHES
	Y CRITERIA3
	NAGE CONDITIONS4
	F-SITE CONDITIONS CHARACTERISTICS4
	INAGE
	alysis5
	Information
	INAGE PLAN8
	ows8wo
	DRAULICS
	ER STORAGE
3.3.1 Time to B1	1
4. SUMMARY AND	CONCLUSION11
5. REFERENCES	11
6. LIMITATIONS	12
FIGURES	
	Cita Vicinity Mon
Figure 1.1	Site Vicinity Map
Figure 2.1	Flood Insurance Rate Map
APPENDICES	, a h
Appendix A	TY Lin HEC-1 Existing
Appendix B	TV Lin HEC 1 Proposed
Appendix C	Cavasson HEC-1 Ultimate Cavasson HEC-1 Ultimate MICHAFI S.
Appendix D	Cavasson HEC-1 Ultimate
Appendix E	Unsite Hydrology Calculations
Appendix F	Onsite Hydraulic Calculations WOLF WOLF
Appendix G	404 Permit
Appendix H	404 Permit Original HAG/LAG Documentation
EXHIBITS	
Exhibit 1	Offsite HEC-1 Basins
Exhibit 2	Onsite Drainage Exhibit
Exhibit 3	HAG/LAG Exhibit
Exhibit 4	
	Existing Offsite Flow
Exhibit 5	Emergency Overflow with Post Development Offsite Flow
Exhibit 6	Catch Basin Ponding Exhibit

1. INTRODUCTION

1.1 Project Scope

This report presents the results of a *Final Drainage Study* conducted by Hubbard Engineering at the request of GDI ML Cavasson ("client"), for The Grayhawk Residences at Cavasson development ("site"). The purpose of this report is to provide a hydrologic evaluation for the site as required by the City of Scottsdale per Ordinances 4346 and 4347. This report addresses off-site and on-site conditions. Drainage calculations and methodologies conform to the City of Scottsdale requirements and standards and to Hubbard Engineering's submitted *Master Drainage Report* for the Cavasson development.

This report is focused on providing practical design information, evaluation, and calculations for statistical flood events up to and including the 100-year frequency flood. The procedures used herein are derived from and performed with currently accepted engineering methodologies and practices. Additionally, the criteria for this evaluation are designed to conform to currently applicable ordinances, regulations and policies affected by the appropriate jurisdictional regulatory authorities for the site.


The analysis presented herein focuses on developing design estimates of storm water runoff resulting from a statistical evaluation of storm events of a particular duration and frequency, up to and including a 100-year frequency event. A storm event exceeding the 100-year frequency event may cause or create the risk of greater flood impact than is addressed and presented herein. The scope of this assessment does not include evaluation of storm water runoff resulting from storm events exceeding the 100-year frequency event. Hubbard assumes no responsibility for actual flood damage, increased risks of flood damage, or increased construction or development costs resulting from or related to any such events. Nor shall Hubbard be responsible for any changes in, or additions to, regulatory requirements which may result from, or be related to, any such events or changes in hydrologic or hydraulic conditions within the watershed.

1.2 Site Description

The project site is located in the southeast quarter of Section 26, Township 4N, Range 4E of the Gila and Salt River Base and Meridian, Maricopa County, Arizona. The site is currently undeveloped, and prior to Nationwide Realty Investor's acquisition, was held in trust by the Arizona State Land Department (ASLD) as a portion of the overall Crossroads East development, which encompasses approximately 883 gross acres. The Grayhawk Residences at Cavasson development is located in the Northwest corner of the overall Crossroads East development, near the Legacy Boulevard and Miller Road intersection. The land naturally falls from northeast to southwest.

The project site is bounded by undeveloped desert to the south, Reveille Road to the east, North Miller Road to the west, and Legacy Boulevard to the north. The site location is shown in **Figure 1.1 – Vicinity Map**.

Figure 1.1 – Vicinity Map

1.3 Project Type

The Cavasson development is being developed by Nationwide Reality Investors as a master planned mixed use development with office, retail, hotels, and multifamily residential parcels with public and private roadways that run adjacent and through the development. The Grayhawk Residences at Cavasson will include construction of a new apartment complex with 402 dwelling units over the 18.6 acre site in multiple buildings. Improvements will also include surrounding access drives, parking, and extending existing private utility stubs to service the building.

The analyses of pre-development and post-development peak discharges were addressed in Hubbard's *Master Drainage Report Phase 3 update* and will be referenced and further discussed as it applies to the Grayhawk Residences at Cavasson.

1.4 Special Conditions- 404 Washes

Located throughout the project site are waters of the United States 404 washes. The handling of the 404 washes has been coordinated with engineering consultants and the City of Scottsdale. The Section 404 Certification form has been completed by consultants. As discussed in the *Master Drainage Report*, Hubbard has met with the Army Corps of Engineer (USACE) and worked with consultants and the Corps to complete a mitigation plan. Approval of the 404 permit was granted on April 2, 2019. That permit number is SPL-2018-00704. ADEQ has issued the 401 permit. This permit has been attached for reference in **Appendix G.**

1.5 Regulatory Criteria

The criterion used in the drainage design and analysis of the site was established using the guidelines as described in the following:

- ➤ City of Scottsdale, *Design Standards & Policies Manual*, January 18, 2018.
- > City of Scottsdale, *Ordinance No. 4346*, June 17, 2018.
- > Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology.
- ➤ Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics.

2. EXISTING DRAINAGE CONDITIONS

2.1 Existing Off-Site Conditions Characteristics

Development in the surrounding area has increased in the last decade and many of the surrounding properties which sit in the Reata Pass basin, part of the Pinnacle Peak South Area, have installed infrastructure to route the offsite flows through their developments. As-built plans for the developments show that channels and culverts have been constructed to divert and route off-site flows. Historical runoff for the areas on and surrounding the project site flow south towards collections points (i.e. existing culverts) where the off-site storm runoff is ultimately conveyed to the TPC golf course just north of the Central Arizona Project canal. Existing culverts located at the edges of Hayden Road are currently utilized to route off-site runoff. Off-site routing for the developed surrounding areas has been verified with their corresponding as-builts, including Hayden Road Improvement Plans, 76th Street & Infrastructure Design, Center Drive (now Legacy Boulevard) Improvements, and One Scottsdale Civic Center Improvement Plans.

Hubbard Engineering completed a *Master Drainage Report* which included an extensive analysis of the off-site flow conditions affecting the entire Crossroads East area, including Cavasson and Hayden Road, for the existing site and proposed development. Results from the study indicate that the storm event affecting the Grayhawk Residences at Cavasson is a 100-year, 6-hour storm event. Since the submittal of the *Master Drainage Report*, Hubbard has met with the City of Scottsdale and the developers south of the Cavasson development. It was determined in the meeting that the HEC-1 models be adjusted to reflect a time interval of 15 minutes rather than 3 minutes, as was originally modeled in TY Lin's report. The flows affecting the site will be discussed in section 3.1. Details on Hubbard's HEC-1 methodology and analyses, in addition to the modeling results, can be referenced in the approved *Cavasson Master Drainage Report Phase 3 Update* dated April 30, 2021.

The Grayhawk Residences at Cavasson site specifically is being impacted by two sets of dual barrel elliptical culverts crossing Legacy Boulevard in the existing condition. These culverts are conveying flow from basins SB01-B and SB01-C north of Legacy Boulevard.

2.2 On-site Drainage

As the Cavasson project site was undeveloped prior to Phase 1, there were no on-site drainage structures. The project site was included in two previous studies, Bob Ward's *Core North/Core South Drainage Study* and TY Lin's *Pinnacle Peak South Area Drainage Master Study*. The TY Lin report analyzed the Crossroads East area and included FLO2d models combined with HEC-1 analyses on localized basins. The TY Lin report provided a basis on which Hubbard completed its hydrologic studies for the Cavasson project development.

The project site naturally falls from north to south at approximately 1.2% and approximately 0.7% east to west. The site outfall for the Grayhawk Residences at Cavasson occurs at the southern boundary of the project along Miller Road at an elevation of 1627'.

2.2.1 HEC-1 Analysis

The TY-Lin Pinnacle Peak South Area Drainage Master Study report provides an analysis of the entire Pinnacle Peak South Area, which covers an approximate area of 40 square miles. According to the report, the project site is located within the Dobson Wash Watershed, which includes inflow from the southwestern flow split of the Reata Pass Wash. TY Lin's existing and proposed exhibits and results can be found in Appendices A and B, respectively. Hubbard replicated TY-Lin's model in application to the approximate nine square miles including and surrounding the project site, shown in **Exhibit 1**, and included the inflow hydrographs from TY Lin's Master Drainage study to account for run-off affecting the project site from the 76th Street Channel and the Powerline for both the 100-year, 6-hour and 100-year, 24-hour storm events. Data collected for the model includes the precipitation, soil, and land use for the existing site conditions in application to the delineated sub-basins. All data Hubbard obtained and used in the model was compared to the existing TY Lin model for accuracy and adjusted accordingly based on current site conditions at maximum densities per approved zoning cases. Precipitation data was obtained from the NOAA Atlas 14 precipitation database. The map index used in DDMSW is 64, cells 687-689. Existing soil data was obtained from the United States Department of Agriculture's Natural Resources Conservation Service. Additionally, land use data was determined based on current zoning of the project site. Data for the HEC-1 analysis are in Appendix C. The results of the ultimate condition at full build out (after the powerline channel is constructed) are included in Appendix D.

Hubbard has met with the City of Scottsdale and the developers south of the Cavasson development in order to coordinate the analyses for the Crossroads East development. It was determined in the meeting that the HEC-1 models be adjusted to reflect a time interval of 15 minutes rather than 3 minutes, as was originally modeled in TY Lin's report. Thus, the inflow hydrographs provided by TY Lin were convoluted to accurately represent this change in time interval resulting in more accurate time to peak values. In addition, it was also decided in the meeting that Hubbard's analysis for the existing, proposed, and ultimate conditions will be used by developers south of Hayden Road. Hubbard's sub-basin delineation, shown in **Exhibit 1**, deviates from TY Lin's analysis in that Hubbard added collection points at existing culverts along Legacy Boulevard and Hayden road to model the peak flows coming through each infrastructure for utilization in routing design. Additionally, detailed analysis of the existing topography and asbuilts along Hayden road and Legacy Boulevard revealed that the basins were not segmented by Hayden Road or Legacy Boulevard, in the TY Lin Report. These larger basins were subdivided in the Hubbard analysis and a similar naming convention was used to compare baseline flows.

Hubbard's analysis split the original TY Lin sub-basins 7 and 8 into east and west components to more accurately model the conveyance of the flows on either side of Hayden Road. An additional basin, SB09N was also added per the city's request as this was not included in the TY Lin analysis. In Hubbard's routing, flows from SB07E and SB08E are routed east, following the topography. Since the TY-Lin model does not delineate a SB-08W, the TY-Lin model shows the flow from SB08 flowing from the southwest corner of the basin east across Hayden Road. This analysis is not correct considering that the eastern elevation is approximately 20 feet higher than the western elevation (CP-08 in TY-Lin's exhibit). This routing also neglects the flow being conveyed across the Loop 101 from SB07W and SB08W. Hubbard therefore routed the flow from

SB07W and SB08W to the existing ADOT culvert along Frontage road and across the Loop 101, thus affecting the developments south of the Loop 101, a condition not represented in the TY-Lin report.

In TY-Lin's analysis, the 100-year, 24-hour storm event controlled for the entire area, with the 100-year, 6-hour storm event controlling the localized flows. TY-Lin recommended the creation of the Powerline Channel to intercept and route the 100-year, 24-hour flows to Basin 53R. Since it was determined in meetings with the City of Scottsdale that the channel will be built during construction of the Cavasson development, Hubbard's existing model includes this channel and results for the 100-year, 24-hour, 100-year, 6-hour, and 10-year, 6-hour storm events are shown in **Appendix D.** The Existing 100-year, 6-hour flows prior to the offsite channel being constructed were 196 cfs entering the site and an Existing condition 100-Year, 6-hour discharge exiting the site at the Loop 101 of 740 cfs. With the addition of the channel and routing to Basin 53R, a significant amount of flow is being diverted from the affected study area to Basin 53R. The addition of the channel results in higher peak flows for the Crossroads East development from the 100-year, 6-hour storm event rather than the 100-year, 24-hour storm.

In addition to the existing model post-channel and proposed model, Hubbard completed an ultimate condition model considering the surrounding lots will be developed. In the model, this was represented by increasing the imperviousness of SB01-B, SB01-C, and SB07W to reflect maximum assumed densities per the zoning stipulations pertinent to the Cavasson development and Cross Roads East approved zoning cases.

2.3 Flood Zone Information

The Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (F.I.R.M.) number 04013C1320L, Panel number 1320 of 4425, dated October 16, 2013 indicates that the Grayhawk Residences at Cavasson falls within Zone AO (Depth 1 foot) on the west side of the project with the remainder classified as Zone X.

Zone AO is defined as:

"Areas subject to inundation by 1-percent-annual-chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between one and three feet. Average flood depths derived from detailed hydraulic analyses are shown in this zone. Mandatory flood insurance purchase requirements and floodplain management standards apply."

Zone X is defined as:

"Areas of 0.2% annual chance flood; areas of 1.0% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood."

Refer to FEMA Firmette in Figure 2.1.

MAP SCALE 1" = 1000" 1000 Grayhawk Residences PANEL 1320L MPUP at Cavasson **FIRM** TOWAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP MARICOPA COUNTY, ARIZONA 43037-1 26 AND INCORPORATED AREAS AO-1 PANEL 1320 OF 4425 CONTAINS COMMUNITY NUMBER PANEL SUFFIX AO-1 04013C1320L MAP REVISED OCTOBER 16, 2013

Figure 2.1 – FIRM 04013C1320L

3. PROPOSED DRAINAGE PLAN

3.1 Off-Site Flows

Off-site flows for the site were analyzed and addressed in Hubbard's Master Drainage Report Phase 3 Update. Results from the analysis show that after the powerline Channel is constructed 19 cfs is currently being conveyed across Legacy from the existing elliptical culvert located directly north of the Grayhawk Residences at Cavasson within Legacy Boulevard. When the parcel north of Legacy is developed, these flows are anticipated to increase to 50 cfs. These flows are now, however, being captured in a Offsite Storm Drain Network (Plan Check #1838-21) designed by Hubbard Engineering, construction expected to begin by November of 2021, that routes all of these offsite flows around the outside perimeter of the site prior to crossing Cavasson Boulevard. This allows the offsite flows to maintain their existing flow patterns without impacting the Grayhawk Residences at Cavasson. In the event that the Offsite Storm Drain System infrastructure fails, the offsite flow from north of Legacy would be contained within an existing swale to the north of Legacy Boulevard before entering an existing 10'x3' curved box culvert that discharges the flow to the south of Legacy Boulevard and west of Miller Road. This flow would then continue along the west side of Miller Road before joining its historic flow pattern just south of Cavasson Boulevard. It should be noted that due to sedimentation within the existing culverts crossing Legacy Boulevard, this overflow route is already being used in this manner for some of the flow. This Offsite Storm Drain System was discussed in further detail within Hubbard's Master Drainage Report Phase 3 Update.

The offsite flow from the adjacent Reveille Road will be conveyed to the site through an existing catch basin that will be tied directly into the onsite storm drain system. This offsite flow was calculated as part of the *Phase 3 Roads Drainage Report* written by Hubbard Engineering. Offsite flows from the adjacent half street of Miller Road will not impact the site because Miller Road was designed to convey all of its flow to two curb openings south of Cavasson Boulevard. The Grayhawk residences at Cavasson will still however retain the appropriate volume for the 100 year 6-hour storm event for the adjacent half street to remove those flows from the system. Likewise, the offsite flows from the adjacent half street of Legacy boulevard are being captured by the Offsite Storm Drain System and will not impact the site. The site will also still retain the appropriate equivalent volume for the adjacent half street of Legacy Boulevard. A summary of the offsite flows impacting the Grayhawk Residences at Cavasson can be found in **Table 1** below.

Table 1: Offsite Flow Summary Table										
Contributing Area	Pre-Development Q100 (cfs)	Post Development Q100 (cfs)								
SB01-B	19	0								
SB01-C	19	0								
Reveille Road	0	2.12								

3.2 On-Site Hydraulics

The storm event affecting the site was determined to be a 100-year, 6-hour storm, as discussed in Hubbard's *Master Drainage Report Phase 3 Update*. The Grayhawk Residences at Cavasson will include the installation of several multifamily apartment buildings throughout the site as well as a parking lot and private drives servicing all of the buildings. Additionally, the Offsite Storm Drain System runs along the north and west boundaries of the site within an existing drainage easement.

See **Exhibit 2** for the drainage map. The onsite storm drain system for the Grayhawk Residences at Cavasson consists of two parallel systems running along the north and south drives of the site that are connected by equalized underground retention tanks. The north system ties into the end of one of the underground retention tanks with a 42-inch diameter HDPE pipe running along the north drive. This pipe will then become a 36-inch diameter HDPE pipe after about 300' and continues along the north drive. After another roughly 500' the storm drain bends to follow the main north drive and at this bend converts to a 24-inch diameter HDPE pipe before branching out to service the remainder of the north half of the site. Along this main run, there are several inlets that are teed off of the main run to drain front courtyards of buildings, accept flow from the drainage easement north of the site, and accept the flow from side parking lots for the buildings. The flows from adjacent building roof drains will sheet flow to inlets located along the north storm drain which will then convey them to the underground retention tanks.

The south storm drain system ties into the end of a different underground retention tank with a 48-inch diameter HDPE pipe that runs along the southern drive. The 48-inch diameter pipe becomes a 42-inch diameter HDPE pipe at a manhole structure after about 160 feet. At this same manhole structure, the storm drain system that drains the west half of the central common area enters the south storm drain system. The south storm drain system then continues along the drive for another 300 feet where the system that drains the east half of the central common area then enters the system through another manhole structure. The south storm drain system continues until it reaches a bend where it downsized to a 30-inch HDPE pipe before branching out to drain the remaining areas of the site. One of these branches ties in to the existing manhole that is connected to the Reveille Road catch basin to accept its flow. Similar to the north system, the south system has multiple inlets that are teed off of the main system to capture flow from different parking areas. Additionally, flows from adjacent building roof drains will sheet flow to inlets located along the south storm drain to be conveyed to the underground retention tanks.

There are six underground retention tanks that are all equalized together on the west side of the site near the drive entrance that the north and south storm drain systems drain to. Some of the tanks have inlets that take flow directly from the drainage area over the tanks and from the adjacent buildings roof drain leaders. In greater storm events and back-to-back storm events an emergency overflow has been provided for the retention tanks. A 12-inch diameter HDPE overflow pipe has been designed to connect into the riser of one of the underground retention tanks that will allow excess volume to overflow. This pipe runs down the drive entrance to connect to the Offsite Storm Drain System as an emergency overflow only. The Offsite Storm Drain System was designed to accept up to 20 cfs of emergency overflow from the site. For design purposes, the tailwater for the north and south storm drain systems was set at the top of the equalized tanks and the tailwater for the emergency overflow storm drain system was set at the HGL of the Offsite Storm Drain System at the connection point. Head loss for the pipes was calculated using Manning's Equation and head loss through the structures was calculated the equation $k(\frac{v^2}{2a})$ where k is the junction loss

coefficient, v is the velocity exiting the junction and g is the acceleration of gravity. See **Appendix** E for hydrologic calculations and **Appendix** F for hydraulic calculations.

3.3 Storm Water Storage

The project development is required to provide retention for the first flush storm event for onsite and the 100 year 6-hour storm event for the adjacent half streets. The required first flush volume determined for each drainage area site will be designed per City of Scottsdale *Drainage Policies and Standards for Maricopa County, Arizona* (Reference 1). The first flush retention required for the site will be 29,095 cubic feet. The required retention for the adjacent half streets for the site is 30,674 cubic feet. This results in a total required retention of 59,769 which will be retained in 770 lf of 10' CMP underground retention tanks. These tanks provide a total of 60,319 cubic feet of retention which meets the requirement. The required and provided retention calculations can be found in **Appendix F**.

3.3.1 Time to Drain

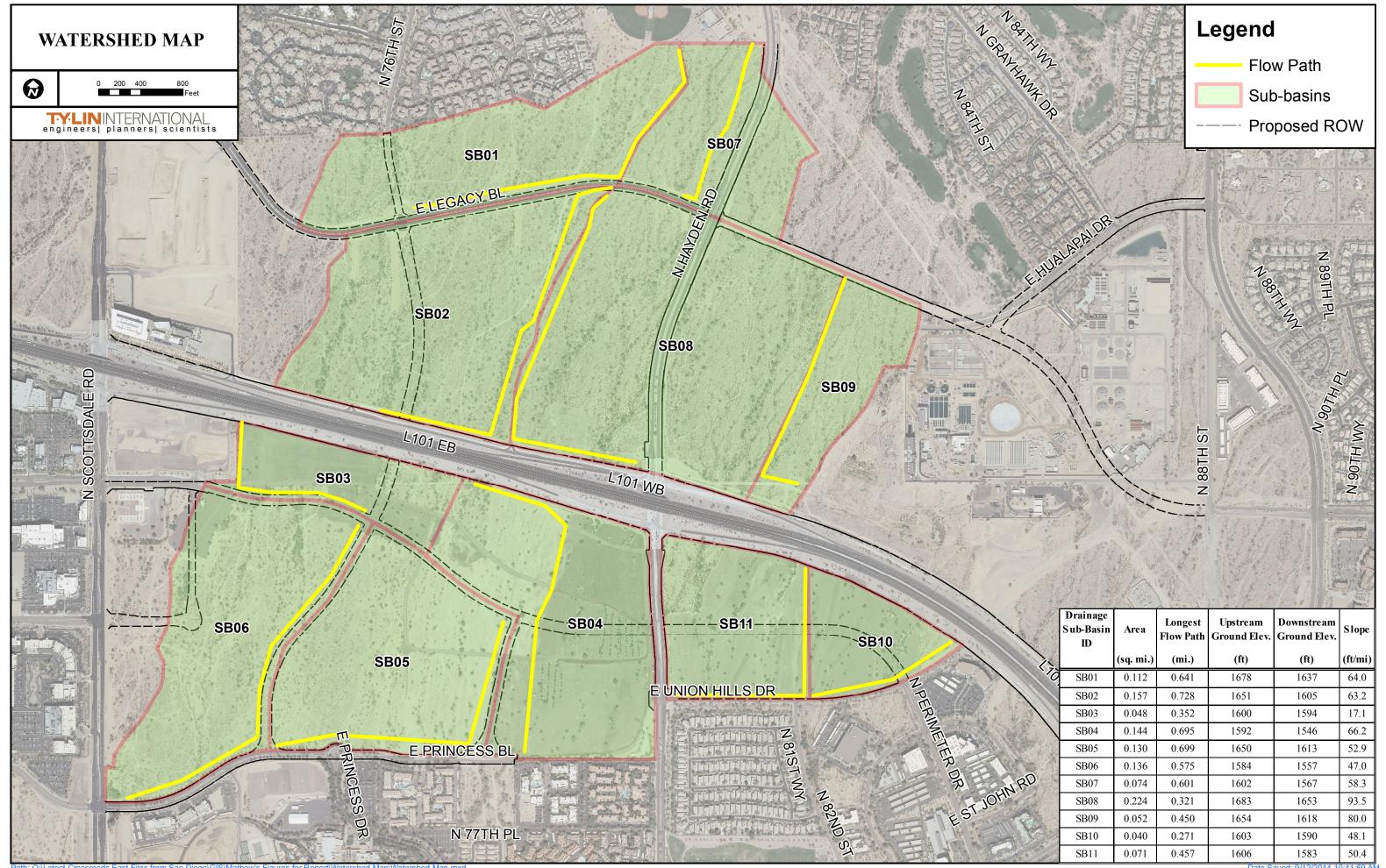
Each site will be required to dewater the required storm water retention through natural percolation and/or drywells. The City of Scottsdale requires all retention facilities be completely drained within a 36-hour time frame. For design purposes, it was assumed that each drywell will have a percolation rate of 0.1 cfs. During construction, the first drywell constructed will be tested to verify this percolation rate. In the event that the tested percolation rate plus a clogging factor exceed 0.1 cfs, the number of drywell may be reduced while ensuring all retention facilities fully drain within 36 hours. Using this drywell discharge rate, it was determined that 5 separate drywells will be provided to drain the total volume of the underground retention tanks below the emergency outfall pipe located in the riser. This will allow the retention tanks to fully dewater in a total time of 33.5 hours. See **Appendix F** for drywell calculations.

4. SUMMARY AND CONCLUSION

- The site is located in Section 26 of Township 4N, Range 4E of the Gila and Salt River Base and Meridian, Maricopa County, Arizona.
- The site is partially located in the Flood Plain Zone AO-1 on the west side and in Flood Plain Zone X on the remainder.
- The Finish Floor Elevations of the proposed buildings meet the requirement of 2 feet higher than the natural grade (HAG) within the Zone AO-1 flood zone.
- The storm event affecting the site was modeled as a 100-yr, 6-hour event in Hubbard's *Master Drainage Report* due to being more conservative.
- The Offsite Storm Drain System mitigates the offsite flows from north of Legacy Boulevard. The sites onsite storm drain system is directly accepting the offsite flows from Reveille Road.
- The site will be required to provide retention for the first flush storm event for onsite and provide retention for the 100-year 6-hour storm event for the adjacent half street roads.
- 770 lf of 10' CMP retention will provide 60,319 cf of retention, for the required retention of 59,769 cf.

5. REFERENCES

- 1) City of Scottsdale. *Drainage Policies & Standards for Maricopa County, Arizona*. January 18, 2018.
- 2) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume I, Hydrology*. November 2003.
- 3) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume II, Hydraulics*. November 2003.
- 4) Flood Control District of Maricopa County. *Drainage Design Manual for Maricopa County, Arizona, Volume III, Erosion.* July 2018.
- 5) City of Scottsdale. *Ordinance No. 4346.* June 17, 2018.
- 6) TY Lin, Pinnacle Peak South Area Drainage Master Study, 2014.
- 7) City of Scottsdale, Ordinance No. 4346, June 17, 2018.
- 8) Hubbard Engineering, Master Drainage Report. December 23, 2018
- 9) Hubbard Engineering, Master Drainage Report Phase 3 Update, August 19, 2021


6. LIMITATIONS

This report is focused on providing practical design information, evaluation, and calculations for statistical flood events up to and including the 100-year frequency flood. The procedures used herein are derived from, and performed with, currently accepted engineering methodologies and practices. Additionally, the criteria for this evaluation is designed to conform to currently applicable ordinances, regulations and policies effected by the appropriate jurisdictional regulatory authorities for the site.

The analysis presented herein focuses on developing design estimates of storm water runoff resulting from a statistical evaluation of storm events of particular duration and frequency up to and including a 100-year frequency event. A storm event exceeding the 100-year frequency event may cause or create the risk of greater flood impact than is addressed and presented herein. However, the scope of this assessment does not include evaluation of storm water runoff resulting from storm events exceeding the 100-year frequency event. Hubbard Engineering assumes no responsibility for actual flood damage, increased risks of flood damage, or increased construction or development cost resulting from or related to any such events.

Nor shall Hubbard Engineering be responsible for any changes in, or additions to, regulatory requirements which may result from, or be related to, any such events or changes in hydrologic or hydraulic conditions within the watershed.

In performing the services contained herein, Hubbard Engineering has received or will receive information prepared or compiled by others. Hubbard Engineering, as engineering professionals, are not required to verify the information, but may rely on the information unless actual knowledge concerning the validity of the information is known or is obvious to the professional. Therefore, Hubbard Engineering is entitled to rely upon the accuracy and completeness of this information without independent evaluation or verification.

1

* U.S. ARMY CORPS OF ENGINEERS

HYDROLOGIC ENGINEERING CENTER

609 SECOND STREET

DAVIS, CALIFORNIA 95616

* (916) 756-1104

*

X X x xxxxxxx XXXXX Х XX X Х X X Χ XXXXXXX XXXX XXXXX Х Х Х Х Х Х X X X x XXXXXXX XXXXX X XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

					HEC-1	INPUT						PAGE	1
LINE	ID.	1.	2	3.	4	5	6.	7.	8.	9.	10		
1 2 3 4 5	ID ID ID ID ID	ID RESERVOIR ROUTING OF BASIN N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ ID INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL: ID 100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND ID PIMA ROAD FLOWS) ID											
6 7	ID	п	REPARED E	v	דאז דאוייניו	ז גוא ∩ דיד גוא כ	• TACT	MODIETED:	00/1/				
8	ID		DELERS: R		DIM THIEL	MATIONAL	I DASI	MODIFIED.	09/14				
9	ID	110	DDDDDRD - I	, 1111									
10	IT	3	0	0	1000								
11	IN	3											
12	IO	5											
		AGRAM											
	*												
13	JD	3.849	0.0001	0 005	0 000	0 011	0 014	0 017	0 000	0 000	0 006		
14 15	PC PC	0.000 0.029	0.002 0.032	0.005 0.035	0.008	0.011	0.014	0.017 0.048	0.020 0.052	0.023 0.056	0.026 0.060		
16	PC	0.029	0.032	0.033	0.036	0.041	0.044	0.040	0.032	0.100	0.105		
17	PC	0.110	0.115	0.120	0.126	0.133	0.140	0.147	0.155	0.163	0.172		
18	PC	0.110	0.113	0.120	0.120	0.133	0.257	0.283	0.133	0.663	0.707		
19	PC	0.735	0.758	0.776	0.791	0.804	0.815	0.825	0.834	0.842	0.849		
20	PC	0.856	0.863	0.869	0.875	0.881	0.887	0.893	0.898	0.903	0.908		
21	PC	0.913	0.918	0.922	0.926	0.930	0.934	0.938	0.942	0.946	0.950		
22	PC	0.953	0.956	0.959	0.962	0.965	0.968	0.971	0.974	0.977	0.980		
23	PC	0.983	0.986	0.989	0.992	0.995	0.998	1.000					
24	JD	3.657	10.0										
25	JD *	3.533	20.0										
26	KK	76THST											
27	KM		6TH ST CH	ANNEL H	YDROGRAPI	H FROM PI	INNACLE	PEAK SOUT	TH ADMS				
28	KM		00-YR, 6-										
29	BA	0.24											
30	QI	0	0	0	0	0	0	0	0	0	0		
31	QI	0	0	0	0	0	0	0	0	0	0		
32	QI	0	0	0	0	0	0	0	0	0	0		
33	QI	0	0	0	0	0	0	0	0	0	0		
34	QI	0	0	0	0	0	0	0	0	0	0		
35	QI	0	0	0	0	0	0	0	0	0	0		
36	QI	0	0	0	0	0	0	0	0	0	0		
37	QI	0	0	0	0	0	0	0	0	0	0		
38	QI	0	0	0	0	0	0	0	0	0	0		
39	QI	0	0	0	0	0	0	0	0	0	0		
40	QI	0	0	0.01	0	0	0	0	0	0	0		
41	QI	0	0	0	0	0	0	0	0	0	0		
42	QI	0	0	0	0	0	0	0	0	0	0		
43	QI	U	U	U	U	U	U	U	U	U	U		

	44	QI	0	0	0	Phase:	I_Basin.	out 0.01	0	0	0	0		
	45 46	QI QI	0 0	0	0	0 0	0 0	0 0	0 0	0	0	0 0		
	47 48 49	QI QI QI	0.01 0 0.03	0 0.01 0.04	0 0.01 0.04	0.01 0.02 0.05	0 0.02 0.05	0 0.02 0.05	0 0.02 0.06	0 0.02 0.06	0.01 0.03 0.07	0.01 0.03 0.08		
	50 51	QI QI	0.09	0.09	0.1	0.1 0.18	0.11 0.19	0.11	0.12	0.12	0.13	0.14		
1	INE	TD	1	2	3	HEC-1		6	7	8	9	1.0	PAGE	2
ш.	52	QI	0.34	0.36	0.4	0.44	0.47	0.51	0.56	0.6	0.66	0.71		
	53 54 55	QI QI QI	0.76 17.69 68.57	0.95 31.39 67.36	1.61 35.75 65.05	1.73 41.23 61.38	1.95 44.49 58.37	3.7 47.79 54.61	4.26 51.13 52.38	6.53 56.33 50.75	8.52 62.34 48.4	10.41 66.18 44.37		
	56 57	QI QI	42.75	40.4	38.91 31.31	37.61 30.73	36.75 30.02	35.61 29.25	34.75 28.51	34.25	33.52 27.67	32.65		
	58 59	QI QI	26.13	25.37 19.05	24.53 18.62	23.95 18.3	23.37	22.83	22.17 17.52	21.48	20.81	20.94		
	60 61 62	QI QI QI	16.15 13.75 12	15.74 13.24 11.59	15.37 12.99 11.89	15.07 13.09 11.53	14.74 12.94 11.85	14.54 12.53 11.44	14.51 12.53 11.16	14.24 12.38 11.22	14.07 12.22 11.21	13.65 12.18 10.82		
	63 64	QI QI	10.52 9.34	10.43	10.88	10.42 9.23	10.1 9.1	9.81 9.09	9.72 9.48	9.66 9.3	9.78 9.02	9.55 9.07		
	65 66 67	QI QI QI	9.11 8.37 7.67	9.1 8.31 7.67	8.93 8.26 7.57	8.81 8.17 7.66	8.73 8.14 7.74	8.71 8.05 7.75	8.57 7.98 7.91	8.5 7.97 7.88	8.5 7.83 7.62	8.43 7.62 7.55		
	68 69	QI QI	7.47 6.97	7.3 6.92	7.22 6.89	7.25 6.85	7.2 6.81	7.73 7.08 6.77	7.02 6.75	7.01 6.7	6.99 6.67	6.96 6.62		
	70 71	QI QI	6.59 6.32	6.56 6.27	6.51 6.23	6.48 6.22	6.47 6.16	6.44 6.12	6.44 6.08	6.47 6.05	6.43 6.02	6.37 5.98		
	72 73 74	QI QI QI	5.95 5.7 5.41	5.95 5.76 5.43	5.95 5.62 4.49	5.93 5.65 5.32	5.9 5.74 5.36	5.87 5.84 5.44	5.84 5.95 5.48	5.76 4.5 5.6	5.72 4.58 5.67	5.64 5.32 4.68		
	75 76	QI QI	4.56 4.75	4.55	4.53	4.82	4.84	4.81 4.78	4.81	4.83 4.75	4.82	4.6 4.72		
	77 78	QI QI	4.69	4.64	4.62	4.61	4.63	4.67	4.71	4.72	4.71	4.66 4.26		
	79 80 81	QI QI QI	4.2 3.75 2.49	4.17 3.71 2.39	4.13 3.65 2.38	4.07 3.6 3.55	4.03 3.56 3.52	4 3.51 3.43	3.96 3.45 2.35	3.92 3.42 2.4	3.86 3.39 2.46	3.8 2.43 3.65		
	82 83	QI QI	3.61 2.48	3.3 2.53	2.37 2.53	2.4 2.47	2.46 2.41	3.65 2.36	3.59 2.32	3.59 2.28	3.61 2.25	3.67 2.22		
	84 85 86	QI QI QI	2.19 1.94 1.71	2.16 1.91 1.72	2.14 1.88 1.67	2.12 1.85 1.57	2.09 1.8 1.49	2.07 1.72 1.36	2.04 1.63 1.49	2.02 1.56 1.56	2 1.58 1.58	1.97 1.65 1.57		
	87 88	QI QI	1.48	1.35	1.21	1.15	1.13	1.13	1.13	1.13	1.13	1.13		
	89 90	QI QI	1.1	1.11	1.13	1.18	1.26	1.06	1.1	1.08	1.06	1.05		
	91 92 93	QI QI QI	0.94 0.85 0.78	0.93 0.84 0.77	0.92 0.84 0.76	0.91 0.83 0.76	0.9 0.82 0.75	0.89 0.81 0.74	0.88 0.8 0.73	0.87 0.8 0.73	0.86 0.79 0.72	0.86 0.78 0.72		
	94 95	QI QI	0.72 0.67	0.71 0.66	0.71 0.66	0.71 0.65	0.7 0.65	0.7 0.64	0.69 0.64	0.69 0.63	0.68 0.63	0.67 0.62		
	96 97 98	QI QI	0.62	0.61	0.61	0.6	0.6 0.56	0.59	0.59	0.59	0.58 0.54 0.5	0.58		
	98 99 100	QI QI QI	0.53 0.49 0.45	0.49	0.52 0.48 0.45	0.52 0.48 0.44	0.52 0.48 0.44	0.51 0.47 0.44	0.47	0.47 0.43	0.46 0.43	0.46 0.42		
-	101 102	QI QI	0.42 0.39	0.42	0.41	0.41	0.41	0.4	0.4	0.4	0.4	0.39		
1		*				HEC-1	INPUT						PAGE	3
L	INE	ID	1.	2	3	4	5	6.	7	8.	9	10		
	103 104	KK BA	SB01 0.112	BASIN										
1	105 106	LG UC	0.25	0.25 0.253	4.10	0.55	45							
	107 108	UA UA *	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
	109 110	KK KM		COMBINE	D AND 76	TH ST (M	MILLER RI	O CHANNEI	·)					
	111	HC *	2						,					
-	112 113 114	KK KM RK	MI	ROUTE LLER RD 0.0015	CHANNEL 0.03	FROM LEG	GACY BLVI	TO SR 1	LO1L FREE	EWAY				
	115	* KK	SB02	BASIN										
- - -	116 117	BA LG	0.157 0.15	0.25	4.15	0.58	56							
-	118 119 120	UC UA UA	0.328 0 100	0.240 5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
=	±∠U	*	T00											

PhaseI_Basin.out

```
121
                               CP-2 COMBINE
                         KK
                                  SR 101L FREEWAY AND 76TH ST (MILLER RD CHANNEL)
           122
                         KM
           123
                         HC
           124
                         KK
                               R2-3 ROUTE
                                  MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD
           125
                         ΚM
                               1260 0.0015
                                             0.03
                                                              TRAP
           126
                         RK
           127
                         KK
                               SB03
                                      BASIN
           128
                         {\tt BA}
                              0.048
           129
                               0.15
                                       0.25
                                               4.50
                                                      0.47
                                                                55
                         LG
           130
                         UC
                              0.364
                                      0.294
           131
                         UA
                                 0
                                               16.0
                                                       30.0
                                                              65.0
                                                                      77.0
                                                                              84.0
                                                                                      90.0
                                                                                              94.0
                                                                                                      97.0
                                       5.0
           132
                         UA
                                100
                               CP-3 COMBINE
           133
                         KK
                                  MAYO BLVD AND 76TH ST (MILLER RD CHANNEL)
           134
                         KM
           135
1
                                                      HEC-1 INPUT
                                                                                                             PAGE 4
          LINE
                         10.....1...2...3...4...5...6...7...8...9...10
           136
                         KK
                               R3-5 ROUTE
                                  MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD
           137
                         ΚM
                               2396 0.0015
                                             0.03
                                                              TRAP
                                                                        98
           138
                         RK
           139
                         KK
                               SB04
                                     BASIN
           140
                         BA
                              0.144
                                       0.25
                                               4.60
                                                                61
                               0.14
                                                      0.44
           141
                         LG
                         UC
           142
                              0.305
                                      0.199
                                                                                                      97.0
           143
                         UA
                                       5.0
                                               16.0
                                                      30.0
                                                              65.0
                                                                      77.0
                                                                              84.0
                                                                                      90.0
                                                                                              94.0
           144
                         UA
                               100
           145
                         KK
                               R4-5 ROUTE
           146
                         KM
                                  PRINCESS BLVD CHANNEL FROM 77TH ST TO 76TH ST
           147
                               2005 0.0013
                                            0.03
                                                              TRAP
           148
                         KK
                               SB05
                                     BASTN
           149
                         ВΑ
                              0.126
           150
                         LG
                               0.22
                                       0.25
                                               4.50
                                                      0.44
                                                                48
           151
                         UC
                              0.327
                                      0.226
           152
                         UA
                                  Λ
                                      5.0
                                               16.0
                                                       30.0
                                                              65.0
                                                                      77.0
                                                                              84.0
                                                                                      90.0
                                                                                              94.0
                                                                                                      97.0
                               100
           153
                         UA
           154
                         KK
                               CP-5 COMBINE
                               PRINCESS BLVD AND 76TH ST (PRINCESS BLVD CHANNEL)
           155
                         KM
           156
                         HC
           157
                         KK
                               R5-6 ROUTE
           158
                         KM
                                   PRINCESS BLVD CHANNEL FROM 76TH ST TO SCOTTSDALE RD
           159
                         RK
                               1550 0.0015
                                             0.03
                                                              TRAP
                                                                       188
           160
                               SB06
                         KK
                                     BASIN
           161
                              0.136
           162
                         LG
                               0.16
                                       0.25
                                               4.55
                                                      0.45
                                                                53
           163
                         UC
                              0.321
                                      0.246
                                                                      77.0
           164
                         UA
                                 0
                                       5.0
                                               16.0
                                                      30.0
                                                              65.0
                                                                              84.0
                                                                                      90.0
                                                                                              94.0
                                                                                                      97.0
                                100
           165
                         UA
           166
                         KK
                               CP-6 COMBINE
                                  PRINCESS BLVD AND SCOTTSDALE RD (PRINCESS BLVD CHANNEL)
           167
                         ΚM
           168
                         HC.
1
                                                      HEC-1 INPUT
                                                                                                              PAGE 5
                         \mathtt{ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots..7\dots.8\dots.9\dots.10
          LINE
           169
                               SB07
                                      BASIN
           170
                              0.074
                                       0.25
           171
                         LG
                               0.21
                                               4.00
                                                      0.58
                                                                49
                         UC:
                              0.206
                                      0.113
           172
           173
                         UA
                                               16.0
                                                                      77.0
                                                                                      90.0
                                                                                              94.0
                                                                                                      97.0
                               0
                                       5.0
                                                      30.0
                                                              65.0
                                                                              84.0
                         UA
                               100
           174
           175
                         KK
                               R7-8
                                     ROUTE
                                  HAYDEN ROAD NORTH CHANNEL FROM LEGACY BLVD TO SR 101L FREEWAY
           176
                         KM
                               2778 0.0014 0.03
           177
                         RK
                                                              TRAP
                                                                        46
```

170	****	anoo.	DAGTN		Phase:	I_Basin.c	out					
178 179	KK BA	SB08 0.224	BASIN	4 10	0.50	5.0						
180 181	LG UC	0.14 0.338	0.25 0.195		0.59							
182 183	UA UA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	*											
184 185	KK KM		COMBINE R 101L FR	EEWAV AN	D HYADEN	ם מספת ד	AVDEN DO	AD MODTU	CHANNET	\		
186	HC *	2	K 101L FK	EEWAI AN	D HAIDER	I KOAD (H	AIDEN KO	AD NORTH	CHANNEL	,		
187 188	KK KM	R8-9 H2	ROUTE AYDEN ROA	D NORTH	CHANNEL	FROM HAY	DEN ROAD	TO BASI	N 53R			
189	RK *	1250	0.0013	0.03		TRAP	67	4				
190	KK	SB09	BASIN									
191	BA	0.052		4 00	0 61							
192 193	LG UC	0.254	0.230	4.00								
194 195	UA UA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	*											
196 197	KK KM	CP-9 (COMBINE R 101L FR	EEWAY AN	D BACIN	E2D / IIAV	DEM BOAD	NODELL C	IIIAAIAIRI \			
198	HC	2	K IUIL FK	ELWAI AN	D BASIN	JJK (HAI	DEN ROAD	NORTH C	TANNEL)			
	*											
199 200	KK KM	PWRCH PO	OWERLINE	CHANNEL	(XS 107)	& 50% P	IMA ROAD	CHANNEL	(XS 183) HYDROG	RAPHS	
201 202	KM BA	7.0	ROM PINNA	CLE PEAK	SOUTH A	ADMS 100-	YR, 24-H	R FLO-2D	MODEL			
203	QI	0	0	0	0	0	0	0	0	0	0	
204 205	QI QI	0 0 0	0 0	0 0	0	0	0 0	0	0 0	0	0 0	
206 207	QI QI	0	0	0	0	0	0	0	0	0	0	
208	QI	0	0	0	0 HEC-1	0 TNDIIT	0	0	0	0	0	PAGE 6
TIME	TD	1	2	2			6	7	0	0	1.0	11100 0
LINE												
209 210	QI QI	0	0 0	0	0	0	0	0	0	0 0	0	
211 212	QI QI	0	0	0	0	0	0	0	0	0	0	
213	QI	0	0	0	0	0	0	0	0	0	0	
214 215	QI QI	0	0 0	0	0	0	0	0	0	0 0	0 0	
216 217	QI QI	0	0	0	0	0	0	0	0	0	0	
218 219	QI	0	0	0	0	0	0	0	0	0	0	
220	QI QI	0	0	0	0	0	0	0	0	0	0	
221 222	QI QI	0 0	0 0	0	0 0	0 0	0	0	0	0	0	
223 224	QI QI	0	0 0	0	0	0	0	0	0	0	0 0	
225	QI	0	0	1	1	1	1	1	1	1	1	
226 227	QI QI	1 43	2 50	2 65	2 87	3 194	3 495	5 872	9 967	18 1051	28 1095	
228 229	QI QI	1099 2055	1091 2422	1093 2906	1100 3246	1117 3546	1198 3747	1243 3874	1370 3884	1495 3837	1777 3741	
230	QI	3658	3562	3456	3370	3270	3175	3085	3024	2955	2888	
231 232	QI QI	2822 2084	2744 2045	2640 2005	2543 1973	2461 1933	2378 1898	2309 1860	2239 1821	2183 1779	2132 1740	
233 234	QI QI	1699 1331	1659 1298	1619 1268	1576 1237	1544 1206	1499 1179	1461 1152	1432 1126	1397 1100	1364 1074	
235 236	QI QI	1047 851	1023 834	1000 818	979 803	959 789	940 773	918 759	901 744	882 731	867 719	
237	QI	705	693	683	670	657	645	635	627	617	608	
238 239	QI QI	597 521	588 514	581 507	573 501	566 495	559 488	553 482	545 476	537 471	529 465	
240 241	QI QI	460 410	456 404	450 400	444 396	440 393	435 387	429 385	424 381	419 377	414 375	
242	QI	370	367	364	362	360	356	352	349	346	343	
243 244	QI QI	339 317	338 313	334 308	333 306	330 305	328 303	326 300	322 298	318 295	315 294	
245 246	QI QI	293 270	291 265	288 269	285 267	286 264	281 257	278 265	276 257	275 255	276 255	
247	QI QI	258	251 241	251	253	245 232	248 237	247	242 231	246 228	239 231	
248 249	QI	240 223	227	236 223	238 223	221	220	231 219	215	219	215	
250 251	QI QI	214 205	215 201	211 207	215 200	211 200	209 201	213 201	209 199	207 197	208 193	
252 253	QI QI	192 180	190 179	190 180	191 173	189 173	188 179	187 169	185 172	186 164	184 169	
254	QI	164	165	163	161	156	158	155	158	153	158	
255 256	QI QI	149 137	153 143	146 131	144 130	146 132	142 126	149 126	139 124	136 123	138 133	
257	QI	120	119	124	117	116	117	114	111	113	109	

1

Page 4

					Phase	I_Basin.	out						
258 259		107 97	96	105 100	106 94	104 93	102 99	104 91	100 90	99 97	103 88		
260 261		86 82	90 78	84 75 70 61	0.5	87 74	83 74	83 82	85 72	80 71	79 76		
262 263		70 62	78 71 65	70 61	68 61	72 63	74 66 59	82 67 65	65 58	64 58	69 60		
1 LINE	TD		2		HEC-1	INPUT				۵	1.0	PAGE 7	
264		57	63	56	55	58	55	58	54	52	58		
265 266	QI	52 50	52 46	53 47	50 47	57 44	50 48	50 45	55 43	48 49	48 43		
267 268	QI	42 40	48 40	4.0	41 37	45 40	41 37	40 36	44 42	40 36	38 36		
269 270	QI	35 36	41 33	35 32	34 32	34 33	40 32	34 31	33 31	33 30	33 33		
271 272	QI	31 31	30 28	29 28	29 27	31 27	30 30	28 27	29 26	28 26	29 26		
273 274	QI	31 24	30 28 26 28 22	25 23	25 23	34 33 31 27 25 24	30 23	26 24	25 25	25 24	24 23		
275	QI	23	22										
	*												
276 277	KM		TOTAL INF	LOW INTO	D BASIN 5	53R.							
278	HC *	2											
279		BASIN											
280 281	KM	ELEV	STAGE/ST 1594 AND	1615; B	ASIN SIDE	E SLOPES	STEEPENE	ED TO 3:1					
282 283	KM	T	UTFLOW RA HE OUTLET	PIPES A				OR 2-60"	PIPES				
284 285	SV	0	44.9	0 76.8		140.6	171.5	202.5	233.5		295.5		
286 287	SE	1594	362.0 1597	1598	428.5 1599	1600	497.2 1601	532.7 1602	568.3 1603	1604	639.3 1605		
288 289	SQ			153.4	1609 209.8	244.2	1611 264.5		1613 302.5	1614 320.1	1615 336.9		
290	SQ *	353.0	368.5	383.5	398.0	412.0	425.7	438.9	451.9	464.5	476.8		
291		BSNRT1	COH CIMID	OHI ELOW	DIDEG E	OD DAGIN	E3D IMIDI	an an 101	II EDDEW				
292 293	KM	D	-60" CMP OWNSTREAN XCESS CAE	CONNEC'						AY.			
294 295			0.0052			CIRC	7.0						
296		BSNRT2											
297 298	KM	2	-60" RCP	PIPES FI		01L FREEV		NION HILI	LS DR (B	ASIN 53R	OUTFAL		
250	*	1200	0.0077	0.013		CIRC	7.0						
299 300	KK BA	SB10 0.040	BASIN										
301 302	LG		0.25 0.161	4.25	0.55	55							
303 304	UA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
1	*				HEC-1	INPUT						PAGE 8	
LINE	ID.	1.	2	3.	4	5	6	7	8.	9.	10		
305 306	KM	U.	COMBINE NION HILI	S DR ANI	0 82ND ST	r (UNION	HILLS DE	R CHANNEI					
307	HC *	2											
308		R10-11	ROUTE										
309 310	KM RK *		NION HILI 0.0014	0.03	ANNEL FRO	OM 82ND S TRAP	ST TO HAY 220	DEN ROAI 4)				
21.1		GD11	DAGIN										
311 312	BA	SB11 0.071	BASIN	A 15	0 50								
313 314 315	UC	0.15 0.296 0	0.25 0.232 5.0	4.15 16.0	0.58	55 65.0	77.0	84.0	90.0	94.0	97.0		
315	UA UA *	100	5.0	10.0	30.0	03.0	//.0	04.0	3U.U	9 4. U	∌/.U		
317		CP-11	COMBINE										
317 318 319	KM		NION HILI	S DR ANI) HAYDEN	ROAD (HA	AYDEN RD	SOUTH CH	HANNEL)				
320	*	4											
1	SCHEMATIC DI	AGRAM OF	STREAM N	IETWORK									

SCHEMATIC DIAGRAM OF STREAM NETWORK

INPUT

PhaseI_Basin.out

LINE	(V) ROUTING	PhaseI_Basin.out
		(<) RETURN OF DIVERTED OR PUMPED FLOW
	76THST	
	•	
103	. SB01	
109		
110	V V	
112		
115	. SB02	
121		
121	V V	
124		
127	. SB03	
133	CP-3	
136	V R3-5	
139	. SB04	
145	. V . R4-5	
148		
140		
154	CP-5V	
157	V	
	•	
160	. SB06	
166		
1.00		
169	. SB07 . V . V	
175	. V . R7-8	
178		SB08
184	. V	
187	. V . R8-9	
100		
190		SB09
196		
199		PWRCH
		:
276	. BINFLO . V	
279	. V . BASIN	
	. V	
291	. BSNRT1	
296	. V . BSNRT2	
299		SB10
233		
		•

			PhaseI_Basin.out		
305	. CP-1	0			
		V			
	•	V			
308	. R10-1	1			
	•	•			
311	•	. SB11			
311	•	. 3511			
317		1			
1*****	RUNOFF ALSO COMPUTED A'	*****			
*		*		*	
*					
* FL	OOD HYDROGRAPH PACKAGE	(HEC-1) *		*	U.S. ARMY CORPS OF ENGINEERS
*	JUN 1998	*		*	HYDROLOGIC ENGINEERING CENTER
*	00N 1990				HIDRODOGIC ENGINEERING CENTER
*	VERSION 4.1	*		*	609 SECOND STREET
*					
*		*		*	DAVIS, CALIFORNIA 95616
*					
* RUN *	DATE 12SEP14 TIME	11:45:27 *		*	(916) 756-1104
*		*		*	
*					
*****	******	*****			
*****	*******	*****			

CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
RESERVOIR ROUTING OF BASIN N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
PIMA ROAD FLOWS)

PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14 MODELERS: RK, MW

12 IO	OUTPUT CONTROL VAR	IABLES												
	IPRNT	5 PRINT	CONTROL											
	IPLOT	0 PLOT												
	QSCAL	0. HYDRC	GRAPH PLOT S	SCALE										
TT	HYDROGRAPH TIME DA	ТА												
	NMIN		ES IN COMPUT	CATION INTE	RVAL									
	IDATE 1	0 START	ING DATE											
	ITIME	0000 START	ING TIME											
	NQ		R OF HYDROGE	RAPH ORDINA	TES									
	NDDATE 3		G DATE											
	NDTIME		G TIME											
	ICENT	19 CENTU	KI MAKK											
	COMPUTATION INTE		HOURS											
	TOTAL TIME	BASE 49.95	HOURS											
	ENGLISH UNITS													
	DRAINAGE AREA	SQUARE MIL	ES											
	PRECIPITATION DEPTH	INCHES												
	LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND													
	FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET													
	STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES													
	TEMPERATURE	DEGREES FA	HRENHEIT											
13 JD	INDEX STORM NO. 1	3 0F DDEGT	DIMAMION DEF	OMIT.										
	STRM TRDA		PITATION DEF POSITION DRA											
	INDA	0.00 IKAN	FOSITION DRA	INAGE AKEA	•									
14 PI	PRECIPITATION PA													
	0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00 0.0 0.01 0.0		0.00 0.01	0.01 0.01	0.01	0.00	0.01 0.01	0.00 0.01	0.01 0.01					
	0.01 0.0		0.02	0.01	0.03	0.10	0.28	0.04	0.03					
	0.02 0.0		0.01	0.01	0.01	0.01	0.01	0.01	0.01					
	0.01 0.0		0.01	0.01	0.01	0.00	0.00	0.00	0.00					
	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00 0.0	0.00	0.00	0.00	0.00									
24 JD	INDEX STORM NO. 2													
	STRM		PITATION DEF											
	TRDA	10.00 TRANS	POSITION DRA	AINAGE AREA	L									
0 PI	PRECIPITATION PA	TTERN												
	0.00 0.0		0.00	0.00	0.00	0.00	0.00	0.00	0.00					
	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
				Dago 7										

Page 7

						Pl	haseI Basin.c	out				
			0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.01
			0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
			0.01	0.01	0.02	0.02	0.02	0.03	0.10	0.28	0.04	0.03
			0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
			0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00				
25	JD	IND	EX STORM	M NO. 3								
			STR	м 3.	.53 PRECIPI	TATION I	DEPTH					
			TRDA	A 20.	.00 TRANSPO	SITION I	DRAINAGE AREA					
		_										
U	ΡI	F		ATION PATTE		0 00	0.00	0 00	0 00	0.00	0 00	0 00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.01
			0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
			0.01	0.01	0.02	0.02	0.02	0.03	0.10	0.28	0.04	0.03
			0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
			0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00				
		*** FDKRUT	WARNING	TIME STEP	CALCULATION	FAILED	TO CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		
		*** FDKRUT	WARNING	TIME STEP	CALCULATION	FAILED	TO CONVERGE.	STABILITY	PROBLEMS	MAY RESULT		

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE. Page 22	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	TO	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT
***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED		CONVERGE. Page 26	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

1

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	ODED A SET ON	OMA MIT ON	PEAK	TIME OF	AVERAGE FI	LOW FOR MAXIM	UM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	76THST	69.	12.50	23.	8.	4.	0.24		
+	HYDROGRAPH AT	SB01	278.	2.55	30.	8.	4.	0.11		
	2 COMPTAIN AM									

					Discourt Deviler of			
+		CP-1	276.	2.55	PhaseI_Basin.out 30.	15.	8.	0.35
+	ROUTED TO	R1-2	273.	2.70	30.	15.	8.	0.35
+	HYDROGRAPH AT	SB02	410.	2.55	46.	12.	6.	0.16
+	2 COMBINED AT	CP-2	627.	2.65	76.	26.	13.	0.51
+	ROUTED TO	R2-3	618.	2.70	76.	26.	13.	0.51
+	HYDROGRAPH AT	SB03	111.	2.60	14.	4.	2.	0.05
+	2 COMBINED AT	CP-3	720.	2.70	90.	30.	15.	0.56
+	ROUTED TO	R3-5	713.	2.80	90.	30.	15.	0.56
+	HYDROGRAPH AT	SB04	440.	2.55	45.	11.	5.	0.14
	ROUTED TO	R4-5	432.	2.65	45.	11.	5.	0.14
+	HYDROGRAPH AT							
+	3 COMBINED AT	SB05	340.	2.55	36.	9.	4.	0.13
+	ROUTED TO	CP-5	1265.	2.75	170.	50.	25.	0.83
+	HYDROGRAPH AT	R5-6	1242.	2.80	169.	50.	25.	0.83
+		SB06	355.	2.55	40.	10.	5.	0.14
+	2 COMBINED AT	CP-6	1466.	2.80	208.	60.	29.	0.96
+	HYDROGRAPH AT	SB07	322.	2.50	21.	5.	2.	0.07
+	ROUTED TO	R7-8	310.	2.65	21.	5.	3.	0.07
+	HYDROGRAPH AT	SB08	660.	2.55	68.	17.	8.	0.22
+	2 COMBINED AT	CP-8	903.	2.65	89.	22.	11.	0.30
+	ROUTED TO	R8-9	880.	2.70	89.	22.	11.	0.30
+	HYDROGRAPH AT	SB09	147.	2.55	15.	4.	2.	0.05
+	2 COMBINED AT	CP-9	985.	2.70	104.	26.	12.	0.35
+	HYDROGRAPH AT	PWRCH	3884.	13.35	1547.	503.	248.	7.00
+	2 COMBINED AT	BINFLO	3884.	13.35	1547.	503.	260.	7.35
+	ROUTED TO	BASIN				399.		
	ROUTED TO							
+	ROUTED TO		463.			399.		
+	HYDROGRAPH AT	BSNRT2			458.			7.35
+	2 COMBINED AT	SB10	141.	2.50	12.	3.	1.	0.04
+	ROUTED TO	CP-10	463.	18.50	458.	399.	252.	7.39
+		R10-11	463.	18.55	458.	399.	252.	7.39
+	HYDROGRAPH AT	SB11	195.	2.55	21.	5.	3.	0.07
+	2 COMBINED AT	CP-11	463.	18.55	458.	399.	254.	7.46

Page 28

1

SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING

(FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)

INTERPOLATED TO

								С	OMPUTATION	INTER	VAL	
IST	ΓAQ	ELEM	ENT I	DΤ	PEAK	TIME TO	VOLUME	DT	PEAK	TIME	TO	VOLUME
						PEAK				PEA	.K	
			1)	MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN	1)	(IN)
FOR	STORM	= 1	STORM ARE	EA (SQ MI	:) =	0.00						
	R1-2	MANE	3	3.00 2	87.35	160.24	1.72	3.00	284.38	162.0	0	1.72

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3222E+02 EXCESS=0.0000E+00 OUTFLOW=0.3226E+02 BASIN STORAGE=0.5145E-01 PERCENT ERROR=-0.3

FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R1-2 MANE 3.00 270.30 162.31 1.67 3.00 267.71 162.00 1.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3132E+02 EXCESS=0.0000E+00 OUTFLOW=0.3135E+02 BASIN STORAGE=0.5145E-01 PERCENT ERROR=-0.3

FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R1-2 MANE 3.00 259.93 162.15 1.64 3.00 259.40 162.00 1.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3073E+02 EXCESS=0.0000E+00 OUTFLOW=0.3080E+02 BASIN STORAGE=0.5496E-01 PERCENT ERROR=-0.4

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R2-3 MANE 1.51 651.07 161.96 2.07 3.00 651.05 162.00 2.07

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5609E+02 EXCESS=0.0000E+00 OUTFLOW=0.5610E+02 BASIN STORAGE=0.3635E-01 PERCENT ERROR=-0.1

FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R2-3 MANE 1.68 617.22 162.52 1.98 3.00 607.09 162.00 1.98

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5389E+02 EXCESS=0.0000E+00 OUTFLOW=0.5385E+02 BASIN STORAGE=0.3635E-01 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R2-3 MANE 1.57 606.67 162.84 1.93 3.00 594.12 162.00 1.94

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5252E+02 EXCESS=0.0000E+00 OUTFLOW=0.5252E+02 BASIN STORAGE=0.3881E-01 PERCENT ERROR=-0.1

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R3-5 MANE 2.90 746.61 169.74 2.14 3.00 740.89 168.00 2.14

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6349E+02 EXCESS=0.0000E+00 OUTFLOW=0.6368E+02 BASIN STORAGE=0.7132E-01 PERCENT ERROR=-0.4

FOR STORM = 2 STORM AREA (SQ MI) = 10.00

R3-5 MANE 2.99 705.69 168.12 2.05 3.00 703.45 168.00 2.05

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6077E+02 EXCESS=0.0000E+00 OUTFLOW=0.6099E+02 BASIN STORAGE=0.7609E-01 PERCENT ERROR=-0.5

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R3-5 MANE 2.97 683.83 168.92 2.00 3.00 669.67 168.00 2.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5920E+02 EXCESS=0.0000E+00 OUTFLOW=0.5943E+02 BASIN STORAGE=0.7619E-01 PERCENT ERROR=-0.5

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R4-5 MANE 2.44 447.26 159.45 3.02 3.00 444.07 159.00 3.02

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2308E+02 EXCESS=0.0000E+00 OUTFLOW=0.2320E+02 BASIN STORAGE=0.4656E-04 PERCENT ERROR=-0.5

FOR STORM = 2 STORM AREA (SQ MI) = 10.00

R4-5 MANE 2.59 429.78 158.16 2.87 3.00 425.33 159.00 2.86

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2182E+02 EXCESS=0.0000E+00 OUTFLOW=0.2203E+02 BASIN STORAGE=0.4483E-04 PERCENT ERROR=-1.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R4-5 MANE 2.60 410.95 158.84 2.76 3.00 410.03 159.00 2.76

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2100E+02 EXCESS=0.0000E+00 OUTFLOW=0.2116E+02 BASIN STORAGE=0.3691E-04 PERCENT ERROR=-0.8

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

1.77 1321.25 168.17 2.39 3.00 1316.26 168.00 2.39 R5-6 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1051E+03 EXCESS=0.0000E+00 OUTFLOW=0.1053E+03 BASIN STORAGE=0.6328E-01 PERCENT ERROR= -0.3

10.00 FOR STORM = 2 STORM AREA (SQ MI) =

R5-6 MANE 1.94 1236.19 169.97 2.28 3.00 1225.73 171.00 2.28

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1002E+03 EXCESS=0.0000E+00 OUTFLOW=0.1004E+03 BASIN STORAGE=0.6753E-01 PERCENT ERROR= -0.2

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R5-6 MANE 1.82 1180.28 168.70 2.20 3.00 1169.55 171.00 2.20

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9721E+02 EXCESS=0.0000E+00 OUTFLOW=0.9718E+02 BASIN STORAGE=0.6757E-01 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

158.47 R7-8 MANE 2.98 320.52 2.78 3.00 316.88 159.00 2.78

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1062E+02 EXCESS=0.0000E+00 OUTFLOW=0.1097E+02 BASIN STORAGE=0.1432E-03 PERCENT ERROR= -3.3

FOR STORM = 2 STORM AREA (SQ MI) =

R7-8 MANE 2.87 305.35 159.01 2.61 3.00 304.85 159.00 2.62

10.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1001E+02 EXCESS=0.0000E+00 OUTFLOW=0.1032E+02 BASIN STORAGE=0.1568E-03 PERCENT ERROR=

-3.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

160.28 R7-8 MANE 3.00 287.36 2.59 3.00 278.18 159.00 2.59

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9623E+01 EXCESS=0.0000E+00 OUTFLOW=0.1023E+02 BASIN STORAGE=0.1386E-03 PERCENT ERROR= -6.3

FOR STORM = 1 STORM AREA (SO MI) = 0.00

R8-9 MANE 1.46 914.50 162.26 2.88 3.00 911.54 162.00 2.88

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4580E+02 EXCESS=0.0000E+00 OUTFLOW=0.4583E+02 BASIN STORAGE=0.2113E-03 PERCENT ERROR= -0.1

FOR STORM = 2 STORM AREA (SQ MI) = 10.00

R8-9 MANE 1.32 877.55 161.38 2.73 3.00 866.18 162.00 2.73

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4326E+02 EXCESS=0.0000E+00 OUTFLOW=0.4337E+02 BASIN STORAGE=0.2285E-03 PERCENT ERROR=-0.3

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R8-9 MANE 1.49 824.02 161.14 2.64 3.00 818.74 162.00 2.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4190E+02 EXCESS=0.0000E+00 OUTFLOW=0.4192E+02 BASIN STORAGE=0.2053E-03 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT1 MANE 0.33 462.77 1107.64 2.65 3.00 462.77 1110.00 2.65

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1038E+04 EXCESS=0.0000E+00 OUTFLOW=0.1037E+04 BASIN STORAGE=0.9252E-01 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 10.00

BSNRT1 MANE 0.33 462.63 1107.74 2.64 3.00 462.63 1110.00 2.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1035E+04 EXCESS=0.0000E+00 OUTFLOW=0.1035E+04 BASIN STORAGE=0.9241E-01 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

BSNRT1 MANE 0.34 462.54 1107.73 2.64 3.00 462.54 1110.00 2.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1033E+04 EXCESS=0.0000E+00 OUTFLOW=0.1033E+04 BASIN STORAGE=0.9237E-01 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT2 MANE 0.48 462.77 1110.07 2.65 3.00 462.77 1110.00 2.65

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1038E+04 EXCESS=0.0000E+00 OUTFLOW=0.1037E+04 BASIN STORAGE=0.1054E+00 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 10.00

BSNRT2 MANE 0.37 462.63 1110.22 2.64 3.00 462.63 1110.00 2.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1035E+04 EXCESS=0.0000E+00 OUTFLOW=0.1035E+04 BASIN STORAGE=0.1056E+00 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

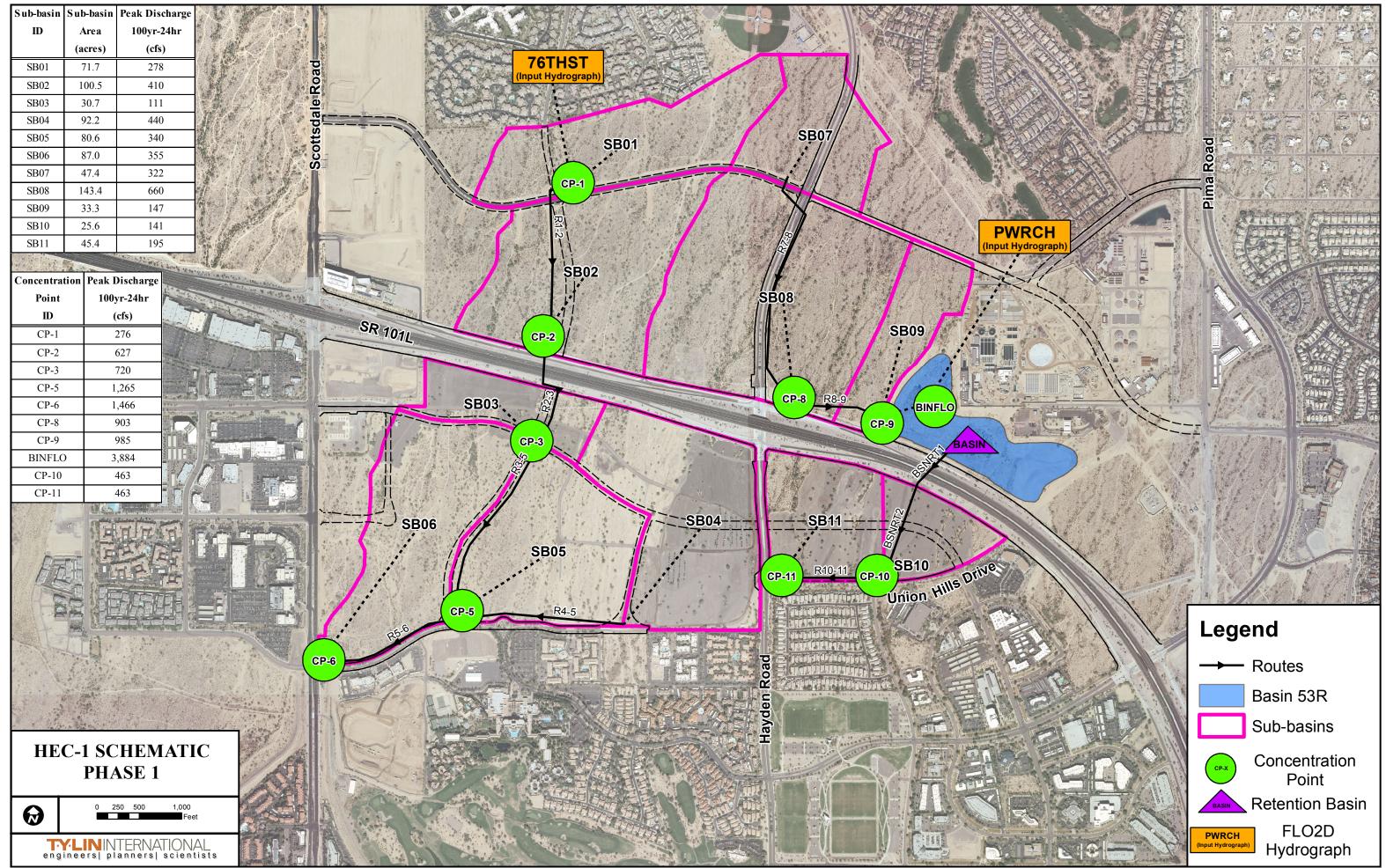
BSNRT2 MANE 0.33 462.54 1110.65 2.64 3.00 462.54 1110.00 2.63

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1033E+04 EXCESS=0.0000E+00 OUTFLOW=0.1033E+04 BASIN STORAGE=0.1056E+00 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R10-11 MANE 2.40 462.77 1113.47 2.64 3.00 462.77 1113.00 2.64

FOR STORM = 2 STORM AREA (SQ MI) = 10.00


R10-11 MANE 2.40 462.63 1113.70 2.64 3.00 462.62 1116.00 2.64

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R10-11 MANE 2.47 462.54 1114.58 2.63 3.00 462.54 1113.00 2.63

 $\hbox{CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1038E+04 EXCESS=0.0000E+00 OUTFLOW=0.1037E+04 BASIN STORAGE=0.1559E+01 PERCENT ERROR=0.0000E+00 OUTFLOW=0.1037E+00 BASIN STORAGE=0.1559E+01 PERCENT ERROR=0.0000E+00 OUTFLOW=0.1037E+00 BASIN STORAGE=0.1559E+01 PERCENT ERROR=0.0000E+00 OUTFLOW=0.1037E+00 BASIN STORAGE=0.1559E+00 PERCENT ERROR=0.0000E+00 OUTFLOW=0.1037E+00 BASIN STORAGE=0.1559E+00 PERCENT ERROR=0.0000E+00 PERCENT ERROR=0.0000E+0$

*** NORMAL END OF HEC-1 ***

1

*

* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

609 SECOND STREET

DAVIS, CALIFORNIA 95616

* (916) 756-1104

*

x xxxxxxx X X XXXXX X XX X X Х Х X X Х XXXXXXX XXXX XXXXX Х Х Х Х Х Х Х X X X x XXXXXXX XXXXX X XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

		HEC-1 INPUT												
LINE	ID.	1.	2.	3.	4 .	5.	6.	7.	8.	9.	10			
1	ID		ROSS ROA											
2	ID		ESERVOIR							COTTSDAL	E, AZ			
3	ID		NFLOW HY											
4	ID	10	0-YR, 6-			(W/ MODI	FICATIONS	S TO CONT	rain pow	ERLINE A	ND			
5	ID			OAD FLOW										
6	ID	F	HASE 2 B.	ASIN - S	IDESLOPE	S STEEPEI	NED FROM	~5:1 TO	3:1					
7	ID	_												
8	ID		REPARED		LIN INTE	RNATIONA	L; LAST N	MODIFIED	: 09/14					
9	ID	MC	DELERS:	RK, MW										
10	ID IT	3	0	0	1000									
11 12	IO	3	U	U	1000									
12		JIAGRAM												
	* TTI													
13	JD	2.755	0.0001											
14	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074			
15	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950			
16	PC	0.962	0.972	0.983	0.991	1.000								
17	JD	2.738	0.5000											
18	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074			
19	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950			
20	PC	0.962	0.972	0.983	0.991	1.000								
21	JD	2.686	2.8											
22	PC	0.000	0.009	0.016	0.025	0.034	0.042	0.051	0.059	0.068	0.077			
23	PC	0.088	0.101	0.121	0.164	0.253	0.451	0.694	0.836	0.900	0.938			
24	PC	0.950	0.963	0.975	0.988	1.000								
25	JD	2.540	16.0											
26	PC	0.000	0.015	0.020	0.030	0.048	0.063	0.076	0.090	0.105	0.119			
27	PC	0.135	0.152	0.175	0.222	0.304	0.472	0.670	0.796	0.868	0.912			
28	PC	0.946	0.960	0.973	0.987	1.000								
29	JD	2.232	90.0											
30	PC	0.000	0.021	0.035	0.051	0.071	0.087	0.105	0.125	0.143	0.160			
31	PC	0.179	0.201	0.232	0.281	0.364	0.500	0.658	0.773	0.841	0.888			
32	PC *	0.927	0.945	0.964	0.982	1.000								
33	KK	76THST												
34	KM		6TH STRE	ET CHANN	EL HYDRO	GRAPH FRO	OM PINNA	CLE PEAK	SOUTH A	DMS				
35	KM		.00-YR, 6											
36	BA	0.24	, -			/								
37	QI	0	0	0	0	0	0	0	0	0	0			
38	QΊ	0	0	0	0	0	0	0	0	0	0			
39	QI	0	0	0	0	0	0	0	0	0	0			
40	QI	0	0	0	0	0	0	0	0	0	0			
41	QI	0	0	0	0	0	0	0	0	0	0			
42	QI	0	0	0.01	0	0	0	0	0	0	0			
43	QI	0.01	0	0	0.01	0.01	0.01	0.02	0.03	0.05	0.07			

						Onsi	te_6hr.o	ut						
	44 45	QI QI	0.09 12.7	0.16 14.07	0.27 17.67	0.42 27.43	0.63 38.25	0.9 42.26	2.34 42.56	3.89 42.35	7.48 43.77	10.26 48.39		
	46 47	QI QI	49.92 34.49	51.19 32.83	50.98 31.02	50.52 29.6	49.38 28.15	48.6 26.72	44.64 25.66	42.62 24.48	39.72 23.53	36.96 22.56		
	48	QI	21.55	20.83	19.46	20.34	18.32	17.51	16.55	16.22	15.59	15.15		
	49 50	QI QI	14.81 11.63	14.23 11.31	13.72 11.37	13.18 11.23	13.21 11.13	12.84 10.56	12.36 10.63	12.34 10.27	12.16 9.98	12 9.86		
1	51	QI	9.58	9.02	9.34	8.67 HEC-1	8.51 INPUT	8.32	8.08	7.75	7.43	7.37	PAGE	2
	LINE	ID.	1	2	3	4	5	6 .	7	8 .	9	10		
	52	QI	7.29	7.19	7.08	7	6.89	6.73	6.55	6.4	6.23	6.02		
	53	QI	5.83	5.66	5.06	4.57	4.75	4.76	4.65	4.55	4.44	4.32		
	54 55	QI QI	4.23 3.4	4.15 2.42	4.05 2.38	3.95 3.4	3.87 3.61	3.81 3.55	3.68 3.49	3.54 2.89	3.48 2.36	3.42 2.36		
	56 57	QI QI	2.36 2.32	2.37 2.29	2.44	3.67 2.23	2.44 2.19	2.51 2.16	2.49 2.13	2.47 2.1	2.42	2.37 2.05		
	58 59	QI QI	2.02 1.58	1.99 1.65	1.96 1.69	1.91 1.67	1.86 1.59	1.83 1.5	1.78 1.36	1.69 1.41	1.58 1.51	1.54 1.54		
	60 61	QI QI	1.52 1.31	1.35 1.34	1.43 1.35	1.37 1.35	1.25 1.34	1.21 1.34	1.2	1.2	1.23	1.28 1.09		
	62	QI	1.09	1.11	1.16	1.22	1.06	1.07	1.15	1.06	1.05	1.05		
	63 64	QI QI	1.04 0.91	1.02 0.9	1.01 0.89	1 0.88	0.98 0.87	0.97 0.86	0.96 0.85	0.95 0.85	0.94 0.84	0.92 0.84		
	65 66	QI QI	0.83 0.76	0.82 0.75	0.81 0.74	0.8 0.74	0.79 0.73	0.79 0.72	0.78 0.71	0.77 0.71	0.77 0.7	0.76 0.69		
	67 68	QI QI	0.69 0.65	0.68 0.64	0.68 0.64	0.67 0.63	0.67 0.63	0.67 0.62	0.66 0.62	0.66 0.62	0.65 0.61	0.65 0.61		
	69 70	QI QI	0.6	0.6	0.59	0.59	0.58	0.58	0.57	0.57	0.56	0.56		
	71	QI	0.51	0.55	0.5	0.5	0.5	0.49	0.49	0.48	0.48	0.48		
	72 73	QI QI	0.47 0.44	0.47	0.46	0.46	0.46	0.45	0.45	0.45	0.44	0.44		
		*												
	74 75	KK BA	SB01 0.112	BASIN										
	76 77	LG UC	0.25	0.25 0.252	4.10	0.55	45							
	78	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
	79	UA *	100											
	80	KK		COMBINE										
	81 82	KM HC	LE 2	EGACY BLV	VD AND 76	TH ST (1	MILLER RI) CHANNE	(۲)					
		*												
	83 84	KK KM	R1-2		CHANNEL	FROM LEG	GACY BLVI	TO SR	IOIL FREE	ZWAY				
	85	RK *		0.0015	0.03	TROP ED	TRAP	66	4	31111				
	0.6		anaa	DAGIN										
	86 87	KK BA	SB02 0.157	BASIN										
	88 89	LG UC	0.15 0.324	0.25 0.237	4.15	0.58	56							
	90 91	UA UA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
1		*				HEC-1	TNPIIT						PAGE	3
-	LINE	TD	1	2	3			6	7	Ω	۵	1.0	11102	J
	LINE	ID.							/			10		
	92	KK		COMBINE										
	93 94	KM HC	SF 2	R 101L FI	REEWAY AN	ID 76TH S	ST (MILLE	ER RD CH	ANNEL)					
		*												
	95 96	KK KM		ROUTE	CHANNEL	FROM SR	101r. FRF	CEWAY TO	MAYO BIJ	/D				
	97	RK *		0.0015	0.03	TROP DIC	TRAP	92	4					
	0.0		~~~~											
	98 99	KK BA	SB03 0.048	BASIN										
	100 101	LG UC	0.15 0.360	0.25 0.290	4.50	0.47	55							
	102 103	UA UA	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
		*												
	104 105	KK KM		COMBINE	AND 76TH	I СТ /МТТ	. תם קקונו	י דיבואוא גער						
	106	HC	2	מאחם היי	1011 חאדבי	ا ۱۱۱۱۱ بر .	עט אינייי (יייטיואזאיי)						
		*												
	107 108	KK KM		ROUTE LLLER RD	CHANNEL	FROM MAY	YO BLVD T	O PRINCI	ESS BLVD					
	109	RK *	2396	0.0015	0.03		TRAP	98	4					

110	KK	SB04	BASIN		Onsi	te_6hr.ou	ıt					
110 111 112		0.144	0.25	4.60	0.44	61						
113	UC	0.301	0.196				77.0	0.4.0	00.0	0.4.0	07.0	
114 115	UA UA *	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
116		D4 F	DOLLER									
116 117	KK KM	P		BLVD CHA	NNEL FROM							
118	RK *	2005	0.0013	0.03		TRAP	39	4				
119	KK	SB05	BASIN									
120 121	BA LG	0.22	0.25		0.44	48						
122 123	UC UA	0.326	0.224 5.0		30.0	65.0	77.0	84.0	90.0	94.0	97.0	
124	UA *	100			HPG 1	TNDIII						DAGE 4
1	TD	1	2	2	HEC-1			7	0	0	1.0	PAGE 4
LINE	10	1	2	3.	4	5		/			10	
125	KK KM		COMBINE	DIIID AND	7.6.00	(DDINGEG	a prim a					
126 127	HC *	3	KINCESS	BLVD AND	761H SI	(PRINCES	S BLVD C	HANNEL)				
100		DF (DOLLER									
128 129	KK KM			BLVD CHA	NNEL FROM				D			
130	RK *	1550	0.0015	0.03		TRAP	188	4				
131	KK	SB06	BASIN									
132 133	LG	0.136	0.25		0.45	53						
134 135	UC UA	0	0.243 5.0		30.0	65.0	77.0	84.0	90.0	94.0	97.0	
136	UA *	100										
137	KK		COMBINE			/-						
138 139	KM HC *	2	RINCESS	BLVD AND	SCOTTSDA	ALE RD (P	RINCESS	BLVD CHA	NNEL)			
140		CD07	DACIN									
140 141	KK BA	SB07 0.074	BASIN	4 00	0.50	40						
142 143	LG UC	0.21	0.25		0.58		77.0	0.4.0	00.0	0.4.0	07.0	
144 145	UA UA *	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
146	KK	R7-8	ROUTE									
147 148	KM RK	Н		DAD NORTH	CHANNEL	FROM LEG	ACY BLVD 46	TO SR 1	01L FREE	WAY		
140	*	2770	0.0014	0.03		IKAF	40	-				
149 150	KK BA	SB08 0.224	BASIN									
151 152	LG UC	0.14	0.25 0.193		0.59	59						
152 153 154	UA UA	0	5.0		30.0	65.0	77.0	84.0	90.0	94.0	97.0	
134	*	±00										
155 156	KK KM		COMBINE	FREEWAY A	ND HAVDEN	I ROAD (H	AVDEN RO	AD NORTH	CHANNET.	.)		
157	HC *	2	K IVIL I	RDDWIII II		· ICOID (II	IIIDDIN RO	IID NORTH	CILINIVIDE	17		
1					HEC-1	INPUT						PAGE 5
LINE	ID	1.	2	3.	4	5	6	7	8	9	10	
158	KK	R8-9	ROUTE									
159 160	KM RK	H		OAD NORTH	CHANNEL	FROM HAY	DEN ROAD 67		N 53R			
	*							-				
161 162	KK BA	SB09 0.052	BASIN									
163 164	LG UC	0.15	0.25 0.227		0.61	55						
165 166	UA UA	0 100	5.0		30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	*	_00										
167 168	KK KM		COMBINE R 101L E	FREEWAY A	ND BASTN	53R (HAV	DEN ROAD	NORTH C	HANNET.)			
169	HC	2		11			0110		/			

170 KK PIMACH PIMA ROAD CHANNEL HYDROGRAPH FROM PINNACLE PEAK SOUTH ADMS 171 KM 172 100-YR, 6-HR FLO-2D MODEL (XS 183) 173 ΒA 174 Ω Ω Ω Ω 0 175 OI 0 0 0 0 0 0 0 0 0 176 0 0 OI 0 0 0 0 0 0 0 0 177 QΙ 0 0 0 0 0 0 0 0 178 QΙ 0 0 0 0 0 0 0 0 0 179 0 0 0 0 0 0 0 0 0 QΙ 180 QΙ Λ Λ Ω Λ Λ Λ 0.01 0.01 0 01 0.01 0.02 0.12 0.19 0.29 0.43 0.06 13.12 1.62 3.73 6.28 181 OI 182 19.17 18.99 20.23 23.44 37.1 65.6 118.28 536.07 740.49 QI 784.16 826.86 792.08 785.39 835.79 839.66 183 OI 795.73 856.83 890.85 1074.56 1522.8 1924.46 2612.09 2761.62 3125.86 3450.94 3565.35 3786.18 3953.42 4005.23 184 185 OI 4017.2 3956.42 3828.66 3704.96 3584.74 3457.47 3327.91 3209.52 3068.2 2902.83 2698.1 2519.92 2353.91 2218.47 2091.25 1970.95 1868.74 1749.96 1656.67 1564.23 186 OI 1473.2 1392.42 1326.33 1253.44 1190.18 1121.44 1068.33 1012.4 961.04 907.15 187 OI 859 817.16 777.05 188 QΙ 741.05 708.67 676.64 650.15 620 595.68 552.9 528.08 508.87 488.92 471.15 456.27 440.43 424.35 410.65 189 396.26 190 QΙ 384.05 374.5 363.39 351.31 341.86 332.93 325.13 317.66 308.91 300.01 191 OI 291.96 282.64 276.3 270.44 264.03 257.52 251.57 244.49 238.62 232.96 210.73 227.38 217.91 207.24 202.22 197.15 192 OI 223.46 192.34 189.04 184.57 170.95 193 178.93 173.7 166.9 162.57 158.97 151.97 OI 155.56 149.46 146.92 194 143.8 141.62 138.05 136.38 130.4 128.32 123.98 120.84 117.3 195 113.28 110.56 108.01 104.98 103.24 100.82 98.69 97.77 95.8 QI 93.56 92.8 73.81 196 QI 91.19 88.35 86.44 84.49 82.18 80.7 78 31 76.07 74.85 197 73.17 71 94 70 66 67 38 62 74 ОТ 69.66 69 54 67 61 65 17 59.06 56.97 56.32 55.01 53.88 198 OI 61.41 60.29 61.36 52.91 52.23 199 QI 52.11 50.68 50.15 49.6 48.36 47.6 46.82 46.4 45.54 44.69 43.67 43.34 200 42.77 41.9 41.04 40.86 40.39 39.72 38.49 38.26 33.71 201 QΙ 37.01 36.83 36.64 35.35 35.64 34.94 35.17 33.9 33.7 202 OI 33.78 32.55 32.35 31.97 31.61 31.38 31.21 30.84 30.41 3.0 25.66 203 29.61 29.27 28.72 28.17 27.62 27.26 26.95 26.26 25.93 ОТ 25.7 204 25.7 25.62 25.39 24.94 24.57 24.28 23.92 23.55 22.97 OI 205 ОТ 22.7 22.79 22.23 21.94 21.87 21.6 21.3 21.18 21.05 20.75 HEC-1 INDIIT LINE $\mathtt{ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10$ 206 OI 20.64 20.4 20.19 19.93 19.9 19.01 18.72 18.7 18.37 207 OI 18.1 18.05 17.3 17.39 17.27 17.09 16.86 16.81 16.73 16.6 208 16.55 16.33 16.05 15.82 15.63 15.43 15.38 15.42 15.17 14.98 QI 209 OI 14.82 14.78 14.76 14.57 14.24 14.01 13.85 13.94 13.77 13.77 210 ОТ 12.6 211 KK PIMAIN 212 KM BYPASS ALONG SE SIDE OF BASIN 53R TO ADOT CULVERT NEAR UNION HILLS DR 213 DT PIMABY 1000 10000 214 DI 0 DQ 1000 1000 216 KK PWRCH POWERLINE CHANNEL HYDROGRAPH FROM FLO-2D 217 ΚM 218 100-YR, 6-HR FLO-2D MODEL (XS 107) KM 7.0 219 ВΑ 0 220 221 QΙ 0 0 0 0 Λ 0 0 0 0 0 222 QI QI 0 0 0 0 0 0 0 0 0 0 223 0 0 0 Ω Ω Ω Ω Ω Ω n 224 QΙ 0 0 0 0 225 0 0 0 0 0 0 0 226 QΙ Ω 0 Ω Ω Ω Ω Λ Ω Ω n 0.05 0.08 0.03 0 11 0 58 227 QI Ω Ω 1 13 1 62 2 35 50.91 131.64 17.74 24.61 228 OI 32.43 41.1 46 355.54 399.7 422.85 422.44 409.12 397.71 229 433.73 391.08 388.91 381.3 371.02 ΟI 433.53 361.84 372.83 359.13 390.54 400.38 398.98 391.64 230 390.01 654.6 725.12 714.86 231 OI 616.52 689.73 713.7 727.81 737.85 739.81 733.87 232 QΙ 699.64 690.12 677.33 666.62 655.55 645.41 637.05 633.81 630.71 627.88 596.17 233 OI 621.52 616.56 611.87 606.82 603.07 599.48 598.68 597.46 595.28 576.08 570.84 564.08 234 ОТ 594.12 590.26 586.44 582.19 555.83 546.74 537.07 505.83 525.86 516.15 495.17 484.12 472.45 462.13 451.31 235 OI 441.83 429.35 419.09 410.42 401.94 394.3 384.43 375.56 366.51 358.68 236 350.24 342.9 237 QΙ 335 270.9 326.95 320.66 313.52 306.21 299.42 294.88 279 13 274 41 272 37 235 68 226 97 238 OI 258.49 256.83 252 87 239.19 236.09 221 44 220 04 203.88 188.47 239 OI 211.13 213.73 201.19 194.6 196.81 183.61 178.11 181.39 169.45 172.83 170.18 168.28 163.33 155.83 153.79 154.42 240 ΟI 148 45 241 146.04 140.33 138.63 140.19 133.49 130.23 135.24 122.64 242 QΙ 120.9 117.47 115.13 113.28 116.6 110.32 107.03 105.71 109.02 101.22 243 OI 99.25 97.86 99.48 103.28 92.95 90.9 89.54 87 83 91.59 84.19 77.68 81.6 79.42 244 OI 82.93 80.75 82.41 75.61 74.44 74.51 72.29 70.93 79.3 69.48 67.58 245 OI 70.15 68.44 66.72 72.25 65.21 64.67 246 63.5 62.83 62.06 60.25 58.48 55.87 OI 62.6 61.31 64.86 59.05 247 OI 54.8 54.06 51.64 51.71 248 OI 48.75 46.82 45.85 45.55 47.8 43.99 43.77 43.28 42.64 42.31 40.3 39.93 249 OI 42 04 41.65 41.41 40 69 40 09 39 53 42.18 38 64 250 OI 37.99 37.44 37.13 36.96 36.19 35.56 35.28 34.71 33.9 36.8 251 ΟI 33.42 33.14 32.73 39.25 32.39 31.56 30.95 30.66 30.3 30 28.72 29.47 27.67 27.34 OI 29.22 28.39 28.32 28.13 28.24 28.22 27.15 27.03 25.94 25.77 25.38 24.52 253 QI 26.51 31.57 25.06 25.04

PAGE 6

1

Page 4

```
23.35 23.93 23.1
21.84 21.71 21.66
            254
                                       24.43
                                              24.27
                                                                               22.66
                                                                                       22.71
                                                                                               22.57
                                                                                                       22.79
            255
                          OI
                               22.09
                                      21 91
                                              21.94
                                                                               21.87
                                                                                      21 85
                                                                                               21 36
                                                                                                      21 06
            256
                          ΟI
                               20.95
1
                                                        HEC-1 INPUT
                                                                                                                PAGE 7
           LINE
                          \mathtt{ID}.\dots.1\dots.2\dots.3\dots.4\dots.5\dots.6\dots.7\dots.8\dots.9\dots.10
            257
                          KK BINFLO
                                    TOTAL INFLOW INTO BASIN 53R.
            258
                                  3
            259
                          HC
            260
                          KK
                              BASIN
            261
                                BASIN STAGE/STORAGE FROM PROPOSED CONTOURS BETWEEN
                          KM
            262
                          KM
                                ELEV 1594 AND 1615; BASIN SIDE SLOPES STEEPENED TO 3:1
            263
                          KM
                                   OUTFLOW RATING CURVE FROM CULVERTMASTER FOR 2-60" PIPES
            264
                          ΚM
                                   THE OUTLET PIPES ARE INLET CONTROLLED.
            265
                                       STOR
                          RS
                                                 0
                                               76.8
                                                      108.7
                                                               140.6
            266
                          sv
                                  0
                                        44.9
                                                                      171.5
                                                                               202.5
                                                                                       233.5
                                                                                               264.5
                                                                                                      295.5
            267
                          sv
                              328.7
                                       362.0
                                              395.2
                                                      428.5
                                                               461.7
                                                                       497.2
                                                                               532.7
                                                                                       568.3
                                                                                               603.8
                                                                                                      639.3
            268
                          SE
                               1594
                                       1597
                                               1598
                                                       1599
                                                               1600
                                                                       1601
                                                                               1602
                                                                                       1603
                                                                                               1604
                                                                                                       1605
            269
                          SE
                               1606
                                       1607
                                               1608
                                                       1609
                                                               1610
                                                                       1611
                                                                               1612
                                                                                       1613
                                                                                                1614
                                                                                                       1615
                                              153.4
                                                       209.8
            270
                                       94.6
                                                                       264.5
                                                                               284.0
                          SO
                                 0
                                                               244.2
                                                                                       302.5
                                                                                               320.1
                                                                                                      336.9
                              353.0
                                      368.5
                                              383.5
                                                      398.0
                                                               412.0
                                                                       425.7
                                                                               438.9
                                                                                       451.9
                                                                                               464.5
                                                                                                      476.8
            271
                          SO
            272
                          KK BSNRT1
                                   2-60" CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY.
            273
                          ΚM
                                   DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE
            274
                          KM
            275
                          KM
                                   EXCESS CAPACITY.
            276
                          RK
                                 550 0.0052 0.024
                                                               CIRC
                                                                        7.0
            277
                          KK BSNRT2
                                   2-60" RCP PIPES FROM SR 101L FREEWAY TO UNION HILLS DR (BASIN 53R OUTFAL
            278
                          KM
                                1200 0.0077 0.013
                          RK
                                                               CIRC
                                                                        7.0
            280
                          KK PIMABY
            281
                               RETRIEVE PIMA BYPASS CHANNEL HYDROGRAPH
                          KM
            282
                          DR
                             PIMABY
            283
                          KK PMB-RT
            284
                          ΚM
                                   UNION HILLS DR CHANNEL FROM SR 101L FREEWAY TO 82ND ST
                               3157 0.0082
            285
                          RK
                                              0.013
                                                          0
                                                               TRAP
            286
                          KK
                               SB10
                                      BASIN
            287
                          BA
                              0.040
            288
                          LG
                               0.15
                                       0.25
                                                4.25
                                                       0.55
                                                                 55
            289
                          UC
                               0.230
                                       0.159
            290
                          UA
                                  0
                                       5.0
                                               16.0
                                                        30.0
                                                               65.0
                                                                       77.0
                                                                               84.0
                                                                                       90.0
                                                                                                94.0
                                                                                                       97.0
            291
                          UA
                                100
1
                                                       HEC-1 INPUT
                                                                                                               PAGE 8
           LINE
                          10.....1...2...3...4...5...6...7...8...9...10
            292
                          KK
                              CP-10 COMBINE
                               UNION HILLS DR AND 82ND ST (UNION HILLS DR CHANNEL)
            293
                          KM
                          HC
            295
                          KK
                             R10-11 ROUTE
                                  UNION HILLS DR CHANNEL FROM 82ND ST TO HAYDEN ROAD
            296
                          KM
                               1277 0.0014
            297
                                              0.03
                                                               TRAP
                                                                        220
                          RK
            298
                          KK
                               SB11
                                      BASIN
                              0.071
            299
                          BA
                                       0.25
            300
                          LG
                               0.15
                                                4.15
                                                       0.58
                                                                 55
            301
                          UC
                              0.292
                                      0.229
            302
                          UA
                                                16.0
                                                        30.0
                                                               65.0
                                                                        77.0
                                                                               84.0
                                                                                       90.0
                                                                                                94.0
                                                                                                       97.0
            303
                          UA
                                100
            304
                              CP-11 COMBINE
                          KK
                                   UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)
                          KM
            306
                                  2
                          HC
            307
                          7.7.
1
                SCHEMATIC DIAGRAM OF STREAM NETWORK
 INPUT
  LINE
            (V) ROUTING
                                (--->) DIVERSION OR PUMP FLOW
            (.) CONNECTOR
                               (<---) RETURN OF DIVERTED OR PUMPED FLOW
   NO.
            76THST
```

Page 5

```
74
                     SB01
          80
 83
          R1-2
                     SB02
 86
92
          CP-2....
95
          R2-3
98
                     SB03
104
          CP-3...
107
          R3-5
                     SB04
V
V
110
116
                     R4-5
119
                                SB05
125
128
          R5-6
131
                     SB06
137
          CP-6....
140
                     SB07
146
                     R7-8
                                SB08
149
155
                     CP-8....
                     R8-9
158
                                SB09
161
                     CP-9.....
167
170
                              PIMACH
213
                                    .----> PIMABY
211
                              PIMAIN
                                          PWRCH
216
                   BINFLO..
257
260
                    BASIN
272
                   BSNRT1
277
                   BSNRT2
282
                              PIMABY
280
```

				On	site_6hr.out					
			V V							
283	•		PMB-RT							
			•							
286				SB10						
292		CP-10		•						
2,2	·	V								
295	•	V R10-11								
298	-	•	SB11							
			•							
	RUNOFF ALSO COMP	UTED AT TI		ON						
******	******	*****	******					*		
*										
*	OOD HYDROGRAPH P	ACKAGE (1	HEC-1) *						U.S. ARMY CORI	PS OF ENGINEERS
*	JUN	1998	*					*	HYDROLOGIC ENG	GINEERING CENTER
*	VERSION 4	.1	*					*	609 SEC	OND STREET
*			*					*	DAVIS, CAL	IFORNIA 95616
* * RUN	DATE 12SEP14	TIME 11	:47:04 *					*	(916)	756-1104
*			*					*		
*		++++++++	+++++++							
*****	*****	*****	****							
			RESERVOIR INFLOW HYI 100-YR, PIMA RO PHASE 2 BA	DS EAST DRAINAGE A ROUTING OF BASIN DROGRAPHS FROM THI 6-HR BASE W/WALLS DAD FLOWS) ASIN - SIDESLOPES	N OF SR101 & E PPSADMS DRAS (W/ MODIFIC	FT FLO-2D ATIONS TO OM ~5:1 TO	MODEL: CONTAIN P			
				BY: T.Y.LIN INTERN S: RK, MW	NATIONAL; LAS	T MODIFIEI	09/14			
12 I	OUTPU		VARIABLES							
		IPRNT IPLOT QSCAL	0	PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT	SCALE					
I		IDATE ITIME NQ NDDATE NDTIME ICENT	3 1 0 0000 1000 3 0 0157 19	MINUTES IN COMPUTE STARTING DATE STARTING TIME NUMBER OF HYDROGHEDING DATE ENDING TIME CENTURY MARK 0.05 HOURS 49.95 HOURS						
	PRECIPI LENGTH, FLOW STORAGE	E AREA TATION DEI ELEVATION VOLUME AREA	SQUAI PTH INCHI N FEET CUBIC ACRE- ACRE. DEGRI	ES						
13 JI) INDEX	STORM NO STRM TRDA	2.76	PRECIPITATION DEI						
14 PI	I PRE	CIPITATION 0.01 0.01 0.01	N PATTERN 0.01 0.02 0.01	0.01 0.01 0.02 0.08 0.01 0.01	0.01 0.16	0.01 0.46	0.01	0.01	0.01 0.02	0.01 0.01
17 ЛІ) INDEX	STORM NO STRM TRDA	2.74	PRECIPITATION DES						

18 PI

PRECIPITATION PATTERN

0.01	.01 .01 .01 .01 .02 .03
STRM	.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	.01
STRM	
0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.01	
STRM 2.23 PRECIPITATION DEPTH TRDA 90.00 TRANSPOSITION DRAINAGE AREA 30 PI PRECIPITATION PATTERN 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.02 0.02 0.02	.02
*** *** *** *** *** *** *** *** *** **	** *** *** ***

33 KK * 76THST * * * ************ 76TH STREET CHANNEL HYDROGRAPH FROM PINNACLE PEAK SOUTH ADMS	
100-YR, 6-HR FLO-2D MODEL (XS 98) SUBBASIN RUNOFF DATA	
36 BA SUBBASIN CHARACTERISTICS TAREA 0.24 SUBBASIN AREA	

HYDROGRAPH AT STATION 76THST TRANSPOSITION AREA 0.0 SQ MI	
PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR	
+ (CFS) (HR) (CFS)	
+ 51. 4.55 15. 4. 2. 2. (INCHES) 0.582 0.664 0.728 0.728 (AC-FT) 7. 9. 9. 9.	
CUMULATIVE AREA = 0.24 SQ MI	

HYDROGRAPH AT STATION 76THST TRANSPOSITION AREA 0.5 SQ MI	
PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR	
+ (CFS) (HR) (CFS)	
+ 51. 4.55 15. 4. 2. 2. (INCHES) 0.582 0.664 0.728 0.728 (AC-FT) 7. 9. 9. 9.	

PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 15. 4. 2. 2.

HYDROGRAPH AT STATION 76THST TRANSPOSITION AREA 2.8 SQ MI

0.24 SQ MI

CUMULATIVE AREA =

Page 8

0.582 0.728 9. (INCHES) 0.664 0.728 9. (AC-FT)

0.24 SO MI

90.0 SQ MI

0.24 SQ MI

CUMULATIVE AREA = 0.24 SQ MI

*** *** ***

> HYDROGRAPH AT STATION 76THST TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 51. 4.55 15. (INCHES) 0.582 0.728 0.728 9. 9. (AC-FT) 7. 9.

HYDROGRAPH AT STATION 76THST TRANSPOSITION AREA

CUMULATIVE AREA =

CUMULATIVE AREA =

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 49.95-HR 72-HR (CFS) (HR) (CFS) 51. 4.55 (INCHES) 0.582 0.728 0.728 (AC-FT) 9. 9.

INTERPOLATED HYDROGRAPH AT 76THST

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 51. 4.55 15. (INCHES) 0.582 0.728 (AC-FT)

CUMULATIVE AREA = 0.24 SQ MI

*** ***

SB01 * 74 KK BASIN

SUBBASIN RUNOFF DATA

SUBBASIN CHARACTERISTICS 75 BA

TAREA 0.11 SUBBASIN AREA

76 LG GREEN AND AMPT LOSS RATE

STRTL 0.25 STARTING LOSS 0.25 MOISTURE DEFICIT
4.10 WETTING FRONT SUCTION
0.55 HYDRAULIC CONDUCTIVITY DTH PSTF XKSAT 45.00 PERCENT IMPERVIOUS AREA RTIMP

77 IIC CLARK UNITGRAPH TC

0.32 TIME OF CONCENTRATION 0.25 STORAGE COEFFICIENT

78 UA ACCUMULATED-AREA VS. TIME, 11 ORDINATES 0.0 5.0 16.0 30.0 100.0 65.0 77.0 84.0 90.0 94.0

UNIT HYDROGRAPH PARAMETERS

97.0

CLARK TC= 0.32 HR, R= 0.25 HR SNYDER TP= 0.19 HR, CP= 0.47

UNIT HYDROGRAPH 30 END-OF-PERIOD ORDINATES

	15. 61. 8.	58. 50. 7.	129. 41. 6.	172. 1 34.	Onsite_6hr.c 67. 153 28. 23 4. 3	out 3. 134. 4. 19. 5. 3.
***		***	***	**	*	***
				TION SB01		
TOTAL R	AINFALL =	2.76, TOT	'AL LOSS =	0.59, TOTA	L EXCESS =	2.17
PEAK FLOW	TIME			MAXIMUM AVE		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 326.	0.95	(CFS) (INCHES) (AC-FT)		7. 2.159 13.	3. 2.159 13.	3. 2.159 13.
				0.11 SQ MI	13.	13.
***		***	***	**	*	***
				TION SB01		
TOTAL R	AINFALL =	2.74, TOT	'AL LOSS =	0.59, TOTA	L EXCESS =	2.15
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+ (CFS)	(HR)		6-HR	MAXIMUM AVE 24-HR	72-HR	49.95-HR
+ 323.	0.95	(CFS)	26.	6.	3.	3.
		(INCHES) (AC-FT)	2.143	6. 2.143 13.	2.143	2.143
		CUMULATIV	E AREA =	0.11 SQ MI		
***		***	***	**	*	***
				TION SB01 2.8 SQ MI		
TOTAL R	AINFALL =	2.69, TOT	'AL LOSS =	0.63, TOTA	L EXCESS =	2.05
PEAK FLOW	TIME			MAXIMUM AVE		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 287.	1.00	(CFS)	25. 2.044	6. 2.044	3.	3.
		(INCHES) (AC-FT)	2.044 12.	2.044 12.	3. 2.044 12.	2.044 12.
		CUMULATIV	E AREA =	0.11 SQ MI		
***		***	***	**	*	***
				CION SB01 16.0 SQ MI		
TOTAL R	AINFALL =	2.54, TOT	'AL LOSS =	0.68, TOTA	L EXCESS =	1.86
PEAK FLOW	TIME		6-HD	MAXIMUM AVE 24-HR		40 0E-HD
+ (CFS)	(HR)	(GEG)	0-AK	24-nk	/2-nk	49.95-RR
+ 241.	1.00	(CFS)	22.	6. 1.850	3. 1.850	3.
		(INCHES) (AC-FT)	11.		11.	1.850 11.
***		CUMULATIV	***	0.11 SQ MI **	*	***
		HYDROGRA	PH AT STAT	ION SB01		
TOTAL R	AINFALL =			0.72, TOTA		1.52
PEAK FLOW				MAXIMUM AVE	RAGE FLOW	
+ (CFS)			6-HR	24-HR	72-HR	49.95-HR
+ 182.		(CFS)	18.	5.	2.	2.
102.	1.00	(INCHES) (AC-FT)	1.510	1.510	1.510	1.510
		CUMULATIV	E AREA =	0.11 SQ MI		

112. 15. 2. 91. 12. 2. 75. 10. 1.

INTERPOLATED HYDROGRAPH AT SB01

	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	324.	0.95		26.	6.	3.	3.
			(INCHES)	2.146	2.146	2.146	2.146
			(AC-FT)	13.	13.	13.	13.
			CUMULATIV	E AREA =	0.11 SQ MI		

*** ***

PEAK FLOW

TIME

LEGACY BLVD AND 76TH ST (MILLER RD CHANNEL)

MAXIMUM AVERAGE FLOW

0.35 SQ MI

82 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION CP-1 TRANSPOSITION AREA 0.0 SQ MI

1	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	, ,		(CFS)				
+	326.	0.95		37.	11.	5.	5.
			(INCHES)	0.987	1.133	1.183	1.183
			(AC-FT)	19.	21.	22.	22.
			CUMULATIVE	E AREA =	0.35 SO MI		

HYDROGRAPH AT STATION CP-1
TRANSPOSITION AREA 0.5 SQ MI

				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	323.	0.95		37.	11.	5.	5.
			(INCHES)	0.982	1.128	1.178	1.178
			(AC-FT)	18.	21.	22.	22.

HYDROGRAPH AT STATION CP-1
TRANSPOSITION AREA 2.8 SQ MI

CUMULATIVE AREA =

	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	287.	1.00		36.	10.	5.	5.
			(INCHES)	0.951	1.096	1.147	1.147
			(AC-FT)	18.	21.	22.	22.
			CUMULATIV	E AREA =	0.35 SQ MI		

HYDROGRAPH AT STATION CP-1 TRANSPOSITION AREA 16.0 SQ MI

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
_	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	(CF5)	(1110)	(CFS)				
+	241.	1.00		34.	10.	5.	5.
			(INCHES)	0.886	1.035	1.085	1.085
			(AC-FT)	17.	19.	20.	20.

CUMULATIVE AREA = 0.35 SQ MI

*** *** *** *** *** HYDROGRAPH AT STATION CP-1 90.0 SQ MI TRANSPOSITION AREA PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 182. 1.00 29. 9. 4. 4. (INCHES) 0.776 0.927 0.977 0.977 (AC-FT) 17. 18. 18. CUMULATIVE AREA = 0.35 SO MI INTERPOLATED HYDROGRAPH AT CP-1 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 37 11 323 0 95 5 5 (INCHES) 0.982 1.178 1.128 1.178 (AC-FT) 21. 22. 22. 18. CUMULATIVE AREA = 0.35 SQ MI *** 83 KK R1-2 ROUTE MILLER RD CHANNEL FROM LEGACY BLVD TO SR 101L FREEWAY HYDROGRAPH ROUTING DATA 85 RK KINEMATIC WAVE STREAM ROUTING 2104. CHANNEL LENGTH L S 0.0015 SLOPE N 0.030 CHANNEL ROUGHNESS COEFFICIENT CA 0.00 CONTRIBUTING AREA CHANNEL SHAPE BOTTOM WIDTH OR DIAMETER SHAPE TRAP WD 66.00 SIDE SLOPE Z 4.00 NDXMIN MINIMUM NUMBER OF DX INTERVALS COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO VOLUME MIMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0.17 1.56 3.00 701.33 324.42 63.63 3.89

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2221E+02 EXCESS=0.0000E+00 OUTFLOW=0.2234E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR= -0.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.17 1.56 3.00 317.42 66.00 1.19 *** ***

> HYDROGRAPH AT STATION R1-2 TRANSPOSITION AREA 0.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 317. 1.10 38. 11. 5. 5. (INCHES) 0.995 1.140 1.189 1.189 (AC-FT) 19. 21. 22. 22.

CUMULATIVE AREA = 0.35 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT (MIN)	DX (FT)	PEAK (CFS)	TIME TO PEAK (MIN)	VOLUME	MAXIMUM CELERITY (FPS)
MAIN	0.17	1.56	3.00	701.33	321.94	63.70	1.18	3.88

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2212E+02 EXCESS=0.0000E+00 OUTFLOW=0.2223E+02 BASIN STORAGE=0.5936E-01 PERCENT ERROR=-0.8

MAIN 0.17 1.56 3.00 314.95 66.00 1.18

HYDROGRAPH AT STATION R1-2 TRANSPOSITION AREA 0.5 SQ MI

PEAK FLOW MAXIMUM AVERAGE FLOW TIME 6-HR 49 95-HR 24-HR 72-HR (CFS) (HR) (CFS) 315. 1.10 37. 11. 5. (INCHES) 0.988 1.134 1.184 1.184 (AC-FT) 19. 21. 22. 22. CUMULATIVE AREA = 0.35 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX PEAK TIME TO PEAK			VOLUME	MAXIMUM CELERITY		
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)		
MAIN	0.17	1.56	3.00	701.33	281.88	67.46	1.15	3.72		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2153E+02 EXCESS=0.0000E+00 OUTFLOW=0.2160E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.17 1.56 3.00 280.31 66.00 1.15

HYDROGRAPH AT STATION R1-2 TRANSPOSITION AREA 2.8 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 49.95-HR (CFS) (HR) (CFS) 280 1.10 36 1.0 5 5 (INCHES) 1.149 1.149 0.955 1.100 (AC-FT) 22. 22. 18. 21.

CUMULATIVE AREA =

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

0.35 SQ MI

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.17	1.56	3.00	701.33	239.43	66.99	1.09	3.49

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2036E+02 EXCESS=0.0000E+00 OUTFLOW=0.2044E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.7

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.17 1.56 3.00 234.05 69.00 1.09

		OGRAPH AT STA							
PEAK FLOW	TIME	6-HR	MAXIMUM AVER		49.95-HR				
+ (CFS)	(HR)		24-HR	/2-HR	49.95-HK				
+ 234.	1.15 (INCHE: (AC-F)	34. 3. 0.887		5. 1.087 20.	5. 1.087 20.				
	CUMUL	ATIVE AREA =	0.35 SQ MI						
		COM	MPUTED KINEMATIC VARIABLE TIM (DT SHOWN IS A	E STEP	3				
	ELEMENT	ALPHA	M DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)	
	MAIN	0.17	1.56 2.9	1 526.00	179.26	70.19	0.98	3.16	
CONTINUITY -0.8	SUMMARY (AC-FT) - 3	INFLOW=0.1834	4E+02 EXCESS=0.	0000E+00 OU	TTFLOW=0.184	2E+02 BASIN	STORAGE=0	.6416E-01 PERCE	NT ERROR=
			INTERPOLATED TO	SPECIFIED	COMPUTATION	INTERVAL			
	MAIN	0.17	1.56 3.0	0	178.38	69.00	0.98		
***	* * *	***	***		***				
		OGRAPH AT STA							
PEAK FLOW	TIME		MAXIMUM AVER						
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR				
+ 178.	(CF: 1.15 (INCHE: (AC-F:	30. S) 0.780	9. 0.932 17.	4. 0.981 18.	4. 0.981 18.				
	CUMULA	ATIVE AREA =	0.35 SQ MI						
***	***	***	***		***				
	INTER	POLATED HYDRO	OGRAPH AT R1	-2					
PEAK FLOW	TIME		MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR				
+ 315.	1.10 (CF:	37.	11. 1.134	5.	5.				
	(INCHE: (AC-F	3) 0.989 Γ) 19.	21.	1.184	1.184				
	CUMUL	ATIVE AREA =	0.35 SQ MI						
*** *** *** ***	*** *** *** ***	** *** *** *:	** *** *** *** *	** *** ***	*** *** ***	*** *** **	* *** ***	*** *** *** ***	*** *** ***

86 KK	* SB02 * * * ********	BASIN							
	SUBBASIN RUNOF	F DATA							
87 BA	SUBBASIN CHAI TAREA		SUBBASIN AREA						
88 LG	GREEN AND AMI STRTL DTH PSIF XKSAT RTIMP	0.15 0.25 4.15 0.58	STARTING LOSS MOISTURE DEFICE WETTING FRONT SI HYDRAULIC CONDUCTION PERCENT IMPERVICE	UCTION CTIVITY					

0.32 TIME OF CONCENTRATION 0.24 STORAGE COEFFICIENT

89 UC

CLARK UNITGRAPH

TC R

ACCUMULATED-AREA VS. TIME, 11 ORDINATES
0.0 5.0 16.0 30.0
100.0 90 UA 65.0 77.0 84.0 90.0 94.0 97.0

					IT HYDROGRAI	PH PARAMETERS			
					rc= 0.32 HF rp= 0.19 HF				
					UNIT HYDE				
	21.	81.	185.	250.	242. 22	OD ORDINATES 192.	160.	129.	104
	85. 10.	68. 8.	55. 7.	45. 5.	36.	29. 24. 4. 3.	19. 2.	16.	13
***		***	***	*:	* *	***			
		HYDROGRA TRANSPOSIT		ION SB02 0.0 SQ M					
TOTAL RA	INFALL =	2.76, TOI	'AL LOSS =	0.45, TOTA	AL EXCESS =	2.30			
PEAK FLOW	TIME		6-HR	MAXIMUM AVI	ERAGE FLOW 72-HR	49.95-HR			
+ (CFS)	(HR)	(CFS)	0-nk	24-nk	/2-nk	49.95-nk			
+ 492.	0.95	(INCHES)	39. 2.292	10. 2.292	5. 2.292	5. 2.292			
		(AC-FT)	19.	19.	19.	19.			
		CUMULATIV	E AREA =	0.16 SQ MI					
***		***	***	*:	* *	***			
		HYDROGRA TRANSPOSIT		ION SB02 0.5 SQ M	I				
TOTAL RA	INFALL =	2.74, TOI	'AL LOSS =	0.45, TOTA	AL EXCESS =	2.29			
PEAK FLOW	TIME		C IID	MAXIMUM AVI		40.05.110			
+ (CFS)	(HR)	((((((((((((((((((((6-HR	24-HK	72-HR	49.95-HR			
+ 488.	0.95	(CFS)	38.	10. 2.276	5. 2.276	5. 2.276			
		(INCHES) (AC-FT)	2.276 19.	19.	19.	19.			
		CUMULATIV	E AREA =	0.16 SQ MI					
***		***	***	*:	* *	***			
				ION SB02 2.8 SQ M					
TOTAL RA	INFALL =	2.69, TOI	'AL LOSS =	0.49, TOTA	AL EXCESS =	2.19			
PEAK FLOW	TIME		6-HR	MAXIMUM AVI 24-HR		49.95-HR			
+ (CFS)	(HR)	(CFS)	NH-0	24-nx	/2-nk	49.93-HK			
+ 433.	1.00	(INCHES)	37. 2.183	9. 2.183	4. 2.183	4. 2.183			
		(AC-FT)	18.	18.	18.	18.			
		CUMULATIV	E AREA =	0.16 SQ MI					
***		***	***	*:	* *	***			
		HYDROGRA TRANSPOSIT	PH AT STAT	ION SB02 16.0 SQ M					
TOTAL RA	INFALL =	2.54, TOT	'AL LOSS =	0.54, TOTA	AL EXCESS =	2.00			
PEAK FLOW	TIME		C IID	MAXIMUM AVI	ERAGE FLOW	49.95-HR			
+ (CFS)	(HR)	(CEC)	6-HR	24-HK	/2-HK	47.75-HK			
+ 365.	1.00	(CFS)	34. 1.994	8. 1.994					
		(AC-FT)	17.	17.	17.	17.			
		CUMULATIV	E AREA =	0.16 SQ MI					
***		***	***	*:	* *	***			
		HYDROGRA	PH AT STAT	ION SB02					

HYDROGRAPH AT STATION SB02
TRANSPOSITION AREA 90.0 SQ MI

TOTAL RAINFALL = 2.23, TOTAL LOSS = 0.56, TOTAL EXCESS = 1.67

					onsite_6nr.	out	
PEAK FLOW	TIME		6-HR	MAXIMUM AVER	AGE FLOW	49.95-HR	
+ (CFS)	(HR)	(CFS)	V-IIK	AI-L7	/2-nr	AU-CC.CF	
+ 278.	1.00	(INCHES) (AC-FT)	28. 1.660 14.	7. 1.660 14.	3. 1.660 14.	3. 1.660 14.	
		CUMULATIVE	E AREA =	0.16 SQ MI			
***		***	***	***		***	
		INTERPOLAT	TED HYDROG	RAPH AT SB	302		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+ 489.	0.95	(CFS)	38.	10.	5.	5.	
		(INCHES) (AC-FT)	2.278 19.	2.278 19.	2.278 19.	2.278 19.	
		CUMULATIVE	E AREA =	0.16 SQ MI			
***	******	*	DMBINE				
92 KK	* CP	-2 * CC					
92 KK	* CP * ******	*					
92 KK	*	* * * * *		EWAY AND 76TH	ST (MILLER	RD CHANNEL)	
92 KK 94 HC	* ******	* ***** SI OGRAPH COMBIN	R 101L FRE				
	* ******	* ***** SF	R 101L FRE	EWAY AND 76TH			
	* ******	* ***** SI OGRAPH COMBIN	R 101L FRE		GRAPHS TO (
94 HC	* ******	* **** SF OGRAPH COMBINICOMP ***	R 101L FRE NATION 2 N ***	UMBER OF HYDRO	GRAPHS TO (COMBINE	
94 HC	* ******	* ***** SF OGRAPH COMBIN ICOMP *** HYDROGRAF	R 101L FRE NATION 2 N *** PH AT STAT	UMBER OF HYDRO *** TION CP-2 0.0 SQ MI MAXIMUM AVER	OGRAPHS TO (*** LAGE FLOW	COMBINE ***	
94 HC ***	* ******* HYDR	* **** SHOGRAPH COMBINATION ICOMP *** HYDROGRAF TRANSPOSITE	R 101L FRE NATION 2 N ***	TUMBER OF HYDRO *** TION CP-2 0.0 SQ MI	OGRAPHS TO (*** LAGE FLOW	COMBINE	
94 HC *** PEAK FLOW	* ******* HYDR	* **** OGRAPH COMBINICOMP *** HYDROGRAFT TRANSPOSITE (CFS)	R 101L FRE NATION 2 N *** PH AT STAT ION AREA 6-HR 75.	TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR	OGRAPHS TO (*** AGE FLOW 72-HR	*** 49.95-HR	
94 HC *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR)	* **** SHOGRAPH COMBINATION ICOMP *** HYDROGRAF TRANSPOSITE	R 101L FRE NATION 2 N *** PH AT STATION AREA 6-HR	TON CP-2 0.0 SQ MI MAXIMUM AVER 24-HR	OGRAPHS TO (*** *AGE FLOW 72-HR	*** 49.95-HR	
94 HC *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR)	* **** OGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSITION (CFS) (INCHES) (AC-FT)	*** PH AT STAT CON AREA 6-HR 75. 1.372 37.	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495	PAGE FLOW 72-HR	*** 49.95-HR 10. 1.529	
94 HC *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR)	* **** OGRAPH COMBINICOMP *** HYDROGRAFT TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE	*** PH AT STAT CON AREA 6-HR 75. 1.372 37.	TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41.	**** CAGE FLOW 72-HR 10. 1.529 42.	*** 49.95-HR 10. 1.529	
94 HC *** PEAK FLOW + (CFS) + 740.	* ******* HYDR TIME (HR)	* **** GGRAPH COMBINICOMP *** HYDROGRAME TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAME	*** PH AT STAT CON AREA 6-HR 75. 1.372 37. E AREA = ***	*** TON CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI	**** CAGE FLOW 72-HR 10. 1.529 42.	*** 49.95-HR 10. 1.529 42.	
94 HC *** PEAK FLOW + (CFS) + 740.	* ******* HYDR TIME (HR)	* **** GGRAPH COMBINICOMP *** HYDROGRAME TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAME	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TION CP-2 0.5 SQ MI MAXIMUM AVER	AGE FLOW 10. 1.529 42.	*** 49.95-HR 10. 1.529 42.	
94 HC *** PEAK FLOW + (CFS) + 740.	* ******* HYDR TIME (HR) 1.05	* **** GGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSITI (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSITI	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TION CP-2 0.5 SQ MI MAXIMUM AVER	*** AGE FLOW 72-HR 10. 1.529 42.	*** 49.95-HR 10. 1.529 42.	
94 HC *** PEAK FLOW + (CFS) + 740.	* ******* HYDR TIME (HR) 1.05	* **** GGRAPH COMBINICOMP *** HYDROGRAME TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAME TRANSPOSITE (CFS)	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75.	*** *** **ION	AGE FLOW 72-HR LAGE FLOW 42.	*** 49.95-HR 10. 1.529 42. ***	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR) 1.05	* **** GGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSITI (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSITI	R 101L FRE NATION 2 N *** PH AT STAT ION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TION CP-2 0.5 SQ MI MAXIMUM AVER 24-HR	AGE FLOW 72-HR CAGE FLOW 72-HR CAGE FLOW 72-HR	*** 49.95-HR 10. 1.529 42. ***	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR) 1.05	* **** GGRAPH COMBINICOMP *** HYDROGRAFT TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT TRANSPOSITE (CFS) (INCHES) (CFS)	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75. 1.363 37.	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TION CP-2 0.5 SQ MI MAXIMUM AVER 24-HR 20. 1.486	**** *AGE FLOW 72-HR 10. 1.529 42. *AGE FLOW 72-HR	*** 49.95-HR 10. 1.529 42. *** 49.95-HR	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS)	* ******* HYDR TIME (HR) 1.05	***** OGRAPH COMBINICOMP *** HYDROGRAFT TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT TRANSPOSITE (CFS) (INCHES) (AC-FT)	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75. 1.363 37. E AREA =	*** *** **ION	**** *** *** *** ** ** ** ** *	*** 49.95-HR 10. 1.529 42. *** 49.95-HR	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS) + 732.	* ******* HYDR TIME (HR) 1.05	**** OGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS)	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75. 1.363 37. E AREA = ***	*** TION CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TION CP-2 0.5 SQ MI MAXIMUM AVER 24-HR 20. 1.486 40. 0.51 SQ MI ***	**** *** *** *** ** ** ** ** *	*** 49.95-HR 10. 1.529 42. *** 49.95-HR 10. 1.521 41.	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS) + 732.	* ******* HYDR TIME (HR) 1.05	* **** GGRAPH COMBINICOMP *** HYDROGRAFT TRANSPOSITION (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT TRANSPOSITION (CFS) (INCHES) (AC-FT) CUMULATIVE ***	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75. 1.363 37. E AREA = ***	*** TON CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TON CP-2 0.5 SQ MI MAXIMUM AVER 24-HR 20. 1.486 40. 0.51 SQ MI	**** *** *** *** ** ** ** ** *	*** 49.95-HR 10. 1.529 42. *** 49.95-HR 10. 1.521 41.	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS) + 732.	* ******* HYDR TIME (HR) 1.05	**** OGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS)	*** PH AT STATION AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STATION AREA 6-HR 75. 1.363 37. E AREA = ***	*** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** **	**** *** *** *** ** ** ** ** *	*** 49.95-HR 10. 1.529 42. *** 49.95-HR 10. 1.521 41.	
94 HC *** PEAK FLOW + (CFS) + 740. *** PEAK FLOW + (CFS) + 732.	* ******* HYDR TIME (HR) 1.05	**** OGRAPH COMBINICOMP *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAIT TRANSPOSIT: (CFS)	R 101L FRE NATION 2 N *** PH AT STAT CON AREA 6-HR 75. 1.372 37. E AREA = *** PH AT STAT CON AREA 6-HR 75. 1.363 37. E AREA = *** PH AT STAT CON AREA	*** TON CP-2 0.0 SQ MI MAXIMUM AVER 24-HR 20. 1.495 41. 0.51 SQ MI *** TON CP-2 0.5 SQ MI MAXIMUM AVER 24-HR 20. 1.486 40. 0.51 SQ MI *** *** *** *** *** *** ***	**** *** *AGE FLOW 72-HR 10. 1.529 42. *AGE FLOW 72-HR 10. 1.521 41.	*** 49.95-HR 10. 1.529 42. *** 49.95-HR 10. 1.521 41.	

CUMULATIVE AREA = 0.51 SQ MI

					ION CP-2 16.0 SQ MI		
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER		49.95-HR
+	(CFS)	(HR)		0 1110	21 1110	72 IIIC	19.99 Inc
+	556.	1.10	(CFS)	66.	1.0	0	0
+	550.	1.10	(INCHES)	1.207	18. 1.332	9. 1.367	9. 1.367
			(AC-FT)	33.	36.	37.	37.
			CUMULATIV	E AREA =	0.51 SQ MI		
	***		***	***	***		***
			HYDROGRA	PH AT STAT	ION CP-2		
					90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	422.	1.10	(CFS)	56.	16.	8.	8.
			(INCHES)	1.028	1.156	1.190	1.190
			(AC-FT)	28.	31.	32.	32.
			CUMULATIV	E AREA =	0.51 SQ MI		
	***		***	***	***		***
			INTERPOLA	TED HYDROG	RAPH AT CE	9-2	
	PEAK FLOW	TIME			MAXIMUM AVER	ACE ELOW	
	PEAR FLOW	TIME		6-HR	MAXIMUM AVER		49.95-HR
+	(CFS)	(HR)					
+	731.	1.05	(CFS)	75.	20.	10.	10.
'	751.	1.05	(INCHES)	1.362	1.485	1.520	1.520
			(AC-FT)	37.	40.	41.	41.
			CUMULATIV	E AREA =	0.51 SQ MI		

*** ***

95 KK

MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD

HYDROGRAPH ROUTING DATA

KINEMATIC WAVE STREAM ROUTING 97 RK

ROUTE

1260. CHANNEL LENGTH 0.0015 SLOPE S

CHANNEL ROUGHNESS COEFFICIENT N 0.030

CONTRIBUTING AREA CHANNEL SHAPE CA 0.00

SHAPE TRAP

92.00 BOTTOM WIDTH OR DIAMETER WD

4.00 SIDE SLOPE

NDXMIN 2 MINIMUM NUMBER OF DX INTERVALS

COMPUTED KINEMATIC PARAMETERS

VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

DT TIME TO VOLUME ELEMENT ALPHA DX MAXIMUM PEAK PEAK CELERITY (MIN) (FT) (CFS) (IN) (MIN) (FPS) MAIN 0.13 1.58 1.61 420.00 726.00 65.69 1.53 4.85

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4152E+02 EXCESS=0.0000E+00 OUTFLOW=0.4152E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= -0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

0.13 1.58 3.00 725.57 66.00 1.53

HYDROGRAPH AT STATION R2-3 0.0 SQ MI

			IKANSPOSII	ION AREA	U.U SQ MI		
1	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	(,	(/	(CFS)				
+	726.	1.10		75.	20.	10.	10.
			(INCHES)	1.373	1.495	1.529	1.529
			(AC-FT)	37.	41.	42.	42.
			CUMULATIV	E AREA =	0.51 SQ MI		

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.13	1.58	1.61	420.00	719.73	65.75	1.52	4.83

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4128E+02 EXCESS=0.0000E+00 OUTFLOW=0.4128E+02 BASIN STORAGE=0.4197E-01 PERCENT ERROR= -0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.13 1.58 3.00 719.25 66.00 1.52

> R2-3 0.5 SQ MI HYDROGRAPH AT STATION TRANSPOSITION AREA

	PEAK FLOW	J.TWE			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	719.	1.10		75.	20.	10.	10.
			(INCHES)	1.364	1.486	1.521	1.521
			(AC-FT)	37.	40.	41.	41.

CUMULATIVE AREA = 0.51 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.13	1.58	1.65	420.00	650.44	66.16	1.47	4.64

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3985E+02 EXCESS=0.0000E+00 OUTFLOW=0.3986E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR= -0.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

3.00 647.31 66.00 MAIN 0.13 1.58 1.47 ***

> HYDROGRAPH AT STATION R2-3 2.8 SQ MI TRANSPOSITION AREA

	PEAK FLOW	T.TWE			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	647.	1.10		72.	20.	10.	10.
			(INCHES)	1.313	1.435	1.469	1.469
			(AC-FT)	36.	39.	40.	40.

CUMULATIVE AREA = 0.51 SQ MI

> COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.13	1.58	1.61	420.00	553.64	68.36	1.37	4.37

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3711E+02 EXCESS=0.0000E+00 OUTFLOW=0.3710E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.1

INTERPOLATED	TO	SPECIFIED	COMPILTATION	TNTERVAL

MAIN 0.13 1.58 3.00 550.82 69.00 1.37 HYDROGRAPH AT STATION R2-3 TRANSPOSITION AREA 16.0 SQ MI PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 551. 9. 1.15 66. 18. (INCHES) 1.206 1.332 1.366 1.366 (AC-FT) 33. 36. 37. 37. CUMULATIVE AREA = 0.51 SQ MI COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) ELEMENT DT DX TIME TO VOLUME MAXIMUM ALPHA PEAK PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MATN 0.13 1.77 3.95 1.58 420.00 421.93 69.46 1.19

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3232E+02 EXCESS=0.0000E+00 OUTFLOW=0.3234E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.13 1.58 3.00 418.11 69.00 1.19 HYDROGRAPH AT STATION TRANSPOSITION AREA 90.0 SQ MI MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 418 1.15 56. 16. 8. 8. (INCHES) 1.029 1.157 1.192 1.192 (AC-FT) 28. 31. 32. 32. CUMULATIVE AREA = 0.51 SQ MI INTERPOLATED HYDROGRAPH AT R2-3 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 719. 1.10 75. 20. 10. 10. (INCHES) 1.363 1.486 1.520 1.520 (AC-FT) 37. 40. 41. 41. CUMULATIVE AREA = 0.51 SQ MI

*** ***

********* * * 98 KK * SB03 *

SUBBASIN RUNOFF DATA

99 BA SUBBASIN CHARACTERISTICS

TAREA 0.05 SUBBASIN AREA

BASIN

```
100 LG
               GREEN AND AMPT LOSS RATE
                      STRTL 0.15 STARTING LOSS
                                  0.25 MOISTURE DEFICIT
                       DTH
                                 4.50 WETTING FRONT SUCTION
0.47 HYDRAULIC CONDUCTIVITY
                      XKSAT
                     RTIMP
                                 55.00 PERCENT IMPERVIOUS AREA
101 UC
                CLARK UNITGRAPH
                                  0.36 TIME OF CONCENTRATION
                    TC
                                  0.29 STORAGE COEFFICIENT
                ACCUMULATED-AREA VS. TIME, 11 ORDINATES
0.0 5.0 16.0 30.0
102 UA
                                                            65.0
                                                                      77.0
                                                                               84.0 90.0 94.0 97.0
                    100.0
                                                              * * *
                                                   UNIT HYDROGRAPH PARAMETERS
                                              CLARK TC= 0.36 HR, R= 0.29 HR
SNYDER TP= 0.21 HR, CP= 0.43
                                             SNYDER
                                                        UNIT HYDROGRAPH
                                                    34 END-OF-PERIOD ORDINATES
                                   43.
                                             62.
                                                                                                        35.
                                                      64.
                                                                61.
                                                                           56.
               30.
                                                                           10.
                         25.
                                   21.
                                             18.
                                                      15.
                                                                12.
                                                                                                          6.
1.
                          1.
                                   1.
                                             1.
                                                    ***
                        HYDROGRAPH AT STATION SB03
                      TRANSPOSITION AREA
                                             0.0 SQ MI
                    2.76, TOTAL LOSS = 0.44, TOTAL EXCESS =
   TOTAL RAINFALL =
                                                                    2.31
PEAK FLOW
                                           MAXIMUM AVERAGE FLOW
             TIME
                                   6-HR
                                              24-HR
                                                                    49.95-HR
                                                          72-HR
  (CFS)
              (HR)
                        (CFS)
   130.
             1.00
                                    12.
                                                 3.
                                                             1.
                                                                           1.
                      (INCHES)
                                   2.302
                                               2.302
                                                           2.302
                                                                       2.302
                       (AC-FT)
                                                             6.
                                      6.
                                                 6.
                                                                          6.
                       CUMULATIVE AREA =
                                            0.05 SQ MI
                        HYDROGRAPH AT STATION
                                                 SB03
                     TRANSPOSITION AREA
                                            0.5 SQ MI
   TOTAL RAINFALL =
                      2.74, TOTAL LOSS =
                                           0.44, TOTAL EXCESS =
                                                                    2.30
PEAK FLOW
             TIME
                                            MAXIMUM AVERAGE FLOW
                                    6-HR
                                               24-HR
                                                          72-HR
                                                                    49.95-HR
  (CFS)
             (HR)
                        (CFS)
   129.
             1.00
                      (INCHES)
                                   2.286
                                               2.286
                                                           2.286
                                                                        2.286
                       (AC-FT)
                       CUMULATIVE AREA =
                                           0.05 SO MI
     ***
                                    ***
                        HYDROGRAPH AT STATION
                                                 SB03
                                             2.8 SQ MI
                      TRANSPOSITION AREA
   TOTAL RAINFALL =
                     2.69, TOTAL LOSS =
                                             0.48, TOTAL EXCESS =
                                            MAXIMUM AVERAGE FLOW
PEAK FLOW
             TIME
                                   6-HR
                                                                    49.95-HR
                                              24-HR
                                                          72-HR
 (CFS)
              (HR)
                       (CFS)
   117.
             1.00
                                    11.
                                                             1
                      (INCHES)
                                   2.198
                                               2.198
                                                           2.198
                                                                       2 198
                       (AC-FT)
                                     6.
                                                 6.
                                                             6.
                                                                          6.
                       CUMULATIVE AREA =
                                            0.05 SQ MI
                        HYDROGRAPH AT STATION SB03
                      TRANSPOSITION AREA
                                            16.0 SQ MI
  TOTAL RAINFALL = 2.54, TOTAL LOSS = 0.52, TOTAL EXCESS =
                                                                    2.02
                                           MAXIMUM AVERAGE FLOW
PEAK FLOW
             TIME
                                   6-HR
                                              24-HR
                                                          72-HR
                                                                    49.95-HR
```

(CFS)

(HR)

(CFS)

					Onsite_6hr.	out
99.	1.05	(INCHES) (AC-FT)	10. 2.014 5.	3. 2.014 5.	1. 2.014 5.	1. 2.014 5.
		CUMULATIV	E AREA =	0.05 SQ MI		
***		***	***	***		***
				ION SB03 90.0 SQ MI		
TOTAL RA	AINFALL =	2.23, TOT.	'AL LOSS =	0.54, TOTAL	EXCESS =	1.69
EAK FLOW	TIME		6 IID			49.95-HR
(CFS)	(HR)	(CEC)	0-HK	24-HK	/2-HR	49.95-HK
77.	1.05	(INCHES)	9. 1.679	2. 1.679	1. 1.679	1. 1.679 4.
					7.	7.
***		***	***	-		***
		INTERPOL _' A'	TED HYDROG	RAPH AT SB	303	
PEAK FLOW	TIME					
(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
129.	1.00	(CFS)	12. 2.290	3. 2.290	1. 2.290	1. 2.290
		(AC-FT)	6.	6.	6.	6.
ŧ						
104 KK	* *****	-3 * C		ND 76TH ST (MI	LLER RD CH	ANNEL)
104 KK 106 HC	* * CP * *****	-3 * C	AYO BLVD A	ND 76TH ST (MI UMBER OF HYDRO		
LO6 HC	* * CP * *****	* -3 * C * ***** M OGRAPH COMBI:	AYO BLVD A NATION 2 N	UMBER OF HYDRO	GRAPHS TO (COMBINE
	* * CP * *****	-3 * CO ***** MOGRAPH COMBI: ICOMP	AYO BLVD A NATION 2 N	UMBER OF HYDRO	GRAPHS TO (
LO6 HC	* * CP * *****	-3 * CO ***** MOGRAPH COMBI: ICOMP	AYO BLVD A NATION 2 N ***	UMBER OF HYDRO	GRAPHS TO (COMBINE
LO6 HC	* * CP * *****	-3 * C * **** M OGRAPH COMBI: ICOMP ***	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA	UMBER OF HYDRO *** ION CP-3 0.0 SQ MI MAXIMUM AVER	OGRAPHS TO (*** LAGE FLOW	COMBINE ***
106 HC ***	* CP * *********	-3 * C ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT	AYO BLVD A NATION 2 N ***	UMBER OF HYDRO *** ION CP-3 0.0 SQ MI	OGRAPHS TO (COMBINE
*** ***	*	-3 * C * **** M OGRAPH COMBI: ICOMP ***	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA	UMBER OF HYDRO *** ION CP-3 0.0 SQ MI MAXIMUM AVER	OGRAPHS TO (*** LAGE FLOW	COMBINE ***
*** PEAK FLOW	*	-3 * C ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES)	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA 6-HR 87. 1.449 43.	UMBER OF HYDRO *** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564	XAGE FLOW 72-HR 11. 1.596	*** 49.95-HR 11. 1.596
*** PEAK FLOW	*	-3 * CO ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES) (AC-FT)	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA 6-HR 87. 1.449 43.	VMBER OF HYDRO *** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564 46.	*** AGE FLOW 72-HR 11. 1.596 47.	*** 49.95-HR 11. 1.596
*** PEAK FLOW (CFS) 840.	*	-3 * C ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES) (AC-FT) CUMULATIV ***	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA 6-HR 87. 1.449 43. E AREA = ***	*** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564 46. 0.56 SQ MI	*** AGE FLOW 72-HR 11. 1.596 47.	*** 49.95-HR 11. 1.596 47.
*** PEAK FLOW (CFS) 840.	*	-3 * C ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES) (AC-FT) CUMULATIV *** HYDROGRA	AYO BLVD A NATION 2 N *** PH AT STAT TON AREA 6-HR 87. 1.449 43. TE AREA = *** PH AT STAT	*** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564 46. 0.56 SQ MI *** ION CP-3 0.5 SQ MI MAXIMUM AVER	AGE FLOW 11. 1.596 47.	*** 49.95-HR 11. 1.596 47.
*** PEAK FLOW (CFS) 840.	* * * * * * * * * * * * *	* CO **** MOGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES) (AC-FT) CUMULATIV *** HYDROGRA TRANSPOSIT	AYO BLVD A NATION 2 N *** PH AT STAT ION AREA 6-HR 87. 1.449 43. E AREA = ***	*** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564 46. 0.56 SQ MI *** ION CP-3 0.5 SQ MI	*** AGE FLOW 72-HR 11. 1.596 47.	*** 49.95-HR 11. 1.596 47.
*** PEAK FLOW (CFS) 840.	* * * * * * * * * * * * *	-3 * C ***** M OGRAPH COMBI: ICOMP *** HYDROGRA TRANSPOSIT (CFS) (INCHES) (AC-FT) CUMULATIV *** HYDROGRA	AYO BLVD A NATION 2 N *** PH AT STAT TON AREA 6-HR 87. 1.449 43. TE AREA = *** PH AT STAT	*** ION CP-3 0.0 SQ MI MAXIMUM AVER 24-HR 23. 1.564 46. 0.56 SQ MI *** ION CP-3 0.5 SQ MI MAXIMUM AVER	AGE FLOW 11. 1.596 47.	*** 49.95-HR 11. 1.596 47.
	*** TOTAL R PEAK FLOW (CFS) 77. ***	*** TOTAL RAINFALL = PEAK FLOW TIME (CFS) (HR) 77. 1.05 *** PEAK FLOW TIME (CFS) (HR)	(INCHES) (AC-FT) CUMULATIV *** *** HYDROGRA TRANSPOSIT TOTAL RAINFALL = 2.23, TOT PEAK FLOW TIME (CFS) (HR) (CFS) (INCHES) (AC-FT) CUMULATIV *** INTERPOLA PEAK FLOW TIME (CFS) (HR) (CFS) (CFS) (INCHES) (AC-FT) CUMULATIV ***	(INCHES) 2.014 (AC-FT) 5. CUMULATIVE AREA = ***	(INCHES) 2.014 2.014 (AC-FT) 5. 5. CUMULATIVE AREA = 0.05 SQ MI *** *** *** *** *** *** ***	(INCHES) 2.014 2.014 2.014 (AC-FT) 5. 5. 5. 5. CUMULATIVE AREA = 0.05 SQ MI ***

HYDROGRAPH AT STATION CP-3

45.

46.

46.

2.8 SQ MI TRANSPOSITION AREA PEAK FLOW TIME MAXIMUM AVERAGE FLOW

(AC-FT)

49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 755 1.10 83 22 11 11 (INCHES) 1.500 1.532 1.385 1.532

> 41. CUMULATIVE AREA = 0.56 SQ MI

HYDROGRAPH AT STATION CP-3 TRANSPOSITION AREA 16.0 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 72-HR 49.95-HR 24-HR (CFS) (HR) (CFS) 76. 638. 1.15 21. 10. 10. (INCHES) 1.271 1.390 1.422 1.422 (AC-FT) 38. 41. 42. 42.

> CUMULATIVE AREA = 0.56 SQ MI

HYDROGRAPH AT STATION CP-3 TRANSPOSITION AREA 90.0 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 49.95-HR 72-HR (CFS) (HR) (CFS) 487 1.15 65 18. 9 9 (INCHES) 1.080 1.234 1.234 1.202 (AC-FT) 36. 37. 37. 32. CUMULATIVE AREA = 0.56 SQ MI ***

INTERPOLATED HYDROGRAPH AT CP-3

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 24-HR 6-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 828. 1.10 86. 23. 11. 11. (INCHES) 1.435 1.552 1.583 1.583 (AC-FT) 43. 46. 47. 47. CUMULATIVE AREA = 0.56 SQ MI

*** ***

107 KK R3-5

MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD

HYDROGRAPH ROUTING DATA

109 RK KINEMATIC WAVE STREAM ROUTING

L 2396. CHANNEL LENGTH 0.0015 SLOPE

S

ROUTE

0.030 CHANNEL ROUGHNESS COEFFICIENT N

CA 0.00 CONTRIBUTING AREA

SHAPE CHANNEL SHAPE TRAP

WD 98.00 BOTTOM WIDTH OR DIAMETER 7.

4.00 SIDE SLOPE
2 MINIMUM NUMBER OF DX INTERVALS NDXMIN

> COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT DT TIME TO ALPHA M PEAK VOLUME MAXIMUM (MIN) (FT) (CFS) (MIN) (IN) (FPS)

MATN 0 12 1 58 2 78 798 67 817 36 73 14 1 60 5 01

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4741E+02 EXCESS=0.0000E+00 OUTFLOW=0.4763E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR= -0.6

TNTERPOLATED	TO	SPECIFIED	COMPILITATION	TNTERVAL

MAIN 0.12 1.58 3.00 816.94 72.00 1.60

HYDROGRAPH AT STATION R3-5 TRANSPOSITION AREA 0.0 SQ MI

TIME MAXIMUM AVERAGE FLOW PEAK FLOW 6-HR 49.95-HR 72-HR 24-HR (CFS) (HR) (CFS) 817. 1.20 87. 24. 12. 12. (INCHES) 1.450 1.571 1.602 1.602 (AC-FT) 43. 47. 48. 48.

> CUMULATIVE AREA = 0.56 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0.12 2.79 798.67 810.60 70.45 4.99 1.58 1.59

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4713E+02 EXCESS=0.0000E+00 OUTFLOW=0.4736E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR= -0.7

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MATN 0.12 1.58 3.00 810.54 72.00 1.59

HYDROGRAPH AT STATION R3-5 0.5 SQ MI TRANSPOSITION AREA

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 23. 811. 1.20 86. 11. 11. (INCHES) 1.440 1.562 1.593 1.593 (AC-FT) 46. CUMULATIVE AREA =

COMPUTED KINEMATIC PARAMETERS

VARIABLE TIME STEP

0.56 SQ MI

(DT SHOWN IS A MINIMUM)

ELEMENT AT.PHA DТ TIME TO VOLUME MIMIXAM DX PEAK PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0.12 1.58 2.90 798.67 742.52 73.90 1.54 4.81

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4551E+02 EXCESS=0.0000E+00 OUTFLOW=0.4571E+02 BASIN STORAGE=0.8226E-01 PERCENT ERROR= -0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.12 3.00 740.16 72.00

HYDROGRAPH AT STATION R3-5 TRANSPOSITION AREA 2.8 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 49 95-HR 6-HR 24-HR 72-HR (CFS) (HR)

(CFS) 740. 1.20 83. 23. 11. (INCHES) 1.385 1.506 1.537 1.537 Onsite_6hr.out (AC-FT) 41. 45. 46. 46.

CUMULATIVE AREA = 0.56 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) 73.70 MATN 0.12 1.58 3.00 798.67 634.55 1.43 4.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4224E+02 EXCESS=0.0000E+00 OUTFLOW=0.4240E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.6

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.12 1.58 3.00 626.49 75.00 1.43

HYDROGRAPH AT STATION R3-5 TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 49.95-HR 72-HR (CFS) (HR) (CFS) 626. 1.25 76. 21. 10. 10. (INCHES) 1.271 1.396 1.427 1.427 (AC-FT) 38. 42. 42. 41.

CUMULATIVE AREA =

COMPUTED KINEMATIC PARAMETERS
VARIABLE TIME STEP
(DT SHOWN IS A MINIMUM)

0.56 SQ MI

ELEMENT ALPHA DТ PEAK TIME TO VOLUME MAXIMUM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (TN) (FPS) MAIN 0.12 1.58 3.00 798.67 478.66 74.64 1.24 4.10

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3665E+02 EXCESS=0.0000E+00 OUTFLOW=0.3688E+02 BASIN STORAGE=0.8233E-01 PERCENT ERROR=-0.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.12 1.58 3.00 478.05 75.00 1.24

HYDROGRAPH AT STATION R3-5
TRANSPOSITION AREA 90.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 478. 1.25 9. 65. 18. 9. 1.242 (INCHES) 1.082 1.210 1.242 36. CUMULATIVE AREA = 0.56 SQ MI

INTERPOLATED HYDROGRAPH AT R3-5

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 49.95-HR (CFS) (HR) (CFS) 806. 1.20 86. 23. 11. 11. (INCHES) 1.589 1.437 1.558 1.589 (AC-FT) 46. 47. 47. 43. CUMULATIVE AREA = 0.56 SO MI

Onsi

110 KK SB04 * BASIN SUBBASIN RUNOFF DATA 111 BA SUBBASIN CHARACTERISTICS 0.14 SUBBASIN AREA TAREA 112 LG GREEN AND AMPT LOSS RATE STRTL 0.14 STARTING LOSS DTH 0.25 MOISTURE DEFICIT PSIF 4.60 WETTING FRONT SUCTION 0.44 HYDRAULIC CONDUCTIVITY 61.00 PERCENT IMPERVIOUS AREA XKSAT RTIMP 113 UC CLARK UNITGRAPH 0.30 TIME OF CONCENTRATION 0.20 STORAGE COEFFICIENT TC R ACCUMULATED-AREA VS. TIME, 11 ORDINATES 0.0 5.0 16.0 30.0 114 UA 11 ORDINATES 65.0 77.0 84.0 90.0 94.0 97.0 100.0 UNIT HYDROGRAPH PARAMETERS CLARK TC= 0.30 HR, R= 0.20 HR SNYDER TP= 0.18 HR, CP= 0.54 UNIT HYDROGRAPH 24 END-OF-PERIOD ORDINATES 107. 267. 177. 137. 106. 26. 245. 215. 82. 63. 49. 38. 29. 23. 18. 14. 11. 5 4 3. 2. HYDROGRAPH AT STATION TRANSPOSITION AREA 0.0 SQ MI TOTAL RAINFALL = 2.76, TOTAL LOSS = 0.38, TOTAL EXCESS = 2.38 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 528. 0.95 37. 9. 4. (INCHES) 2.369 2.369 2.369 2.369 (AC-FT) 18. 18. 18. 18. CUMULATIVE AREA = 0.14 SQ MI SB04 HYDROGRAPH AT STATION 0.5 SQ MI TRANSPOSITION AREA TOTAL RAINFALL = 2.74, TOTAL LOSS = 0.37, TOTAL EXCESS = PEAK FLOW TIME MAXIMUM AVERAGE FLOW 49 95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 524. 0.95 9. (INCHES) 2.353 2.353 2.353 2.353 (AC-FT) 18. 18. 18. 18. CUMULATIVE AREA = 0.14 SO MI *** HYDROGRAPH AT STATION SB04 TRANSPOSITION AREA 2.8 SQ MI TOTAL RAINFALL = 2.69, TOTAL LOSS = 0.40, TOTAL EXCESS = 2.28 MAXIMUM AVERAGE FLOW PEAK FLOW TIME 49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 452. 0.95 35. 9. 4 (INCHES) 2.272 2.272 2 272 2.272 17. (AC-FT) 17. 17. 17.

Page 25

0.14 SQ MI

CUMULATIVE AREA =

				O	distice_our .	out				
***		***	***	***		***				
				ION SB04 16.0 SQ MI						
TOTAL R	AINFALL =	2.54, TC	TAL LOSS =	0.44, TOTAL	EXCESS =	2.10				
PEAK FLOW	TIME		C IID	MAXIMUM AVER		40 OF HD				
+ (CFS)	(HR)	(GEG.)	6-HR	24-HR	72-HR	49.95-HR				
+ 382.	1.00	(CFS)	32.	8. 2.095	4. 2.095	4.				
		(INCHES) (AC-FT)	2.095 16.	16.	16.	2.095 16.				
		CUMULATI	VE AREA =	0.14 SQ MI						
***		***	***	***		***				
			APH AT STAT TION AREA	ION SB04 90.0 SQ MI						
TOTAL R	AINFALL =	2.23, TC	TAL LOSS =	0.46, TOTAL	EXCESS =	1.77				
PEAK FLOW	TIME		C IID	MAXIMUM AVER		40 OF HD				
+ (CFS)	(HR)	(070)	6-HR	24-HR	72-HR	49.95-HR				
+ 293.	1.00	(CFS)	27.	7.	3.	3.				
		(INCHES) (AC-FT)	1.763 14.	1.763 14.	1.763 14.	1.763 14.				
		CUMULATI	VE AREA =	0.14 SQ MI						
***		***	***	***		***				
		INTERPOL	ATED HYDROG	RAPH AT SB	04					
PEAK FLOW	TIME		6-HR	MAXIMUM AVER		49.95-HR				
+ (CFS)	(HR)	(CFS)	0 1111	21 1111	, 2 1111	19.95 111				
+ 525.	0.95	(INCHES) (AC-FT)	36. 2.356 18.	9. 2.356 18.	4. 2.356 18.	4. 2.356 18.				
				0.14 SQ MI	10.	10.				
				~						
*** *** *** ***	*** *** *	** *** ***	*** *** ***	*** *** *** *	** *** ***	*** *** ***	*** *** **	* * * * * * * * * * * * * * * * * * * *	*** *** *** **	* *** *** ***
	******	****								
116 KK	*	* -5 *	ROUTE							
110 KK	* * * * * * * * *	*	ROULE							
			PRINCESS BL	VD CHANNEL FROM	M 77TH ST 1	TO 76TH ST				
	HYDROG	RAPH ROUTIN	G DATA							
118 RK	KINE	MATIC WAVE L S N CA SHAPE WD Z NDXMIN	0.0013 S 0.030 C 0.00 C TRAP C 39.00 B 4.00 S	HANNEL LENGTH	EA DIAMETER					
			COMP	UTED KINEMATIC	*** PARAMETERS	5				
				VARIABLE TIM (DT SHOWN IS A	E STEP	-				
	E	LEMENT A	LPHA	M DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
				(MIN)	(FT)	(CFS)		(IN)	(FPS)	
	MA	IN	0.23	1.51 2.4	1 668.33	520.58	62.34	2.39	4.81	
CONTINUITON		G ====\	. O 0 1010	.02 EVGECC-0		0 0 100	00.00 03.01		2150- 04	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1819E+02 EXCESS=0.0000E+00 OUTFLOW=0.1838E+02 BASIN STORAGE=0.3179E-04 PERCENT ERROR=-1.0

Onsite_6hr.out INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.23 1.51 3.00 513.38 63.00 2.40 HYDROGRAPH AT STATION R4-5 TRANSPOSITION AREA 0.0 SQ MI PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 513. 1.05 37. (INCHES) 2.401 2.402 2.402 2.402 (AC-FT) 18. 18. 18. 18. CUMULATIVE AREA = 0.14 SO MI COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) TIME TO ELEMENT DТ MIJMIXAM ALPHA DX PEAK VOLUME PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MATN 0 23 1 51 2 42 668.33 516.56 62 40 2 38 4 79 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1807E+02 EXCESS=0.0000E+00 OUTFLOW=0.1825E+02 BASIN STORAGE=0.4744E-04 PERCENT ERROR= -1.0 INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL MATN 0.23 1.51 3.00 510.06 63.00 2.39 HYDROGRAPH AT STATION R4-5 TRANSPOSITION AREA 0.5 SQ MI PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 510. 1.05 37. 9. 4. (INCHES) 2.386 2.386 2.386 2.386 (AC-FT) 18. 18. 18. 18. CUMULATIVE AREA = 0.14 SQ MI COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) ELEMENT ALPHA DT TIME TO MAXIMUM PEAK VOLUME PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0.23 1.51 2.55 668.33 451.64 62.77 2.29 4.56 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1745E+02 EXCESS=0.0000E+00 OUTFLOW=0.1762E+02 BASIN STORAGE=0.4583E-04 PERCENT ERROR= -10INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL 0.23 MAIN 3.00 451.16 63.00 2.30 1.51 +++ HYDROGRAPH AT STATION R4-5 2.8 SQ MI TRANSPOSITION AREA PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 49.95-HR

COMPUTED KINEMATIC PARAMETERS
VARIABLE TIME STEP
(DT SHOWN IS A MINIMUM)

9.

18.

2.302

0.14 SQ MI

(CFS)

451.

(HR)

1.05

(CFS)

(INCHES)

(AC-FT)

CUMULATIVE AREA =

36.

18.

2.301

2.302

18.

2.302

18.

			Onsi	ite_6hr.ou	t				
ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)	
MAIN	0.23	1.51	2.73	668.33	379.50	64.90	2.12	4.31	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1609E+02 EXCESS=0.0000E+00 OUTFLOW=0.1629E+02 BASIN STORAGE=0.4132E-04 PERCENT ERROR= -1.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

3.00 374.76 63.00 2.12 MAIN 0.23 1.51 *** ***

> HYDROGRAPH AT STATION R4-5 16.0 SQ MI TRANSPOSITION AREA

PEAK FLOW TIME MAXIMUM AVERAGE FLOW

6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 375. 1.05 8. 33. (INCHES) 2.115 2.116 2.116 2.116 (AC-FT) 16. 16. 16. 16.

> CUMULATIVE AREA = 0.14 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

FLEMENT ALPHA DT DX PEAK TIME TO VOLUME MIJMIXAM CELERITY PEAK (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0 23 291.80 65.24 1 78 3.94 1.51 2.87 668.33

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1354E+02 EXCESS=0.0000E+00 OUTFLOW=0.1370E+02 BASIN STORAGE=0.4337E-04 PERCENT ERROR= -1.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

14.

14.

MAIN 0.23 1.51 3.00 288.81 66.00 1.78

14.

HYDROGRAPH AT STATION TRANSPOSITION AREA 90.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 289. 1.10 28. 7. 1.782 (INCHES) 1.782 1.782 1.782

(AC-FT)

14. CUMULATIVE AREA = 0.14 SQ MI

INTERPOLATED HYDROGRAPH AT

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 511. 1.05 37. 9 4. (INCHES) 2.388 2 388 2.388 2 388 (AC-FT) 18. 18. 18. 18.

CUMULATIVE AREA = 0.14 SQ MI

*** ***

119 KK SB05 BASIN ******

Page 28

SUBBASIN RUNOFF DATA

120 BA	SUBB	ASIN CHARACTE TAREA		SUBBASIN AREA						
121 LG		DTH PSIF XKSAT	0.22 S 0.25 M 4.50 W 0.44 H	STARTING LOSS MOISTURE DEFICITING FRONT SUBSTITEMENT CONDUCTIONS OF THE PROPERTY OF THE PROPER	CTIVITY					
122 UC	CLARI			TIME OF CONCENTE						
123 UA				11 ORDINATES 16.0 30.0	65.0	77.0	84.0	90.0	94.0	97.0

				CLARK TC=	= 0.33 HR,	PARAMETERS R= 0 CP= 0				
	18. 66. 7.	67. 53. 6.	154. 42. 4.	27 E1 208. 200 34. 2' 4.	UNIT HYDRO ND-OF-PERIC 0. 181 7. 21 3. 2	D ORDINATES	129. 14.	103. 11.	82. 9.	
***		***	***	***		***				
				O.0 SQ MI						
TOTAL RA	AINFALL =	2.76, TOTA	L LOSS =	0.52, TOTAL	EXCESS =	2.23				
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR		49 95-HR				
+ (CFS)	(HR)	(CFS)	o inc	21 1110	/2 III	19.95 1110				
+ 402.	0.95	(INCHES)		8. 2.223 15.	4. 2.223 15.	4. 2.223 15.				
		CUMULATIVE	AREA =	0.13 SQ MI						
***		***	***	***		***				
				TION SB05 0.5 SQ MI						
TOTAL RA	AINFALL =	2.74, TOTA	L LOSS =	0.52, TOTAL	EXCESS =	2.22				
PEAK FLOW + (CFS)	TIME		6-HR	MAXIMUM AVERA 24-HR		49.95-HR				
+ 399.	0.95	(CFS)	30.	7.	4.	4.				
		(INCHES) (AC-FT)	2.208 15.	2.208	2.208	2.208				
		CUMULATIVE	AREA =	0.13 SQ MI						
***		***	***	***		***				
		HYDROGRAF TRANSPOSITI		TION SB05 2.8 SQ MI						
TOTAL RA	AINFALL =	2.69, TOTA	L LOSS =	0.56, TOTAL	EXCESS =	2.13				
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR		49 95-110				
+ (CFS)	(HR)	(CFS)	An-O	ZT-UK	/2-IK	TJ.JJ-MK				
+ 352.	1.00	(INCHES) (AC-FT)	29. 2.118 14.	7. 2.118 14.	3. 2.118 14.	3. 2.118 14.				
			AREA =	0.13 SQ MI						
***		***	***	***		***				
				TION SB05 16.0 SQ MI						

TOTAL RAINFALL = 2.54, TOTAL LOSS = 0.60, TOTAL EXCESS = 1.94

Onsite 6hr out

						Onsite_6hr.o	ut
	PEAK FLOW	TIME			MAXIMUM AVER		
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	296.	1.00		26.	7.	3.	3.
			(INCHES)	1.930	1.930	1.930	1.930
			(AC-FT)	13.	13.	13.	13.
			G111411 3 F1 111		0 12 00 11		
			CUMULATIVE	S AREA =	0.13 SQ MI		
	***		***	***	* * *		***
					ION SB05		
			TRANSPOSIT	ION AREA	90.0 SQ MI		
	TOTAL RAIN	FALL =	2.23, TOTA	AL LOSS =	0.63, TOTAL	EXCESS =	1.60
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR		49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	225.	1.00		22.	5.	3.	3.
			(INCHES)				1.593
			(AC-FT)	11.	11.	11.	11.
			CUMULATIVE	E AREA =	0.13 SQ MI		
	***		***	***	***		***
			INTERPOLAT	red hydrogi	RAPH AT SE	305	
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	399.	0.95		30.	7.	4.	4.
			(INCHES)	2.210	2.210	2.210	2.210
			(AC-FT)	15.	15.	15.	15.

*** ***

COMBINE

CUMULATIVE AREA =

PRINCESS BLVD AND 76TH ST (PRINCESS BLVD CHANNEL)

127 HC

HYDROGRAPH COMBINATION

ICOMP

3 NUMBER OF HYDROGRAPHS TO COMBINE

0.13 SQ MI

HYDROGRAPH AT STATION CP-5

0.0 SQ MI TRANSPOSITION AREA

TIME MAXIMUM AVERAGE FLOW PEAK FLOW 6-HR 24-HR 49.95-HR 72-HR (CFS) (HR) (CFS) 1452. 153. 1.715 76. 1.15 40. 20. 20. (INCHES) 1.814 1.836 1.836 81. (AC-FT) 80. 81.

> CUMULATIVE AREA = 0.83 SQ MI

CP-5 HYDROGRAPH AT STATION 0.5 SQ MI TRANSPOSITION AREA

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 24-HR 49.95-HR 6-HR 72-HR (CFS) (HR) (CFS) 1440. 1.15 40. 19. 19. 152. 1.824 (INCHES) 1.703 75. 1.803 1.824 (AC-FT) 80. 80.

> CUMULATIVE AREA = 0.83 SQ MI

***		***	***	***		***				
		HYDROGRA TRANSPOSIT		CION CP-5 2.8 SQ MI						
PEAK FLOW	TIME		6 JVD	MAXIMUM AVER		40.05.77				
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 1335.	1.15	(CFS)	146.	39.	19.	19.				
		(INCHES) (AC-FT)	1.638 72.	1.737 77.	1.759 78.	1.759 78.				
		CUMULATIV	E AREA =	0.83 SQ MI						
***		***	***	***		***				
		HYDROGRA TRANSPOSIT		CION CP-5 16.0 SQ MI						
PEAK FLOW	TIME			MAXIMUM AVER						
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 1121.	1.15	(CFS)	133.	36.	17.	17.				
. 1121	1.13	(INCHES)	1.499	1.602 71.	1.623	1.623 72.				
		(AC-FT)		0.83 SQ MI	72.	72.				
***		***	***	***		***				
		HYDROGRA TRANSPOSIT		CION CP-5 90.0 SQ MI						
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 844.	1.20	(CFS)	110	30.	15.	15.				
+ 844.	1.20	(INCHES) (AC-FT)	112. 1.262 56.	1.368 60.	1.389 61.	1.389 61.				
		CUMULATIV	E AREA =	0.83 SQ MI						
***		***	***	***		***				
		INTERPOLA	TED HYDROG	карн ат СР	-5					
PEAK FLOW	TIME			MAXIMUM AVER						
			6-HR		72-HR	49.95-HR				
+ (CFS)	(HR)	(CFS)								
+ 1410.	1.15	(INCHES)	150. 1.684	40. 1.784	19. 1.805	19. 1.805				
		(AC-FT)	74.	79.	80.	80.				
		CUMULATIV	E AREA =	0.83 SQ MI						
*** *** *** ***	*** ***	*** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** **	* *** *** ***	* *** *** ***	* * * * * * * * * * * * * * * * * * * *	*** ***
	******	+++++								
	*	*								
128 KK	* R	5-6 * *	ROUTE							
	*****		RINCESS BL	VD CHANNEL FRO	M 76TH ST	TO SCOTTSDALE R	D			
	HYDRO	- GRAPH ROUTING								
130 RK	KIN	EMATIC WAVE S								
			0.0015 S							
			0.030 C	HANNEL ROUGHNE		IENT				
		SHAPE	TRAP C	HANNEL SHAPE						
		Z	4.00 S	OTTOM WIDTH OR IDE SLOPE						
		NDXMIN	2 M	IINIMUM NUMBER	OF DX INTE	RVALS				

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

				Ons	site_6hr.ou	ıt				
	ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
				(MIN)	(FT)	(CFS)		(IN)	(FPS)	
	MAIN	0.07	1.62	1.71	516.67	1430.15	73.26	1.84	5.13	
CONTINUITY SUN-0.1	MMARY (AC-FT) - 1	INFLOW=0.8096	E+02 E	EXCESS=0.00	00E+00 OUT	FLOW=0.810	1E+02 BASIN	STORAGE=0	.7278E-01 PERCEN	IT ERROR=
			INTERPO	DLATED TO S	PECIFIED C	OMPUTATION	INTERVAL			
	MAIN	0.07	1.62	3.00		1428.13	72.00	1.84		
***	***	***		***		***				
		OGRAPH AT STA DSITION AREA		R5-6 0 SQ MI						
PEAK FLOW	TIME	6-HR		MUM AVERAG		49.95-HR				
+ (CFS)	(HR)	3)								
+ 1428.	1.20 (INCHES (AC-FT			40. 1.815 80.	20. 1.836 81.	20. 1.836 81.				
	CUMULA	ATIVE AREA =	0.83	3 SQ MI						
		COM	VAR1	CINEMATIC P CABLE TIME HOWN IS A M	STEP					
	ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
				(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	0.07	1.62	1.72	516.67	1417.75	71.63	1.82	5.12	
CONTINUITY SUN-0.1	MMARY (AC-FT) - 1		INTERPO	EXCESS=0.00 DLATED TO S			I INTERVAL	STORAGE=0	.7282E-01 PERCEN	T ERROR=
***	***	***		***		***				
		OGRAPH AT STA OSITION AREA		R5-6 .5 SQ MI						
PEAK FLOW	TIME	6-HR		MUM AVERAG	E FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)									
+ 1418.	1.20 (INCHES (AC-FT	151. 3) 1.703	1	40. 1.803 80.	19. 1.824 80.	19. 1.824 80.				
	CUMULA	ATIVE AREA =	0.83	S SQ MI						
		COM	VAR1	CINEMATIC P CABLE TIME HOWN IS A M	STEP					
	ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
				(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	0.07	1.62	1.83	516.67	1320.58	72.30	1.76	4.97	
CONTINUITY SUN-0.2	MMARY (AC-FT) - I	INFLOW=0.7757	E+02 E	EXCESS=0.00	00E+00 OUT	FLOW=0.776	2E+02 BASIN	STORAGE=0	.6818E-01 PERCEN	IT ERROR=
			TNITEDO	א עשבע דע	DECTETED C	OMDITTATION	T T NTT T D T T T T T T T T T T T T T T			

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.07 1.62 3.00 1310.29 72.00 1.76

*** ***

HYDROGRAPH AT STATION R5-6
TRANSPOSITION AREA 2.8 SQ MI

MAXIMUM AVERAGE FLOW 24-HR 72-HR PEAK FLOW TIME 6-HR 49.95-HR

(CFS) (HR)

(CFS) 146. 1310. 1.20 39. 19. 19. (INCHES) 1.760 1.639 1.739 1.760 (AC-FT)

> CUMULATIVE AREA = 0.83 SQ MI

> > COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.07	1.62	1.92	516.67	1120.07	73.97	1.62	4.65

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7160E+02 EXCESS=0.0000E+00 OUTFLOW=0.7164E+02 BASIN STORAGE=0.7274E-01 PERCENT ERROR= -0.2

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.07 1.62 3.00 1117.54 75.00 1.62

> HYDROGRAPH AT STATION R5-6

TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 1118. 1.25 133. 36. (INCHES) 1.500 1.603 1.624 1.624 (AC-FT) 66. 71. 72. 72.

CUMULATIVE AREA =

0.83 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) 77.35 MAIN 0.07 1.62 2.16 516.67 837.38 1.39 4.17

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6127E+02 EXCESS=0.0000E+00 OUTFLOW=0.6143E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR= -0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.07 1.62 3.00 834.70 75.00 1.39

MAXIMUM AVERAGE FLOW

HYDROGRAPH AT STATION R5-6 TRANSPOSITION AREA 90.0 SQ MI

PEAK FLOW

TIME

6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 835. 1.25 112. 30. 15. 15. (INCHES) 1.264 1.371 1.392 1.392 (AC-FT) 56. 60. 61. 61. CUMULATIVE AREA = 0.83 SQ MI

INTERPOLATED HYDROGRAPH AT R5-6

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 1386. 1.20 150. 40. 19. 19. (INCHES) 1.684 1.785 1.806 1 806 (AC-FT) 74. 79. 80. 80. CUMULATIVE AREA = 0.83 SQ MI

*** 131 KK BASIN SUBBASIN RUNOFF DATA 132 BA SUBBASIN CHARACTERISTICS TAREA 0.14 SUBBASIN AREA 133 T.G GREEN AND AMPT LOSS RATE 0.16 STARTING LOSS STRTL 0.25 MOISTURE DEFICIT DTH PSIF 4.55 WETTING FRONT SUCTION XKSAT 0.45 HYDRAULIC CONDUCTIVITY 53.00 PERCENT IMPERVIOUS AREA RTTMP 134 UC CLARK UNITGRAPH 0.32 TIME OF CONCENTRATION 0.24 STORAGE COEFFICIENT ACCUMULATED-AREA VS. TIME, 11 ORDINATES 0.0 5.0 16.0 30.0 135 TTA 30.0 65.0 77.0 84.0 90.0 94.0 97.0 100.0 UNIT HYDROGRAPH PARAMETERS CLARK TC= 0.32 HR, R= 0.24 HR SNYDER TP= 0.19 HR, CP= 0.48 SNYDER UNIT HYDROGRAPH 29 END-OF-PERIOD ORDINATES 18. 72. 161. 214. 206. 189. 164. 136. 111. 90. 73. 60. 49. 39. 32. 26. 21. 17. 14. 11. 9. 8. 6. 4. 3. 3. 2. 2. HYDROGRAPH AT STATION SB06 TRANSPOSITION AREA 0.0 SQ MI TOTAL RAINFALL = 2.76, TOTAL LOSS = 0.46, TOTAL EXCESS = 2.30 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 422 0.95 33 8 4 (INCHES) 2.285 2.285 2.285 2.285 (AC-FT) 17. 17. 17. 17. CUMULATIVE AREA = 0.14 SQ MI HYDROGRAPH AT STATION SB06 TRANSPOSITION AREA 0.5 SQ MI TOTAL RAINFALL = 2.74, TOTAL LOSS = 0.46, TOTAL EXCESS = 2.28 PEAK FLOW MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 419. 0.95 8. 33. 4. (INCHES) 2.269 2.269 2.269 2.269 (AC-FT) 16. CUMULATIVE AREA = 0.14 SO MI HYDROGRAPH AT STATION SB06 2.8 SQ MI TRANSPOSITION AREA 2.69, TOTAL LOSS = TOTAL RAINFALL = 0.50, TOTAL EXCESS = PEAK FLOW MAXIMUM AVERAGE FLOW TIME 49 95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 373. 1.00

2.181 Page 34

(INCHES)

2.181

2.181

2.181

Onsite_6hr.out 16. (AC-FT) 16. 16. 16.

CUMULATIVE AREA = 0.14 SQ MI

PEAK FLOW

TIME

HYDROGRAPH AT STATION SB06 16.0 SQ MI TRANSPOSITION AREA

TOTAL RAINFALL = 2.54, TOTAL LOSS = 0.53, TOTAL EXCESS =

MAXIMUM AVERAGE FLOW 24-HR 72-HR 24-HR 6-HR 49.95-HR (CFS) (HR) (CFS) 29. 316. 1.00 7. 4 (INCHES) 1.997 1.997 1.997 1.997 14. 14. 14. 14. (AC-FT)

> CUMULATIVE AREA = 0.14 SQ MI

HYDROGRAPH AT STATION SB06 TRANSPOSITION AREA 90.0 SQ MI

TOTAL RAINFALL = 2.23, TOTAL LOSS = 0.56, TOTAL EXCESS = 1.67

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 24. 241. 1.00 6. 3. (INCHES) 1.661 1.661 1.661 1.661 12. 12. (AC-FT) 12. 12. CUMULATIVE AREA = 0.14 SQ MI

INTERPOLATED HYDROGRAPH AT SB06

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 420. 0.95 33. 2.272 8. 4. 2.272 4. 2.272 (INCHES) 2.272 (AC-FT) 16. 16. 16. 16.

CUMULATIVE AREA = 0.14 SQ MI

*** ***

137 KK COMBINE

PRINCESS BLVD AND SCOTTSDALE RD (PRINCESS BLVD CHANNEL)

139 HC HYDROGRAPH COMBINATION

ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

+++

HYDROGRAPH AT STATION CP-6

TRANSPOSITION AREA 0.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 49.95-HR (CFS) (HR) (CFS) 1662. 1.20 185. 49. 24. 24. (INCHES) 1.782 1.900 1.900 1.881 98. (AC-FT) 92. 97. 98.

CUMULATIVE AREA = 0.96 SQ MI

HYDROGRAPH AT STATION CP-6

						nsite_6hr.	out
			TRANSPOSIT	ION AREA	0.5 SQ MI		
PE	AK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR	AGE FLOW 72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	1650.	1.20	, ,	183.	48.	23.	23.
			(INCHES) (AC-FT)	91.	48. 1.869 96.	97.	1.887 97.
			CUMULATIV	E AREA =	0.96 SQ MI		
	***		***	***	***		***
	***						* * *
					ION CP-6 2.8 SQ MI		
PE	AK FLOW	TIME		6-HR	MAXIMUM AVER		49.95-HR
+	(CFS)	(HR)	(== =)	NH-0	24-nk	/2-nk	49.95-nk
+	1542.	1.20	(CFS)	176.	47.	23.	23.
			(INCHES)	1.702 87.	47. 1.801 93.	1.820	1.820
			, - ,		0.96 SQ MI	,,,	,,,
			CUMULATIV	L ARLA =	0.96 SQ MI		
	***		***	***	***		***
			HYDROGRA TRANSPOSIT	PH AT STAT ION AREA	ION CP-6 16.0 SQ MI		
PE	AK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	1308.	1.20	(CFS)	161.	43.	21.	21.
			(INCHES) (AC-FT)	1.555 80.	1.659 85.	1.677 86.	1.677 86.
					0.96 SQ MI	00.	00.
			COMODATIV	E AKEA -	0.90 BQ MI		
	***		***	***	***		***
					ION CP-6 90.0 SQ MI		
PE	AK FLOW	TIME		6-HR	MAXIMUM AVER 24-HR		49.95-HR
+	(CFS)	(HR)	(== =)	0-HK	Z4-HK	/2-nk	49.93-IIK
+	982.	1.25	(CFS)	135.	37.	18.	18.
			(INCHES) (AC-FT)	1.305 67.	1.412 73.	1.430	1.430 73.
			CUMULATIV	E AREA =	0.96 SQ MI		
	***		***	***	***		***

INTERPOLATED HYDROGRAPH AT CP-6

1	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	1609.	1.20		181.	48.	23.	23.
			(INCHES)	1.743	1.843	1.862	1.862
			(AC-FT)	90.	95.	96.	96.
			CUMULATIV	E AREA =	0.96 SQ MI		

*** ***

SUBBASIN RUNOFF DATA

DODDING IN MONOTT BITTI

141 BA SUBBASIN CHARACTERISTICS TAREA 0.07 SUBBASIN AREA

	142 LG	GREEI	N AND AMPT LO STRTL DTH PSIF XKSAT RTIMP	OSS RATE 0.21 S 0.25 M 4.00 W 0.58 H 49.00 E	MOISTURE WETTING E HYDRAULIO	LOSS DEFICIT FRONT SUC	TIVITY	t				
	143 UC	CLAR	K UNITGRAPH TC R	0.20 T 0.11 S								
	144 UA		MULATED-AREA 0.0 5	VS. TIME, 5.0 1	, 11 ORI 16.0	OINATES 30.0	65.0	77.0	84.0	90.0	94.0	97.0

						RK TC=		PARAMETERS R= 0. CP= 0.				
							JNIT HYDROGI					
		39.	156. 6.	219.	180.	14 ENL 130.	D-OF-PERIOD 84.	53.	34.	22.	14.	
	***		***	***	2.	***		***				
			HYDROGRAE TRANSPOSITI									
	TOTAL RA	INFALL =	2.76, TOT	AL LOSS =	0.54,	, TOTAL E	EXCESS =	2.22				
	PEAK FLOW	TIME		6-HR		JM AVERAG	GE FLOW 72-HR	49 95-HR				
+	(CFS)	(HR)	(CFS)	o inc	21	III	/2 IIIC	49.93 III				
+	386.	0.90	(INCHES) (AC-FT)		2.2	4. 209 9.	2. 2.209 9.	2. 2.209 9.				
			CUMULATIVE	E AREA =	0.07 \$	SQ MI						
	***		***	***		***		***				
			HYDROGRAE TRANSPOSITI									
	TOTAL RA	INFALL =	2.74, TOTA	AL LOSS =	0.54,	, TOTAL E	EXCESS =	2.20				
	PEAK FLOW	TIME		6-HR		JM AVERAG	GE FLOW 72-HR	49 95-HR				
+	(CFS)	(HR)	(CFS)	0 1110			, 2 1111	13.33 111				
+	384.	0.90	(INCHES) (AC-FT)	17. 2.193 9.	2.1	4. L93 9.	2. 2.193 9.	2. 2.193 9.				
			CUMULATIVE	E AREA =	0.07 \$	SQ MI						
	***		***	***		***		***				
			HYDROGRAE TRANSPOSITI	PH AT STAT	TION 2.8	SB07 SQ MI						
	TOTAL RA	INFALL =	2.69, TOTA	AL LOSS =	0.58,	, TOTAL E	EXCESS =	2.10				
	PEAK FLOW	TIME		6-HR		JM AVERAG		49.95-HR				
+	(CFS)	(HR)	(CFS)									
+	308.	0.90	(INCHES) (AC-FT)	17. 2.095 8.	2.0	4. 95 8.	2. 2.095 8.	2. 2.095 8.				
			CUMULATIVE	E AREA =	0.07 \$	SQ MI						
	***		***	***		***		***				
			HYDROGRAE TRANSPOSITI	PH AT STAT	rion 16.0							
	TOTAL RA	INFALL =	2.54, TOTA	AL LOSS =	0.63,	, TOTAL E	EXCESS =	1.91				
	PEAK FLOW	TIME		6-HR		JM AVERAG		49.95-HR				
+	(CFS)	(HR)	(CFS)	An U	24-	****	, 2 1110	17.75 AK				
+	249.	0.90	(INCHES) (AC-FT)	15. 1.901 8.	1.9	4. 901 8.	2. 1.901 8.	2. 1.901 8.				

Page 37

CUMULATIVE AREA = 0.07 SQ MI

361.

1.05

18.

*** *** *** HYDROGRAPH AT STATION SB07 90.0 SQ MI TRANSPOSITION AREA TOTAL RAINFALL = 2.23, TOTAL LOSS = 0.66, TOTAL EXCESS = PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 181. 0.90 12. (INCHES) 1.563 1.563 1.563 1.563 (AC-FT) 6. 6. 6. 6. CUMULATIVE AREA = 0.07 SQ MI *** INTERPOLATED HYDROGRAPH AT SB07 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 384. 0.90 (INCHES) 2.197 2.197 2.197 2.197 (AC-FT) 9. 9. 9. 9. CUMULATIVE AREA = 0.07 SO MI *** 146 KK R7-8 ROUTE HAYDEN ROAD NORTH CHANNEL FROM LEGACY BLVD TO SR 101L FREEWAY HYDROGRAPH ROUTING DATA 148 RK KINEMATIC WAVE STREAM ROUTING 2778. CHANNEL LENGTH S 0.0014 SLOPE CHANNEL ROUGHNESS COEFFICIENT CONTRIBUTING AREA N 0.030 0.00 CA CHANNEL SHAPE SHAPE TRAP 46.00 BOTTOM WIDTH OR DIAMETER WD 4.00 SIDE SLOPE MINIMUM NUMBER OF DX INTERVALS NDXMIN COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) ELEMENT TIME TO DT MAXIMUM ALPHA DX PEAK VOLUME PEAK CELERITY (MIN) (CFS) (IN) (FPS) MATN 0.21 1.53 2.79 694.50 374.54 61.97 2.32 4.32 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8717E+01 EXCESS=0.0000E+00 OUTFLOW=0.9160E+01 BASIN STORAGE=0.1297E-03 PERCENT ERROR= INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL MAIN 0.21 1.53 3.00 360.59 63.00 2.31 HYDROGRAPH AT STATION R7-8 TRANSPOSITION AREA 0.0 SQ MI MAXIMUM AVERAGE FLOW PEAK FLOW TIME 72-HR 6-HR 24-HR 49.95-HR (CFS) (HR) (CFS)

2. Page 38 2.

5.

(INCHES) 2.311 2.314 2.314 2.314 (AC-FT) 9. 9. 9. 9.

CUMULATIVE AREA = 0.07 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.21	1.53	2.80	694.50	373.06	62.02	2.31	4.31

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8655E+01 EXCESS=0.0000E+00 OUTFLOW=0.9098E+01 BASIN STORAGE=0.1282E-03 PERCENT ERROR=-5.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.21 1.53 3.00 359.23 63.00 2.30

HYDROGRAPH AT STATION R7-8
TRANSPOSITION AREA 0.5 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 359. 1.05 18. 5. 2. . 2. (INCHES) 2.295 2.298 2.298 2.298 (AC-FT) 9. 9. 9.

CUMULATIVE AREA =

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

0.07 SQ MI

(DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DТ DX PEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MTN) (FT) (CFS) (MTN) (TN) (FPS) MAIN 0.21 1.53 694.50 300.60 2.18 4.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8267E+01 EXCESS=0.0000E+00 OUTFLOW=0.8591E+01 BASIN STORAGE=0.1511E-03 PERCENT ERROR=-3.9

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.21 1.53 3.00 299.77 63.00 2.18

HYDROGRAPH AT STATION R7-8
TRANSPOSITION AREA 2.8 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 300. 1.05 17. (INCHES) 2.179 2.179 (AC-FT) 9. 9. 9. 9.

CUMULATIVE AREA = 0.07 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT TIME TO MAXIMUM DX PEAK VOLUME PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MATN 0.21 1.53 3.00 694.50 243.19 65.55 1.99 3.72

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7502E+01 EXCESS=0.0000E+00 OUTFLOW=0.7866E+01 BASIN STORAGE=0.1118E-03 PERCENT ERROR= -4.8

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.21 1.53 3.00 238.95 66.00 2.00

*** *** ***

HYDROGRAPH AT STATION R7-8 TRANSPOSITION AREA 16.0 SQ MI

I	PEAK FLOW TIME			MAXIMUM AVERAGE FLOW					
				6-HR	24-HR	72-HR	49.95-HR		
+	(CFS)	(HR)							
			(CFS)						
+	239.	1.10		16.	4.	2.	2.		
			(INCHES)	1.995	1.997	1.997	1.997		
			(AC-FT)	8.	8.	8.	8.		

CUMULATIVE AREA = 0.07 SQ MI

COMPUTED KINEMATIC PARAMETERS

VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.21	1.53	2.82	555.60	178.83	67.24	1.61	3.33

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6168E+01 EXCESS=0.0000E+00 OUTFLOW=0.6362E+01 BASIN STORAGE=0.1260E-03 PERCENT ERROR=-3.1

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	0.21	1.53	3.00	176.29	66.00	1.61
***	***	***	•	***	***		

HYDROGRAPH AT STATION R7-8 TRANSPOSITION AREA 90.0 SQ MI

	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	176.	1.10		13.	3.	2.	2.
			(INCHES)	1.609	1.611	1.611	1.611
			(AC-FT)	6.	6.	6.	6.
			CUMULATIV	E AREA =	0.07 SQ MI		

INTERPOLATED HYDROGRAPH AT R7-8

]	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
	(CEC)	(IID)		6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	360.	1.05		18.	5.	2.	2.
			(INCHES)	2.299	2.301	2.301	2.301
			(AC-FT)	9.	9.	9.	9.
			CUMULATIV	E AREA =	0.07 SQ MI		

*** ***

*

*

*

*

149 KK * SB08 * BASIN

SUBBASIN RUNOFF DATA

150 BA SUBBASIN CHARACTERISTICS TAREA 0.22 SUBBASIN AREA

TAREA U.22 SUBBASIN AREA

151 LG GREEN AND AMPT LOSS RATE
STRTL 0.14 STARTING LOSS
DTH 0.25 MOISTURE DEFICIT

PSIF 4.10 WETTING FRONT SUCTION
XKSAT 0.59 HYDRAULIC CONDUCTIVITY
RTIMP 59.00 PERCENT IMPERVIOUS AREA

152 UC CLARK UNITGRAPH ${\tt TC} \hspace{1.5cm} {\tt 0.33} \hspace{0.25cm} {\tt TIME} \hspace{0.25cm} {\tt OF} \hspace{0.25cm} {\tt CONCENTRATION}$

R 0.19 STORAGE COEFFICIENT

ACCUMULATED-AREA VS. TIME, 11 ORDINATES 153 UA 5.0 16.0 77.0 84.0 90.0 94.0 97.0 0.0 30.0 65.0 100.0 *** UNIT HYDROGRAPH PARAMETERS CLARK TC= 0.33 HR, R= 0.19 HR SNYDER TP= 0.19 HR, CP= 0.55 SNYDER UNIT HYDROGRAPH 24 END-OF-PERIOD ORDINATES 127. 409. 385. 339. 232. 179. 288. 106. 82. 63. 49. 37. 29. 22. 17. 13. 10. 8. 6. 5. 4. HYDROGRAPH AT STATION SB08 0.0 SQ MI TRANSPOSITION AREA TOTAL RAINFALL = 2.76, TOTAL LOSS = 0.42, TOTAL EXCESS = 2.34 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 796 0 95 56 14 7. (INCHES) 2.325 2.325 2.325 2.325 (AC-FT) 28. 28. 28. 28. CUMULATIVE AREA = 0.22 SQ MI HYDROGRAPH AT STATION SB08 TRANSPOSITION AREA 0.5 SQ MI TOTAL RAINFALL = 2.74, TOTAL LOSS = 0.42, TOTAL EXCESS = PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 791. 0.95 56. 14. (INCHES) 2.309 2.309 2.309 2.309 (AC-FT) 28. 28. 28. 28. CUMULATIVE AREA = 0.22 SO MI *** *** * * * *** HYDROGRAPH AT STATION SB08 TRANSPOSITION AREA TOTAL RAINFALL = 2.69, TOTAL LOSS = 0.46, TOTAL EXCESS = MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 686. 1.00 53. 13. 6. (INCHES) 2.218 2.218 2.218 2.218 (AC-FT) 26. 26. 26. 26 CUMULATIVE AREA = 0.22 SQ MI SB08 HYDROGRAPH AT STATION 16.0 SQ MI TRANSPOSITION AREA TOTAL RAINFALL = 2.54, TOTAL LOSS = 0.50, TOTAL EXCESS = 2 04 PEAK FLOW MAXIMUM AVERAGE FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 577. 1.00 49 12. 6. (INCHES) 2.032 2.032 2.032 2.032 24. 24. (AC-FT) 24. 24. CUMULATIVE AREA = 0.22 SQ MI

HYDROGRAPH AT STATION SB08
TRANSPOSITION AREA 90.0 SQ MI

Page 41

TOTAL R.	AINFALL =	2.23, TOT	AL LOSS =	0.53, TOTAL	EXCESS =	1.71			
PEAK FLOW	TIME			MAXIMUM AVER					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 439.	1.00	(CFS)	41.	10.	5.	5.			
133.	1.00	(INCHES)	1.699	1.699	1.699 20.	1.699 20.			
		(AC-FT)			20.	20.			
			E AREA =						
***		***	***	***		***			
		INTERPOLA'	TED HYDROG	RAPH AT SE	808				
PEAK FLOW	TIME		C IID	MAXIMUM AVER		40 0F IID			
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 792.	0.95	(CFS)	56.	14.	7.	7.			
		(INCHES) (AC-FT)	2.311	2.311 28.	2.311 28.	2.311 28.			
				0.22 SQ MI					
		COMODALIV	_ 1111111 =	0.22 DØ PIT					
	*** *** *	** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** ***	*** *** *	** *** *** **	* *** *** ***

	******	****							
155 KK	*	-8 * C(OMBINE						
AA CCT	*	*	OHDTINE						
		****					CHANNEL)		
	******	SI	R 101L FRE	EWAY AND HAYDE	N ROAD (HAY	DEN ROAD NORTH			
157 HC		SI OGRAPH COMBII		EWAY AND HAYDE	N ROAD (HAY	DEN ROAD NORTH			
157 НС			NATION	EWAY AND HAYDE UMBER OF HYDRO					
157 HC		OGRAPH COMBI	NATION						
157 HC		OGRAPH COMBI	NATION		GRAPHS TO (
		OGRAPH COMBI	NATION 2 N *** PH AT STAT	UMBER OF HYDRO *** ION CP-8	GRAPHS TO (COMBINE			
***	HYDR	OGRAPH COMBI	NATION 2 N *** PH AT STAT	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI	OGRAPHS TO (COMBINE			
		OGRAPH COMBI	NATION 2 N *** PH AT STAT	UMBER OF HYDRO *** ION CP-8	OGRAPHS TO (COMBINE			
***	HYDR	OGRAPH COMBII ICOMP *** HYDROGRA. TRANSPOSIT	NATION 2 N *** PH AT STAT	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER	OGRAPHS TO (*** LAGE FLOW	'OMBINE ***			
*** PEAK FLOW	HYDR TIME	OGRAPH COMBILICOMP *** HYDROGRA: TRANSPOSIT: (CFS)	NATION 2 N *** PH AT STAT ION AREA 6-HR 74.	UMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19.	OGRAPHS TO (*** *AGE FLOW 72-HR	*** 49.95-HR 9.			
*** PEAK FLOW + (CFS)	HYDR TIME (HR)	OGRAPH COMBII ICOMP *** HYDROGRA. TRANSPOSIT	NATION 2 N *** PH AT STAT ION AREA 6-HR	WMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322	OGRAPHS TO (*** *AGE FLOW 72-HR	*** 49.95-HR 9. 2.322			
*** PEAK FLOW + (CFS)	HYDR TIME (HR)	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT)	*** PH AT STAT ION AREA 6-HR 74. 2.322 37.	WMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322	POGRAPHS TO CONTROL *** CAGE FLOW 72-HR 9. 2.322	*** 49.95-HR 9. 2.322			
*** PEAK FLOW + (CFS)	HYDR TIME (HR)	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA =	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI	2AGE FLOW 72-HR 9. 2.322 37.	*** 49.95-HR 9. 2.322			
*** PEAK FLOW + (CFS)	HYDR TIME (HR)	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA =	VMBER OF HYDRO *** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37.	2AGE FLOW 72-HR 9. 2.322 37.	*** 49.95-HR 9. 2.322			
*** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR)	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: ***	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI ***	2AGE FLOW 72-HR 9. 2.322 37.	*** 49.95-HR 9. 2.322 37.			
*** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: ***	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT 10N AREA	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI	PAGE FLOW 72-HR 9. 2.322 37.	*** 49.95-HR 9. 2.322 37.			
*** PEAK FLOW + (CFS) + 1041. ***	HYDR TIME (HR)	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: ***	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI ***	AGE FLOW 2.322 37.	*** 49.95-HR 9. 2.322 37.			
*** PEAK FLOW + (CFS) + 1041.	HYDR TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR	AGE FLOW 72-HR 2.322 37.	*** 49.95-HR 9. 2.322 37. ***			
*** PEAK FLOW + (CFS) + 1041. ***	HYDR TIME (HR) 1.05	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR	AGE FLOW 72-HR 2.322 37.	*** 49.95-HR 9. 2.322 37. ***			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS)	HYDR TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) (INCHES)	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER	AGE FLOW 72-HR 2.322 37.	*** 49.95-HR 9. 2.322 37. ***			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS)	HYDR TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT)	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT 10N AREA 6-HR 74. 2.306 37.	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR	AGE FLOW 72-HR 2.322 37.	*** 49.95-HR 9. 2.322 37. ***			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: (CFS) (INCHES) (AC-FT) CUMULATIV:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA =	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI	**** *** *** *** ** ** ** ** *	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS)	HYDR TIME (HR) 1.05	*** HYDROGRA: (CFS) (INCHES) (AC-FT) CUMULATIV: (CFS) (INCHES) (AC-FT) CUMULATIV:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA =	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37.	**** *** *** *** ** ** ** ** *	*** 49.95-HR 9. 2.322 37. ***			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA:	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT 10N AREA 6-HR 74. 2.306 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	**** *** *** *** ** ** ** ** *	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	TIME (HR) 1.05	*** HYDROGRATION (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRATION (CFS) (INCHES) (AC-FT) CUMULATIVE (CFS) (INCHES) (AC-FT) CUMULATIVE	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT 10N AREA 6-HR 74. 2.306 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI *** ION CP-8 2.8 SQ MI	**** *** *** *** ** ** ** ** *	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	HYDR TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA:	*** PH AT STAT 10N AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT 10N AREA 6-HR 74. 2.306 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI ***	PAGE FLOW 72-HR PAGE FLOW 72-HR	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: *** HYDROGRA: TRANSPOSIT:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI *** *** ION CP-8 2.8 SQ MI MAXIMUM AVER 2.8 SQ MI MAXIMUM AVER	PAGE FLOW 72-HR	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			
*** PEAK FLOW + (CFS) + 1041. *** PEAK FLOW + (CFS) + 1035.	TIME (HR) 1.05	*** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA: TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIV: *** HYDROGRA:	*** PH AT STAT ION AREA 6-HR 74. 2.322 37. E AREA = *** PH AT STAT ION AREA 6-HR 74. 2.306 37. E AREA = ***	*** ION CP-8 0.0 SQ MI MAXIMUM AVER 24-HR 19. 2.322 37. 0.30 SQ MI *** ION CP-8 0.5 SQ MI MAXIMUM AVER 24-HR 18. 2.307 37. 0.30 SQ MI *** *** ION CP-8 2.8 SQ MI MAXIMUM AVER 2.8 SQ MI MAXIMUM AVER	PAGE FLOW 72-HR PAGE FLOW 72-HR	*** 49.95-HR 9. 2.322 37. *** 49.95-HR 9. 2.307 37.			

Page 42

CUMULATIVE AREA = 0.30 SQ MI

***		***	***	***		***				
			RAPH AT STAT	rion CP-8 16.0 SQ MI						
PEAK FLOW	TIME			MAXIMUM AVER						
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 783.	1.05	(CFS)	65.	16.	8.	8.				
		(INCHES) (AC-FT)	2.023	2.023	2.023	2.023				
		CUMULAT	IVE AREA =	0.30 SQ MI						
***		***	***	***		***				
			RAPH AT STAT	rion CP-8 90.0 SQ MI						
PEAK FLOW	TIME			MAXIMUM AVER						
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 561.	1.10	(CFS)	54.	13.	6.	6.				
, 501.	1.10	(INCHES)	1.676	1.677	1.677	1.677				
		(AC-FT)		27.	27.	27.				
				0.30 SQ MI						
***		***	***	***		***				
		INTERPO	LATED HYDROG	GRAPH AT CP	-8					
PEAK FLOW	TIME			MAXIMUM AVER						
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR				
+ 1035.	1.05	(CFS)	74.	18.	9.	9.				
. 1033.	1.03	(INCHES) (AC-FT)	2.307	2.308	2.308	2.308				
		CUMULAT	IVE AREA =	0.30 SQ MI						
*** *** ***	*** *** *	** *** ***	*** *** **	* *** *** *** *	** *** ***	*** *** ***	* *** *** *:	** *** ***	*** *** *** ***	* * * * * * * * * *
	******	****								
158 KK	* R8	i-9 *	ROUTE							
	* * * * * * * * *	*								
			HAYDEN ROAL	O NORTH CHANNEL	FROM HAYD	EN ROAD TO E	BASIN 53R			
	HYDROG	RAPH ROUTI	NG DATA							
160 RK	KINE		STREAM ROU							
		L S	1250. (0.0013 S	CHANNEL LENGTH SLOPE						
		N CA		CHANNEL ROUGHNE		IENT				
		SHAPE	TRAP (CHANNEL SHAPE						
		WD Z	4.00	BOTTOM WIDTH OR						
		NDXMIN	2 1	MINIMUM NUMBER						
			COM	PUTED KINEMATIC						
				VARIABLE TIM (DT SHOWN IS A						
		LEMENT	ALPHA			PEAK	TIME TO	VOLUME	MAXIMUM	
	E			(MIN)			PEAK (MIN)	(IN)	CELERITY (FPS)	
				(11111)	(г1)	(CFD)	(1:1±1N)	(±14)	(110)	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3691E+02 EXCESS=0.0000E+00 OUTFLOW=0.3702E+02 BASIN STORAGE=0.1702E-03 PERCENT ERROR=-0.3

MAIN 0.15 1.56 1.32 416.67 1031.83 65.57 2.33 5.61

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

Onsite_6hr.out MAIN 0.15 1.56 3.00 1013.13 66.00 2.33 HYDROGRAPH AT STATION TRANSPOSITION AREA 0.0 SQ MI PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 1013. 1.10 75. 19. 9. 9. (INCHES) 2.330 2.329 2.330 2.330 (AC-FT) CUMULATIVE AREA = 0.30 SQ MI COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) ELEMENT ALPHA DT PEAK TIME TO VOLUME MAXIMUM PEAK CELERITY (MTN) (FT) (CFS) (MTN) (TN) (FPS) MAIN 0.15 1027.12 65.64 1.56 1.33 416.67 2.31 5.60 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3666E+02 EXCESS=0.0000E+00 OUTFLOW=0.3678E+02 BASIN STORAGE=0.2024E-03 PERCENT ERROR= -0 3 INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL MATN 3.00 1010.29 66.00 2.32 0.15 1.56 * * * HYDROGRAPH AT STATION R8-9 0.5 SQ MI TRANSPOSITION AREA PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 1010. 1.10 74. 19. 9. (INCHES) 2.314 2.315 2.316 2.316 (AC-FT) 37. 37. CUMULATIVE AREA = 0.30 SQ MI COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM) ELEMENT AT.PHA DT DX PEAK TIME TO VOLUME MIMIXAM PEAK CELERITY (MIN) (FT) (CFS) (IN) (MIN) (FPS)

MAIN 0.15 1.56 1.45 416.67 913.69 66.38 2.21 5.40

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3510E+02 EXCESS=0.0000E+00 OUTFLOW=0.3519E+02 BASIN STORAGE=0.1735E-03 PERCENT ERROR=

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.15 3.00 911.34 66.00 2.21

> HYDROGRAPH AT STATION R8-9 2.8 SQ MI TRANSPOSITION AREA

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 49 95-HR 24-HR 72-HR (CFS) (HR)

(CFS) 911. 1.10 71. 18. (INCHES) 2.212 2.214 2.214 2.214 (AC-FT) 35. 35. 35. 35.

> CUMULATIVE AREA = 0.30 SO MI

> > COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA Μ DTPEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS)

MAIN 0.15 1.56 1.48 416.67 772.14 65.64 2.03 5.07

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3216E+02 EXCESS=0.0000E+00 OUTFLOW=0.3228E+02 BASIN STORAGE=0.1954E-03 PERCENT ERROR=-0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.15 1.56 3.00 769.23 66.00 2.03

HYDROGRAPH AT STATION R8-9
TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 72-HR 49.95-HR 24-HR (CFS) (HR) (CFS) 769. 1.10 65. 16. 8. 2.031 2.033 (INCHES) 2.033 2.033 (AC-FT) 32. 32. 32. 32.

CUMULATIVE AREA = 0.30 SQ MI

COMPUTED KINEMATIC PARAMETERS
VARIABLE TIME STEP
(DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO VOLUME MUMIXAM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 0.15 1.59 416.67 554.15 67.90 4.50 1.56 1.68

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2666E+02 EXCESS=0.0000E+00 OUTFLOW=0.2676E+02 BASIN STORAGE=0.1898E-03 PERCENT ERROR= -0.4

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.15 1.56 3.00 554.05 69.00 1.68

HYDROGRAPH AT STATION R8-9
TRANSPOSITION AREA 90.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 554. 54. 13. 6. 6. 1.15 (INCHES) 1.682 1.684 1.684 1.684 (AC-FT) CUMULATIVE AREA = 0.30 SQ MI

INTERPOLATED HYDROGRAPH AT R8-9

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 74. 1010. 1.10 19. 9. (INCHES) 2.315 2.316 2.316 2.316 (AC-FT) 37. 37. 37. 37. CUMULATIVE AREA = 0.30 SQ MI

*** ***

SUBBASIN RUNOFF DATA

```
162 BA
                SUBBASIN CHARACTERISTICS
                             0.05 SUBBASIN AREA
                      TAREA
                GREEN AND AMPT LOSS RATE
163 LG
                                 0.15 STARTING LOSS
                      STRTL
                       DTH
                                  0.25 MOISTURE DEFICIT
                                 4.00 WETTING FRONT SUCTION
0.61 HYDRAULIC CONDUCTIVITY
55.00 PERCENT IMPERVIOUS AREA
                      PSTF
                      XKSAT
                      RTIMP
164 UC
                CLARK UNITGRAPH
                     TC
                                0.25 TIME OF CONCENTRATION 0.23 STORAGE COEFFICIENT
                        R
                ACCUMULATED-AREA VS. TIME, 11 ORDINATES
165 UA
                     0.0 5.0 16.0 30.0
                                                             65.0
                                                                     77.0
                                                                             84.0 90.0 94.0
                                                                                                             97.0
                    100.0
                                                   UNIT HYDROGRAPH PARAMETERS
                                             CLARK TC= 0.25 HR, R= 0.23 HR
SNYDER TP= 0.15 HR, CP= 0.42
                                                         UNIT HYDROGRAPH
                                                    27 END-OF-PERIOD ORDINATES
                                                     82. 70.
               11.
                         51.
                                             89.
                                                                                     45.
                                                                                                         29.
               23.
                         19.
                                   15.
                                             12.
                                                       10.
                                                                 8.
                                                                           6.
                                                                                      5.
                                                                                                4.
                                                                                                          3.
                3.
                          2.
                                    2
                                              1.
                                                       1
                                                                 1
                                                                            1.
                        HYDROGRAPH AT STATION
                                                SB09
                                            0.0 SQ MI
                     TRANSPOSITION AREA
   TOTAL RAINFALL =
                      2.76, TOTAL LOSS =
                                           0.47, TOTAL EXCESS =
                                                                   2.29
PEAK FLOW
                                            MAXIMUM AVERAGE FLOW
                                    6-HR
                                               24-HR
                                                           72-HR
                                                                     49.95-HR
  (CFS)
             (HR)
                        (CFS)
   174.
              0.95
                                     13.
                      (INCHES)
                                   2.280
                                               2.280
                                                           2.280
                                                                        2.280
                       (AC-FT)
                                               6.
                       CUMULATIVE AREA =
                                            0.05 SO MI
     ***
                                    ***
                        HYDROGRAPH AT STATION SB09
RANSPOSITION AREA 0.5 SQ MI
                      TRANSPOSITION AREA
   TOTAL RAINFALL =
                     2.74, TOTAL LOSS =
                                             0.46, TOTAL EXCESS =
PEAK FLOW
             TIME
                                            MAXIMUM AVERAGE FLOW
                                    6-HR
                                               24-HR
                                                           72-HR
                                                                     49.95-HR
 (CFS)
             (HR)
                       (CFS)
   173.
              0.95
                                    13.
                                                             2.
                      (INCHES)
                                   2.264
                                                           2.264
                                                                        2.264
                       (AC-FT)
                                     6.
                                                  6.
                                                              6.
                                                                           6.
                       CUMULATIVE AREA =
                                            0.05 SQ MI
                                               SB09
                        HYDROGRAPH AT STATION
                                             2.8 SQ MI
                      TRANSPOSITION AREA
                    2.69, TOTAL LOSS = 0.51, TOTAL EXCESS =
   TOTAL RAINFALL =
                                            MAXIMUM AVERAGE FLOW
PEAK FLOW
             TIME
                                               24-HR
                                    6-HR
                                                                     49.95-HR
                                                           72-HR
 (CFS)
             (HR)
                        (CFS)
                                    12.
   153
             0.95
                                                 3
                                                                        2 168
                      (INCHES)
                                   2.168
                                               2.168
                                                           2.168
                                                6.
                       (AC-FT)
                                      6.
                                                              6.
                                                                          6.
                       CUMULATIVE AREA =
                                            0.05 SQ MI
                       HYDROGRAPH AT STATION SB09
                     TRANSPOSITION AREA
                                           16.0 SQ MI
                     2.54, TOTAL LOSS =
                                           0.55, TOTAL EXCESS =
   TOTAL RAINFALL =
                                                                     1 99
                                            MAXIMUM AVERAGE FLOW
PEAK FLOW
                                    6-HR
                                                                    49.95-HR
                                               24-HR
```

Page 46

(CFS)

(HR)

		(CFS)			nsice_oni.		
+ 127.	0.95	(INCHES) (AC-FT)	11. 1.978 5.	3. 1.978 5.	1. 1.978 5.	1. 1.978 5.	
		CUMULATIV	E AREA =	0.05 SQ MI			
***		***	***	***		***	
		HYDROGRAI TRANSPOSIT:	PH AT STAT ION AREA	TION SB09 90.0 SQ MI			
TOTAL RA	AINFALL =	2.23, TOTA	AL LOSS =	0.58, TOTAL	EXCESS =	1.65	
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA	AGE FLOW 72-HR	49.95-HR	
+ (CFS)	(HR)	(CFS)	MH-0	Z4-IIK	/2-nk	49.95-nk	
+ 96.	0.95	(INCHES) (AC-FT)	9. 1.642 5.	2. 1.642 5.	1. 1.642 5.	1. 1.642 5.	
		CUMULATIV	E AREA =	0.05 SQ MI			
***		***	***	***		***	
		INTERPOLA	TED HYDROG	RAPH AT SBO	09		
PEAK FLOW	TIME			MAXIMUM AVER			
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR	
+ 173.	0.95	(CFS)	13.	3.	2.	2.	
		(INCHES) (AC-FT)	2.269 6.	2.269 6.	2.269 6.	2.269 6.	
		CUMULATIV	E AREA =	0.05 SQ MI			
*** *** ***	*** ***	** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** *** ***	*** *** *** *** *** *** *** ***

	******	****					
167 KK	* CI	* 0-9 * C0	OMBINE				
	* * * * * * * * * * *		D 101=		E2D /====	posp	
160 ***	****			EWAY AND BASIN	53R (HAYDI	EN ROAD NORTH CHA	NNEL)
169 HC	HYDF	ROGRAPH COMBII		UMBER OF HYDROG	GRAPHS TO	COMBINE	

***		***	***	***		***	
				TION CP-9 0.0 SQ MI			
PEAK FLOW	TIME		6 110	MAXIMUM AVERA		40 0E IID	
+ (CFS)	(HR)	/ CEC \	o-nk	24-HK	/2-HK	49.90-HK	
+ 1127.	1.10	(CFS)	87.	22.	11.	11.	
		(INCHES) (AC-FT)	43.		2.323 43.	2.323	
		CUMULATIV	E AREA =	0.35 SQ MI			
***		***					

PEAK FLOW			PH AT STAT	O.5 SQ MI		***	
+ (CFS)	TIME		PH AT STAT ION AREA	ION CP-9	AGE FLOW		
+ 1124.	TIME		PH AT STAT ION AREA	O.5 SQ MI MAXIMUM AVERA 24-HR	AGE FLOW		
, 1121.		TRANSPOSIT: (CFS) (INCHES)	PH AT STATION AREA 6-HR 87. 2.307	O.5 SQ MI MAXIMUM AVERY 24-HR 22. 2.308	AGE FLOW 72-HR 10. 2.308	49.95-HR 10. 2.308	
, 1121.	(HR)	(CFS) (INCHES) (AC-FT)	PH AT STATION AREA 6-HR 87. 2.307 43.	O.5 SQ MI MAXIMUM AVERA 24-HR	AGE FLOW 72-HR 10.	49.95-HR 10.	
***	(HR)	(CFS) (INCHES) (AC-FT)	PH AT STATION AREA 6-HR 87. 2.307 43.	O.5 SQ MI MAXIMUM AVERA 24-HR 22. 2.308 43.	AGE FLOW 72-HR 10. 2.308 43.	49.95-HR 10. 2.308	

THANSPORTION AREA 2.8 SO MI THAN FILMN TIME 6-HR 24-HR 72-HR 49.35-HR * (CFS) (SE) (CFS) 2.26 2.207 2.207 2.207 (ACC-FT) 41. 41. 41. 41. 41. 41. 41. 41. 41. 41.									
PERK FLOW TIME 6-HR 72-HR 72-HR 49.95-HR * (CFS) (HE) (CFS) 93. 2-10. 10. 10. 10. 10. 10. 10. 10. 10. 10.					ION CP-9)nsite_6hr.	out		
CFS (IR)			TRANSPOSIT	ION AREA					
1023. 1.10 (CFS) 83. 21. 10. 10. 10. (AC-FF) 41. 4	PEAK FLOW	TIME		6-HR			49.95-HR		
### 1023. 1.10	+ (CFS)	(HR)	(CEC)						
AC-FT 41. 41. 41. 41.	+ 1023.	1.10							
### EYPHOGRAPH AT STATION CP-9 TRANSFOSITION AREA 16.0 SQ NT PRAK FLOW TIME 6-HE MAXIMUM AVERAGE FLOW 49.95-HE * (CFS) (HE) (CFS) * 869. 1.10 (CFS) * CUMILIATIVE AREA = 0.35 SQ MI * (CFS) (HE) (CFS) * (CFS) (HE) (CFS) (HE) (CFS) * (CFS) (HE) (CFS) (HE) (CFS) (HE) (CFS) (HE) (HE) (HE) (HE) (HE) (HE) (HE) (HE									
HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 16.0 SQ NI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) - 869. 1.10 (CFS) - 10 (INCHES) 2.023 2.024 2.025 2.025 - CUMULATIVE AREA = 0.35 SQ MI - HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 90.0 SQ MI - PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) - (CFS) (11.5 (CFS) 3.16.8.8.8. - (INCHES) 1.676 1.678 1.678 1.678 1.678 1.678 3.1. - CUMULATIVE AREA = 0.35 SQ MI - 11.5 (INCHES) 1.676 1.678 1.678 1.678 1.678 3.1. - CUMULATIVE AREA = 0.35 SQ MI - TIME 6-HR 24-HR 72-HR 49.95-HR - (CFS) (HR) (CFS) 3.1. 3.1. 3.1. 3.1. - CUMULATIVE AREA = 0.35 SQ MI - TIME 6-HR 24-HR 72-HR 49.95-HR - (CFS) (HR) (CFS) 3.1. 3.1. 3.1. 3.1. 3.1. - CUMULATIVE AREA = 0.35 SQ MI - TIMERPOLATED HYDROGRAPH AT CP-9 - FEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR - (CFS) (HR) (CFS) 4.3. 4.3. 4.3. 4.3. - CUMULATIVE AREA = 0.35 SQ MI			CUMULATIV	E AREA =	0.35 SQ MI				
HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 16.0 SQ MI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) - 869. 1.10 (CFS) - 10 (INCHES) 2.023 2.024 2.025 2.025 - CUMULATIVE AREA = 0.35 SQ MI - HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 90.0 SQ MI - PEAK FLOW TIME MAXIMUM AVERAGE FLOW - (CFS) (HR) (CFS) - (CFS) (HR) (CFS) 1.15 (INCHES) 1.676 1.678	***		***	***	***				
TRANSPOSITION AREA 16.0 S MI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) + 869. 1.10 (CFS) - (INCHES) 2.023 2.024 2.025 2.025 38. CUMULATIVE AREA = 0.35 SQ MI									
CCFS									
+ (CFS) (HR) + 869. 1.10	PEAK FLOW	TIME		6-HR			49 95-HR		
# 869. 1.10	+ (CFS)	(HR)	, .	3 1110	21 1111	. 2 1110	15.55 1110		
(INCHES) 2.023 2.024 2.025 2.025 38. CUMULATIVE AREA = 0.35 SQ MI HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 90.0 SQ MI PEAK FLON TIME MAXIMUM AVERAGE FLOW 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) 63. 16. 8. 8. (INCHES) 1.678 (AC-FT) 31. 31. 31. 31. 31. 31. 31. CUMULATIVE AREA = 0.35 SQ MI TINTERPOLATED HYDROGRAPH AT CP-9 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) (HR) (CFS) (1.678 1.	+ 869	1 10	(CFS)	76	19	9	9		
CUMULATIVE AREA = 0.35 SQ MI HYDROGRAPH AT STATION CP-9 TRANSFOSITION AREA 90.0 SQ MI PEAK FLON TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) + 622. 1.15 (INCHES) 1.676 1.678 1.678 1.678 (AC-FT) 31. 31. 31. 31. 31. 31. 31. 31. 31. 31.	. 005.	1.10		2.023	2.024	2.025	2.025		
HYDROGRAPH AT STATION CP-9 TRANSPOSITION AREA 90.0 SQ MI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) 8. 8. 8. - (INCHES) 1.676 1.678 1.678 1.678 31. - CUMULATIVE AREA = 0.35 SQ MI + (CFS) (HR) + (CFS) (HR) - (CFS) (HR									
TRANSPOSITION AREA 90.0 SQ MI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) + 622. 1.15 (31.676 1.678 1.	***		***	***	***		***		
TRANSPOSITION AREA 90.0 SQ MI PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) + 622. 1.15 (31.676 1.678 1.			HADBUGBV	ри ат стат	TON CP-9				
CFS									
+ (CFS) (HR) (CFS) + 622.	PEAK FLOW	TIME					40.05		
+ 622. 1.15 63. 16. 8. 8. 8. (INCHES) 1.676 1.678 1.678 1.678 1.678 31. 31. 31. 31. 31. 31. 31. 31. 31. 31.	+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR		
(INCHES) 1.676 1.678 1.678 1.678 1.678 (AC-FT) 31. 31. 31. 31. 31. 31. CUMULATIVE AREA = 0.35 SQ MI *** *** *** *** *** *** ***	+ 622	1 15	(CFS)	63	16	Ω	Q		
CUMULATIVE AREA = 0.35 SQ MI *** *** *** *** *** *** ***	+ 022.	1.13		1.676	1.678	1.678	1.678		
*** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** ** *** **						51.	51.		
INTERPOLATED HYDROGRAPH AT CP-9 PEAK FLOW TIME	***								
PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR + (CFS) (HR) (CFS) 87. 22. 10. 10. (INCHES) 2.307 2.309 2.309 2.309 (AC-FT) 43. 43. 43. 43. 43. CUMULATIVE AREA = 0.35 SQ MI ***********************************	***		***	***	***		***		
+ (CFS) (HR) (CFS) (HR) (CFS) + 1124. 1.10 (STATE OF THE O			INTERPOLA	TED HYDROG	RAPH AT CP	-9			
+ (CFS) (HR) (CFS) (HR) (CFS) (110 87. 22. 10. 10. 10. (INCHES) 2.307 2.309 2.309 2.309 (AC-FT) 43. 43. 43. 43. 43. 43. CUMULATIVE AREA = 0.35 SQ MI *** *** *** *** *** *** *** *** *** *	PEAK FLOW	TIME							
(CFS) + 1124. 1.10	+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR		
(INCHES) 2.307 2.309 2.309 2.309 (AC-FT) 43. 43. 43. 43. CUMULATIVE AREA = 0.35 SQ MI *** *** *** *** *** *** *** *** *** *			(CFS)	0.7	0.0	1.0	1.0		
CUMULATIVE AREA = 0.35 SQ MI *** *** *** *** *** *** *** *** *** *	+ 1124.	1.10		2.307	2.309	2.309	2.309		
*** ******** ** 170 KK * PIMACH * * *									
*** ******** ** 170 KK * PIMACH * * *									
********* * * 170 KK * PIMACH * * *	*** *** **	* *** ***	*** *** *** *	** *** ***	*** *** *** *	** *** ***	*** *** ***	*** *** *** ***	* *** *** *** *** *
* * * * * * * * * * * * * * * * * * *	***								
* *		*****	****						
* *	170 KK	* * PIMA	* ACH *						
		*	*						

PIMA ROAD CHANNEL HYDROGRAPH FROM PINNACLE PEAK SOUTH ADMS $100-{
m YR}$, $6-{
m HR}$ FLO-2D MODEL (XS 183)

SUBBASIN RUNOFF DATA

173 BA

SUBBASIN CHARACTERISTICS
TAREA 12.30 SUBBASIN AREA

HYDROGRAPH AT STATION PIMACH TRANSPOSITION AREA 0.0 SQ MI

PEAK FLOW TIME

MAXIMUM AVERAGE FLOW 24-HR 72-HR 49.95-HR 6-HR (CFS) (HR) (CFS) (CFS) 1092. (INCHES) 0.825 4017. 5.50 292. 146. 0.919 0.919 0.884

Page 48

						Onsite_6hr.	out
			(AC-FT)	541.			603.
			CUMULATIVE	E AREA =	12.30 SQ MI		
	***		***	***	***		***
			HYDROGRAI TRANSPOSITI		rion Pimach 0.5 SQ Mi		
	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	4017.	5.50	(INCHES)	1092. 0.825	292. 0.884	146. 0.919	146. 0.919
			(AC-FT)	541.		603.	603.
			CUMULATIVE	E AREA =	12.30 SQ MI		
	***		***	***	***		***
			HYDROGRAI	PH AT STAT	rion pimach		
			TRANSPOSITI	ION AREA	2.8 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(nk)	(CFS)				
+	4017.	5.50		1092.	292.	146.	146.
			(INCHES) (AC-FT)	0.825 541.	0.884 580.	0.919 603.	0.919 603.
			CUMULATIVE	E AREA =	12.30 SQ MI		
	***		***	***	***		***
					rion pimach 16.0 sq mi		
	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	, ,		(CFS)				
+	4017.	5.50	(INCHES)	1092. 0.825	292. 0.884	146. 0.919	146. 0.919
			(AC-FT)	541.		603.	603.
			CUMULATIVE	E AREA =	12.30 SQ MI		
	***		***	***	***		***

HYDROGRAPH AT STATION PIMACH TRANSPOSITION AREA 90.0 SQ MI

	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-H
+	(CFS)	(HK)	(CFS)				
+	4017.	5.50		1092.	292.	146.	146
			(INCHES)	0.825	0.884	0.919	0.919
			(AC-FT)	541.	580.	603.	603
			CUMULATIV	E AREA =	12.30 SQ MI		
	***		***	***	***		***

INTERPOLATED HYDROGRAPH AT PIMACH

	PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
			(CFS)				
+	4017.	5.50		1092.	292.	146.	146.
			(INCHES)	0.825	0.884	0.919	0.919
			(AC-FT)	541.	580.	603.	603.
			CUMULATIV	E AREA =	12.30 SQ MI		

*** ***

* * * 211 KK * PIMAIN *

. *******

BYPASS ALONG SE SIDE OF BASIN 53R TO ADOT CULVERT NEAR UNION HILLS DR DT DIVERSION PIMABY DIVERSION HYDROGRAPH IDENTIFICATION ISTAD INFLOW 0.00 1000.00 10000.00 DT DQ DIVERTED FLOW 0.00 1000.00 1000.00 *** *** *** DIVERSION HYDROGRAPH PIMABY TRANSPOSITION AREA 0.0 SQ MI PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 72-HR 49.95-HR 24-HR (CFS) (HR) (CFS) 1000. 4.95 605. 171. 88. 88. (INCHES) 0.551 0.458 0.516 0.551 (AC-FT) 300. 361. 338. 361. CUMULATIVE AREA = 12.30 SQ MI HYDROGRAPH AT STATION PIMAIN TRANSPOSITION AREA 0.0 SQ MI MAXIMUM AVERAGE FLOW TIME PEAK FLOW 6-HR 24-HR 49.95-HR 72-HR (CFS) (HR) (CFS) 3017. 5.50 486 122 5.8 58. (INCHES) 0.368 0.368 0.368 0.368 (AC-FT) 241. 241. 241. 241. CUMULATIVE AREA = 12.30 SQ MI DIVERSION HYDROGRAPH PIMABY RANSPOSITION AREA 0.5 SQ MI TRANSPOSITION AREA PEAK FLOW TIME MAXIMUM AVERAGE FLOW 49.95-HR 6-HR 24-HR 72-HR (CFS) (HR) (CFS) 1000. 4.95 605. 171. 88. 88. (INCHES) 0.551 0.458 0.516 0.551 (AC-FT) 300. 338. 361. 361. CUMULATIVE AREA = 12.30 SQ MI HYDROGRAPH AT STATION PIMAIN TRANSPOSITION AREA 0.5 SQ MI MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 49 95-HR 24-HR 72-HR (CFS) (HR) (CFS) 3017. 5.50 486. 122. 58. (INCHES) 0.368 0.368 0.368 0.368 (AC-FT) 241. 241. 241. 241. CUMULATIVE AREA = 12.30 SO MI *** *** *** DIVERSION HYDROGRAPH PIMABY TRANSPOSITION AREA 2.8 SQ MI MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 49.95-HR 24-HR 72-HR (CFS) (HR) (CFS) 1000. 4.95 605. 171. 88. 0.551 (INCHES) 0.516 (AC-FT) 300. 338. 361. 361.

CUMULATIVE AREA = 12.30 SQ MI

Page 50

HYDROGRAPH AT STATION PIMAIN TRANSPOSITION AREA 2.8 SQ MI

			TRANSPOSIT	ION AREA	2.8 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	3017.	5.50	(INCHES)	486. 0.368	122. 0.368	0.368	0.368
			(AC-FT)	241.	241.	241.	241.
			CUMULATIV	E AREA =	12.30 SQ MI		
	***		* * *	***	**:	*	***
					RAPH PIMABY 16.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)	605	171	0.0	0.0
+	1000.	4.95	(INCHES) (AC-FT)	0.458 300.	171. 0.516 338.	0.551 361.	0.551 361.
					12.30 SQ MI		
	***		***	***	**:	*	***
					ATION PIMAIN 16.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
	(CFS)			6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	3017.	5.50	(INCHES)	486. 0.368	122. 0.368 241.	58. 0.368	58. 0.368
			(AC-FT)	241.	241.	241.	241.
			CUMULATIV	E AREA =	12.30 SQ MI		
	***		***	***	**:	*	***
					RAPH PIMABY 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
	(CFS)	/ IID \		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	1000.	4.95	(INCHES) (AC-FT)	605. 0.458 300.	171. 0.516 338.	88. 0.551 361.	88. 0.551 361.
					12.30 SQ MI		
	***		***	***	**:	*	***
					ATION PIMAIN 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	3017.		(CFS)	406	100	F.0	F.0
+	3017.	5.50	(INCHES) (AC-FT)	486. 0.368 241.	0.368	58. 0.368 241.	58. 0.368 241.
			CUMULATIV	E AREA =	12.30 SQ MI		
	***		***	***	**:	*	***
		IN	TERPOLATED D	IVERSION	HYDROGRAPH AT	PIMABY	
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FIOW	
				6-HR		72-HR	49.95-HR
	(CFS)	(HR)	(CFS)				
+	1000.	4.95	(INCHES)	605. 0.458		88. 0.551	88. 0.551
			(AC-FT)	300.		361.	361.
			CUMULATIV	E AREA =	12.30 SQ MI		

Onsite_6hr.out
*** *** *** ***

INTERPOLATED HYDROGRAPH AT PIMAIN

	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	3017.	5.50		486.	122.	58.	58.
			(INCHES)	0.368	0.368	0.368	0.368
			(AC-FT)	241.	241.	241.	241.
			CUMULATIV	E AREA =	12.30 SQ MI		

*** ***

************** * 216 KK * PWRCH * *

POWERLINE CHANNEL HYDROGRAPH FROM FLO-2D 100-YR, 6-HR FLO-2D MODEL (XS 107)

SUBBASIN RUNOFF DATA

219 BA SUBBASIN CHARACTERISTICS

TAREA 7.00 SUBBASIN AREA

HYDROGRAPH AT STATION PWRCH TRANSPOSITION AREA 0.0 SQ MI

1	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)				
+	740.	5.80		432.	136.	75.	75.
			(INCHES)	0.574	0.724	0.826	0.826
			(AC-FT)	214.	270.	308.	308.

CUMULATIVE AREA = 7.00 SQ MI

HYDROGRAPH AT STATION PWRCH TRANSPOSITION AREA 0.5 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 740. 5.80 432. 136. 75. (INCHES) 0.574 0.724 0.826 0.826 (AC-FT) 214. 270. 308. 308. CUMULATIVE AREA = 7.00 SQ MI

HYDROGRAPH AT STATION PWRCH TRANSPOSITION AREA 2.8 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 740. 5.80 432. 75. 136. 75. (INCHES) 0.574 0.724 0.826 0.826 (AC-FT) 214. 270. 308. 308.

CUMULATIVE AREA = 7.00 SQ MI

HYDROGRAPH AT STATION PWRCH TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR

+ (CFS) (HR)

+ 740.		(CFS)			nsite_6hr.		
	5.80	(INCHES) (AC-FT)	432. 0.574 214.	136. 0.724 270.	75. 0.826 308.	75. 0.826 308.	
		CUMULATIVE	E AREA =	7.00 SQ MI			
***		***	***	***		***	
		HYDROGRAI TRANSPOSITI	PH AT STAT ION AREA	ION PWRCH 90.0 SQ MI			
PEAK FLOW	TIME			MAXIMUM AVER			
+ (CFS)	(HR)	(CFS)	6-HR	24-HR	72-HR	49.95-HR	
+ 740.	5.80	(INCHES) (AC-FT)	432. 0.574 214.	136. 0.724 270.	75. 0.826 308.	75. 0.826 308.	
		CUMULATIVE	E AREA =	7.00 SQ MI			
***		***	***	***		* * *	
		INTERPOLAT	FED HYDROG	RAPH AT PWR	СН		
PEAK FLOW	TIME			MAXIMUM AVER		40.55	
+ (CFS)	(HR)	(000)	6-HR	24-HR	72-HR	49.95-HR	
+ 740.	5.80	(CFS)	432. 0.574	136. 0.724	75. 0.826	75. 0.826	
		(AC-FT)	214.	270.	308.	308.	
		CUMULATIVE	E AREA =	7.00 SQ MI			
257 KK	********* * BINE *	* FLO * *					
	* * BINE	* FLO * *	FOTAL INFL	OW INTO BASIN	53R.		
257 KK 259 HC	* BINE * ******	* FLO * *	NATION	OW INTO BASIN		COMBINE	
	* BINE * ******	* FLO * * ****** ROGRAPH COMBIN	NATION			COMBINE	
	* BINE * ******	* FLO * * ****** ROGRAPH COMBIN	NATION		GRAPHS TO	COMBINE ***	
259 НС	* BINE * ******	* FLO * * ****** ROGRAPH COMBINICOMP ***	NATION 3 N ***	UMBER OF HYDRO	GRAPHS TO		
259 НС	* BINE * ******	* FLO * * ****** ROGRAPH COMBIN ICOMP *** HYDROGRAF	NATION 3 N *** PH AT STAT	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER.	GRAPHS TO (*** AGE FLOW	***	
259 HC ***	* BINF * ***********************************	* FLO * * ****** ROGRAPH COMBIN ICOMP *** HYDROGRAF TRANSPOSITI	NATION 3 N ***	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI	GRAPHS TO (*** AGE FLOW		
259 HC *** PEAK FLOW	* BINE	* FLO * * ****** ROGRAPH COMBINICOMP *** HYDROGRAH TRANSPOSITION (CFS) (INCHES)	*** PH AT STAT ION AREA 6-HR 919. 0.435	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523	GRAPHS TO (*** AGE FLOW 72-HR 144. 0.566	*** 49.95-HR 144. 0.566	
259 HC *** PEAK FLOW + (CFS)	* BINF * ********** HYDF	* FLO * * ****** ROGRAPH COMBIN ICOMP *** HYDROGRAN TRANSPOSITE (CFS) (INCHES) (AC-FT)	*** PH AT STAT ION AREA 6-HR 919. 0.435 456.	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR	GRAPHS TO (*** AGE FLOW 72-HR 144.	*** 49.95-HR 144.	
259 HC *** PEAK FLOW + (CFS)	* BINF * ********** HYDF	* FLO * * ****** ROGRAPH COMBIN ICOMP *** HYDROGRAN TRANSPOSITE (CFS) (INCHES) (AC-FT)	*** PH AT STAT ION AREA 6-HR 919. 0.435 456.	WMBER OF HYDROGOUS AT A STATE OF THYDROGOUS AND AVER OF THY A STATE OF THY A STAT	*** AGE FLOW 72-HR 144. 0.566 593.	*** 49.95-HR 144. 0.566	
259 HC *** PEAK FLOW + (CFS) + 3634.	* BINF * ********** HYDF	* FLO * * ****** ROGRAPH COMBINICOMP *** HYDROGRAH TRANSPOSITION (CFS) (INCHES) (AC-FT) CUMULATIVE	*** PH AT STAT 10N AREA 6-HR 919. 0.435 456. E AREA = ***	WMBER OF HYDROGOUS AT A STATE OF THYDROGOUS AND AVER OF THY A STATE OF THY A STAT	*** AGE FLOW 72-HR 144. 0.566 593.	*** 49.95-HR 144. 0.566 593.	
259 HC *** PEAK FLOW + (CFS) + 3634.	* BINF * ********** HYDF	* FLO * * ****** ROGRAPH COMBINICOMP *** HYDROGRAFT (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT	NATION 3 N *** PH AT STAT ION AREA 6-HR 919. 0.435 456. E AREA = *** PH AT STATION AREA	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523 549. 19.65 SQ MI *** ION BINFLO 0.5 SQ MI MAXIMUM AVER.	AGE FLOW 72-HR 144. 0.566 593.	*** 49.95-HR 144. 0.566 593.	
259 HC *** PEAK FLOW + (CFS) + 3634.	* BINE ********* HYDE TIME (HR) 5.50	* FLO * * ****** ROGRAPH COMBIN ICOMP *** HYDROGRAN TRANSPOSIT: (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAN TRANSPOSIT:	NATION 3 N *** PH AT STAT ION AREA 6-HR 919. 0.435 456. E AREA = *** PH AT STATION AREA	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523 549. 19.65 SQ MI *** ION BINFLO 0.5 SQ MI	AGE FLOW 72-HR 144. 0.566 593.	*** 49.95-HR 144. 0.566 593.	
259 HC *** PEAK FLOW + (CFS) + 3634.	* BINE ********* HYDE TIME (HR) 5.50	* FLO * * ****** ROGRAPH COMBINICOMP *** HYDROGRAPT TRANSPOSITE (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAPT TRANSPOSITE (CFS) (INCHES) (CFS) (INCHES)	*** PH AT STAT 10N AREA 6-HR 919. 0.435 456. E AREA = *** PH AT STAT 10N AREA 6-HR 919. 0.435	*** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523 549. 19.65 SQ MI *** ION BINFLO 0.5 SQ MI MAXIMUM AVER. 24-HR 276. 0.523	AGE FLOW 72-HR 144. 0.566 593. AGE FLOW 72-HR 144. 0.565	*** 49.95-HR 144. 0.566 593. *** 49.95-HR 144. 0.565	
259 HC *** PEAK FLOW + (CFS) + 3634. *** PEAK FLOW + (CFS)	* BINE ********* HYDE TIME (HR) 5.50	******* ROGRAPH COMBINICOMP *** HYDROGRAFT (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT TRANSPOSITION (CFS) (INCHES) (AC-FT)	*** PH AT STAT ION AREA 6-HR 919. 0.435 456. E AREA = *** PH AT STAT ION AREA 6-HR 919. 0.435 456.	UMBER OF HYDROG *** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523 549. 19.65 SQ MI *** ION BINFLO 0.5 SQ MI MAXIMUM AVER. 24-HR	### AGE FLOW 72-HR 144. 0.566 593. AGE FLOW 72-HR	*** 49.95-HR 144. 0.566 593. ***	
259 HC *** PEAK FLOW + (CFS) + 3634. *** PEAK FLOW + (CFS)	* BINE ********* HYDE TIME (HR) 5.50 TIME (HR) 5.50	******* ROGRAPH COMBINICOMP *** HYDROGRAFT (CFS) (INCHES) (AC-FT) CUMULATIVE *** HYDROGRAFT TRANSPOSITION (CFS) (INCHES) (AC-FT)	*** PH AT STAT ION AREA 6-HR 919. 0.435 456. E AREA = *** PH AT STAT ION AREA 6-HR 919. 0.435 456. E AREA = 20.435 456.	*** ION BINFLO 0.0 SQ MI MAXIMUM AVER. 24-HR 277. 0.523 549. 19.65 SQ MI *** ION BINFLO 0.5 SQ MI MAXIMUM AVER. 24-HR 276. 0.523 548. 19.65 SQ MI	AGE FLOW 72-HR 144. 0.566 593. AGE FLOW 72-HR 144. 0.565 593.	*** 49.95-HR 144. 0.566 593. *** 49.95-HR 144. 0.565	

HYDROGRAPH AT STATION BINFLO TRANSPOSITION AREA 2.8 SQ MI

						_	
	PEAK FLOW	TIME		6 1170	MAXIMUM AVER	RAGE FLOW 72-HR	40 05 110
+	(CFS)	(HR)		6-HR	24-HR	/2-HR	49.95-HK
	2624	5 5 0	(CFS)	0.1.0	0.77	1.40	1.40
+	3634.	5.50	(TMCUEC)	919.	275.	143. 0.564	143. 0.564
			(INCHES) (AC-FT)	456.	0.521 546.	591.	591.
			(/				
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		***	***	***	•	***
			HYDROGRA	PH AT STA	rion Binflo		
					16.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER		
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	3634.	5.50	(CFS)	919.	274.	142.	142.
	3031.	3.30	(INCHES)			0.560	0.560
			(AC-FT)	456.		587.	587.
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		***	***	***	•	***
					rion Binflo		
			TRANSPOSIT	ION AREA	90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER		
	(== =)	(====)		6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	3634.	5.50	(CFS)	919.	270.	141.	141.
			(INCHES)	0.435		0.554	0.554
			(AC-FT)	456.	536.	581.	581.
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		***	***	***	•	* * *
			INTERPOLA	TED HYDRO	GRAPH AT BINE	rLO	
	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
				6-HR			49.95-HR
+	(CFS)	(HR)					
,	2624	5.50	(CFS)	010	072	140	140
+	3634.	5.50	(INCHES)	919. 0.435	273. 0.517	142. 0.560	142. 0.560
			(AC-FT)	456.		587.	587.
							237.
			CUMULATIV	E AREA =	19.65 SQ MI		

265 RS

BASIN STAGE/STORAGE FROM PROPOSED CONTOURS BETWEEN ELEV 1594 AND 1615; BASIN SIDE SLOPES STEEPENED TO 3:1 OUTFLOW RATING CURVE FROM CULVERTMASTER FOR 2-60" PIPES THE OUTLET PIPES ARE INLET CONTROLLED.

HYDROGRAPH ROUTING DATA STORAGE ROUTING

	NSTPS ITYP RSVRIC X	1 STOR 0.00	TYPE OF INITIAL	OF SUBREACH INITIAL CO CONDITION R AND D COM	NOITION					
	Δ.	0.00	WORKEING	.C AND D COI	BEFICIENT					
266 SV 295.5	STORAGE	0.0	44.9	76.8	108.7	140.6	171.5	202.5	233.5	264.5
2,5.5		328.7	362.0	395.2	428.5	461.7	497.2	532.7	568.3	603.8
639.3		520.7	302.0	373.2	120.5	101.7	157.2	332.7	300.3	003.0
268 SE 1605.00	ELEVATION	1594.00	1597.00	1598.00	1599.00	1600.00	1601.00	1602.00	1603.00	1604.00
1005.00		1606.00	1607.00	1608.00	1609.00	1610.00	1611.00	1612.00	1613.00	1614.00
1615.00		1000.00	1007.00	1000.00	1000.00	1010.00	1011.00	1011.00	1013.00	1011.00

270 SQ 337.	DISC	CHARGE	0.	95.	Onsite_6hr.c 153. 210.	out 244.
477.			353.	369.	384. 398.	412.

***		***	***		***	***
				TION BASI 0.0 SQ		
PEAK FLOW + (CFS)	TIME		6-HR	MAXIMUM A	VERAGE FLOW 72-HR	49.95-HR
+ 363.	8.30	(CFS)	355.	250.	141.	141.
		(INCHES) (AC-FT)		0.474 496.	141. 0.556 582.	0.556 582.
PEAK STORAGE			6-HR	MAXIMUM AV 24-HR	VERAGE STORAGE 72-HR	49.95-HR
+ (AC-FT) 351.	(HR) 8.30		332.	189.	101.	101.
PEAK STAGE	TIME		6-HR	MAXIMUM A	VERAGE STAGE 72-HR	40 0E-UD
+ (FEET) 1606.68	(HR) 8.30				1598.29	
				19.65 SQ N		
***		***	***		***	***
				TION BASI 0.5 SQ		
PEAK FLOW	TIME		6-HR		VERAGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 363.	8.30	(INCHES) (AC-FT)	355. 0.168 176.	250. 0.474 496.	141. 0.555 582.	141. 0.555 582.
PEAK STORAGE			6-HR		YERAGE STORAGE 72-HR	49.95-HR
+ (AC-FT) 351.	8.30		332.	189.	100.	100.
PEAK STAGE	TIME		6-HR		VERAGE STAGE 72-HR	49.95-HR
+ (FEET) 1606.67	(HR) 8.30		1606.11	1601.55	1598.28	1598.28
		CUMULATI	VE AREA =	19.65 SQ N	11	
***		***	***		***	***
				TION BASI 2.8 SQ		
PEAK FLOW	TIME		6-HR		VERAGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 363.	8.30	(INCHES) (AC-FT)	354. 0.168 176.	250. 0.473 495.	141. 0.553 580.	141. 0.553 580.
PEAK STORAGE	TIME		6-HR		VERAGE STORAGE 72-HR	49.95-HR
+ (AC-FT) 350.	(HR) 8.30		331.	188.	100.	100.
PEAK STAGE	TIME		6-HR		VERAGE STAGE 72-HR	49 95-HR
+ (FEET) 1606.65	(HR) 8.30		1606.08		1598.27	
		CUMULATI		19.65 SQ N		
***		***	***		***	***
				TION BASI 16.0 SQ		
	TIME		6-HR	MAXIMUM A	VERAGE FLOW 72-HR	49.95-HR
+ (CFS)	(HR)	(CFS)				

Page 55

284.

439.

265. 426. 303.

452.

320.

465.

						Onsite_6hr.o	ut
+	362.	8.30		353.	249. 0.471	140.	140.
			(INCHES) (AC-FT)	0.167 175.	0.471 494.	0.550 577.	0.550 577.
			(AC-FI)	1/5.	494.	5//.	5//.
I	PEAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(AC-FT) 349.	(HR) 8.35		330.	187.	99.	99.
	349.	0.33		330.	107.	99.	99.
	PEAK STAGE	TIME			MAXIMUM AVE		
	(5555)	(*****)		6-HR	24-HR	72-HR	49.95-HR
+	(FEET) 1606.61	(HR) 8.30		1606 04	1601.50	1598 24	1598.24
	1000.01	0.30		1000.01	1001.50	1370.21	1370.21
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		***	***	**	*	***
					PION BASIN 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)	(CFS)				
+	361.	8.35	(CFS)	352.	247.	138.	138.
			(INCHES)	0.167		0.544	0.544
			(AC-FT)	175.	491.	570.	570.
τ	PEAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
-	DINC DIORGE	111111		6-HR			49.95-HR
+	(AC-FT)	(HR)					
	346.	8.35		327.	185.	98.	98.
	PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
				6-HR	24-HR	72-HR	49.95-HR
+	(FEET) 1606.52	(HR) 8.35		1605.06	1601.44	1500 10	1598.18
	1000.52	8.35		1005.90	1001.44	1598.18	1598.18
			CUMULATIV	E AREA =	19.65 SQ MI		
	***		***	***	**	*	***
			INTERPOLA	red hydroc	GRAPH AT BA	SIN	
	PEAK FLOW	TIME			MAXIMUM AVE		
+	(CFS)	(UD)		6-HR	24-HR	72-HR	49.95-HR
_	(CFS)	(nr)	(CFS)				
+	362.	8.30		353.	249.	140.	140.
			(INCHES)			0.550	0.550
			(AC-FT)	175.	493.	576.	576.
			CUMULATIV	E AREA =	19.65 SQ MI		

272 KK BSNRT1

> 2-60" CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY. DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE EXCESS CAPACITY.

HYDROGRAPH ROUTING DATA

276 RK KINEMATIC WAVE STREAM ROUTING

L

S N

550. CHANNEL LENGTH
0.0052 SLOPE
0.024 CHANNEL ROUGHNESS COEFFICIENT

CONTRIBUTING AREA CHANNEL SHAPE CA 0.00

CIRC 7.00 SHAPE

WD BOTTOM WIDTH OR DIAMETER 0.00

00 SIDE SLOPE 2 MINIMUM NUMBER OF DX INTERVALS NDXMIN

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

***	FDKRUT	WARNING	TIME	STEP	CALCULATION	FAILED	то	CONVERGE.	STABILITY	PROBLEMS	MAY	RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	3.34	1.25	0.29	183.33	363.48	498.70	0.56	10.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5822E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR=0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 3.34 1.25 3.00 363.48 501.00 0.56

HYDROGRAPH AT STATION BSNRT1 TRANSPOSITION AREA 0.0 SQ MI

	PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	(,	(,	(CFS)				
+	363.	8.35		355.	250.	141.	141.
			(INCHES)	0.168	0.474	0.556	0.556
			(AC-FT)	176.	496.	582.	582.

CUMULATIVE AREA = 19.65 SQ MI

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	3.34	1.25	0.29	183.33	363.42	498.84	0.56	10.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5819E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	3.34	1.25	3.00	363.42	501.00	0.56
***	***	***	•	***	***		
		DROGRAPH AT ST SPOSITION AREA		SNRT1 SQ MI			
PEAK FLOW	TIME		MAXIM	IUM AVERAGE FL	WC		

				6-HR	24-HR	72-HR	49.95-HR
+	(CFS)	(HR)					
	, ,	, ,	(CFS)				
+	363.	8.35		355.	250.	141.	141.
			(INCHES)	0.168	0.474	0.555	0.555
			(AC-FT)	176.	496.	582.	582.

CUMULATIVE AREA = 19.65 SQ MI

Onsite_6hr.out COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT PEAK TIME TO VOLUME MAXIMUM PEAK CELERITY (MIN) (FT) (CFS) (MTN) (TN) (FPS) MAIN 0.45 183.33 363.06 498.87 10.67 3.34 1.25 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5801E+03 EXCESS=0.0000E+00 OUTFLOW=0.5800E+03 BASIN STORAGE=0.3288E-01 PERCENT ERROR= 0.0

			INTERPOL	ATED TO SPECIE	FIED COMPUTATION	INTERVAL	
	MAIN	3.34	1.25	3.00	363.06	501.00	0.55
***	***	***	*	* * *	***		
		OGRAPH AT ST OSITION AREA		SNRT1 SQ MI			

PEAK FLOW MAXIMUM AVERAGE FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 363 8 35 354 250 141 141 (INCHES) 0.168 0.473 0.553 0.553 176. (AC-FT) 495. 580. 580.

CUMULATIVE AREA =

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

19.65 SQ MI

ELEMENT TIME TO MIMIXAM AT.PHA DТ DX PEAK VOLUME PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MAIN 3.34 1.25 0.38 183.33 362.38 500.88 0.55 10.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5767E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3287E-01 PERCENT ERROR=0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 3.34 1.25 3.00 362.38 501.00 0.55

HYDROGRAPH AT STATION BSNRT1 TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 362. 8.35 353. 249. 140. 140. (INCHES) 0.167 0.471 0.550 0.550 (AC-FT) 175. 494. 577. 577

CUMULATIVE AREA = 19.65 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

DT TIME TO MAXIMUM FLEMENT ALPHA М DX PEAK VOLUME CELERITY PEAK (MIN) (FT) (CFS) (MIN) (IN) (FPS) MATN 3 34 183 33 361 10 501 33 0 54 10 65 1 25 0 34

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 3.34 1.25 3.00 361.10 501.00 0.54

HYDROGRAPH AT STATION BSNRT1
TRANSPOSITION AREA 90.0 SQ MI

				msice_om.	out				
PEAK FLOW	TIME	6 110	MAXIMUM AVER		40.05.110				
+ (CFS)	(HR)	6-HR	24-HR	72-HR	49.95-HR				
+ 361.	8.35	FS) 352.	248.	138.	138.				
	(INCH (AC-		0.468 491.	0.544 570.	0.544 570.				
	CUMU	JLATIVE AREA =	19.65 SQ MI						
***	***	***	***		***				
	TNITE	RPOLATED HYDRO	OGRAPH AT BSNR	·T1					
DEAK ELON		MECHATED HIDRO							
PEAK FLOW	TIME	6-HR	MAXIMUM AVER 24-HR	72-HR	49.95-HR				
+ (CFS)		PS)							
+ 362.	8.35 (INCH	353. IES) 0.167	249. 0.471	140. 0.549	140. 0.549				
	(AC-	FT) 175.	494.	576.	576.				
	CUMU	ULATIVE AREA =	19.65 SQ MI						
	* * * * * * * * * * * * * * * * * * * *								
*** *** ***	*** *** *** ***	*** *** *** *:	** *** *** *** *	** *** ***	*** *** ***	*** *** **	* *** ***	*** *** *** ***	*** *** ***
	* * * * * * * * * * * * * * * * * * *								
277 KK	* BSNRT2 *								

		2-60" RCP	PIPES FROM SR 1	.01L FREEWA	Y TO UNION H	ILLS DR (BA	ASIN 53R OU	rfal	
	HYDROGRAPH RC	OUTING DATA							
279 RK	KINEMATIC W	IAVE STREAM ROI	JTING CHANNEL LENGTH						
	S	0.0077	SLOPE						
	N CA	0.00	CHANNEL ROUGHNE CONTRIBUTING AR		LENI				
	SHAPE WD		CHANNEL SHAPE BOTTOM WIDTH OR	DIAMETER					
	Z NDXMIN	0.00	SIDE SLOPE MINIMUM NUMBER		RVALS				

		COI	MPUTED KINEMATIC	PARAMETER	3				
			VARIABLE TIM (DT SHOWN IS A						
	ELEMENT	ALPHA	M DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	7.51	1.25 0.4		363.48				
	MATIN	7.31	1.25	100.00	303.40	301.11	0.50	20.33	
	SUMMARY (AC-FT) -	INFLOW=0.582	2E+03 EXCESS=0.	0000E+00 Ot	JTFLOW=0.582	1E+03 BASIN	STORAGE=0	.3756E-01 PERCE	ENT ERROR=
0.0									
			INTERPOLATED TO	SPECIFIED	COMPUTATION	INTERVAL			
	MAIN	7.51	1.25 3.0	0	363.48	501.00	0.56		
***	***	***	* * *		***				
			ATION BSNRT2						
	TRANS	SPOSITION AREA	0.0 SQ MI						
PEAK FLOW	TIME	6-HR	MAXIMUM AVER 24-HR		49.95-HR				
+ (CFS)	(HR)		An ra	ALI Z,	17.73-mK				
+ 363.	8.35	PS) 355.		141.	141.				
	(INCH (AC-		0.474 496.	0.555 582.	0.555 582.				
			19.65 SQ MI						
	Como			DADAMEGER					
		COI	MPUTED KINEMATIC VARIABLE TIM	E STEP					
			(DT SHOWN IS A	MINIMUM)					

ELEMENT ALPHA M DT DX PEAK TIME TO VOLUME MAXIMUM Page 60

			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)
MATN	7.51	1.25	0.44	400.00	363.42	501.35	0.56	20.39

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5818E+03 BASIN STORAGE=0.3756E-01 PERCENT ERROR=0.0

TARRED DOT A MED	m-0	CDDCTTTD	COMPTENANTON	TATTETTT
INTERPOLATED	.I.O	SPECIFIED	COMPUTATION	INTERVAL

MAIN 7.51 1.25 3.00 363.42 501.00 0.56

HYDROGRAPH AT STATION BSNRT2
TRANSPOSITION AREA 0.5 SQ MI

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 355. 363. 8.35 250. 141. 141. (INCHES) 0.474 0.168 0.555 0.555 (AC-FT) 176. 496. 582. 582.

CUMULATIVE AREA = 19.65 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

TIME TO MIJMIXAM ELEMENT ALPHA DT DX PEAK VOLUME PEAK CELERITY (MIN) (CFS) (FT) (IN) (MIN) (FPS) MAIN 7.51 1.25 0.36 400.00 363.06 501.42 0.55 20.38

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 7.51 1.25 3.00 363.06 501.00 0.55

HYDROGRAPH AT STATION BSNRT2
TRANSPOSITION AREA 2.8 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 363. 354. 250. 140. 140. 8.35 (INCHES) 0.168 0.473 0.553 0.553 (AC-FT) 176. 495. 580. 580.

CUMULATIVE AREA = 19.65 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DT DX PEAK TIME TO MAXIMUM VOLUME PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) MATN 7.51 400.00 501.44 20.37 1.25 0.48 362.38 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5766E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3753E-01 PERCENT ERROR=0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 7.51 1.25 3.00 362.38 501.00 0.55

HYDROGRAPH AT STATION BSNRT2
TRANSPOSITION AREA 16.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR

+ (CFS) (HR) (CFS)

Onsite_6hr.out 362. 8.35 353. 249.

140. 0.550 140. (INCHES) 0.550 577. 0.167 0.471 577. (AC-FT) 175. 494.

> CUMULATIVE AREA = 19.65 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MUMIXAM
						PEAK		CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	7.51	1.25	0.38	400.00	361.10	501.56	0.54	20.36

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5701E+03 BASIN STORAGE=0.3750E-01 PERCENT ERROR= 0 0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MATN 3.00 501.00 0.54 7.51 1.25 361.09

*** *** *** *** ***

> HYDROGRAPH AT STATION BSNRT2 TRANSPOSITION AREA 90.0 SO MI

PEAK FLOW MAXIMUM AVERAGE FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 361. 8.35 352. 248. 138. 138. (INCHES) 0.167 0.468 0.544 0.544 (AC-FT) 175. 491. 570. 570. CUMULATIVE AREA = 19.65 SQ MI

INTERPOLATED HYDROGRAPH AT BSNRT2

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 362. 8.35 353. 249. 139. 139. (INCHES) 0.167 0.471 0.549 0.549 175. 494. 576. 576. (AC-FT) CUMULATIVE AREA = 19.65 SQ MI

** ***

280 KK PTMARY

RETRIEVE PIMA BYPASS CHANNEL HYDROGRAPH

282 DR RETRIEVE DIVERSION HYDROGRAPH

ISTAD PIMABY DIVERSION HYDROGRAPH IDENTIFICATION

HYDROGRAPH AT STATION PIMABY

TRANSPOSITION AREA 0.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 1000. 605. 171. 88. 4.95 88. (INCHES) 0.323 0.286 0.345 0.345 (AC-FT) 300. 338. 361. 361. CUMULATIVE AREA = 12.30 SO MI

*** *** *** *** ***

		HVDDOCD A	DII AT CTA		Onsite_6hr.	out
				TION PIMABY 0.5 SQ MI		
PEAK FLOW	TIME		6-HR	MAXIMUM AVER		49.95-HR
+ (CFS)	(HR)	(CFS)				
+ 1000.	4.95		605.		88.	88.
		(INCHES) (AC-FT)	300.	0.323 338.	361.	0.345 361.
		CUMULATIV	E AREA =	12.30 SQ MI		
***		***	***	***		***
				TION PIMABY 2.8 SQ MI		
PEAK FLOW	TIME			MAXIMUM AVER		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES) (AC-FT)			0.345 361.	0.345 361.
				12.30 SQ MI	301.	301.
***		***	***	***	:	***
				rion pimaby 16.0 SQ Mi		
PEAK FLOW	TIME			MAXIMUM AVER	AGE FLOW	
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1000.		(CFS)	605.	171.	88.	88.
+ 1000.	4.93	(INCHES) (AC-FT)		0.323	0.345 361.	0.345 361.
		CUMULATIV	E AREA =	12.30 SQ MI		
***		***	***	***	:	***
				PIMABY 90.0 SQ MI		
PEAK FLOW	TIME		6 110	MAXIMUM AVER		40.05.110
+ (CFS)	(HR)		6-HR	24-HR	/2-HR	49.95-HK
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES) (AC-FT)	0.286 300.		0.345 361.	
		CUMULATIV	E AREA =	12.30 SQ MI		
***		***	***	***		***
		INTERPOLA'	TED HYDRO	GRAPH AT PIMA	/BY	
PEAK FLOW	TIME			MAXIMUM AVER		
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+ 1000.	4.95	(CFS)	605.	171.	88.	88.
		(INCHES) (AC-FT)		0 516	0.551 361.	0.551 361.
		CUMULATIV		12.30 SQ MI		

283 KK PMB-RT

UNION HILLS DR CHANNEL FROM SR 101L FREEWAY TO 82ND ST

HYDROGRAPH ROUTING DATA

285 RK KINEMATIC WAVE STREAM ROUTING

3157. CHANNEL LENGTH S

0.0082 SLOPE

N 0.013 CHANNEL ROUGHNESS COEFFICIENT

CONTRIBUTING AREA CA 0.00 SHAPE TRAP CHANNEL SHAPE

WD 24.00 BOTTOM WIDTH OR DIAMETER 4.00 SIDE SLOPE

NDXMIN MINIMUM NUMBER OF DX INTERVALS

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

49.95-HR

MAIN 1.87 1.47 3.00 1000.00 300 00 0.55

HYDROGRAPH AT STATION PMB-RT 0.0 SQ MI TRANSPOSITION AREA

MAXIMUM AVERAGE FLOW PEAK FLOW TIME 6-HR 72-HR 24-HR

(CFS) (HR) (CFS) 171 87 1000. 5.00 605. 87 (INCHES) 0.457 0.516 0.551 0.551 (AC-FT) 300. 338. 361. 361.

CUMULATIVE AREA = 12.30 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM
			(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)
MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 1.87 1.47 3.00 1000.00 300.00 0.55

*** ***

HYDROGRAPH AT STATION PMB-RT 0.5 SQ MI TRANSPOSITION AREA

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR)

(CFS) 605. 171. 87. 1000. 5.00 87. (INCHES) 0.457 0.516 0.551 0.551 (AC-FT) 300. 338. 361.

CUMULATIVE AREA = 12.30 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP

(DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	1.87	1.47	0.99	1052.33	1000.00	299.31	0.55	20.34

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR=

INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

	MAIN	1.87	1.47	3.00	1000.00	300.00	0.55		
***	***	***		***	***				
		DROGRAPH AT STA	ATION PMB- 2.8 SQ						
PEAK FLOW + (CFS)	TIME (HR)	6-HR	MAXIMUM 24-HF	AVERAGE FLOW	49.95-HR				
+ 1000.	5.00 (INC		171. 0.516	0.551	87. 0.551				
	(AC-		338.		361.				
	CUMU	JLATIVE AREA =	~		20				
		COP	VARIABLE	MATIC PARAMETER TIME STEP IS A MINIMUM)	KS				
	ELEMENT	ALPHA	М	DT DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY	
			()	MIN) (FT)	(CFS)	(MIN)	(IN)	(FPS)	
	MAIN	1.87	1.47	0.99 1052.3	33 1000.00	299.31	0.55	20.34	
CONTINUITY SUN	MMARY (AC-FT) -	- INFLOW=0.3615	5E+03 EXCES	SS=0.0000E+00 (OUTFLOW=0.361	2E+03 BASIN	STORAGE=0	.1613E+00 PERCENT	'ERROR=
			INTERPOLATE	D TO SPECIFIEI	COMPUTATION	INTERVAL			
	MAIN	1.87	1.47	3.00	1000.00	300.00	0.55		
***	***	***		***	***				
		DROGRAPH AT STA	ATION PMB- 16.0 SÇ						
PEAK FLOW	TIME	C IID		AVERAGE FLOW	40. 0F HD				
+ (CFS)	(HR)	6-HR	24-HF	R 72-HR	49.95-HR				
+ 1000.	5.00 (INCH (AC-		171. 0.516 338.	0.551	87. 0.551 361.				
		JLATIVE AREA =	12.30 SQ	MI					
		CON	VARIABLE	MATIC PARAMETER TIME STEP IS A MINIMUM)	RS				
	ELEMENT	ALPHA	М	DT DX	PEAK	TIME TO	VOLUME	MAXIMUM	
			(1)	MIN) (FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	1.87	1.47	0.99 1052.3	33 1000.00	299.31	0.55	20.34	
CONTINUITY SUN	MMARY (AC-FT) -	- INFLOW=0.3615	5E+03 EXCES	SS=0.0000E+00 (OUTFLOW=0.361	2E+03 BASIN	STORAGE=0	.1613E+00 PERCENT	'ERROR=
			INTERPOLATE	D TO SPECIFIE	O COMPUTATION	INTERVAL			
	MAIN	1.87	1.47	3.00	1000.00	300.00	0.55		
***	***	***		***	***				
		DROGRAPH AT STA							
PEAK FLOW	TIME	6-HR		AVERAGE FLOW	49.95-HR				
+ (CFS)	(HR)	CFS)	24-Hr	/2-nR	49.93-NK				
+ 1000.	5.00 (INCH	605. HES) 0.457		0.551	87. 0.551 361.				
		JLATIVE AREA =							

INTERPOLATED HYDROGRAPH AT PMB-RT

PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR		49.95-HR					
+ (CFS)	(HR)	(CFS)									
+ 1000.	5.00	(INCHES) (AC-FT)	0.457	171. 0.516 338.	87. 0.551 361.	87. 0.551 361.					
		CUMULATIV	E AREA =	12.30 SQ MI							
*** *** *** ***	*** *** *	** *** *** *:	** *** ***	* * * * * * * * * * * * * * * * * * * *	** *** ***	*** *** ***	*** *** **	* *** ***	*** *** **	* *** *** **	* ***
	*******	****									
286 KK	* SB	10 *	BASIN								
	******	****									
	SUBBAS	IN RUNOFF DA	ГА								
287 BA	SUBB.	ASIN CHARACTI TAREA		SUBBASIN AREA							
288 LG	GREE	N AND AMPT LO		TARTING LOSS							
		DTH	0.25 M	OISTURE DEFICIT ETTING FRONT SU							
		PSIF XKSAT	0.55 H	YDRAULIC CONDUC	CTIVITY						
	~~~	RTIMP	55.00 F	PERCENT IMPERVIO	JUS AREA						
289 UC		K UNITGRAPH TC		IME OF CONCENTE							
		R		TORAGE COEFFICI							
290 UA				11 ORDINATES .6.0 30.0		77.0	84.0	90.0	94.0	97.0	
					***						
						H PARAMETERS					
						, R= 0 , CP= 0					
					UNIT HYDR						
	13.		90.	19 EN 85. 71 4. 3	ND-OF-PERI L. 5	OD ORDINATES 4. 40.	29.	21.	15.		
	11.		6.				1.	1.			
***		***	***	***		***					
				CION SB10 0.0 SQ MI							
	AINFALL =	2.76, TOTA	AL LOSS =	0.46, TOTAL		2.30					
PEAK FLOW	TIME		6-HR	MAXIMUM AVERA 24-HR		49.95-HR					
+ (CFS)	(HR)	(CFS)									
+ 170.	0.90	(INCHES)	10. 2.287	2. 2.287	1. 2.287	1. 2.287					
		(AC-FT)	5.	5.	5.	5.					
		CUMULATIV	E AREA =	0.04 SQ MI							
***		***	***	***		***					
		HYDROGRA TRANSPOSIT		CION SB10 0.5 SQ MI							
TOTAL R	AINFALL =	2.74, TOTA	AL LOSS =	0.46, TOTAL	EXCESS =	2.28					
PEAK FLOW	TIME			MAXIMUM AVERA							
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR					
+ 169.	0.90	(CFS)	10.	2.	1.	1.					
		(INCHES) (AC-FT)	2.272 5.	2.272 5.	2.272 5.	2.272 5.					
		CUMULATIV	E AREA =	0.04 SQ MI							

***

HYDROGRAPH AT STATION SB10
TRANSPOSITION AREA 2.8 SQ MI

		TRANSPOSIT	ION AREA	2.8 SQ MI					
TOTAL R	AINFALL =	2.69, TOT	AL LOSS =	0.50, TOTAL	L EXCESS =	2.19			
PEAK FLOW	TIME			MAXIMUM AVER					
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 142.	0.95	(CFS)	9.	2.	1.	1.			
, 112.	0.23	(INCHES) (AC-FT)	2.179 5.	2.179 5.	2.179	2.179 5.			
		CUMULATIV	E AREA =	0.04 SQ MI					
***		***	***	***	*	***			
		HYDROGRA: TRANSPOSIT:	PH AT STAT	ION SB10 16.0 SQ MI					
TOTAL R	AINFALL =	2.54, TOT	AL LOSS =	0.54, TOTAL	L EXCESS =	2.00			
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW				
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR			
+ 118.	0.95	(CFS)	9.	2.	1.	1.			
+ 110.	0.93	(INCHES)	1.990	1.990 4.	1.990	1.990			
		(AC-FT)	4.		4.	4.			
		CUMULATIV	E AREA =	0.04 SQ MI					
***		***	***	**:	*	***			
		HYDROGRA: TRANSPOSIT	PH AT STAT	TION SB10 90.0 SQ MI					
TOTAL R	AINFALL =	2.23, TOT	AL LOSS =	0.57, TOTAI	L EXCESS =	1.66			
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW				
+ (CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR			
		(CFS)							
+ 88.	0.95	(INCHES) (AC-FT)	7. 1.655 4.	2. 1.655 4.	1. 1.655 4.	1. 1.655 4.			
		CUMULATIV	E AREA =	0.04 SQ MI					
***		***	***	**	*	* * *			
		INTERPOLA'	red hydrog	RAPH AT SI	B10				
PEAK FLOW	TIME			MAXIMUM AVE	RAGE FLOW				
	(HR)		6-HR	24-HR	72-HR	49.95-HR			
+ (CFS)		(CFS)							
+ 169.	0.90	(INCHES)	10. 2.276	2. 2.276 5.	1. 2.276				
		(AC-FT)	5.	5.	5.	5.			
		CUMULATIV	E AREA =	0.04 SQ MI					
*** *** ***	*** *** *	** *** *** *	** *** ***	*** *** ***	*** *** ***	*** *** *** ***	*** *** *** *	** ** *** ***	*** *** ***
***									
	******	****							
	*	*							
292 KK	* CP-	*	OMBINE						
	******		NION HILLS	DR AND 82ND 8	ST (UNION H	ILLS DR CHANNEL)			
294 HC	HYDR	OGRAPH COMBI	NATION	UMBER OF HYDRO					
					***				
				***					
***		* * *	***		^	***			
				O.0 SQ MI					

MAXIMUM AVERAGE FLOW 24-HR 72-HR

6-HR

PEAK FLOW

TIME

Page 67

49.95-HR

+	(CFS)	(HR)			`	JIISICC_UIII.	oue
+	1355.	6.85	(CFS)	909.	420.	230.	230.
			(INCHES) (AC-FT)	0.429	420. 0.794 834.	0.903	0.903
			(AC-F.I.)	451.	834.	948.	948.
			CUMULATIV	E AREA =	19.69 SQ MI		
	***		***	***	***	•	***
					TION CP-10 0.5 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVEF	RAGE FLOW	
	(CFS)	(HR)		6-HR	MAXIMUM AVEF 24-HR	72-HR	49.95-HR
			(CFS)				
+	1355.	6.85	(TNCHES)	909. 0 429	420. 0.794 834.	230. 0 903	230. 0.903
			(AC-FT)	451.	834.	948.	948.
			CUMULATIV	E AREA =	19.69 SQ MI		
	***		***	***	***		***
					rion CP-10 2.8 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	MAXIMUM AVEF 24-HR	72-HR	49.95-HR
			(CFS)				
+	1355.	6.85	(INCHES)	909. 0.429	420. 0.793	229. 0.901	229. 0.901
			(AC-FT)	451.	833.	946.	946.
			CUMULATIV	E AREA =	19.69 SQ MI		
	***		***	***	***	•	***
					rion CP-10 16.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER	RAGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
			(CFS)	0.07	410	000	222
+	1354.	6.85	(INCHES)	0.429	419. 0.791 831.	0.897	228. 0.897
			(AC-FT)	450.	831.	0.897 942.	942.
			CUMULATIV	E AREA =	19.69 SQ MI		
	***		***	***	***	•	***
			HYDROGRA TRANSPOSIT	PH AT STATION AREA	PION CP-10 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
	1353.	6 05	(CFS)	905.	417.	226.	226.
+	1353.	0.05	(INCHES)	0.427	0.788	0.890	0.890
			(AC-FT)	449.	828.	935.	935.
			CUMULATIV	E AREA =	19.69 SQ MI		
	***		***	***	***	•	* * *
			TNTERDOLA	TED HVDDO	GRAPH AT CP-	.10	
			TMIDKEODA	יייייייייייייייייייייייייייייייייייייי			
	PEAK FLOW	TIME		6-HR	MAXIMUM AVEF 24-HR		49.95-HR
+	(CFS)	(HR)	(GEG)				
+	1354.	6.85	(CFS)	907.	419.	228.	228.
			(INCHES) (AC-FT)	0.428 450.		0.896 941.	0.896 941.
			CUMULATIV	E AREA =	19.69 SQ MI		

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

***

295 KK R10-11

UNION HILLS DR CHANNEL FROM 82ND ST TO HAYDEN ROAD

HYDROGRAPH ROUTING DATA

297 RK KINEMATIC WAVE STREAM ROUTING

1277. CHANNEL LENGTH S N

ROUTE

SLOPE CHANNEL ROUGHNESS COEFFICIENT 0.0014 0.030

CONTRIBUTING AREA CA 0.00

SHAPE TRAP CHANNEL SHAPE WD 220.00 BOTTOM WIDTH OR DIAMETER

7. 4.00 SIDE SLOPE

NDXMIN MINIMUM NUMBER OF DX INTERVALS

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT	ALPHA	М	DT	DX	PEAK	TIME TO PEAK	VOLUME	MAXIMUM CELERITY
			(MIN)	(FT)	(CFS)	(MIN)	(IN)	(FPS)
MAIN	0.06	1.62	1.62	425.67	1355.03	412.64	0.90	4.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9482E+03 EXCESS=0.0000E+00 OUTFLOW=0.9474E+03 BASIN STORAGE=0.9166E+00 PERCENT ERROR= 0.0

# INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

1354.77 411 00 MAIN 0.06 1.62 3.00 0 90

HYDROGRAPH AT STATION R10-11 TRANSPOSITION AREA 0.0 SQ MI

PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 1355. 6.85 909. 420. 229 229. (INCHES) 0.429 0.794 0.902 0.902 451. 834. 947. 947. (AC-FT)

CUMULATIVE AREA = 19.69 SQ MI

COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

ELEMENT ALPHA DТ DX PEAK TIME TO VOLUME MAXIMUM PEAK CELERITY (MIN) (FT) (CFS) (MIN) (IN) (FPS) 0.06 1.62 425.67 1354.98 412.72 MAIN 1.56 0.90 4.66

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9479E+03 EXCESS=0.0000E+00 OUTFLOW=0.9473E+03 BASIN STORAGE=0.9166E+00 PERCENT ERROR= 0.0

# INTERPOLATED TO SPECIFIED COMPUTATION INTERVAL

MAIN 0.06 1.62 3.00 1354.72 411.00 0.90

> HYDROGRAPH AT STATION R10-11 TRANSPOSITION AREA 0.5 SQ MI

PEAK FLOW MAXIMUM AVERAGE FLOW TIME 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 909. 229. 229. 1355. 420. 6.85 (INCHES) 0.429 0.794 0.902 0.902 451. 834. 947. (AC-FT)

> CUMULATIVE AREA = 19.69 SO MI

> > COMPUTED KINEMATIC PARAMETERS VARIABLE TIME STEP (DT SHOWN IS A MINIMUM)

	ELEMENT	ALPHA	M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
				(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	0.06	1.62	1.57	425.67	1354.58	412.38	0.90	4.66	
CONTINUITY 0.0	SUMMARY (AC-FT) -	INFLOW=0.9458	E+03	EXCESS=0.00	00E+00 OUT	FLOW=0.945	0E+03 BASIN	STORAGE=0	.9164E+00 PERCENT ERR	ROR=
			INTERP	OLATED TO S	PECIFIED C	OMPUTATION	INTERVAL			
	MAIN	0.06	1.62	3.00		1354.33	411.00	0.90		
***	***	***		***		***				
		OGRAPH AT STA OSITION AREA		R10-11 .8 SQ MI						
PEAK FLOW	TIME	6-HR		IMUM AVERAG 24-HR	E FLOW 72-HR	49.95-HR				
+ (CFS)	(HR)			24 1110	72 III	49.95 III				
+ 1354.	6.85 (INCHE (AC-F	908. S) 0.429		420. 0.793 833.	229. 0.900 945.	229. 0.900 945.				
	•	ATIVE AREA =	19.6		J13.	713.				
			PUTED I	KINEMATIC P IABLE TIME HOWN IS A M	STEP					
	ELEMENT	ALPHA	M M	DT	DX	PEAK	TIME TO	VOLUME	MAXIMUM	
	FIRMENT	ALFRA	M	(MIN)	(FT)	(CFS)	PEAK (MIN)	(IN)	CELERITY (FPS)	
	MAIN	0.06	1.62	1.67	425.67	1353.83	412.54	0.90	4.66	
0.0	SUMMARY (AC-FT) -	INFLOW=0.9420	E+03	EXCESS=0.00	00E+00 OUI	FLOW=0.941	2E+03 BASIN	STORAGE=0	.9165E+00 PERCENT ERR	ROR=
			INTERP	OLATED TO S	PECIFIED C	OMPUTATION	INTERVAL			
			INTERP	OLATED TO S	PECIFIED C	OMPUTATION	INTERVAL			
	MAIN	0.06	INTERPO	3.00	PECIFIED C	1353.59	INTERVAL	0.90		
***	***	0.06	1.62	3.00	PECIFIED C			0.90		
***	*** HYDR	0.06	1.62	3.00	PECIFIED C	1353.59		0.90		
*** PEAK FLOW	*** HYDR	0.06 *** OGRAPH AT STA OSITION AREA	1.62 TION 16 MAX	3.00 *** R10-11 .0 SQ MI IMUM AVERAG	E FLOW	1353.59		0.90		
	*** HYDR TRANSP TIME (HR)	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR	1.62 TION 16 MAX	3.00 *** R10-11 .0 SQ MI		1353.59		0.90		
PEAK FLOW	*** HYDR: TRANSP TIME	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S)  0.428	1.62 TION 16 MAX	3.00 *** R10-11 .0 SQ MI IMUM AVERAG	E FLOW 72-HR 228. 0.896	1353.59 *** 49.95-HR 228. 0.896		0.90		
PEAK FLOW + (CFS)	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F)	0.06  *** OGRAPH AT STA OSITION AREA  6-HR S) 907. S) 0.428	1.62 TION 16 MAX	3.00 ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831.	E FLOW 72-HR 228.	1353.59 *** 49.95-HR 228.		0.90		
PEAK FLOW + (CFS)	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F)	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S) 0.428 T) 450.  ATIVE AREA =	1.62 TION 16 MAX 19.6	3.00  ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME	E FLOW 72-HR 228. 0.896 941.  ARAMETERS STEP	1353.59 *** 49.95-HR 228. 0.896		0.90		
PEAK FLOW + (CFS)	***  HYDR TRANSP  TIME  (HR)  (CF  6.85  (INCHE (AC-F  CUMUL	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S)  0.428 T)  450.  ATIVE AREA =  COM	TION 16 MAX	3.00  ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M	TE FLOW 72-HR  228. 0.896 941.  ARAMETERS STEP (INIMUM)	1353.59 ***  49.95-HR  228. 0.896 941.	411.00		MAXIMIIM	
PEAK FLOW + (CFS)	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F)	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S) 0.428 T) 450.  ATIVE AREA =	1.62 TION 16 MAX 19.6	3.00  ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME	E FLOW 72-HR 228. 0.896 941.  ARAMETERS STEP	1353.59 *** 49.95-HR 228. 0.896		0.90  VOLUME (IN)	MAXIMUM CELERITY (FPS)	
PEAK FLOW + (CFS)	***  HYDR TRANSP  TIME  (HR)  (CF  6.85  (INCHE (AC-F  CUMUL	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S)  0.428 T)  450.  ATIVE AREA =  COM	1.62 TION 16 MAX 19.60 PUTED 1 VAR (DT S)	3.00  ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M	PE FLOW 72-HR  228. 0.896 941.  ARAMETERS STEP (INIMUM) DX (FT)	1353.59 ***  49.95-HR  228. 0.896 941.	411.00 TIME TO PEAK	VOLUME	CELERITY (FPS)	
PEAK FLOW + (CFS) + 1354.	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F CUMUL  ELEMENT	0.06  ***  OGRAPH AT STA  OSITION AREA  6-HR  S)  907. S) 0.428 T) 450.  ATIVE AREA =  COM  ALPHA  0.06	1.62 TION 16 MAX: 19.6 PUTED : VAR: (DT S: M	3.00 ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M DT (MIN) 1.66	228. 0.896 941. ARAMETERS STEP INIMUM) DX (FT) 425.67	1353.59 ***  49.95-HR  228. 0.896 941.  PEAK (CFS) 1352.40	411.00  TIME TO PEAK (MIN) 412.19	VOLUME (IN) 0.89	CELERITY (FPS)	ROR=
PEAK FLOW + (CFS) + 1354.	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F CUMUL  ELEMENT	0.06  ***  OGRAPH AT STA OSITION AREA  6-HR S) 907. S) 0.428 T) 450.  ATIVE AREA =  COM  ALPHA  0.06  INFLOW=0.9349	1.62 TION 16 MAX: 19.60 PUTED 1 VAR (DT SI	3.00 ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M DT (MIN) 1.66  EXCESS=0.00	228. 0.896 941.  ARAMETERS STEP (INIMUM) DX (FT) 425.67	1353.59 ***  49.95-HR  228. 0.896 941.  PEAK (CFS) 1352.40  FLOW=0.934	411.00  TIME TO PEAK (MIN)  412.19	VOLUME (IN) 0.89	CELERITY (FPS) 4.66	ROR=
PEAK FLOW + (CFS) + 1354.	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F CUMUL  ELEMENT	0.06  ***  OGRAPH AT STA OSITION AREA  6-HR S) 907. S) 0.428 T) 450.  ATIVE AREA =  COM  ALPHA  0.06  INFLOW=0.9349	1.62 TION 16 MAX: 19.60 PUTED 1 VAR (DT SI	3.00 ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M DT (MIN) 1.66	228. 0.896 941.  ARAMETERS STEP (INIMUM) DX (FT) 425.67	1353.59 ***  49.95-HR  228. 0.896 941.  PEAK (CFS) 1352.40  FLOW=0.934	411.00  TIME TO PEAK (MIN)  412.19	VOLUME (IN) 0.89	CELERITY (FPS) 4.66	COR=
PEAK FLOW + (CFS) + 1354.	***  HYDR TRANSP  TIME  (HR)  (CF 6.85  (INCHE (AC-F CUMUL  ELEMENT  MAIN  SUMMARY (AC-FT) -	0.06  ***  OGRAPH AT STA OSITION AREA  6-HR S) 907. S) 0.428 T) 450.  ATIVE AREA =  COM  ALPHA  0.06  INFLOW=0.9349	1.62 TION 16 MAX: 19.60 PUTED 1 VAR (DT SI	3.00 ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M DT  (MIN) 1.66  EXCESS=0.00  DLATED TO S 3.00	228. 0.896 941.  ARAMETERS STEP (INIMUM) DX (FT) 425.67	1353.59 ***  49.95-HR 228. 0.896 941.  PEAK (CFS) 1352.40  FLOW=0.934  OMPUTATION 1352.18	TIME TO PEAK (MIN) 412.19 1E+03 BASIN INTERVAL	VOLUME (IN) 0.89	CELERITY (FPS) 4.66	ROR=
PEAK FLOW + (CFS) + 1354.	***  HYDR TRANSP  TIME (HR) (CF 6.85 (INCHE (AC-F CUMUL  ELEMENT  MAIN  SUMMARY (AC-FT) -	0.06  ***  OGRAPH AT STA OSITION AREA  6-HR S) 907. S) 0.428 T) 450.  ATIVE AREA =  COM  ALPHA  0.06  INFLOW=0.9349	1.62 TION 16 MAX: 19.60 PUTED 1 VAR. (DT S: M 1.62 E+03	3.00  ***  R10-11 .0 SQ MI  IMUM AVERAG 24-HR  419. 0.791 831. 9 SQ MI  KINEMATIC P IABLE TIME HOWN IS A M DT (MIN) 1.66  EXCESS=0.00	228. 0.896 941.  ARAMETERS STEP (INIMUM) DX (FT) 425.67	1353.59 ***  49.95-HR 228. 0.896 941.  PEAK (CFS) 1352.40  FLOW=0.934	TIME TO PEAK (MIN) 412.19 1E+03 BASIN INTERVAL	VOLUME (IN) 0.89 STORAGE=0	CELERITY (FPS) 4.66	OR=

Page 70

49.95-HR

MAXIMUM AVERAGE FLOW 24-HR 72-HR

6-HR

PEAK FLOW

TIME

(CFS) (HR) (CFS) 6.85 904. 417. 1352. 226. 226. 0.427 (INCHES) 0.788 0.889 0.889 934. 448. 828. 934. (AC-FT) CUMULATIVE AREA = 19.69 SQ MI INTERPOLATED HYDROGRAPH AT R10-11 MAXIMUM AVERAGE FLOW PEAK FLOW 6-HR 24-HR 72-HR 49.95-HR (CFS) (HR) (CFS) 419. 1353 6 85 906 228 228 (INCHES) 0.791 0.895 0.428 0.895 449. 831. 940. 940. (AC-FT) CUMULATIVE AREA = 19.69 SQ MI *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 298 KK SB11 * BASIN SUBBASIN RUNOFF DATA 299 BA SUBBASIN CHARACTERISTICS 0.07 SUBBASIN AREA TAREA 300 LG GREEN AND AMPT LOSS RATE STRTL 0.15 STARTING LOSS DTH 0.25 MOISTURE DEFICIT 4.15 WETTING FRONT SUCTION
0.58 HYDRAULIC CONDUCTIVITY PSTF XKSAT 55.00 PERCENT IMPERVIOUS AREA RTIMP 301 UC CLARK UNITGRAPH TC 0.29 TIME OF CONCENTRATION
R 0.23 STORAGE COEFFICIENT 302 UA ACCUMULATED-AREA VS. TIME, 11 ORDINATES 84.0 90.0 94.0 97.0 0.0 5.0 16.0 30.0 65.0 77.0 100.0 UNIT HYDROGRAPH PARAMETERS CLARK TC= 0.29 HR, R= 0.23 HR SNYDER TP= 0.19 HR, CP= 0.50 UNIT HYDROGRAPH 27 END-OF-PERIOD ORDINATES 43. 12. 50. 99. 119. 112. 100. 84. 67. 54. 12. 35. 28. 23. 18. 15. 9. 8. 6. 5. 1. 4 3 3 2 2. 1 HYDROGRAPH AT STATION SB11 TRANSPOSITION AREA TOTAL RAINFALL = 2.76, TOTAL LOSS = 0.46, TOTAL EXCESS = 2.29 PEAK FLOW TIME MAXIMUM AVERAGE FLOW 6-HR 24-HR 72-HR 49 95-HR (CFS) (HR) (CFS) 233. 0.95 (INCHES) 2.282 2.282 2.282 2.282 9. 9. 9. (AC-FT) 9. CUMULATIVE AREA = 0.07 SQ MI HYDROGRAPH AT STATION SB11 TRANSPOSITION AREA 0.5 SQ MI

Page 71

TOTAL RAINFALL = 2.74, TOTAL LOSS = 0.46, TOTAL EXCESS =

г	EAK FLOW	TTME			MAXIMUM AVER	Onsite_6hr.	out
				6-HR	24-HR	72-HR	49.95-HR
		(HR)	(CFS)				
+	231.	0.95	(INCHES) (AC-FT)	17. 2.267 9.	4. 2.267 9.	2. 2.267 9.	2. 2.267 9.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		***	***	***	•	***
					ION SB11 2.8 SQ MI		
	TOTAL RAI	NFALL =	2.69, TOT	AL LOSS =	0.50, TOTAL	EXCESS =	2.18
P	EAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	201.	1.00	(CFS)	17.	4.	2.	2.
			(INCHES) (AC-FT)	2.172 8.	2.172 8.	2.172 8.	2.172
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		***	***	***		***
					ION SB11 16.0 SQ MI		
	TOTAL RAI	NFALL =	2.54, TOTA	AL LOSS =	0.55, TOTAL	EXCESS =	1.99
P	EAK FLOW	TIME			MAXIMUM AVER		40.05.77
+	(CFS)	(HR)	()	b-HK	24-HR	/2-HR	49.95-HR
+	169.	1.00	(CFS)	15. 1.982	4.	2.	2.
			(INCHES) (AC-FT)	1.982 8.	1.982 8.	2. 1.982 8.	1.982 8.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		***	***	***		***
					ON SB11 90.0 SQ MI		
	TOTAL RAI	NFALL =	2.23, TOTA	AL LOSS =	0.58, TOTAL	EXCESS =	1.65
P	EAK FLOW	TIME		c	MAXIMUM AVER	RAGE FLOW	40.05
+	(CFS)	(HR)		6-HR	24-HR	7/2-HR	49.95-HR
+	129.	1.00	(CFS)	13.	3. 1.647	2.	2.
			(INCHES) (AC-FT)	1.647 6.	1.647 6.	1.647 6.	1.647 6.
			CUMULATIVE	E AREA =	0.07 SQ MI		
	***		***	***	***	•	* * *
			INTERPOLAT	TED HYDROGI	RAPH AT SE	311	
P	EAK FLOW	TIME			MAXIMUM AVER		40 05
	PEAK FLOW			6-HR		72-HR	49.95-HR
		(HR)	(CFS)	6-HR 17. 2.270	24-HR 4.		49.95-HR 2. 2.270

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

***

**************

* * CP-11 * CC

* * * *

COMBINE

CUMULATIVE AREA = 0.07 SQ MI

UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)

306 HC HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE

***

						***	
	***		***	***	***		***
					CP-11 0.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER. 24-HR	AGE FLOW	
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	1355.	6.85	(CFS)	909.	420. 0.791	232. 0.907	232.
			(INCHES) (AC-FT)	0.428 451.		0.907 956.	0.907 956.
					19.76 SQ MI		
	***		***	***	***		***
					CP-11 0.5 SQ MI		
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER. 24-HR	AGE FLOW	49 95_HR
+	(CFS)	(HR)	(CFS)	o inc	21 1110	, 2 IIIC	19.95 Inc
+	1355.	6.85		909.	420. 0.791	232. 0.907	232.
			(INCHES) (AC-FT)	0.428 451.	0.791 834.	0.907 956.	0.907 956.
			CUMULATIV	E AREA =	19.76 SQ MI		
	***		***	***	* * *		***
					TION CP-11 2.8 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER 24-HR	AGE FLOW	40.05.00
+	(CFS)	(HR)	()	b-HR	24-HR	/2-HR	49.95-HR
+	1354.	6.85	(CFS)	908.	420. 0.790	231.	231.
			(INCHES) (AC-FT)	0.427 450.	0.790 833.	0.904 953.	0.904 953.
			CUMULATIV	E AREA =	19.76 SQ MI		
	***		***	***	***		***
					TION CP-11 16.0 SQ MI		
	PEAK FLOW	TIME		C IID	MAXIMUM AVER		40 05 110
+	(CFS)	(HR)	()	6-HR	24-HR	/2-HK	49.95-HR
+	1354.	6.85	(CFS)	907.	419.		230.
			(INCHES) (AC-FT)	0.427 450.	0.789 831.	0.900 949.	0.900 949.
			CUMULATIV	E AREA =	19.76 SQ MI		
	***		***	***	***		***
					FION CP-11 90.0 SQ MI		
	PEAK FLOW	TIME			MAXIMUM AVER		
+	(CFS)	(HR)		6-HR	24-HR	72-HR	49.95-HR
+	1352.	6.85	(CFS)	904.	417.	228.	228.
			(INCHES) (AC-FT)	0.425 448.	0.785 828.	0.892 940.	0.892 940.
					19.76 SO MI		
	***		***	***	~		***
			INTERPOLA:	red hydrog	GRAPH AT CP-	11	
	PEAK FLOW	TIME		6-HR	MAXIMUM AVER		49 95_#P
+	(CFS)	(HR)	(CFS)	лл-о	An-ra	/Z-nr	47.7J-DK
			(CFD)				

Page 73

Onsite_6hr.out 1353. 6.85 906. 419. 230.

906. 419. 230. 230. (INCHES) 0.426 0.788 0.899 0.899 (AC-FT) 449. 831. 948. 948.

CUMULATIVE AREA = 19.76 SQ MI

1

				FLOW TIME IN	IN CUBIC FEE HOURS, AREA	T PER SECOND	) MILES			
			PEAK	TIME OF	AVERAGE FI	OW FOR MAXIM	MUM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	76THST	51.	4.55	15.	4.	2.	0.24		
+	HYDROGRAPH AT	SB01	324.	0.95	26.	6.	3.	0.11		
+	2 COMBINED AT	CP-1	323.	0.95	37.	11.	5.	0.35		
+	ROUTED TO	R1-2	315.	1.10	37.	11.	5.	0.35		
+	HYDROGRAPH AT	SB02	489.	0.95	38.	10.	5.	0.16		
+	2 COMBINED AT	CP-2	731.	1.05	75.	20.	10.	0.51		
+	ROUTED TO HYDROGRAPH AT	R2-3	719.	1.10	75.	20.	10.	0.51		
+	2 COMBINED AT	SB03	129.	1.00	12.	3.	1.	0.05		
+	ROUTED TO	CP-3	828.	1.10	86.	23.	11.	0.56		
+	HYDROGRAPH AT	R3-5	806.	1.20	86.	23.	11.	0.56		
+	ROUTED TO	SB04	525.	0.95	36.	9.	4.	0.14		
+	HYDROGRAPH AT	R4-5 SB05	511. 399.	1.05 0.95	37. 30.	9. 7.	4.	0.14		
+	3 COMBINED AT	CP-5	1410.	1.15	150.	40.	19.	0.83		
+	ROUTED TO	R5-6	1386.	1.20	150.	40.	19.	0.83		
+	HYDROGRAPH AT	SB06	420.	0.95	33.	8.	4.	0.14		
+	2 COMBINED AT	CP-6	1609.	1.20	181.	48.	23.	0.96		
+	HYDROGRAPH AT	SB07	384.	0.90	17.	4.	2.	0.07		
+	ROUTED TO	R7-8	360.	1.05	18.	5.	2.	0.07		
+	HYDROGRAPH AT	SB08	792.	0.95	56.	14.	7.	0.22		
+	2 COMBINED AT	CP-8	1035.	1.05	74.	18.	9.	0.30		

RUNOFF SUMMARY

Page 74

1010.

173.

1124.

4017.

1000.

1.10

0.95

1.10

5.50

4.95

74.

13.

87.

1092.

605.

19.

3.

22.

292.

171.

9.

2.

10.

146.

88.

0.30

0.05

0.35

12.30

12.30

R8-9

SB09

CP-9

PIMACH

PIMABY

ROUTED TO

HYDROGRAPH AT

2 COMBINED AT

HYDROGRAPH AT

DIVERSION TO

HYDROGRAPH AT

					Onsite_6hr.out			
+		PIMAIN	3017.	5.50	486.	122.	58.	12.30
+	HYDROGRAPH AT	PWRCH	740.	5.80	432.	136.	75.	7.00
+	3 COMBINED AT	BINFLO	3634.	5.50	919.	273.	142.	19.65
+	ROUTED TO	BASIN	362.	8.30	353.	249.	140.	19.65
+	ROUTED TO	BSNRT1	362.	8.35	353.	249.	140.	19.65
+	ROUTED TO	BSNRT2	362.	8.35	353.	249.	139.	19.65
+	HYDROGRAPH AT	PIMABY	1000.	4.95	605.	171.	88.	12.30
+	ROUTED TO	PMB-RT	1000.	5.00	605.	171.	87.	12.30
+	HYDROGRAPH AT	SB10	169.	0.90	10.	2.	1.	0.04
+	3 COMBINED AT	CP-10	1354.	6.85	907.	419.	228.	19.69
+	ROUTED TO	R10-11	1353.	6.85	906.	419.	228.	19.69
+	HYDROGRAPH AT	SB11	231.	0.95	17.	4.	2.	0.07
+ 1	2 COMBINED AT	CP-11	1353.	6.85	906.	419.	230.	19.76

## SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING

# (FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)

INTERPOLATED TO COMPUTATION INTERVAL

#### ISTAQ ELEMENT DT PEAK TIME TO PEAK TIME TO VOLUME DT VOLUME PEAK PEAK (MIN) (CFS) (MIN) (IN) (MIN) (CFS) (MIN) (IN)

0.00

63.63

FOR STORM = 1 STORM AREA (SQ MI) =

3.00 324.42

R1-2 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2221E+02 EXCESS=0.0000E+00 OUTFLOW=0.2234E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.8

1.19

3.00

317.42

66.00

1.19

FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R1-2 MANE 3.00 321.94 63.70 1.18 3.00 314.95 66.00 1.18

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2212E+02 EXCESS=0.0000E+00 OUTFLOW=0.2223E+02 BASIN STORAGE=0.5936E-01 PERCENT ERROR=-0.8

FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R1-2 MANE 3.00 281.88 67.46 1.15 3.00 280.31 66.00 1.15 -0.6

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R1-2 MANE 3.00 239.43 66.99 1.09 3.00 234.05 69.00 1.09

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2036E+02 EXCESS=0.0000E+00 OUTFLOW=0.2044E+02 BASIN STORAGE=0.5560E-01 PERCENT ERROR=-0.7

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R1-2 MANE 2.91 179.26 70.19 0.98 3.00 178.38 69.00 0.98

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1834E+02 EXCESS=0.0000E+00 OUTFLOW=0.1842E+02 BASIN STORAGE=0.6416E-01 PERCENT ERROR=

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R2-3 MANE 1.61 726.00 65.69 1.53 3.00 725.57 66.00 1.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4152E+02 EXCESS=0.0000E+00 OUTFLOW=0.4152E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.1

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R2-3 MANE 1.61 719.73 65.75 1.52 3.00 719.25 66.00 1.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4128E+02 EXCESS=0.0000E+00 OUTFLOW=0.4128E+02 BASIN STORAGE=0.4197E-01 PERCENT ERROR=-0.1

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R2-3 MANE 1.65 650.44 66.16 1.47 3.00 647.31 66.00 1.47

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3985E+02 EXCESS=0.0000E+00 OUTFLOW=0.3986E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=

-0.1

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R2-3 MANE 1.61 553.64 68.36 1.37 3.00 550.82 69.00 1.37

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3711E+02 EXCESS=0.0000E+00 OUTFLOW=0.3710E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.1

-0.1

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R2-3 MANE 1.77 421.93 69.46 1.19 3.00 418.11 69.00 1.19

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3232E+02 EXCESS=0.0000E+00 OUTFLOW=0.3234E+02 BASIN STORAGE=0.4192E-01 PERCENT ERROR=-0.2

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R3-5 MANE 2.78 817.36 73.14 1.60 3.00 816.94 72.00 1.60

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4741E+02 EXCESS=0.0000E+00 OUTFLOW=0.4763E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R3-5 MANE 2.79 810.60 70.45 1.59 3.00 810.54 72.00 1.59

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4713E+02 EXCESS=0.0000E+00 OUTFLOW=0.4736E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.7

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R3-5 MANE 2.90 742.52 73.90 1.54 3.00 740.16 72.00 1.54

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4551E+02 EXCESS=0.0000E+00 OUTFLOW=0.4571E+02 BASIN STORAGE=0.8226E-01 PERCENT ERROR=-0.6

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R3-5 MANE 3.00 634.55 73.70 1.43 3.00 626.49 75.00 1.43

 $\hbox{CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4224E+02 EXCESS=0.0000E+00 OUTFLOW=0.4240E+02 BASIN STORAGE=0.8222E-01 PERCENT ERROR=-0.6 } \\$ 

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R3-5 MANE 3.00 478.66 74.64 1.24 3.00 478.05 75.00 1.24

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3665E+02 EXCESS=0.0000E+00 OUTFLOW=0.3688E+02 BASIN STORAGE=0.8233E-01 PERCENT ERROR=-0.8

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R4-5 MANE 2.41 520.58 62.34 2.39 3.00 513.38 63.00 2.40

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1819E+02 EXCESS=0.0000E+00 OUTFLOW=0.1838E+02 BASIN STORAGE=0.3179E-04 PERCENT ERROR=

-1.0

R4-5 MANE 2.42 516.56 62.40 2.38 3.00 510.06 63.00 2.39

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1807E+02 EXCESS=0.0000E+00 OUTFLOW=0.1825E+02 BASIN STORAGE=0.4744E-04 PERCENT ERROR=-1.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R4-5 MANE 2.55 451.64 62.77 2.29 3.00 451.16 63.00 2.30

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1745E+02 EXCESS=0.0000E+00 OUTFLOW=0.1762E+02 BASIN STORAGE=0.4583E-04 PERCENT ERROR=-1.0

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R4-5 MANE 2.73 379.50 64.90 2.12 3.00 374.76 63.00 2.12

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1609E+02 EXCESS=0.0000E+00 OUTFLOW=0.1629E+02 BASIN STORAGE=0.4132E-04 PERCENT ERROR=-1.2

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R4-5 MANE 2.87 291.80 65.24 1.78 3.00 288.81 66.00 1.78

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1354E+02 EXCESS=0.0000E+00 OUTFLOW=0.1370E+02 BASIN STORAGE=0.4337E-04 PERCENT ERROR=-1.2

FOR STORM = 1 STORM AREA (SQ MI) =

R5-6 MANE 1.71 1430.15 73.26 1.84 3.00 1428.13 72.00 1.84

0.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8096E+02 EXCESS=0.0000E+00 OUTFLOW=0.8101E+02 BASIN STORAGE=0.7278E-01 PERCENT ERROR=

-0.1

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R5-6 MANE 1.72 1417.75 71.63 1.82 3.00 1417.68 72.00 1.82

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8047E+02 EXCESS=0.0000E+00 OUTFLOW=0.8049E+02 BASIN STORAGE=0.7282E-01 PERCENT ERROR=

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R5-6 MANE 1.83 1320.58 72.30 1.76 3.00 1310.29 72.00 1.76

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7757E+02 EXCESS=0.0000E+00 OUTFLOW=0.7762E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR=

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R5-6 MANE 1.92 1120.07 73.97 1.62 3.00 1117.54 75.00 1.62

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7160E+02 EXCESS=0.0000E+00 OUTFLOW=0.7164E+02 BASIN STORAGE=0.7274E-01 PERCENT ERROR=-0.2

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R5-6 MANE 2.16 837.38 77.35 1.39 3.00 834.70 75.00 1.39

 $\hbox{CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6127E+02 EXCESS=0.0000E+00 OUTFLOW=0.6143E+02 BASIN STORAGE=0.6818E-01 PERCENT ERROR=-0.44 BASIN STORAGE=0.44 BASIN STORAGE$ 

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R7-8 MANE 2.79 374.54 61.97 2.32 3.00 360.59 63.00 2.31

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8717E+01 EXCESS=0.0000E+00 OUTFLOW=0.9160E+01 BASIN STORAGE=0.1297E-03 PERCENT ERROR=-5.1

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R7-8 MANE 2.80 373.06 62.02 2.31 3.00 359.23 63.00 2.30

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8655E+01 EXCESS=0.0000E+00 OUTFLOW=0.9098E+01 BASIN STORAGE=0.1282E-03 PERCENT ERROR=-5.1

-5.1

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R7-8 MANE 3.00 300.60 62.65 2.18 3.00 299.77 63.00 2.18

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8267E+01 EXCESS=0.0000E+00 OUTFLOW=0.8591E+01 BASIN STORAGE=0.1511E-03 PERCENT ERROR=-3.9

FOR STORM = 4 STORM AREA (SO MI) = 16.00

R7-8 MANE 3.00 243.19 65.55 1.99 3.00 238.95 66.00 2.00

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7502E+01 EXCESS=0.0000E+00 OUTFLOW=0.7866E+01 BASIN STORAGE=0.1118E-03 PERCENT ERROR=

-4.8

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R7-8 MANE 2.82 178.83 67.24 1.61 3.00 176.29 66.00 1.61

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6168E+01 EXCESS=0.0000E+00 OUTFLOW=0.6362E+01 BASIN STORAGE=0.1260E-03 PERCENT ERROR=-3.1

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R8-9 MANE 1.32 1031.83 65.57 2.33 3.00 1013.13 66.00 2.33

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3691E+02 EXCESS=0.0000E+00 OUTFLOW=0.3702E+02 BASIN STORAGE=0.1702E-03 PERCENT ERROR=-0.3

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R8-9 MANE 1.33 1027.12 65.64 2.31 3.00 1010.29 66.00 2.32

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3666E+02 EXCESS=0.0000E+00 OUTFLOW=0.3678E+02 BASIN STORAGE=0.2024E-03 PERCENT ERROR=-0.3

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R8-9 MANE 1.45 913.69 66.38 2.21 3.00 911.34 66.00 2.21

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3510E+02 EXCESS=0.0000E+00 OUTFLOW=0.3519E+02 BASIN STORAGE=0.1735E-03 PERCENT ERROR=-0.3

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R8-9 MANE 1.48 772.14 65.64 2.03 3.00 769.23 66.00 2.03

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3216E+02 EXCESS=0.0000E+00 OUTFLOW=0.3228E+02 BASIN STORAGE=0.1954E-03 PERCENT ERROR=

-0.4

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R8-9 MANE 1.59 554.15 67.90 1.68 3.00 554.05 69.00 1.68

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2666E+02 EXCESS=0.0000E+00 OUTFLOW=0.2676E+02 BASIN STORAGE=0.1898E-03 PERCENT ERROR=-0.4

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT1 MANE 0.29 363.48 498.70 0.56 3.00 363.48 501.00 0.56

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5822E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR= 0.0

- - -

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

BSNRT1 MANE 0.29 363.42 498.84 0.56 3.00 363.42 501.00 0.56

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5819E+03 EXCESS=0.0000E+00 OUTFLOW=0.5819E+03 BASIN STORAGE=0.3289E-01 PERCENT ERROR=

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

BSNRT1 MANE 0.45 363.06 498.87 0.55 3.00 363.06 501.00 0.55

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

BSNRT1 MANE 0.38 362.38 500.88 0.55 3.00 362.38 501.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5767E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3287E-01 PERCENT ERROR= 0.0

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

BSNRT1 MANE 0.34 361.10 501.33 0.54 3.00 361.10 501.00 0.54

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5702E+03 BASIN STORAGE=0.3284E-01 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT2 MANE 0.44 363.48 501.11 0.56 3.00 363.48 501.00 0.56

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+03 EXCESS=0.0000E+00 OUTFLOW=0.5821E+03 BASIN STORAGE=0.3756E-01 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

BSNRT2 MANE 0.44 363.42 501.35 0.56 3.00 363.42 501.00 0.56

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

BSNRT2 MANE 0.36 363.06 501.42 0.55 3.00 363.06 501.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5800E+03 EXCESS=0.0000E+00 OUTFLOW=0.5799E+03 BASIN STORAGE=0.3755E-01 PERCENT ERROR= 0.0

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

BSNRT2 MANE 0.48 362.38 501.44 0.55 3.00 362.38 501.00 0.55

 $\hbox{CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5766E+03 EXCESS=0.0000E+00 OUTFLOW=0.5766E+03 BASIN STORAGE=0.3753E-01 PERCENT ERROR=0.0000E+000 OUTFLOW=0.5766E+000 OUTFLO$ 

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

BSNRT2 MANE 0.38 361.10 501.56 0.54 3.00 361.09 501.00 0.54

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5702E+03 EXCESS=0.0000E+00 OUTFLOW=0.5701E+03 BASIN STORAGE=0.3750E-01 PERCENT ERROR=

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

PMB-RT MANE 0.99 1000.00 299.31 0.55 3.00 1000.00 300.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

PMB-RT MANE 0.99 1000.00 299.31 0.55 3.00 1000.00 300.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SO MI) = 2.80

PMB-RT MANE 0.99 1000.00 299.31 0.55 3.00 1000.00 300.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

PMB-RT MANE 0.99 1000.00 299.31 0.55 3.00 1000.00 300.00 0.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3615E+03 EXCESS=0.0000E+00 OUTFLOW=0.3612E+03 BASIN STORAGE=0.1613E+00 PERCENT ERROR= 0.0

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

PMB-RT MANE 0.99 1000.00 299.31 0.55 3.00 1000.00 300.00 0.55

0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R10-11 MANE 1.62 1355.03 412.64 0.90 3.00 1354.77 411.00 0.90

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R10-11 MANE 1.56 1354.98 412.72 0.90 3.00 1354.72 411.00 0.90

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9479E+03 EXCESS=0.0000E+00 OUTFLOW=0.9473E+03 BASIN STORAGE=0.9166E+00 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R10-11 MANE 1.57 1354.58 412.38 0.90 3.00 1354.33 411.00 0.90

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R10-11 MANE 1.67 1353.83 412.54 0.90 3.00 1353.59 411.00 0.90

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9420E+03 EXCESS=0.0000E+00 OUTFLOW=0.9412E+03 BASIN STORAGE=0.9165E+00 PERCENT ERROR= 0.0

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R10-11 MANE 1.66 1352.40 412.19 0.89 3.00 1352.18 411.00 0.89

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9349E+03 EXCESS=0.0000E+00 OUTFLOW=0.9341E+03 BASIN STORAGE=0.9161E+00 PERCENT ERROR=

*** NORMAL END OF HEC-1 ***

# Flood Control District of Maricopa County Drainage Design Management System RAINFALL DATA Project Reference: 17114 - DATA

Page 1 9/27/2017

ID	Method	Duration	2 Yr	5 Yr	10 Yr	25 Yr	50 Yr	100 Yr
DEFAULT	NOAA14	5 MIN	0.258	0.349	0.418	0.511	0.583	0.656
	NOAA14	10 MIN	0.393	0.530	0.636	0.778	0.887	0.998
	NOAA14	15 MIN	0.487	0.658	0.789	0.965	1.099	1.237
	NOAA14	30 MIN	0.656	0.886	1.063	1.299	1.480	1.666
	NOAA14	1 HOUR	0.812	1.096	1.315	1.608	1.832	2.062
	NOAA14	2 HOUR	0.939	1.251	1.490	1.814	2.060	2.315
	NOAA14	3 HOUR	1.024	1.339	1.588	1.936	2.212	2.498
	NOAA14	6 HOUR	1.215	1.549	1.817	2.182	2.465	2.760
	NOAA14	12 HOUR	1.374	1.734	2.016	2.399	2.690	2.993
	NOAA14	24 HOUR	1.622	2.097	2.476	3.005	3.425	3.865

Web Soil Survey National Cooperative Soil Survey

8/23/2018 Page 1 of 3

USDA

# MAP INFORMATION

The soil surveys that comprise your AOI were mapped at

Please rely on the bar scale on each map sheet for map

Source of Map: Natural Resources Conservation Service measurements.

Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL:

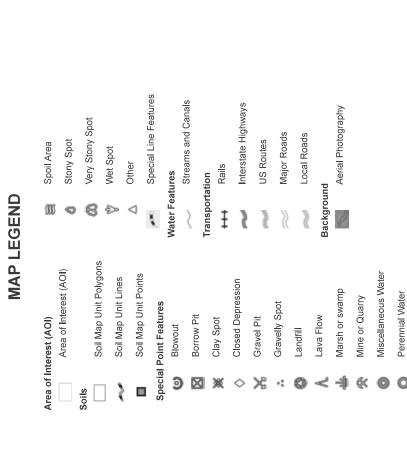
distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Aguila-Carefree Area, Arizona, Parts of Survey Area Data: Version 11, Sep 11, 2017 Maricopa and Pinal Counties Soil Survey Area:

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 31, 2014—Dec 7,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot


Slide or Slip

Sinkhole

Sodic Spot

Rock Outcrop

Saline Spot Sandy Spot



USDA

# **Map Unit Legend**

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
55	Gilman loams	768.3	30.2%
90	Momoli gravelly sandy loam, 1 to 5 percent slopes	1,778.8	69.8%
Totals for Area of Interest		2,547.2	100.0%

# Introduction

**PROJECT NAME:** Cavasson Master Plan Phase 3 Ultimate

 HUBBARD JOB # :
 18114-101

 PREPARED BY:
 TSW

 DATE:
 8/14/2020

The following spreadsheets were used to prepare input data for HEC-1 Green and Ampt Method described in The Drainage Design Manual for Maricopa County

Spreadsheet equations and assumptions were as follows:

SHEET 1: Summary of HEC-1 Input.

SHEET 2: Basin Geometry Drainage areas, watercourse length, slope, adjusted

slope, land type, and  $K_b$ .

Slopes were adjusted according to Figure 5.4.

Land type and  $K_b$  were determined using Table 5.1.

SHEET 3: Green-Ampt Parameters Soil characteristics, XKSAT, PSIF, DTHETA, and RTEMP.

Soil type and percentages determined from Flood Control

soils map.

XKSAT determined using Appendix A. If applicable a logrithmic weighted value was determined for multiple soils within a basin

according to the following equation:

 $\overline{XSAT} = ALOG \sum [\% SOIL TYPE(IN DECIMAL) \cdot LOG(XSAT)]$ 

Where: XSAT det er min ed from Appendix A

PSIF and DTHETA determined using Figure 4.3.

RTEMP is a weighted value based on soil data. The following

equation was used to determine the weighted value:

 $RTEMP = \sum \% SOIL TYPE \cdot [\% ROCK OUTCROP(IN DECIMAL)]$ 

These values may be used for predeveloped conditions.

SHEET 4: Land Use Parameters Land use categories, IA, and RTEMP. IA and RTEMP are

weighted based on percentage of land use. These values

may be used for post developement conditions.

SHEET 5: Retention Required This is the Proposed Condition Retention that will be required for

each SubBasin. It is calculated as the FIRST FLUSH per the

Development Agreement (Construction of Offsite Powerline Channel)

The Formula used is from COS: Vol = Cw*(P/12)*Area In HEC-1 this will be input as a Divert and not brought back The Divert will be labeled: DIVXXX, where XXX is the Basin ID

# Summary

**PROJECT NAME:** Cavasson Master Plan Phase 3 Ultimate

 HUBBARD JOB # :
 18114-101

 PREPARED BY:
 TSW

 DATE:
 9/16/2020

	SEE SHEET _ FOR DETERMINATION OF THE FOLLOWING INPUT											
Sheet# -	<b>→</b> 2	2	4	2	4	3	3	3	4			
	BASIN	WATERCOURSE		SLOPE					GREATER OF			
BASIN	AREA	LENGTH	Kb	ADJUSTED	IA		PSIF	XKSAT	RTEMP SOIL			
NUMBER	(Miles ² )	(Miles)	WEIGHTED	(Ft/Mile)	WEIGHTED	(in)	(in)	(in/hr)	OR WEIGHTED			
SB01-C	0.0270	0.3286	0.032	96	0.25	0.35	4.3	0.5778	45%			
SB01-B	0.0240	0.2750	0.033	115	0.25	0.35	4.3	0.5778	45%			
SB01-A	0.0610	0.2750	0.030	121	0.25	0.35	4.3	0.5778	45%			
SB02NE	0.0335	0.3873	0.032	72	0.25	0.35	4.3	0.5778	45%			
SB02NW	0.0193	0.1919	0.033	86	0.25	0.35	4.3	0.5778	45%			
SB02W	0.0571	0.3483	0.111	88	0.35	0.35	4.3	0.5111	0%			
SB02E	0.0440	0.3557	0.031	82	0.10	0.35	4.3	0.6222	80%			
SB8NW	0.0147	0.1445	0.034	83	0.10	0.35	4.3	0.6222	80%			
SB8NE	0.0150	0.1405	0.034	85	0.10	0.35	4.3	0.6222	80%			
SB8SW	0.0129	0.1383	0.034	116	0.10	0.35	4.3	0.6222	80%			
SB8SE	0.0131	0.1580	0.034	104	0.10	0.35	4.3	0.6222	80%			
SB08W	0.0589	0.3428	0.030	64	0.10	0.35	4.3	0.6222	80%			
SB07W	0.0468	0.3138	0.031	99	0.25	0.35	4.3	0.5778	45%			

SUM= 0.4272

# Basin Geometry

**PROJECT NAME:** Cavasson Master Plan Phase 3 Ultimate

 HUBBARD JOB #:
 18114-101

 PREPARED BY:
 TSW

 DATE:
 9/16/2020

**NOTE:** SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

							BASIN ELEVATION				SLOPE		
BASIN	BASIN AREA			WATER COURSE LENGTH			Low	Δ Elevation			ADJUSTED		
NUMBER	(Feet ² )	(ACRES)	(Miles ² )	(Feet)	(Miles)	(Feet)	(Feet)	(Feet)	(Ft/Ft)	(Ft/Mile)	(Ft/Mile)		
SB01-C	752,914	17.28	0.0270	1735	0.329	1681.0	1649.3	31.7	0.0183	96.47	96.5		
SB01-B	668,111	15.34	0.0240	1452	0.275	1668.5	1637.0	31.5	0.0217	114.55	114.5		
SB01-A	1,700,557	39.04	0.0610	1452	0.275	1659.3	1626.0	33.3	0.0229	121.09	121.1		
SB02NE	934,725	21.46	0.0335	2045	0.387	1652.0	1624.0	28.0	0.0137	72.29	72.3		
SB02NW	537,015	12.33	0.0193	1013	0.192	1640.5	1624.0	16.5	0.0163	86.00	86.0		
SB02W	1,592,151	36.55	0.0571	1839	0.348	1634.5	1604.0	30.5	0.0166	87.57	87.6		
SB02E	1,227,661	28.18	0.0440	1878	0.356	1633.2	1604.0	29.2	0.0155	82.10	82.1		
SB8NW	408,919	9.39	0.0147	763	0.145	1654.0	1642.0	12.0	0.0157	83.04	83.0		
SB8NE	417,750	9.59	0.0150	742	0.141	1654.0	1642.0	12.0	0.0162	85.39	85.4		
SB8SW	358,807	8.24	0.0129	730	0.138	1642.0	1626.0	16.0	0.0219	115.73	115.7		
SB8SE	365,480	8.39	0.0131	834	0.158	1642.5	1626.0	16.5	0.0198	104.46	104.5		
SB08W	1,641,602	37.69	0.0589	1810	0.343	1634.0	1612.0	22.0	0.0122	64.18	64.2		
SB07W	1,303,601	29.93	0.0468	1657	0.314	1685.0	1654.0	31.0	0.0187	98.78	98.8		

SUM= 11,909,293 273 0.4272

# Green-Ampt Parameters

**PROJECT NAME:** Cavasson Master Plan Phase 3 Ultimate

HUBBARD JOB # : 18114-101
PREPARED BY: TSW
DATE: 9/16/2020

**NOTE:** SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

						XKSAT				
				ROCK OUTCROP		ADJUSTED FOR				
BASIN	BASIN AREA	SOIL	% OF SOIL	% OF SOIL	XKSAT	60%	XKSAT	PSIF	DTHETA	RTEMP SOIL
NUMBER	(Miles ² )	TYPE	TYPE	IMPERVIOUS	(in/hr)	VEGATATION*	(in/hr)	(in)	(in)	IN SUBBASIN
SB01-C	0.0270	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB01-B	0.0240	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB01-A	0.0610	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02NE	0.0335	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02NW	0.0193	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%
SB02W	0.0571	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02E	0.0440	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8NW	0.0147	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8NE	0.0150	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8SW	0.0129	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB8SE	0.0131	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB08W	0.0589	90	100%	0%	0.4	0.622	0.622	4.3	0.35	0%
SB07W	0.0468	90	100%	0%	0.4	0.578	0.578	4.3	0.35	0%

^{*60%} vegetation was used for C2 land uses, MFR land uses used 50% and NDR used 35% vegetation

# Land Use Parameters

Cavasson Master Plan Phase 3 Ultimate 18114-101 TSW 9/16/2020

PROJECT NAME: HUBBARD JOB #: PREPARED BY: DATE:

NOTE: SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

BASIN	BASIN AREA	LAND	% OF	SUB AREA	LAND	K _b	K₅	IA FOR	IA	RTEMP FOR	RTEMP FOR	RTEMP	RTEMP MAX
NUMBER	ACRES	USE	BASIN	ACRES	TYPE		WEIGHTED	LAND USE	WEIGHTED	SOIL IN BASIN	LAND USE	WEIGHTED	
SB01-C	17.28	MFR	100%	17.28	Α	0.0323	0.0323	0.25	0.25	0%	45%	45%	45%
SB01-B	15.34	MFR	100%	15.34	Α	0.0326	0.0326	0.25	0.25	0%	45%	45%	45%
SB01-A	39.04	MFR	100%	39.04	Α	0.0301	0.0301	0.25	0.25	0%	45%	45%	45%
SB02NE	21.46	MFR	100%	21.46	Α	0.0317	0.0317	0.25	0.25	0%	45%	45%	45%
SB02NW	12.33	MFR	100%	12.33	Α	0.0332	0.0332	0.25	0.25	0%	45%	45%	45%
SB02W	36.55	NDR	100%	36.55	С	0.1109	0.1109	0.35	0.35	0%	0%	0%	0%
SB02E	28.18	C2	100%	28.18	Α	0.0309	0.0309	0.1	0.10	0%	80%	80%	80%
SB8NW	9.39	C2	100%	9.39	Α	0.0339	0.0339	0.1	0.10	0%	80%	80%	80%
SB8NE	9.59	C2	100%	9.59	Α	0.0339	0.0339	0.1	0.10	0%	80%	80%	80%
SB8SW	8.24	C2	100%	8.24	Α	0.0343	0.0343	0.1	0.10	0%	80%	80%	80%
SB8SE	8.39	C2	100%	8.39	Α	0.0342	0.0342	0.1	0.10	0%	80%	80%	80%
SB08W	37.69	C2	100%	37.69	Α	0.0301	0.0301	0.1	0.10	0%	80%	80%	80%
SB07W	29.93	MFR	100%	29.93	Α	0.0308	0.0308	0.25	0.25	0%	45%	45%	45%

SUM= 273 273

# Retention Required

PROJECT NAME: Cavasson Master Plan Phase 3 Ultimate

**HUBBARD JOB #:** 18114-101 PREPARED BY: TSWDATE: 9/16/2020

NOTE: SHADED HEADING INDICATES USER INPUT SPREADSHEET

					Volume	Required
BASIN	Е	BASIN AREA	4	Weighted C		
NUMBER	(Feet ² )	(ACRES)	(Miles ² )	Proposed Cond.	[acre-ft]	[ft ³ ]
SB01-C	752,914	17.28	0.0270	0.85	0.612	26,665.7
SB01-B	668,111	15.34	0.0240	0.85	0.543	23,662.3
SB01-A	1,700,557	39.04	0.0610	0.85	1.383	60,228.1
SB02NE	934,725	21.46	0.0335	0.85	0.760	33,104.9
SB02NW	537,015	12.33	0.0193	0.85	0.437	19,019.3
SB02W	1,592,151	36.55	0.0571	0.85	1.295	56,388.7
SB02E	1,227,661	28.18	0.0440	0.85	0.998	43,479.6
SB8NW	408,919	9.39	0.0147	0.85	0.332	14,482.5
SB8NE	417,750	9.59	0.0150	0.85	0.340	14,795.3
SB8SW	358,807	8.24	0.0129	0.85	0.292	12,707.8
SB8SE	365,480	8.39	0.0131	0.85	0.297	12,944.1
SB08W	1,641,602	37.69	0.0589	0.85	1.335	58,140.1
SB07W	1,303,601	29.93	0.0468	0.85	1.060	46,169.2
SUM=	11 909 293	273	0.43		9 683	421 787 5

#### Introduction

**PROJECT NAME:** Cavasson Master Plan Phase 3 Existing

 HUBBARD JOB # :
 18114-101

 PREPARED BY:
 TSW

 DATE:
 8/14/2020

The following spreadsheets were used to prepare input data for HEC-1 Green and Ampt Method described in The Drainage Design Manual for Maricopa County

Spreadsheet equations and assumptions were as follows:

SHEET 1: Summary of HEC-1 Input.

SHEET 2: Basin Geometry Drainage areas, watercourse length, slope, adjusted

slope, land type, and K_b.

Slopes were adjusted according to Figure 5.4.

Land type and  $K_b$  were determined using Table 5.1.

SHEET 3: Green-Ampt Parameters Soil characteristics, XKSAT, PSIF, DTHETA, and RTEMP.

Soil type and percentages determined from Flood Control

soils map.

XKSAT determined using Appendix A. If applicable a logrithmic weighted value was determined for multiple soils within a basin

according to the following equation:

 $\overline{XSAT} = ALOG \sum [\% SOIL TYPE(IN DECIMAL) \cdot LOG(XSAT)]$ 

Where: XSAT det er min ed from Appendix A

PSIF and DTHETA determined using Figure 4.3.

RTEMP is a weighted value based on soil data. The following

equation was used to determine the weighted value: RTEMP =  $\sum$  % SOIL TYPE · [% ROCK OUTCROP(IN DECIMAL)]

These values may be used for predeveloped conditions.

SHEET 4: Land Use Parameters Land use categories, IA, and RTEMP. IA and RTEMP are

weighted based on percentage of land use. These values

may be used for post developement conditions.

SHEET 5: Retention Required This is the Proposed Condition Retention that will be required for

each SubBasin. It is calculated as the FIRST FLUSH per the

Development Agreement (Construction of Offsite Powerline Channel)

The Formula used is from COS: Vol = Cw*(P/12)*Area In HEC-1 this will be input as a Divert and not brought back The Divert will be labeled: DIVXXX, where XXX is the Basin ID

# Summary

**PROJECT NAME:** Cavasson Master Plan Phase 3 Existing **HUBBARD JOB #:** 18114-101

PREPARED BY: 18114-101 TSW 9/16/2020

			SEE SHEET	FOR DETERN	MINATION OF	THE FOLL	OWING INP	UT	
Sheet# -	<b>→</b> 2	2	4	2	4	3	3	3	4
	BASIN	WATERCOURSE		SLOPE					GREATER OF
BASIN	AREA	LENGTH	Kb	ADJUSTED	IA	DTHETA	PSIF	XKSAT	RTEMP SOIL
NUMBER	(Miles ² )	(Miles)	WEIGHTED	(Ft/Mile)	WEIGHTED	(in)	(in)	(in/hr)	OR WEIGHTED
SB01-C	0.0270	0.3286	0.119	96	0.35	0.35	4.3	0.5111	0%
SB01-B	0.0240	0.2750	0.120	115	0.35	0.35	4.3	0.5111	0%
SB01-A	0.0610	0.2750	0.110	121	0.35	0.35	4.3	0.5111	0%
SB02NE	0.0335	0.3873	0.117	72	0.35	0.35	4.3	0.5111	0%
SB02NW	0.0193	0.1919	0.123	86	0.35	0.35	4.3	0.5111	0%
SB02W	0.0571	0.3483	0.111	88	0.35	0.35	4.3	0.5111	0%
SB02E	0.0440	0.3557	0.114	82	0.35	0.35	4.3	0.5111	0%
SB8NW	0.0147	0.1445	0.126	83	0.35	0.35	4.3	0.5111	0%
SB8NE	0.0150	0.1405	0.125	85	0.35	0.35	4.3	0.5111	0%
SB8SW	0.0129	0.1383	0.127	116	0.35	0.35	4.3	0.5111	0%
SB8SE	0.0131	0.1580	0.127	104	0.35	0.35	4.3	0.5111	0%
SB08W	0.0589	0.3428	0.030	64	0.10	0.35	4.3	0.5111	80%
SB07W	0.0468	0.3138	0.113	99	0.35	0.35	4.3	0.5111	0%

SUM= 0.4272

# Basin Geometry

PROJECT NAME: Cavasson Master Plan Phase 3 Existing HUBBARD JOB #: 18114-101

HUBBARD JOB # : 18114-101
PREPARED BY: TSW
DATE: 9/16/2020

NOTE: SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

						BAS	IN ELEVAT	ION		SLOPE	
BASIN	В	ASIN AREA	4	WATER COUR	SE LENGTH	High	Low	Δ Elevation			ADJUSTED
NUMBER	(Feet ² )	(ACRES)	(Miles ² )	(Feet)	(Miles)	(Feet)	(Feet)	(Feet)	(Ft/Ft)	(Ft/Mile)	(Ft/Mile)
SB01-C	752,914	17.28	0.0270	1735	0.329	1681.0	1649.3	31.7	0.0183	96.47	96.5
SB01-B	668,111	15.34	0.0240	1452	0.275	1668.5	1637.0	31.5	0.0217	114.55	114.5
SB01-A	1,700,557	39.04	0.0610	1452	0.275	1659.3	1626.0	33.3	0.0229	121.09	121.1
SB02NE	934,725	21.46	0.0335	2045	0.387	1652.0	1624.0	28.0	0.0137	72.29	72.3
SB02NW	537,015	12.33	0.0193	1013	0.192	1640.5	1624.0	16.5	0.0163	86.00	86.0
SB02W	1,592,151	36.55	0.0571	1839	0.348	1634.5	1604.0	30.5	0.0166	87.57	87.6
SB02E	1,227,661	28.18	0.0440	1878	0.356	1633.2	1604.0	29.2	0.0155	82.10	82.1
SB8NW	408,919	9.39	0.0147	763	0.145	1654.0	1642.0	12.0	0.0157	83.04	83.0
SB8NE	417,750	9.59	0.0150	742	0.141	1654.0	1642.0	12.0	0.0162	85.39	85.4
SB8SW	358,807	8.24	0.0129	730	0.138	1642.0	1626.0	16.0	0.0219	115.73	115.7
SB8SE	365,480	8.39	0.0131	834	0.158	1642.5	1626.0	16.5	0.0198	104.46	104.5
SB08W	1,641,602	37.69	0.0589	1810	0.343	1634.0	1612.0	22.0	0.0122	64.18	64.2
SB07W	1,303,601	29.93	0.0468	1657	0.314	1685.0	1654.0	31.0	0.0187	98.78	98.8

SUM= 11,909,293 273 0.4272

## Green-Ampt Parameters

PROJECT NAME: Cavasson Master Plan Phase 3 Existing HUBBARD JOB #: 18114-101

HUBBARD JOB #: 18114-101
PREPARED BY: TSW
DATE: 9/16/2020

**NOTE:** SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

						XKSAT				
				ROCK OUTCROP		ADJUSTED FOR				
BASIN	BASIN AREA	SOIL	% OF SOIL	% OF SOIL	XKSAT	35%	XKSAT	PSIF	DTHETA	RTEMP SOIL
NUMBER	(Miles ² )	TYPE	TYPE	IMPERVIOUS	(in/hr)	VEGATATION	(in/hr)	(in)	(in)	IN SUBBASIN
SB01-C	0.0270	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB01-B	0.0240	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB01-A	0.0610	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02NE	0.0335	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02NW	0.0193	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02W	0.0571	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB02E	0.0440	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8NW	0.0147	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8NE	0.0150	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8SW	0.0129	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB8SE	0.0131	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB08W	0.0589	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%
SB07W	0.0468	90	100%	0%	0.4	0.511	0.511	4.3	0.35	0%

Check: 0.4272

#### Land Use Parameters

Cavasson Master Plan Phase 3 Existing 18114-101 TSW 9/16/2020

PROJECT NAME: HUBBARD JOB #: PREPARED BY: DATE:

NOTE: SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

BASIN	BASIN AREA	LAND	% OF	SUB AREA	LAND	K _b	K₀	IA FOR	IA	RTEMP FOR	RTEMP FOR	RTEMP	RTEMP MAX
NUMBER	ACRES	USE	BASIN	ACRES	TYPE		WEIGHTED	LAND USE	WEIGHTED	SOIL IN BASIN	LAND USE	WEIGHTED	
SB01-C	17.28	NDR	100%	17.28	С	0.1191	0.1191	0.35	0.35	0%	0%	0%	0%
SB01-B	15.34	NDR	100%	15.34	С	0.1204	0.1204	0.35	0.35	0%	0%	0%	0%
SB01-A	39.04	NDR	100%	39.04	С	0.1102	0.1102	0.35	0.35	0%	0%	0%	0%
SB02NE	21.46	NDR	100%	21.46	С	0.1167	0.1167	0.35	0.35	0%	0%	0%	0%
SB02NW	12.33	NDR	100%	12.33	С	0.1227	0.1227	0.35	0.35	0%	0%	0%	0%
SB02W	36.55	NDR	100%	36.55	С	0.1109	0.1109	0.35	0.35	0%	0%	0%	0%
SB02E	28.18	NDR	100%	28.18	С	0.1138	0.1138	0.35	0.35	0%	0%	0%	0%
SB8NW	9.39	NDR	100%	9.39	С	0.1257	0.1257	0.35	0.35	0%	0%	0%	0%
SB8NE	9.59	NDR	100%	9.59	С	0.1255	0.1255	0.35	0.35	0%	0%	0%	0%
SB8SW	8.24	NDR	100%	8.24	С	0.1271	0.1271	0.35	0.35	0%	0%	0%	0%
SB8SE	8.39	NDR	100%	8.39	С	0.1269	0.1269	0.35	0.35	0%	0%	0%	0%
SB08W	37.69	C2	100%	37.69	Α	0.0301	0.0301	0.1	0.10	0%	80%	80%	80%
SB07W	29.93	NDR	100%	29.93	С	0.1131	0.1131	0.35	0.35	0%	0%	0%	0%

SUM= 273 273

## Retention Required

**PROJECT NAME:** Cavasson Master Plan Phase 3 Existing

 HUBBARD JOB #:
 18114-101

 PREPARED BY:
 TSW

 DATE:
 9/16/2020

**NOTE:** SHADED HEADING INDICATES USER INPUT SPREADSHEET DATA, OTHERS CALCULATED BY SPREADSHEET.

					Volume	Required	Γ
BASIN	E	BASIN AREA	4	Weighted C			Γ
NUMBER	(Feet ² )	(ACRES)	(Miles ² )	Proposed Cond.	[acre-ft]	[ft ³ ]	eet)
SB01-C	752,914	17.28	0.0270	0.85	0.612	26,665.7	Γ
SB01-B	668,111	15.34	0.0240	0.85	0.543	23,662.3	
SB01-A	1,700,557	39.04	0.0610	0.85	1.383	60,228.1	
SB02NE	934,725	21.46	0.0335	0.85	0.760	33,104.9	
SB02NW	537,015	12.33	0.0193	0.85	0.437	19,019.3	
SB02W	1,592,151	36.55	0.0571	0.85	1.295	56,388.7	
SB02E	1,227,661	28.18	0.0440	0.85	0.998	43,479.6	
SB8NW	408,919	9.39	0.0147	0.85	0.332	14,482.5	
SB8NE	417,750	9.59	0.0150	0.85	0.340	14,795.3	
SB8SW	358,807	8.24	0.0129	0.85	0.292	12,707.8	
SB8SE	365,480	8.39	0.0131	0.85	0.297	12,944.1	
SB08W	1,641,602	37.69	0.0589	0.85	1.335	58,140.1	
SB07W	1,303,601	29.93	0.0468	0.85	1.060	46,169.2	L
SUM=	11,909,293	273	0.43		9.683	421,787.5	_



* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

(916) 756-1104

XXXXXX XXXXX Χ Χ Χ XXΧ Χ Χ Χ Х Χ Χ Х XXXXXX XXXX XXXXX Χ Χ Χ Χ х х Χ Χ Χ Χ XXXXXXX XXXXX Х Х XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1

LINE	ID.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10	
1	ID	c	ROSS ROAL	OS EAST	DRAINAGE	INFRASTI	RUCTURE					
2	ID	Р	OWERLINE	CORRIDO	R							
3	ID	R	RESERVE R	OUTING O	F BASIN	53R N OF	SR101 &	E OF HA	YDEN RD,	SCOTTSD	ALE, AZ	
4	ID	I	NFLOW HY	DROGRAPH:	S FROM T	HE PPSADI	MS DRAFT	FLO-2D I	MODEL:			
5	ID	1	0-YR, 6-H	IR BASE V	N/WALLS (	(W/ MODIF	ICATIONS	TO CONT	TAIN POWE	ERLINE AN	ND	
6	ID		PIMA R	DAD FLOW	S.							
7	ID											
8	ID	P	REPARED	BY: T.Y.	LIN INTE	RNATIONA	L; LAST I	MODIFIED	: 09/14			
9	ID	M	ODELERS:	RK, MW								
10	ID											
11	ID	R	REVISED B	Y: HUBBA	RD ENGIN	EERING;	LAST MOD	IFIED: 1	1/14/18			
12	ID	M	ODELERS:	MSW, ES								
13	ID	R	EVISIONS	NOTED W	TH HE							
14	ID		ULTIMA	TE CONDI	TION MOD	EL,WITH	POWERLIN	E AND BAS	SIN 53R	AND		
15	ID		THIS I	S THE PO	ST-DEVEL	OPMENT M	DDEL WIT	H DEVELO	PMENT N	OF LEGAC	Υ	
16	ID		UPDATE	) INFLOW	HYDROGR.	APHS TO I	REFLECT :	15MIN IN	С.			
17	ID											
18	IT	3	0	0	1000							
19	IN	15										
20	IO	5										
	*DIA	AGRAM										
	*											
21	JD	1.817	0.0001									
22	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074	
23	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950	
24	PC	0.962	0.972	0.983	0.991	1.000						
25	JD	1.806	0.5000									
26	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.074	
27	PC	0.087	0.099	0.118	0.138	0.216	0.377	0.834	0.911	0.931	0.950	
28	PC	0.962	0.972	0.983	0.991	1.000						
29	JD	1.772	2.8									
30	PC	0.000	0.009	0.016	0.025	0.034	0.042	0.051	0.059	0.068	0.077	
31	PC	0.088	0.101	0.121	0.164	0.253	0.451	0.694	0.836	0.900	0.938	

```
PC
                    0.950
                            0.963
                                     0.975
                                             0.988
  33
               KK
                   76THST
                          76TH ST CHANNEL HYDROGRAPH FROM PINNACLE PEAK SOUTH ADMS
  34
               KM
  35
               KM
                          10-YR, 6-HR, DERIVED FROM 100-YR DATA HYDROGRAPHS
  36
               ВА
  37
               QI
                        a
                                 a
                                         a
                                                 a
                                                          a
                                                                  0
                                                                                  a
                                                                                                   0
  38
                                      0.01
                                              0.01
                                                       0.06
                                                               0.58
                                                                       8.13
                                                                               27.04
                                                                                       31.94
                                                                                                31.1
               QI
                        0
                                 0
  39
                                                                               6.76
                                                                                        6.13
               QI
                    22.07
                             17.10
                                     13.79
                                             11.20
                                                      9.48
                                                               8.22
                                                                       7.44
                                                                                                5.32
  40
               QI
                     4.66
                             4.31
                                      3.73
                                              3.05
                                                       2.71
                                                               2.44
                                                                       2.18
                                                                               2.27
                                                                                        1.51
                                                                                                1.61
  41
               QI
                     1.48
                             1.38
                                      1.29
                                              1.17
                                                       1.01
                                                               0.96
                                                                       0.97
                                                                               0.77
                                                                                        0.84
                                                                                                0.86
  42
               QΙ
                     0.70
                              0.68
                                      0.67
                                              0.62
                                                       0.58
                                                               0.55
                                                                       0.53
                                                                               0.51
                                                                                        0.49
                                                                                                0.46
  43
               QI
                     0.44
                              0.43
                                      0.42
                                              0.40
                                                       0.38
                                                               0.37
                                                                       0.35
                                                                               0.34
                                                                                        0.33
                                                                                                0.31
  44
                     0.30
                              0.29
                                      0.28
               QI
                                              HEC-1 INPUT
                                                                                                        PAGE 2
LINE
               ID......1.....2.....3.....4.....5.....6.....7.....8.....9......10
                    SB01A
  45
               KK
                            BASIN
 46
               BA
                    0.061
  47
               РΒ
                    2.721
  48
               PC
                    0.000
                             0.008
                                     0.016
                                             0.025
                                                     0.033
                                                              0.041
                                                                      0.050
                                                                              0.058
                                                                                       0.066
                                                                                               0.075
  49
               PC
                    0.087
                             0.099
                                     0.119
                                             0.150
                                                      0.234
                                                              0.413
                                                                      0.766
                                                                              0.875
                                                                                       0.916
                                                                                               0.944
  50
               PC
                    0.956
                             0.968
                                     0.979
                                             0.990
                                                      1.000
  51
               I G
                     0.25
                             0.25
                                      4.03
                                              0.56
                                                         45
  52
               UC
                    0.439
                             0.231
  53
               UA
                        0
                               3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                        90.0
                                                                                                96.0
  54
               UΑ
                      100
  55
               KK
                    SB01A DIVERT
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB01A
  56
               KM
  57
               ΚM
                          FIRST FLUSH VOL = 1.383 AC-FT
               DT
                   RET01A
  58
                            1.383
  59
               DI
                      0.0
                              10.0
                                      20.0
                                              30.0
                                                       40.0
                                                               50.0
                                                                       60.0
                                                                               100.0
                                                                                       150.0
                                                                                               200.0
                                                      40.0
                                                               50.0
                                                                              100.0
                      0.0
                              10.0
                                              30.0
                                                                       60.0
                                                                                       150.0
                                                                                               200.0
  60
               DQ
                                      20.0
                     CP-1 COMBINE
  61
               KK
                         LEGACY BLVD AND 76TH ST (MILLER RD CHANNEL)
  62
               KM
               HC
                        2 0.301
  63
  64
               KK
                   R1A-2W ROUTE
  65
               KM
                         ROUTE CP-1 TO CP-2W
                                                       TRAP
                                                              2.000
                                                                       0.00
  66
               \mathsf{RK}
                     1114 0.0200 0.018
  67
               KK
                   SB02NW BASIN
  68
               ΚM
                          BASIN SB02E WAS SPLIT INTO SUB BASINS NORTH OF CAVASSON
  69
               KM
                          AND SOUTH OF CAVASSON
  70
               BA
                   0.0193
  71
               LG
                     0.25
                              0.25
                                      4.03
                                              0.56
                                                         45
  72
               UC
                    0.211
                             0.167
  73
               UΑ
                        0
                               3.0
                                       5.0
                                               8.0
                                                       12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                        90.0
                                                                                                96.0
  74
               IJΔ
                      100
  75
                   SB02NW DIVERT
               KK
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB02NW
  76
               ΚM
  77
                          FIRST FLUSH VOL = 0.437 AC-FT
               KM
  78
               DT
                   RET2NW
                            0.437
  79
                      0.0
                               5.0
                                      10.0
                                              15.0
                                                       20.0
                                                               25.0
                                                                       30.0
                                                                               35.0
                                                                                        40.0
                                                                                                45.0
               DI
  80
               DI
                     50.0
                              55.0
                                      60.0
                                              65.0
                                                       70.0
                                                               80.0
                                                                       90.0
                                                                               100.0
                                                                                       150.0
                                                                                               200.0
               DQ
                      0.0
                              5.0
                                      10.0
                                                               25.0
                                                                       30.0
                                                                               35.0
                                                                                        40.0
  81
                                              15.0
                                                       20.0
                                                                                                45.0
  82
               DQ
                     50.0
                              55.0
                                      60.0
                                              65.0
                                                       70.0
                                                               80.0
                                                                       90.0
                                                                               100.0
                                                                                       150.0
                                                                                               200.0
                                              HEC-1 INPUT
                                                                                                        PAGE 3
LINE
               ID.....1....2....3....4....5....6....7....8....9....10
  83
               KK
                   CP-02W COMBINE
               KM
                         COMBINE ROUTE FROM 1A-2W WITH NEW SUB BASIN SB02NW
  84
  85
               HC
                            0.305
```

1.000

32

1

1

86	KK	R2W-2	ROUTE									
87	RK		0.0140	0.018		TRAP	2.000	0.00				
88		2500	0.02.0	0.020			_,,,,	0.00				
00	*											
	4											
89	KK	SB01C	BASIN									
90	BA	0.027										
91	LG	0.25	0.25	4.03	0.56	45						
92	UC	0.264	0.272									
93	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
94			5.0	5.0	0.0	12.0	20.0	45.0	73.0	50.0	50.0	
94	UA *	100										
	*											
95	KK	SB01C	DIVERT									
96	KM	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB01C				
97	KM	F	IRST FLUS	SH VOL =	0.612 AC	-FT						
98	DT	RET01C	0.612									
99	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
100	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
100	*	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	150.0	200.0	
	•											
404	1414	D4 C 4 D	DOUTE									
101	KK	R1C-1B	ROUTE									
102	RK	542	0.005	0.013		CIRC	5.000					
	*											
103	KK	SB01B	BASIN									
104	BA	0.024										
105	LG	0.024	0.25	4.03	0.56	45						
				4.03	0.50	45						
106	UC	0.234	0.224									
107	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
108	UA	100										
	*											
109	KK	SB01B	DIVERT									
110	KM		IVERSION	OF FTRST	FLUSH V	OLUME FO	OR RASTN	SB01B				
							JI DAJIN	JUOID				
111	KM		IRST FLUS	SH VUL =	0.545 AC	FI						
112	DT	RET01B	0.543									
113	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
114	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*											
115		CP-01B	COMBINE									
115 116	KK	CP-01B		OUTE EROM	1 1C-1R la	JTTH NEW	SUR RAST	'N SR01R				
116	KK KM	C	OMBINE RO	OUTE FROM	1 1C-1B W	JITH NEW	SUB BASI	N SB01B				
	KK KM HC		OMBINE RO	OUTE FROM	1 1C-1B W	VITH NEW	SUB BASI	N SB01B				
116	KK KM	C	OMBINE RO	DUTE FROM			SUB BASI	N SB01B				DAGE 4
116	KK KM HC	C	OMBINE RO	OUTE FROM	1 1C-1B W HEC-1		SUB BASI	N SB01B				PAGE 4
116 117	KK KM HC *	2 2	OMBINE RO		HEC-1	INPUT						PAGE 4
116	KK KM HC *	2 2	OMBINE RO		HEC-1	INPUT			8.	9.	10	PAGE 4
116 117	KK KM HC *	2 2	OMBINE RO		HEC-1	INPUT			8.	9.	10	PAGE 4
116 117 LINE	KK KM HC *	1.	OMBINE RO 0.051		HEC-1	INPUT			8.	9.	10	PAGE 4
116 117	KK KM HC *	2 2	OMBINE ROUTE	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE	KK KM HC *	1.	OMBINE RO 0.051		HEC-1	INPUT			8.	9.	10	PAGE 4
116 117 LINE 118	KK KM HC * ID.	1. R1B-2N	OMBINE ROUTE	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE 118	KK KM HC * ID. KK RK	1. R1B-2N	OMBINE ROUTE	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE 118 119	KK KM HC * ID. KK RK *	C 21.  R1B-2N 2144	OMBINE ROUTE 0.008	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE 118 119	KK KM HC * ID. KK RK * KK	C 21. R1B-2N 2144 SB02NE	OMBINE ROUTE	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE 118 119	KK KM HC * ID. KK RK * KK BA	R1B-2N 2144 SB02NE 0.0335	ROMBINE ROUTE 0.0512. ROUTE 0.008 BASIN	0.013	HEC-1	INPUT5. CIRC	6		8.	9.	10	PAGE 4
116 117 LINE 118 119 120 121 122	KK KM HC * ID. KK RK * KK BA LG	R1B-2N 2144 SB02NE 0.0335 0.25	ROMBINE ROUTE 0.008  BASIN 0.25	3	HEC-1	INPUT	6		8.	9.	10	PAGE 4
116 117 LINE 118 119 120 121 122 123	KK KM HC * ID. KK RK * KK BA LG UC	R1B-2N 2144 SB02NE 0.0335 0.25 0.314	ROMBINE ROUTE 0.008  BASIN 0.25 0.336	3 0.013 4.03	HEC-1 4	INPUT5. CIRC	6 5.000	7.				PAGE 4
116 117 LINE 118 119 120 121 122 123 124	KK KM HC * ID. KK RK * KK BA LG UC UA	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0	ROMBINE ROUTE 0.008  BASIN 0.25	0.013	HEC-1	INPUT5. CIRC	6		75.0	90.0	10	PAGE 4
116 117 LINE 118 119 120 121 122 123	KK KM HC * ID. KK RK * KK BA LG UC UA UA	R1B-2N 2144 SB02NE 0.0335 0.25 0.314	ROMBINE ROUTE 0.008  BASIN 0.25 0.336	3 0.013 4.03	HEC-1 4	INPUT5. CIRC	6 5.000	7.				PAGE 4
116 117 LINE 118 119 120 121 122 123 124	KK KM HC * ID. KK RK * KK BA LG UC UA	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0	ROMBINE ROUTE 0.008  BASIN 0.25 0.336	3 0.013 4.03	HEC-1 4	INPUT5. CIRC	6 5.000	7.				PAGE 4
116 117 LINE 118 119 120 121 122 123 124	KK KM HC * ID. KK RK * KK BA LG UC UA UA	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0	ROMBINE ROUTE 0.008  BASIN 0.25 0.336	3 0.013 4.03	HEC-1 4	INPUT5. CIRC	6 5.000	7.				PAGE 4
116 117 LINE 118 119 120 121 122 123 124	KK KM HC * ID. KK RK * KK BA LG UC UA UA	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0	ROMBINE ROUTE 0.008  BASIN 0.25 0.336	3 0.013 4.03	HEC-1 4	INPUT5. CIRC	6 5.000	7.				PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC * ID. KK RK * KK BA LG UC UA UA * KK	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0	COMBINE RO 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT	3 0.013 4.03 5.0	HEC-1 4 0.56 8.0	INPUT5.  CIRC 45 12.0	6 5.000 20.0	43.0				PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA VA *  KK KM	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION	3 0.013 4.03 5.0  OF FIRST	HEC-1 4 0.56 8.0	INPUT5. CIRC 45 12.0	6 5.000 20.0	43.0				PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA VA  KK KM KM	SB02NE 0.0335 0.25 0.314 0 100 SB02NE	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION FIRST FLUS	3 0.013 4.03 5.0  OF FIRST	HEC-1 4 0.56 8.0	INPUT5. CIRC 45 12.0	6 5.000 20.0	43.0				PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760	3 0.013 4.03 5.0  OF FIRST	HEC-1 4 0.56 8.0 FLUSH V	INPUT5. CIRC 45 12.0 /OLUME FO	6 5.000 20.0 DR BASIN	43.0 SBØ2NE	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION PRIVERSION PRIV	0.013  4.03  5.0  OF FIRST SH VOL =  20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC	INPUT5.  CIRC 45 12.0  /OLUME FO	6 5.000 20.0 DR BASIN 50.0	43.0 SBØ2NE 60.0	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI DQ	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760	3 0.013 4.03 5.0  OF FIRST	HEC-1 4 0.56 8.0 FLUSH V	INPUT5. CIRC 45 12.0 /OLUME FO	6 5.000 20.0 DR BASIN	43.0 SBØ2NE	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION PRIVERSION PRIV	0.013  4.03  5.0  OF FIRST SH VOL =  20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC	INPUT5.  CIRC 45 12.0  /OLUME FO	6 5.000 20.0 DR BASIN 50.0	43.0 SBØ2NE 60.0	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI DQ	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION PRIVERSION PRIV	0.013  4.03  5.0  OF FIRST SH VOL =  20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC	INPUT5.  CIRC 45 12.0  /OLUME FO	6 5.000 20.0 DR BASIN 50.0	43.0 SBØ2NE 60.0	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI DQ	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE FRET2NE 0.0 0.0	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION PRIVERSION PRIV	0.013  4.03  5.0  OF FIRST SH VOL =  20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC	INPUT5.  CIRC 45 12.0  /OLUME FO	6 5.000 20.0 DR BASIN 50.0	43.0 SBØ2NE 60.0	75.0	90.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125 126 127 128 129 130 131	KK KM HC *  ID.  KK RK *  KK BA LG UC UA UA *  KK KM KM DT DI DQ *  KK	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE PRET2NE 0.0 0.0	ROMBINE ROUTE 0.051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760 10.0 10.0  COMBINE	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125 126 127 128 129 130 131	KK KM HC *  ID.  KK RK *  KK BA LG UCA UA *  KK KM DT DI DQ *  KK KM	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE PRET2NE 0.0 0.0	COMBINE ROUTE 0.0051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760 10.0 10.0 COMBINE ROMBINE R	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125 126 127 128 129 130 131	KK KM HC *  ID.  KK RK *  KK BA LG UC UA *  KK KM KM DT DI DQ *  KK KM HC	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE PRET2NE 0.0 0.0	ROMBINE ROUTE 0.0051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760 10.0 10.0  COMBINE COMBINE ROUBEINE RO	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE 118 119 120 121 122 123 124 125 126 127 128 129 130 131	KK KM HC *  ID.  KK RK *  KK BA LG UCA UA *  KK KM DT DI DQ *  KK KM	R1B-2N 2144 SB02NE 0.0335 0.25 0.314 0 100 SB02NE PRET2NE 0.0 0.0	COMBINE ROUTE 0.0051  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION CIRST FLUE 0.760 10.0 10.0 COMBINE ROMBINE R	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UAA *  KK KM MDT DI DQ *  KK KM HC *	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE OMBINE RO 0.085	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UA WA *  KK KM KM DT DI DQ *  KK KM HC *  KK KM K	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N CP-02N C2 R2N-2	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE ROUTE 0.085  ROUTE	0.013 4.03 5.0  OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FO  FT   40.0   40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SBØ2NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UA *  KK KM CT DI DQ *  KK KM HC *  KK RK	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE OMBINE RO 0.085	0.013  4.03  5.0  OF FIRST SH VOL =  20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FOO C-FT 40.0 40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SB02NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UA WA *  KK KM KM DT DI DQ *  KK KM HC *  KK KM K	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N CP-02N C2 R2N-2	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE ROUTE 0.085  ROUTE	0.013 4.03 5.0  OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FO  FT   40.0   40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SBØ2NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UA *  KK KM CT DI DQ *  KK KM HC *  KK RK	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N CP-02N C2 R2N-2	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE ROUTE 0.085  ROUTE	0.013 4.03 5.0  OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FO  FT   40.0   40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SBØ2NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4
116 117 LINE  118 119  120 121 122 123 124 125  126 127 128 129 130 131  132 133 134	KK KM HC *  ID.  KK RK *  KK BA LG UC UA *  KK KM CT DI DQ *  KK KM HC *  KK RK	SB02NE 0.0335 0.25 0.314 0 100 SB02NE 0.00 CP-02N CP-02N C2 R2N-2	COMBINE ROUTE 0.051 2.  ROUTE 0.008  BASIN 0.25 0.336 3.0  DIVERT DIVERSION EIRST FLUE 0.760 10.0 10.0  COMBINE ROUTE 0.085  ROUTE	0.013 4.03 5.0  OF FIRST SH VOL = 20.0 20.0	HEC-1 4 0.56 8.0 FLUSH V 0.760 AC 30.0 30.0	INPUT5.  CIRC 45 12.0  /OLUME FO  FT   40.0   40.0	6 5.000 20.0 DR BASIN 50.0 50.0	43.0 SBØ2NE 60.0 60.0	75.0 100.0 100.0	90.0 150.0 150.0	96.0	PAGE 4

LINE TD12345678910  155 KK CP-02 COMBINE 156 HC 4 0.1816  **  157 KK R2-3 ROUTE 158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD 159 RK 1260 0.0015 0.030 TRAP 92 4  **  160 KK S803 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  **  166 KK CP-03 COMBINE 167 HC 2  **  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  **  171 KK S805 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  **  177 KK CP-5A COMBINE 178 HC 2  **  179 KK S807W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 181 UG 0.250 0.178 183 UA 0 3.0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  181 LG 0.25 0.25 4.93 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  185 KK S807W DIVERT 186 KM DIVERTION OF FIRST FLUSH VOLUME FOR BASIN S807W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOTY I.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
140	138	ВА	0.040										
141 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 142 UA 100 8  143 K SB02E DIVERT DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB02E 144 MM FIRST FRUSH VOL 8 .0.998 AC-FT 146 DT RETZE 0.998 147 DT 0.0 10.0 20.0 30.0 46.0 50.0 60.0 100.0 150.0 200.0 140 DT 0.0 10.0 20.0 30.0 46.0 50.0 60.0 100.0 150.0 200.0 140 DT 0.0 10.0 20.0 30.0 46.0 50.0 60.0 100.0 150.0 200.0 140 DT 0.0 10.0 20.0 30.0 46.0 50.0 60.0 100.0 150.0 200.0 140 DT 0.0 150 DT 0.0 150 DT 0.0 10.0 150 DT 0.0					4.03	0.61	80						
142 UA 180   **  143					г о	0.0	12.0	20.0	42.0	75.0	00.0	06.0	
# 143				3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
144 KM DIVERSION OF FIRST FILISH VOLUME FOR BASIN SB0ZE  146 DT RETZE 0.998  147 OI 0.0 10.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  148 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  149 KK SB0ZM BASIN  150 BA 0.0571  151 LG 0.35 0.35 4.33 0.51 0  152 UC 0.686 0.535  153 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  154 UA 100  155 KK CP-02 COMBINE  156 KK CP-02 COMBINE  157 KK R2-3 ROUTE  158 KM MILLER RD CHANNEL FROM SR 101L FREEBAY TO MAYO BLVD  159 RK 1260 0.0015 0.030 TRAP 92 4  160 KK SB0Z BASIN  161 BA 0.048  162 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.204  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 LG NA DESCRIPTION OF TRAP 98 4  166 KK CP-03 COMBINE  167 KK R2-3 ROUTE  167 KK R2-3 ROUTE  168 KK R3-5 ROUTE  169 RM STLEER RD CHANNEL FROM SR 101L FREEBAY TO MAYO BLVD  160 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.204  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 UA 100  167 KC CP-03 COMBINE  167 KK CP-03 COMBINE  167 KK CP-03 COMBINE  168 KK R3-5 ROUTE  169 RM STLEER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 KK CP-03 COMBINE  171 KK SB0S BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100 3.0 0.50 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  177 KK CP-5A COMBINE  178 HC 2  179 KK SB0SW BASIN  188 DA 0.868 0.25 4.63 0.56 45  181 UA 100 3.0 0.50 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  189 UC 0.250 0.1787  189 UC 0.250 0.1787  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	142		100										
144 KM DIVERSION OF FIRST FILISH VOLUME FOR BASIN SB0ZE  146 DT RETZE 0.998  147 OI 0.0 10.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  148 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  149 KK SB0ZM BASIN  150 BA 0.0571  151 LG 0.35 0.35 4.33 0.51 0  152 UC 0.686 0.535  153 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  154 UA 100  155 KK CP-02 COMBINE  156 KK CP-02 COMBINE  157 KK R2-3 ROUTE  158 KM MILLER RD CHANNEL FROM SR 101L FREEBAY TO MAYO BLVD  159 RK 1260 0.0015 0.030 TRAP 92 4  160 KK SB0Z BASIN  161 BA 0.048  162 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.204  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 LG NA DESCRIPTION OF TRAP 98 4  166 KK CP-03 COMBINE  167 KK R2-3 ROUTE  167 KK R2-3 ROUTE  168 KK R3-5 ROUTE  169 RM STLEER RD CHANNEL FROM SR 101L FREEBAY TO MAYO BLVD  160 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.204  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 UA 100  167 KC CP-03 COMBINE  167 KK CP-03 COMBINE  167 KK CP-03 COMBINE  168 KK R3-5 ROUTE  169 RM STLEER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 KK CP-03 COMBINE  171 KK SB0S BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100 3.0 0.50 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  177 KK CP-5A COMBINE  178 HC 2  179 KK SB0SW BASIN  188 DA 0.868 0.25 4.63 0.56 45  181 UA 100 3.0 0.50 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  189 UC 0.250 0.1787  189 UC 0.250 0.1787  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  189 UC 0.00 0.00 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
145					05 5506	T 51.11611 N	(OLUME E	D DAGTN	CDOOF				
146								OK BASIN	SB02E				
147 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  *  149					SH VUL =	0.336 AC	FI						
149					20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
149	148		0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
150 BA 0.0571 151 LG 0.35 0.35 4.33 0.51 0 152 UC 0.686 0.535 153 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 154 UA 1000  * HEC-1 INPUT PAGE  LINE ID		*											
150 BA 0.0571 151 LG 0.35 0.35 4.33 0.51 0 152 UC 0.686 0.535 153 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 154 UA 1000  * HEC-1 INPUT PAGE  LINE ID	149	KK	SB02W	BASIN									
152 UC 0.686 0.535 153 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 154 UA 100  * HEC-1 INPUT PAGE  LINE ID													
153 UA 100 100 100 100 100 100 100 100 100 10					4.33	0.51	0						
HEC-1 INPUT					ГО	0 0	12 0	20.0	42 A	75.0	00.0	06.0	
# HEC-1 INPUT PAGE  LINE ID				3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	90.0	
LINE ID12345678910  155													
155 KK CP-02 COMBINE 156 HC 4 0.1816 *  157 KK R2-3 ROUTE 158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD 159 RK 1260 0.0015 0.030 TRAP 92 4  *  160 KK S803 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  *  166 KK CP-03 COMBINE 167 HC 2  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  *  171 KK S805 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  *  179 KK S807W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 181 UG 0.259 0.178 183 UA 0 3.0 5.0 16.0 30.0 65.0 77.0 84.0 77.0 90.0 96.0  184 UA 100  *  185 KK S807W BASIN 186 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK S807W DIVERT 186 KM DIVERTION OF FIRST FLUSH VOLUME FOR BASIN S807W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOWN 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0						HEC-1	INPUT						PAGE 5
155 KK CP-02 COMBINE 156 HC 4 0.1816 *  157 KK R2-3 ROUTE 158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD 159 RK 1260 0.0015 0.030 TRAP 92 4  *  160 KK S803 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  *  166 KK CP-03 COMBINE 167 HC 2  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  *  171 KK S805 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  *  179 KK S807W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 181 UG 0.259 0.178 183 UA 0 3.0 5.0 16.0 30.0 65.0 77.0 84.0 77.0 90.0 96.0  184 UA 100  *  185 KK S807W BASIN 186 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK S807W DIVERT 186 KM DIVERTION OF FIRST FLUSH VOLUME FOR BASIN S807W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOWN 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	LTNE	TD	1	2	2	1	5	6	7	Q	۵	10	
156 HC 4 0.1816  *  157 KK R2-3 ROUTE  158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD  159 RK 1260 0.0015 0.030 TRAP 92 4  160 KK SB03 BASIN  161 BA 0.048  162 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.294  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 UA 100 **  166 KK CP-03 COMBINE  167 HC 2  *  168 KK R3-5 ROUTE  169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 RK 2396 0.0015 0.03 TRAP 98 4   171 KK S805 BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 100 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE  178 HC 2  179 KK SB07W BASIN  180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.259 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  FIRST	LINE	10.		2 .		4			/			10	
156 HC 4 0.1816  *  157 KK R2-3 ROUTE  158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD  159 RK 1260 0.0015 0.030 TRAP 92 4  160 KK SB03 BASIN  161 BA 0.048  162 LG 0.15 0.25 4.50 0.47 55  163 UC 0.364 0.294  164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  165 UA 100 **  166 KK CP-03 COMBINE  167 HC 2  *  168 KK R3-5 ROUTE  169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 RK 2396 0.0015 0.03 TRAP 98 4   171 KK S805 BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 100 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE  178 HC 2  179 KK SB07W BASIN  180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.259 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  FIRST													
**  157 KK R2-3 ROUTE 158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD 159 RK 1260 0.0015 0.030 TRAP 92 4  **  160 KK SB03 BASIN 161 BA 0.048 162 LC 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  **  166 KK CP-03 COMBINE 167 HC 2  **  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 100  **  176 UA 100  **  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07N BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.259 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  **  185 KK SB07N DIVERT 186 KM FIRST FLUSH VOLUME FOR BASIN SB07N FIRST FLUSH VOLUME FOR BASIN SB07N 187 KM FIRST FLUSH VOLUME FOR BASIN SB07N 187 KM FIRST FLUSH VOLUME FOR BASIN SB07N 188 DT RETOWN 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
157 KK R2-3 ROUTE 158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD 159 RK 1260 0.0015 0.030 TRAP 92 4  160 KK SB03 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100 *  166 KK CP-03 COMBINE 167 HC 2  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100 *  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W FIRST FLUSH VOL = 1.060 AC-FT 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOWN 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	156		4	0.1816									
158 KM MILLER RD CHANNEL FROM SR 101L FREEWAY TO MAYO BLVD  *  160 KK SB03 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  *  166 KK CP-03 COMBINE 167 HC 2  *  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07W BASIN 180 BA 0.468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOTW 1.060 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
160	157	KK	R2-3	ROUTE									
*  160 KK S803 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  *  166 KK CP-03 COMBINE 167 HC 2  *  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK S805 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  179 KK S807W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.259 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK S807W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN S807W 187 KM FIRST FLUSH VOLUME FOR BASIN S807W 188 DT RETOTW 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0						FROM SR				/D			
160 KK SB03 BASIN 161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100 *  166 KK CP-03 COMBINE 167 HC 2 *  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 100 *  177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOLUME FOR BASIN SB07W 188 DT RETOTW 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	159		1260	0.0015	0.030		TRAP	92	4				
161 BA 0.048 162 LG 0.15 0.25 4.50 0.47 55 163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100 *  166 KK CP-03 COMBINE 167 HC 2  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0.527 0.226 176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM DIVERTS FLUSH VOLUME FOR BASIN SB07W FIRST FLUSH VOLUME FOR BASIN SB07W FIRST FLUSH VOL = 1.066 AC-FT 188 DT RET07W 1.660 189 DT 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
162	160	KK	SB03	BASIN									
163 UC 0.364 0.294 164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 165 UA 100  *  166 KK CP-03 COMBINE 167 HC 2  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.550 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOLUME FOR BASIN SB07W 188 DT RET07W 1.060 189 DT 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 189 DT 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
164 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 166 UA 100 **  166 KK CP-03 COMBINE 167 HC 2 **  168 KK R3-5 ROUTE					4.50	0.47	55						
165					16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
166 KK CP-03 COMBINE 167 HC 2 *  168 KK R3-5 ROUTE 169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100 *  177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 150.0 200.0				3.0	2010	5010	05.0		0	20.0	2	27.00	
167 HC 2  *  168 KK R3-5 ROUTE  169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE  178 HC 2  *  179 KK SB07W BASIN  180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.250 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RETOTW 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0		*											
167 HC 2  *  168 KK R3-5 ROUTE  169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD  170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN  172 BA 0.126  173 LG 0.22 0.25 4.50 0.44 48  174 UC 0.327 0.226  175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0  176 UA 100  *  177 KK CP-5A COMBINE  178 HC 2  *  179 KK SB07W BASIN  180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.250 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RETOTW 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	166	VV	CD 02	COMPTNE									
*  168				COMPTINE									
169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  *  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOTW 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
169 KM MILLER RD CHANNEL FROM MAYO BLVD TO PRINCESS BLVD 170 RK 2396 0.0015 0.03 TRAP 98 4  *  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100  *  177 KK CP-5A COMBINE 178 HC 2  *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOTW 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
170 RK 2396 0.0015 0.03 TRAP 98 4  171 KK SB05 BASIN 172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100  177 KK CP-5A COMBINE 178 HC 2  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.259 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100  *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RETOTW 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0					CHANNEL	EDOM MAN	/O BLVD 7	TO DETNICE	CC DIVID				
*  171						FROM MAT							
172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100 *  177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0		*											
172 BA 0.126 173 LG 0.22 0.25 4.50 0.44 48 174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100 *  177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	474	1414	5005	DAGTH									
173				RASIN									
174 UC 0.327 0.226 175 UA 0 5.0 16.0 30.0 65.0 77.0 84.0 90.0 94.0 97.0 176 UA 100 *  177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0				0.25	4.50	0.44	48						
176  UA 100 *  177  KK CP-5A COMBINE 178  HC 2 *  179  KK SB07W BASIN 180  BA 0.0468 181  LG 0.25 0.25 4.03 0.56 45 182  UC 0.250 0.178 183  UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184  UA 100 *  185  KK SB07W DIVERT 186  KM	174	UC	0.327	0.226									
*  177				5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
177 KK CP-5A COMBINE 178 HC 2 *  179 KK SB07W BASIN 180 BA 0.0468 181 LG 0.25 0.25 4.03 0.56 45 182 UC 0.250 0.178 183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0 184 UA 100 *  185 KK SB07W DIVERT 186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W 187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	176		100										
178													
*  179	177	KK	CP-5A	COMBINE									
179	178		2										
180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.250 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0		*											
180 BA 0.0468  181 LG 0.25 0.25 4.03 0.56 45  182 UC 0.250 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100  *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0	179	KK	SB07W	BASIN									
182 UC 0.250 0.178  183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100 *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
183 UA 0 3.0 5.0 8.0 12.0 20.0 43.0 75.0 90.0 96.0  184 UA 100 *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0					4.03	0.56	45						
184 UA 100 *  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0					5 0	2 0	12 0	20 0	/13 A	75 A	ga a	96.0	
*  185 KK SB07W DIVERT  186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0				۵.د	٥.٠	0.0	12.0	20.0	⊌.د+	13.0	50.0	30.V	
186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
186 KM DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W  187 KM FIRST FLUSH VOL = 1.060 AC-FT  188 DT RET07W 1.060  189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0  190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
187 KM FIRST FLUSH VOL = 1.060 AC-FT 188 DT RET07W 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0					OE ETDC	T ELLICH V	/OLLIME E/	DE BVCTN	SRATIJ				
188 DT RET07W 1.060 189 DI 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0 190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0								NI CAG NO	200/W				
190 DQ 0.0 10.0 20.0 30.0 40.0 50.0 60.0 100.0 150.0 200.0													
r	190	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	

LINE	ID.	1.	2	3	4	5	6	7.	8.	9.	10	
191	KK	R7W-8W	ROUTE									
192	KM		AYDEN ROA	D NORTH	CHANNEI	FROM LEG	ACY BLVD	TO SR	1011 FRF1	FWAY		
193	KM		E MODIFIE									
194	RK			0.03		TRAP	46	4				
	*							-				
195	KK	SB8NW	BASIN									
196	KM	B	ASIN JUST	SOUTH C	OF LEGACY	Y - FUTUR	RE MOB SI	TE				
197	BA	0.0147										
198	LG	0.10	0.25	4.03	0.61	80						
199	UC	0.171	0.131									
200	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
201	UA	100										
	*											
202	VV	CDONIL	DTVEDT									
202	KK		DIVERT	OF FTDC1	r rilicii v	VOLUME EC	D DACTN	CDONIL				
203 204	KM KM		IVERSION IRST FLUS				N DASIN	SDOINM				
205		RET8NW		on VOL =	0.332 A	C-F1						
206	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
207	DQ	0.0	10.0	20.0		40.0	50.0	60.0	100.0	150.0	200.0	
207	*	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	130.0	200.0	
208	KK	R8NW8N	ROUTE									
209	KM		OUTE NEW	SUB BASI	IN SB8NW	TO OUTLE	T AT CAV	ASSON BI	LVD			
210	KM		ORTH HALF							NS		
211	RK			0.018		TRAP	46	4				
	*											
212	KK	SB8NE	BASIN									
213	KM	S	ITE JUST	SOUTH OF	LEGACY	AND WEST	OF HAYD	EN - FU	TURE RETA	AIL		
214	BA	0.015										
215	LG	0.10	0.25	4.03	0.61	80						
216	UC	0.164	0.113									
217	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
218	UA	100										
	*											
219	KK		DIVERT	or		(0) 1145 50	D DAGTN	CDONE				
220	KM		IVERSION				DK RYZIN	2R8NF				
221	KM		IRST FLUS	H VOL =	0.340 A	L-F1						
222	DT	RET8NE		20.0	20.0	40.0	FQ Q	60.0	100 0	150.0	200 0	
223 224	DI DO	0.0 0.0	10.0 10.0	20.0 20.0	30.0 30.0	40.0 40.0	50.0 50.0	60.0 60.0	100.0 100.0	150.0 150.0	200.0 200.0	
224	ьб *	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	130.0	200.0	
225	KK	R8NE8N	ROUTE									
226	KM		OUTE NEW	SUB BASI	IN SB8NE	TO OUTLE	T AT CAV	ASSON BI	LVD			
227	KM	N	ORTH HALF	OF BAS	IN 8W WAS	S BROKEN	DOWN INT	0 4 SUB	-SUBBASI	NS		
228	RK	622	0.011	0.018		TRAP	46	4				
	*											
					HEC-1	INPUT						PAGE 7
LINE	ID.	1.	2	3	4	5	6	7.	8.	9.	10	
220	1212	CDOCL	DACT									
229	KK	SB8SW_	BASIN	NODTH		ON DIVE 5						
230	KM		ITE JUST	NORTH OF	- CAVASSO	ON READ E	AST OF C	LAKET DI	R - FUIUI	KE MF		
231	BA	0.0129	0.25	4 02	0 (1	00						
232	LG	0.10	0.25	4.03	0.61	80						
233 234	UC	0.149	0.110 3.0	5.0	8.0	12.0	20.0	43.0	75.0	00.0	06.0	
234	UA UA	0 100	3.0	5.0	0.0	12.0	20.0	43.0	75.0	90.0	96.0	
233	*	100										
236	KK	SBRSW	DIVERT									
237	KM		IVERSION	OF FIRST	r FLUSH V	VOLUME FO	R BASTN	SB8SW				
238	KM		IRST FLUS				,					
239	DT	RET8SW	0.292			•						
240	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
241	DQ	0.0	10.0	20.0		40.0	50.0	60.0	100.0	150.0	200.0	
	*											
242	KK	SB8SE	BASIN									
243	KM	S	ITE JUST	NORTH OF	CAVASSO	ON AND WE	ST OF HA	YDEN - I	FUTURE H	OTEL OR	RETAIL	
= .5												

```
BA 0.0131
 244
 245
               LG
                     0.10
                             0.25
                                      4.03
                                              0.61
                                                        80
                    0.165
 246
               UC
                            0.137
 247
               UA
                       0
                              3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                       90.0
                                                                                                96.0
 248
               UΑ
                      100
249
                    SB8SE DIVERT
               KK
 250
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8SE
               ΚM
                         FIRST FLUSH VOL = 0.297 AC-FT
 251
               DT
                   RET8SE
                            0.297
 252
                                                      40.0
                                      20.0
                                              30.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
 253
               DI
                      0.0
                             10.0
 254
               DQ
                      0.0
                             10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
255
               KK CP-08N COMBINE
                         CP AT INLET ON NORTH SIDE OF CAVASSON - ENTERS EXIST STORM DRAIN
 256
               KM
 257
               HC
                        4 0.0557
 258
               KK
                   R8N-8W
                            ROUTE
 259
                         ROUTE NEW SUB BASINS SB8NE SB8NW SB8SW SB8SE TO CP-08W
               ΚM
 260
               ΚM
                         ROUTE IN STORM DRAIN
                            0.015
 261
               RK
                     1592
                                     0.013
                                                      CIRC
                                                                  3
 262
               KK
                    SB08W
                            BASIN
                   0.0589
 263
               BΑ
 264
               LG
                     0.10
                             0.25
                                      4.03
                                              0.61
                                                        80
                    0.262
 265
               UC
                            0.177
                               3.0
                                                                       43.0
                                                                               75.0
                                                                                       90.0
 266
               UA
                        0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                                                96.0
               UA
                      100
 267
                                                                                                        PAGE 8
                                              HEC-1 INPUT
LINE
               ID.....1....2....3....4....5....6....7....8....9....10
268
               ΚK
                    SB08W DIVERT
 269
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB08W
 270
               ΚM
                         FIRST FLUSH VOL REQ = 1.335 AC-FT, PROVIDED = 1.415
 271
               ΚM
                         THIS IS EXISTING AND WAS BUILT IN PHASE 1
272
               DT
                    RET8W
                            1.415
 273
               DI
                      0.0
                             10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
 274
               DQ
                      0.0
                              10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
                   CP-08W COMBINE
275
               KK
 276
               HC
                        3 0.1614
 277
               KK
                    R8W-4
                            ROUTE
                     3137
                           0.0130
                                     0.030
                                                      TRAP
                                                             2.000
                                                                       0.00
 278
               RK
 279
               KK
                     SB04
                            BASIN
 280
               ВА
                    0.144
 281
               LG
                     0.14
                             0.25
                                      4.60
                                              0.44
                                                        61
 282
               UC
                    0.305
                            0.199
                                                              77.0
                                                                               90.0
                                                                                       94.0
                                                                                                97.0
 283
               IJΔ
                               5.0
                                      16.0
                                              30.0
                                                      65.0
                                                                       84.0
                        0
 284
               UΑ
                      100
 285
               \mathsf{K}\mathsf{K}
                     CP-4 COMBINE
 286
               HC
                        2
 287
               ΚK
                     R4-5 ROUTE
 288
               ΚM
                         PRINCESS BLVD CHANNEL FROM 77TH ST TO 76TH ST
 289
               RK
                     1992 0.0013
                                     0.03
                                                      TRAP
                                                                 39
                    CP-05 COMBINE
 290
               KK
 291
               KM
                         PRINCESS BLVD AND 76TH ST (PRINCESS BLVD CHANNEL)
 292
               ΚM
                         COMBINE CP-05A AND R4-5
 293
               HC
```

294

ΚK

R5-6 ROUTE

295 296			PRINCESS 0.0015	BLVD CHANNE	L FROM	76TH ST TRAP	TO SCOT	TSDALE RD 4				
	*											
297	7 KK	SB06	BASIN									
298	BA BA	0.136										
299	9 LG	0.16	0.25	4.55	ð.45	53						
306	O UC		0.246									
301	L UA		5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
302	2 UA	100										
	*											
1				I	HEC-1 I	NPUT						PAGE 9
			_	_	_	_	_	_	_			
LINE	= 1D	1	2	3	4	5	6	7	8	9	10	
303	з кк	CP-06	COMBINE									
304			001.52.112									
	*											
305	5 KK	SB07E	BASIN									
306	5 BA	0.026										
307	7 LG	0.10	0.25	4.03	ð.74	0						
308	3 UC	0.574	0.527									
309	9 UA	. 0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
316	) UA	100										
	*											
311	L KK	R7E-8E	ROUTE									
312		3662	0.0130	0.030		TRAP	2.000	0.00				
	*											
313			BASIN									
314												
315			0.25		ð.72	0						
316			0.652									
317			3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
318		100										
	*											
210		CDOON	DACTN									
319			BASIN									
326			0.25	4.70	2 40	•						
321			0.25		ð.49	0						
322			1.111			40.0	20.0	43.0	75.0	00.0	06.0	
323			3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
324	1 UA *	100										
325	5 KK	R9NR8E	ROUTE									
326						TRAP	2.000	0.00				
320	*	2500	0.0013	0.020		110 0	2.000	0.00				
327	7 KK	CP-08E	COMBINE									
328	3 HC	3										
	*											
329			ROUTE									
336		501	0.0013	0.020		TRAP	2.000	0.00				
	*											
		CDOC	DACT:									
331			BASIN									
332						_						
333			0.25		ð.49	0						
334			0.518									
335			3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
336	5 UA *	100										
1	*				IFC 1 T	NDUT						DACE 10
1				ı	HEC-1 I	.NPU I						PAGE 10
LINE	т т	1 .		3	4	5	6	7	8	9	10	
LINI	_ 10		2					,			10	
337	7 KK	CP-09	COMBINE									
338			_									
	*	_										
339	e KK	PWRCH										
346	MX KM			E CHANNEL (X					(XS 183)	HYDROGR	APHS	
341		1	L0-YR, 6	-HR, DERIVED	FROM 1	.00-YR D	ATA HYDR	OGRAPHS				
342	2 BA	7.0										

```
343
               QI
                         0
                                 0
                                         0
                                                  0
                                                          0
                                                                  0
                                                                          0
                                 0
                                                 0
                                                          0
 344
               QΙ
                         0
                                         0
                                                               0.07
                                                                      11.70
                                                                               33.57
                                                                                      285.55
                                                                                              257.89
                   236.82
                           258.26
 345
               QΙ
                                    406.55
                                           486.55
                                                    461.36
                                                            425.60
                                                                     409.84
                                                                              395.31
                                                                                      391.77
                                                                                              376.42
 346
                   346.76
                           376.76
                                            247.65
                                                     220.91
                                                             197.44
                                                                     178.64
                                                                              155.41
                                                                                      139.22
                                                                                              129.78
                                    276.32
 347
               QI
                   113.97
                           102.76
                                     96.30
                                             85.88
                                                       79.7
                                                              72.75
                                                                       65.45
                                                                               59.94
                                                                                       54.69
                                                                                               51.22
 348
                                     41.87
                                             42.77
                                                      36.93
                                                              34.05
                                                                      32.15
                                                                               29.01
                                                                                       27.72
                                                                                               27.03
               QΙ
                     52.3
                            44.56
 349
               QI
                     25.05
                             23.86
                                     22.04
                                             20.81
                                                      19.27
                                                              18.55
                                                                      17.90
                                                                               20.82
                                                                                       16.03
                                                                                               15.23
 350
               KK BINFLO
                           TOTAL INFLOW INTO BASIN 53R.
 351
               KM
               HC
 352
 353
               KK
                    BASIN
 354
               ΚM
                      BASIN STAGE/STORAGE FROM PROPOSED CONTOURS BETWEEN
                      ELEV 1594 AND 1615; BASIN SIDE SLOPES STEEPENED TO 3:1
 355
               KM
                          OUTFLOW RATING CURVE FROM CULVERTMASTER FOR 2-60" PIPES
 356
               KM
 357
               ΚM
                          THE OUTLET PIPES ARE INLET CONTROLLED.
 358
               RS
                              STOR
                                         0
                                      76.8
                                                      140.6
                                                                       202.5
                                                                                               295.5
                                                              171.5
                                                                               233.5
                                                                                       264.5
 359
               SV
                         0
                              44.9
                                             108.7
 360
               SV
                    328.7
                             362.0
                                     395.2
                                             428.5
                                                      461.7
                                                              497.2
                                                                       532.7
                                                                               568.3
                                                                                       603.8
                                                                                               639.3
 361
               SE
                     1594
                              1597
                                      1598
                                              1599
                                                       1600
                                                               1601
                                                                       1602
                                                                                1603
                                                                                        1604
                                                                                                1605
 362
               SE
                     1606
                              1607
                                      1608
                                              1609
                                                       1610
                                                                       1612
                                                                                1613
                                                                                        1614
                                                                                                1615
                                                               1611
 363
               SQ
                         0
                              94.6
                                     153.4
                                              209.8
                                                      244.2
                                                              264.5
                                                                       284.0
                                                                               302.5
                                                                                       320.1
                                                                                                336.9
                     353.0
                             368.5
                                                      412.0
                                                                       438.9
 364
               SQ
                                     383.5
                                             398.0
                                                              425.7
                                                                               451.9
                                                                                       464.5
                                                                                               476.8
 365
               ΚK
                   BSNRT1
                         2-60" CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY.
 366
               KM
                         DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE
 367
               ΚM
 368
               KM
                         EXCESS CAPACITY.
 369
               RK
                      550 0.0052
                                    0.024
                                                       CIRC
                                                                7.0
 370
               KK BSNRT2
                         2-60" RCP PIPES FROM SR 101L FREEWAY TO UNION HILLS DR (BAS 53R OUTFALL)
 371
               KM
 372
                      1200 0.0077
                                    0.013
                                                       CIRC
               RK
 373
                     SB10
                             BASIN
               KK
 374
               BA
                    0.040
 375
               LG
                     0.15
                              0.25
                                      4.25
                                               0.55
                                                         55
 376
               UC
                     0.233
                             0.161
 377
               UΑ
                         0
                                      16.0
                                               30.0
                                                       65.0
                                                               77.0
                                                                        84.0
                                                                                90.0
                                                                                        94.0
                                                                                                 97.0
 378
               IJΔ
                       100
                                               HEC-1 INPUT
                                                                                                         PAGE 11
ITNF
               ID.....1....2....3....4....5....6....7...8....9....10
 379
               KK
                    CP-10 COMBINE
                         UNION HILLS DR AND 82ND ST (UNION HILLS DR CHANNEL)
 380
               ΚM
 381
               HC
 382
                   R10-11
                            ROUTE
 383
               ΚM
                         UNION HILLS DR CHANNEL FROM 82ND ST TO HAYDEN ROAD
                     1277 0.0014
 384
               RK
                                     0.03
                                                       TRAP
                                                                220
 385
               \mathsf{K}\mathsf{K}
                     SB11
                             BASIN
 386
               BΑ
                    0.071
 387
               LG
                     0.15
                              0.25
                                      4.15
                                               0.58
                                                         55
                     0.296
 388
               UC
                             0.232
 389
               UA
                        0
                               5.0
                                      16.0
                                               30.0
                                                       65.0
                                                               77.0
                                                                       84.0
                                                                                90.0
                                                                                        94.0
                                                                                                 97.0
 390
               UA
                      100
 391
                    CP-11 COMBINE
               KK
                         UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)
 392
               KM
 393
               HC
 394
               ZZ
      SCHEMATIC DIAGRAM OF STREAM NETWORK
```

(V) ROUTING (--->) DIVERSION OR PUMP FLOW

**INPUT** 

LINE

NO.	(.) CONNECTOR	(<) RETURN OF DIVERTED
33	76THST	
	•	
45	. SB01A	
58 55	. SB01A	> RET01A
61	CP-1	
	V V	
64	R1A-2W	
	•	
67	. SB02NW	
70		DETANL
78 75	. SB02NW	> RET2NW I
83	CP-02W	
	V	
86	V R2W-2	
•	•	
89	. SB010	
0,5	. 55010	•
98		> RET01C
95	. SB010	
	. \	
101	. \ . R1C-1E	
103		SB01B
		•
112		> RET01B
109		SB01B
	•	•
115	. CP-01E	3
	. \	
118	. R1B-2N	
	•	
120		SB02NE
		•
129		> RET2NE
126		SB02NE
		• •
132	. CP-02N	1
	. \	
135	. R2N-2	1
137		SB02E
	•	•
146		> RET2E
143		SB02E •
140		
149		. SB02W
		: :
149 155		. SB02W 

OR PUMPED FLOW

157	R2-3						
	•						
160	•	SB03					
	•	•					
166	CP-03						
	V						
168	V R3-5						
171		SB05					
	•						
177	CP-5A	•					
1,,							
179	•	SB07W					
1//	•						
188	•	•	> RET07V	d			
185	•	 SB07W	> KETON	V			
	•	V					
191		V R7W-8W					
	•						
195	•		SB8NW				
155	:	:	•				
205	•	•		> RET	QNI _A I		
202	•	•	SB8NW	/ KLI	ONW		
	•	•	V				
208		•	V R8NW8N				
	•						
212	•	•	•	SB8NE			
		•	•				
222	•	•	•	٠.	> RET8N	MF	
219	:	:	•	SB8NE	, KETO	••	
	•	•	•	V V			
225		:	•	R8NE8N			
	•	•	•	•			
229		:	•		SB8SW		
	•	•	•	•	•		
239		:	•			> RET8SW	
236	•	•	•	•	SB8SW		
	•	:		•	•		
242	•	•	•	•	•	SB8SE	
		•	•		•	•	
252	•	•		•	•		RET8SE
249		•	•		•	SB8SE	
	•	•		•	•	•	
255		•	CP-08N		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	
	•		V				
258	•	•	R8N-8W				
	:	:	•				
262	•	•	•	SB08W			
		:	•				
272	•	•	•		> RET8	8W	
268				SB08W			
	•	•	•	•			
275	•	CP-08W V	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •			
		V					
277	•	R8W-4					
	•	•					

	SB04			279
	•	•	•	
	•		•	205
		CP-4 V	•	285
		V	•	
		v R4-5	•	287
		N4-3	•	207
		•	•	
			CP-05	290
			V V	250
			V	
			R5-6	294
			KJ-0	254
			•	
		SB06	•	297
		3000	•	231
		•	•	
		· · · · · · · · · · · · ·	CD-06	303
			CP-00	303
			•	
		SB07E	•	305
		3007E V	•	202
		V	•	
			•	211
		R7E-8E	•	311
		•	•	
		•	•	
	SB08E		•	313
	•		•	
	•		•	
SB09N		•		319
V	•			
V			•	
R9NR8E			•	325
			•	
	•		•	
		CP-08E	•	327
		V		
		V		
		R8E-R9		329
	SB09			331
		CP-09		337
		_		
	PWRCH		•	339
		_		332
		_		
		RTNFLO	•	350
		V	•	330
		V	•	
		BASIN	•	353
		V	•	333
		V	•	
		BSNRT1	•	365
		V	•	505
		V	•	
		BSNRT2	•	370
		DOINTIZ	•	370
		•	•	
	SB10	•	•	272
	2010	•	•	373
	•	•	•	
	•		•	
	• • • • • • • • • • • • •		•	379
		V	•	
		V	•	
		R10-11	•	382
		•	•	
			•	
	SB11		•	385
	·		•	
	·		•	
		CP-11	•	391
	THIS LOCATION	COMPLITED AT	DINOEE ALSO	***1

CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
POWERLINE CORRIDOR
RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
10-YR, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
PIMA ROAD FLOWS.

PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14

MODELERS: RK, MW

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 11/14/18

MODELERS: MSW, ES REVISIONS NOTED WITH HE

ULTIMATE CONDITION MODEL, WITH POWERLINE AND BASIN 53R AND THIS IS THE POST-DEVELOPMENT MODEL WITH DEVELOPMENT N OF LEGACY

UPDATED INFLOW HYDROGRAPHS TO REFLECT 15MIN INC.

20 IO OUTPUT CONTROL VARIABLES

QSCAL 0. HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN 3 MINUTES IN COMPUTATION INTERVAL

IDATE 1 0 STARTING DATE ITIME 0000 STARTING TIME

NQ 1000 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 3 0 ENDING DATE
NDTIME 0157 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL 0.05 HOURS
TOTAL TIME BASE 49.95 HOURS

ENGLISH UNITS

DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

21 JD INDEX STORM NO. 1

STRM 1.82 PRECIPITATION DEPTH

TRDA 0.00 TRANSPOSITION DRAINAGE AREA

22 PI PRECIPITATION PATTERN

PRECIPITAL	TON PALLER	(IN							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02
0.03	0.03	0.03	0.03	0.03	0.09	0.09	0.09	0.09	0.09

	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25 JD	INDEX STORM N	NO. 2								
	STRM	1.81	PRECIPI	TATION DEP	TH					
	TRDA	0.50	TRANSPO	SITION DRA	INAGE AREA	1				
26 PI	PRECIPITAT:									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02
	0.03	0.03	0.03	0.03	0.03	0.09	0.09	0.09	0.09	0.09
	0.02	0.02	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
29 JD	INDEX STORM N	NO. 3								
	STRM	1.77	PRECIPI	TATION DEP	TH					
	TRDA	2.80	TRANSPO	SITION DRA	INAGE AREA					
30 PI	PRECIPITAT]	ION PATTERN								
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05
	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

```
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1
```

*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 1

- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

1

## RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

	ODERATION	CTATION	PEAK	TIME OF	AVERAGE	FLOW FOR MAXI	MUM PERIOD	BASIN	MAXIMUM	TIME OF
+	OPERATION	STATION	FLOW	PEAK	6-HOUR	24-HOUR	72-HOUR	AREA	STAGE	MAX STAGE
+	HYDROGRAPH AT	76THST	32.	4.50	10.	3.	1.	0.24		
+	HYDROGRAPH AT	SB01A	59.	4.25	7.	2.	1.	0.06		
+	DIVERSION TO	RET01A	48.	4.15	3.	1.	0.	0.06		
+	HYDROGRAPH AT	SB01A	59.	4.25	4.	1.	0.	0.06		
+	2 COMBINED AT	CP-1	86.	4.25	14.	4.	2.	0.30		
+	ROUTED TO	R1A-2W	86.	4.30	14.	4.	2.	0.30		
+	HYDROGRAPH AT	SB02NW	23.	4.10	2.	1.	0.	0.02		
+	DIVERSION TO	RET2NW	18.	4.00	1.	0.	0.	0.02		
+	HYDROGRAPH AT	SB02NW	23.	4.10	1.	0.	0.	0.02		
+	2 COMBINED AT	CP-02W	97.	4.30	15.	4.	2.	0.31		
+	ROUTED TO	R2W-2	97.	4.30	15.	4.	2.	0.31		
+	HYDROGRAPH AT	SB01C	26.	4.15	3.	1.	0.	0.03		
+	DIVERSION TO	RET01C	24.	4.10	1.	0.	0.	0.03		
+	HYDROGRAPH AT	SB01C	26.	4.15	2.	0.	0.	0.03		
+	ROUTED TO	R1C-1B	25.	4.20	2.	0.	0.	0.03		
+	HYDROGRAPH AT	SB01B	25.	4.15	3.	1.	0.	0.02		
+	DIVERSION TO	RET01B	22.	4.05	1.	0.	0.	0.02		
+	HYDROGRAPH AT	SB01B	25.	4.15	2.	0.	0.	0.02		
+	2 COMBINED AT	CP-01B	48.	4.20	3.	1.	0.	0.05		
	ROUTED TO									

+		R1B-2N	47.	4.20	3.	1.	0.	0.05
+	HYDROGRAPH AT	SB02NE	29.	4.20	4.	1.	0.	0.03
+	DIVERSION TO	RET2NE	27.	4.15	2.	0.	0.	0.03
+	HYDROGRAPH AT	SB02NE	27.	4.25	2.	1.	0.	0.03
+	2 COMBINED AT	CP-02N	73.	4.25	6.	1.	1.	0.09
+	ROUTED TO	R2N-2	72.	4.25	6.	1.	1.	0.09
+	HYDROGRAPH AT	SB02E	55.	4.15	7.	2.	1.	0.04
+	DIVERSION TO	RET2E	28.	3.95	2.	1.	0.	0.04
+	HYDROGRAPH AT	SB02E	55.	4.15	5.	1.	1.	0.04
+	HYDROGRAPH AT	SB02W	16.	4.50	2.	1.	0.	0.06
+	4 COMBINED AT	CP-02	210.	4.25	28.	7.	4.	0.18
+	ROUTED TO	R2-3	209.	4.35	28.	7.	4.	0.18
+	HYDROGRAPH AT	SB03	47.	4.15	6.	2.	1.	0.05
+	2 COMBINED AT	CP-03	241.	4.35	33.	9.	4.	0.23
+	ROUTED TO	R3-5	234.	4.50	33.	9.	4.	0.23
+	HYDROGRAPH AT	SB05	134.	4.10	15.	4.	2.	0.13
	2 COMBINED AT	CP-5A		4.50	47.	13.	6.	0.36
+	HYDROGRAPH AT							
+	DIVERSION TO	SB07W	54.	4.15	5.	1.	1.	0.05
+	HYDROGRAPH AT	RET07W	41.	4.05	2.	1.	0.	0.05
+	ROUTED TO	SB07W	54.	4.15	3.	1.	0.	0.05
+	HYDROGRAPH AT	R7W-8W	51.	4.65	5.	1.	1.	0.05
+	DIVERSION TO	SB8NW	24.	4.05	2.	1.	0.	0.01
+	HYDROGRAPH AT	RET8NW	8.	3.80	1.	0.	0.	0.01
+	ROUTED TO	SB8NW	24.	4.05	2.	0.	0.	0.01
+	HYDROGRAPH AT	R8NW8N	24.	4.10	2.	0.	0.	0.01
+	DIVERSION TO	SB8NE	25.	4.05	2.	1.	0.	0.01
+	STATISTON IO	RET8NE	8.	3.80	1.	0.	0.	0.01

+	HYDROGRAPH AT	SB8NE	25.	4.05	2.	0.	0.	0.01
+	ROUTED TO	R8NE8N	25.	4.10	2.	0.	0.	0.01
+	HYDROGRAPH AT	SB8SW	22.	4.05	2.	1.	0.	0.01
+	DIVERSION TO	RET8SW	7.	3.75	1.	0.	0.	0.01
+	HYDROGRAPH AT	SB8SW	22.	4.05	2.	0.	0.	0.01
+	HYDROGRAPH AT	SB8SE	21.	4.05	2.	1.	0.	0.01
+	DIVERSION TO	RET8SE	7.	3.80	1.	0.	0.	0.01
+	HYDROGRAPH AT	SB8SE	21.	4.05	2.	0.	0.	0.01
+	4 COMBINED AT	CP-08N	90.	4.05	7.	2.	1.	0.06
+	ROUTED TO	R8N-8W	89.	4.10	7.	2.	1.	0.06
+	HYDROGRAPH AT	SB08W	85.	4.15	10.	2.	1.	0.06
+	DIVERSION TO	RET8W	36.	3.90	3.	1.	0.	0.06
+	HYDROGRAPH AT	SB08W	85.	4.15	7.	2.	1.	0.06
+	3 COMBINED AT	CP-08W	172.	4.10	18.	5.	2.	0.16
+	ROUTED TO	R8W-4	168.	4.15	18.	5.	2.	0.16
+	HYDROGRAPH AT	SB04	178.	4.10	20.	5.	2.	0.14
+	2 COMBINED AT	CP-4	346.	4.10	38.	10.	5.	0.31
+	ROUTED TO	R4-5	338.	4.20	38.	10.	5.	0.31
+	2 COMBINED AT	CP-05	432.	4.20	82.	22.	11.	0.66
+	ROUTED TO	R5-6	427.	4.30	82.	22.	11.	0.66
+	HYDROGRAPH AT	SB06	145.	4.10	17.	4.	2.	0.14
+	2 COMBINED AT	CP-06	499.	4.25	96.	25.	12.	0.80
+	HYDROGRAPH AT	SB07E	9.	4.40	1.	0.	0.	0.03
+	ROUTED TO	R7E-8E	8.	4.50	1.	0.	0.	0.03
+	HYDROGRAPH AT	SB08E	21.	4.55	3.	1.	0.	0.08
+	HYDROGRAPH AT	SB09N	6.	4.55	2.	0.	0.	0.03
+	ROUTED TO	R9NR8E	6.	4.65	2.	0.	0.	0.03

+	3 COMBINED	AT CP-0	8E	34.	4.60		6.	2.	1.	0.13			
+	ROUTED TO	R8E-	R9	34.	4.60		6.	2.	1.	0.13			
+	HYDROGRAPH	AT SB(	<b>0</b> 9	34.	4.45		5.	1.	1.	0.09			
+	2 COMBINED	AT CP-	<b>0</b> 9	66.	4.55		11.	3.	1.	0.22			
+	HYDROGRAPH	AT PWR	СН	487.	5.75		285.	91.	50.	7.00			
+	2 COMBINED	AT BINF	LO	484.	5.75		283.	90.	50.	7.22			
+	ROUTED TO	BAS	IN	171.	9.10		156.	85.	48.	7.22			
+	ROUTED TO	BSNR [*]	Т1	171.	9.10		156.	85.	48.	7.22			
+	ROUTED TO	BSNR [*]	Т2	171.	9.10		156.	85.	48.	7.22			
+	HYDROGRAPH	AT SB:	10	52.	4.05		5.	1.	1.	0.04			
+	2 COMBINED	AT CP-:	10	171.	9.10		156.	85.	49.	7.26			
+	ROUTED TO	R10-:	11	171.	9.20		156.	85.	48.	7.26			
+	HYDROGRAPH	AT SB:	11	77.	4.10		9.	2.	1.	0.07			
+	2 COMBINED	AT CP-:	11	171.	9.20		156.	85.	49.	7.33			
1								MUSKINGUM-0		ING			
	ISTAQ	ELEMENT	DT	PEAK	ттм	E TO	VOLUME		INTERPOL OMPUTATION PEAK	INTERVAL	VOLLIME		
	DATEL	ELEMENT	DI	PEAK		EAK	VOLUME	DT	PEAR	TIME TO PEAK	VOLUME		
			(MIN)	(CFS)		(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR STORM R1A-2W	= 1 STORM MANE	AREA (SQ 0.28	MI) = 86.74		.00 5.73	0.51	3.00	86.50	258.00	0.51		
CONTINUI	ITY SUMMARY (	AC-FT) - I	NFLOW=0.8	110E+01	EXCESS	=0.0000	E+00 OUTF	LOW=0.8108E-	+01 BASIN	STORAGE=0.2	2428E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	= 2 STORM MANE	AREA (SQ 0.22	MI) = 86.23		.50 5.60	0.50	3.00	85.99	258.00	0.50		
CONTINUI	ITY SUMMARY (	AC-FT) - I	NFLOW=0.8	082E+01	EXCESS	=0.0000	E+00 OUTF	LOW=0.8081E-	+01 BASIN	STORAGE=0.2	2428E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W	= 3 STORM MANE	AREA (SQ 0.23	MI) = 56.86		.80 1.41	0.46	3.00	56.60	261.00	0.46		
CONTINUI	ITY SUMMARY (	AC-FT) - II	NFLOW=0.7	389E+01	EXCESS	=0.0000	E+00 OUTF	LOW=0.7388E-	+01 BASIN	STORAGE=0.2	2428E-02 PERCENT	ERROR=	0.0
	FOR STORM R2W-2	= 1 STORM MANE	AREA (SQ 0.41	MI) = 97.6		.00 8.39	0.54	3.00	97.55	258.00	0.54		
CONTINUI	ITY SUMMARY (	AC-FT) - II	NFLOW=0.8	773E+01	EXCESS	=0.0000	E+00 OUTF	LOW=0.8771E-	+01 BASIN	STORAGE=0.3	3356E-02 PERCENT	ERROR=	0.0

	FOR STORM = 2 STO R2W-2 MANE	RM AREA (SQ MI) = 0.41 96.96		0.54	3.00	96.86	258.00	0.54		
CONTINUI	TY SUMMARY (AC-FT) -	INFLOW=0.8738E+01 E	XCESS=0.0000	E+00 OUTFLO	)W=0.8735E	+01 BASIN	STORAGE=0.3	354E-02 PERCENT	ERROR=	0.0
		RM AREA (SQ MI) = 0.36 63.48		0.48	3.00	62.70	264.00	0.48		
CONTINUI	TY SUMMARY (AC-FT) -	INFLOW=0.7822E+01 E	XCESS=0.0000	E+00 OUTFLO	)W=0.7820E	E+01 BASIN	STORAGE=0.3	350E-02 PERCENT	ERROR=	0.0
	FOR STORM = 1 STO R1C-1B MANE	RM AREA (SQ MI) = 0.47 26.07		0.64	3.00	25.45	252.00	0.64		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.9235E+00 E	XCESS=0.0000	E+00 OUTFLO	)W=0.9234E	E+00 BASIN	STORAGE=0.1	159E-13 PERCENT	ERROR=	0.0
	FOR STORM = 2 STO R1C-1B MANE	RM AREA (SQ MI) = 0.40 25.48		0.63	3.00	25.16	252.00	0.64		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.9114E+00 EX	XCESS=0.0000	E+00 OUTFLO	)W=0.9112E	E+00 BASIN	STORAGE=0.1	161E-13 PERCENT	ERROR=	0.0
	FOR STORM = 3 STO R1C-1B MANE	RM AREA (SQ MI) = 0.40 12.02		0.42	3.00	11.53	258.00	0.42		
CONTINUI	TY SUMMARY (AC-FT) -	INFLOW=0.6045E+00 E	XCESS=0.0000	E+00 OUTFLO	)W=0.6050E	E+00 BASIN	STORAGE=0.1	171E-13 PERCENT	ERROR=	-0.1
	FOR STORM = 1 STO R1B-2N MANE	RM AREA (SQ MI) = 1.00 48.05		0.64	3.00	47.04	252.00	0.64		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.1748E+01 E	XCESS=0.0000	E+00 OUTFLO	W=0.1752E	E+01 BASIN	STORAGE=0.3	293E-11 PERCENT	ERROR=	-0.2
	FOR STORM = 2 STO R1B-2N MANE	RM AREA (SQ MI) = 0.96 47.49		0.63	3.00	46.32	252.00	0.63		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.1727E+01 EX	XCESS=0.0000	E+00 OUTFLO	W=0.1726E	E+01 BASIN	STORAGE=0.3	440E-11 PERCENT	ERROR=	0.0
	FOR STORM = 3 STO R1B-2N MANE	RM AREA (SQ MI) = 1.20 21.35	2.80 259.25	0.42	3.00	21.16	258.00	0.42		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.1144E+01 E	XCESS=0.0000	E+00 OUTFLO	)W=0.1146E	E+01 BASIN	STORAGE=0.3	398E-11 PERCENT	ERROR=	-0.2
	FOR STORM = 1 STO R2N-2 MANE	RM AREA (SQ MI) = 0.38 73.38	0.00 255.29	0.64	3.00	73.19	255.00	0.64		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.2890E+01 E	XCESS=0.0000	E+00 OUTFLO	)W=0.2895E	E+01 BASIN	STORAGE=0.5	835E-06 PERCENT	ERROR=	-0.2
	FOR STORM = 2 STO R2N-2 MANE	RM AREA (SQ MI) = 0.42 72.58	0.50 255.46	0.63	3.00	72.21	255.00	0.63		
CONTINUI	TTY SUMMARY (AC-FT) -	INFLOW=0.2852E+01 E	XCESS=0.0000	E+00 OUTFLO	)W=0.2855E	E+01 BASIN	STORAGE=0.4	437E-06 PERCENT	ERROR=	-0.1
	FOR STORM = 3 STO R2N-2 MANE	RM AREA (SQ MI) = 0.51 34.33	2.80 261.97	0.42	3.00	34.12	261.00	0.42		

FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R2-3 MANE 2.42 211.40 259.77 1.55 3.00 210.49 261.00 1.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1894E+01 EXCESS=0.0000E+00 OUTFLOW=0.1895E+01 BASIN STORAGE=0.4997E-06 PERCENT ERROR= -0.1

0.42 3.00

34.12

261.00 0.42

261.97

R2N-2 MANE 0.51 34.33

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1506E+02 EXCESS=0.0000E+00 OUTFLOW=0.1503E+02 BASIN STORAGE=0.3148E-01 PERCENT ERROR=
                                                                                                                       0.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                 0.50
             R2-3 MANE
                                                                                                   1.54
                              2.38 209.22
                                                260.63
                                                           1.54
                                                                   3.00
                                                                           208.79
                                                                                      261.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1494E+02 EXCESS=0.0000E+00 OUTFLOW=0.1492E+02 BASIN STORAGE=0.3148E-01 PERCENT ERROR=
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                 2.80
             R2-3 MANE
                             2.90 122.62
                                                266.89
                                                           1.22
                                                                     3.00
                                                                           122.54
                                                                                      267.00
                                                                                                   1.22
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1184E+02 EXCESS=0.0000E+00 OUTFLOW=0.1186E+02 BASIN STORAGE=0.3148E-01 PERCENT ERROR= -0.4
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                 0.00
                                                                                                   1.48
             R3-5 MANE
                              3.00 238.72
                                                269.68
                                                           1.48
                                                                     3.00
                                                                            238.21
                                                                                      270.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1817E+02 EXCESS=0.0000E+00 OUTFLOW=0.1812E+02 BASIN STORAGE=0.6963E-01 PERCENT ERROR= -0.1
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                 0.50
                              3.00
                                                           1.47
                                                                     3.00
                                                                                      270.00
                                                                                                   1.47
             R3-5 MANE
                                                269.44
                                                                            233.56
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1804E+02 EXCESS=0.0000E+00 OUTFLOW=0.1798E+02 BASIN STORAGE=0.6661E-01 PERCENT ERROR=
                                                                                                                       0.0
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                 2.80
             R3-5 MANE
                              3.00
                                     140.70
                                                278.84
                                                           1.18
                                                                     3.00
                                                                            140.60
                                                                                      279.00
                                                                                                   1.18
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1453E+02 EXCESS=0.0000E+00 OUTFLOW=0.1444E+02 BASIN STORAGE=0.7428E-01 PERCENT ERROR=
                                                                                                                       0.1
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                 0.00
                             1.68 52.79
                                                                                      279.00
                                                                                                   0.96
           R7W-8W MANE
                                                276.79
                                                           0.96
                                                                     3.00
                                                                             51.01
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1600E+01 EXCESS=0.0000E+00 OUTFLOW=0.2399E+01 BASIN STORAGE=0.2981E-03 PERCENT ERROR= -50.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                 0.50
                             1.69 52.24
                                                276.99
           R7W-8W MANE
                                                           0.95
                                                                    3.00
                                                                             50.66
                                                                                      279.00
                                                                                                   0.95
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1579E+01 EXCESS=0.0000E+00 OUTFLOW=0.2373E+01 BASIN STORAGE=0.2851E-03 PERCENT ERROR= -50.4
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                 2.80
           R7W-8W MANE
                              0.57 23.36
                                                290.76
                                                           0.62
                                                                   3.00
                                                                             23.27
                                                                                      291.00
                                                                                                   0.63
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1047E+01 EXCESS=0.0000E+00 OUTFLOW=0.1550E+01 BASIN STORAGE=0.2509E-03 PERCENT ERROR= -48.0
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                 0.00
           R8NW8N MANE
                              0.90 23.67
                                                245.12
                                                           1.12
                                                                     3.00
                                                                             23.61
                                                                                      246.00
                                                                                                   1.12
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8762E+00 EXCESS=0.0000E+00 OUTFLOW=0.8785E+00 BASIN STORAGE=0.1427E-06 PERCENT ERROR= -0.3
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                 0.50
           R8NW8N MANE
                                                                     3.00
                                                                             23.45
                                                                                      246.00
                                                                                                   1.11
                              0.89
                                     23.51
                                                245.06
                                                           1.11
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8684E+00 EXCESS=0.0000E+00 OUTFLOW=0.8709E+00 BASIN STORAGE=0.1495E-06 PERCENT ERROR= -0.3
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                 2.80
           R8NW8N MANE
                               0.99
                                      12.76
                                                245.64
                                                           1.01
                                                                     3.00
                                                                             12.75
                                                                                      246.00
                                                                                                   1.01
```

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7895E+00 EXCESS=0.0000E+00 OUTFLOW=0.7947E+00 BASIN STORAGE=0.1506E-06 PERCENT ERROR= -0.7

FOR STORM = 1 ST	ORM AREA (SQ 1	MI) =	0.00					
R8NE8N MANE	0.90	25.10	244.37	1.12	3.00	24.86	246.00	1.12

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8929E+00 EXCESS=0.0000E+00 OUTFLOW=0.8983E+00 BASIN STORAGE=0.1026E-06 PERCENT ERROR= -0.6 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 24.95 R8NE8N MANE 0.87 244.34 1.11 3.00 24.69 246.00 1.11 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8849E+00 EXCESS=0.0000E+00 OUTFLOW=0.8866E+00 BASIN STORAGE=0.1149E-06 PERCENT ERROR= -0.2 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R8NE8N MANE 13.29 1.01 13.20 1.01 1.02 245.08 3.00 246.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8044E+00 EXCESS=0.0000E+00 OUTFLOW=0.8070E+00 BASIN STORAGE=0.1185E-06 PERCENT ERROR= -0.3 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R8N-8W MANE 0.50 90.26 244.05 3.00 89.79 246.00 1.12 1.12 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3323E+01 EXCESS=0.0000E+00 OUTFLOW=0.3326E+01 BASIN STORAGE=0.1332E-07 PERCENT ERROR= -0.1 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R8N-8W MANE 0.50 89.65 244.04 1.11 3.00 89.18 246.00 1.11 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3296E+01 EXCESS=0.0000E+00 OUTFLOW=0.3298E+01 BASIN STORAGE=0.1340E-07 PERCENT ERROR= -0.1 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R8N-8W MANE 0.71 1.01 3.00 48.33 246.00 1.01 244.61 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2995E+01 EXCESS=0.0000E+00 OUTFLOW=0.2995E+01 BASIN STORAGE=0.1327E-07 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R8W-4 MANE 0.74 171.86 247.74 1.06 3.00 169.25 249.00 1.06 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9153E+01 EXCESS=0.0000E+00 OUTFLOW=0.9156E+01 BASIN STORAGE=0.1251E-03 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R8W-4 MANE 247.11 1.05 0.75 170.53 1.05 3.00 168.12 249.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9058E+01 EXCESS=0.0000E+00 OUTFLOW=0.9060E+01 BASIN STORAGE=0.1245E-03 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R8W-4 MANE 0.85 247.40 0.89 3.00 95.60 249.00 0.89 96.14 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7653E+01 EXCESS=0.0000E+00 OUTFLOW=0.7655E+01 BASIN STORAGE=0.1199E-03 PERCENT ERROR= FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R4-5 MANE 2.78 341.92 253.01 1.19 3.00 340.48 252.00 1.19 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1923E+02 EXCESS=0.0000E+00 OUTFLOW=0.1934E+02 BASIN STORAGE=0.3703E-03 PERCENT ERROR= -0.6 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R4-5 MANE 2.78 338.84 253.21 1.18 3.00 337.96 252.00 1.18

FOR STORM = 3 STORM AREA (SQ MI) = 2.80 R4-5 MANE 3.00 193.48 252.47 1.01 3.00 192.50 252.00 1.01

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1906E+02 EXCESS=0.0000E+00 OUTFLOW=0.1916E+02 BASIN STORAGE=0.4184E-03 PERCENT ERROR= -0.5

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1647E+02 EXCESS=0.0000E+00 OUTFLOW=0.1651E+02 BASIN STORAGE=0.3235E-03 PERCENT ERROR= -0.2
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                   0.00
             R5-6 MANE
                                2.88
                                      465.68
                                                  257.00
                                                              1.28
                                                                        3.00
                                                                               461.39
                                                                                          258.00
                                                                                                       1.28
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4510E+02 EXCESS=0.0000E+00 OUTFLOW=0.4501E+02 BASIN STORAGE=0.5641E-01 PERCENT ERROR=
                                                                                                                            0.1
         FOR STORM = 2 STORM AREA (SO MI) =
                                                   0.50
             R5-6 MANE
                                2.88
                                       462.64
                                                  257.18
                                                              1.27
                                                                        3.00
                                                                               458.66
                                                                                          258.00
                                                                                                       1.27
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4472E+02 EXCESS=0.0000E+00 OUTFLOW=0.4464E+02 BASIN STORAGE=0.5641E-01 PERCENT ERROR=
                                                                                                                            0.0
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                   2.80
                                                                                                       1.06
             R5-6 MANE
                               3.00
                                      269.39
                                                  286.19
                                                              1.06
                                                                        3.00
                                                                                264.39
                                                                                          285.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3723E+02 EXCESS=0.0000E+00 OUTFLOW=0.3723E+02 BASIN STORAGE=0.5640E-01 PERCENT ERROR= -0.1
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                   0.00
           R7E-8E MANE
                                          8.47
                                                                        3.00
                                                                                          270.00
                                2.48
                                                  267.86
                                                              0.41
                                                                                  8.45
                                                                                                       0.41
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5640E+00 EXCESS=0.0000E+00 OUTFLOW=0.5642E+00 BASIN STORAGE=0.1424E-04 PERCENT ERROR=
                                                                                                                            0.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                   0.50
                                                                                          270.00
                                                                                                       0.40
           R7E-8E MANE
                                2.49
                                          8.36
                                                  268.11
                                                              0.40
                                                                        3.00
                                                                                  8.32
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5555E+00 EXCESS=0.0000E+00 OUTFLOW=0.5565E+00 BASIN STORAGE=0.1227E-04 PERCENT ERROR= -0.2
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                   2.80
           R7E-8E MANE
                                3.00
                                          0.79
                                                  281.23
                                                              0.04
                                                                        3.00
                                                                                  0.79
                                                                                          282.00
                                                                                                       0.04
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5136E-01 EXCESS=0.0000E+00 OUTFLOW=0.5564E-01 BASIN STORAGE=0.1218E-04 PERCENT ERROR= -8.4
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                   0.00
                                                                                                       0.51
           R9NR8E MANE
                                3.00
                                         6.31
                                                  281.03
                                                              0.51
                                                                        3.00
                                                                                  6.30
                                                                                          279.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7576E+00 EXCESS=0.0000E+00 OUTFLOW=0.7564E+00 BASIN STORAGE=0.1663E-04 PERCENT ERROR=
                                                                                                                            0.2
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                   0.50
           R9NR8E MANE
                                3.00
                                          6.24
                                                  281.18
                                                              0.50
                                                                        3.00
                                                                                  6.22
                                                                                          279.00
                                                                                                       0.50
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7487E+00 EXCESS=0.0000E+00 OUTFLOW=0.7475E+00 BASIN STORAGE=0.1891E-04 PERCENT ERROR=
                                                                                                                            0.2
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                   2.80
                                          1.69
           R9NR8F MANF
                                3.00
                                                  287.45
                                                              0.14
                                                                        3.00
                                                                                  1.68
                                                                                          288.00
                                                                                                       0.14
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2051E+00 EXCESS=0.0000E+00 OUTFLOW=0.2049E+00 BASIN STORAGE=0.1591E-04 PERCENT ERROR=
                                                                                                                            0.1
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                   0.00
           RRF-R9 MANE
                                                              0.43
                                                                        3.00
                                                                                          276.00
                                                                                                       0.43
                                0.31
                                       34.65
                                                  276.05
                                                                                34.65
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3043E+01 EXCESS=0.0000E+00 OUTFLOW=0.3043E+01 BASIN STORAGE=0.7386E-05 PERCENT ERROR=
                                                                                                                            0.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                   0.50
           R8E-R9 MANE
                                0.31 34.16
                                                  276.08
                                                              0.43
                                                                        3.00
                                                                                34.16
                                                                                          276.00
                                                                                                       0.43
```

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3001E+01 EXCESS=0.0000E+00 OUTFLOW=0.3002E+01 BASIN STORAGE=0.7554E-05 PERCENT ERROR=

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4419E+00 EXCESS=0.0000E+00 OUTFLOW=0.4419E+00 BASIN STORAGE=0.7013E-05 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT1 MANE 0.43 176.85 541.04 0.53 3.00 176.85 543.00 0.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2055E+03 EXCESS=0.0000E+00 OUTFLOW=0.2055E+03 BASIN STORAGE=0.2436E-01 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

BSNRT1 MANE 0.43 176.79 541.14 0.53 3.00 176.79 543.00 0.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2054E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2436E-01 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

BSNRT1 MANE 0.47 172.81 544.06 0.52 3.00 172.80 543.00 0.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2012E+03 EXCESS=0.0000E+00 OUTFLOW=0.2012E+03 BASIN STORAGE=0.2435E-01 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

BSNRT2 MANE 0.44 176.85 543.47 0.53 3.00 176.85 543.00 0.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2055E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

BSNRT2 MANE 0.44 176.78 543.55 0.53 3.00 176.78 543.00 0.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2054E+03 EXCESS=0.0000E+00 OUTFLOW=0.2054E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

BSNRT2 MANE 0.48 172.80 544.14 0.52 3.00 172.80 546.00 0.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2012E+03 EXCESS=0.0000E+00 OUTFLOW=0.2011E+03 BASIN STORAGE=0.2781E-01 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R10-11 MANE 3.46 176.84 548.85 0.54 3.00 176.84 549.00 0.54

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2080E+03 EXCESS=0.0000E+00 OUTFLOW=0.2075E+03 BASIN STORAGE=0.5529E+00 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R10-11 MANE 3.45 176.78 548.95 0.54 3.00 176.78 549.00 0.54

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2079E+03 EXCESS=0.0000E+00 OUTFLOW=0.2074E+03 BASIN STORAGE=0.5529E+00 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R10-11 MANE 3.43 172.80 553.00 0.52 3.00 172.80 552.00 0.52

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2033E+03 EXCESS=0.0000E+00 OUTFLOW=0.2028E+03 BASIN STORAGE=0.5528E+00 PERCENT ERROR= 0.0

***



* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

(916) 756-1104

XXXXXX XXXXX Χ Х Х Χ Χ Х XXΧ Х Χ Χ Х XXXXXX XXXX XXXXXΧ Χ Х Х Х Χ Χ Χ Χ Χ Х Х XXXXXXX XXXXX XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1

```
LINE
               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
                         CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
   1
               TD
                         POWERLINE CORRIDOR
   2
               ID
                         RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
   3
               TD
                         INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
               ID
                         100-YR, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
   5
               ID
   6
               ID
                            PIMA ROAD FLOWS.
   7
               ID
   8
               ID
                         PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14
  9
               ID
                         MODELERS: RK, MW
  10
               ID
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 11/14/18
               ID
  11
                         MODELERS: MSW, ES
               TD
  12
  13
               ID
                         REVISIONS NOTED WITH HE
                            ULTIMATE CONDITION MODEL, WITH POWERLINE AND BASIN 53R AND
               TD
  14
                            THIS IS THE POST-DEVELOPMENT MODEL WITH DEVELOPMENT N OF LEGACY
  15
               ID
                            UPDATED INFLOW HYDROGRAPHS TO REFLECT 15MIN INC.
  16
               TD
  17
               ID
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19
  18
               ID
  19
               ID
                         MODELERS: MSW
  20
               ID
                         XKSAT ADJUSTMENT
  21
               ID
  22
               ID
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 07/15/20
  23
               TD
                         MODELERS: MSW, TSW
                         REVISIONS NOTED WITH HE (Hubbard Engineering)
  24
               ID
                            NEW PROPOSED CONDITION MODEL, ACCOUNT FOR WHAT HAS BEEN
  25
               ID
  26
               ID
                            CONSTRUCTED IN PHASE 1 INFRASTRUCTURE, DETAIL OUT NEW CP
                            ACCOUNT FOR HIGHER C FACTOR AND IMPERVIOUSNESS, ADD RETENTION
  27
               ID
  28
               ID
                            FIRST FLUSH RETENTION ADDED AS DIVERT CARD WITH VOLUME REQUIRED
  29
               ID
  30
                                0
                                        0
                                              1000
               TT
                        3
  31
               IN
                       15
  32
               TO
               *DIAGRAM
```

```
33
               JD
                    2.755 0.0001
                                                     0.033
  34
               PC
                    0.000
                            0.008
                                     0.016
                                             0.025
                                                              0.041
                                                                      0.050
                                                                              0.058
                                                                                       0.066
                                                                                               0.074
  35
               PC
                    0.087
                             0.099
                                     0.118
                                             0.138
                                                     0.216
                                                              0.377
                                                                      0.834
                                                                              0.911
                                                                                       0.931
                                                                                               0.950
  36
               PC
                    0.962
                            0.972
                                     0.983
                                             0.991
                                                      1.000
  37
               JD
                    2.738
                            0.5000
  38
               PC
                    0.000
                             0.008
                                     0.016
                                             0.025
                                                      0.033
                                                              0.041
                                                                      0.050
                                                                              0.058
                                                                                       0.066
                                                                                               0.074
  39
               PC
                             0.099
                                                                              0.911
                    0.087
                                     0.118
                                             0.138
                                                      0.216
                                                              0.377
                                                                      0.834
                                                                                       0.931
                                                                                               0.950
  40
               PC
                    0.962
                             0.972
                                     0.983
                                             0.991
                                                      1.000
                    2.686
               JD
  41
                               2.8
                    0.000
                             0.009
                                                      0.034
                                                                              0.059
  42
               PC
                                     0.016
                                             0.025
                                                              0.042
                                                                      0.051
                                                                                       0.068
                                                                                               0.077
                    0.088
  43
               PC
                             0.101
                                     0.121
                                             0.164
                                                      0.253
                                                              0.451
                                                                      0.694
                                                                              0.836
                                                                                       0.900
                                                                                               0.938
  44
               PC
                    0.950
                             0.963
                                     0.975
                                             0.988
                                                      1.000
  45
               JD
                    2.540
                             16.0
  46
               PC
                    0.000
                             0.015
                                     0.020
                                             0.030
                                                      0.048
                                                              0.063
                                                                      0.076
                                                                              0.090
                                                                                       0.105
                                                                                               0.119
  47
               PC
                    0.135
                             0.152
                                     0.175
                                             0.222
                                                      0.304
                                                              0.472
                                                                      0.670
                                                                              0.796
                                                                                       0.868
                                                                                               0.912
  48
               PC
                    0.946
                             0.960
                                     0.973
                                             0.987
                                                      1.000
  49
               JD
                    2.232
                             90.0
               PC
                    0.000
                             0.021
                                                      0.071
                                                                      0.105
  50
                                     0.035
                                             0.051
                                                              0.087
                                                                              0.125
                                                                                       0.143
                                                                                               0.160
  51
               PC
                    0.179
                             0.201
                                                      0.364
                                                                      0.658
                                     0.232
                                             0.281
                                                              0.500
                                                                              0.773
                                                                                       0.841
                                                                                               0.888
               PC
  52
                    0.927
                             0.945
                                     0.964
                                             0.982
                                                      1.000
  53
               JD
                    3.657
                             10.0
                                              HEC-1 INPUT
                                                                                                        PAGE 2
               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
LINE
  54
               JD
                    3.533
                              20.0
  55
               KK
                   76THST
                        76TH ST CHANNEL HYDROGRAPH FROM PINNACLE PEAK SOUTH ADMS
  56
               ΚM
  57
               ΚM
                        100-YR, 6-HR FLO-2D MODEL (XS 98)
  58
               BA
                     0.24
  59
               QΙ
                        0
                                 0
                                         0
                                                          0
                                                                  0
                                                                          0
                                                                                  0
                                 0
                                      0.01
                                              0.01
                                                      0.09
                                                                0.9
                                                                       12.7
                                                                              42.26
                                                                                       49.92
                                                                                                48.6
  60
                        0
               ΟI
  61
               QI
                    34.49
                             26.72
                                     21.55
                                             17.51
                                                     14.81
                                                              12.84
                                                                      11.63
                                                                               10.56
                                                                                        9.58
                                                                                                8.32
                                      5.83
                     7.29
                             6.73
                                              4.76
                                                      4.23
                                                               3.81
  62
               QI
                                                                       3.4
                                                                               3.55
                                                                                        2.36
                                                                                                2.51
  63
               QI
                     2.32
                              2.16
                                      2.02
                                              1.83
                                                      1.58
                                                                       1.52
                                                               1.5
                                                                               1.21
                                                                                        1.31
                                                                                                1.34
  64
                     1.09
                             1.07
                                      1.04
                                              0.97
                                                      0.91
                                                               0.86
                                                                       0.83
                                                                               0.79
                                                                                        0.76
                                                                                                0.72
               QI
  65
               QΙ
                     0.69
                              0.67
                                      0.65
                                              0.62
                                                       0.6
                                                               0.58
                                                                       0.55
                                                                               0.53
                                                                                        0.51
                                                                                                0.49
                             0.45
                     0.47
                                      0.44
  66
               QΙ
  67
               KK
                    SB01A
                            BASIN
  68
               BΑ
                    0.061
               ΡВ
  69
                    2.721
  70
               PC
                    0.000
                             0.008
                                     0.016
                                             0.025
                                                      0.033
                                                              0.041
                                                                      0.050
                                                                               0.058
                                                                                       0.066
                                                                                               0.075
  71
               PC
                    0.087
                             0.099
                                     0.119
                                             0.150
                                                      0.234
                                                              0.413
                                                                      0.766
                                                                              0.875
                                                                                       0.916
                                                                                               0.944
               PC
                    0.956
                             0.968
                                     0.979
                                             0.990
                                                      1.000
  72
  73
               I G
                     0.25
                             0.25
                                      4.03
                                              0.56
                                                         45
  74
               UC
                    0.439
                             0.231
  75
                                                                               75.0
                                                                                                96.0
               UA
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                                        90.0
                       0
                               3.0
  76
               UA
                      100
 77
                    SB01A DIVERT
               KK
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB01A
  78
               KM
  79
               KM
                          FIRST FLUSH VOL = 1.383 AC-FT
  80
               DT
                   RET01A
                            1.383
  81
               DI
                      0.0
                              10.0
                                      20.0
                                              30.0
                                                       40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                       150.0
                                                                                               200.0
                                                                              100.0 150.0
                      0.0
                             10.0
                                              30.0
                                                       40.0
                                                               50.0
                                                                       60.0
                                                                                               200.0
  82
               DQ
                                      20.0
                     CP-1 COMBINE
  83
               KK
                        LEGACY BLVD AND 76TH ST (MILLER RD CHANNEL)
  84
               KM
               HC
                        2 0.301
  85
  86
               KK
                   R1A-2W ROUTE
  87
               ΚM
                         ROUTE CP-1 TO CP-2W
                     1114 0.0200 0.018
                                                      TRAP
                                                              2.000
                                                                       0.00
               RK
                   SB02NW BASIN
  89
               KK
  90
               KM
                         BASIN SB02E WAS SPLIT INTO SUB BASINS NORTH OF CAVASSON
  91
               ΚM
                          AND SOUTH OF CAVASSON
  92
                   0.0193
               BΑ
  93
               LG
                    0.25
                              0.25
                                      4.03
                                              0.56
                                                         45
  94
               UC
                    0.172
                            0.133
```

95

UΑ

3.0

5.0

8.0

12.0

20.0

43.0

75.0

90.0

96.0

HEC-1 INPUT PAGE 3

96

1

100

					HEC-1	INPUT						PAGE	3
LINE	ID.	1.	2.	3	4	5.	6	7.	8.	9.	10		
97	KK	SB02NW	DIVERT										
98	KM		<b>IVERSION</b>	OF FIRST	FLUSH \	OLUME FO	OR BASIN	SB02NW					
99	KM	F	IRST FLUS	SH VOL =	0.437 AC	C-FT							
100	DT	RET2NW	0.437										
101	DI	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
102	DI	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
103	DQ	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0		
104	DQ *	50.0	55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0		
105	KK	CP-02W	COMBINE										
106	KM		OMBINE RO	OUTE FROM	1 1A-2W W	VITH NEW	SUB BASI	IN SB02N	N				
107	HC	2	0.305										
	*												
108	KK	R2W-2	ROUTE										
109	RK		0.0140	0.018		TRAP	2.000	0.00					
	*												
110	VV	CDQ1C	DACTN										
110 111	KK	SB01C	BASIN										
111	BA LG	0.027 0.25	0.25	4.03	0.56	45							
113	UC	0.215	0.216	4.05	0.50	45							
114	UA	0.213	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
115	UA	100	3.0	3.0	0.0	12.0	20.0	43.0	73.0	30.0	50.0		
113	*	100											
116	VV	CD01.C	DT)/EDT										
116	KK		DIVERT	OF FIRE	r rilicii v	OLUME E	OD DACTN	CDQ1C					
117	KM		OIVERSION				JK BASIN	2B01C					
118	KM		IRST FLUS	SH VUL =	0.612 AC	FI							
119 120	DT DI	RET01C 0.0	0.612 10.0	20.0	30.0	40.0	50.0	60.0	100.0	150 0	200.0		
120	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0 150.0	200.0		
121	*	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	130.0	200.0		
122	KK	R1C-1B	ROUTE										
123	KM		(0 2	2									
124	RK	542	0.005	0.013		CIRC	5.000						
124	*	342	0.003	0.013		CINC	3.000						
125	1/1/	CD01D	DACTN										
125	KK	SB01B	BASIN										
126	BA	0.024	0.25	4 02	0.50	45							
127 128	LG	0.25 0.191	0.25 0.178	4.03	0.56	45							
129	UC UA	0.191	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
130	UA	100	5.0	5.0	0.0	12.0	20.0	43.0	73.0	50.0	50.0		
150	*	100											
121	1/1/	CD01D	DT)/EDT										
131	KK		DIVERT	OF FTDC3		(OLUME 5	OD DACTN	CD01D					
132	KM		OIVERSION				OK RASIN	2R0TR					
133	KM		IRST FLUS	SH VUL =	0.543 AC	FI							
134 135	DT DI	RET01B 0.0	0.543 10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
136	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
130	*	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	130.0	200.0		
					HEC-1	INPUT						PAGE	4
LINE	TD.	1 .	2.	3	4	5	6	7 .	8 .	9 .	10		
137	KK	CD_01D	COMBINE										
137	K K K M		COMBINE RO	OUTE EDON	1 10,10 1	JTTH NEW	SIIR DACT	IN SPA1D					
139	HC	2	0.051	JUIL I NOP	I IC-ID W	ATIII IALW	300 DA31	IN 2001D					
133	*	2	0.031										
140	1717	D4D 34	DOUTE										
140	KK	R1B-2N	ROUTE	2									
141	KM	KO	2	2		CTDC	5 000						
142	RK *	2144	0.008	0.013		CIRC	5.000						
143	KK	SB02NE	BASIN										
144	BA	0.0335											
145	LG	0.25	0.25	4.03	0.56	45							

146	UC	0.255	0.267									
147	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
148	UA	100										
	*											
4.40	1414	CDOONE	D.T. (E.D.T.									
149	KK		DIVERT	0F FTD6		=	0D DAGTN	CDOONE				
150	KM				T FLUSH VO		OK BASIN	SB02NE				
151	KM			SH VOL =	0.760 AC-	FI						
152	DT	RET2NE	0.760									
153	DI	0.0		20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
154	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*											
155	KK	CD G2N	COMBINE									
156	KM			NITE 1R_	2N (BASINS	CB01_	R AND CR	31_C\ WTT	H CBOOM	=		
157	HC	2		JUIL ID-	ZN (DASINS	2001-	יטכ שווא ט	or-c) wi	II JUUZINI	<u> </u>		
137	*		0.005									
158	KK	R2N-2	ROUTE									
159	RK	1380		0.018		TRAP	2.000	0.00				
	*											
160	KK	SB02E	BASIN									
161	BA	0.040										
162	LG	0.10	0.25	4.03	0.61	80						
163	UC	0.214	0.175									
164	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
165	UA	100										
	*											
166	1/1/	CDOOL	DTVEDT									
166	KK		DIVERT	OF FTDC:	T FILICIL 1/0		OD DACTN	CDOOF				
167	KM				T FLUSH VO		OK BASIN	SBOZE				
168	KM			SH VOL =	0.998 AC-	FI						
169	DT	RET2E		20.0	20.0	40.0	FO 0	60.0	100.0	150.0	200.0	
170	DI	0.0		20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
171	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	·				HEC-1 I	NDIIT						PAGE 5
					IILC-I I	NI OI						TAGE 3
LINE	ID.	1	2.	3 .	4	5.	6.	7	8.	9.	10	
172	KK	SB02W	BASIN									
173	BA	0.0571										
174	LG	0.35	0.35	4.33	0.51	0						
175			0.535									
176	UC	0.686										
177	UC UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	UA UA			5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	UA	0		5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
170	UA UA *	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
178	UA UA *	0 100 CP-02	3.0 COMBINE	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
178 179	UA UA * KK HC	0 100 CP-02	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	UA UA *	0 100 CP-02	3.0 COMBINE	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
179	UA UA * KK HC *	0 100 CP-02 4	3.0 COMBINE 0.1816	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
179 180	UA UA * KK HC *	0 100 CP-02 4 R2-3	3.0  COMBINE 0.1816  ROUTE							90.0	96.0	
179 180 181	UA UA * KK HC *	0 100 CP-02 4 R2-3	3.0 COMBINE 0.1816 ROUTE MILLER RD	CHANNEL	8.0 FROM SR 1					90.0	96.0	
179 180	UA UA * KK HC * KK KM	0 100 CP-02 4 R2-3	3.0  COMBINE 0.1816  ROUTE			01L FR	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181	UA UA * KK HC * KK KM RK	0 100 CP-02 4 R2-3	3.0 COMBINE 0.1816 ROUTE MILLER RD	CHANNEL		01L FR	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181	UA UA * KK HC * KK KM RK	0 100 CP-02 4 R2-3	3.0 COMBINE 0.1816 ROUTE MILLER RD	CHANNEL		01L FR	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181 182	UA UA *  KK HC *  KK KM RK *	0 100 CP-02 4 R2-3	3.0 COMBINE 0.1816 ROUTE MILLER RD 0.0015	CHANNEL		01L FR	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181 182	UA UA *  KK HC *  KK KM RK *	0 100 CP-02 4 R2-3 1260	3.0 COMBINE 0.1816 ROUTE MILLER RD 0.0015	CHANNEL		01L FR	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181 182 183 184	UA UA *  KK HC *  KK KM RK *  KK BA	0 100 CP-02 4 R2-3 1260 SB03 0.048	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25	CHANNEL 0.030	FROM SR 1	01L FR TRAP	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181 182 183 184 185	UA UA *  KK HC *  KK KM RK *  KK BA LG	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25	CHANNEL 0.030	FROM SR 1	01L FR TRAP	EEWAY TO	MAYO BLV		90.0	96.0	
179 180 181 182 183 184 185 186	UA UA *  KK HC *  KK KM RK *  KK BA LG UC	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179 180 181 182 183 184 185 186 187	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0	COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0.100	COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0	COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0.100	COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE	CHANNEL 0.030 4.50	FROM SR 1	01L FR TRAP 55	EEWAY TO 92	MAYO BLV 4	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE	CHANNEL 0.030 4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0	MAYO BLV 4 84.0	/D			
179  180 181 182  183 184 185 186 187 188  189 190	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD	CHANNEL 0.030  4.50 16.0	FROM SR 1	01L FR TRAP 55 65.0	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			
179  180 181 182  183 184 185 186 187 188	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE	CHANNEL 0.030 4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0	MAYO BLV 4 84.0	/D			
179  180 181 182  183 184 185 186 187 188  189 190	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD	CHANNEL 0.030  4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			
179  180 181 182  183 184 185 186 187 188  189 190	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD	CHANNEL 0.030  4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			
179  180 181 182  183 184 185 186 187 188  189 190  191 192 193	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD 0.0015	CHANNEL 0.030  4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			
179  180 181 182  183 184 185 186 187 188  189 190  191 192 193	UA UA *  KK HC *  KK KM RK *  KK BA LG UC UA UA *  KK HC *  KK KM KK KK KK KK	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0 100 CP-03 2 R3-5	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD 0.0015	CHANNEL 0.030  4.50 16.0	FROM SR 1 0.47 30.0	01L FR TRAP 55 65.0	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			
179  180 181 182  183 184 185 186 187 188  189 190  191 192 193	UA UA *  KK HC *  KK KM RK *  KK BA LG UCA UA *  KK HC *  KK KM RK *	0 100 CP-02 4 R2-3 1260 SB03 0.048 0.15 0.364 0.100 CP-03 2 R3-5	3.0  COMBINE 0.1816  ROUTE MILLER RD 0.0015  BASIN 0.25 0.294 5.0  COMBINE  ROUTE MILLER RD 0.0015  BASIN	CHANNEL 0.030 4.50 16.0 CHANNEL 0.03	FROM SR 1  0.47  30.0	01L FR TRAP 55 65.0 BLVD TRAP	EEWAY TO 92 77.0 TO PRINCI	MAYO BLV 4 84.0 ESS BLVD	/D			

198 199	UA UA *	0 100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
200 201	KK HC *	CP-5A 2	COMBINE									
202	KK	SB07W	BASIN									
203	BA	0.0468	DAJIN									
204	LG	0.25	0.25	4.03	0.56	45						
205	UC	0.203	0.141			42.0	20.0	42.0	75.0	00.0	05.0	
206 207	UA UA	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	*				HEC-1	INPUT						PAGE 6
LINE	TD	4	2	2	4	-		-	0	0	10	
LINE	10.		2.	3	4	5		/ .	8.	9.	10	
208	KK	SB07W	DIVERT									
209	KM	D	IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB07W				
210	KM	F	IRST FLUS	SH VOL =	1.060 AC	-FT						
211	DT	RET07W	1.060									
212	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
213	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
214	KK	R7W-8W	ROUTE									
215	KM	Н	AYDEN ROA	AD NORTH	CHANNEL	FROM LEG	SACY BLVD	TO SR	101L FRE	EWAY		
216	KM		E MODIFIE		TO LOOP							
217	RK *	3754	0.0013	0.03		TRAP	46	4				
218	KK	SB8NW	BASIN									
219	KM		ASIN JUS	r south o	F LEGACY	' - FUTUR	RE MOB SI	TE				
220	BA	0.0147										
221	LG	0.10	0.25	4.03	0.61	80						
222	UC	0.144	0.108									
223	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
224	UA *	100										
225	KK	SB8NW	DIVERT									
226	KM		IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB8NW				
227	KM		IRST FLUS									
228	DT	RET8NW	0.332									
229	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
230	DQ *	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
231	KK	R8NW8N	ROUTE									
232	KM	R	OUTE NEW	SUB BASI	IN SB8NW	TO OUTLE	T AT CAV	/ASSON B	LVD			
233	KM		ORTH HALF		IN 8W WAS				-SUBBASI	NS		
234	RK *	643	0.0113	0.018		TRAP	46	4				
235	KK	SB8NE	BASIN									
236	KM		ITE JUST	SOUTH OF	LEGACY	AND WEST	OF HAYD	DEN - FU	TURE RET	AIL		
237	ВА	0.015										
238	LG	0.10	0.25	4.03	0.61	80						
239	UC	0.138	0.094									
240	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
241	UA *	100										
242	KK	SRRNE	DIVERT									
243	KM		IVERSION	OF FIRST	FLUSH V	OLUME FO	OR BASIN	SB8NE				
244	KM		IRST FLUS				· •	- <del>-</del>				
245	DT	RET8NE										
246	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0		150.0	200.0	
247	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
	*				HEC-1	INPUT						PAGE 7
LINE	ID.	1.	2.	3	4	5	6	7.	8.	9.	10	
248		R8NE8N	ROUTE									
249	KM	R	OUTE NEW	SUB BASI	IN SB8NE	TO OUTLE	T AT CAV	/ASSON B	LVD			

```
NORTH HALF OF BASIN 8W WAS BROKEN DOWN INTO 4 SUB-SUBBASINS
 250
               KM
 251
               RK
                      622 0.011 0.018
                                                     TRAP
                                                               46
252
               KK
                    SB8SW BASIN
253
               KM
                         SITE JUST NORTH OF CAVASSON BLVD EAST OF CLARET DR - FUTURE MF
254
               BA
                   0.0129
255
               LG
                     0.10
                             0.25
                                     4.03
                                             0.61
                                                       80
 256
               UC
                    0.126
                            0.091
257
               UA
                       0
                              3.0
                                      5.0
                                              8.0
                                                     12.0
                                                             20.0
                                                                     43.0
                                                                              75.0
                                                                                      90.0
                                                                                              96.0
               UΑ
258
                      100
                    SB8SW DIVERT
259
               KK
 260
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8SW
261
               KM
                         FIRST FLUSH VOL = 0.292 AC-FT
                   RET8SW
               DT
                            0.292
262
               DI
                      0.0
                             10.0
                                     20.0
                                             30.0
                                                     40.0
                                                              50.0
                                                                     60.0
                                                                             100.0
                                                                                     150.0
                                                                                             200.0
 263
                      0.0
                                             30.0
                                                     40.0
                                                             50.0
                                                                     60.0
                                                                             100.0
                                                                                     150.0
                                                                                             200.0
264
               DQ
                             10.0
                                     20.0
                    SB8SE BASIN
265
               KK
266
               ΚM
                         SITE JUST NORTH OF CAVASSON AND WEST OF HAYDEN - FUTURE HOTEL OR RETAIL
267
               BA
                   0.0131
268
               LG
                     0.10
                             0.25
                                     4.03
                                             0.61
                                                       80
269
               UC
                    0.139
                            0.113
 270
               UA
                        0
                              3.0
                                      5.0
                                              8.0
                                                     12.0
                                                             20.0
                                                                     43.0
                                                                              75.0
                                                                                      90.0
                                                                                              96.0
               IJΔ
                      100
271
                    SB8SE DIVERT
272
               KK
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8SE
273
               ΚM
274
               KM
                         FIRST FLUSH VOL = 0.297 AC-FT
275
              DT
                   RET8SE
                            0.297
276
                             10.0
                                     20.0
                                             30.0
                                                     40.0
                                                             50.0
                                                                     60.0
                                                                             100.0
                                                                                     150.0
                                                                                             200.0
               DI
                      0.0
277
               DQ
                      0.0
                             10.0
                                     20.0
                                             30.0
                                                     40.0
                                                             50.0
                                                                     60.0
                                                                             100.0
                                                                                     150.0
                                                                                             200.0
278
               KK
                  CP-08N COMBINE
279
                        CP AT INLET ON NORTH SIDE OF CAVASSON - ENTERS EXIST STORM DRAIN
               KM
               HC
                        4 0.0557
280
281
               KK R8N-8W ROUTE
 282
               ΚM
                         ROUTE NEW SUB BASINS SB8NE SB8NW SB8SW SB8SE TO CP-08W
               KM
                         ROUTE IN STORM DRAIN
 283
 284
               RK
                     1592 0.015
                                   0.013
                                                     CIRC
                                             HEC-1 INPUT
                                                                                                      PAGE 8
LINE
               ID.....1....2....3....4....5....6....7....8....9....10
                   SB08W
285
               KK
                            BASIN
 286
               ВА
                   0.0589
287
               LG
                     0.10
                             0.25
                                     4.03
                                             0.61
                                                       80
288
               UC
                            0.146
                    0.221
289
               UΑ
                        0
                              3.0
                                      5.0
                                              8.0
                                                     12.0
                                                             20.0
                                                                     43.0
                                                                              75.0
                                                                                      90.0
                                                                                              96.0
290
               IJΔ
                      100
 291
                    SB08W DIVERT
               KK
292
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB08W
               ΚM
                         FIRST FLUSH VOL REQ = 1.335 AC-FT, PROVIDED = 1.415
 293
                         THIS IS EXISTING AND WAS BUILT IN PHASE 1
294
               KM
 295
               DT
                    RET8W
                           1.415
296
               DI
                      0.0
                             10.0
                                     20.0
                                             30.0
                                                     40.0
                                                             50.0
                                                                     60.0
                                                                             100.0
                                                                                    150.0
                                                                                             200.0
                      0.0
                             10.0
                                     20.0
                                             30.0
                                                     40.0
                                                             50.0
                                                                     60.0
                                                                             100.0
                                                                                    150.0
                                                                                             200.0
297
               DQ
 298
               KK CP-08W COMBINE
               HC
                        3 0.1614
 299
 300
               KK
                    R8W-4
                           ROUTE
 301
                     3137 0.0130
                                                     TRAP
                                                            2.000
                                                                     0.00
               RK
                                    0.030
```

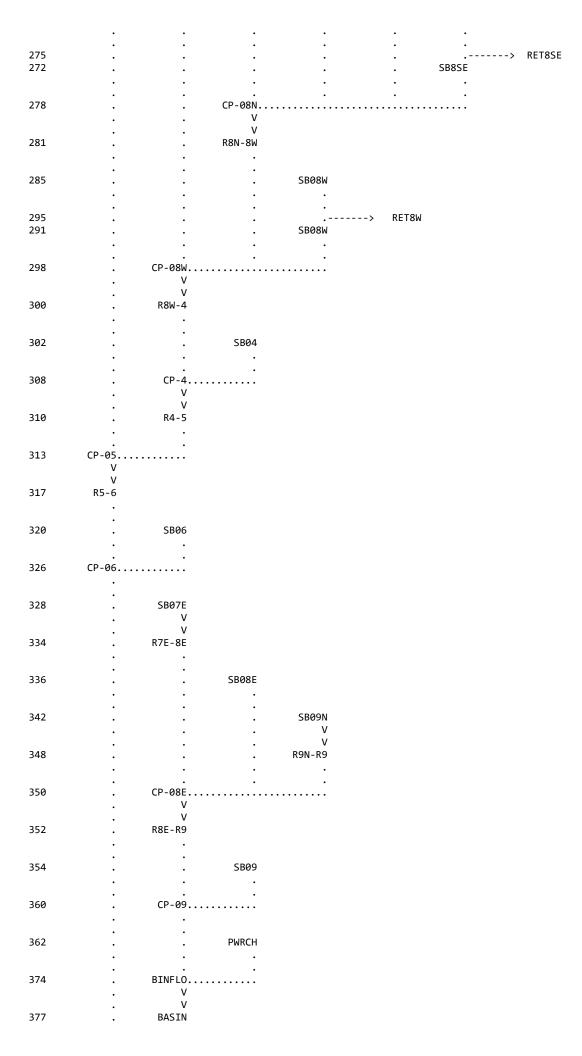
302

ΚK

SB04

BASIN

303 304	BA LG	0.144 0.14	0.25	4.60	0.44	61						
305	UC	0.305	0.199									
306	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
307	UA *	100										
308	KK		COMBINE									
309	HC *	2										
310	KK KM	R4-5	ROUTE	BLVD CUA	NNEL EDOM	77TU CT	TO 76TI	ı ct				
311 312	RK		0.0013		NNEL FROM	TRAP	39	1 3 I 4				
312	*	1992	0.0013	0.03		INAP	39	4				
313	KK		COMBINE									
314	KM				76TH ST	(PRINCES	S BLVD (	CHANNEL)				
315	KM		OMBINE (	CP-05A ANI	D R4-5							
316	HC *	2										
				_	HEC-1			_				PAGE 9
LINE	ID.	1.	2	3 .	4	5	6	7	8	9	10	
317	KK	R5-6	ROUTE									
318	KM				NNEL FROM			TTSDALE RD	)			
319	RK *	1694	0.0015	0.03		TRAP	188	4				
320	KK	SB06	BASIN									
321	BA	0.136										
322	LG	0.16	0.25	4.55	0.45	53						
323	UC	0.321	0.246	46.0	20.0	<b>65.0</b>	0	24.2	00.0	04.0	07.0	
324	UA	100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
325	UA *	100										
326	KK		COMBINE									
327	HC *	2										
328	KK	SB07E	BASIN									
329	BA	0.026										
330	LG	0.10	0.25	4.03	0.74	0						
331	UC UA	0.574	0.527 3.0	E O	8.0	12.0	20.0	12 A	75.0	00.0	96.0	
332 333	UA	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	90.0	
333	*	100										
334	KK	R7E-8E	ROUTE									
335	RK *	3662	0.0130	0.030		TRAP	2.000	0.00				
336	KK	SB08E	BASIN									
337	BA	0.078										
338	LG	0.10	0.25	4.08	0.72	0						
339	UC	0.798	0.652	г о	0.0	12.0	20.0	42.0	75.0	00.0	06.0	
340 341	UA UA	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	*											
342	KK	SB09N	BASIN									
343	BA	0.028				-						
344	LG	0.10	0.25	4.79	0.49	0						
345 346	UC UA	0.740 0	1.111 3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
347	UA *	100	3.0	5.0	0.0	12.0	20.0	43.0	75.0	90.0	90.0	
240		DOM DO	POLITE									
348 349	KK RK	R9N-R9 2586	ROUTE 0.0013	0.020		TRAP	2.000	0.00				
	*				HEC-1	INPUT						PAGE 10
LINE	ID.	1.	2	3.	4	5	6	7	8	9	10	
250	1/1/	CD 005	COMPTNE									


350 KK CP-08E COMBINE

```
HC
                        3
 352
               KK
                   R8E-R9
                            ROUTE
 353
               \mathsf{RK}
                      501
                           0.0013
                                     0.020
                                                      TRAP
                                                             2.000
                                                                       0.00
354
               KK
                     SB09
                            BASIN
 355
                    0.086
               ВА
 356
               LG
                     0.10
                             0.25
                                      4.79
                                              0.49
                                                         0
 357
               UC
                    0.683
                            0.518
                                                                                                96.0
                                                                       43.0
                                                                               75.0
                                                                                       90.0
 358
               UA
                        0
                               3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
 359
               UA
                      100
 360
               KK
                    CP-09 COMBINE
                        2
 361
               HC
                    PWRCH
 362
               KK
                         POWERLINE CHANNEL (XS 107) & 50% PIMA ROAD CHANNEL (XS 183) HYDROGRAPHS
 363
               KM
 364
               ΚM
                         100-YR, 6-HR FLO-2D MODEL (XS 107)
 365
               BA
                      7.0
 366
               QΙ
                        0
                                0
                                         0
                                                 0
                                                         0
                                                                  0
                                                                                  0
                                                                          0
                                                                                          0
                                                                                                   0
 367
               QΙ
                        0
                                0
                                         0
                                                 0
                                                         0
                                                              0.11
                                                                      17.74
                                                                              50.91
                                                                                     433.53
                                                                                             391.08
                   359.13 391.64 616.52 737.85
                                                    699.64
                                                            645.41 621.52
                                                                            599.48
                                                                                     594.12
 368
               QI
                   525.86 472.45
 369
                                   419.04 375.56
                                                       335
                                                            299.45
                                                                      270.9
               QΙ
                                                                             235.68
 370
                                   146.04 130.32
                                                            110.32
                                                                               90.9
               QI
                   172.83 155.83
                                                     120.9
                                                                      99.25
                                                                                      82.93
                                                                                              77.68
 371
                                      63.5
                                                     56.01
                                                                      48.75
                                                                              43.99
                                                                                      42.04
               QΙ
                     79.3
                            67.58
                                             64.86
                                                              51.64
                                                                                               40.99
 372
               OI
                    37.99
                            36.19
                                     33.42
                                             31.56
                                                     29.22
                                                             28.13
                                                                      27.15
                                                                              31.57
                                                                                      24.31
                                                                                                23.1
 373
                    22.09
                            21.66
                                     20.95
               ΟI
374
               KK
                   BINFLO
 375
                          TOTAL INFLOW INTO BASIN 53R.
               KM
 376
               HC
                        2
377
               KK
                    BASIN
                      BASIN 53R STAGE/STORAGE FROM PROPOSED CONTOURS BETWEEN
 378
               ΚM
                      ELEV 1594 AND 1615; BASIN SIDE SLOPES STEEPENED TO 3:1
 379
               KM
                         OUTFLOW RATING CURVE FROM CULVERTMASTER FOR 2-60" PIPES
 380
               ΚM
 381
               ΚM
                         THE OUTLET PIPES ARE INLET CONTROLLED.
               RS
 382
                        1
                             STOR
                                        0
 383
               S۷
                              44.9
                                      76.8
                                             108.7
                                                     140.6
                                                             171.5
                                                                      202.5
                                                                              233.5
                                                                                      264.5
                                                                                               295.5
                    328.7
 384
               SV
                             362.0
                                     395.2
                                             428.5
                                                     461.7
                                                             497.2
                                                                      532.7
                                                                              568.3
                                                                                      603.8
                                                                                               639.3
 385
               SE
                     1594
                             1597
                                      1598
                                              1599
                                                      1600
                                                              1601
                                                                       1602
                                                                               1603
                                                                                       1604
                                                                                                1605
                             1607
                                                                               1613
 386
               SE
                     1606
                                      1608
                                              1609
                                                      1610
                                                              1611
                                                                       1612
                                                                                       1614
                                                                                               1615
                              94.6
                                             209.8
                                                     244.2
                                                                      284.0
 387
               SQ
                        0
                                     153.4
                                                              264.5
                                                                              302.5
                                                                                      320.1
                                                                                               336.9
 388
               SQ
                    353.0
                            368.5
                                     383.5
                                             398.0
                                                     412.0
                                                             425.7
                                                                      438.9
                                                                              451.9
                                                                                      464.5
                                                                                               476.8
                                              HEC-1 INPUT
                                                                                                        PAGE 11
LINE
               ID.....1....2....3....4....5....6....7....8....9....10
389
                  BSNRT1
               KK
 390
               ΚM
                          2-60" CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY.
 391
               ΚM
                         DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE
 392
               ΚM
                         EXCESS CAPACITY.
                      550 0.0052 0.024
                                                      CTRC
                                                               7.0
               RK
393
 394
               KK
                         2-60" RCP PIPES FROM SR 101L FREEWAY TO UNION HILLS DR (BAS 53R OUTFALL)
 395
               KM
               RK
                     1200 0.0077 0.013
                                                      CIRC
 396
                                                               7.0
 397
               ΚK
                     SB10
                            BASIN
                    0.040
 398
               RΔ
 399
               LG
                     0.15
                              0.25
                                      4.25
                                              0.55
                                                        55
               UC
 400
                    0.233
                             0.161
 401
               UΑ
                        0
                               5.0
                                      16.0
                                              30.0
                                                      65.0
                                                              77.0
                                                                       84.0
                                                                               90.0
                                                                                       94.0
                                                                                                97.0
 402
               UΑ
                      100
 403
               KK
                    CP-10 COMBINE
 404
               ΚM
                         UNION HILLS DR AND 82ND ST (UNION HILLS DR CHANNEL)
 405
               HC
                        2 0.229
```

1

```
406
                     KK R10-11 ROUTE
                           UNION HILLS DR CHANNEL FROM 82ND ST TO HAYDEN ROAD
         407
                     ΚM
                          1277 0.0014 0.03 TRAP
         408
                     RK
                                                          220 4
         409
                     KK
                         SB11 BASIN
                        0.071
         410
                     BA
         411
                     LG
                         0.15
                                0.25
                                      4.15 0.58
                                                    55
                     UC
         412
                         0.296
                               0.232
         413
                     UA
                          0
                                5.0
                                        16.0
                                               30.0
                                                      65.0
                                                           77.0 84.0
                                                                          90.0
                                                                                 94.0
                                                                                        97.0
                     UA
         414
                           100
         415
                     KK CP-11 COMBINE
         416
                     KM
                             UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)
                     HC
         417
                             2 0.3
         418
                     ZZ
             SCHEMATIC DIAGRAM OF STREAM NETWORK
INPUT
         (V) ROUTING
                          (--->) DIVERSION OR PUMP FLOW
LINE
 NO.
         (.) CONNECTOR (<---) RETURN OF DIVERTED OR PUMPED FLOW
         76THST
                    SB01A
  67
                     .
.----> RET01A
  80
  77
                    SB01A
           CP-1.....
  83
             V
  86
         R1A-2W
                   SB02NW
  89
 100
                      .----> RET2NW
  97
                   SB02NW
         CP-02W.....
 105
             ٧
             V
 108
          R2W-2
 110
                    SB01C
 119
                       .----> RET01C
 116
                    SB01C
                       V
 122
                   R1C-1B
 125
                              SB01B
                                .
.----> RET01B
 134
                              SB01B
 131
 137
                   CP-01B.....
                       V
                   R1B-2N
 140
 143
                              SB02NE
```

150		•	•	PETANE
152 149	•	•	SB02NE	> RET2NE
149	•	•	3002NL	
		:		
155		CP-02N		
	•	V		
450	•	V		
158	•	R2N-2		
	•			
160			SB02E	
	•		•	
	•		•	
169	•	•		> RET2E
166	•	•	SB02E	
	•	•	•	
172				SB02W
		•		
		•	•	•
178				•••••
	V V			
180	R2-3			
183		SB03		
	•	•		
189	CP-03	·		
100	V. V			
	V			
191	R3-5			
	•			
194	•	SB05		
134	•			
200	CP-5A			
	•			
202	•	SB07W		
202	•	3507W		
211			> RE	T07W
208	•	SB07W		
	•	V V		
214		R7W-8W		
	•	•		
218	•	•	SB8NW	
	•	•	•	
228		·	•	> RET8NW
225			SB8NW	
			V	
	•	•	V	
231	•	•	R8NW8N	
	•	•	•	
235				SB8NE
	•	•	•	
245	•	•	•	> RET8NE
242	•	•	•	SB8NE V
		•	•	V
248		•	•	R8NE8N
			•	•
~	•	•	•	·
252	•	•	•	. SB8SW
	•	•	•	: :
262	•		•	
259				. SB8SW
			•	
		•		•
265	•			SB8SE



		V	
		V	
389		BSNRT1	
		V	
		V	
394		BSNRT2	
397			SB10
			•
		•	
403		CP-10	
		V	
		V	
406		R10-11	
409		•	SB11
		•	
		•	
415		CP-11	
-	-		

*************************************

* FLOOD HYDROGRAPH PACKAGE (HEC-1) *

* JUN 1998 *

* VERSION 4.1 *

*

* RUN DATE 26APR21 TIME 08:56:05 *

*

*************

* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

* (916) 756-1104

CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
POWERLINE CORRIDOR
RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
100-YR, 6-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
PIMA ROAD FLOWS.

PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14 MODELERS: RK, MW

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 11/14/18

MODELERS: MSW, ES
REVISIONS NOTED WITH HE

ULTIMATE CONDITION MODEL, WITH POWERLINE AND BASIN 53R AND
THIS IS THE POST-DEVELOPMENT MODEL WITH DEVELOPMENT N OF LEGACY

UPDATED INFLOW HYDROGRAPHS TO REFLECT 15MIN INC.

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19

MODELERS: MSW XKSAT ADJUSTMENT

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 07/15/20

MODELERS: MSW, TSW

REVISIONS NOTED WITH HE (Hubbard Engineering)

NEW PROPOSED CONDITION MODEL, ACCOUNT FOR WHAT HAS BEEN CONSTRUCTED IN PHASE 1 INFRASTRUCTURE, DETAIL OUT NEW CP ACCOUNT FOR HIGHER C FACTOR AND IMPERVIOUSNESS, ADD RETENTION FIRST FLUSH RETENTION ADDED AS DIVERT CARD WITH VOLUME REQUIRED

32 IO OUTPUT CONTROL VARIABLES

IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL

QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH TIME DATA IT 3 MINUTES IN COMPUTATION INTERVAL NMIN **IDATE** 0 STARTING DATE ITIME 0000 STARTING TIME 1000 NUMBER OF HYDROGRAPH ORDINATES NO NDDATE 0 ENDING DATE 0157 ENDING TIME NDTTMF CENTURY MARK **ICENT** COMPUTATION INTERVAL 0.05 HOURS TOTAL TIME BASE 49.95 HOURS **ENGLISH UNITS** DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH **INCHES** LENGTH, ELEVATION FEET CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT 33 JD INDEX STORM NO. 1 STRM 2.76 PRECIPITATION DEPTH TRDA 0.00 TRANSPOSITION DRAINAGE AREA 34 PI PRECIPITATION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.09 0.09 0.03 0.03 0.03 0.09 0.09 0.09 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37 JD INDEX STORM NO. 2 2.74 PRECIPITATION DEPTH STRM TRDA 0.50 TRANSPOSITION DRAINAGE AREA 38 PI PRECIPITATION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09 0.09 0.02 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41 JD INDEX STORM NO. 3 **STRM** 2.69 PRECIPITATION DEPTH 2.80 TRANSPOSITION DRAINAGE AREA TRDA 42 PT PRECIPITATION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 9.92 0.02 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.03 0.01 0.03 0.03 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45 JD INDEX STORM NO. 4

STRM 2.54 PRECIPITATION DEPTH

16.00 TRANSPOSITION DRAINAGE AREA TRDA

46 PI	PRECTPTTAT:	ION PATTERN								
10 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04
	0.03	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40. 70	THREY STORM A									
49 JD	INDEX STORM N									
	STRM	2.23	PRECIPI	TATION DEP	TH					
	TRDA	90.00	TRANSPO	SITION DRA	INAGE AREA					
50 PI	DRECTOTTAT	ION PATTERN								
JU 1 I	0.00	0.00	0 00	0 00	0 00	0 00	0 00	0 00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01
	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F2 7D	THREY STORM A									
53 JD	INDEX STORM N	NO. 6								
	STRM	3.66		TATION DEP						
	STRM TRDA	3.66 10.00		TATION DEP SITION DRA						
0 PI	TRDA									
0 PI	TRDA PRECIPITATI	10.00	TRANSPO	SITION DRA	INAGE AREA		0.00	0.00	0.00	0.00
0 PI	TRDA PRECIPITATI 0.00	10.00 ION PATTERN 0.00	TRANSPO	OSITION DRA	INAGE AREA	0.00	0.00	0.00	0.00	0.00
0 PI	TRDA PRECIPITATI 0.00 0.00	10.00 ION PATTERN 0.00 0.00	0.00 0.00	0.00 0.00	INAGE AREA 0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00
0 PI	TRDA PRECIPITATI 0.00 0.00 0.00	10.00 ION PATTERN 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
0 PI	TRDA PRECIPITATI 0.00 0.00	10.00 ION PATTERN 0.00 0.00	0.00 0.00	0.00 0.00	INAGE AREA 0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00
0 PI	TRDA PRECIPITATI 0.00 0.00 0.00	10.00 ION PATTERN 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
0 PI	TRDA PRECIPITATI 0.00 0.00 0.00 0.00	10.00 ION PATTERN 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
0 PI	TRDA PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01
0 PI	TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02	0.00 0.00 0.00 0.00 0.01 0.02	0.00 0.00 0.00 0.00 0.01 0.02	0.00 0.00 0.00 0.00 0.01 0.02	0.00 0.00 0.00 0.00 0.01 0.02
0 PI	TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03	0.00 0.00 0.00 0.00 0.01 0.02 0.03	0.00 0.00 0.00 0.00 0.01 0.02 0.03	0.00 0.00 0.00 0.00 0.01 0.02 0.03	0.00 0.00 0.00 0.01 0.02 0.03
0 PI	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01
0 PI	TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.01 0.02 0.03 0.01
0 PI	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01
0 PI	TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.01 0.02 0.03 0.01
0 PI	TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
	TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
0 PI 54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N  STRM  TRDA	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 NO. 7 3.53 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N  STRM  TRDA  PRECIPITATI	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N  STRM  TRDA	10.00 ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 NO. 7 3.53 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  INDEX STORM N  STRM  TRDA  PRECIPITATI  0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 ION PATTERN 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  INDEX STORM N  STRM  TRDA  PRECIPITATI  0.00  0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  INDEX STORM N  STRM  TRDA  PRECIPITATI  0.00  0.00  0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 TATION DEP SITION DRA	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.01  0.03  0.02  0.01  0.00  0.00  INDEX STORM N  STRM  TRDA  PRECIPITATI  0.00  0.00  0.00  0.00  0.00  0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 PRECIPI TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00
54 JD	TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 PRECIPI TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 PRECIPI TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00
54 JD	TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATE 0.00 0.00 0.00 0.00 0.00 0.00	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 PRECIPI TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  PRECIPIT TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.02
54 JD	TRDA  PRECIPITATI  0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  INDEX STORM N STRM TRDA  PRECIPITATI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	10.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  NO. 7 3.53 20.00  ION PATTERN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00  PRECIPIT TRANSPO	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01

^{***} FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

^{***} FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

^{***} FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 1
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED ITERATION= 27
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
- *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

```
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2
*** FDKRUT - NEWTON RAPHSON FAILEDFIXED POINT ITERATION USED - ITERATION= 2
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT
```

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

 $PE\Delta K$ 

TTME OF

1

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

AVERAGE FLOW FOR MAXIMUM PERIOD

RASTN

MAXTMIIM

TTMF OF

	OPERATION	STATION	FLOW	PEAK	AVERAGE F	FLOW FOR MAXIMUM PERIOD		AREA STAG		MAX STAGE
+	OFLINATION	STATION	I LOW	FLAK	6-HOUR	24-HOUR	72-HOUR	ANLA	STAGE	MAX STAGE
+	HYDROGRAPH AT	76THST	50.	4.50	15.	4.	2.	0.24		
+	HYDROGRAPH AT	SB01A	103.	4.25	12.	3.	1.	0.06		
+	DIVERSION TO	RET01A	44.	4.05	3.	1.	0.	0.06		
+	HYDROGRAPH AT	SB01A	103.	4.25	9.	2.	1.	0.06		
+	2 COMBINED AT	CP-1	145.	4.25	24.	7.	3.	0.30		
+	ROUTED TO	R1A-2W	144.	4.30	24.	7.	3.	0.30		
+	HYDROGRAPH AT	SB02NW	43.	4.05	4.	1.	0.	0.02		
+	DIVERSION TO	RET2NW	14.	3.85	1.	0.	0.	0.02		

+	HYDROGRAPH AT	SB02NW	43.	4.05	3.	1.	0.	0.02
+	2 COMBINED AT	CP-02W	164.	4.25	27.	7.	4.	0.31
+	ROUTED TO	R2W-2	163.	4.25	27.	7.	4.	0.31
+	HYDROGRAPH AT	SB01C	51.	4.10	5.	1.	1.	0.03
+	DIVERSION TO	RETØ1C	20.	3.90	1.	0.	0.	0.03
+	HYDROGRAPH AT	SB01C	51.	4.10	4.	1.	0.	0.03
+	ROUTED TO	R1C-1B	50.	4.10	4.	1.	0.	0.03
+	HYDROGRAPH AT	SB01B	50.	4.10	5.	1.	1.	0.02
+	DIVERSION TO	RET01B	17.	3.90	1.	0.	0.	0.02
+	HYDROGRAPH AT	SB01B	50.	4.10	3.	1.	0.	0.02
	2 COMBINED AT	CP-01B	100.	4.10		2.	1.	0.05
+	ROUTED TO				7.			
+	HYDROGRAPH AT	R1B-2N	97.	4.15	7.	2.	1.	0.05
+	DIVERSION TO	SB02NE	57.	4.15	6.	2.	1.	0.03
+		RET2NE	27.	3.95	2.	0.	0.	0.03
+	HYDROGRAPH AT	SB02NE	57.	4.15	5.	1.	1.	0.03
+	2 COMBINED AT	CP-02N	154.	4.15	12.	3.	1.	0.09
+	ROUTED TO	R2N-2	154.	4.15	12.	3.	1.	0.09
+	HYDROGRAPH AT	SB02E	93.	4.10	10.	3.	1.	0.04
+	DIVERSION TO	RET2E	22.	3.70	2.	1.	0.	0.04
+	HYDROGRAPH AT	SB02E	93.	4.10	8.	2.	1.	0.04
+	HYDROGRAPH AT	SB02W	39.	4.50	6.	1.	1.	0.06
+	4 COMBINED AT	CP-02	395.	4.15	53.	14.	7.	0.18
+	ROUTED TO	R2-3	388.	4.25	53.	14.	7.	0.18
+	HYDROGRAPH AT	SB03	78.	4.15	10.	3.	1.	0.05
+	2 COMBINED AT	CP-03	458.	4.20	62.	16.	8.	0.23
+	ROUTED TO	R3-5	454.	4.35	62.	16.	8.	0.23
+	HYDROGRAPH AT	SB05	229.	4.10	25.	6.	3.	0.13

	2 COMBINED AT	CD EA	581.	4.30	Q.F.	22	11.	0.26	
+	HYDROGRAPH AT	CP-5A		4.30	85.	23.	11.	0.36	
+	DIVERSION TO	SB07W	104.	4.10	9.	2.	1.	0.05	
+	DIVERSION TO	RET07W	29.	3.85	2.	1.	0.	0.05	
+	HYDROGRAPH AT	SB07W	104.	4.10	7.	2.	1.	0.05	
+	ROUTED TO	R7W-8W	104.	4.45	8.	2.	1.	0.05	
+	HYDROGRAPH AT	SB8NW	40.	4.05	4.	1.	0.	0.01	
+	DIVERSION TO	RET8NW	6.	3.55	1.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8NW	40.	4.05	3.	1.	0.	0.01	
+	ROUTED TO	R8NW8N	39.	4.05	3.	1.	0.	0.01	
+	HYDROGRAPH AT	SB8NE	42.	4.05	4.	1.	0.	0.01	
+	DIVERSION TO	RET8NE	6.	3.55	1.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8NE	42.	4.05	3.	1.	0.	0.01	
+	ROUTED TO	R8NE8N	42.	4.05	3.	1.	0.	0.01	
+	HYDROGRAPH AT	SB8SW	37.	4.05	3.	1.	0.	0.01	
+	DIVERSION TO	RET8SW	5.	3.55	1.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8SW	37.	4.05	3.	1.	0.	0.01	
+	HYDROGRAPH AT	SB8SE	36.	4.05	3.	1.	0.	0.01	
+	DIVERSION TO	RET8SE	5.	3.55	1.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8SE	36.	4.05	3.	1.	0.	0.01	
+	4 COMBINED AT	CP-08N	153.	4.05	12.	3.	1.	0.06	
+	ROUTED TO	R8N-8W	150.	4.05	12.	3.	1.	0.06	
+	HYDROGRAPH AT	SB08W	145.	4.10	15.	4.	2.	0.06	
+	DIVERSION TO	RET8W	27.	3.65	3.	1.	0.	0.06	
+	HYDROGRAPH AT	SB08W	145.	4.10	12.	3.	1.	0.06	
+	3 COMBINED AT	CP-08W	287.	4.10	32.	8.	4.	0.16	
+	ROUTED TO	R8W-4	287.	4.10	32.	8.	4.	0.16	
	HYDROGRAPH AT								

+		SB04	292.	4.10	32.	8.	4.	0.14
+	2 COMBINED AT	CP-4	578.	4.10	64.	16.	8.	0.31
+	ROUTED TO	R4-5	567.	4.15	64.	16.	8.	0.31
+	2 COMBINED AT	CP-05	951.	4.30	146.	38.	19.	0.66
+	ROUTED TO	R5-6	926.	4.35	146.	38.	18.	0.66
+	HYDROGRAPH AT	SB06	243.	4.10	29.	7.	3.	0.14
+	2 COMBINED AT	CP-06	1020.	4.35	171.	45.	22.	0.80
+	HYDROGRAPH AT	SB07E	19.	4.40	3.	1.	0.	0.03
+	ROUTED TO	R7E-8E	19.	4.45	3.	1.	0.	0.03
+	HYDROGRAPH AT	SB08E	46.	4.55	8.	2.	1.	0.08
+	HYDROGRAPH AT	SB09N	13.	4.55	3.	1.	0.	0.03
+	ROUTED TO	R9N-R9	13.	4.65	3.	1.	0.	0.03
+	3 COMBINED AT	CP-08E	76.	4.55	13.	3.	2.	0.13
+	ROUTED TO	R8E-R9	76.	4.55	13.	3.	2.	0.13
+	HYDROGRAPH AT	SB09	71.	4.45	10.	2.	1.	0.09
+	2 COMBINED AT	CP-09	144.	4.50	23.	6.	3.	0.22
+	HYDROGRAPH AT	PWRCH	738.	5.75	429.	135.	74.	7.00
+	2 COMBINED AT	BINFLO	749.	5.75	439.	138.	76.	7.22
+	ROUTED TO	BASIN	241.	9.20	228.	130.	73.	7.22
+	ROUTED TO	BSNRT1	241.	9.25	228.	130.	73.	7.22
+	ROUTED TO	BSNRT2	241.	9.25	228.	130.	73.	7.22
+	HYDROGRAPH AT	SB10	87.	4.05	8.	2.	1.	0.04
+	2 COMBINED AT	CP-10	244.	9.20	232.	133.	76.	0.23
+	ROUTED TO	R10-11	244.	9.30	232.	133.	76.	0.23
+	HYDROGRAPH AT	SB11	130.	4.10	15.	4.		0.07
+ 1	2 COMBINED AT	CP-11	244.	9.30	232.	136.		
			SUM		KINEMATIC WAY			TING

UMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING
(FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)
INTERPOLATED TO

	ISTAQ	ELEME	ENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	COMPUTATION PEAK	I INTERVAL TIME TO PEAK	VOLUME		
				(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR STORM R1A-2W		STORM	AREA (SQ 0.31	MI) = 145.99	0.00 255.52	0.86	3.00	145.05	258.00	0.86		
CONTINUIT	Y SUMMARY	(AC-F	r) - IN	NFLOW=0.1	385E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1385	E+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W		STORM	AREA (SQ 0.31	•	0.50 255.66	0.86	3.00	144.23	258.00	0.86		
CONTINUIT	Y SUMMARY	(AC-F	Γ) - IN	NFLOW=0.1	380E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1380	E+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W			AREA (SQ 0.30	MI) = 102.74		0.82	3.00	102.70	258.00	0.82		
CONTINUIT	Y SUMMARY	(AC-F	Γ) - IN	NFLOW=0.1	311E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1311	LE+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W		STORM	AREA (SQ 0.30	MI) = 86.26		0.77	3.00	86.14	258.00	0.77		
CONTINUIT	Y SUMMARY	(AC-F	r) - IN	NFLOW=0.1	240E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1240	E+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W			AREA (SQ 0.35	MI) = 70.99		0.71	3.00	70.97	270.00	0.71		
CONTINUIT	Y SUMMARY	(AC-F	Γ) - IN	NFLOW=0.1	143E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1143	BE+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W		STORM	AREA (SQ 0.22	MI) = 101.82	10.00 261.19	0.92	3.00	101.82	261.00	0.92		
CONTINUIT	Y SUMMARY	(AC-F	r) - IN	NFLOW=0.14	483E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1483	BE+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
	FOR STORM R1A-2W		STORM	AREA (SQ 0.27	MI) = 99.04		0.90	3.00	99.04	261.00	0.90		
CONTINUIT	Y SUMMARY	(AC-F1	Γ) - IN	NFLOW=0.14	451E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1451	LE+02 BASIN	STORAGE=0	.2984E-02 PERCENT	ERROR=	0.0
		1 = 1 MANE	STORM	AREA (SQ 0.36	MI) = 164.36	0.00 255.38	0.94	3.00	163.85	255.00	0.94		
CONTINUIT	Y SUMMARY	(AC-F1	Γ) - IN	NFLOW=0.1	526E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1526	5E+02 BASIN	STORAGE=0	.4391E-02 PERCENT	ERROR=	0.0
		1 = 2 MANE	STORM	AREA (SQ 0.27	MI) = 163.57	0.50 255.50	0.93	3.00	162.94	255.00	0.93		
CONTINUIT	Y SUMMARY	(AC-F	r) - IN	NFLOW=0.1	520E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1520	0E+02 BASIN	STORAGE=0	.4391E-02 PERCENT	ERROR=	0.0
		1 = 3 MANE	STORM	AREA (SQ 0.35		2.80 258.14	0.88	3.00	117.19	258.00	0.88		
CONTINUIT	Y SUMMARY	(AC-F	Γ) - IN	NFLOW=0.14	428E+02	EXCESS=0.0000	0E+00 OUTFL	OW=0.1428	BE+02 BASIN	STORAGE=0	.4391E-02 PERCENT	ERROR=	0.0
		1 = 4 MANE	STORM	AREA (SQ 0.38	MI) = 96.83	16.00 258.51	0.82	3.00	96.72	258.00	0.82		

FOR STORM = 1 STORM AREA (SQ MI) =

0.92 99.26

R1B-2N MANE

0.00

247.53

1.36

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3711E+01 EXCESS=0.0000E+00 OUTFLOW=0.3711E+01 BASIN STORAGE=0.3220E-11 PERCENT ERROR=

3.00

98.01

249.00

1.36

0.0

	FOR STORM = 2 R1B-2N MAN	STORM AREA (S E 0.83	- /	0.50 247.91	1.35	3.00	97.26	249.00	1.35		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	3673E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.3684E	E+01 BASIN	STORAGE=0.	.3207E-11 PERCENT	ERROR=	-0.3
	FOR STORM = 3 R1B-2N MAN	STORM AREA (S		2.80 247.69	1.14	3.00	53.37	249.00	1.13		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	3088E+01 EX	(CESS=0.0000	E+00 OUTFLC	W=0.3089E	E+01 BASIN	STORAGE=0.	.3137E-11 PERCENT	ERROR=	0.0
	FOR STORM = 4 R1B-2N MAN	STORM AREA (S	- /	16.00 248.42	0.92	3.00	38.21	249.00	0.92		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	2500E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.2500E	E+01 BASIN	STORAGE=0.	.3264E-11 PERCENT	ERROR=	0.0
	FOR STORM = 5 R1B-2N MAN	STORM AREA (S E 1.19	- ,	90.00 248.72	0.62	3.00	22.17	249.00	0.62		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	1684E+01 EX	(CESS=0.0000	E+00 OUTFLC	W=0.1686E	E+01 BASIN	STORAGE=0.	.3255E-11 PERCENT	ERROR=	-0.1
	FOR STORM = 6 R1B-2N MAN	S STORM AREA (S E 0.90	- ,	10.00 247.95	1.67	3.00	51.12	249.00	1.66		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	4529E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.4530E	+01 BASIN	STORAGE=0.	.3257E-11 PERCENT	ERROR=	0.0
	FOR STORM = 7 R1B-2N MAN	STORM AREA (S E 1.05	- ,	20.00 248.70	1.57	3.00	48.64	249.00	1.57		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	4264E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.4266E	E+01 BASIN	STORAGE=0.	.3118E-11 PERCENT	ERROR=	0.0
	FOR STORM = 1 R2N-2 MAN	STORM AREA (S	- ,		1.36	3.00	154.46	249.00	1.36		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	6138E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.6147E	E+01 BASIN	STORAGE=0.	.5105E-06 PERCENT	ERROR=	-0.1
	FOR STORM = 2 R2N-2 MAN	STORM AREA (S E 0.31	- '	0.50 249.29	1.34	3.00	153.29	249.00	1.35		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	6080E+01 EX	(CESS=0.0000	E+00 OUTFLO	W=0.6088E	+01 BASIN	STORAGE=0.	.5465E-06 PERCENT	ERROR=	-0.1
	FOR STORM = 3 R2N-2 MAN	STORM AREA (S E 0.42	SQ MI) = 85.54	2.80 249.46	1.13	3.00	85.38	249.00	1.13		
CONTINUI	TY SUMMARY (AC-	FT) - INFLOW=0.	5110E+01 EX	(CESS=0.0000	E+00 OUTFLC	W=0.5111E	E+01 BASIN	STORAGE=0.	.4442E-06 PERCENT	ERROR=	0.0
	FOR STORM = 4	STORM AREA (S	(Q MI) =	16.00	a 91	3 00	61 19	249 00	a 91		

R2N-2 MANE 0.42 61.35 249.48 0.91 3.00 61.19 249.00 0.91 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4137E+01 EXCESS=0.0000E+00 OUTFLOW=0.4138E+01 BASIN STORAGE=0.5190E-06 PERCENT ERROR= 0.0 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 0.47 35.73 0.62 3.00 35.56 249.00 0.61 R2N-2 MANE 249.69 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2788E+01 EXCESS=0.0000E+00 OUTFLOW=0.2789E+01 BASIN STORAGE=0.5140E-06 PERCENT ERROR= -0.1 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 0.30 82.46 249.44 1.65 3.00 82.26 249.00 1.65 R2N-2 MANE

CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.7	500E+01	EXCESS=0.0000E+	00 OUTFLO	√=0.7502E	+01 BASIN	STORAGE=0.4816	E-06 PERCENT	ERROR=	0.0
	RM = 7 2 MANE		AREA (SQ 0.39		20.00 1 249.52	1.56	3.00	78.24	249.00	1.56		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.7	064E+01	EXCESS=0.0000E+	00 OUTFLO	√=0.7065E	+01 BASIN	STORAGE=0.4315	E-06 PERCENT	ERROR=	0.0
	RM = 1 3 MANE		AREA (SQ 1.87	MI) = 394.92	0.00 2 253.51	2.92	3.00	390.70	255.00	2.92		
CONTINUITY SUMMARY	Y (AC-F1	T) - IN	IFLOW=0.2	831E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.2825E	+02 BASIN	STORAGE=0.4180	E-01 PERCENT	ERROR=	0.1
	RM = 2 3 MANE		AREA (SQ 1.87		0.50 5 253.62	2.90	3.00	387.99	255.00	2.90		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.2	813E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.2806E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.1
	RM = 3 3 MANE		AREA (SQ 2.18	MI) = 249.49	2.80 9 258.70	2.55	3.00	249.46	258.00	2.55		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.2	474E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.2468E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.1
	RM = 4 3 MANE		AREA (SQ 2.42	•		2.23	3.00	190.55	261.00	2.23		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.2	169E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.2163E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.1
	RM = 5 3 MANE		AREA (SQ 2.74	•		1.83	3.00	131.54	261.00	1.83		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.1	774E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.1770E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.0
	RM = 6 3 MANE	STORM	AREA (SQ 2.27	,	10.00 3 261.04	3.27	3.00	254.71	261.00	3.27		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.3	175E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.3170E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.0
	RM = 7 3 MANE	STORM	AREA (SQ 2.30	•	20.00 7 260.84	3.14	3.00	243.92	261.00	3.14		
CONTINUITY SUMMARY	Y (AC-FT	T) - IN	IFLOW=0.3	044E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.3040E	+02 BASIN	STORAGE=0.4192	E-01 PERCENT	ERROR=	0.0
	RM = 1 5 MANE	STORM	AREA (SQ 3.00	MI) = 458.43	0.00 3 261.68	2.73	3.00	458.12	261.00	2.73		
CONTINUITY SUMMARY	Y (AC-F1	) - IN	IFLOW=0.3	337E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.3338E	+02 BASIN	STORAGE=0.7696	SE-01 PERCENT	ERROR=	-0.2
	RM = 2 5 MANE	STORM	AREA (SQ 3.00	MI) = 455.77	0.50 7 258.51	2.71	3.00	454.00	261.00	2.71		
CONTINUITY SUMMARY	Y (AC-FT	) - IN	IFLOW=0.3	315E+02	EXCESS=0.0000E+	00 OUTFLO	√=0.3316E	+02 BASIN	STORAGE=0.7696	SE-01 PERCENT	ERROR=	-0.3
	RM = 3 5 MANE	STORM	AREA (SQ 3.00	MI) = 294.25	2.80 5 265.05	2.39	3.00	293.16	267.00	2.39		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2933E+02 EXCESS=0.0000E+00 OUTFLOW=0.2923E+02 BASIN STORAGE=0.8862E-01 PERCENT ERROR= 0.0

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2574E+02 EXCESS=0.0000E+00 OUTFLOW=0.2567E+02 BASIN STORAGE=0.9261E-01 PERCENT ERROR= -0.1

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R3-5 MANE 3.00 152.87 273.07 1.71 3.00 152.80 273.00 1.71

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2102E+02 EXCESS=0.0000E+00 OUTFLOW=0.2089E+02 BASIN STORAGE=0.9561E-01 PERCENT ERROR= 0.2

FOR STORM = 6 STORM AREA (SQ MI) = 10.00

R3-5 MANE 2.96 299.06 267.64 3.09 3.00 298.54 270.00 3.09

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3795E+02 EXCESS=0.0000E+00 OUTFLOW=0.3782E+02 BASIN STORAGE=0.9250E-01 PERCENT ERROR= 0.1

FOR STORM = 7 STORM AREA (SQ MI) = 20.00

R3-5 MANE 2.96 286.26 268.14 2.96 3.00 285.63 270.00 2.96

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3638E+02 EXCESS=0.0000E+00 OUTFLOW=0.3628E+02 BASIN STORAGE=0.8862E-01 PERCENT ERROR= 0.

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R7W-8W MANE 2.73 102.63 267.82 1.79 3.00 102.19 267.00 1.79

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3402E+01 EXCESS=0.0000E+00 OUTFLOW=0.4461E+01 BASIN STORAGE=0.3428E-03 PERCENT ERROR= -31.1

FOR STORM = 2 STORM AREA (SQ MI) = 0.50

R7W-8W MANE 2.59 104.73 266.79 1.55 3.00 104.06 267.00 1.55

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3367E+01 EXCESS=0.0000E+00 OUTFLOW=0.3871E+01 BASIN STORAGE=0.3311E-03 PERCENT ERROR= -15.0

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

R7W-8W MANE 2.99 52.62 270.98 1.33 3.00 52.50 273.00 1.33

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2832E+01 EXCESS=0.0000E+00 OUTFLOW=0.3326E+01 BASIN STORAGE=0.3101E-03 PERCENT ERROR= -17.5

FOR STORM = 4 STORM AREA (SQ MI) = 16.00

R7W-8W MANE 3.00 37.32 275.61 1.13 3.00 37.24 276.00 1.13

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2292E+01 EXCESS=0.0000E+00 OUTFLOW=0.2822E+01 BASIN STORAGE=0.3108E-03 PERCENT ERROR= -23.1

FOR STORM = 5 STORM AREA (SQ MI) = 90.00

R7W-8W MANE 3.00 21.45 284.63 0.78 3.00 21.39 282.00 0.78

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1544E+01 EXCESS=0.0000E+00 OUTFLOW=0.1942E+01 BASIN STORAGE=0.3316E-03 PERCENT ERROR= -25.8

FOR STORM = 6 STORM AREA (SQ MI) = 10.00

R7W-8W MANE 3.00 49.46 273.94 1.67 3.00 49.38 273.00 1.67

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4156E+01 EXCESS=0.0000E+00 OUTFLOW=0.4179E+01 BASIN STORAGE=0.3376E-03 PERCENT ERROR= -0.6

FOR STORM = 7 STORM AREA (SQ MI) = 20.00

R7W-8W MANE 3.00 47.01 271.91 1.58 3.00 46.97 273.00 1.58

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3912E+01 EXCESS=0.0000E+00 OUTFLOW=0.3956E+01 BASIN STORAGE=0.3474E-03 PERCENT ERROR= -1.1

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R8NW8N MANE 0.75 40.02 244.34 1.98 3.00 39.44 243.00 1.98

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1550E+01 EXCESS=0.0000E+00 OUTFLOW=0.1552E+01 BASIN STORAGE=0.1215E-06 PERCENT ERROR= -0.1
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                   0.50
           R8NW8N MANE
                                0.77
                                                  244.02
                                                              1.96
                                                                        3.00
                                                                                39.17
                                                                                         243.00
                                                                                                       1.96
                                      39.68
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1538E+01 EXCESS=0.0000E+00 OUTFLOW=0.1540E+01 BASIN STORAGE=0.1352E-06 PERCENT ERROR= -0.2
         FOR STORM = 3 STORM AREA (SO MI) =
                                                   2.80
           R8NW8N MANE
                                0.97
                                         21.41
                                                  244.47
                                                              1.86
                                                                        3.00
                                                                                21.33
                                                                                         243.00
                                                                                                       1.86
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1449E+01 EXCESS=0.0000E+00 OUTFLOW=0.1455E+01 BASIN STORAGE=0.1154E-06 PERCENT ERROR= -0.4
         FOR STORM = 4 STORM AREA (SQ MI) =
                                                  16.00
                                                                                         243.00
                                                                                                       1.68
           R8NW8N MANE
                                1.05
                                       16.17
                                                  244.69
                                                              1.68
                                                                        3.00
                                                                                16.11
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1313E+01 EXCESS=0.0000E+00 OUTFLOW=0.1317E+01 BASIN STORAGE=0.1153E-06 PERCENT ERROR= -0.2
         FOR STORM = 5 STORM AREA (SQ MI) =
                                                  90.00
           R8NW8N MANE
                                         10.82
                                                  245.03
                                                              1.37
                                                                       3.00
                                                                                10.72
                                                                                         243.00
                                1.03
                                                                                                       1.37
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1074E+01 EXCESS=0.0000E+00 OUTFLOW=0.1077E+01 BASIN STORAGE=0.1398E-06 PERCENT ERROR= -0.3
         FOR STORM = 6 STORM AREA (SQ MI) =
                                                  10.00
                                                                                19.25
           R8NW8N MANE
                                0.91
                                       19.33
                                                  244.37
                                                              2.65
                                                                        3.00
                                                                                         243.00
                                                                                                       2.65
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2076E+01 EXCESS=0.0000E+00 OUTFLOW=0.2081E+01 BASIN STORAGE=0.1314E-06 PERCENT ERROR= -0.2
         FOR STORM = 7 STORM AREA (SQ MI) =
                                                  20.00
           R8NW8N MANE
                                0.88
                                         18.61
                                                  244.50
                                                              2.54
                                                                        3.00
                                                                                18.51
                                                                                         243.00
                                                                                                       2.54
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1987E+01 EXCESS=0.0000E+00 OUTFLOW=0.1989E+01 BASIN STORAGE=0.1316E-06 PERCENT ERROR= -0.1
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                   0.00
                                                                                                       1.98
           R8NE8N MANE
                                0.69
                                         42.06
                                                  244.33
                                                              1.98
                                                                        3.00
                                                                                41.68
                                                                                          243.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1579E+01 EXCESS=0.0000E+00 OUTFLOW=0.1583E+01 BASIN STORAGE=0.1124E-06 PERCENT ERROR= -0.2
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                   0.50
           R8NE8N MANE
                                0.68
                                        41.82
                                                  244.25
                                                              1.96
                                                                        3.00
                                                                                41.41
                                                                                         243.00
                                                                                                       1.96
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1567E+01 EXCESS=0.0000E+00 OUTFLOW=0.1569E+01 BASIN STORAGE=0.1055E-06 PERCENT ERROR= -0.1
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                   2.80
           R8NF8N MANF
                                                                                                       1.86
                                0.92
                                         22.13
                                                  243.92
                                                              1.85
                                                                        3.00
                                                                                22.08
                                                                                         243.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1476E+01 EXCESS=0.0000E+00 OUTFLOW=0.1484E+01 BASIN STORAGE=0.1034E-06 PERCENT ERROR= -0.5
         FOR STORM = 4 STORM AREA (SQ MI) =
                                                  16.00
           R8NE8N MANE
                                0.97
                                                  243.96
                                                                        3.00
                                                                                16.65
                                                                                         243.00
                                                                                                       1.67
                                       16.69
                                                              1.68
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1338E+01 EXCESS=0.0000E+00 OUTFLOW=0.1340E+01 BASIN STORAGE=0.1343E-06 PERCENT ERROR= -0.2
         FOR STORM = 5 STORM AREA (SQ MI) =
                                                  90.00
           R8NE8N MANE
                                                  244.46
                                                                                11.06
                                1.12
                                      11.10
                                                              1.37
                                                                        3.00
                                                                                         243.00
                                                                                                       1.37
```

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1094E+01 EXCESS=0.0000E+00 OUTFLOW=0.1095E+01 BASIN STORAGE=0.1098E-06 PERCENT ERROR= -0.1

FOR STORM = 6 STORM AREA (SQ MI) = R8NE8N MANE 0.90 19.88	10.00 244.18 2.65	3.00 19.84	243.00	2.65	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2116E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.2117E+01 BASI	N STORAGE=0.962	23E-07 PERCENT ERROR=	-0.1
FOR STORM = 7 STORM AREA (SQ MI) = R8NE8N MANE 0.86 19.14		3.00 19.09	243.00	2.53	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2025E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.2028E+01 BASI	N STORAGE=0.130	02E-06 PERCENT ERROR=	-0.2
FOR STORM = 1 STORM AREA (SQ MI) = R8N-8W MANE 0.52 152.44		3.00 150.95	243.00	1.98	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5871E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.5874E+01 BASI	N STORAGE=0.135	33E-07 PERCENT ERROR=	0.0
FOR STORM = 2 STORM AREA (SQ MI) = R8N-8W MANE 0.51 151.61	0.50 243.84 1.96	3.00 149.94	243.00	1.96	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5822E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.5823E+01 BASI	N STORAGE=0.134	13E-07 PERCENT ERROR=	0.0
FOR STORM = 3 STORM AREA (SQ MI) = R8N-8W MANE 0.53 81.55		3.00 81.15	243.00	1.85	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5500E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.5501E+01 BASI	N STORAGE=0.133	36E-07 PERCENT ERROR=	0.0
FOR STORM = 4 STORM AREA (SQ MI) = R8N-8W MANE 0.65 61.43		3.00 61.23	243.00	1.68	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4978E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.4978E+01 BASI	N STORAGE=0.132	20E-07 PERCENT ERROR=	0.0
FOR STORM = 5 STORM AREA (SQ MI) = R8N-8W MANE 0.74 40.89		3.00 40.71	243.00	1.37	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4070E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.4071E+01 BASI	N STORAGE=0.135	60E-07 PERCENT ERROR=	0.0
FOR STORM = 6 STORM AREA (SQ MI) = R8N-8W MANE 0.57 73.39	10.00 244.05 2.65	3.00 73.13	243.00	2.65	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7867E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.7867E+01 BASI	N STORAGE=0.132	21E-07 PERCENT ERROR=	0.0
FOR STORM = 7 STORM AREA (SQ MI) = R8N-8W MANE 0.64 70.52	20.00 244.05 2.53	3.00 70.34	243.00	2.53	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7526E+01 EX	CESS=0.0000E+00 OUTFL	.OW=0.7527E+01 BASI	N STORAGE=0.134	11E-07 PERCENT ERROR=	0.0
FOR STORM = 1 STORM AREA (SQ MI) = R8W-4 MANE 0.61 288.74	0.00 246.26 1.91	3.00 288.70	246.00	1.91	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1646E+02 EX	CCESS=0.0000E+00 OUTFL	.OW=0.1645E+02 BASI	N STORAGE=0.137	71E-03 PERCENT ERROR=	0.0
FOR STORM = 2 STORM AREA (SQ MI) = R8W-4 MANE 0.53 286.94	0.50 246.33 1.83	3.00 286.84	246.00	1.83	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1577E+02 EX	CESS=0.0000E+00 OUTFL	.OW=0.1578E+02 BASI	N STORAGE=0.136	54E-03 PERCENT ERROR=	-0.1

FOR STORM = 3 STORM AREA (SQ MI) = 2.80

	R8W-4 MANE	0.74 161.70	245.00	1.69	3.00	161.56	246.00	1.69		
CONTINUITY	/ SUMMARY (AC-FT) -	· INFLOW=0.1454E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.1454	E+02 BASIN	STORAGE=0.1	408E-03 PERCENT ER	ROR= 0	0.0
	FOR STORM = 4 STO R8W-4 MANE	ORM AREA (SQ MI) = 0.78 122.55		1.51	3.00	122.49	246.00	1.51		
CONTINUITY	/ SUMMARY (AC-FT) -	· INFLOW=0.1298E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.1297	E+02 BASIN	STORAGE=0.1	.356E-03 PERCENT ER	ROR= 0	0.0
	FOR STORM = 5 STO R8W-4 MANE	DRM AREA (SQ MI) = 0.97 82.08		1.19	3.00	82.01	246.00	1.19		
CONTINUITY	/ SUMMARY (AC-FT) -	· INFLOW=0.1023E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.1023	E+02 BASIN	STORAGE=0.1	378E-03 PERCENT ER	ROR= 0	0.0
	FOR STORM = 6 STO R8W-4 MANE	ORM AREA (SQ MI) = 0.72 147.07		2.36	3.00	147.06	246.00	2.36		
CONTINUITY	/ SUMMARY (AC-FT) -	· INFLOW=0.2027E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2028	E+02 BASIN	STORAGE=0.1	.355E-03 PERCENT ER	ROR= 0	0.0
	FOR STORM = 7 STO R8W-4 MANE	ORM AREA (SQ MI) = 0.85 141.44		2.25	3.00	141.43	246.00	2.25		
CONTINUITY	/ SUMMARY (AC-FT) -	· INFLOW=0.1935E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.1936	E+02 BASIN	STORAGE=0.1	431E-03 PERCENT ER	ROR= 0	1.0
	FOR STORM = 1 STO	ORM AREA (SQ MI) =	0.00							

CONTINUITY SU	MMARY (AC-FT) - I	INFLOW=0.193	5E+02 EXCESS:	=0.0000E+00	OUTFLOW=0	.1936E+02	BASIN	STORAGE=0.1	431E-03 PERCENT	ERROR=	0.0
FOR	STORM = 1 STORM R4-5 MANE	` `	,	.00 0.37 2	.01 3	.00 57	1.59	249.00	2.01		

1.96

3.00

566.30

249.00

1.96

250.76

2.30 574.86

R4-5 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3268E+02 EXCESS=0.0000E+00 OUTFLOW=0.3273E+02 BASIN STORAGE=0.4091E-03 PERCENT ERROR= -0.2 FOR STORM = 2 STORM AREA (SQ MI) = 0.50

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3188E+02 EXCESS=0.0000E+00 OUTFLOW=0.3195E+02 BASIN STORAGE=0.4397E-03 PERCENT ERROR= -0.2 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 252.00 R4-5 MANE 2.78 331.68 249.80 1.81 3.00 330.74 1.81

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2948E+02 EXCESS=0.0000E+00 OUTFLOW=0.2950E+02 BASIN STORAGE=0.3881E-03 PERCENT ERROR= -0.1 FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R4-5 MANE 3.00 250.94 251.05 3.00 249.92 252.00 1.62 1.62

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2640E+02 EXCESS=0.0000E+00 OUTFLOW=0.2643E+02 BASIN STORAGE=0.3813E-03 PERCENT ERROR= -0.1

FOR STORM = 5 STORM AREA (SQ MI) = 90.00 3.00 164.62 R4-5 MANE 254.83 1.31 3.00 164.54 252.00 1.31

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2125E+02 EXCESS=0.0000E+00 OUTFLOW=0.2129E+02 BASIN STORAGE=0.3682E-03 PERCENT ERROR= -0.2

FOR STORM = 6 STORM AREA (SQ MI) = 10.00 R4-5 MANE 2.85 309.77 251.59 2.49 309.09 252.00 2.49

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4041E+02 EXCESS=0.0000E+00 OUTFLOW=0.4051E+02 BASIN STORAGE=0.3879E-03 PERCENT ERROR= -0.2

FOR STORM = 7 STORM AREA (SQ MI) = 20.00 R4-5 MANE 2.86 295.96 250.39 2.38 3.00 295.45 252.00 2.38

```
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3868E+02 EXCESS=0.0000E+00 OUTFLOW=0.3875E+02 BASIN STORAGE=0.3882E-03 PERCENT ERROR= -0.2
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                  0.00
             R5-6 MANE
                               2.20 1010.21
                                                 262.68
                                                             2.23
                                                                       3.00 1000.34
                                                                                         261.00
                                                                                                      2.23
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7880E+02 EXCESS=0.0000E+00 OUTFLOW=0.7874E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                  0.50
                                                                                                      2.20
             R5-6 MANE
                               2.21 994.60
                                                 262.88
                                                             2.20
                                                                       3.00
                                                                               987.77
                                                                                         261.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7768E+02 EXCESS=0.0000E+00 OUTFLOW=0.7757E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                  2.80
             R5-6 MANE
                               2.48
                                       665.14
                                                 266.57
                                                             1.99
                                                                       3.00
                                                                                         267.00
                                                                                                      1.99
                                                                               662.19
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7008E+02 EXCESS=0.0000E+00 OUTFLOW=0.7004E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 4 STORM AREA (SQ MI) =
                                                 16.00
             R5-6 MANE
                               2.81
                                                 267.30
                                                             1.76
                                                                               499.70
                                                                                         267.00
                                                                                                      1.76
                                       502.74
                                                                       3.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6201E+02 EXCESS=0.0000E+00 OUTFLOW=0.6198E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= -0.1
         FOR STORM = 5 STORM AREA (SQ MI) =
                                                 90.00
             R5-6 MANE
                               3.36
                                       325.91
                                                 273.89
                                                             1.42
                                                                       3.00
                                                                               322.56
                                                                                         276.00
                                                                                                      1.42
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5001E+02 EXCESS=0.0000E+00 OUTFLOW=0.4998E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= -0.1
         FOR STORM = 6 STORM AREA (SQ MI) =
                                                 10.00
             R5-6 MANE
                               2.61
                                       680.31
                                                 263.26
                                                             2.65
                                                                       3.00
                                                                               679.88
                                                                                         264.00
                                                                                                      2.65
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9360E+02 EXCESS=0.0000E+00 OUTFLOW=0.9357E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 7 STORM AREA (SQ MI) =
                                                 20.00
                               2.52
                                                 264.71
                                                             2.54
                                                                       3.00
                                                                               649.25
                                                                                         264.00
                                                                                                      2.54
             R5-6 MANE
                                      649.46
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8961E+02 EXCESS=0.0000E+00 OUTFLOW=0.8960E+02 BASIN STORAGE=0.7457E-01 PERCENT ERROR= -0.1
         FOR STORM = 1 STORM AREA (SQ MI) =
                                                  0.00
           R7E-8E MANE
                               1.76
                                       19.03
                                                 266.67
                                                             0.91
                                                                       3.00
                                                                                19.02
                                                                                         267.00
                                                                                                      0.91
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1268E+01 EXCESS=0.0000E+00 OUTFLOW=0.1268E+01 BASIN STORAGE=0.1101E-04 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 2 STORM AREA (SQ MI) =
                                                  0.50
           R7F-8F MANE
                                                             0.90
                                                                                         267.00
                                                                                                      0.90
                               1.77
                                       18.85
                                                 266.81
                                                                       3.00
                                                                                18.84
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1254E+01 EXCESS=0.0000E+00 OUTFLOW=0.1254E+01 BASIN STORAGE=0.1092E-04 PERCENT ERROR=
                                                                                                                           0.0
         FOR STORM = 3 STORM AREA (SQ MI) =
                                                  2.80
           R7E-8E MANE
                                                                                                      0.49
                               2.41 8.57
                                                 268.50
                                                             0.49
                                                                       3.00
                                                                                 8.54
                                                                                         270.00
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6750E+00 EXCESS=0.0000E+00 OUTFLOW=0.6756E+00 BASIN STORAGE=0.1319E-04 PERCENT ERROR= -0.1
         FOR STORM = 4 STORM AREA (SQ MI) =
                                                 16.00
           R7E-8E MANE
                               3.00 3.99
                                                 269.13
                                                             0.21
                                                                       3.00
                                                                                 3.99
                                                                                         270.00
                                                                                                      0.21
```

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2917E+00 EXCESS=0.0000E+00 OUTFLOW=0.2928E+00 BASIN STORAGE=0.1256E-04 PERCENT ERROR= -0.4

	FOR STORM = 5 R7E-8E MANE	STORM AREA (SQ MI) 3.00	= 90.00 0.26 292.33	0.01	3.00	0.25	294.00	0.01		
CONTINUI	ΓΥ SUMMARY (AC-F	T) - INFLOW=0.1646E-	01 EXCESS=0.00	00E+00 OUTFL	DW=0.2054E	-01 BASIN	STORAGE=0.	1096E-04 PERCEN	T ERROR=	-24.8
	FOR STORM = 6 R7E-8E MANE	STORM AREA (SQ MI) 2.36 9	= 10.00 0.61 272.07	0.60	3.00	9.60	273.00	0.60		
CONTINUI	ΓΥ SUMMARY (AC-F	T) - INFLOW=0.8313E+	-00 EXCESS=0.00	00E+00 OUTFL	DW=0.8321E	+00 BASIN	STORAGE=0.	1454E-04 PERCEN	T ERROR=	-0.1
	FOR STORM = 7 R7E-8E MANE	STORM AREA (SQ MI) 2.43 8	= 20.00 271.22	0.54	3.00	8.69	273.00	0.54		
CONTINUI	ΓΥ SUMMARY (AC-F	T) - INFLOW=0.7492E+	00 EXCESS=0.00	00E+00 OUTFL	DW=0.7500E	+00 BASIN	STORAGE=0.	1049E-04 PERCEN	T ERROR=	-0.1
	FOR STORM = 1 R9N-R9 MANE	STORM AREA (SQ MI) 2.26 13		1.08	3.00	13.26	279.00	1.08		
CONTINUI	TY SUMMARY (AC-F	T) - INFLOW=0.1613E+	-01 EXCESS=0.00	00E+00 OUTFL	OW=0.1611E	+01 BASIN	STORAGE=0.	2018E-04 PERCEN	T ERROR=	0.1
	FOR STORM = 2 R9N-R9 MANE	STORM AREA (SQ MI) 2.27 13	= 0.50 3.16 278.20	1.07	3.00	13.12	279.00	1.07		
CONTINUI	TY SUMMARY (AC-F	T) - INFLOW=0.1595E+	-01 EXCESS=0.00	00E+00 OUTFL	OW=0.1593E	+01 BASIN	STORAGE=0.	1743E-04 PERCEN	T ERROR=	0.1
	FOR STORM = 3 R9N-R9 MANE	STORM AREA (SQ MI) 2.76 8		0.74	3.00	8.13	285.00	0.74		
CONTINUI	TY SUMMARY (AC-F	T) - INFLOW=0.1103E+	01 EXCESS=0.00	00E+00 OUTFL	OW=0.1102E	+01 BASIN	STORAGE=0.	2044E-04 PERCEN	T ERROR=	0.1
	FOR STORM = 4 R9N-R9 MANE	STORM AREA (SQ MI) 3.00 5	= 16.00 :.05 284.63	0.46	3.00	5.05	285.00	0.46		
CONTINUI	ΓΥ SUMMARY (AC-F	T) - INFLOW=0.6843E+	00 EXCESS=0.00	00E+00 OUTFL	DW=0.6838E	+00 BASIN	STORAGE=0.	2050E-04 PERCEN	T ERROR=	0.1
	FOR STORM = 5 R9N-R9 MANE	STORM AREA (SQ MI) 3.00 1	= 90.00 59 293.56	0.14	3.00	1.59	294.00	0.14		
CONTINUI	TY SUMMARY (AC-F	T) - INFLOW=0.2079E+	00 EXCESS=0.00	00E+00 OUTFL	OW=0.2079E	+00 BASIN	STORAGE=0.	1894E-04 PERCEN	T ERROR=	0.0
	FOR STORM = 6 R9N-R9 MANE	STORM AREA (SQ MI) 2.65 S	= 10.00 0.46 288.90	0.92	3.00	9.46	288.00	0.92		
CONTINUI	TY SUMMARY (AC-F	T) - INFLOW=0.1380E+	01 EXCESS=0.00	00E+00 OUTFL	OW=0.1379E	+01 BASIN	STORAGE=0.	1805E-04 PERCEN	T ERROR=	0.1
	FOR STORM = 7 R9N-R9 MANE	STORM AREA (SQ MI) 2.68	= 20.00 3.74 288.39	0.84	3.00	8.73	288.00	0.84		

2.68 8.74 288.39 8.73 288.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1261E+01 EXCESS=0.0000E+00 OUTFLOW=0.1260E+01 BASIN STORAGE=0.1932E-04 PERCENT ERROR= 0.1 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 273.00 R8E-R9 MANE 0.32 77.02 273.53 0.96 3.00 76.82 0.96 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6728E+01 EXCESS=0.0000E+00 OUTFLOW=0.6728E+01 BASIN STORAGE=0.7838E-05 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 0.32 76.18 273.66 0.95 3.00 75.99 273.00 0.95 R8E-R9 MANE

CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.66	552E+01	EXCESS=0.0000E	+00 OUTFLO	W=0.6653E+	01 BASIN	STORAGE=0.7629	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 3 R8E-R9 MANE		AREA (SQ 0.45	MI) = 38.17	2.80 276.54	0.55	3.00	38.13	276.00	0.55		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.38	382E+01	EXCESS=0.0000E-	+00 OUTFLO	W=0.3882E+	01 BASIN	STORAGE=0.7462	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 4 R8E-R9 MANE		AREA (SQ 0.52	MI) = 19.07		0.27	3.00	19.04	276.00	0.27		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.19	925E+ <b>01</b>	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.1925E+	01 BASIN	STORAGE=0.7546	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 5 R8E-R9 MANE		, -	MI) = 2.52		0.04	3.00	2.51	294.00	0.04		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.30	008E+00	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.3008E+	00 BASIN	STORAGE=0.6726	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 6 R8E-R9 MANE		AREA (SQ 0.36	MI) = 44.12		0.68	3.00	44.08	279.00	0.68		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.47	782E+01	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.4782E+	01 BASIN	STORAGE=0.7472	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 7 R8E-R9 MANE		, -	MI) = 40.11		0.62	3.00	40.07	279.00	0.62		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.43	334E+01	EXCESS=0.0000E-	+00 OUTFLO	W=0.4334E+	01 BASIN	STORAGE=0.7666	E-05 PERCENT	ERROR=	0.0
	FOR STORM = 1 BSNRT1 MANE		AREA (SQ 0.39	MI) = 244.41		0.80	3.00	244.41	552.00	0.80		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.30	084E+03	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.3084E+	03 BASIN	STORAGE=0.3153	BE-01 PERCENT	ERROR=	0.0
	FOR STORM = 2 BSNRT1 MANE		AREA (SQ 0.39	,	0.50 5 552.54	0.80	3.00	244.36	552.00	0.80		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.30	083E+03	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.3082E+	03 BASIN	STORAGE=0.3153	BE-01 PERCENT	ERROR=	0.0
	FOR STORM = 3 BSNRT1 MANE		AREA (SQ 0.41	,	2.80 . 552.95	0.79	3.00	241.71	552.00	0.79		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.30	040E+03	EXCESS=0.0000E-	⊦00 OUTFLO	W=0.3039E+	03 BASIN	STORAGE=0.3152	E-01 PERCENT	ERROR=	0.0
	FOR STORM = 4 BSNRT1 MANE		AREA (SQ 0.33	MI) = 239.65	16.00 552.95	0.78	3.00	239.64	555.00	0.78		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.30	008E+03	EXCESS=0.0000E-	⊦00 OUTFLO	W=0.3007E+	03 BASIN	STORAGE=0.3152	E-01 PERCENT	ERROR=	0.0
	FOR STORM = 5 BSNRT1 MANE		AREA (SQ 0.44	MI) = 237.69	90.00 555.51	0.77	3.00	237.69	555.00	0.77		
CONTINUITY	/ SUMMARY (AC-F	T) - IN	IFLOW=0.29	977E+03	EXCESS=0.0000E-	⊦00 OUTFLOI	W=0.2976E+	03 BASIN	STORAGE=0.3151	E-01 PERCENT	ERROR=	0.0
	FOR STORM = 6 BSNRT1 MANE		AREA (SQ 0.46	MI) = 242.84	10.00 552.79	0.79	3.00	242.84	552.00	0.79		

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3057E+03 EXCESS=0.0000E+00 OUTFLOW=0.3057E+03 BASIN STORAGE=0.3153E-01 PERCENT ERROR= 0.0

FOR STORM = $7 S$	TORM AREA (SQ MI)	) = 20.00					
BSNRT1 MANE	0.37 24	42.32 552.68	0.79	3.00	242.32	552.00	0.79

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3049E+03 EXCESS=0.0000E+00 OUTFLOW=0.3049E+03 BASIN STORAGE=0.3153E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 0.50 552.74 BSNRT2 MANE 244.41 0.80 3.00 244.41 552.00 0.80 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3084E+03 EXCESS=0.0000E+00 OUTFLOW=0.3083E+03 BASIN STORAGE=0.3601E-01 PERCENT ERROR= 0.0 FOR STORM = 2 STORM AREA (SQ MI) = 0.50 BSNRT2 MANE 244.36 0.80 0.43 244.36 552.89 0.80 3.00 552.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3082E+03 EXCESS=0.0000E+00 OUTFLOW=0.3082E+03 BASIN STORAGE=0.3601E-01 PERCENT ERROR= 0.0 FOR STORM = 3 STORM AREA (SQ MI) = 2.80 BSNRT2 MANE 0.49 553.29 0.79 3.00 241.71 555.00 0.79 241.71 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3040E+03 EXCESS=0.0000E+00 OUTFLOW=0.3039E+03 BASIN STORAGE=0.3600E-01 PERCENT ERROR= FOR STORM = 4 STORM AREA (SQ MI) = 16.00 0.78 BSNRT2 MANE 0.36 239.64 555.76 0.78 3.00 239.64 555.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3007E+03 EXCESS=0.0000E+00 OUTFLOW=0.3007E+03 BASIN STORAGE=0.3599E-01 PERCENT ERROR= 0.0 FOR STORM = 5 STORM AREA (SQ MI) = 90.00 0.37 555.79 0.77 3.00 237.69 555.00 0.77 BSNRT2 MANE 237.69 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2976E+03 EXCESS=0.0000E+00 OUTFLOW=0.2976E+03 BASIN STORAGE=0.3598E-01 PERCENT ERROR= 0.0 FOR STORM = 6 STORM AREA (SQ MI) = 10.00 BSNRT2 MANE 0.50 242.84 553.18 0.79 3.00 242.83 552.00 0.79 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3057E+03 EXCESS=0.0000E+00 OUTFLOW=0.3057E+03 BASIN STORAGE=0.3600E-01 PERCENT ERROR= 0.0 FOR STORM = 7 STORM AREA (SQ MI) = 20.00 0.79 0.79 BSNRT2 MANE 0.36 242.32 552.92 3.00 242.31 555.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3049E+03 EXCESS=0.0000E+00 OUTFLOW=0.3048E+03 BASIN STORAGE=0.3600E-01 PERCENT ERROR= 0.0 FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R10-11 MANE 3.04 244.41 557.55 25.54 3.00 244.41 25.53 558.00 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3125E+03 EXCESS=0.0000E+00 OUTFLOW=0.3119E+03 BASIN STORAGE=0.6746E+00 PERCENT ERROR= FOR STORM = 2 STORM AREA (SQ MI) = 0.50 R10-11 MANE 3.07 244.36 558.85 25.53 3.00 244.35 558.00 25.52 CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3124E+03 EXCESS=0.0000E+00 OUTFLOW=0.3117E+03 BASIN STORAGE=0.6746E+00 PERCENT ERROR= FOR STORM = 3 STORM AREA (SQ MI) =

FOR STORM = 4 STORM AREA (SQ MI) = 16.00 R10-11 MANE 3.00 239.64 561.16 24.84 3.00 239.64 561.00 24.84

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3077E+03 EXCESS=0.0000E+00 OUTFLOW=0.3071E+03 BASIN STORAGE=0.6744E+00 PERCENT ERROR=

25.15

3.00

241.70

561.00

25.13

0.0

2.80

559.89

3.00 241.71

R10-11 MANE

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3040E+03 EXCESS=0.0000E+00 OUTFLOW=0.3034E+03 BASIN STORAGE=0.6743E+00 PERCENT ERROR= 0.0

FOR STORM = 5 STORM AREA (SQ MI) = 90.00 R10-11 MANE 3.07 237.68 560.85

R10-11 MANE 3.07 237.68 560.85 24.53 3.00 237.68 561.00 24.53

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3003E+03 EXCESS=0.0000E+00 OUTFLOW=0.2996E+03 BASIN STORAGE=0.6743E+00 PERCENT ERROR= 0.0

FOR STORM = 6 STORM AREA (SQ MI) = 10.00

R10-11 MANE 3.07 242.83 560.81 25.40 3.00 242.83 558.00 25.38

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3108E+03 EXCESS=0.0000E+00 OUTFLOW=0.3102E+03 BASIN STORAGE=0.6744E+00 PERCENT ERROR= 0.0

FOR STORM = 7 STORM AREA (SQ MI) = 20.00

R10-11 MANE 3.00 242.31 558.78 25.30 3.00 242.31 561.00 25.30

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3097E+03 EXCESS=0.0000E+00 OUTFLOW=0.3090E+03 BASIN STORAGE=0.6745E+00 PERCENT ERROR= 0.0

*** NORMAL END OF HEC-1 ***



* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

(916) 756-1104

XXXXXX XXXXX Χ Х Х Χ Χ Χ XXΧ Х Χ Χ Х XXXXXX XXXX XXXXXΧ Χ Х Х Х Χ Χ Χ Χ Χ Х Х XXXXXXX XXXXX XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1 HEC-1 INPUT PAGE 1

```
LINE
               ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
                         CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
   1
               TD
                         POWERLINE CORRIDOR
   2
               ID
                         RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
   3
               TD
                         INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
   4
               ID
                         100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
   5
               ID
   6
               ID
                            PIMA ROAD FLOWS.
   7
               ID
   8
               ID
                         PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14
  9
               ID
                         MODELERS: RK, MW
  10
               ID
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 08/07/18
               ID
  11
               TD
                         MODELERS: MSW, ES
  12
  13
               ID
                         REVISIONS NOTED WITH HE
                            NEW PROP CONDITION MODEL, WITH POWERLINE AND BASIN 53R
  14
               TD
                            THIS IS THE ULTIMATE CONDITION MODEL
  15
               ID
  16
               TD
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19
  17
               ID
                         MODELERS: MSW
  18
               ID
  19
                         XKSAT ADJUSTMENT
               ID
  20
               ID
                         REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 07/15/20
  21
               ID
  22
               ID
                         MODELERS: MSW, TSW
  23
               TD
                         REVISIONS NOTED WITH HE (Hubbard Engineering)
                            NEW PROPOSED CONDITION MODEL, ACCOUNT FOR WHAT HAS BEEN
  24
               ID
                            CONSTRUCTED IN PHASE 1 INFRASTRUCTURE, DETAIL OUT NEW CP
  25
               ID
  26
               ID
                            ACCOUNT FOR HIGHER C FACTOR AND IMPERVIOUSNESS, ADD RETENTION
                            FIRST FLUSH RETENTION ADDED AS DIVERT CARD WITH VOLUME REQUIRED
  27
               ID
  28
               ID
  29
               ΙT
                        3
                                0
                                              1000
  30
                       15
               TN
  31
               ΙO
               *DIAGRAM
```

32	JD	3.849	0.0001										
33	PC	0.000	0.002	0.005	0.008	0.011	0.014	0.017	0.020	0.023	0.026		
34	PC	0.029	0.032	0.035	0.038	0.041	0.044	0.048	0.052	0.056	0.060		
35	PC	0.064	0.068	0.072	0.076	0.080	0.085	0.090	0.095	0.100	0.105		
36	PC	0.110	0.115	0.120	0.126	0.133	0.140	0.147	0.155	0.163	0.172		
37	PC	0.181	0.191	0.203	0.218	0.236	0.257	0.283	0.387	0.663	0.707		
38	PC	0.735	0.758	0.776	0.791	0.804	0.815	0.825	0.834	0.842	0.849		
39	PC	0.856	0.863	0.869	0.875	0.881	0.887	0.893	0.898	0.903	0.908		
40	PC	0.913	0.918	0.922	0.926	0.930	0.934	0.938	0.942	0.946	0.950		
41	PC	0.953	0.956	0.959	0.962	0.965	0.968	0.971	0.974	0.977	0.980		
42	PC	0.983	0.986	0.989	0.992	0.995	0.998	1.000					
43	JD	3.657	10.0										
44	JD	3.533	20.0										
	*												
45	KK	76THST											
46	KM		6TH ST CH	HANNEL H	YDROGRAPI	H FROM P	INNACLE	PEAK SOU	TH ADMS				
47	KM		00-YR, 24										
48	BA	0.24	, -	==		(1.0 - 0	,						
49	QI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
50	QI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
51	IO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01		
21	ŢŢ	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.01	DACE	2
					HEC-1	INPUT						PAGE	2
			_	_		_	_	_		•	4.0		
LINE	ID.	1.	2.	3 .	4	5 .	6 .	7 .	8 .	9 .	10		
52	QI	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.03	0.05		
53	QI	0.09	0.11	0.14	0.21	0.34	0.51	0.76	3.70	17.69	47.79		
54	QI	68.57	54.61	42.75	35.61	32.34	29.25	26.13	22.83	19.41	18.11		
55	QI	16.15	14.54	13.75	12.53	12.00	11.44	10.52	9.81	9.34	9.09		
56	QI	9.11	8.71	8.37	8.05	7.67	7.75	7.47	7.08	6.97	6.77		
57	ÕΙ	6.59	6.44	6.32	6.12	5.95	5.87	5.70	5.84	5.41	5.44		
58	QI	4.56	4.81	4.75	4.78	4.69	4.67	4.61	4.36	4.20	4.00		
59	QI	3.75	3.51	2.49	3.43	3.61	3.65	2.48	2.36	2.19	2.07		
60	QI	1.94	1.72	1.71	1.36	1.48	1.13	1.13	1.20	1.10	1.06		
61	QI	1.06	1.00	0.94	0.89	0.85	0.81	0.78	0.74	0.72	0.70		
	-												
62	IQ	0.67	0.64	0.62	0.59	0.57	0.55	0.53	0.51	0.49	0.47		
63	QI *	0.45	0.44	0.42	0.40	0.39							
64	KK	SB01A	BASIN										
			DASIN										
65	BA	0.061											
66	PB	2.721											
67	PC	0.000	0.008	0.016	0.025	0.033	0.041	0.050	0.058	0.066	0.075		
68	PC	0.087	0.099	0.119	0.150	0.234	0.413	0.766	0.875	0.916	0.944		
69	PC	0.956	0.968	0.979	0.990	1.000							
70	LG	0.25	0.25	4.03	0.56	45							
71	UC	0.439	0.231										
72	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
73	UA	100											
	*												
74	KK	SB01A	DIVERT										
75	KM	D	IVERSION	OF FIRS	T FLUSH \	OLUME FO	OR BASIN	SB01A					
76	KM	F	IRST FLUS	SH VOL =	1.383 AG	C-FT							
77	DT	RET01A	1.383										
78	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
79	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
, ,	*	0.0	10.0	20.0	50.0	10.0	30.0	00.0	100.0	130.0	200.0		
80	KK	CP-1	COMBINE										
81	KM		EGACY BLV	/D AND 7	6TH ST (A	ATLLER RI	CHANNE	1)					
82	HC	2			· · · · · · · · · · · · · · · · · · ·			-/					
02	*	-	0.301										
83	KK	R1A-2W	ROUTE										
84	KM		OUTE CP-1	1 TO CP-	2W								
85	RK		0.0200	0.018		TRAP	2.000	0.00					
	*			****									
86	KK	SB02NW	BASIN										
87	KM	В	ASIN SB02	2E WAS S	PLIT INTO	SUB BAS	SINS NOR	TH OF CAV	<b>VASSON</b>				
88	KM		ND SOUTH										
89		0.0193											
90	LG	0.25	0.25	4.03	0.56	45							
91	UC	0.276	0.224		3.50	<del></del>							
92	UA	0.276	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
		100	٥.٠	۵.د	0.0	12.0	20.0	45.0	15.0	90.0	30.0		
93	UA *	TOO											
	•												

LINE	I	D1	2.	3.	4	5.	6	7.	8.	9.	10	
94	K	K CBOOMM	DIVERT									
95	K		DIVERSION	OE ETPS	T ELLICH V	/OLLIME E/	OD BACTN	CBOONIN				
96	K		FIRST FLU				JK DASIN	SDOZINW				
97				SH VOL =	0.437 AC	гі						
	D.			10.0	15.0	20.0	25.0	20.0	25.0	10.0	4F 0	
98	D			10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	
99	D			60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0	
100	D	-		10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	
101	D:		55.0	60.0	65.0	70.0	80.0	90.0	100.0	150.0	200.0	
102	K		COMBINE									
103	K		COMBINE R	OUTE FROM	M 1A-2W W	NITH NEW	SUB BASI	IN SB02NI	N			
104	H *		0.305									
105	K			0.010		TD40	2 222	0.00				
106	R *		0.0140	0.018		TRAP	2.000	0.00				
107	K											
108	B	A 0.027										
109	L	G 0.25	0.25	4.03	0.56	45						
110	U											
111	U	Α 0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
112	U. *											
113	K		DIVERT									
114	K	М	DIVERSION	OF FIRS	T FLUSH V	OLUME F	OR BASIN	SB01C				
115	K	М	FIRST FLU	SH VOL =	0.612 AC	:-FT						
116	D.											
117	D	I 0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
118	D:		10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
110	V	V D1C 1D	DOLLTE									
119 120	K R *	K 542		0.013		CIRC	5.000					
121	K											
122	B			4 02	0.56	45						
123	L			4.03	0.56	45						
124	U				0.0	42.0	20.0	42.0	75.0	00.0	06.0	
125	U.			5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
126	U. *											
127	K		DIVERT	OF FIRE	T FILICII V	OLUME E	OD DACTN	CDQ1D				
128	K		DIVERSION FIRST FLU				JK DASIN	SDATE				
129 130	K			SH VUL =	0.543 AC	FI						
131	D [']			20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
132	D			20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0	
132	*		10.0	20.0	HEC-1		30.0	00.0	100.0	150.0	200.0	PAGE 4
												TAGE 4
LINE	I	D1	2.	3.	4	5.	6	7.	8.	9.	10	
133			COMBINE									
134	K		COMBINE R	OUTE 1C-1	1B WITH S	B01B						
135	H:		0.051									
136	K	K R1B-2N	ROUTE									
137	R *	K 1268		0.025		TRAP	80.00	0.00				
120		v coosus	DACTN									
138	K											
139	B			4 03	0.50	45						
140	L			4.03	0.56	45						
141	U			F 0	0.0	12.0	20.0	42.0	75.0	00.0	06.0	
142	U.			5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
143	U. *											

	1414	CDOONE	D.T. (E.D.T.										
144	KK		DIVERT										
145	KM		DIVERSION	OF FIRS	ST FLUSH V	OLUME FO	OR BASIN	SB02NE					
146	KM	F	IRST FLU	SH VOL =	: 0.760 AC	-FT							
147	DT	RET2NE	0.760										
148	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
149	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
142	*	0.0	10.0	20.0	30.0	40.0	30.0	00.0	100.0	130.0	200.0		
150	1/1/	CD CON	COMPTNE										
150	KK		COMBINE										
151	KM	(	COMBINE R	OUTE 1B-	2N (BASIN	IS SB01-I	B AND SB	01-C) WI	TH SB02NI	≣			
152	HC	2	0.085										
	*												
153	KK	R2N-2	ROUTE										
154	RK	1380	0.014	0.018		TRAP	2.000	0.00					
134	*	1300	0.014	0.018		IIIAI	2.000	0.00					
	·												
155	KK	SB02E	BASIN										
156	BA	0.040											
157	LG	0.10	0.25	4.03	0.61	80							
158	UC	0.369	0.321										
159	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
160	UA	100											
100	*	100											
4.54	1414	60005	D.T. (E.D.T.										
161	KK		DIVERT										
162	KM				ST FLUSH V		OR BASIN	SB02E					
163	KM	F	IRST FLU	SH VOL =	: 0.998 AC	:-FT							
164	DT	RET2E	0.998										
165	DI	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
166	DQ	0.0	10.0	20.0	30.0	40.0	50.0	60.0	100.0	150.0	200.0		
	*	0.0	2010		30.0		50.0	00.0					
					HEC-1	TNDLIT						PAGE	5
					HEC-1	INPUT						PAGE	5
		_	_	_	_	_	_	_	_	_			
LINE	ID.	1.	2.	3 .	4	5	6 .	7 .	8 .	9 .	10		
167	KK	SB02W	BASIN										
168	BA	0.0571											
169	LG	0.35	0.35	4.33	0.51	0							
170	UC	0.686	0.535		0.52	•							
171	UA	0.000	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0		
			3.0	5.0	0.0	12.0	20.0	43.0	75.0	30.0	90.0		
172	UA	100											
	*												
173	KK	CP-02	COMBINE										
174	HC	4	0.1816										
	*												
175	KK	R2-3	ROUTE										
176	KM			CHANNEL	FROM SR	1011 FRI	EEWAY TO	MAVO BL	VD.				
177					. TROM SR	TRAP	92	4	VD				
1//	RK *	1200	0.0015	0.030		INAP	92	4					
	Τ.												
178	KK	SB03	BASIN										
179	BA	0.048											
180	LG	0.15	0.25	4.50	0.47	55							
181	UC	0.364	0.294										
182	UA	0	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0		
183	UA	100											
103	*	100											
104	1/1/	CD 03	COMPTNE										
184	KK		COMBINE										
185	HC	2											
	*												
186	KK	R3-5	ROUTE										
187	KM			CHANNEL	. FROM MAY	O BLVD	TO PRINC	ESS BLVD					
	RK		0.0015			TRAP	98	4					
IXX	*	2370	0.0013	0.03		( I V/1	70	-					
188													
188	•												
		6505	DACT										
189	KK	SB05	BASIN										
189 190	KK BA	0.126											
189 190 191	KK		0.25	4.50	0.44	48							
189 190	KK BA	0.126	0.25	4.50	0.44	48							
189 190 191	KK BA LG	0.126 0.22	0.25 0.226	4.50 16.0	0.44 30.0		77.0	84.0	90.0	94.0	97.0		
189 190 191 192 193	KK BA LG UC UA	0.126 0.22 0.327 0	0.25 0.226				77.0	84.0	90.0	94.0	97.0		
189 190 191 192	KK BA LG UC	0.126 0.22 0.327	0.25 0.226				77.0	84.0	90.0	94.0	97.0		
189 190 191 192 193	KK BA LG UC UA UA	0.126 0.22 0.327 0	0.25 0.226				77.0	84.0	90.0	94.0	97.0		

KK CP-5A COMBINE

```
HC
197
              KK
                  SB07W BASIN
198
              BΑ
                  0.0468
199
              LG
                   0.25
                           0.25
                                   4.03
                                           0.56
                                                    45
200
              UC
                   0.323
                          0.237
201
              IJΔ
                                           8.0
                                                          20.0
                                                                  43.0
                                                                         75.0
                                                                                 90.0
                                                                                         96.0
                    0
                            3.0
                                    5.0
                                                  12.0
202
              UA
                     100
                                           HEC-1 INPUT
                                                                                                PAGE 6
LINE
              ID.....1....2....3....4....5....6....7....8....9....10
203
              KK
                  SB07W DIVERT
                       DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB07W
204
              ΚM
 205
              KM
                        FIRST FLUSH VOL = 1.060 AC-FT
 206
              DT
                  RET07W 1.060
 207
                                   20.0
                                           30.0
                                                  40.0
                                                                  60.0
                                                                        100.0
                                                                                150.0
              DI
                    0.0
                           10.0
                                                          50.0
                                                          50.0
                                                                  60.0
208
              DQ
                    0.0
                           10.0
                                   20.0
                                           30.0
                                                  40.0
                                                                        100.0
                                                                                150.0
                                                                                        200.0
209
              KK R7W-8W ROUTE
                       HAYDEN ROAD NORTH CHANNEL FROM LEGACY BLVD TO SR 101L FREEWAY
210
              KM
211
              KM
                       HE MODIFIED ROUTE TO LOOP 101 W OF HAYDEN
212
              RK
                   3754 0.0013
                                 0.03
                                                  TRAP
                                                            46
                  SB8NW BASIN
213
              KK
                   BASIN JUST SOUTH OF LEGACY - FUTURE MOB SITE
214
              ΚM
              BA 0.0147
215
216
              LG
                  0.10
                           0.25
                                   4.03
                                           0.61
                                                    80
217
              UC
                   0.252
                          0.200
              UA
                   0
                                            8.0
                                                  12.0
                                                          20.0
                                                                         75.0
                                                                                 90.0
218
                            3.0
                                    5.0
                                                                  43.0
                                                                                         96.0
219
              UA
                    100
220
              KK
                  SB8NW DIVERT
221
                    DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8NW
              ΚM
222
              KM
                       FIRST FLUSH VOL = 0.332 AC-FT
223
              DT
                  RET8NW
                          0.332
224
              DI
                    0.0
                           10.0
                                   20.0
                                           30.0
                                                  40.0
                                                          50.0
                                                                  60.0
                                                                        100.0
                                                                                150.0
                                                                                        200.0
225
                     0.0
                           10.0
                                   20.0
                                           30.0
                                                  40.0
                                                          50.0
                                                                  60.0
                                                                        100.0
                                                                               150.0
                                                                                        200.0
              DQ
              KK R8NW8N ROUTE
226
                    ROUTE NEW SUB BASIN SB8NW TO OUTLET AT CAVASSON BLVD
227
              KM
228
                       NORTH HALF OF BASIN 8W WAS BROKEN DOWN INTO 4 SUB-SUBBASINS
              ΚM
                                                  TRAP
229
              RK
                    643 0.0113 0.018
                                                            46
                                                                    4
230
              ΚK
                  SB8NE BASIN
                    SITE JUST SOUTH OF LEGACY AND WEST OF HAYDEN - FUTURE RETAIL
231
              ΚM
232
              BA
                  0.015
233
              LG
                   0.10
                           0.25
                                   4.03
                                           0.61
                                                    80
234
              UC
                  0.239
                          0.172
235
              UA
                     0
                            3.0
                                    5.0
                                            8.0
                                                  12.0
                                                          20.0
                                                                  43.0
                                                                         75.0
                                                                                 90.0
                                                                                         96.0
236
              IJΔ
                    100
237
                  SB8NE DIVERT
              KK
238
              ΚM
                       DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8NE
                       FIRST FLUSH VOL = 0.340 AC-FT
 239
              KM
240
              DT
                  RET8NE 0.340
241
                    0.0
                           10.0
                                   20.0
                                           30.0
                                                  40.0
                                                          50.0
                                                                  60.0
                                                                        100.0
                                                                                150.0
                                                                                        200.0
              DI
242
              DQ
                     0.0
                           10.0
                                   20.0
                                           30.0
                                                  40.0
                                                          50.0
                                                                  60.0
                                                                        100.0
                                                                               150.0
                                                                                        200.0
                                           HEC-1 INPUT
                                                                                                PAGE 7
LINE
              ID.....1....2....3....4....5....6....7....8....9....10
243
              KK R8NE8N ROUTE
244
              KM
                       ROUTE NEW SUB BASIN SB8NE TO OUTLET AT CAVASSON BLVD
                        NORTH HALF OF BASIN 8W WAS BROKEN DOWN INTO 4 SUB-SUBBASINS
245
              KM
246
              RK
                    622 0.011 0.018
                                                  TRAP
                                                           46
                                                                    4
```

1

1

247

SB8SW BASIN

```
SITE JUST NORTH OF CAVASSON BLVD EAST OF CLARET DR - FUTURE MF
 248
               KM
 249
               ВА
                   0.0129
 250
               LG
                     0.10
                              0.25
                                      4.03
                                              0.61
                                                        80
 251
               UC
                    0.219
                            0.169
 252
               UΑ
                        0
                               3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                        90.0
                                                                                                96.0
 253
               UA
                      100
 254
                    SB8SW DIVERT
               KK
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8SW
               ΚM
 255
 256
               ΚM
                         FIRST FLUSH VOL = 0.292 AC-FT
 257
                   RET8SW
               DT
                            0.292
 258
               DI
                      0.0
                             10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
                      0.0
 259
               DQ
                              10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
 260
               KK
                    SB8SE
                            BASIN
 261
               ΚM
                         SITE JUST NORTH OF CAVASSON AND WEST OF HAYDEN - FUTURE HOTEL OR RETAIL
                   0.0131
 262
               BA
 263
               LG
                     0.10
                                      4.03
                              0.25
                                              0.61
               UC
                    0.242
 264
                            0.210
                                                                                        90.0
 265
               UA
                        0
                              3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                                96.0
 266
               UΑ
                      100
 267
               KK
                    SB8SE DIVERT
 268
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB8SE
                         FIRST FLUSH VOL = 0.297 AC-FT
 269
               ΚM
 270
               DT
                   RET8SE
                            0.297
271
               DI
                      0.0
                             10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
 272
               DQ
                      0.0
                             10.0
                                      20.0
                                              30.0
                                                      40.0
               KK CP-08N COMBINE
273
 274
                         CP AT INLET ON NORTH SIDE OF CAVASSON - ENTERS EXIST STORM DRAIN
               KM
 275
               HC
                        4 0.0557
                   R8N-8W ROUTE
 276
               KK
                         ROUTE NEW SUB BASINS SB8NE SB8NW SB8SW SB8SE TO CP-08W
 277
               ΚM
                         ROUTE IN STORM DRAIN
               ΚM
 278
                     1592 0.015
 279
               RK
                                    0.013
                                                      CIRC
                                              HEC-1 INPUT
                                                                                                        PAGE 8
LINE
               ID.....1....2....3....4....5....6....7....8.....9....10
 280
                    SB08W
                            BASIN
               KK
                   0.0589
 281
               BΑ
 282
               LG
                     0.10
                             0.25
                                      4.03
                                              0.61
                                                         80
 283
               UC
                    0.225
                            0.150
 284
               UΑ
                        0
                               3.0
                                       5.0
                                               8.0
                                                      12.0
                                                               20.0
                                                                       43.0
                                                                               75.0
                                                                                        90.0
                                                                                                96.0
               UΑ
                      100
 285
 286
               KK
                    SB08W DIVERT
 287
               ΚM
                         DIVERSION OF FIRST FLUSH VOLUME FOR BASIN SB08W
 288
               KM
                         FIRST FLUSH VOL REQ = 1.335 AC-FT, PROVIDED = 1.415
 289
               ΚM
                         THIS IS EXISTING AND WAS BUILT IN PHASE 1
                    RFT8W
                            1.415
 290
               DT
 291
               DI
                      0.0
                              10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
 292
                      0.0
                              10.0
                                      20.0
                                              30.0
                                                      40.0
                                                               50.0
                                                                       60.0
                                                                              100.0
                                                                                      150.0
                                                                                               200.0
               DQ
 293
               KK
                   CP-08W COMBINE
 294
               HC
                        3 0.1614
 295
                    R8W-4
                            ROUTE
               KK
               \mathsf{RK}
                     3137
                           0.0130
                                     0.030
                                                      TRAP
                                                              2.000
                                                                       0.00
 296
 297
               KK
                     SB04
                            BASIN
 298
               ВА
                    0.144
 299
               LG
                     0.14
                             0.25
                                      4.60
                                              0.44
                                                        61
 300
               UC
                    0.305
                            0.199
                                                      65.0
                                                              77.0
                                                                       84.0
                                                                               90.0
                                                                                        94.0
                                                                                                97.0
 301
               IJΔ
                        0
                               5.0
                                      16.0
                                              30.0
 302
               UΑ
                      100
```

	303 304	KK HC *	CP-4 2	COMBINE									
	305	KK		ROUTE	DLVD CUA	NNEL EDOM			. CT				
	306 307	KM RK *		0.0013	0.03	NNEL FROM	TRAP	39	4				
	308	KK	CP-05	COMBINE									
	309	KM			RI VD AND	76TH ST	(PRTNCE	S RIVD C	HΔNNFI )				
	310	KM			CP-05A AN		(11111022	,5 5215 6					
	311	HC	2										
1		*				HEC-1	INPUT						PAGE 9
	LINE	ID.	1.	2 .	3 .	4	5	6	7	8.	9	10	
	312	KK	R5-6	ROUTE									
	313	KM			BLVD CHA	NNEL FROM	1 76TH S1	то ѕсот	TSDALE R	RD			
	314	RK		0.0015	0.03		TRAP	188	4				
		*											
	315	KK	SB06	BASIN									
	316	BA	0.136										
	317	LG	0.16	0.25	4.55	0.45	53						
	318 319	UC	0.321 0	0.246	16.0	30.0	6F 0	77.0	94.0	90.0	04.0	07.0	
	319	UA UA	100	5.0	16.0	30.0	65.0	77.0	84.0	90.0	94.0	97.0	
	320	*	100										
	221	I/I/	CD 06	COMPTNE									
	321 322	KK HC	CP-06 2	COMBINE									
	322	*	2										
	323	KK	SB07E	BASIN									
	324	BA	0.026										
	325	LG	0.10	0.25	4.03	0.74	0						
	326	UC	0.574	0.527	F 0	0.0	12.0	20.0	42.0	75.0	00.0	06.0	
	327 328	UA UA	0 100	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	320	*	100										
	329	KK	R7E-8E	ROUTE									
	330	RK		0.0130	0.030		TRAP	2.000	0.00				
		*											
	331	KK	SB08E	BASIN									
	332	BA	0.078	DASTI									
	333	LG	0.10	0.25	4.08	0.72	0						
	334	UC	0.798	0.652									
	335	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	336	UA	100										
		*											
	337	KK	SB09N	BASIN									
	338	BA	0.028										
	339	LG	0.10	0.25	4.79	0.49	0						
	340	UC	0.740	1.111									
	341	UA	0	3.0	5.0	8.0	12.0	20.0	43.0	75.0	90.0	96.0	
	342	UA *	100										
	343	KK	R9N-R9	ROUTE	0.000		TDAD	2 000	0.00				
	344	RK *	2586	0.0013	0.020		TRAP	2.000	0.00				
1						HEC-1	INPUT						PAGE 10
	LINE	ID.	1.	2.	3.	4	5	6	7	8.	9	10	
	345	KK	CP-08E	COMBINE									
	346	HC	3										
	-	*	_										
	347		R8E-R9	ROUTE	0.000		TDAD	2 000	0.00				
	348	RK	501	0.0013	0.020		TRAP	2.000	0.00				

```
349
                      SB09
                KK
                             BASIN
350
               BA
                     0.086
                                       4.79
351
                LG
                      0.10
                              0.25
                                               0.49
                                                           0
352
               UC
                     0.683
                             0.518
 353
               UΑ
                         0
                               3.0
                                        5.0
                                                 8.0
                                                        12.0
                                                                 20.0
                                                                         43.0
                                                                                  75.0
                                                                                          90.0
                                                                                                   96.0
               UA
                       100
354
 355
                     CP-09 COMBINE
                ΚK
356
               HC
                         2
357
               ΚK
                     PWRCH
358
                ΚM
                          POWERLINE CHANNEL (XS 107) & 50% PIMA ROAD CHANNEL (XS 183) HYDROGRAPHS
                          100-YR, 24-HR FLO-2D MODEL (XS 107)
359
               ΚM
 360
                ΚM
                          FROM PINNACLE PEAK SOUTH ADMS 100-YR, 24-HR FLO-2D MODEL
361
                RΔ
                       7.0
362
                QΙ
                                                                                                      0
                         0
                                                   0
                                                           0
                                                                                             0
                                 0
                                                                                                      0
363
               QI
                         0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                            0
                                                                                     0
                                                                                             0
364
               QΙ
                         0
                                  0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                            0
                                                                                     0
                                                                                             0
                                                                                                      0
365
                QI
                         0
                                  0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                            0
                                                                                     0
                                                                                             0
                                                                                                      0
 366
                QΙ
                         0
                                  0
                                          0
                                                   0
                                                           0
                                                                    1
                                                                            1
                                                                                            43
                                                                                                    495
                                                                                     3
367
                QI
                      1099
                              1198
                                       2055
                                               3747
                                                        3658
                                                                 3175
                                                                         2822
                                                                                  2378
                                                                                          2084
                                                                                                   1898
368
                      1699
                              1499
                                       1331
                                               1179
                                                        1047
                                                                  940
                                                                          851
                                                                                   773
                                                                                           705
                                                                                                    645
               QI
 369
                QI
                       597
                                559
                                        521
                                                 488
                                                         460
                                                                  435
                                                                          410
                                                                                   387
                                                                                           370
                                                                                                    356
                       339
370
                                328
                                                 303
                                                         293
                                                                  281
                                                                                                    248
                QI
                                        317
                                                                          270
                                                                                   257
                                                                                           258
 371
                QΙ
                       240
                                237
                                                 220
                                                                  209
                                                                          205
                                                                                   201
                                                                                                    188
                                        223
                                                         214
                                                                                           192
                                                                                                    117
372
               QI
                       180
                                179
                                        164
                                                 158
                                                         149
                                                                  142
                                                                          137
                                                                                   126
                                                                                           120
                                         97
373
                QI
                       107
                                102
                                                 99
                                                          86
                                                                   83
                                                                           82
                                                                                    74
                                                                                            70
                                                                                                     66
                                         57
                                                  55
                                                                                    48
374
                QI
                        62
                                59
                                                          52
                                                                   50
                                                                           50
                                                                                            42
                                                                                                     41
375
                ΟI
                        40
                                37
                                         35
                                                  40
                                                          36
                                                                   32
                                                                           31
                                                                                    30
                                                                                            31
                                                                                                     30
376
               QΙ
                        31
                                30
                                         24
                                                  23
                                                          23
377
               KK
                    BINFLO
378
                ΚM
                           TOTAL INFLOW INTO BASIN 53R.
               HC
379
380
               KK
                     BASIN
 381
               ΚM
                       BASIN STAGE/STORAGE FROM PROPOSED CONTOURS BETWEEN
382
                ΚM
                       ELEV 1594 AND 1615: BASIN SIDE SLOPES STEEPENED TO 3:1
 383
                KM
                          OUTFLOW RATING CURVE FROM CULVERTMASTER FOR 2-60" PIPES
                ΚM
                          THE OUTLET PIPES ARE INLET CONTROLLED.
384
 385
                RS
                              STOR
                                          0
                                                                                                 295.5
                              44.9
                                              108.7 140.6
                                                                        202.5
386
               SV
                         a
                                       76.8
                                                               171.5
                                                                                233.5
                                                                                         264.5
                                               HEC-1 INPUT
                                                                                                           PAGE 11
LINE
               ID.....1....2....3....4....5....6....7....8....9....10
387
                SV
                     328.7
                             362.0
                                      395.2
                                              428.5
                                                       461.7
                                                               497.2
                                                                        532.7
                                                                                 568.3
                                                                                         603.8
                      1594
                                               1599
                                                                         1602
                                                                                  1603
388
                SE
                              1597
                                       1598
                                                        1600
                                                                1601
                                                                                          1604
                                                                                                   1605
 389
                SE
                      1606
                              1607
                                       1608
                                               1609
                                                        1610
                                                                1611
                                                                         1612
                                                                                  1613
                                                                                          1614
                                                                                                   1615
 390
                SQ
                         0
                              94.6
                                      153.4
                                              209.8
                                                       244.2
                                                                264.5
                                                                        284.0
                                                                                 302.5
                                                                                         320.1
                                                                                                  336.9
391
                             368.5
                                      383.5
                                              398.0
                                                       412.0
                                                               425.7
                                                                        438.9
                                                                                451.9
                                                                                         464.5
                SQ
                     353.0
                                                                                                 476.8
 392
                KK
                    BSNRT1
                          2-60" CMP OULFLOW PIPES FOR BASIN 53R UNDER SR 101L FREEWAY.
393
               ΚM
 394
                ΚM
                          DOWNSTREAM CONNECTING PIPES ARE 60-INCH RCP AND WILL HAVE
                ΚМ
                          EXCESS CAPACITY.
 395
                       550 0.0052 0.024
396
                RK
                                                        CIRC
                                                                  7.0
397
               KK
                    BSNRT2
398
                ΚM
                          2-60" RCP PIPES FROM SR 101L FREEWAY TO UNION HILLS DR (BAS 53R OUTFALL)
399
                RK
                      1200 0.0077
                                     0.013
                                                        CIRC
                                                                 7.0
                      SB10
400
               KK
                             BASIN
401
                ВА
                     0.040
402
               LG
                      0.15
                              0.25
                                       4.25
                                               0.55
                                                          55
403
               UC
                     0.233
                             0.161
404
               UΑ
                         0
                               5.0
                                       16.0
                                               30.0
                                                        65.0
                                                                 77.0
                                                                         84.0
                                                                                  90.0
                                                                                          94.0
                                                                                                   97.0
405
               UA
                       100
```

406 KK CP-10 COMBINE

```
UNION HILLS DR AND 82ND ST (UNION HILLS DR CHANNEL)
         407
                     KM
         408
                     HC
                     KK R10-11 ROUTE
         409
                     KM UNION HILLS DR CHANNEL FROM 82ND ST TO HAYDEN ROAD
         410
         411
                     RK
                          1277 0.0014 0.03
                                                     TRAP
                                                           220 4
                        SB11 BASIN
         412
                     KK
         413
                     BA 0.071
                     LG
                                0.25
                                        4.15
                                              0.58
                                                     55
         414
                         0.15
                        0.296 0.232
         415
                     UC
                        0 5.0
                                       16.0
                                               30.0
                                                     65.0 77.0 84.0 90.0 94.0
                                                                                        97.0
         416
                     UA
         417
                     UA
                         100
         418
                     KK CP-11 COMBINE
         419
                     KM
                         UNION HILLS DR AND HAYDEN ROAD (HAYDEN RD SOUTH CHANNEL)
         420
                     HC
         421
                     ZZ
             SCHEMATIC DIAGRAM OF STREAM NETWORK
INPUT
                          (--->) DIVERSION OR PUMP FLOW
LINE
         (V) ROUTING
 NO.
         (.) CONNECTOR
                         (<---) RETURN OF DIVERTED OR PUMPED FLOW
  45
         76THST
                    SB01A
  64
                     .-----> RET01A
  77
                    SB01A
  74
           CP-1.....
             V
  83
         R1A-2W
                   SB02NW
  86
  97
                       .----> RET2NW
                   SB02NW
  94
         CP-02W.....
             V
             ٧
 105
          R2W-2
 107
                    SB01C
                      .----> RET01C
 116
                    SB01C
 113
                       ٧
                       ٧
 119
                   R1C-1B
 121
                              SB01B
 130
                                .----> RET01B
 127
                              SB01B
                   CP-01B.....
 133
                       ٧
                       ٧
 136
                   R1B-2N
```

138	•	•	SB02NE			
136		•	3002NL			
		•				
147		•	•	> RE	T2NE	
144	•	•	SB02NE			
	•	•	•			
150	:	CP-02N				
		V				
		V				
153	•	R2N-2				
	•	•				
155			SB02E			
		•	•			
164	•	•	•		CTOC	
161	•	•	SB02E	> R	.0120	
167	•	•	•	SB02W		
	•	•	•	•		
173	CP-02		•	· · · · · · · · · · · · ·		
	V					
	V					
175	R2-3					
178		SB03				
		•				
184	CD 02					
104	CP-03 V					
	V					
186	R3-5					
	•					
189	•	SB05				
		•				
195	CP-5A					
	•					
197		SB07W				
		•				
206	•	•	> RE	F071.1		
203		SB07W		107W		
		V				
	•	V				
209	•	R7W-8W				
		•				
213			SB8NW			
		•	•			
223	•	•	•	> RE	TANIA	
223		•	SB8NW		I OI VV	
		•	V			
		•	V			
226	•	•	R8NW8N			
		•	•			
230			•	SB8NE		
		•	•			
240	•	•	•	•	> RET8NE	
237		•	•	SB8NE		
-				V	•	
2.5		•	•	V		
243	•	•	•	R8NE8N		
		•	•			
247			•		SB8SW	
		•		•	•	
257	•	•	•	•	>	DETOCIA
257 254	•	•	•	•	> SB8SW	KEIØSW
,	•	•	•	•	3503.1	

		•		•					
260	•	•	•	•		•	CDOCE		
260	•		•	•		•	SB8SE		
	•					•			
270 267			•	•		•	SB8SE	>	RET8SE
		•	•	•		•			
273	•	•	CP-08N	•		•	•		
273	•	•	V		• • • • • • • • • •	• • • • • • •			
276	•		V DON ON						
276			R8N-8W						
	•		•						
280	•	•	•	SB08W					
	•	•		•					
290	•	•	•		>	RET8W			
286	•		•	SB08W					
		•	•	•					
293	•	CP-08W. V	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					
	•	V							
295	•	R8W-4							
	•								
297			SB04						
	•	•	•						
303		CP-4.	· · · · · · · · · · · · · ·						
	•	V							
305	•	V R4-5							
303	•								
200	CD 05								
308	CP-05. V								
	V								
312	R5-6								
	•								
315	•	SB06							
	•								
321	CP-06.								
	•								
323		SB07E							
	•	V V							
329		R7E-8E							
	•	•							
331	•		SB08E						
332									
227	•	•	•	CDAON					
337	•		•	SB09N V					
	•			V					
343	•	•	•	R9N-R9					
345	•	CP-08E. V		• • • • • • • • • • • • • • • • • • • •					
		V							
347	•	R8E-R9							
	•	•							
349			SB09						
	•		•						
355		CP-09							
-	•	•							
357	•	•	PWRCH						
551	•	•	• PWKCII						
277		DINE: 0							
377	•	RINFLO	• • • • • • • • • • • • • • • • • • • •						

		V	
	•	V	
380	•	BASIN	
		V	
		V	
392	•	BSNRT1	
		V	
		V	
397	•	BSNRT2	
400	•		SB10
	•	•	•
	•	•	•
406	•	CP-10	
		V	
		V	
409		R10-11	
412			SB11
	•		•
418		CP-11	

*******************************

* FLOOD HYDROGRAPH PACKAGE (HEC-1) *

* JUN 1998 *

* VERSION 4.1 *

* *

* RUN DATE 26APR21 TIME 09:31:12 *

* *

************

* U.S. ARMY CORPS OF ENGINEERS

* HYDROLOGIC ENGINEERING CENTER

* 609 SECOND STREET

* DAVIS, CALIFORNIA 95616

(916) 756-1104

CROSS ROADS EAST DRAINAGE INFRASTRUCTURE
POWERLINE CORRIDOR
RESERVE ROUTING OF BASIN 53R N OF SR101 & E OF HAYDEN RD, SCOTTSDALE, AZ
INFLOW HYDROGRAPHS FROM THE PPSADMS DRAFT FLO-2D MODEL:
100-YR, 24-HR BASE W/WALLS (W/ MODIFICATIONS TO CONTAIN POWERLINE AND
PIMA ROAD FLOWS.

PREPARED BY: T.Y.LIN INTERNATIONAL; LAST MODIFIED: 09/14 MODELERS: RK, MW

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 08/07/18 MODELERS: MSW, ES REVISIONS NOTED WITH HE NEW PROP CONDITION MODEL,WITH POWERLINE AND BASIN 53R

NEW PROP CONDITION MODEL, WITH POWERLINE AND BASIN 53R
THIS IS THE ULTIMATE CONDITION MODEL

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 10/25/19

MODELERS: MSW XKSAT ADJUSTMENT

REVISED BY: HUBBARD ENGINEERING; LAST MODIFIED: 07/15/20
MODELERS: MSW, TSW
REVISIONS NOTED WITH HE (Hubbard Engineering)
NEW PROPOSED CONDITION MODEL, ACCOUNT FOR WHAT HAS BEEN
CONSTRUCTED IN PHASE 1 INFRASTRUCTURE, DETAIL OUT NEW CP
ACCOUNT FOR HIGHER C FACTOR AND IMPERVIOUSNESS, ADD RETENTION
FIRST FLUSH RETENTION ADDED AS DIVERT CARD WITH VOLUME REQUIRED

IPLOT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

## IT HYDROGRAPH TIME DATA

NMIN 3 MINUTES IN COMPUTATION INTERVAL

IDATE 1 0 STARTING DATE ITIME 0000 STARTING TIME

NQ 1000 NUMBER OF HYDROGRAPH ORDINATES

NDDATE 3 0 ENDING DATE
NDTIME 0157 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL 0.05 HOURS TOTAL TIME BASE 49.95 HOURS

**ENGLISH UNITS** 

DRAINAGE AREA SQUARE MILES

PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

32 JD INDEX STORM NO. 1

STRM 3.85 PRECIPITATION DEPTH

	31KM	3.65		IAIION DEP						
	TRDA	0.00	TRANSPO	SITION DRA	INAGE AREA	1				
33 PI	DDECTDTTAT:	ION PATTERN								
33 FI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00
	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

0	ΡI	

TRDA

PRECIPITAT	TON DATTER	PNI							
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00	0.00	0.00	0.00 0.00						
							0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

44 JD INDEX STORM NO. 3

	STRM	3.53	PRECIPI	TATION DEP	TH					
	TRDA	20.00	TRANSPO	SITION DRA	INAGE AREA					
0 PI	PRECIPITAT]	ΓΟΝ ΡΔΤΤΕΝΝ								
V	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01

0.02	0.02	0.02	0.02	0.02	0.06	0.06	0.06	0.06	0.06
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT *** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

*** FDKRUT WARNING TIME STEP CALCULATION FAILED TO CONVERGE. STABILITY PROBLEMS MAY RESULT

1

RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

	OPERATION	STATTON	PEAK FLOW	TIME OF PEAK	AVERAGE	FLOW FOR MAX	IMUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
+	OI ENATION	STATION	1 LOW	LAK	6-HOUR	24-HOUR	72-HOUR	ANLA	STAGE	TIAN STAGE
+	HYDROGRAPH AT	76THST	69.	12.50	23.	8.	4.	0.24		
+	HYDROGRAPH AT	SB01A	86.	12.25	11.	4.	2.	0.06		
+	DIVERSION TO	RETØ1A	6.	11.55	2.	1.	0.	0.06		
+	HYDROGRAPH AT	SB01A	86.	12.25	10.	3.	1.	0.06		
+	2 COMBINED AT	CP-1	135.	12.30	33.	11.	5.	0.30		
+	ROUTED TO	R1A-2W	134.	12.30	33.	11.	5.	0.30		
+	HYDROGRAPH AT	SB02NW	29.	12.15	3.	1.	1.	0.02		
+	DIVERSION TO	RET2NW	2.	11.45	1.	0.	0.	0.02		
+	HYDROGRAPH AT	SB02NW	29.	12.15	3.	1.	0.	0.02		
+	2 COMBINED AT	CP-02W	156.	12.25	36.	12.	6.	0.31		
+	ROUTED TO	R2W-2	155.	12.25	36.	12.	6.	0.31		
+	HYDROGRAPH AT	SB01C	32.	12.20	5.	2.	1.	0.03		
+	DIVERSION TO	RET01C	3.	11.60	1.	0.	0.	0.03		

+	HYDROGRAPH AT	SB01C	32.	12.20	5.	1.	1.	0.03
+	ROUTED TO	R1C-1B	31.	12.25	5.	1.	1.	0.03
+	HYDROGRAPH AT	SB01B	32.	12.20	4.	1.	1.	0.02
+	DIVERSION TO	RETØ1B	2.	11.50	1.	0.	0.	0.02
+	HYDROGRAPH AT	SB01B	32.	12.20	4.	1.	1.	0.02
+	2 COMBINED AT	CP-01B	63.	12.20	9.	2.	1.	0.05
+	ROUTED TO	R1B-2N	62.	12.25	9.	2.	1.	0.05
+	HYDROGRAPH AT	SB02NE	35.	12.25	6.	2.	1.	0.03
+	DIVERSION TO	RET2NE	3.	11.70	1.	0.	0.	0.03
	HYDROGRAPH AT		35.		6.	2.	1.	
+	2 COMBINED AT	SB02NE		12.25				0.03
+	ROUTED TO	CP-02N	96.	12.25	14.	4.	2.	0.09
+	HYDROGRAPH AT	R2N-2	95.	12.25	14.	4.	2.	0.09
+	DIVERSION TO	SB02E	57.	12.25	10.	3.	2.	0.04
+	HYDROGRAPH AT	RET2E	2.	9.65	1.	1.	0.	0.04
+	HYDROGRAPH AT	SB02E	57.	12.25	10.	3.	1.	0.04
+		SB02W	34.	12.45	5.	1.	1.	0.06
+	4 COMBINED AT	CP-02	324.	12.30	64.	20.	10.	0.18
+	ROUTED TO	R2-3	324.	12.35	64.	20.	10.	0.18
+	HYDROGRAPH AT	SB03	65.	12.15	10.	3.	2.	0.05
+	2 COMBINED AT	CP-03	367.	12.35	73.	23.	11.	0.23
+	ROUTED TO	R3-5	365.	12.45	72.	23.	11.	0.23
+	HYDROGRAPH AT	SB05	190.	12.10	24.	8.	4.	0.13
+	2 COMBINED AT	CP-5A	437.	12.45	94.	30.	15.	0.36
+	HYDROGRAPH AT	SB07W	68.	12.20	8.	3.	1.	0.05
+	DIVERSION TO	RET07W	4.	11.50	2.	1.	0.	0.05
+	HYDROGRAPH AT	SB07W	68.	12.20	8.	2.	1.	0.05
+	ROUTED TO	R7W-8W	66.	12.60	8.	2.	1.	0.05

+	HYDROGRAPH AT	SB8NW	27.	12.15	4.	1.	1.	0.01	
+	DIVERSION TO	RET8NW	1.	9.00	1.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8NW	27.	12.15	4.	1.	1.	0.01	
+	ROUTED TO	R8NW8N	26.	12.15	4.	1.	1.	0.01	
+	HYDROGRAPH AT	SB8NE	29.	12.10	4.	1.	1.	0.01	
+	DIVERSION TO	RET8NE	1.	8.95	1.	0.	0.	0.01	
	HYDROGRAPH AT								
+	ROUTED TO	SB8NE	29.	12.10	4.	1.	1.	0.01	
+	HYDROGRAPH AT	R8NE8N	28.	12.15	4.	1.	1.	0.01	
+	DIVERSION TO	SB8SW	25.	12.10	3.	1.	1.	0.01	
+		RET8SW	1.	8.95	0.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8SW	25.	12.10	3.	1.	0.	0.01	
+	HYDROGRAPH AT	SB8SE	23.	12.15	3.	1.	1.	0.01	
+	DIVERSION TO	RET8SE	1.	9.00	0.	0.	0.	0.01	
+	HYDROGRAPH AT	SB8SE	23.	12.15	3.	1.	0.	0.01	
+	4 COMBINED AT	CP-08N	102.	12.15	14.	4.	2.	0.06	
+	ROUTED TO	R8N-8W	101.	12.15	14.	4.	2.	0.06	
+	HYDROGRAPH AT	SB08W	118.	12.10	14.	5.	2.	0.06	
+	DIVERSION TO	RET8W	3.	9.20	2.	1.	0.	0.06	
+	HYDROGRAPH AT	SB08W	118.	12.10	14.	4.	2.	0.06	
+	3 COMBINED AT	CP-08W	214.	12.10	36.	11.	5.	0.16	
+	ROUTED TO	R8W-4	213.	12.15	36.	11.	5.	0.16	
+	HYDROGRAPH AT	SB04	241.	12.10	31.	10.	5.	0.14	
+	2 COMBINED AT	CP-4	446.	12.10	66.	21.	10.	0.31	
	ROUTED TO								
+	2 COMBINED AT	R4-5	442.	12.20	66.	21.	10.	0.31	
+	ROUTED TO	CP-05	723.	12.35	158.	50.	25.	0.66	
+	HYDROGRAPH AT	R5-6	717.	12.40	158.	50.	25.	0.66	

+		SB06	202.	12.10	27.	9.	4.	0.14
+	2 COMBINED	AT CP-06	817.	12.35	184.	59.	29.	0.80
+	HYDROGRAPH	AT SB07E	16.	12.40	2.	1.	0.	0.03
+	ROUTED TO	R7E-8E	16.	12.45	2.	1.	0.	0.03
	HYDROGRAPH	АТ				2.	1.	
+	HYDROGRAPH	SB08E	39.	12.55	6.	2.	1.	0.08
+	DOUTED TO	SB09N	11.	12.55	3.	1.	0.	0.03
+	ROUTED TO	R9N-R9	11.	12.65	3.	1.	0.	0.03
+	3 COMBINED	AT CP-08E	63.	12.55	11.	3.	1.	0.13
+	ROUTED TO	R8E-R9	63.	12.55	11.	3.	1.	0.13
+	HYDROGRAPH	AT SB09	60.	12.45	9.	2.	1.	0.09
+	2 COMBINED	AT CP-09	120.	12.50	20.	5.	2.	0.22
	HYDROGRAPH	AT						
+	2 COMBINED	PWRCH	3747.	13.25	1540.	502.	248.	7.00
+		BINFLO	3788.	13.25	1558.	507.	250.	7.22
+	ROUTED TO	BASIN	462.	18.45	458.	399.	241.	7.22
+	ROUTED TO	BSNRT1	462.	18.50	458.	399.	241.	7.22
+	ROUTED TO	BSNRT2	462.	18.50	458.	399.	241.	7.22
+	HYDROGRAPH	AT SB10	72.	12.05	8.	3.	1.	0.04
+	2 COMBINED	AT CP-10	463.	18.50	459.	400.	242.	7.26
+	ROUTED TO	R10-11	463.	18.55	459.	400.	241.	7.26
	HYDROGRAPH	АТ						
+	2 COMBINED	SB11	107.	12.10	14.	5.	2.	0.07
+ 1		CP-11	465.	18.55	460.	401.	244.	7.33
			S		KINEMATIC WA IS DIRECT RUN		BASE FLOW) INTERPO	DLATED TO
	ISTAQ	ELEMENT	DT P	PEAK TI	ME TO VOI	_UME DT		ON INTERVAL TIME TO

PEAK TIME TO VOLUME DT PEAK TIME TO PEAK PEAK

ISTAQ ELEMENT DT VOLUME (MIN) (CFS) (MIN) (MIN) (CFS) (MIN) (IN) (IN) FOR STORM = 1 STORM AREA (SQ MI) = 0.00 R1A-2W MANE 0.27 138.22 738.13 1.40 3.00 138.18 738.00 1.40

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2249E+02 EXCESS=0.0000E+00 OUTFLOW=0.2249E+02 BASIN STORAGE=0.2963E-02 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 10.00 R1A-2W MANE 738.00 0.23 132.78 738.11 1.37 3.00 132.73 1.37

CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.22	206E+02 E	EXCESS=0.0000E+0	00 OUTFLOW:	=0.2206E+	-02 BASIN	STORAGE=0.2963	BE-02 PERCENT ERROR	= 0.0
FOR STORM = R1A-2W M		AREA (SQ 0.23	•		1.36	3.00	129.19	738.00	1.36	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.21	178E+02 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.2178E+	-02 BASIN	STORAGE=0.2963	BE-02 PERCENT ERROR=	= 0.0
FOR STORM = R2W-2 M		AREA (SQ 0.20	•		1.50	3.00	159.58	735.00	1.50	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.24	135E+02 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.2435E+	-02 BASIN	STORAGE=0.4089	9E-02 PERCENT ERROR=	= 0.0
FOR STORM = R2W-2 M		AREA (SQ 0.28	•		1.46	3.00	152.40	738.00	1.46	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.23	379E+02 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.2378E+	-02 BASIN	STORAGE=0.4089	PE-02 PERCENT ERROR	= 0.0
FOR STORM = R2W-2 M		, -	•		1.44	3.00	147.99	738.00	1.44	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.23	342E+02 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.2342E+	-02 BASIN	STORAGE=0.4090	DE-02 PERCENT ERROR:	= 0.0
FOR STORM = R1C-1B M		, -	•	0.00 732.90	1.80	3.00	32.39	735.00	1.81	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.25	599E+01 E	EXCESS=0.0000E+0	0 OUTFLOW	=0.2599E+	-01 BASIN	STORAGE=0.9756	5E-13 PERCENT ERROR:	= 0.0
FOR STORM = R1C-1B M		AREA (SQ 0.39			1.67	3.00	30.31	735.00	1.67	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.24	108E+01 E	EXCESS=0.0000E+0	0 OUTFLOW	=0.2408E+	-01 BASIN	STORAGE=0.9547	7E-13 PERCENT ERROR:	= 0.0
FOR STORM = R1C-1B M		AREA (SQ 0.44	MI) = 29.15		1.59	3.00	28.96	735.00	1.59	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.22	284E+01 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.2285E+	-01 BASIN	STORAGE=0.9767	7E-13 PERCENT ERROR=	= 0.0
FOR STORM = R1B-2N M		AREA (SQ 1.55	MI) = 64.38	0.00 735.51	1.81	3.00	64.19	735.00	1.81	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.49	913E+01 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.4913E+	-01 BASIN	STORAGE=0.5632	2E-04 PERCENT ERROR:	= 0.0
FOR STORM = R1B-2N M		AREA (SQ 1.51	MI) = 60.32	10.00 734.68	1.67	3.00	60.22	735.00	1.67	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.45	553E+01 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.4552E+	-01 BASIN	STORAGE=0.5975	5E-04 PERCENT ERROR:	= 0.0
FOR STORM = R1B-2N M		AREA (SQ 1.46	MI) = 57.82	20.00 735.22	1.59	3.00	57.66	735.00	1.59	
CONTINUITY SUMMARY (A	C-FT) - I	NFLOW=0.43	319E+01 E	EXCESS=0.0000E+0	00 OUTFLOW	=0.4320E+	-01 BASIN	STORAGE=0.5659	9E-04 PERCENT ERROR=	= 0.0
FOR STORM = R2N-2 M		AREA (SQ 0.26	MI) = 99.78	0.00 735.68	1.80	3.00	99.10	735.00	1.80	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.8138E+01 EXCESS=0.0000E+00 OUTFLOW=0.8139E+01 BASIN STORAGE=0.1854E-04 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = R2N-2 MANE 0.41 93.34		3.00 92.74	735.00	1.66	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7542E+01 EX	KCESS=0.0000E+00 OUTFL	DW=0.7543E+01 BASI	N STORAGE=0.194	46E-04 PERCENT ERROR=	0.0
FOR STORM = 3 STORM AREA (SQ MI) = R2N-2 MANE 0.30 89.45		3.00 88.67	735.00	1.58	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7158E+01 EX	(CESS=0.0000E+00 OUTFL	DW=0.7159E+01 BASI	N STORAGE=0.183	34E-04 PERCENT ERROR=	0.0
FOR STORM = 1 STORM AREA (SQ MI) = R2-3 MANE 2.04 336.24		3.00 335.93	741.00	4.22	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4096E+02 EX	KCESS=0.0000E+00 OUTFL	DW=0.4090E+02 BASI	N STORAGE=0.388	32E-01 PERCENT ERROR=	0.1
FOR STORM = 2 STORM AREA (SQ MI) = R2-3 MANE 2.10 317.06	10.00 739.89 4.04	3.00 316.94	741.00	4.03	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3916E+02 EX	(CESS=0.0000E+00 OUTFL	DW=0.3908E+02 BASI	N STORAGE=0.387	78E-01 PERCENT ERROR=	0.1
FOR STORM = 3 STORM AREA (SQ MI) = R2-3 MANE 2.15 304.76	20.00 739.74 3.92	3.00 304.74	741.00	3.92	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3802E+02 EX	KCESS=0.0000E+00 OUTFL	DW=0.3794E+02 BASI	N STORAGE=0.363	35E-01 PERCENT ERROR=	0.1
FOR STORM = 1 STORM AREA (SQ MI) = R3-5 MANE 2.78 380.48	0.00 747.40 3.86	3.00 378.99	747.00	3.86	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4743E+02 EX	KCESS=0.0000E+00 OUTFL	DW=0.4725E+02 BASI	N STORAGE=0.821	13E-01 PERCENT ERROR=	0.2
FOR STORM = 2 STORM AREA (SQ MI) = R3-5 MANE 2.76 359.46	10.00 749.07 3.68	3.00 358.16	747.00	3.68	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4525E+02 EX	(CESS=0.0000E+00 OUTFL	DW=0.4507E+02 BASI	N STORAGE=0.857	73E-01 PERCENT ERROR=	0.2
FOR STORM = 3 STORM AREA (SQ MI) = R3-5 MANE 2.78 345.68	20.00 749.01 3.57	3.00 343.26	747.00	3.57	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4389E+02 EX	(CESS=0.0000E+00 OUTFL	DW=0.4376E+02 BASI	N STORAGE=0.821	13E-01 PERCENT ERROR=	0.1
FOR STORM = 1 STORM AREA (SQ MI) = R7W-8W MANE 3.00 68.93	0.00 754.57 1.91	3.00 68.50	756.00	1.91	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4511E+01 EX	(CESS=0.0000E+00 OUTFL	DW=0.4779E+01 BASI	N STORAGE=0.937	74E-03 PERCENT ERROR=	-6.0
FOR STORM = 2 STORM AREA (SQ MI) = R7W-8W MANE 3.00 64.32	10.00 754.67 1.83	3.00 64.21	756.00	1.83	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4179E+01 EX	(CESS=0.0000E+00 OUTFL	DW=0.4572E+01 BASI	N STORAGE=0.836	58E-03 PERCENT ERROR=	-9.4
FOR STORM = 3 STORM AREA (SQ MI) = R7W-8W MANE 3.00 63.27	20.00 756.75 1.63	3.00 59.66	759.00	1.63	
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3965E+01 EX	CESS=0.0000E+00 OUTFL	OW=0.4073E+01 BASI	N STORAGE=0.836	52E-03 PERCENT ERROR=	-2.8

FOR STORM = 1 STORM AREA (SQ MI) = 0.00

R	8NW8N MANE	0.83	27.24	730.38	2.83	3.00	27.08	729.00	2.83		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.2	215E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2217	E+01 BASIN	STORAGE=0.335	0E-06 PERCENT	ERROR=	-0.1
	STORM = 2 8NW8N MANE	STORM AREA (SQ 0.90	MI) = 25.74	10.00 730.14	2.66	3.00	25.61	729.00	2.66		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.20	082E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2084	E+01 BASIN	STORAGE=0.298	1E-06 PERCENT	ERROR=	-0.1
	STORM = 3 8NW8N MANE	STORM AREA (SQ 0.87	MI) = 24.80		2.55	3.00	24.66	729.00	2.55		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.19	996E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.1998	E+01 BASIN	STORAGE=0.284	0E-06 PERCENT	ERROR=	-0.1
	STORM = 1 8NE8N MANE	STORM AREA (SQ 0.80	MI) = 29.24	0.00 728.00	2.83	3.00	29.14	729.00	2.83		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.22	259E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.22631	E+01 BASIN	STORAGE=0.331	2E-06 PERCENT	ERROR=	-0.1
	STORM = 2 8NE8N MANE	STORM AREA (SQ 0.87	MI) = 27.62		2.66	3.00	27.56	729.00	2.66		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.2	124E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2127	E+01 BASIN	STORAGE=0.320	1E-06 PERCENT	ERROR=	-0.2
	STORM = 3 8NE8N MANE	STORM AREA (SQ 0.87	•		2.55	3.00	26.55	729.00	2.55		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.20	036E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2038	E+01 BASIN	STORAGE=0.338	1E-06 PERCENT	ERROR=	-0.1
	STORM = 1 8N-8W MANE	STORM AREA (SQ 0.63	MI) = 104.30		2.83	3.00	104.19	729.00	2.83		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.83	393E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.8394	E+01 BASIN	STORAGE=0.479	5E-07 PERCENT	ERROR=	0.0
	STORM = 2 8N-8W MANE	STORM AREA (SQ 0.63	MI) = 98.64		2.66	3.00	98.54	729.00	2.66		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.78	389E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.7890	E+01 BASIN	STORAGE=0.470	9E-07 PERCENT	ERROR=	0.0
	STORM = 3 8N-8W MANE	STORM AREA (SQ 0.51	MI) = 95.24	20.00 729.83	2.55	3.00	94.91	729.00	2.55		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.7	563E+01 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.7564	E+01 BASIN	STORAGE=0.462	0E-07 PERCENT	ERROR=	0.0
	STORM = 1 R8W-4 MANE	STORM AREA (SQ 0.71	MI) = 221.46	0.00 727.41	2.55	3.00	220.48	729.00	2.55		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.2	196E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2197	E+02 BASIN	STORAGE=0.335	8E-03 PERCENT	ERROR=	0.0
	STORM = 2 R8W-4 MANE	STORM AREA (SQ 0.64	MI) = 209.50	10.00 727.30	2.41	3.00	208.59	729.00	2.41		
CONTINUITY SU	MMARY (AC-F	Γ) - INFLOW=0.20	072E+02 E	EXCESS=0.0000	E+00 OUTFLO	DW=0.2072	E+02 BASIN	STORAGE=0.343	5E-03 PERCENT	ERROR=	0.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00 R8W-4 MANE 0.73 201.38 727.98 2.27 3.00 200.85 729.00 2.27

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1453E+01 EXCESS=0.0000E+00 OUTFLOW=0.1451E+01 BASIN STORAGE=0.2431E-04 PERCENT ERROR=

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1330E+01 EXCESS=0.0000E+00 OUTFLOW=0.1328E+01 BASIN STORAGE=0.2146E-04 PERCENT ERROR=

0.89

3.00

10.84

759.00

0.89

0.1

10.00

757.62

FOR STORM = 2 STORM AREA (SQ MI) =

2.57 10.88

R9N-R9 MANE

	FOR STORM = 3 R9N-R9 MANE	STORM AREA (SQ 2.61	MI) = 10.25		0.84	3.00	10.23	759.00	0.84	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.12	249E+01 E	EXCESS=0.0000	E+00 OUTFLO	W=0.1248	E+01 BASIN	STORAGE=0.23	38E-04 PERCENT ERROR=	0.1
	FOR STORM = 1 R8E-R9 MANE	, -			0.85	3.00	67.12	753.00	0.85	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.59	955E+01 E	EXCESS=0.0000	E+00 OUTFLO	W=0.5955	E+01 BASIN	STORAGE=0.10	051E-04 PERCENT ERROR=	0.0
	FOR STORM = 2 R8E-R9 MANE	STORM AREA (SQ 0.38	,	10.00 753.41	0.76	3.00	60.79	753.00	0.76	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.53	368E+01 E	EXCESS=0.0000	E+00 OUTFLO	W=0.5368	E+01 BASIN	STORAGE=0.10	067E-04 PERCENT ERROR=	0.0
	FOR STORM = 3 R8E-R9 MANE	STORM AREA (SQ 0.36	,	20.00 753.51	0.71	3.00	56.68	753.00	0.71	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.49	995E+ <b>01</b> [	EXCESS=0.0000	E+00 OUTFLO	W=0.4995	E+01 BASIN	STORAGE=0.10	21E-04 PERCENT ERROR=	0.0
	FOR STORM = 1 BSNRT1 MANE	, -	,	0.00 1109.87	2.58	3.00	462.76	1110.00	2.58	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.99	944E+03 E	EXCESS=0.0000	E+00 OUTFLO	W=0.9943	E+03 BASIN	STORAGE=0.93	46E-01 PERCENT ERROR=	0.0
	FOR STORM = 2 BSNRT1 MANE	, -	,	10.00 1110.02	2.58	3.00	462.49	1110.00	2.58	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.99	936E+03 E	EXCESS=0.0000	E+00 OUTFLO	W=0.9935	E+03 BASIN	STORAGE=0.93	28E-01 PERCENT ERROR=	0.0
	FOR STORM = 3 BSNRT1 MANE	STORM AREA (SQ 0.38	,	20.00 1110.01	2.58	3.00	462.32	1110.00	2.58	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.99	930E+03 E	EXCESS=0.0000	E+00 OUTFLO	W=0.9929	E+03 BASIN	STORAGE=0.93	16E-01 PERCENT ERROR=	0.0
	FOR STORM = 1 BSNRT2 MANE	STORM AREA (SQ 0.38	MI) = 462.76	0.00 1110.48	2.58	3.00	462.76	1110.00	2.58	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.99	943E+03 E	EXCESS=0.0000	E+00 OUTFLO	W=0.9941	E+03 BASIN	STORAGE=0.10	069E+00 PERCENT ERROR=	0.0
	FOR STORM = 2 BSNRT2 MANE	STORM AREA (SQ 0.38	MI) = 462.49	10.00 1110.30	2.58	3.00	462.49	1110.00	2.58	
CONTINUIT	Y SUMMARY (AC-FT	) - INFLOW=0.99	935E+03 E	EXCESS=0.0000E	E+00 OUTFLO	W=0.9933	E+03 BASIN	STORAGE=0.10	067E+00 PERCENT ERROR=	0.0
	FOR STORM = 3 BSNRT2 MANE	STORM AREA (SQ 0.38	MI) = 462.32	20.00 1110.49	2.58	3.00	462.32	1110.00	2.58	

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9929E+03 EXCESS=0.0000E+00 OUTFLOW=0.9927E+03 BASIN STORAGE=0.1065E+00 PERCENT ERROR= 0.0

FOR STORM = 1 STORM AREA (SQ MI) = 0.00
R10-11 MANE 2.34 463.63 1114.77 2.58 3.00 463.63 1113.00 2.58

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9994E+03 EXCESS=0.0000E+00 OUTFLOW=0.9982E+03 BASIN STORAGE=0.1212E+01 PERCENT ERROR= 0.0

FOR STORM = 2 STORM AREA (SQ MI) = 10.00
R10-11 MANE 2.39 463.32 1113.19 2.58 3.00 463.32 1113.00 2.58

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9983E+03 EXCESS=0.0000E+00 OUTFLOW=0.9972E+03 BASIN STORAGE=0.1068E+01 PERCENT ERROR= 0.0

FOR STORM = 3 STORM AREA (SQ MI) = 20.00

R10-11 MANE 2.35 463.12 1115.43 2.57 3.00 463.12 1113.00 2.57

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9977E+03 EXCESS=0.0000E+00 OUTFLOW=0.9964E+03 BASIN STORAGE=0.1562E+01 PERCENT ERROR= 0.0

*** NORMAL END OF HEC-1 ***

# HYDROLOGIC CALCULATION SUMMARY SHEET RATIONAL METHOD

## Hubbard Engineering Project No. 18114-601

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

Complete calculations for each concentration point are presented in the attached hydrologic calculation sheets.

Sub-Basin	I	С			I		A	I	Q	
&	R	unoff Coeffi	cient		Intensity		Area	I	Peak Dischar	ge
Concentration		Frequency	7		Frequency				Frequency	
Point	10-year	50-year	100-year	10-year	50-year	100-year		10-year	50-year	100-year
ID					[in/hr]	, ,	[acres]		[cfs]	
DA-A	0.90	0.90	0.90	3.52	5.13	5.78	1.25	3.95	5.75	6.48
DA-B	0.90	0.90	0.90	3.66	5.13	5.78	0.57	1.87	2.63	2.96
DA-C	0.90	0.90	0.90	3.66	5.13	5.78	0.21	0.70	0.98	1.11
DA-D	0.90	0.90	0.90	3.66	5.13	5.78	0.40	1.33	1.86	2.09
DA-E	0.90	0.90	0.90	3.66	5.13	5.78	0.87	2.86	4.01	4.52
DA-F	0.90	0.90	0.90	3.66	5.13	5.78	0.48	1.58	2.22	2.50
DA-G	0.90	0.90	0.90	3.66	5.13	5.78	0.31	1.02	1.43	1.62
DA-H	0.90	0.90	0.90	3.66	5.13	5.78	0.42	1.37	1.92	2.17
DA-I	0.90	0.90	0.90	3.66	5.13	5.78	0.35	1.15	1.61	1.81
DA-J	0.90	0.90	0.90	3.66	5.13	5.78	0.42	1.38	1.93	2.17
DA-K	0.90	0.90	0.90	3.66	5.13	5.78	0.57	1.87	2.63	2.96
DA-L	0.90	0.90	0.90	3.66	5.13	5.78	1.38	4.53	6.35	7.16
DA-M	0.90	0.90	0.90	3.66	5.13	5.78	0.44	1.44	2.01	2.27
DA-N	0.90	0.90	0.90	3.66	5.13	5.78	0.19	0.63	0.89	1.00
DA-O	0.90	0.90	0.90	3.66	5.13	5.78	2.11	6.94	9.72	10.95
DA-P	0.90	0.90	0.90	3.66	5.13	5.78	1.23	4.04	5.66	6.37
DA-Q	0.85	0.90	0.90	3.66	5.13	5.78	0.32	1.01	1.50	1.69
DA-R	0.85	0.90	0.90	3.66	5.13	5.78	0.57	1.77	2.62	2.96
DA-S	0.85	0.90	0.90	3.66	5.13	5.78	0.43	1.32	1.96	2.21
DA-T	0.85	0.90	0.90	3.66	5.13	5.78	0.30	0.93	1.38	1.56
DA-U	0.85	0.90	0.90	3.66	5.13	5.78	0.25	0.77	1.14	1.29
DA-V	0.85	0.90	0.90	3.66	5.13	5.78	0.11	0.35	0.53	0.59
DA-W	0.85	0.90	0.90	3.66	5.13	5.78	0.59	1.83	2.71	3.05
DA-X	0.85	0.90	0.90	3.66	5.13	5.78	0.67	2.08	3.09	3.48
DA-Y	0.85	0.90	0.90	3.66	5.13	5.78	0.25	0.78	1.16	1.31
DA-Z	0.85	0.90	0.90	3.66	5.13	5.78	0.29	0.89	1.33	1.50
DA-AA	0.85	0.90	0.90	3.66	5.13	5.78	0.21	0.66	0.98	1.10
DA-AB	0.85	0.90	0.90	3.66	5.13	5.78	0.28	0.87	1.29	1.45
DA-AC	0.85	0.90	0.90	3.66	5.13	5.78	0.71	2.22	3.30	3.71
DA-AD	0.85	0.90	0.90	3.66	5.13	5.78	0.41	1.28	1.90	2.14
DA-AE	0.85	0.90	0.90	3.66	5.13	5.78	0.50	1.55	2.30	2.59
DA-AF	0.85	0.90	0.90	3.66	5.13	5.78	0.76	2.35	3.49	3.93
PreDevelopment A	0.40	0.48	0.50	3.66	5.13	5.78	3.24	4.74	7.97	9.36
PreDevelopment B	0.40	0.48	0.50	3.66	5.13	5.78	2.50	3.66	6.15	7.22
PreDevelopment C	0.40	0.48	0.50	3.66	5.13	5.78	2.24	3.29	5.53	6.49
PreDevelopment D	0.40	0.48	0.50	3.66	5.13	5.78	2.96	4.33	7.29	8.55
PreDevelopment E	0.40	0.48	0.50	3.66	5.13	5.78	4.63	6.78	11.41	13.39

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-A**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 311.25 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.50 [ft] [yrs] [acres] Drainage Area (A)= 1.25 Elevation Difference: 0.40 [ft] Flow Path Slope_{Average} (S)= 0.00129 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽¹⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.039404	11.0	3.52
50	-0.00625	0.04	0.039404	10.0	5.1
100	-0.00625	0.04	0.039404	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 3.95$  [cfs]  $Q_{50} = 5.75$  [cfs]  $Q_{100} = 6.48$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-B**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21 Date: 08/27/21 Project No.: 18114-601 Revised by: TSW

**Location Data** 

Jurisdiction: City of Scottsdale State: Arizona County: Maricopa

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 47.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: 1633.45 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.57 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.00957 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group:

<25 Vegetation Cover: [%]

Classification Type: (Reference, Table 3.1, Page 3-3) Α

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

L [mi] Kb=m Log A + bm = -0.00625S [ft/mi] [in/hr] b = 0.04A = Area [acres]

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.04153	10.0	3.66
50	-0.00625	0.04	0.04153	10.0	5.1
100	-0.00625	0.04	0.04153	10.0	5.78

Peak Discharge (Q):  $Q = C_* i_* A$ [cfs]

> A [acres]

i [in/hr] Runoff Coefficient  $C_2$ 

 $C_{10}^{(1)} =$  $C_{50}^{(1)} =$ 0.90  $C_{100}^{(1)} =$ 0.90

 $Q_{10} =$ 1.87 [cfs]  $Q_{50} =$ 2.63 [cfs]  $Q_{100} =$ 2.96 [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-C**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

Design Data

Flow Path Length (L)= Design Frequency: 100 43.12 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.45 [ft] [yrs] [acres] Drainage Area (A)= 0.21 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.01044 [ft/ft]

Watershed Characteristics

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.044201	10.0	3.66
50	-0.00625	0.04	0.044201	10.0	5.1
100	-0.00625	0.04	0.044201	10.0	5.78

Peak Discharge (Q): Q = C*i*A

A [acres]

i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.70$  [cfs]  $Q_{50} = 0.98$  [cfs]  $Q_{100} = 1.11$  [cfs]

Reference:

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-D**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 47.30 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: 1633.45 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.40 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.00951 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042471	10.0	3.66
50	-0.00625	0.04	0.042471	10.0	5.1
100	-0.00625	0.04	0.042471	10.0	5.78

Peak Discharge (Q):

 $Q = C_*i_*A$  [cfs]

A [acres]

i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$ 

 $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.33$  [cfs]  $Q_{50} = 1.86$  [cfs]

 $Q_{100} = 2.09$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-E**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 47.83 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.45 [ft] [yrs] [acres] Drainage Area (A)= 0.87 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.00941 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

i

-0.00625

L [mi] Kb=m Log A + b S [ft/mi] m= -0.00625

[in/hr] b= 0.04 A = Area [acres]

0.040383

10.0

5.78

Frequency  $T_{\rm c}$  $K_{b}$ [yr] b [min] [in/hr] m -0.00625 0.04 0.040383 10.0 10 3.66 50 -0.00625 0.04 0.040383 10.0 5.1

Peak Discharge (Q):

100

 $Q = C_*i_*A$  [cfs]

A [acres]

i [in/hr]

C₂ Runoff Coefficient

0.04

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$ 

 $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 2.86$  [cfs]

 $Q_{50} = 4.01$  [cfs]

 $Q_{100} = 4.52$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-F**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 63.13 [ft] [yrs] Check Frequency: Elevation Max: 1633.90 50 [yrs] [ft] Elevation Min: 1633.45 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.48 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.00713 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration,  $(Tc)^{(2)}$ :

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.041989	10.0	3.66
50	-0.00625	0.04	0.041989	10.0	5.1
100	-0.00625	0.04	0.041989	10.0	5.78

Peak Discharge (Q):  $Q = C_{*i*}A \qquad \qquad [cfs]$ 

A [acres]
i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.58$  [cfs]  $Q_{50} = 2.22$  [cfs]  $Q_{100} = 2.50$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-H**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 58.46 [ft] [yrs] Check Frequency: Elevation Max: 1634.00 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.10 [ft] [yrs] [acres] Drainage Area (A)= 0.42 Elevation Difference: 0.90 [ft] Flow Path Slope_{Average} (S)= 0.01540 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042375	10.0	3.66
50	-0.00625	0.04	0.042375	10.0	5.1
100	-0.00625	0.04	0.042375	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.37$  [cfs]  $Q_{50} = 1.92$  [cfs]  $Q_{100} = 2.17$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-I**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 82.76 [ft] [yrs] Check Frequency: Elevation Max: 1634.10 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.29 [ft] [yrs] [acres] Drainage Area (A)= 0.35 Elevation Difference: [ft] 1.81 Flow Path Slope_{Average} (S)= 0.02187 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽¹⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042861	10.0	3.66
50	-0.00625	0.04	0.042861	10.0	5.1
100	-0.00625	0.04	0.042861	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

i [in/hr]

 $C_2$  Runoff Coefficient  $C_{10}^{(1)} = 0.90$ 

 $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.15$  [cfs]  $Q_{50} = 1.61$  [cfs]  $Q_{100} = 1.81$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### Concentration Point ID: DA-J

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= 71.00 Design Frequency: 100 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: 1630.65 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.42 Elevation Difference: 2.65 [ft] Flow Path Slope_{Average} (S)= 0.03732 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency  $T_{\rm c}$  $K_b$ [yr] b [min] [in/hr] m -0.00625 0.04 0.04237 10.0 10 3.66 50 -0.00625 0.04 0.04237 10.0 5.1 100 -0.00625 0.04 0.04237 10.0 5.78

Peak Discharge (Q): Q = C_{*}i_{*}A

A [acres]

i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.38$  [cfs]  $Q_{50} = 1.93$  [cfs]  $Q_{100} = 2.17$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-K**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21 Date: 08/27/21 Project No.: 18114-601 Revised by: TSW

**Location Data** 

Jurisdiction: City of Scottsdale State: Arizona County: Maricopa

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 40.79 [ft] [yrs] Check Frequency: Elevation Max: 1632.50 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.57 Elevation Difference: 0.50 [ft] Flow Path Slope_{Average} (S)= 0.01226 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group:

<25 Vegetation Cover: [%]

Classification Type: (Reference, Table 3.1, Page 3-3) Α

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

L [mi] Kb=m Log A + bm = -0.00625S [ft/mi] [in/hr] b = 0.04A = Area [acres]

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.041532	10.0	3.66
50	-0.00625	0.04	0.041532	10.0	5.1
100	-0.00625	0.04	0.041532	10.0	5.78

Peak Discharge (Q):  $Q = C_* i_* A$ [cfs]

> A [acres] i [in/hr]

 $C_2$ Runoff Coefficient

 $C_{10}^{(1)} =$  $C_{50}^{(1)} =$ 0.90  $C_{100}^{(1)} =$ 0.90

 $Q_{10} =$ 1.87 [cfs]  $Q_{50} =$ 2.63 [cfs]  $Q_{100} =$ 2.96 [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-L**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 21.00 [ft] [yrs] 1632.25 Check Frequency: Elevation Max: 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.92 [ft] [yrs] [acres] Drainage Area (A)= 1.38 Elevation Difference: 0.33 [ft] Flow Path Slope_{Average} (S)= 0.01571 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.039134	10.0	3.66
50	-0.00625	0.04	0.039134	10.0	5.1
100	-0.00625	0.04	0.039134	10.0	5.78

Peak Discharge (Q):  $Q = C_{*i*}A$  [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 4.53$  [cfs]  $Q_{50} = 6.35$  [cfs]  $Q_{100} = 7.16$  [cfs]

# Hubbard Engineering

Project No. 18114-601

### **Concentration Point ID: DA-M**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 61.36 [ft] [yrs] Check Frequency: Elevation Max: 1634.00 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.70 [ft] [yrs] [acres] Drainage Area (A)= 0.44 Elevation Difference: [ft] 0.30 Flow Path Slope_{Average} (S)= 0.00489 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: -

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042252	10.0	3.66
50	-0.00625	0.04	0.042252	10.0	5.1
100	-0.00625	0.04	0.042252	10.0	5.78

Peak Discharge (Q):

 $Q = C_* i_* A$  [cfs]

A [acres]

i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.44$  [cfs]  $Q_{50} = 2.01$  [cfs]

 $Q_{100} = 2.27$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-N**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 63.44 [ft] [yrs] Check Frequency: Elevation Max: 1636.50 50 [yrs] [ft] Elevation Min: 1633.65 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.19 Elevation Difference: 2.85 [ft] Flow Path Slope_{Average} (S)= 0.04492 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.044475	10.0	3.66
50	-0.00625	0.04	0.044475	10.0	5.1
100	-0.00625	0.04	0.044475	10.0	5.78

Peak Discharge (Q):

 $Q = C_*i_*A$  [cfs]

A [acres]

i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.63$  [cfs]

 $Q_{50} = 0.89$  [cfs]  $Q_{100} = 1.00$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-O**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 126.11 [ft] [yrs] Check Frequency: Elevation Max: 1636.50 50 [yrs] [ft] Elevation Min: 1633.45 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 2.11 Elevation Difference: 3.05 [ft] Flow Path Slope_{Average} (S)= 0.02419 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.037979	10.0	3.66
50	-0.00625	0.04	0.037979	10.0	5.1
100	-0.00625	0.04	0.037979	10.0	5.78

Peak Discharge (Q):  $Q = C_{*i*}A$  [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 6.94$  [cfs]  $Q_{50} = 9.72$  [cfs]  $Q_{100} = 10.95$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-P**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= 107.14 Design Frequency: 100 [ft] [yrs] Check Frequency: Elevation Max: 1636.50 50 [yrs] [ft] Elevation Min: 1633.90 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 1.23 Elevation Difference: [ft] 2.60 Flow Path Slope_{Average} (S)= 0.02427 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽¹⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.039448	10.0	3.66
50	-0.00625	0.04	0.039448	10.0	5.1
100	-0.00625	0.04	0.039448	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres]
i [in/hr]
C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.90$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 4.04$  [cfs]  $Q_{50} = 5.66$  [cfs]  $Q_{100} = 6.37$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

### **Concentration Point ID: DA-Q**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 147.10 [ft] [yrs] Check Frequency: Elevation Max: 1634.00 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.50 [ft] [yrs] [acres] Drainage Area (A)= 0.32 Elevation Difference: 0.50 [ft] Flow Path Slope_{Average} (S)= 0.00340 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

 $\begin{array}{cccc} L & & [mi] & & Kb = m \, Log \, A + b \\ S & & [fi/mi] & & m = -0.00625 \\ i & & [in/hr] & & b = 0.04 \\ \end{array}$ 

A = Area [acres]

Frequency				$T_c$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.043059	10.0	3.66
50	-0.00625	0.04	0.043059	10.0	5.1
100	-0.00625	0.04	0.043059	10.0	5.78

Peak Discharge (Q): Q = C*i*A

A [acres] i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.01$  [cfs]  $Q_{50} = 1.50$  [cfs]

 $Q_{100} = 1.69$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-R**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 166.88 [ft] [yrs] Check Frequency: Elevation Max: 1634.00 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1633.50 [ft] [yrs] [acres] Drainage Area (A)= 0.57 Elevation Difference: 0.50 [ft] Flow Path Slope_{Average} (S)= 0.00300 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.041534	10.0	3.66
50	-0.00625	0.04	0.041534	10.0	5.1
100	-0.00625	0.04	0.041534	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.77$  [cfs]  $Q_{50} = 2.62$  [cfs]  $Q_{100} = 2.96$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-S**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 106.08 [ft] [yrs] Check Frequency: Elevation Max: 1634.00 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.63 [ft] [yrs] [acres] Drainage Area (A)= 0.43 Elevation Difference: 1.37 [ft] Flow Path Slope_{Average} (S)= 0.01291 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration,  $(Tc)^{(2)}$ :

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042319	10.0	3.66
50	-0.00625	0.04	0.042319	10.0	5.1
100	-0.00625	0.04	0.042319	10.0	5.78

Peak Discharge (Q):  $Q = C_*i_*A$  [cfs]

A [acres]
i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.32$  [cfs]  $Q_{50} = 1.96$  [cfs]  $Q_{100} = 2.21$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-T**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 57.29 [ft] [yrs] Check Frequency: Elevation Max: 1632.25 50 [yrs] [ft] Elevation Min: 1631.55 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.30 Elevation Difference: 0.70 [ft] Flow Path Slope_{Average} (S)= 0.01222 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.043268	10.0	3.66
50	-0.00625	0.04	0.043268	10.0	5.1
100	-0.00625	0.04	0.043268	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A

A [acres]

i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.93$  [cfs]  $Q_{50} = 1.38$  [cfs]  $Q_{100} = 1.56$  [cfs]

Reference:

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-U**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

Design Data

Flow Path Length (L)= Design Frequency: 100 32.76 [ft] [yrs] Check Frequency: Elevation Max: 1632.25 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.83 [ft] [yrs] [acres] Drainage Area (A)= 0.25 Elevation Difference: 0.42 [ft] Flow Path Slope_{Average} (S)= 0.01282 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

> > 0.043789

10.0

A = Area [acres]

5.78

Frequency  $T_{\rm c}$  $K_{b}$ [yr] b [min] [in/hr] m -0.00625 0.043789 0.04 10.0 10 3.66 50 -0.00625 0.04 0.043789 10.0 5.1

Peak Discharge (Q):

100

 $Q = C_*i_*A$  [cfs]

-0.00625

A [acres]

i [in/hr]

C₂ Runoff Coefficient

0.04

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$ 

 $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.77$  [cfs]

 $Q_{50} = 1.14$  [cfs]

 $Q_{100} = 1.29$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-V**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 43.51 [ft] [yrs] Check Frequency: Elevation Max: 1632.25 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.70 [ft] [yrs] [acres] Drainage Area (A)= 0.11 Elevation Difference: 0.55 [ft] Flow Path Slope_{Average} (S)= 0.01264 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

 $\begin{array}{cccc} L & [mi] & Kb = m \ Log \ A + b \\ S & [ft/mi] & m = -0.00625 \\ i & [in/hr] & b = 0.04 \\ \end{array}$ 

A = Area [acres]

	Frequency				$T_{c}$	i
ı	[yr]	m	b	$K_b$	[min]	[in/hr]
	10	-0.00625	0.04	0.045896	10.0	3.66
	50	-0.00625	0.04	0.045896	10.0	5.1
	100	-0.00625	0.04	0.045896	10.0	5.78

Peak Discharge (Q):  $Q = C_*i_*A$ 

A [acres]

i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.35$  [cfs]  $Q_{50} = 0.53$  [cfs]

 $Q_{100} = 0.59$  [cfs]

### Hubbard Engineering

Project No. 18114-601

#### **Concentration Point ID: DA-W**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

Design Data

Flow Path Length (L)= Design Frequency: 100 68.19 [ft] [yrs] Check Frequency: Elevation Max: 1632.25 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.80 [ft] [yrs] [acres] Drainage Area (A)= 0.59 Elevation Difference: 0.45 [ft] Flow Path Slope_{Average} (S)= 0.00660 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽¹⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.041445	10.0	3.66
50	-0.00625	0.04	0.041445	10.0	5.1
100	-0.00625	0.04	0.041445	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.83$  [cfs]  $Q_{50} = 2.71$  [cfs]  $Q_{100} = 3.05$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-X**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 39.35 [ft] [yrs] Check Frequency: Elevation Max: 1632.16 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.50 [ft] [yrs] [acres] Drainage Area (A)= 0.67 Elevation Difference: [ft] 0.66 Flow Path Slope_{Average} (S)= 0.01677 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.041092	10.0	3.66
50	-0.00625	0.04	0.041092	10.0	5.1
100	-0.00625	0.04	0.041092	10.0	5.78

Peak Discharge (Q):  $Q = C_{\bullet}i_{\bullet}A \hspace{1cm} [cfs]$ 

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 2.08$  [cfs]  $Q_{50} = 3.09$  [cfs]  $Q_{100} = 3.48$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-Y**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= 120.00 Design Frequency: 100 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1631.90 [ft] [yrs] [acres] Drainage Area (A)= 0.25 Elevation Difference: 1.40 [ft] Flow Path Slope_{Average} (S)= 0.01167 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.043751	10.0	3.66
50	-0.00625	0.04	0.043751	10.0	5.1
100	-0.00625	0.04	0.043751	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.78$  [cfs]  $Q_{50} = 1.16$  [cfs]  $Q_{100} = 1.31$  [cfs]

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-Z**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: 1632.00 Check Frequency: 10 [ft] [yrs] [acres] Drainage Area (A)= 0.29 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	ь	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.043383	10.0	3.66
50	-0.00625	0.04	0.043383	10.0	5.1
100	-0.00625	0.04	0.043383	10.0	5.78

Peak Discharge (Q):  $Q = C_{*i*}A$  [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.89$  [cfs]  $Q_{50} = 1.33$  [cfs]  $Q_{100} = 1.50$  [cfs]

### HYDROLOGIC DESIGN DATA SHEET

### RATIONAL METHOD Hubbard Engineering

Project No. 18114-601

#### **Concentration Point ID: DA-AA**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.21 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.044217	10.0	3.66
50	-0.00625	0.04	0.044217	10.0	5.1
100	-0.00625	0.04	0.044217	10.0	5.78

Peak Discharge (Q):

 $Q = C_* i_* A$  [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.66$  [cfs]  $Q_{50} = 0.98$  [cfs]  $Q_{100} = 1.10$  [cfs]

### Hubbard Engineering

Project No. 18114-601

#### **Concentration Point ID: DA-AB**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.28 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.043462	10.0	3.66
50	-0.00625	0.04	0.043462	10.0	5.1
100	-0.00625	0.04	0.043462	10.0	5.78

Peak Discharge (Q): Q = C*i*A

A [acres]

i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 0.87$  [cfs]

 $Q_{50} = 1.29$  [cfs]

 $Q_{100} = 1.45$  [cfs]

### HYDROLOGIC DESIGN DATA SHEET

### RATIONAL METHOD

**Hubbard Engineering Project No. 18114-601** 

#### **Concentration Point ID: DA-AC**

Project Name: The Grayhawk Residences at Cavasson Prepared by: TSW Date: 06/03/21
Project No.: 18114-601 Revised by: TSW Date: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.71 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾:

Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.040914	10.0	3.66
50	-0.00625	0.04	0.040914	10.0	5.1
100	-0.00625	0.04	0.040914	10.0	5.78

Peak Discharge (Q): Q = C_{*}i_{*}A

 $= C_* i_* A$  [cfs]

A [acres]

i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 2.22$  [cfs]

 $Q_{50} = 3.30$  [cfs]

 $Q_{100} = 3.71$  [cfs]

### HYDROLOGIC DESIGN DATA SHEET

### RATIONAL METHOD Hubbard Engineering

**Project No. 18114-601** 

#### **Concentration Point ID: DA-AD**

Project Name:The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.:18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.41 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				T _c	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.042415	10.0	3.66
50	-0.00625	0.04	0.042415	10.0	5.1
100	-0.00625	0.04	0.042415	10.0	5.78

Peak Discharge (Q):  $Q = C_{*i*}A$  [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.28$  [cfs]  $Q_{50} = 1.90$  [cfs]  $Q_{100} = 2.14$  [cfs]

### Hubbard Engineering

Project No. 18114-601

#### **Concentration Point ID: DA-AE**

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] 1633.30 Check Frequency: Elevation Max: 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.50 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency  $T_{\rm c}$  $K_{b}$ [yr] b [min] [in/hr] m -0.00625 0.04 0.041896 10.0 10 3.66 50 -0.00625 0.04 0.041896 10.0 5.1 100 -0.00625 0.04 0.041896 10.0 5.78

Peak Discharge (Q): Q = C*i*A

A [acres]
i [in/hr]

C₂ Runoff Coefficient

[cfs]

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 1.55$  [cfs]

 $Q_{50} = 2.30$  [cfs]

 $Q_{100} = 2.59$  [cfs]

### Hubbard Engineering

Project No. 18114-601

#### **Concentration Point ID: DA-AF**

Project Name:The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.:18114-601Revised by: TSWDate: 08/27/21

**Location Data** 

State: Arizona County: Maricopa Jurisdiction: City of Scottsdale

**Design Data** 

Flow Path Length (L)= Design Frequency: 100 30.00 [ft] [yrs] Check Frequency: Elevation Max: 1633.30 50 [yrs] [ft] Elevation Min: Check Frequency: 10 1632.00 [ft] [yrs] [acres] Drainage Area (A)= 0.76 Elevation Difference: [ft] 1.30 Flow Path Slope_{Average} (S)= 0.04333 [ft/ft]

**Watershed Characteristics** 

Hydrologic Soil Group: --

Vegetation Cover: <25 [%]

Classification Type: A (Reference, Table 3.1, Page 3-3)

**Rational Method Computations** 

Time of Concentration, (Tc)⁽²⁾: Tc = 11.4*L0.5*Kb0.52*S-0.31*i-0.38

Frequency				$T_{c}$	i
[yr]	m	b	$K_b$	[min]	[in/hr]
10	-0.00625	0.04	0.040762	10.0	3.66
50	-0.00625	0.04	0.040762	10.0	5.1
100	-0.00625	0.04	0.040762	10.0	5.78

Peak Discharge (Q): Q = C_{*1*}A [cfs]

A [acres] i [in/hr]

C₂ Runoff Coefficient

 $C_{10}^{(1)} = 0.85$   $C_{50}^{(1)} = 0.90$   $C_{100}^{(1)} = 0.90$ 

 $Q_{10} = 2.35$  [cfs]  $Q_{50} = 3.49$  [cfs]  $Q_{100} = 3.93$  [cfs]

#### HYDRAULIC CALCULATION SHEET

#### Retention Calculations Hubbard Engineering Project No. 18114-601

Project Name: The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.: 18114-601Revised By:Date:

Purpose: Evaluate the required and provided retention volumes in order to assess conformance to project criteria.

Methodology: Calculate the volume of stormwater required to be retained using City of Scottsdale criteria. Calculate the estimated volume

of stormwater retained using retention basin geometry.

Criteria: Retain the calculated stormwater run-off for the first flush condition and 100-YEAR 6-HOUR duration storm event.

References: 1. City of Scottsdale Design Standards and Policies Manual

P = 2.75 [in] (100 YR 6 HR)

Composite C= (C1*A1 + C2*A2...+....)/(A1+A2+....)

Volume Required = Composite C*P/12*A

#### Results:

Identifiers	CALCULATE RET	TENTION VOLUME REQUIRED	Volume						
Contributory	Area	С		Required					
Area ID	[acres]		[acre-ft]	[ft ³ ]	[yd ³ ]				
DA-A	1.20	0.90	0.04	1,958	73				
DA-B	0.57	0.90	0.02	937	35				
DA-C	0.20	0.90	0.01	330	12				
DA-D	0.40	0.90	0.02	657	24				
DA-E	0.84	0.90	0.03	1,365	51				
DA-F	0.48	0.90	0.02	776	29				
DA-G	0.27	0.90	0.01	442	16				
DA-H	0.42	0.90	0.02	681	25				
DA-I	0.34	0.90	0.01	563	21				
DA-J	0.42	0.90	0.02	682	25				
DA-K	0.61	0.90	0.02	995	37				
DA-L	1.38	0.90	0.05	2,248	83				
DA-M	0.45	0.90	0.02	736	27				
DA-N	0.22	0.90	0.01	352	13				
DA-O	2.14	0.90	0.08	3,497	130				
DA-P	1.24	0.90	0.05	2,019	75				
DA-Q	0.32	0.90	0.01	529	20				
DA-R	0.57	0.90	0.02	928	34				
DA-S	0.39	0.90	0.01	641	24				
DA-T	0.31	0.90	0.01	503	19				
DA-U	0.27	0.90	0.01	435	16				
DA-V	0.13	0.90	0.00	206	8				
DA-W	0.59	0.90	0.02	959	36				
DA-X	0.67	0.90	0.03	1,093	40				
DA-Y	0.25	0.90	0.01	410	15				
DA-Z	0.29	0.90	0.01	470	17				
DA-AA	0.21	0.90	0.01	345	13				
DA-AB	0.28	0.90	0.01	456	17				
DA-AC	0.71	0.90	0.03	1,166	43				
DA-AD	0.41	0.90	0.02	671	25				
DA-AE	0.50	0.90	0.02	812	30				
DA-AF	0.76	0.90	0.03	1,233	46				
Phase 3 Roads Adjacent	0.64	0.95	0.14	6,089	226				
Legacy BLVD Adjacent	2.07	0.95	0.45	19,656	728				
Miller Road Adjacent	0.52	0.95	0.11	4,929	183				
Total Area:	21.04	TOTAL VOLUME REQUIRED:	1.37	59,769.09	2,214.60				

Retention Basin 1 of 1

### **Hubbard Engineering Project No. 18114-601**

Project Name: Grayhawk Residences at Cavasson Prepared by: TSW **Date:** 06/03/21 Date:

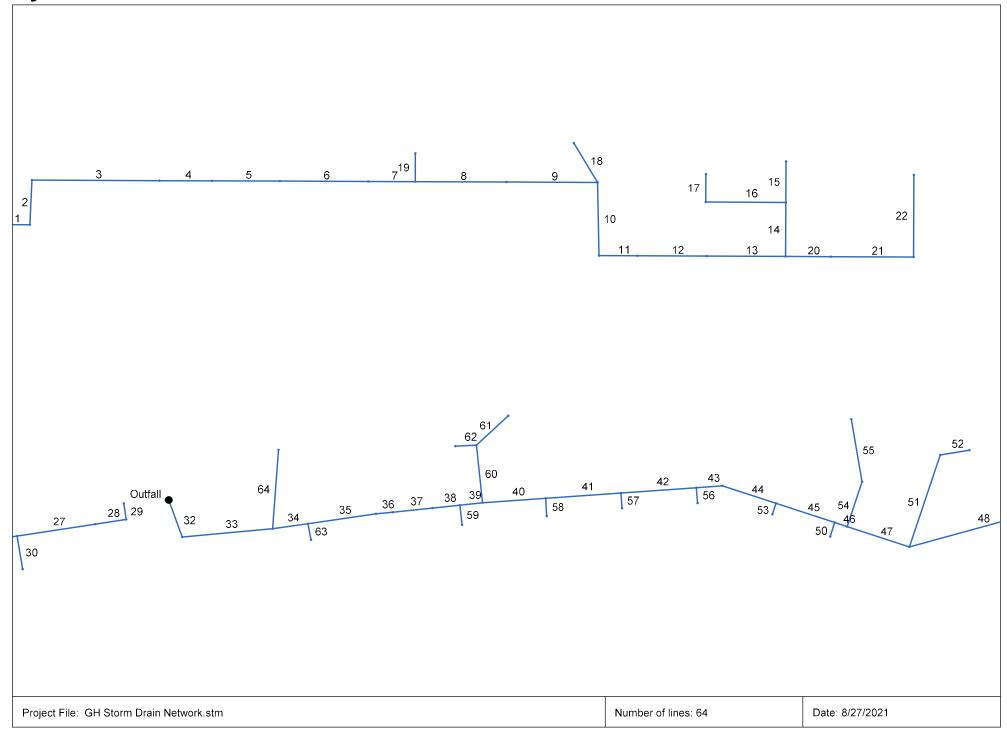
**Project No.:** 18114-601 **Revised By:** 

### **VOLUME PROVIDED**

 $V_{U.P.} = \pi^* r^2 L$ 

Volume of underground pipe provided in cubic feet  $V_{U.P.}$ 

π


Underground pipe radius, ft 5

Length of underground pipe in feet L

### UNDERGROUND RETENTION/DETENTION COMBINED

Retention	Length	Volume
Method	Lengin	Provided
(ID)	(ft)	(cf)
UG-TANK 1	131	10,289
UG-TANK 2	131	10,289
UG-TANK 3	131	10,289
UG-TANK 4	131	10,289
UG-TANK 5	122	9,582
UG-TANK 6	122	9,582
Total	770	60,319

# Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

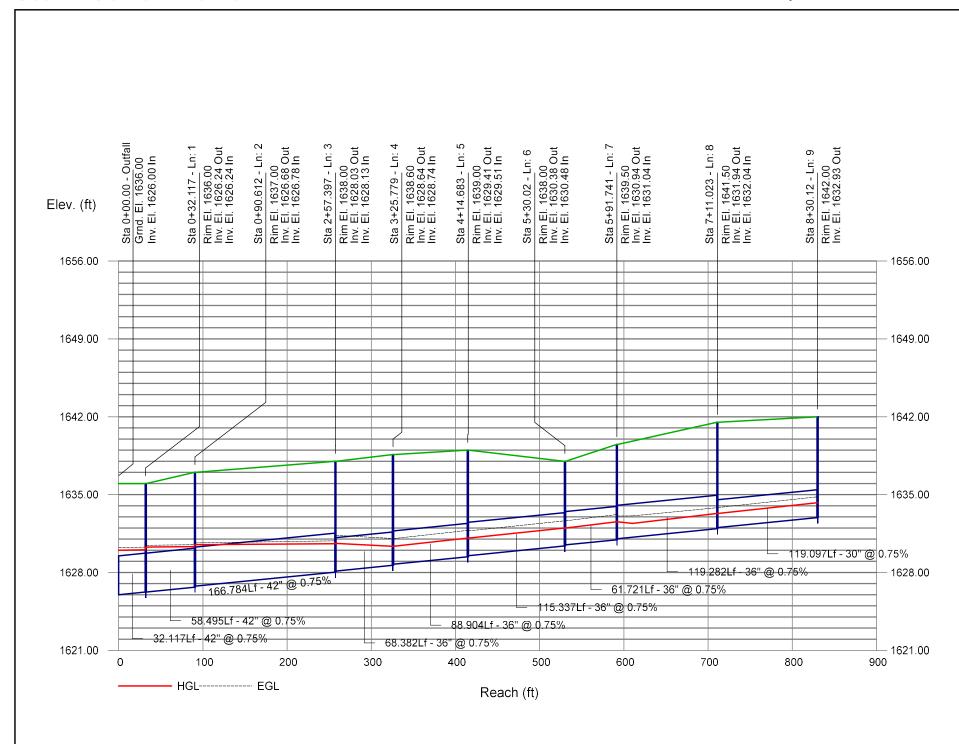


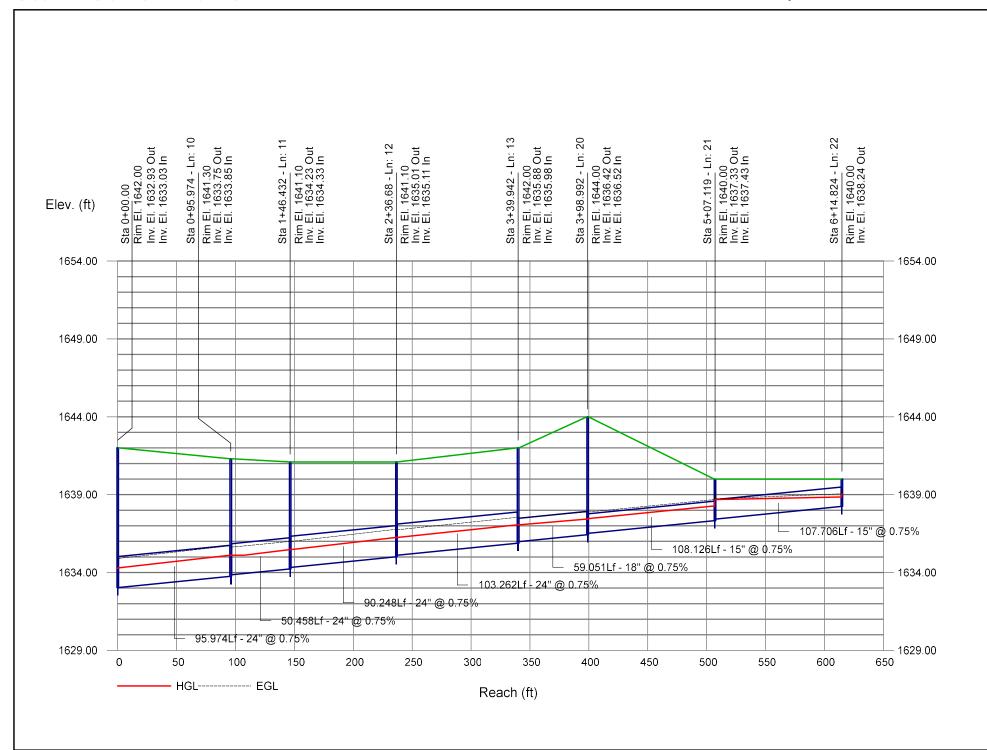
# MyReport

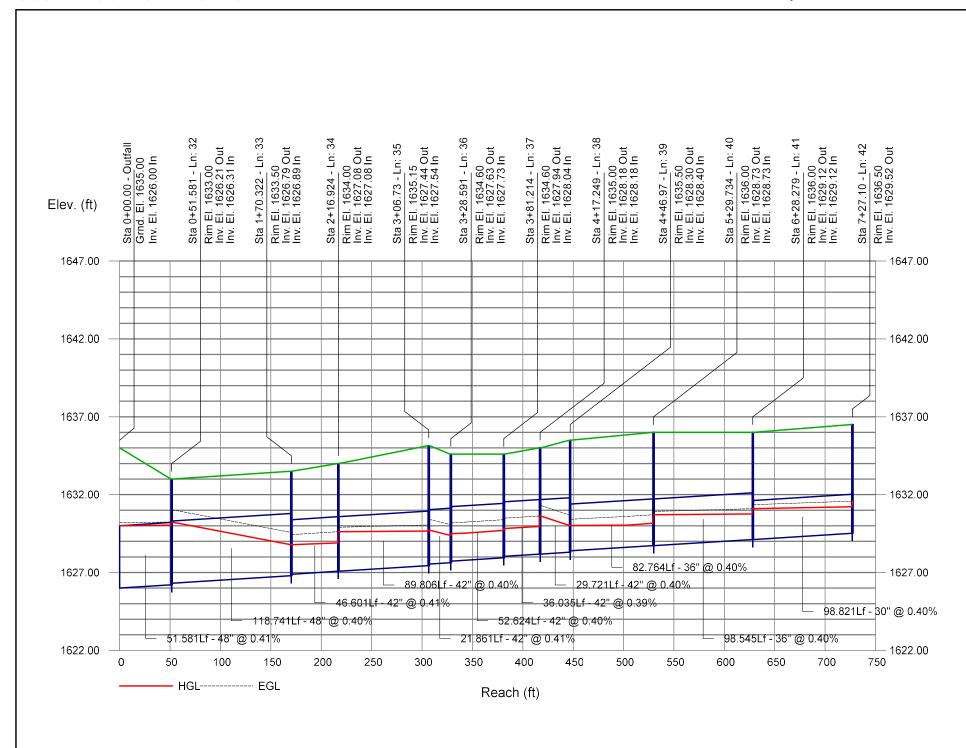
Line No.	Inlet ID	Known Q	Flow Rate	HGL Dn	HGL Up	Gnd/Rim El Dn	Gnd/Rim El Up	EGL Dn	EGL Up	Vel Ave	Invert Dn	Invert Up	Line Size	
		(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(in)	
1	Structure - (2)	6.23	37.42	1630.00	1630.04	1636.00	1636.00	1630.24	1630.28	3.89	1626.00	1626.24	42	
2	Structure - (3)	0.00	31.19	1630.28	1630.34	1636.00	1637.00	1630.44	1630.50	3.24	1626.24	1626.68	42	
3	Structure - (4)	2.99	31.19	1630.50	1630.58	1637.00	1638.00	1630.66	1630.85	3.70	1626.78	1628.03	42	
4	Structure - (5)	1.05	28.20	1630.62	1630.36	1638.00	1638.60	1631.33	1631.06	5.62	1628.13	1628.64	36	
5	Structure - (6)	2.09	27.15	1630.36	1631.09	1638.60	1639.00	1631.04	1631.78	6.82	1628.74	1629.41	36	
6	Structure - (7)	0.00	25.06	1631.09	1631.99	1639.00	1638.00	1631.74	1632.64	6.55	1629.51	1630.38	36	
7	Structure - (8)	4.35	25.06	1631.99	1632.55	1638.00	1639.50	1632.64	1633.20	6.74	1630.48	1630.94	36	
8	Structure - (9)	2.47	18.12	1632.55	1633.30 j	1639.50	1641.50	1633.08	1633.83	5.44	1631.04	1631.94	36	
9	Structure - (10)	0.00	15.65	1633.30	1634.26	1641.50	1642.00	1633.84	1634.80	6.09	1632.04	1632.93	30	
10	Structure - (12)	2.34	14.24	1634.30	1635.11	1642.00	1641.30	1634.91	1635.72	6.53	1633.03	1633.75	24	
11	Structure - (13)	0.00	11.90	1635.11	1635.47 j	1641.30	1641.10	1635.64	1636.00	5.77	1633.85	1634.23	24	
12	Structure - (14)	1.12	11.90	1635.47	1636.25	1641.10	1641.10	1636.00	1636.78	6.14	1634.33	1635.01	24	
13	Structure - (71)	0.00	10.78	1636.25	1637.06	1641.10	1642.00	1636.74	1637.55	5.73	1635.11	1635.88	24	
14	Structure - (22)	0.00	3.96	1637.06	1637.49 j	1642.00	1642.75	1637.41	1637.84	4.13	1635.98	1636.69	15	
15	Structure - (23)	1.79	1.79	1637.49	1637.94 j	1642.75	1642.75	1637.73	1638.17	3.45	1636.79	1637.37	12	
16	Structure - (24)	0.00	2.17	1637.49	1638.47 j	1642.75	164.00	1637.77	1638.74	3.92	1636.79	1637.84	12	
17	Structure - (25)	2.17	2.17	1638.50	1638.94	164.00	1644.00	1638.77	1639.21	4.47	1637.94	1638.31	12	
18	Structure - (11)	1.41	1.41	1634.26	1634.44 j	1642.00	1645.00	1634.46	1634.64	2.71	1633.33	1633.94	12	
19	Structure - (26)	2.59	2.59	1632.55	1632.61	1639.50	1640.50	1632.62	1632.68	2.13	1631.04	1631.41	15	
20	Structure - (18)	1.69	6.82	1637.06	1637.43	1642.00	1644.00	1637.51	1637.88	5.21	1635.98	1636.42	18	
21	Structure - (19)	2.96	5.13	1637.46	1638.27	1644.00	1640.00	1637.88	1638.69	5.17	1636.52	1637.33	15	
22	Structure - (20)	2.17	2.17	1638.69	1638.85	1640.00	1640.00	1638.74	1639.06	2.70	1637.43	1638.24	15	
23	Structure - (62)	0.00	9.02	1623.66	1623.76	1629.00	1629.00	1624.09	1624.19	5.30	1622.60	1622.69	24	
Project File: GH Storm Drain Network.stm										Number of lines: 64				Date: 8/27/2021

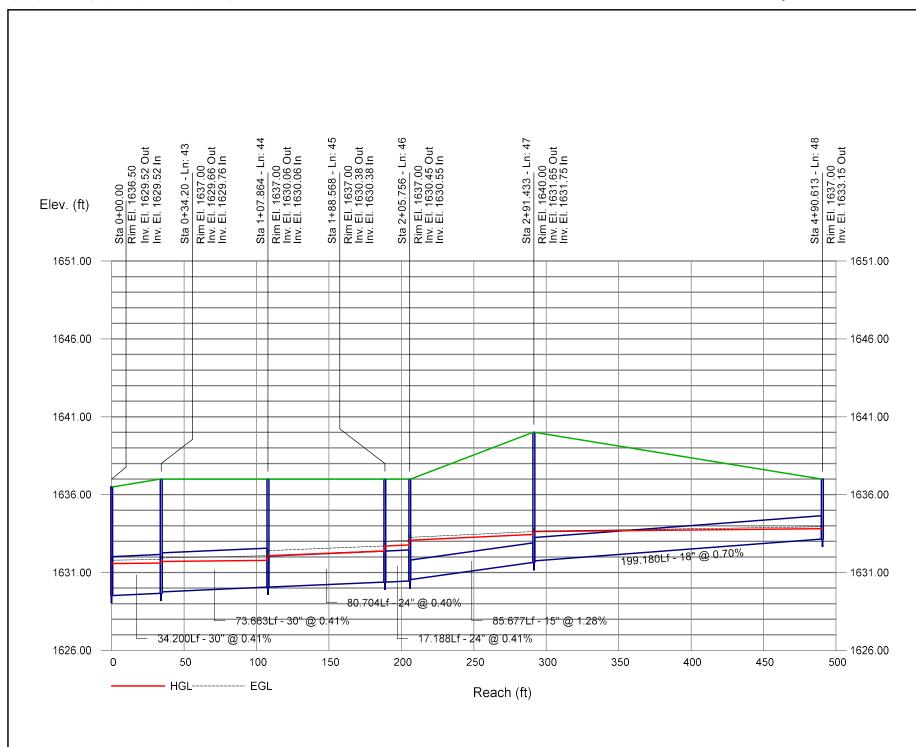
NOTES: ** Critical depth

# MyReport


Line No.	Inlet ID	Known Q	Flow Rate	HGL Dn	HGL Up	Gnd/Rim El Dn	Gnd/Rim El Up	EGL Dn	EGL Up	Vel Ave	Invert Dn	Invert Up	Line Size	
		(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(in)	
24	Structure - (63)	0.00	3.71	1623.76	1623.47	1629.00	1629.00	1624.01	1623.72	3.08	1622.69	1622.80	24	
25	Structure - (64)	0.00	3.71	1623.90	1624.60	1629.00	1630.00	1624.25	1624.95	4.72	1622.90	1623.22	12	
26	Structure - (65)	0.00	3.71	1624.70	1625.16	1630.00	1632.55	1625.04	1625.51	4.72	1623.32	1623.54	12	
27	Structure - (66)	0.00	3.05	1625.51	1626.27	1632.55	1632.00	1625.75	1626.50	3.88	1623.54	1624.06	12	
28	Structure - (67)	0.00	3.05	1626.30	1628.75 j	1632.00	1633.00	1626.54	1629.11	4.36	1624.16	1628.00	12	
29	Structure - (68)	3.05	3.05	1628.75	1631.75	1633.00	1632.10	1629.11	1632.11	4.84	1628.00	1631.00	12	
30	Structure - (69)	0.66	0.66	1625.51	1625.53	1632.55	1634.00	1625.52	1625.54	0.84	1623.64	1623.86	12	
31	Structure - (70)	5.31	5.31	1623.76	1623.71	1629.00	1627.30	1624.07	1624.02	3.97	1622.79	1622.90	24	
32	Structure - (28)	0.00	44.59	1630.00	1630.04	1635.00	1633.00	1630.20	1630.24	3.57	1626.00	1626.21	48	
33	Structure - (29)	3.05	44.59	1630.24	1628.79	1633.00	1633.50	1631.02	1629.57	5.34	1626.31	1626.79	48	
34	Structure - (59)	0.00	34.38	1628.79	1628.91	1633.50	1634.00	1629.44	1629.62	6.62	1626.89	1627.08	42	
35	Structure - (30)	0.00	32.28	1629.62	1629.66	1634.00	1635.15	1629.91	1630.05	4.66	1627.08	1627.44	42	
36	Structure - (31)	0.00	32.28	1629.72	1629.39	1635.15	1634.60	1630.42	1630.08	5.90	1627.54	1627.63	42	
37	Structure - (32)	0.00	32.28	1629.50	1629.71 j	1634.60	1634.60	1630.18	1630.39	6.63	1627.73	1627.94	42	
38	Structure - (33)	0.00	32.28	1629.82	1629.96	1634.60	1635.00	1630.49	1630.63	6.56	1628.04	1628.18	42	
39	Structure - (34)	0.00	30.90	1630.63	1630.02	1635.00	1635.50	1631.30	1630.69	5.44	1628.18	1628.30	42	
40	Structure - (35)	0.00	19.76	1630.02	1630.16 j	1635.50	1636.00	1630.42	1630.71	5.51	1628.40	1628.73	36	
41	Structure - (36)	0.00	18.45	1630.71	1630.76	1636.00	1636.00	1630.93	1631.10	4.19	1628.73	1629.12	36	
42	Structure - (37)	0.00	16.95	1631.10	1631.23	1636.00	1636.50	1631.36	1631.58	4.41	1629.12	1629.52	30	
43	Structure - (38)	0.00	15.85	1631.58	1631.61	1636.50	1637.00	1631.79	1631.84	3.77	1629.52	1629.66	30	
44	Structure - (39)	0.00	15.85	1631.71	1631.78	1637.00	1637.00	1631.94	1632.08	4.14	1629.76	1630.06	30	
45	Structure - (40)	0.00	14.40	1632.08	1632.38	1637.00	1637.00	1632.41	1632.70	4.58	1630.06	1630.38	24	
46	Structure - (41)	0.00	13.90	1632.70	1632.77	1637.00	1637.00	1633.01	1633.07	4.42	1630.38	1630.45	24	
Project File: GH Storm Drain Network.stm										Number of lines: 64				Date: 8/27/2021


NOTES: ** Critical depth


# **MyReport**


Line No.	Inlet ID	Known Q	Flow Rate	HGL Dn	HGL Up	Gnd/Rim El Dn	Gnd/Rim El Up	EGL Dn	EGL Up	Vel Ave	Invert Dn	Invert Up	Line Size	
		(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(in)	
47	Structure - (42)	0.00	4.26	1633.07	1633.45	1637.00	1640.00	1633.26	1633.63	3.47	1630.55	1631.65	15	
48	Structure - (43)	0.00	2.12	1633.63	1633.82	1640.00	1637.00	1633.66	1633.94	2.00	1631.75	1633.15	18	
49	Structure - (44)	2.12	2.12	1633.84	1634.10 j	1637.00	1637.60	1634.04	1634.30	3.47	1633.25	1633.55	18	
50	Structure - (49)	0.50	0.50	1632.70	1632.71	1637.00	1640.00	1632.71	1632.71	0.64	1630.38	1630.46	12	
51	Structure - (45)	0.00	2.14	1633.63	1634.09	1640.00	1635.00	1633.75	1634.21	2.72	1631.75	1632.26	12	
52	Structure - (46)	2.14	2.14	1636.17	1636.62	1635.00	1636.00	1636.44	1636.88	4.43	1635.61	1635.99	12	
53	Structure - (50)	1.45	1.45	1632.08	1632.11	1637.00	0.00	1632.13	1632.16	1.85	1630.06	1630.12	12	
54	Structure - (47)	3.21	9.64	1633.07	1633.19	1637.00	0.00	1633.22	1633.33	3.07	1630.45	1630.70	24	
55	Structure - (48)	6.43	6.43	1633.26	1633.58	0.00	1637.00	1633.47	1633.78	3.64	1630.70	1631.53	18	
56	Structure - (51)	1.10	1.10	1631.58	1631.60	1636.50	1637.00	1631.61	1631.63	1.40	1629.52	1629.60	12	
57	Structure - (52)	1.50	1.50	1631.10	1631.14	1636.00	1637.00	1631.16	1631.19	1.91	1629.12	1629.20	12	
58	Structure - (53)	1.31	1.31	1630.71	1630.74	1636.00	1637.00	1630.75	1630.78	1.67	1628.73	1628.82	12	
59	Structure - (57)	1.38	1.38	1630.63	1630.67	1635.00	1635.00	1630.68	1630.72	1.76	1628.18	1628.44	12	
60	Structure - (54)	0.00	11.14	1630.02	1630.26 j	1635.50	1635.00	1630.52	1630.76	4.78	1628.30	1629.06	24	
61	Structure - (55)	8.14	8.14	1630.26	1630.83	1635.00	1636.00	1630.79	1631.36	5.86	1629.16	1629.73	18	
62	Structure - (56)	3.00	3.00	1630.26	1630.44	1635.00	1638.00	1630.48	1630.67	3.82	1629.16	1629.44	12	
63	Structure - (60)	2.10	2.10	1629.62	1629.69	1634.00	1638.00	1629.73	1629.81	2.67	1627.08	1627.29	12	
64	Structure - (58)	7.16	7.16	1628.79	1629.20	1633.50	1638.00	1629.04	1629.51	4.25	1626.89	1627.92	18	
Project File: GH Storm Drain Network.stm  Number of lines: 64										Date: 8/27/2021				

NOTES: ** Critical depth









#### HYDRAULIC CALCULATION SHEET

#### DA-A Drain Time Calculations Hubbard Engineering Project No. 18114-601

Project Name:The Grayhawk Residences at CavassonPrepared by: TSWDate: 06/03/21Project No.:18114-601Revised by: TSWDate: 08/27/21

Purpose: Calculate the number of drywells required to facilitate drainage of the required volume within 36 hours.

Methodology: Calculate the number of drywells necessary to drain the retention basin and undeground storage tanks within 36 hours

#### Criteria:

- 1. Drywell drainage capacity must discharge the retention volume provided within 36 hours.
- 2. Percolation rates have been assumed to be 0.1 cfs and will be field verified during construction

References: 1. Design Standards & Policies Manual, City of Scottsdale, January 2018

#### Calculations:

Number of Drywells Required =  $V_{DW}$  / (Drywell Infiltration Rate * 3600 * 36 hours)

Drywell Infiltration Rate = 0.1 [cfs] (Reference 1)

#### Results:

Identifiers		Infiltration Drainage Capacity Calculations V _{DW}									
Retention	Volume ^(Ref. 1)	Bottom(Ref 1)			Infiltration		Drywells				
Basin	Provided	Area	Percolatio	n Rate ^(Ref. 2)	Drain Capacity		Required				
ID	[ft ³ ]	[ft ² ]	Test Location*	$\left[ft^3/hr/ft^2\right]^2$	[ft ³ ]	[ft ³ ]					
GH Site	60,319.0	0.0			0.0	60,319.0	5				
	Total Number of Drywells =										

Conclusion: The number of dual chamber drywells computed is sufficient to discharge the provided colume within 36 hours.

Total Vol. = 60,319.0 [ft³] D.W. Rate = 0.1 cfs 603190 seconds

167.6 Hours (with no surface infiltration)

No of DW's 5
Total System Drain Time= 33.5 Hours

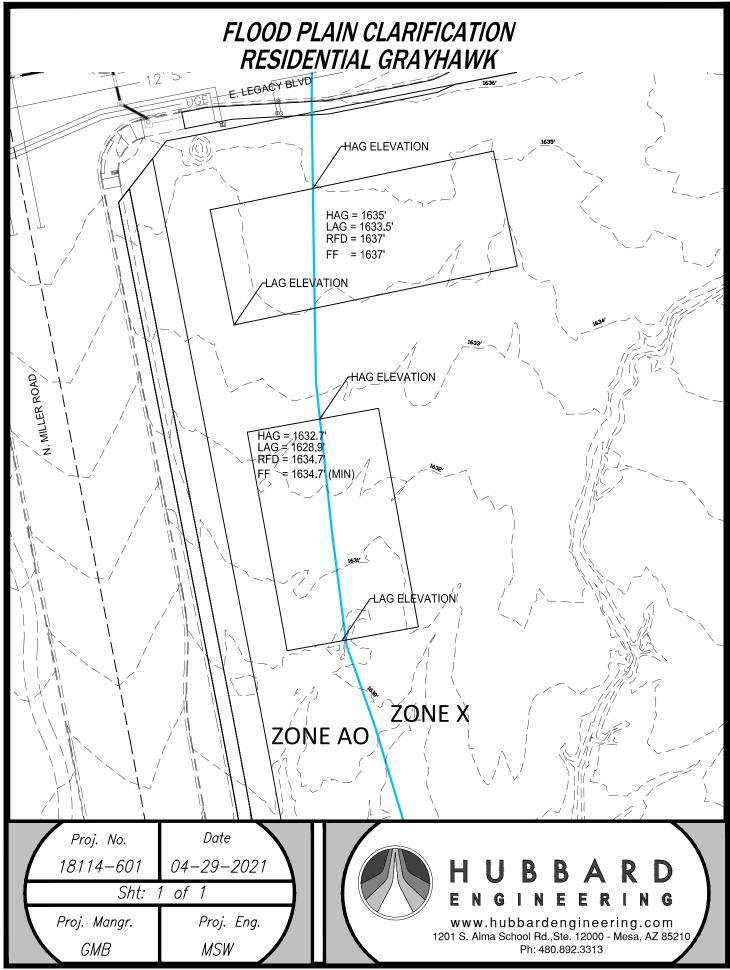


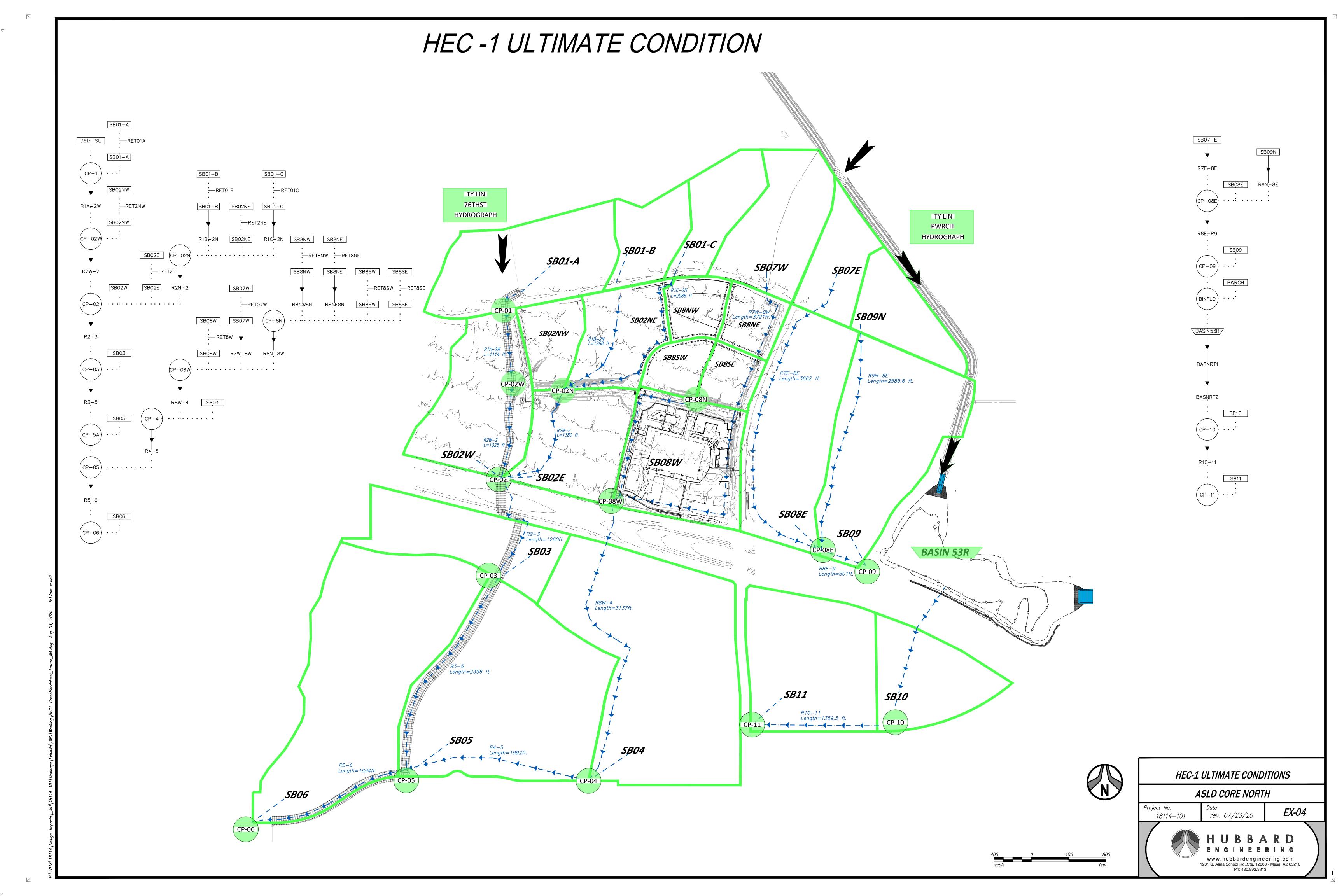
March 27, 2019

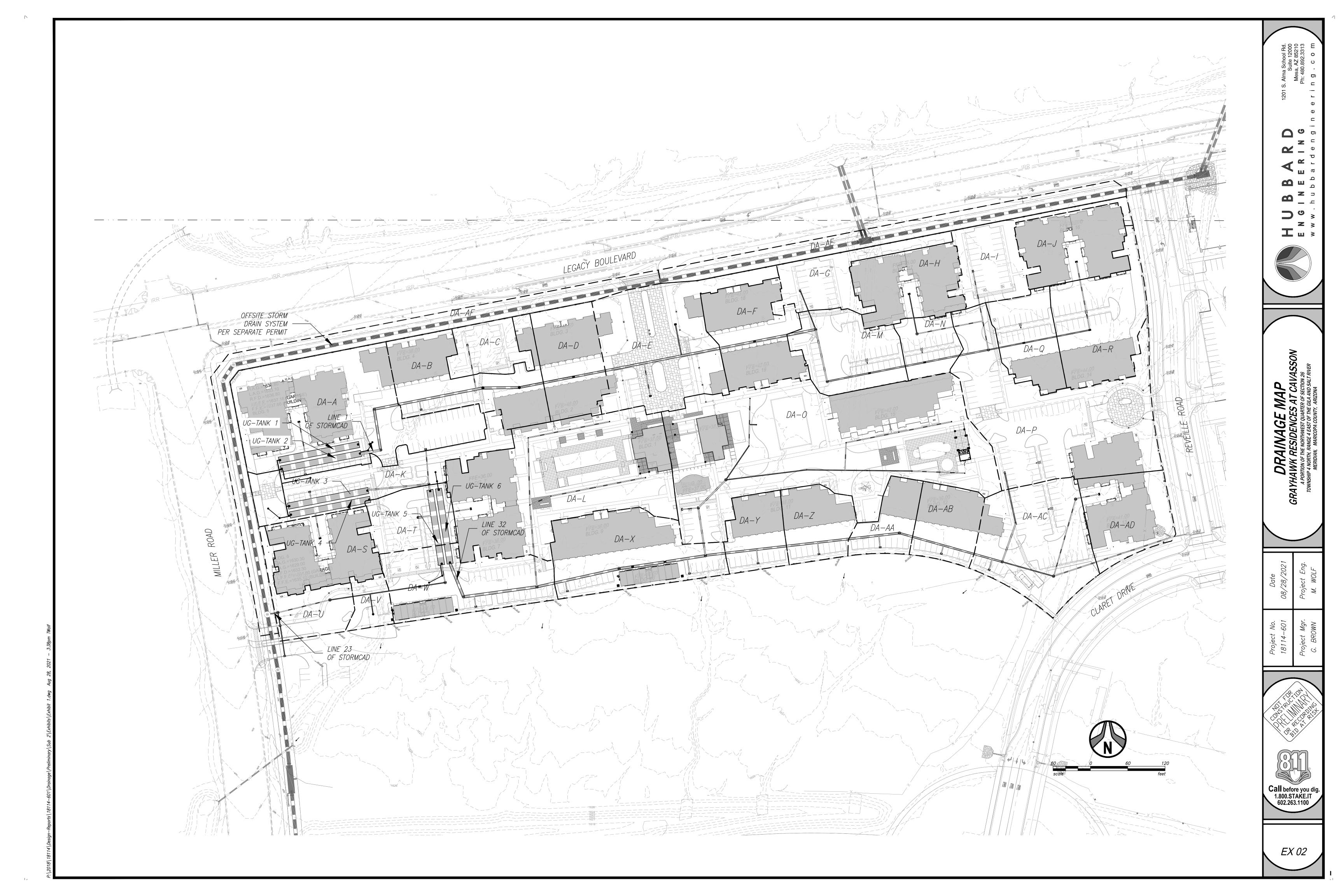
U.S. Army Corps of EngineersLos Angeles District – Regulatory Division915 Wilshire Blvd.Los Angeles, CA 90017

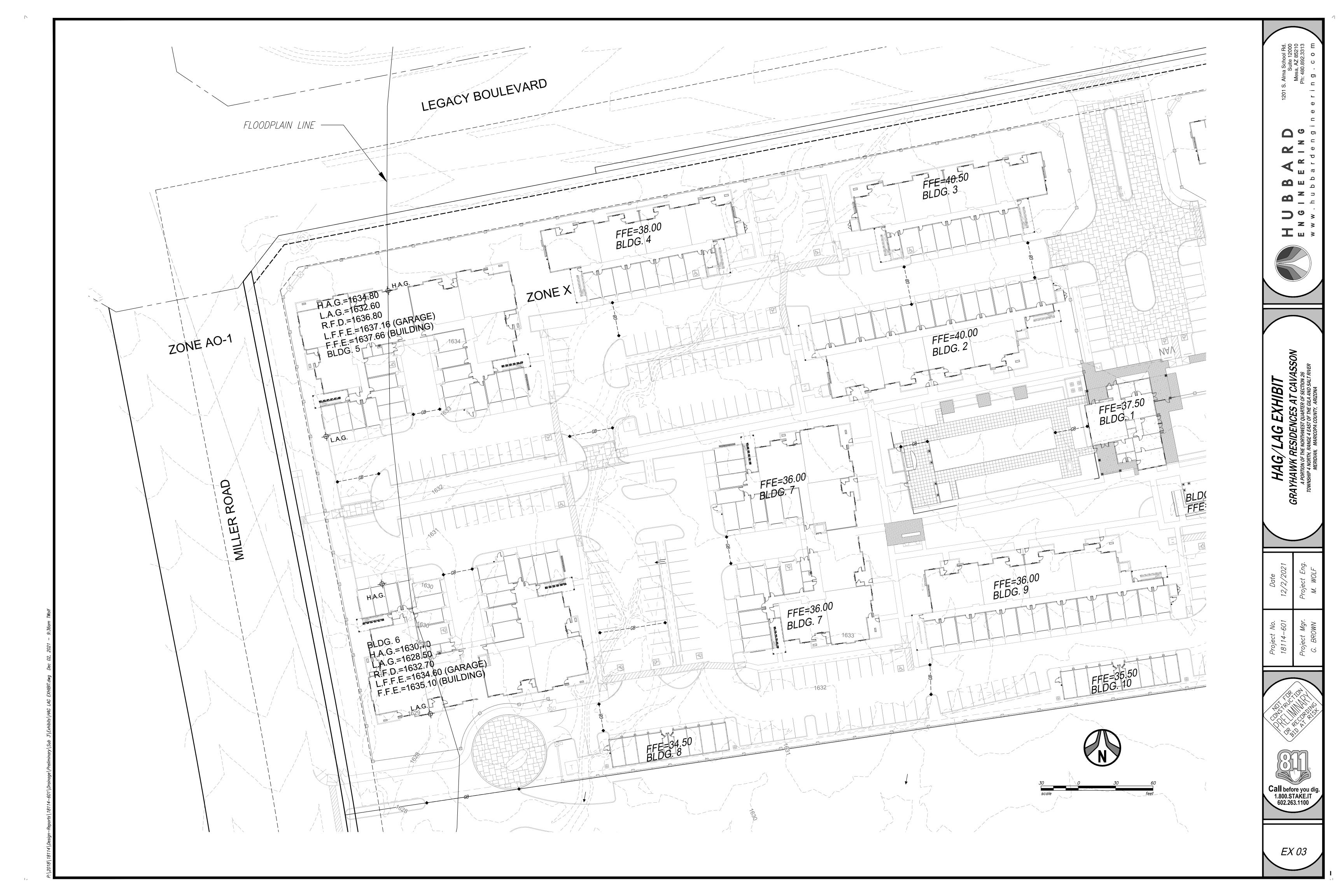
Subject: Statement of Sale of 0.89 Credits for the Cavasson Mixed-Use Development project, Corps permit number SPL-2018-00704, from the Arizona Game and Fish Department In-Lieu Fee Program to Nationwide Reality Investors Ltd.

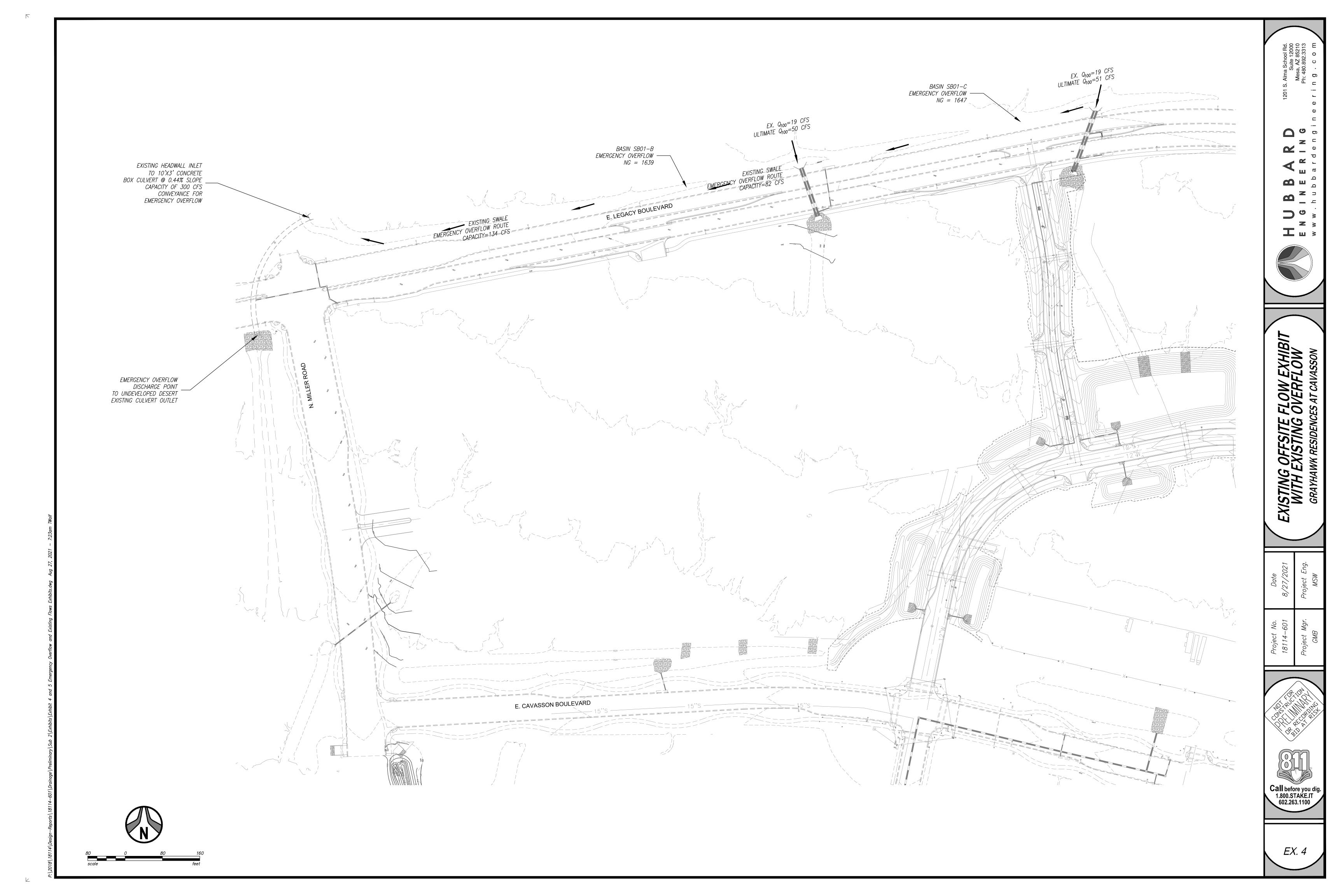
The Arizona Game and Fish Department has an agreement with the U.S. Army Corps of Engineers – Los Angeles District to operate an In-Lieu-Fee Program. This letter confirms the sale of 0.89 credits of Advance Credits for establishment/enhancement of wetlands and Mesquite Bosque within the Arlington Wildlife Area; an Arizona Game and Fish Commission owned property. These credits are being used as compensatory mitigation for 0.89 acres of impact calculated at a 1:1 ratio for impacts to Waters of The U.S. associated with the Cavasson Mixed-Use Development Project. By selling credits to the above permittee, AGFD is the party responsible for fulfilling the mitigation aspect of Special Condition of the Permit listed above.

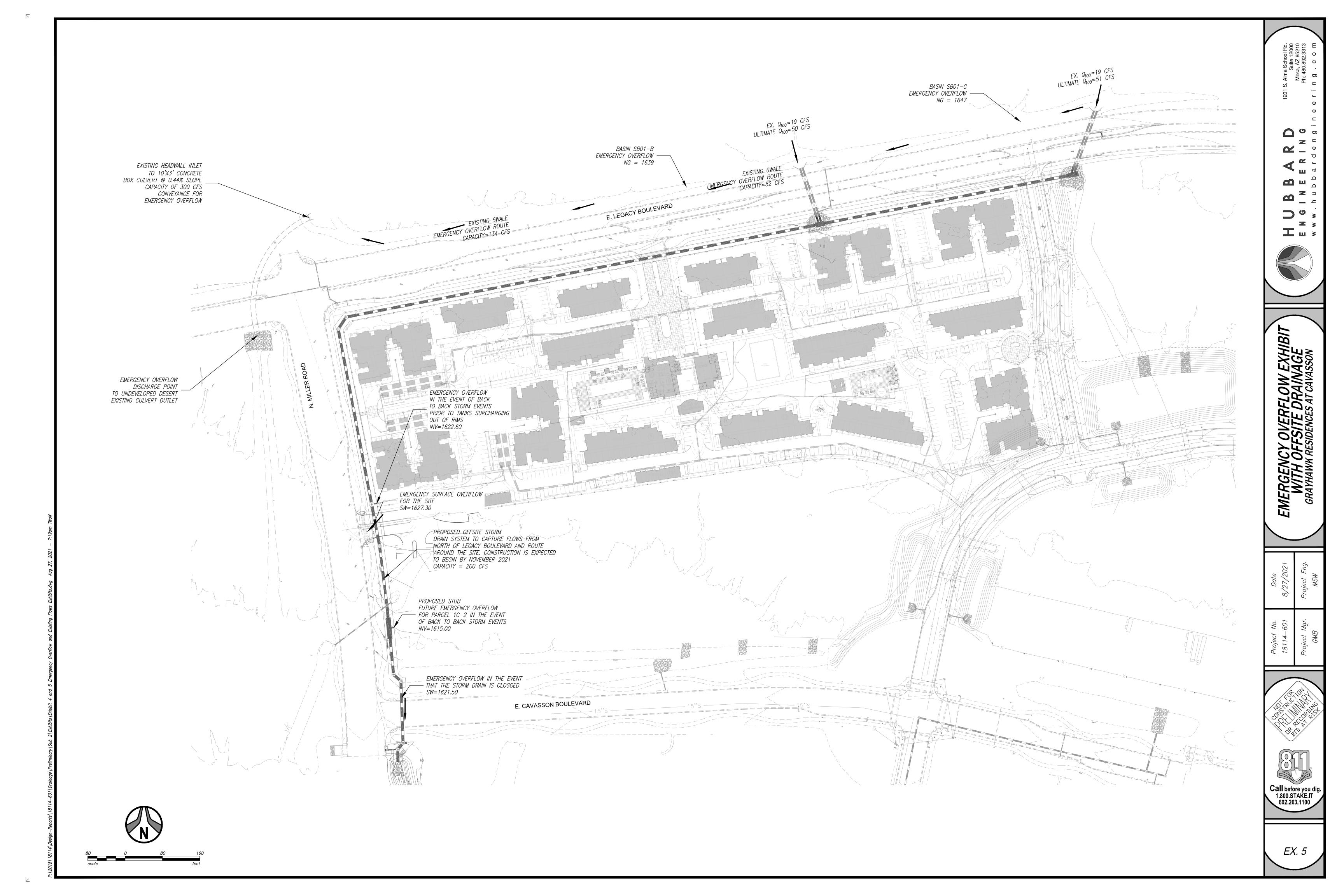

Signed,


Shawn F. Lowery


Statewide ILF Restoration Program Manager


Wildlife Contracts Branch


Arizona Game and Fish Department
















School Rd. uite 12000 AZ 85210 3.892.3313 C O M

BASIN EXHIBIT
ESIDENCES AT CAVASSON
ENORTHWEST QUARTER OF SECTION 26
RANGE 4 EAST OF THE GILA AND SALT RIVER

gr. Project Eng. M. WOLF



EX 06