WATER

BASIS OF DESIGN REPORT

Museum Square Building 4 Scottsdale, Arizona

Prepared for:

ARC Scottsdale Holdings, LLLP 3225 N. Central Avenue, Suite 100 Phoenix, AZ 85012

Note: Phasing plan and utility plan comments within updated on 11/4/2021 by LDillon.

Prepared by:

291430000 April 2021 Copyright © 2021, Kimley-Horn and Associates, Inc

FINAL Basis of Design Report

APPROVED

☑ APPROVED AS NOTED

☐ REVISE AND RESUBMIT

Disclaimer: If approved; the approval is granted under the condition that the final construction documents submitted for city review will match the information herein. Any subsequent changes in the water or sewer design that materially impact design criteria or standards will require re-analysis, re-submittal, and approval of a revised basis of design report prior to the plan review submission.; this approval is not a guarantee of construction document acceptance. For questions or clarifications contact the Water Resources Planning and Engineering Department at 480-312-5685.

BY Idillon

DATE 11/4/2021

Address comments below and herein on submitted plans:

- 1.) Stipulation: Portion of service line between meter and BFP must be backfilled with CLSM since the BFP is not directly adjacent to the meter. This is to prevent connections without backflow prevention.
- 2.) Stipulation: Marshall Way remove existing 6" water main connection, including any tees or fittings on the existing main and replace segment of Marshall Way main with DIP spool piece.
- 3.) Stipulation: Demolish/remove entirety of the buried unused 6" water main including offsite portion.
- 4.) Stipulation: All proposed improvements to coordinate with attached utility phasing plan and proposed street paving.
- 5.) Address markups on utility plans herein.

Museum Square Building 4

WATER BASIS OF DESIGN REPORT

APRIL 2021

Prepared By:

Contents

1.0 Introduction	1
2.0 Domestic Water Analysis	2
2.1 Intent and Scope	
2.2 General Theory	
2.3 Domestic Water Supply	2
2.4 International Fire Code, 2015	3
2.5 Water Demands	4
4.0 Conclusion	6
5.0 References	7

Appendices

Appendix A – Vicinity Map

Appendix B – Preliminary Utility Plan and Demolition Plan

Appendix C – Fire Flow Requirements from 2015 IFC

Appendix D – Fire Flow Test and Water CAD Results and Layout

1.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this Water Basis of Design Report for the proposed apartment development at the northeast corner of E. 2nd Street and N. Marshall Way in Scottsdale, Arizona. This report will demonstrate that the proposed project conforms to the City of Scottsdale design requirements.

Museum Square Building 4, the "project", encompasses approximately 1.24 net acres and contains a 93,438 gross square foot six-story apartment with a 72,063 gross square foot two-level underground parking garage. The project includes 92 units with a pool amenity area. The project lies within a portion of the Northeast Quarter of Section 27, Township 2 North, Range 4 East of the Gila and Salt River Baseline and Meridian in Maricopa County, Arizona. More specifically, the project is bound by E. 2nd Street to the south, N. Marshall Way to the west, E. 1st Street to the north, and existing parking lots to the east. See **Appendix A** for the Vicinity Map.

2.0 DOMESTIC WATER ANALYSIS

2.1 INTENT AND SCOPE

The intent of this section is to evaluate the potable water infrastructure for the proposed development. As a result of this analysis, it will be determined if the potable water infrastructure is capable of satisfying the projected water demands for the proposed development in accordance with the City of Scottsdale Design Standards & Policies Manual (**Reference 1**) and the 2015 International Fire Code (**Reference 2**) for fire prevention.

2.2 GENERAL THEORY

The water system modeling program Water CAD, developed by Haestad Methods, is used to model the water system servicing the proposed development. The program uses the fluid mechanic head loss theory known as the Hazen-Williams method. This is the typical method used to evaluate water distribution systems.

2.3 DOMESTIC WATER SUPPLY

There is an existing 6-inch ACP and 12-inch DIP water main located in N. Marshall Way west of the site. The existing 6-inch ACP water main and 12-inch DIP water main both connect to an existing 8-inch ACP water main in E. 2nd Street south of the site.

An existing 6-inch ACP connects to the water main in Marshall Way and bisects the site, running east/west across the middle of the parcel. Upon further investigation, this 6-inch water main is not in use and does not provide domestic water service or fireline service to sites east of the subject site. The building to the east of the site is a CenturyLink data center facility, and coordination with CenturyLink building management has confirmed that domestic water service and fireline service to the building are both provided from the water main in 1st Street. The existing 6-inch ACP water service line will be removed to the existing 6-inch ACP water main in N. Marshall Way. The existing tee will be replaced with a spool of pipe to repair the pipe.

A new 8-inch DIP private fire service will connect to the existing 8-inch ACP water main in E. 2nd Street with an 8-inch by 8-inch tee. One 3-inch domestic water service will connect to the proposed 8-inch ACP pipe via an 8-inch by 3-inch tapping sleeve. Refer to **Appendix B** for the Preliminary Utility Plan.

Residual and static pressures were obtained from a flow test performed on two fire hydrants (one flow and one pressure) in East 2nd Street, by EJ Flow Tests on May 5th, 2019. The tested fire hydrants were selected due to the proximity to the proposed building. See **Appendix D** for the Fire Flow Test results.

2.4 INTERNATIONAL FIRE CODE, 2015

According to the City of Scottsdale Fire Department, the 2015 International Fire Code (IFC) with City of Scottsdale Amendments is currently the governing code with respect to fire protection requirements. The IFC evaluates the building construction type, occupancy descriptions, and square footage to set minimum fire flow requirements with regards to a particular development.

The proposed building and garage are Construction Type I-B. Per Section B104.3 of **Reference 2**, fire flow floor area calculations for building types I-A and I-B are based on the three largest successive floors. Per Table B105.1(2) of **Reference 2**, the required fire flow is 2,500 gallons per minute. A reduction in fire-flow of 25% percent is allowed when the building is equipped with an approved fire sprinkler system. The apartment building and parking garage will be equipped with an approved fire sprinkler system. The minimum fire flow requirements per the IFC 2015 and COS DS&PM 6-1.501 for the proposed building are shown in Table 1. Table 1 also shows the required building fire flow based upon a maximum fire flow reduction of 75% allowed by the IFC 2015. The reduced fire flow shall not be less than 1,500 gpm. See **Appendix C** for IFC 2015 Appendix B.

Table 1 Required Building Fire Flows

Building	Building Construction Type	truction 3 successive floors		Reduction	Required Fire Flow per IFC with Reduction (gpm)
Apartment & Garage	I-B	52,920	2,500	75%	1,500

2.5 WATER DEMANDS

According to the guidelines provided in Figure 6-1.2 of **Reference 1**, the proposed development will add the following demands to the existing water system for Average Day Demand (ADD), Maximum Day Demand (MDD), and Peak Hour Demand (PHD):

Table 2: Domestic Water Demands

Building	Building Area (SF)	# DUs	Total Demand¹ (GPM/DU)	ADD (GPM)	MDD ² (GPM)	PHD ³ (GPM)
Building 1 + Garage	165,450	92	0.27	24.84	49.68	86.94

Notes:

- 1. For high density condominium land use, average day demand is 185.3 gpd/du or 0.27 gpm/du.
- 2. Maximum day demand defined as 2 times the average day demand.
- 3. Peak hour demand defined as 3.5 times the average day demand.

Three water analyses were performed to evaluate the existing adjacent off-site water infrastructure and the proposed on-site water system:

- 1. Average Day Demand
- 2. Peak Hour Demand
- 3. Maximum Day Demand + Fire Flow

The system was analyzed for the worst-case scenario to ensure that the existing and proposed public water infrastructure can maintain a minimum pressure of 50 psi for the Peak Hour demand, and 30 psi for the Maximum Day plus Fire Flow demand. See **Appendix D** for water model layout to identify nodes and pipes.

See **Appendix D** for the Fire Flow Test and Water CAD Analysis and Layout. A summary of the water analysis results for the project is tabulated below:

Table 3 Domestic Water Model Result Summary

Criteria	Peak Hour Demand	Constraint	Peak Hour Pressure at Demand	Node with Minimum Pressure
Minimum Pressure	87 gpm	50 psi	71 psi	BLDG DW
Meets Criteria?	-	-	Yes*	

^{*}The hydraulic water model was analyzed at the ground floor elevation of the proposed high-rise building. Reference plumbing calculations for any internal booster pump systems to provide adequate water pressures to the higher floors of the building.

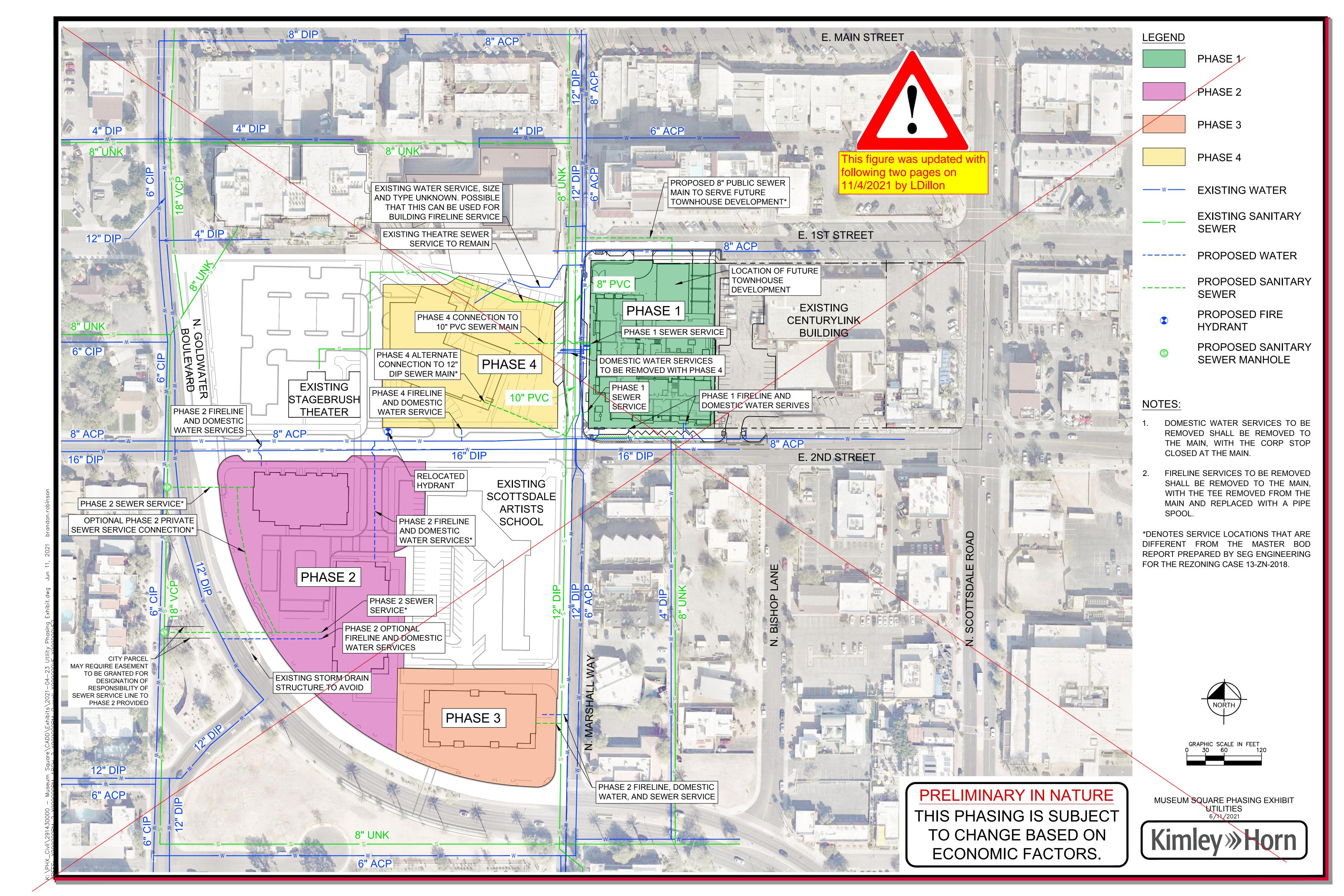
Table 4 Max Day + Fire Flow Water Model Result Summary

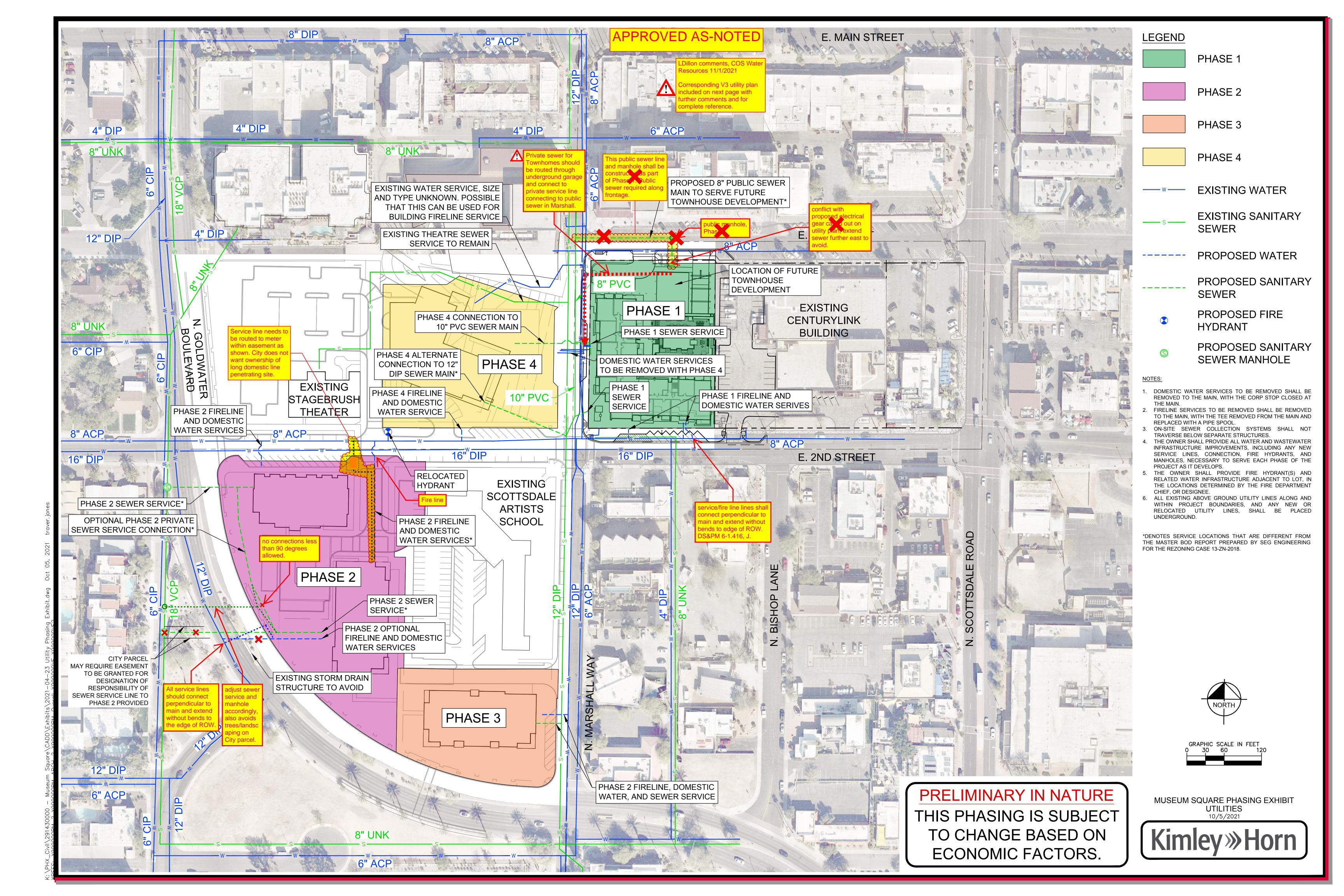
Criteria	Max Day + Fire Flow Demand	Constraint	Max Day + Fire Flow Pressure at Demand	Node with Minimum Pressure
Minimum System Pressure	1,550 gpm	30 psi	64.0 psi	BLDG FIRE
Meets Criteria?	-	-	Yes*	

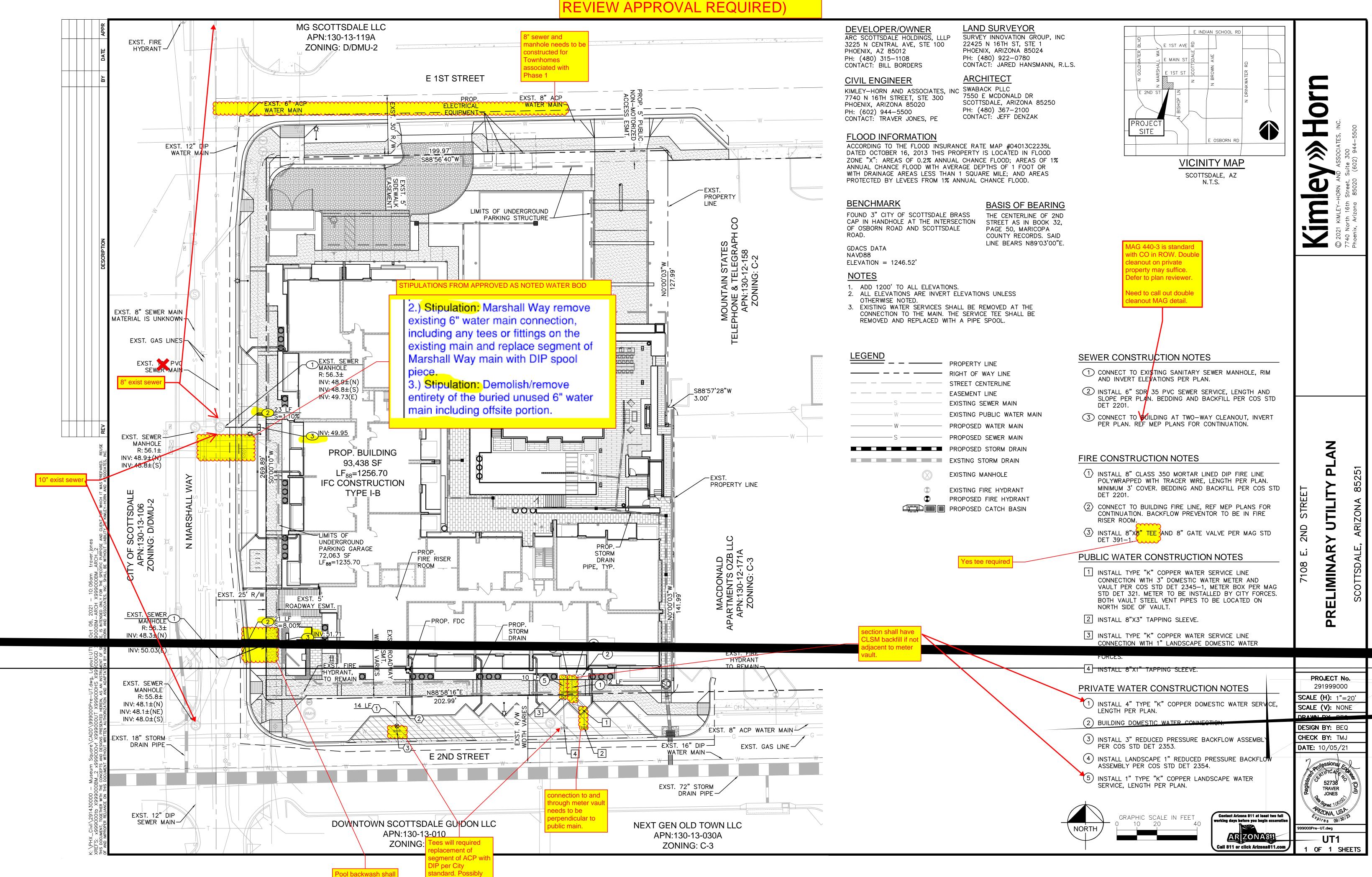
^{*}The hydraulic water model was analyzed at the ground floor elevation of the proposed high-rise building. Reference plumbing calculations for any internal booster pump systems to provide adequate water pressures to the higher floors of the building.

Table 5 Fire Hydrant Flow Water Model Result Summary

Criteria	Fire Flow Demand	Constraint	Fire Flow Pressure at Demand	Meets Criteria?
Hydrant 1	1,500 gpm	30 psi	62.0 psi	YES
Hydrant 2	1,500 gpm	30 psi	64.0 psi	YES

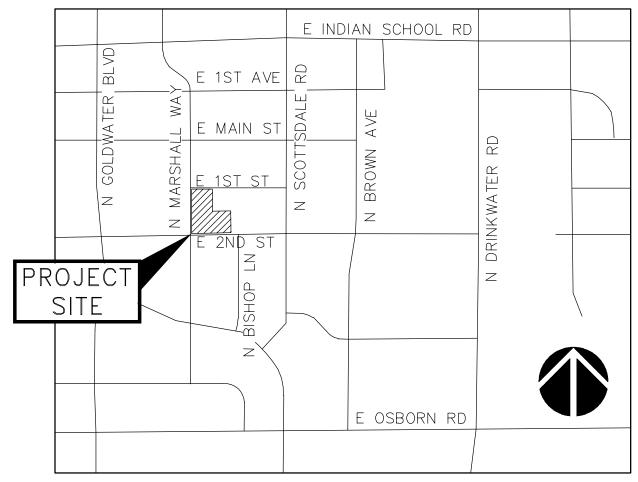

4.0 CONCLUSION


The proposed and existing on-site water system as outlined by this analysis appears adequate and sufficient to meet the required fire flow demand to the first floor of the proposed Museum Square development near the northest corner of 2nd Street and N Marshall Way in Scottsdale, Arizona. The proposed building may require a domestic booster system to provide adequate water pressures to the top floors of the building based on plumbing calculations.


5.0 REFERENCES

- 1. City of Scottsdale, Design Standards and Policies Manual. 2018.
- 2. International Code Council, 2015 International Fire Code. May 2014.

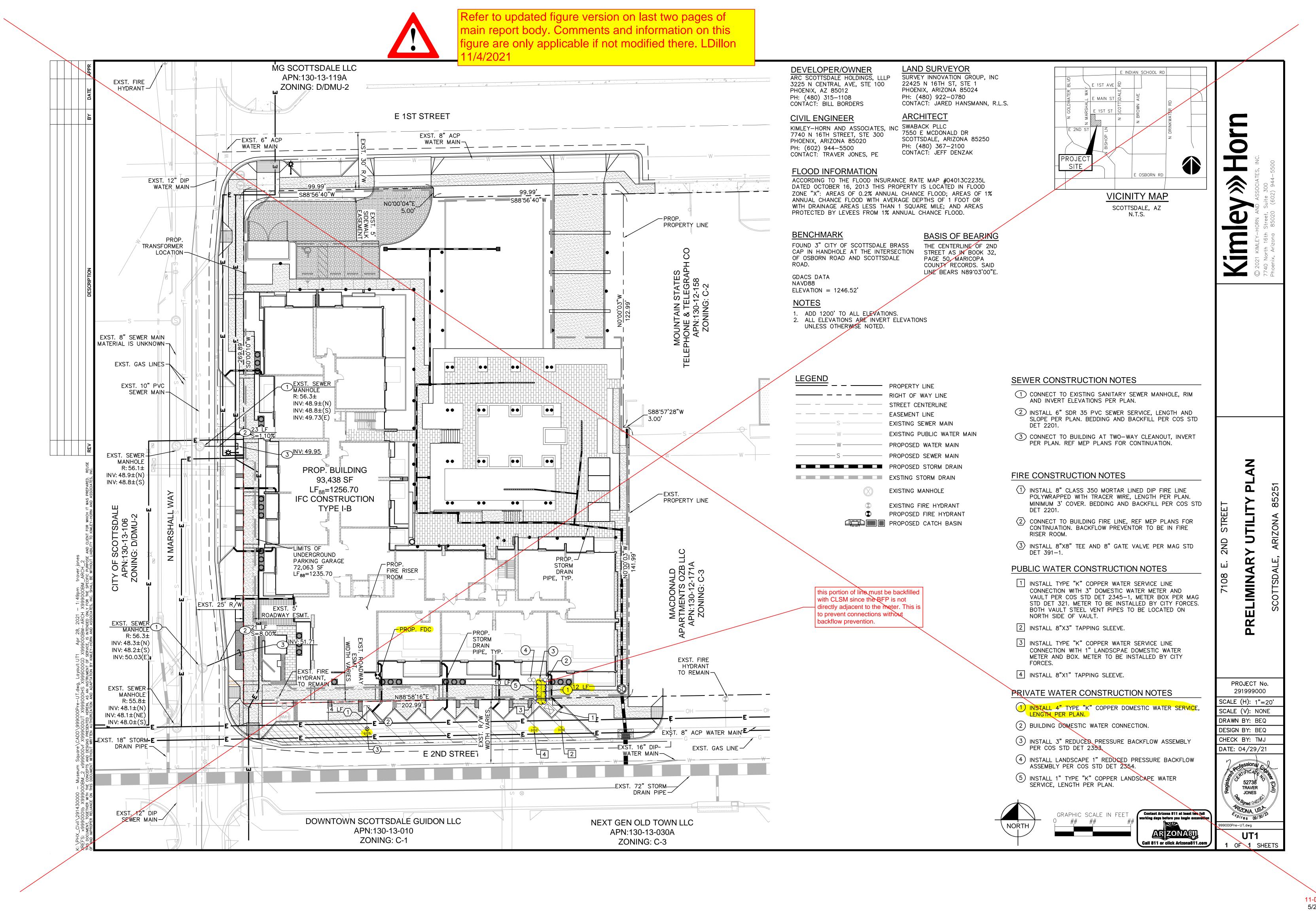
be routed here per


tipulation

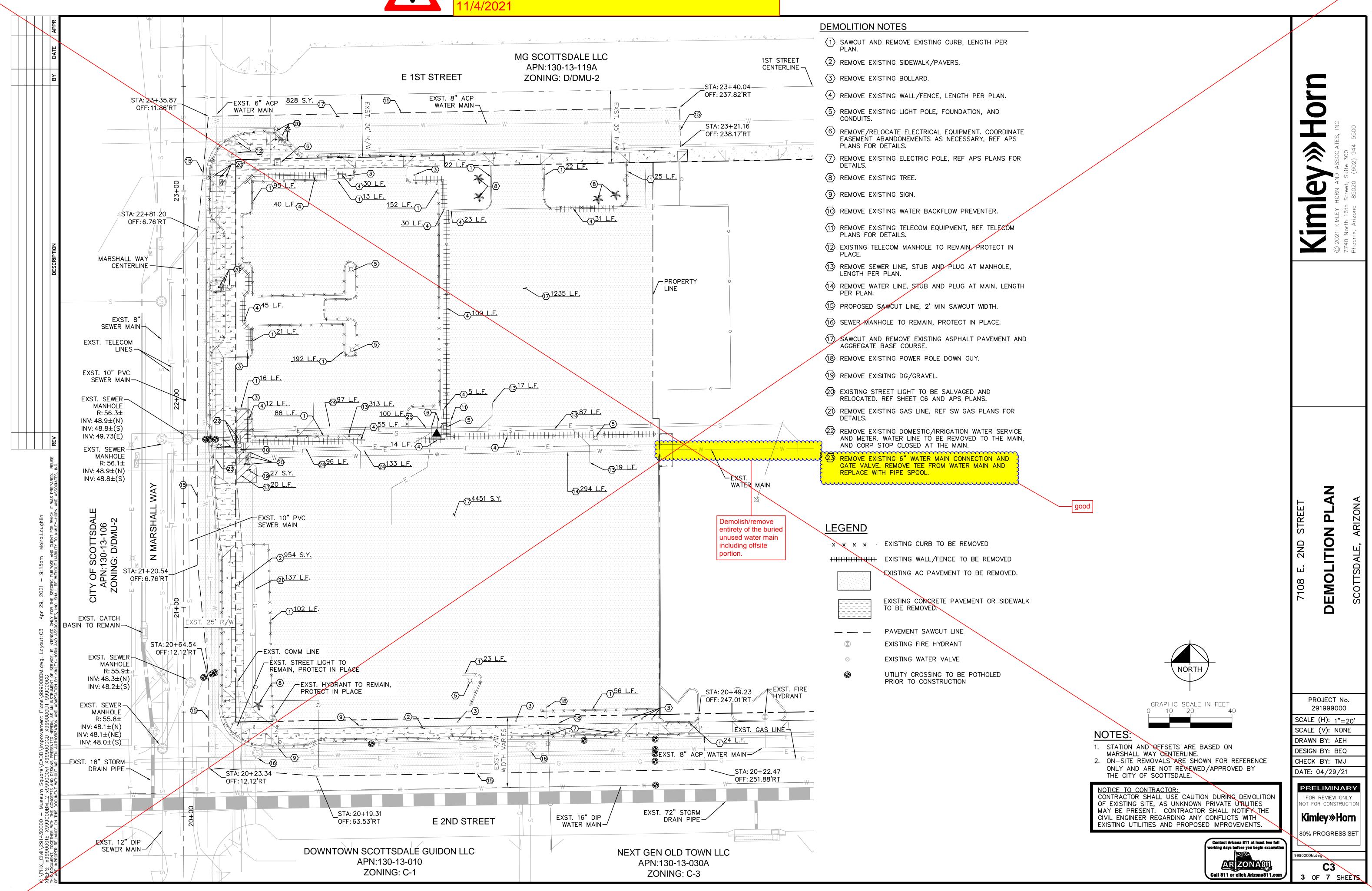
will need to be done on tapping sleeves it

oo close to joint.

Appendix A – Vicinity Map


VICINITY MAP

SCOTTSDALE, AZ N.T.S.



Appendix B – Preliminary Utility Plan and Demolition Plan

Refer to updated figure version on last two pages of main report body. Comments and information on this figure are only applicable if not modified there. LDillor 11/4/2021

Appendix C – Fire Flow Requirements from 2015 IFC

APPENDIX B

FIRE-FLOW REQUIREMENTS FOR BUILDINGS

The provisions contained in this appendix are not mandatory unless specifically referenced in the adopting ordinance.

SECTION B101 GENERAL

B101.1 Scope. The procedure for determining fire-flow requirements for buildings or portions of buildings hereafter constructed shall be in accordance with this appendix. This appendix does not apply to structures other than buildings.

SECTION B102 DEFINITIONS

B102.1 Definitions. For the purpose of this appendix, certain terms are defined as follows:

FIRE-FLOW. The flow rate of a water supply, measured at 20 pounds per square inch (psi) (138 kPa) residual pressure, that is available for fire fighting.

FIRE-FLOW CALCULATION AREA. The floor area, in square feet (m²), used to determine the required fire flow.

SECTION B103 MODIFICATIONS

B103.1 Decreases. The fire chief is authorized to reduce the fire-flow requirements for isolated buildings or a group of buildings in rural areas or small communities where the development of full fire-flow requirements is impractical.

B103.2 Increases. The fire chief is authorized to increase the fire-flow requirements where conditions indicate an unusual susceptibility to group fires or conflagrations. An increase shall not be more than twice that required for the building under consideration.

B103.3 Areas without water supply systems. For information regarding water supplies for fire-fighting purposes in rural and suburban areas in which adequate and reliable water supply systems do not exist, the *fire code official* is authorized to utilize NFPA 1142 or the *International Wildland-Urban Interface Code*.

SECTION B104 FIRE-FLOW CALCULATION AREA

B104.1 General. The fire-flow calculation area shall be the total floor area of all floor levels within the *exterior walls*, and under the horizontal projections of the roof of a building, except as modified in Section B104.3.

B104.2 Area separation. Portions of buildings which are separated by *fire walls* without openings, constructed in accordance with the *International Building Code*, are allowed to be considered as separate fire-flow calculation areas.

B104.3 Type IA and Type IB construction. The fire-flow calculation area of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors.

Exception: Fire-flow calculation area for open parking garages shall be determined by the area of the largest floor.

SECTION B105 FIRE-FLOW REQUIREMENTS FOR BUILDINGS

B105.1 One- and two-family dwellings, Group R-3 and R-4 buildings and townhouses. The minimum fire-flow and flow duration requirements for one- and two-family *dwellings*, Group R-3 and R-4 buildings and townhouses shall be as specified in Tables B105.1(1) and B105.1(2).

B105.2 Buildings other than one- and two-family dwellings, Group R-3 and R-4 buildings and townhouses. The minimum fire-flow and flow duration for buildings other than one- and two-family *dwellings*, Group R-3 and R-4 buildings and townhouses shall be as specified in Tables B105.2 and B105.1(2).

TABLE B105.1(1) REQUIRED FIRE-FLOW FOR ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

FIRE-FLOW CALCULATION AREA (square feet)	AUTOMATIC SPRINKLER SYSTEM (Design Standard)		
0-3,600	No automatic sprinkler system	1,000	1
3,601 and greater	No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2) at the required fire-flow rate
0-3,600	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	500	1/2
3,601 and greater	Section 903.3.1.3 of the <i>International Fire Code</i> or Section P2904 of the <i>International Residential Code</i>	¹ / ₂ value in Table B105.1(2)	1

For SI: 1 square foot = 0.0929 m^2 , 1 gallon per minute = 3.785 L/m.

TABLE B105.1(2) REFERENCE TABLE FOR TABLES B105.1(1) AND B105.2

	FIRE-FLOW	FIRE-FLOW	FLOW DURATION			
Type IA and IB ^a	Type IIA and IIIA ^a	Type IV and V-A ^a	Type IIB and IIIB ^a	Type V-B ^a	(gallons per minute) ^b	(hours)
0-22,700	0-12,700	0-8,200	0-5,900	0-3,600	1,500	
22,701-30,200	12,701-17,000	8,201-10,900	5,901-7,900	3,601-4,800	1,750	
30,201-38,700	17,001-21,800	10,901-12,900	7,901-9,800	4,801-6,200	2,000	2
38,701-48,300	21,801-24,200	12,901-17,400	9,801-12,600	6,201-7,700	2,250	2
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7,701-9,400	2,500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9,401-11,300	2,750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3,000	
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3,250	2
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3,500	3
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3,750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	4,000	
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4,250	
164,201-183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	4,500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4,750	
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5,000	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5,250	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5,500	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5,750	
295,901-Greater	166,501-Greater	106,501-115,800	77,001-83,700	47,401-51,500	6,000	4
_	_	115,801-125,500	83,701-90,600	51,501-55,700	6,250	
_	_	125,501-135,500	90,601-97,900	55,701-60,200	6,500	
_	_	135,501-145,800	97,901-106,800	60,201-64,800	6,750	
_	_	145,801-156,700	106,801-113,200	64,801-69,600	7,000	
_	_	156,701-167,900	113,201-121,300	69,601-74,600	7,250	
_	_	167,901-179,400	121,301-129,600	74,601-79,800	7,500	
_	_	179,401-191,400	129,601-138,300	79,801-85,100	7,750	
_	_	191,401-Greater	138,301-Greater	85,101-Greater	8,000	

For SI: 1 square foot = 0.0929 m², 1 gallon per minute = 3.785 L/m, 1 pound per square inch = 6.895 kPa.

TABLE B105.2 REQUIRED FIRE-FLOW FOR BUILDINGS OTHER THAN ONE- AND TWO-FAMILY DWELLINGS, GROUP R-3 AND R-4 BUILDINGS AND TOWNHOUSES

AUTOMATIC SPRINKLER SYSTEM (Design Standard)	MINIMUM FIRE-FLOW (gallons per minute)	FLOW DURATION (hours)
No automatic sprinkler system	Value in Table B105.1(2)	Duration in Table B105.1(2)
Section 903.3.1.1 of the International Fire Code	25% of the value in Table B105.1(2) ^a	Duration in Table B105.1(2) at the reduced flow rate
Section 903.3.1.2 of the International Fire Code	25% of the value in Table B105.1(2) ^b	Duration in Table B105.1(2) at the reduced flow rate

For SI: 1 gallon per minute = 3.785 L/m.

- a. The reduced fire-flow shall be not less than 1,000 gallons per minute.
- b. The reduced fire-flow shall be not less than 1,500 gallons per minute.

a. Types of construction are based on the International Building Code.

b. Measured at 20 psi residual pressure.

Appendix D – Fire Flow Test and Water CAD Results and Layout

Flow Test Summary

Project Name: **EJFT 19096**

Project Address: 7125 E 2nd St, Scottsdale, AZ 85251

Date of Flow Test: 2019-05-03 Time of Flow Test: 7:34 AM Data Reliable Until: 2019-11-03

Conducted By: Eder Cueva & Tayler Lynch (EJ Flow Tests) 602.999.7637

Witnessed By: Ray Padilla (City of Scottsdale) 602.541.0586

City Forces Contacted: City of Scottsdale (602.541.0586)

Permit Number: C58183

Note Scottsdale requires a max static pressure of 72 psi for safety factor

Raw Flow Test Data

Static Pressure: 88.0 PSI Residual Pressure: 82.0 PSI Flowing GPM: 1,575 GPM @ 20 PSI: 5,841

Data with a 16 PSI Safety Factor

Static Pressure: 72.0 PSI Residual Pressure: 66.0 PSI Flowing GPM: 1,575 GPM @ 20 PSI: 5,054

Hydrant F₁

Pitot Pressure (1): **PSI**

Coefficient of Discharge (1): 0.9

Hydrant Orifice Diameter (1): 2.5 inches Pitot Pressure (2): 22 Coefficient of Discharge (2): 0.9

Hydrant Orifice Diameter (2): 2.5 inches

Static-Residual Hydrant

Flow Hydrant

Distance Between F₁ and R 204 ft (measured linearly)

Static-Residual Elevation 1257 ft (above sea level)

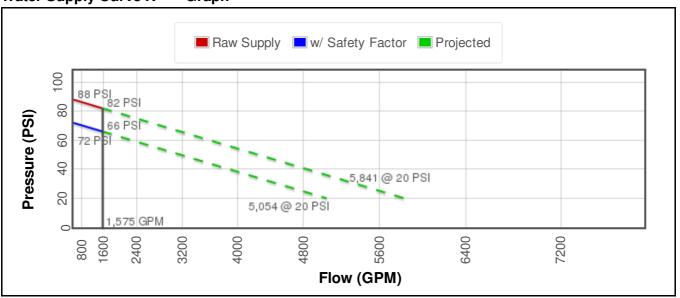
Flow Hydrant (F₁) Elevation 1257 ft (above sea level)

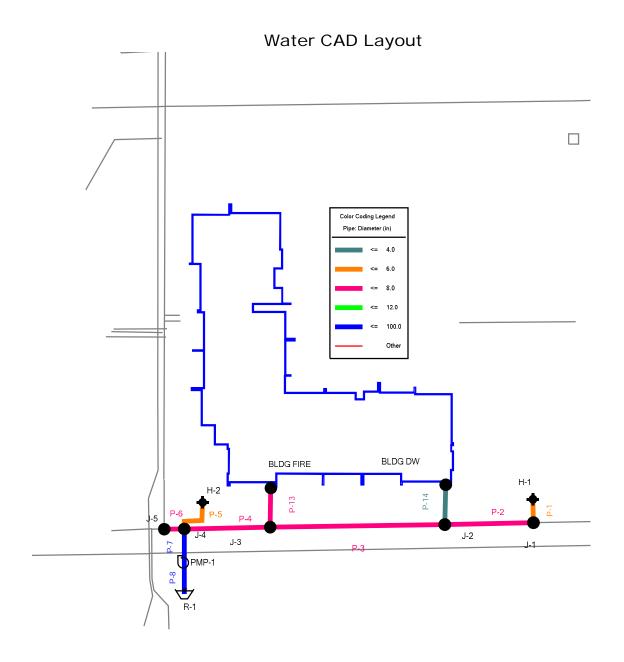
Elevation & distance values are approximate

Flow Test Summary

Static-Residual Hydrant

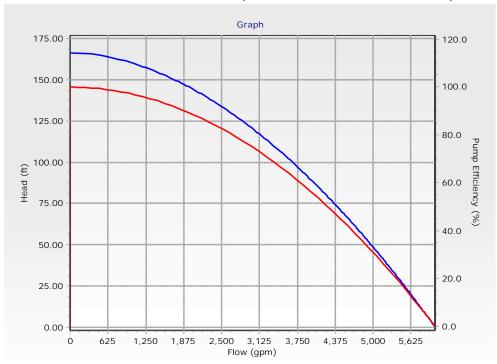
Scottsdale Artists School


Flow Hydrant (only hydrant F1 shown for clarity)



Approximate Project Site

Water Supply Curve N^{1.85} Graph



Pump Definition Detailed Report: 2019-05-03 FF Test

		mitter Betanea Rep	
Element Details			
ID	54	Notes	
Label	2019-05-03 FF Test		
Pump Definition Type			
Pump Definition Type	Standard (3 Point)	Design Head	152.46 ft
Shutoff Flow	0 gpm	Maximum Operating Flow	5,054 gpm
Shutoff Head	166.32 ft	Maximum Operating Head	46.20 ft
Design Flow	1,575 gpm		
Pump Efficiency Type			
Pump Efficiency Type	Best Efficiency Point	Motor Efficiency	100.0 %
BEP Efficiency	100.0 %	Is Variable Speed Drive?	False
BEP Flow	0 gpm		
Transient (Physical)			
Inertia (Pump and Motor)	0.000 lb·ft²	Specific Speed	SI=25, US=1280
Speed (Full)	0 rpm	Reverse Spin Allowed?	True

Pump Definition Detailed Report: 2019-05-03 FF Test

Fire Flow Node FlexTable: Fire Flow Report

Active Scenario: MDD+FF

Label	Satisfies Fire Flow Constraints?	Elevation (ft)	Fire Flow (Needed) (gpm)	Fire Flow (Available) (gpm)	Pressure (Calculated Residual @ Total Flow Needed) (psi)	Is Fire Flow Run Balanced?
H-1	True	55.07	1,500	3,212	62	True
H-2	True	55.52	1,500	3,774	64	True
J-1	True	54.39	0	3,424	39	True
J-4	True	55.32	0	4,468	52	True
J-5	True	55.63	0	4,404	51	True
BLDG FIRE	True	56.70	1,550	3,962	64	True
BLDG DW	True	56.70	0	1,176	-163	True
J-2	True	54.63	0	3,595	43	True
J-3	True	54.65	0	4,117	49	True

FlexTable: Junction Table

Active Scenario: PHD

ID	Label	Is Active?	Elevation (ft)	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
31	J-1	True	54.39	0	221.54	72
33	J-4	True	55.32	0	221.58	72
37	J-5	True	55.63	0	221.58	72
61	BLDG FIRE	True	56.70	0	221.54	71
63	BLDG DW	True	56.70	87	221.37	71
68	J-2	True	54.63	0	221.54	72
72	J-3	True	54.65	0	221.54	72

FlexTable: Pipe Table Active Scenario: PHD

ID	Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C	Flow (gpm)	Velocity (ft/s)	Headloss Gradient (ft/ft)
32	P-1	17	H-1	J-1	6.0	Ductile Iron	130.0	0	0.00	0.000
36	P-5	31	J-4	H-2	6.0	Ductile Iron	130.0	0	0.00	0.000
38	P-6	14	J-4	J-5	8.0	Asbestos Cement	140.0	0	0.00	0.000
50	P-7	23	J-4	PMP-1	100.0	Ductile Iron	130.0	-87	0.00	0.000
52	P-8	23	PMP-1	R-1	100.0	Ductile Iron	130.0	-87	0.00	0.000
69	P-2	63	J-1	J-2	8.0	Asbestos Cement	140.0	0	0.00	0.000
71	P-13	30	BLDG FIRE	J-2	8.0	Ductile Iron	130.0	0	0.00	0.000
73	P-3	7	J-2	J-3	8.0	Asbestos Cement	140.0	0	0.00	0.000
74	P-4	179	J-3	J-4	8.0	Asbestos Cement	140.0	-87	0.56	0.000
75	P-14	30	BLDG DW	J-3	4.0	Ductile Iron	130.0	-87	2.22	0.006